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1 Introduction

The study of large cotilting objects originates in the context of the represen-
tation theory of associative rings, where it amounts to the study of (tilting)
derived equivalences between the module category and Grothendieck categories
([56]). A generalisation of cotilting to the setting of Grothendieck categories
was provided in [8], and investigated in greater depth in [10]. As cotilting
objects are automatically pure-injective (unlike the dual notion of a tilting
object), the classifications of cotilting objects and of indecomposable pure-
injective objects are strongly related to each other. In this paper we consider
these classification problems for a certain class of Grothendieck categories that
are not module categories: the categories QcohX of quasicoherent sheaves over
weighted noncommutative regular projective curves over a field k. We empha-
size that each smooth projective curve is included in this setting as a special
case.
Each such category QcohX is determined by its full subcategory cohX of
finitely presented objects. The category cohX is, by definition, a k-linear
abelian category that shares important characteristics with classical categories
of coherent sheaves over (commutative) projective curves. In fact, the cate-
gories cohX have been axiomatised ([36]) and subsequently studied by several
authors (for example, [31, 1]). In particular, the category cohX is a small
hereditary abelian category in which every object is noetherian.
The structure of the category QcohX is less well-understood than cohX and is
likely to be beyond any hope of classification or description as a whole. In this
article, we systematically study the full subcategory of pure-injective sheaves
in QcohX, in the sense of [11, 19]. This subcategory properly contains the
subcategory cohX of coherent sheaves and, moreover, it constitutes a tractible
subcategory of QcohX, due to the fact that we may make use of the pure-exact
structure.
For arbitrary X we are able to give the following description of the indecom-
posable pure-injective sheaves E of slope ∞, that is, those which satisfy addi-
tionally Hom(E, vectX) = 0.

Theorem (5.11). Let X be a weighted noncommutative regular projective curve
over a field k. The following is a complete list of indecomposable pure-injective
objects in QcohX of slope ∞.

(1) The indecomposable sheaves of finite length.

(2) The sheaf K of rational functions, the Prüfer and the adic sheaves.

Moreover, each pure-injective sheaf of slope ∞ is discrete and thus uniquely
determined by its indecomposable summands.
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If we assume that cohX is of tame representation type (which means that
the orbifold Euler characteristic of X is nonnegative), then we can extend this
classification to the sheaves of rational and infinite slope. In the case of positive
Euler characteristic, we describe all the indecomposable pure-injective sheaves
in QcohX. In particular, we show that, when the orbifold Euler characteristic
of X is nonnegative, the form of the indecomposable pure-injective sheaves is
analogous to the case of modules over concealed canonical algebras ([2]). We
recall that in case of orbifold Euler characteristic zero each indecomposable
object has a slope, which is a real number or infinite, by [45, 1].

Theorem (7.1 and 8.11). Let χ′
orb(X) denote the orbifold Euler characteristic

of X. Then the following statements hold.

(1) If χ′
orb(X) > 0 (i.e. if X is a domestic curve), then each indecomposable

pure-injective sheaf in QcohX either has slope ∞, and thus is as in the
preceding theorem, or is a vector bundle.

(2) If χ′
orb(X) = 0 (i.e. if X is a tubular or an elliptic curve), then the

following is a complete list of indecomposable pure-injective sheaves of
rational or infinite slope w in QcohX.

(a) The indecomposable coherent sheaves.

(b) The generic, the Prüfer and the adic sheaves of slope w.

We also classify the cotilting sheaves in QcohX, which allows us to determine
the existence of pure-injective sheaves of irrational slope. For arbitrary X, we
have the following parametrisation of the cotilting sheaves in QcohX of slope∞;
for the complete statement we refer to Theorem 6.11. Note that branch sheaves
are certain rigid coherent sheaves contained in non-homogeneous tubes and are
defined in Section 6.

Theorem (6.11). Let X be a weighted noncommutative regular projective curve
over a field k. The cotilting sheaves C in QcohX of slope ∞ are parametrized
by pairs (B, V ) where V is a subset of X and B a branch sheaf.

In the theorem, the cotilting module C is uniquely determined by its torsion
part, which is given as a direct sum of B and a coproduct of Prüfer sheaves
concentrated in V ; the set of the indecomposable summands of the torsionfree
part is then given by certain “complementing” adic sheaves concentrated in
X \ V (and K, if V = ∅).
In the cases of nonnegative orbifold Euler characteristic we show that every
large (=non-coherent) cotilting sheaf C in QcohX has a well-defined slope w
(see Theorem 7.1 and Theorem 8.13) and, moreover, the equivalence class of C
is completely determined by a set of indecomposable pure-injective sheaves (see
Proposition 3.19). We have the following parametrisation of the large cotilting
sheaves in QcohX. Note that branch sheaves of rational slope are defined in
Section 8.
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Theorem (7.1 and 8.16). Under the assumptions of first theorem above, the
following statements hold.

(1) If χ′
orb(X) > 0, then all large cotilting sheaves in QcohX are of slope ∞.

(2) If χ′
orb(X) = 0, then all large cotilting sheaves in QcohX have a well-

defined slope w and are parametrised as follows.

(a) If w is rational or ∞, then the large cotilting sheaves of slope w are
parametrised (up to equivalence) by pairs (Bw, Vw) where Bw is a
branch sheaf of slope w and Vw ⊆ Xw.

(b) If w is irrational, then there is a unique large cotilting sheaf Ww of
slope w (up to equivalence).

In the case where w is rational or ∞, we provide an explicit description of the
minimal set of indecomposable direct summands of C (see Theorem 8.16) in
terms of the classification given in Theorem 5.11. Moreover, we describe the
pure-injective sheaves of irrational slope in terms of the large cotilting sheaves
given in Theorem 8.3.

Corollary (8.9). If χ′
orb(X) = 0 and w is irrational, then Prod(Ww) is the

set of the pure-injective sheaves of slope w.

The form of the indecomposable pure-injective sheaves of irrational slope is
not known but we show that there is a direct connection between the inde-
composable direct summands of Ww and the simple objects in the heart Gw of
the HRS-tilted t-structure (see Proposition 3.19). This perspective therefore
provides an interesting future strategy for investigating the indecomposable
pure-injective sheaves of irrational slope. In particular, in relation to the re-
cent description of some simple objects in Gw in the case where X is of tubular
type (see [44] and a forthcoming preprint by A. Rapa and J. Šťov́ıček). There-
fore we will exhibit and prove some basic properties of the categories Gw in the
final section.
In some sense the results presented here are “dual” to the description of large
tilting sheaves of finite type given by the first named author and L. Angeleri
Hügel ([1]). In categories of modules over noetherian rings, there is a bijection
between (1-)cotilting left modules and (1-)tilting right modules. This bijection
is induced by a duality (see [14, Thm. 15.2, Thm. 15.31]), which, in the case of a
finite dimensional k-algebra, can be taken to be the functor D := Homk(−, k).
Moreover, each cotilting class is the dual definable subcategory of the corre-
sponding tilting class (see [14, Rem. 15.35]). This close relationship is often
used to deduce a classification of cotilting modules from a classification of tilt-
ing modules (for example, [3, 2]). Although we find a connection to the results
of [1] as a consequence of our classification, we employ very different methods
to reach our conclusion. In fact, in our setting there is no obvious notion analo-
gous to “left” and “right” modules, let alone a concrete duality relating tilting
and cotilting sheaves.
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In the absence of an explicit duality, we observe some connection between large
tilting sheaves of finite type and large cotilting sheaves in the following theorem,
as well as in Proposition 6.10 and Lemma 8.12.

Theorem (4.4). If T ∈ QcohX is a tilting sheaf of finite type there is a cotilting
sheaf C ∈ QcohX such that ⊥1C ∩ cohX = ⊥1(T⊥1) ∩ cohX, and conversely.
The assignments Γ: [T ] 7→ [C] and Θ: [C] 7→ [T ] induce mutually inverse
bijections between the sets of

• equivalence classes [T ] of tilting sheaves T of finite type, and of

• equivalence classes [C] of cotilting sheaves C.

In Example 7.2, we observe that this bijection appears to be different in nature
to the bijection obtained from dual definable subcategories.

We end this introduction with a summary of the structure of the paper. In Sec-
tion 2 we introduce the main set of techniques we use to establish our results:
the theory of purity in locally finitely presented Grothendieck categories and
the theory of purity in compactly generated triangulated categories. We also
prove some preliminary results in this setting. Next, in Section 3, we introduce
the definition of a cotilting object in a Grothendieck category. We summarise
the connections between properties of cotilting objects and the injective cogen-
erators in HRS-tilted categories. In Section 4 we introduce the categories of
quasicoherent sheaves over weighted noncommutative regular projective curves.
In Section 5 we classify the indecomposable pure-injective sheaves of slope ∞
and in Section 6 we classify the large cotilting sheaves of slope ∞; as men-
tioned, this is done for all orbifold Euler characteristics. In the final sections
we extend these classifications of sheaves of slope infinity to include all slopes
in the domestic and the tubular/elliptic cases, respectively. We then study the
above-mentioned categories Gw in the case where w is irrational.

Notation

Let X be a class of objects in a Grothendieck category A. We will use the
following notation for orthogonal classes:

X⊥0 = {F ∈ A | Hom(X , F ) = 0}, X⊥1 = {F ∈ A | Ext1(X , F ) = 0},
⊥0X = {F ∈ A | Hom(F,X ) = 0}, ⊥1X = {F ∈ A | Ext1(F,X ) = 0},

X⊥ = X⊥0 ∩ X⊥1 , ⊥X = ⊥0X ∩ ⊥1X .

By Add(X ) (resp. add(X )) we denote the class of all direct summands of direct
sums of the form

⊕
i∈I Xi, where I is any set (resp. finite set) and Xi ∈ X for

all i. By Gen(X ) we denote the class of all objects Y generated by X , that is,
such that there is an epimorphism X → Y with X ∈ Add(X ) (and similarly
gen(X ) with add(X )). As usual we write X(I) for

⊕
i∈I X .
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1034 D. Kussin, R. Laking

By Prod(X ) we denote the class of all direct summands of products of the
form

∏
i∈I Xi, where I is any set and Xi ∈ X for all i. By Cogen(X ) we

denote the class of all objects Y cogenerated by X , that is, such that there is a
monomorphism Y → X with X ∈ Prod(X ). We write XI for

∏
i∈I X .

We denote by lim
−→
X the direct limit closure of X in A. We will often use also

the shorthand notation ~X = lim
−→
X .

Let (I,≤) be an ordered set and Xi classes of objects for all i ∈ I, in any additive
category. We write

∨
i∈I Xi for add(

⋃
i∈I Xi) if additionally Hom(Xj ,Xi) = 0

for all i < j is satisfied. In particular, notation like X1 ∨ X2 and X1 ∨ X2 ∨ X3

makes sense (where 1 < 2 < 3).

2 Pure-injectivity

The notion of purity is of great importance in our setting. For details we refer
to [43, 11]. Let A be an abelian category. We denote the full subcategory of
finitely presented objects in A by fp(A).

• We say that A is Grothendieck if all set-indexed coproducts exist, direct
limits are exact and A has a generator.

• We say that A is locally finitely presented if fp(A) is skeletally small and
every object in A is a direct limit of objects in fp(A).

• We say that A is locally coherent if A is locally finitely presented and
fp(A) is abelian.

• If A is k-linear over a field k, then A is called Hom-finite if HomA(C,D)
is a finite-dimensional k-vector space for every pair of objects C and D
in A.

• Let A be k-linear locally coherent and D := Homk(−, k). Then fp(A)
is said to satisfy Serre duality if fp(A) is Hom-finite and if there is an
autoequivalence τ : fp(A)→ fp(A) and an isomorphism D Ext1A(X,Y ) =
HomA(Y, τX), natural in X, Y ∈ fp(A). Moreover, A is said to satisfy
(generalised) Serre duality if additionally D Ext1A(X,Y ) = HomA(Y, τX)
and Ext1A(Y, τX) = D HomA(X,Y ) hold for all objects Y ∈ A, X ∈
fp(A).

Remark 2.1. Since we have assumed that A is abelian, we have that, if A
is locally finitely presented, then A is Grothendieck. See, for example, [11,
Sec. 2.4].

Definition 2.2. Let A be a locally finitely presented abelian category.

(1) An exact sequence 0→ A
α
→ B

β
→ C → 0 in A is called pure-exact, if for

every F ∈ fp(A) the induced sequence

0→ HomA(F,A)→ HomA(F,B)→ HomA(F,C)→ 0
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is exact. In this case α (resp. β) is called a pure monomorphism
(resp. pure epimorphism), and A a pure subobject of B.

(2) A pure-essential morphism is a pure-monomorphism j in A such that, if
fj is a pure monomorphism for some morphism f in A, then f is a pure
monomorphism.

(3) An object E ∈ A is called pure-injective if for every pure-exact sequence
0→ A→ B → C → 0 the induced sequence

0→ HomA(C,E)→ HomA(B,E)→ HomA(A,E)→ 0

is exact.

(4) For an object M in A, a pure-injective envelope of M is a pure-essential
morphism M → N where N is pure-injective.

(5) An object N is called superdecomposable if N has no nonzero indecom-
posable direct summands.

(6) An object E ∈ A is called Σ-pure-injective if the coproduct E(I) is pure-
injective for every set I.

(7) An object Y ∈ A is called fp-injective if Ext1A(X,Y ) = 0 for every X ∈
fp(A).

For every locally finitely presented abelian category A, there exists a locally
coherent Grothendieck category F(A) and a fully faithful functor d : A → F(A)
that identifies the pure-exact sequences in A with exact sequences in F(A) and
the pure-injective objects in A with the injective objects in F(A); see [11, 19].
The pure-injective objects in A therefore inherit the following properties of
injective objects in F(A).

Proposition 2.3. Let A be a locally finitely presented abelian category. The
following statements hold.

(1) Every object M in A has a pure-injective envelope M → PE(M) that is
unique up to isomorphism.

(2) Every pure-injective object N has the following form

N ∼= PE

(⊕

i∈I

Ni

)
⊕Nc

where {Ni}i∈I is the set of indecomposable pure-injective summands of
N and Nc is superdecomposable.
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1036 D. Kussin, R. Laking

(3) Let N be a pure-injective object and suppose

N ∼= PE

(⊕

i∈I

Ni

)
⊕Nc

∼= PE


⊕

j∈J

Mj


⊕Mc

such that Ni,Mj are indecomposable for all i ∈ I, j ∈ J and Nc, Mc

are superdecomposable. Then there exists a bijection σ : I → J such that
Ni
∼= Mσ(i) for all i ∈ I and Nc

∼= Mc.

Proof. Both (1) and (2) follow from the analogous result for injective objects
in a Grothendieck category; see, for example, [54, Prop. X.2.5, Cor. X.4.3] for
(1) and [42, Thm. E.1.9] for (2) and (3).

If N is a pure-injective object as in Proposition 2.3 such that Nc = 0, we say
that N is a discrete pure-injective object. The following statement provides
an alternative characterisation of pure-injectivity; it is often called the Jensen-
Lenzing criterion.

Proposition 2.4 ([43, Thm. 5.4]). An object E in a locally finitely pre-
sented abelian category A is pure-injective if and only if for any index set I
the summation morphism E(I) → E factors through the canonical embedding
E(I) → EI .

Lemma 2.5. Every indecomposable pure-injective object in A has a local endo-
morphism ring.

Proof. Cf. [17, Cor. 7.5].

Lemma 2.6. Assume that A is a locally coherent abelian k-category over a
field k and that fp(A) is Hom-finite. Then every object F ∈ fp(A) is Σ-pure-
injective.

Proof. By Hom-finiteness of fp(A) this follows directly from [11, (3.5) Thm. 2].

Pure-injectives and Ext

If E is a pure-injective module over a ring R, then the functor Ext1R(−, E)
sends direct limits to inverse limits. Here we show that pure-injective objects
in our setting have a similar property.

Theorem 2.7. Let A be a locally finitely presented Grothendieck category.
Then, for any pure-injective object E in A and any directed system of ob-
jects Mi (i ∈ I), we have that Ext1A(lim

−→
Mi, E) = 0 whenever Ext1A(Mi, E) = 0

for all i ∈ I.
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Proof. The exact sequence 0→ K
f
→
∐

i∈I Mi
g
→ lim
−→

Mi → 0 where K ∼= Ker g
is pure-exact since finitely presented objects in A commute with direct limits
and direct sums. Therefore, any morphism K → E factors through f . So if we
apply HomA(−, E), we obtain the exact sequence

HomA(
∐

Mi, E)→ HomA(K,E)
0
→ Ext1A(lim

−→
Mi, E)→

∏
Ext1A(Mi, E).

By our assumption, we may conclude that Ext1A(lim
−→

Mi, E) = 0.

2.8. If A is a locally noetherian Grothendieck category (that is, a Grothendieck
category which has a family of noetherian generators) such that every object
in A has finite injective dimension, it follows from [26, Prop. 2.3, Ex. 3.10] that
the derived category D(A) is compactly generated and the full subcategory of
compact objects coincides with Db(fp(A)). There is a well-developed notion of
pure-injectivity in a compactly generated triangulated category; we refer to [22]
for some background. We will make use of the interaction between the purity
in A and the purity in D(A). In particular, we note that, by [22, Thm. 1.8],
an object E in a compactly generated triangulated category is pure-injective if
and only if, for every index set I, the summation morphism E(I) → E factors
as in Proposition 2.4. Moreover, we note that Lemma 2.5 is true in such a
category.

In the following lemma we will need to distinguish between products taken in
a Grothendieck category A and products taken in the derived category D(A).

We will denote an S-indexed direct sum of copies of E in A by
⊕A

S E and an

S-indexed product of copies of E in A by
∏A

S E. Similar notation,
⊕T

S E and∏T
S E, will be used for S-indexed direct sums and products taken in T = D(A).

Lemma 2.9. Let A be a locally noetherian hereditary Grothendieck category,
i.e. Ext2(−,−) = 0. Then E is pure-injective in A if and only if E is pure-
injective when considered as an object of D(A).

Proof. If E is pure-injective in D(A), it follows from [32, Prop. 5.2] that E is
pure-injective in A.
For the converse, let E be pure-injective in A, and let fA :

⊕A
S E →

∏A
S E be

the canonical embedding and ΣA :
⊕A

S E → E be the summation morphism
for some set S. By Proposition 2.4, there exists a morphism hA : ES → E such
that hAfA = ΣA.
Now consider the S-indexed product

∏T
S E taken in T := D(A). Observe

that we have an isomorphism
∏T

S E ∼= H0(
∏T

S E) ⊕ H1(
∏T

S E)[−1] (see, for

example, [27, Sec. 1.6]) and we also have that H0(
∏T

S E) ∼=
∏A

S E. Clearly we

have
⊕A

S E ∼=
⊕T

S E because coproducts are exact in A.

Let fT
S :

⊕T
S E−→

∏T
S E be the canonical morphism from the coproduct to the

product. Since HomT (
⊕T

S E,H1(
∏T

S E)[−1]) = 0, we have that the projection
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π :
∏T

S E → H0(
∏T

S E) ∼=
∏A

S E induces an isomorphism

HomT (
⊕T

S
E,
∏T

S
E)

∼
−→ HomT (

⊕T

S
E,
∏A

S
E).

Moreover, the universal properties of the canonical morphisms ensure that
this isomorphism sends fT

S to fA
S , that is fA

S = π ◦ fT
S . Therefore, we have

(hA ◦ π) ◦ fT
S = ΣA

S = ΣT
S , which shows that the object E is pure-injective in

D(A).

For a triangulated category T with arbitrary coproducts, we denote the full
subcategory of compact objects in T by T c. The category T is compactly
generated if T c is skeletally small and, for every nonzero object X in T , there
exists a compact object C such that HomT (C,X) 6= 0. An important tool for
studying T is the category Mod -T c of additive functors from (T c)op to the
category Ab of abelian groups; see, for example, [26, Sec. 1.2]. We make use of
the restricted Yoneda functor y : T → Mod -T c, which takes an object M in T
to the functor y(M) := HomT (−,M)|T c . An object E in T is pure-injective if
and only if y(E) is injective in Mod T c; see [22, Thm. 1.8].

Pure subobjects of products of compact objects

Let k be a field and let T be a compactly generated triangulated k-linear cate-
gory for a field k. We will denote the category of additive functors from T c to
Ab by T c- Mod. Since T is k-linear, we have a functor D : Mod -T c → T c- Mod
given by postcomposition with Homk(−, k). Similarly, we have D : T c- Mod→
Mod -T c.
We say that T c has Auslander-Reiten triangles if for every indecomposable
object C in T c, there exist objects A,B,D,E and Auslander-Reiten triangles

C → D → E → C[1] and A→ B → C → A[1]

in T c. The definition of an Auslander-Reiten triangle can be found in [15,
Sec. 4.1].

Lemma 2.10 ([25, Lem. 4.1, Thm. 4.4]). Suppose T is a compactly generated
k-linear triangulated category such that T c is Hom-finite. Then the following
statements hold.

(1) There is a functor T : T c → T , together with a natural isomorphism

D HomT (C,X) ∼= HomT (X,TC)

for every compact object C and every object X in T .

(2) The functor T restricts to an equivalence T c → T c if and only if T c has
Auslander-Reiten triangles.
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Remark 2.11. For a compactly generated triangulated k-linear category where
T c is Hom-finite, every compact object is endofinite and hence pure-injective
by [21, Thm. 1.2].

Proposition 2.12. Let k be a field and let T be a compactly generated trian-
gulated k-linear category such that T c is Hom-finite and has Auslander-Reiten
triangles. Then every object in T is a pure subobject of a product of compact
objects.

Proof. Let F := HomT (−, N)|T c for some object N in T . Then DF is coho-
mological so, by [22, Lem. 2.7] or [7, Rem. 8.12], it is a flat object of T c- Mod.
By [40, Thm. 3.2], there exists a directed system of representable functors
{HomT c(Ci,−)}i∈I such that DF ∼= lim

−→i∈I
HomT (Ci,−). It follows that there

exists a canonical epimorphism
⊕

i∈I HomT (Ci,−)→ DF → 0. Applying the
functor D again we obtain a monomorphism

0→ D2F →
∏

i∈I

D HomT (Ci,−).

Now, applying Lemma 2.10, we have that

∏

i∈I

D HomT (Ci,−) ∼=
∏

i∈I

HomT (−, TCi) ∼= HomT (−,
∏

i∈I

TCi).

Moreover we have a natural family of monomorphisms from each vector space to
its double dual and this induces a monomorphism 0→ F → D2F . Composing
these morphisms we obtain a monomorphism 0 → F → HomT (−,

∏
i∈I TCi).

Finally, since
∏

i∈I TCi is pure-injective, we have that this is induced by a pure
monomorphism N →

∏
i∈I TCi by [22, Thm. 1.8].

Compact summands of products

In Remark 2.11 we have that, when T is compactly generated with T c Hom-
finite, every compact object C is pure-injective. In the next proof we show that
if T c also has Auslander-Reiten triangles, then y(C) is the injective envelope of
a simple functor in Mod -T c. In particular, compact objects have the following
property with respect to products of pure-injective objects in T .

Proposition 2.13. Let T be a compactly generated triangulated category such
that T c is Hom-finite and has Auslander-Reiten triangles. If a compact object
C is a direct summand of a product

∏
i∈I Ni of pure-injective objects {Ni}i∈I

in T , then C is a direct summand of Ni for some i ∈ I.

Proof. Let C
f
→ D → E → C[1] be an Auslander-Reiten triangle and consider

the functor F := Ker(y(f)).
First we show that F is a simple functor. Consider the category Coh(T )
of coherent functors T → Ab i.e. covariant functors that are of the form
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Coker(HomT (g,−)) for some morphism g in T c. In [24], Krause shows
that there exists a duality (−)∨ : mod -T c → Coh(T ) where G∨(X) :=
HomMod T c(G, y(X)) for each functor G in mod -T c and object X in T . By [4,
Cor. 1.12], we have that the functor F∨ is isomorphic to Coker(HomT (f,−))
which is a simple functor. It follows that F is a simple functor in Mod -T c.
By assumption, there is a split monomorphism C →

∏
i∈I Ni and so its im-

age y(C) →
∏

i∈I y(Ni) is a split monomorphism in Mod -T c. Since y(C) is
an indecomposable injective object, the monomorphism F → y(C) must be
an injective envelope and F must be essential in y(C). It follows that the
composition F → y(C) →

∏
i∈I y(Ni) → y(Ni) is a non-zero monomorphism

F → y(Ni) for some i ∈ I. But then the injective envelope y(C) of F must
be a direct summand of the injective object y(Ni). By [22, Thm. 1.8] we have
that C is a direct summand of Ni.

3 Cotilting objects

Let A be a Grothendieck category.

Definition 3.1 ([10, Def. 2.4]). An object C ∈ A is called a cotilting object if
Cogen(C) = ⊥1C, and if this class contains a generator for A. Then Cogen(C)
is called the associated cotilting class.

Lemma 3.2 ([10, Thm. 2.11]). An object C ∈ A is cotilting if and only if the
following conditions are satisfied:

(CS0) C has injective dimension id(C) ≤ 1.

(CS1) Ext1(CI , C) = 0 for every cardinal I.

(CS3) For every injective cogenerator W of A there is a short exact sequence

0→ C1 → C0 →W → 0

with C0, C1 ∈ Prod(C).

Each cotilting C moreover satisfies

(CS2) ⊥C = 0, that is: if X ∈ A satisfies Hom(X,C) = 0 = Ext1(X,C), then
X = 0.

We used this order of numbering since (CS0), (CS1) and (CS2) are the duals
of the corresponding properties (TS0), (TS1), (TS2) for tilting sheaves in [1].

Theorem 3.3 ([10, Thm. 3.9]). Let C ∈ A be cotilting. Let F = ⊥1C =
Cogen(C) be the associated cotilting class. Then C is pure-injective and F is
closed under direct limits in A.

It follows that Definition 3.1 is equivalent to the definition of cotilting objects
given in [8] for locally noetherian Grothendieck categories. The following is
well-known and easy to show.
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Lemma 3.4. Let C ∈ A be cotilting with associated cotilting class F .

(1) F = Copres(C), the class of objects in A which are kernels of morphisms
of the form CI → CJ .

(2) F ∩ F⊥1 = Prod(C).

Corollary 3.5. Let A be locally noetherian with the property that every object
in A has finite injective dimension. Let C ∈ A be a cotilting object with cotilting
class F = ⊥1C. If B ∈ fp(A) is indecomposable with B ∈ F ∩ F⊥1 , then B is
a direct summand of C.

Proof. By Lemma 3.4, we have that F ∩ F⊥1 = Prod(C) and so we may
apply [10, Cor. 2.13] to obtain that products of copies of C in A coincide with
products of copies of C in D(A). By Theorem 3.3, the cotilting object C is
pure-injective in A so, by Lemma 2.9, it is also pure-injective in D(A). Finally,
we may apply Proposition 2.13, to obtain that B is a direct summand of C in
D(A) and hence in A.

Definition 3.6. (1) Two cotilting objects C, C′ ∈ A are equivalent, if they
have the same cotilting class. This is equivalent to Prod(C) = Prod(C′).

(2) A cotilting object C ∈ A is called minimal if, for any other cotilting
object C′ with same cotilting class Cogen(C′) = Cogen(C), we have that
C is a direct summand of C′.

Let A additionally be locally finitely presented.

Theorem 3.7 ([10, Thm. 3.13], [8, Thm. 1.13]). Let A be locally noetherian.
The torsionfree classes F in A associated to a cotilting object bijectively corre-
spond to the torsion pairs (T0,F0) in fp(A) where F0 is a generating class for
fp(A). The correspondence is given by

F 7→ F ∩ fp(A) and (T0,F0) 7→ lim−→(F0).

Accordingly, two cotilting objects C, C′ ∈ A are equivalent if and only if ⊥1C ∩
fp(A) = ⊥1C′ ∩ fp(A).

Definition 3.8. A cotilting object C ∈ A is called large if it is not equivalent
to a coherent cotilting object.

Definition 3.9. Let E ∈ A.

(1) E is called rigid, if Ext1(E,E) = 0.

(2) E is called self-orthogonal, if Ext1(Eα, E) = 0 for every cardinal α.

(3) A self-orthogonal E is called maximal self-orthogonal, if Prod(E) ⊆
Prod(F ) implies Prod(E) = Prod(F ) for every self-orthogonal F .
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Proposition 3.10. Let A be hereditary. Every cotilting object in A is maximal
self-orthogonal.

Proof. The proof in [8, Prop. 3.1] does also work in this more general situation.

Proposition 3.11. Let A be locally noetherian Grothendieck and hereditary.
An object C in A is cotilting if and only if (CS1) and (CS2) hold and ⊥1C ∩
fp(A) is generating.

Proof. Let C satisfy (CS1) and (CS2). It is sufficient to show that Cogen(C) =
⊥1C. By (CS1) and since A is hereditary we easily get Cogen(C) ⊆ ⊥1C. For
the reverse inclusion, we let X ∈ ⊥1C and consider the short exact sequences
induced by the reject K of {C} in X , that is, 0 → K → X → U → 0 and
0 → U → CI → Y → 0 with I = Hom(X,C). By applying Hom(−, C) to
these sequences and using again that A is hereditary, we obtain Ext1(K,C) =
0 = Ext1(U,C) ∼= Hom(K,C), and then K = 0 by (CS2). We get X ∈
Cogen(C).

Cotilting objects and injective cogenerators

Let A be a Grothendieck category and (T ,F) a torsion pair in A. We define a
t-structure (UT ,VF) on D(A) as follows:

UT := {X ∈ D(A) | Hi(X) = 0 for all i > 0 and H0(X) ∈ T }

VF := {X ∈ D(A) | Hi(X) = 0 for all i < −1 and H−1(X) ∈ F}.

We call (UT ,VF) the HRS-tilted t-structure of (T ,F), after [16].

The following full subcategory

G = {X ∈ D(A) | H−1(X) ∈ F , H0(X) ∈ T and Hi(X) = 0 for i 6= 0, −1}

of D(A) is the heart of the t-structure (UT ,VF). It is sometimes also called an
HRS-tilt of A. Then (F [1], T ) is a torsion pair in G, and if (T ,F) is a cotilting
torsion pair, then D(G) = D(A), cf. [57].

We will also consider (in Section 8) the category G[−1] instead and call it
the [−1]-shifted heart. In this case we have that (F , T [−1]) is a torsion pair
in G[−1]. Since [−1] is an automorphism of D(A) there is just a notational
difference (which has some tradition in the theory of weighted projective lines).

Besides the mentioned results from [10] we will also need the following:

Theorem 3.12 ([52, Thm. 5.2]). Let A be a locally noetherian Grothendieck
category and let (T ,F) be a torsion pair in A. Then G is a locally coherent
Grothendieck category (with G ∩Db(fpA) the class of finitely presented objects)
if and only if F is closed under direct limits.
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Theorem 3.13 ([10, Prop. 4.4]). Let A be a Grothendieck category and let
(T ,F) be a torsion pair where F is a generating class. Then an object E in G
is an injective cogenerator of G if and only if E ∼= C[1] where C is a cotilting
object in A with F = Cogen(C).

Together we obtain the following corollary:

Corollary 3.14. Let A be a locally noetherian category. Then the following
statements hold:

(1) If (T ,F) is a cotilting torsion pair in A, then G is locally coherent.

(2) If (T ,F) is a cotilting torsion pair in A and G has a minimal injec-
tive cogenerator, then there exists a minimal cotilting object C in A with
Cogen(C) = F .

Σ-pure-injective cotilting objects

Before we continue the discussion on minimal cotilting objects, we observe that
we obtain the following criterion as a corollary of the above. An analogous
result for modules over any ring can be found in [9, Thm. 5.3]. This is also
shown in a more general setting in [32, Prop. 5.6].

Corollary 3.15. Let A be a locally coherent Grothendieck category and let
(T ,F) be a torsion pair with F = ⊥1C associated with a cotilting object C ∈ A.
The following are equivalent:

(1) C is Σ-pure-injective in A.

(2) G is locally noetherian.

Proof. By the preceding discussion, G is locally coherent and C is pure-
injective. Prod(C[1]) (in G) is the class of injective objects in G.
By [54, Prop. V.4.3], G is locally noetherian if and only if each coproduct of
injective objects is injective, that is, Prod(C[1]) in G is closed under coprod-
ucts. By [10, Cor. 2.13] this is equivalent to Prod(C) in A being closed under
coproducts. If this holds then in particular C(I) is pure-injective for each set
I, that is, C is Σ-pure-injective. Conversely, if C is Σ-pure-injective, then
by [11, (3.5) Thm. 2] so is each object in Prod(C) and is a coproduct of in-
decomposables. It follows that each injective object in G is a coproduct of
indecomposable objects. Thus G is locally noetherian by [23, Thm. A.11].

Locally finitely generated Grothendieck categories and minimal

injective cogenerators

Let A be a Grothendieck category. An object F in A is finitely generated if,
whenever F =

∑
i∈I Fi for a direct family of subobjects {Fi}i∈I of F , there

exists an index i0 ∈ I such that F = Fi0 .
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Remark 3.16. We define
∑

as follows ([54, pg. 88]). Let {Ci}i∈I be a family
of subobjects of C, then the monomorphisms Ci → C induce a morphism
α :
⊕

i∈I Ci → C. The image of α is denoted
∑

i∈I Ci and is called the sum of
the subobjects {Ci}i∈I . By [54, Ch. IV, Ex. 8.3], if {Ci}i∈I is a direct family,
then lim−→i∈I

Ci is a subobject of C and coincides with
∑

i∈I Ci.

We say that A is locally finitely generated if there exists a family of finitely
generated generators. By [54, Lem. 3.1(i)], if C is finitely generated, then the
image of a morphism C → D is finitely generated. Thus A is locally finitely
generated if and only if, for every object C in A, there is a direct family {Ci}i∈I

of finitely generated subobjects of C such that C =
∑

i∈I Ci.

Proposition 3.17 (Element-free version of [54, Prop. 6.6]). Let A be a locally
finitely generated Grothendieck category. Then an injective object E is a co-
generator if and only if it contains as a subobject an isomorphic copy of each
simple object.

Proof. If E is a cogenerator, then there exists a non-zero morphism S → E for
each simple object S which is necessarily a monomorphism.
For the converse, it suffices to show that every finitely generated object M
has a maximal proper subobject and hence a simple quotient M → S. Since
then, for any finitely generated object M in A, there is a non-zero morphism
M → S →֒ E. For an arbitrary object N , there exists a non-zero finitely
generated subobject M →֒ N and so the non-zero morphism M → E extends
to a non-zero morphism N → E.
So, consider the collectionM of proper subobjects of M , ordered by inclusion.
Then let L be a totally ordered subset of M and consider the subobject L̄ :=∑

L∈L L. If L̄ = M , then M = L for some L ∈ L which contradicts the
assumption that the objects of M are proper subobjects. Thus L̄ is a proper
subobject of M and so is an upper bound of the subset L in M. Applying
Zorn’s lemma, we conclude that M has a maximal object as desired.

Using some standard arguments we obtain the following corollary.

Corollary 3.18. Let S be a set of representatives of the isomorphism class
of simple objects in A. Then the object E(

⊕
S∈S E(S)) is a minimal injective

cogenerator of A.

Minimal cotilting objects in locally noetherian categories

Combining the previous two subsections, we obtain the following proposition.

Proposition 3.19. Let A be a locally noetherian Grothendieck category. Then

(1) Every equivalence class of cotilting objects has a minimal representative
C0 that is a discrete pure-injective object.

(2) The indecomposable direct summands of C0 are in bijection with the iso-
morphism classes of simple objects in G.
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Proof. Let (T ,F) be a cotilting torsion pair. Then, by Corollary 3.14, the heart
G in D(A) is locally coherent, so in particular, it is locally finitely generated.
By the Corollary 3.18, the category G has a minimal injective cogenerator
and so by Corollary 3.14, there exists a minimal cotilting object C such that
Cogen(C) = F . Moreover, this minimal cotilting object is discrete since the
minimal injective cogenerator has no superdecomposable part.

Lemma 3.20. Let A be a locally noetherian Grothendieck category. Let E be a
discrete pure-injective object in A with id(E) ≤ 1.

(1) The class ⊥1E is closed under products.

(2) The following are equivalent:

(a) Ext1(E,E) = 0.

(b) Ext1(E′, E′′) = 0 for all indecomposable summands E′, E′′ of E.

(c) E is self-orthogonal, that is, Ext1(EI , E) = 0 for each set I.

Proof. (1) Since id(E) ≤ 1, the class F = ⊥1E ∩ fp(A) is closed under subob-
jects and extensions, and ⊥1E is closed under direct limits by Theorem 2.7. As
in [8, Prop. 1.8] then ⊥1E = lim

−→
F is a torsionfree class, and thus closed under

products.

(2) As in [8, Cor. 2.3].

4 Weighted noncommutative regular projective curves

We define the class of weighted noncommutative regular projective curves by
the axioms (NC 1) to (NC 5) below. For details we refer to [36, 31, 1]. The
content of this background section contains some overlap with [1, Sec. 2] since
the settings are the same. We recall part of the material here for the convenience
of the reader. At the end of this section we exhibit a very useful correspondence
between cotilting sheaves and tilting sheaves of finite type, cf. Theorem 4.4.

The axioms

A noncommutative curve X is given by a category H which is regarded as the
category cohX of coherent sheaves over X. Formally it behaves like a category
of coherent sheaves over a (commutative) regular projective curve over a field
k (we refer to [31]):

(NC 1) H is small, connected, abelian and noetherian.

(NC 2) H is a k-linear category with Hom- and Ext-spaces of finite k-
dimension.
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(NC 3) Serre duality holds in H: For all objects X, Y ∈ H we have a natural
isomorphism

Ext1H(X,Y ) = D HomH(Y, τX)

with D = Homk(−, k) and with τ : H → H an autoequivalence, called
Auslander-Reiten translation. (It follows that H is a hereditary cate-
gory without non-zero projective or injective object.)

(NC 4) There exist objects in H of infinite length.

Let H0 denote the class of finite length objects and H+ = vectX the class
of a torsionfree objects, also called vector bundles. Decomposing H0 in its
connected components we have

H0 =
∐

x∈X

Ux,

where X is an index set (explaining the terminology H = cohX) and every
Ux is a connected uniserial length category, a so-called tube. We additionally
assume that H has the following condition.

(NC 5) X consists of infinitely many points.

Then X (or H) is called a weighted noncommutative regular projective curve
over k. The following statement is shown in [31].

Proposition 4.1. There are (up to isomorphism) only finitely many simple
objects in Ux, for all x, and for almost all x there is even only one.

By p(x) we denote the rank of the tube Ux, which is the number of simple
objects in Ux (up to isomorphism). The numbers p(x) with p(x) > 1 are called
the weights. The tubes Ux of rank 1 are called homogeneous, those finitely
many of rank > 1 non-homogeneous or exceptional. If Sx is a simple object
in Ux, then all simple objects (up to isomorphism) in Ux are given by the
Auslander-Reiten orbit τSx, τ

2Sx, . . . , τ
p(x)Sx = Sx.

In the following, if not otherwise specified, let H = cohX be a weighted non-
commutative regular projective curve.

The category of quasicoherent sheaves

In our focus will be a larger category, the Grothendieck category ~H. It is
obtained from H as the category Lex(Hop,Ab), cf. [13, II. Thm. 1]. We write
~H = Qcoh(X) and call the objects quasicoherent sheaves. It is also of the form
Qcoh(A), the category of quasicoherent modules over a certain hereditary order
A; we refer to [31, Thm. 7.11].

The category ~H is hereditary abelian, and a locally noetherian Grothendieck
category; every object in ~H is a direct limit of objects in H. The full abelian
subcategory H consists of the coherent (= finitely presented = noetherian)

objects in ~H, we also write H = fp( ~H). Every indecomposable coherent sheaf
has a local endomorphism ring, and H is a Krull-Schmidt category.
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Prüfer and adic sheaves

If S is a simple sheaf, then we denote by S[n] the (unique) indecomposable
sheaf of length n with socle S. The inclusions S[n]→ S[n + 1] (n ≥ 1) form a
direct system, the ray starting in S, and their direct union is the Prüfer sheaf
S[∞] = lim

−→
S[n] with respect to S. Cf. [46].

We denote by S[−n] the (unique) indecomposable sheaf of length n with top S.
The epimorphisms S[−n − 1] → S[−n] (n ≥ 1) form an inverse system, the
coray ending in S. We write S[−∞] = lim←−S[−n] for the inverse limit and call
it the adic sheaf with respect to S. It will be shown in Lemma 5.9 that S[−∞]
is indecomposable.

Rank. Line bundles

Let H/H0 be the quotient category of H modulo the Serre category of sheaves
of finite length, let π : H → H/H0 the quotient functor, which is exact. The
function field of H (or of X) is the up to isomorphism unique skew field k(H)
such that H/H0

∼= mod(k(H)). The k(H)-dimension on H/H0 induces the
rank of objects in H, which induces a linear form rk: K0(H)→ Z. The objects
in H0 are just the objects of rank zero, every non-zero vector bundle has a
positive rank. The vector bundles of rank one are called line bundles. For
every line bundle L′ the endomorphism ring End(L′) is a skew field. Every
vector bundle has a line bundle filtration, cf. [36, Prop. 1.6]. There exists a
line bundle L, called structure sheaf, having certain additional properties (we
refer to [31, 8.1+Sec. 13]).

The sheaf of rational functions

The sheaf K of rational functions is the injective envelope of any line bundle L
in the category ~H; this does not depend on the chosen line bundle. It is
torsionfree by [29, Lem. 14], and it is a generic sheaf in the sense of [33]; its
endomorphism ring is the function field, End ~H(K) ∼= EndH/H0

(πL) ∼= k(H),
where π : H→ H/H0 is the quotient functor.

Orbifold Euler characteristic and representation type

Let H be a weighted noncommutative regular projective curve with structure
sheaf L and p̄ the least common multiple of the weights. Let s = s(H) be
the square root of the dimension of the function field k(H) over its centre
(called the (global) skewness). We have the average Euler form 〈〈E,F 〉〉 =∑p̄−1

j=0〈τ
jE,F 〉, and then the normalized orbifold Euler characteristic of H is

defined by χ′
orb(X) = 1

s2p̄2 〈〈L,L〉〉.

The orbifold Euler characteristic determines the representation type of the
category H = cohX.

• X is domestic: χ′
orb(X) > 0
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• X is elliptic: χ′
orb(X) = 0, and X non-weighted (p̄ = 1)

• X is tubular: χ′
orb(X) = 0, and X properly weighted (p̄ > 1)

• X is wild: χ′
orb(X) < 0.

Degree and slope

With the structure sheaf L we define the degree function deg : K0(H)→ Z by

deg(F ) =
1

κε
〈〈L, F 〉〉 −

1

κε
〈〈L,L〉〉 rk(F ). (4.1)

Here, κ = dimk End(L), and ε is the positive integer such that the resulting
linear form K0(H) → Z becomes surjective. We have deg(L) = 0, and deg is
positive and τ -invariant on sheaves of finite length.

The slope of a non-zero coherent sheaf F is defined as µ(F ) = deg(F )/ rk(F ) ∈

Q̂ = Q ∪ {∞}, and F is called stable (semistable, resp.) if for every non-zero
proper subsheaf F ′ of F we have µ(F ′) < µ(F ) (resp. µ(F ′) ≤ µ(F )).

Torsion, torsionfree, divisible and reduced sheaves

4.2. The class of torsionfree (quasicoherent) sheaves is given by F = H0
⊥0 .

We have vectX = F ∩ H. The class of torsion sheaves is given as the direct
limit closure T = ~H0 = lim

−→
H0. The pair (T ,F) is a torsion pair in ~H. Every

E ∈ ~H has a largest subsheaf from T , the torsion subsheaf tE. The canonical
sequence 0→ tE → E → E/tE → 0 is pure-exact (cf. [1, Lem. 3.3]), and E/tE
is torsionfree.

Let V ⊆ X be a subset. The class of V -divisible sheaves is DV =
(∐

x∈V Ux
)⊥1

.
It is closed under direct summands, set-indexed direct sums, extensions and
epimorphic images. If V = {x}, then we will refer to V -divisible sheaves as
x-divisible. In case V = X we just say divisible.

The class D = DX of divisible sheaves is a torsion class, and the corresponding
torsion pair (D,R) in ~H splits. The sheaves in R are called reduced. By

[1, Lem. 3.3] we have D = Inj( ~H), the class of injective sheaves. Moreover,
the indecomposable injective sheaves are (up to isomorphism) the sheaf K of
rational functions and the Prüfer sheaves S[∞] (S ∈ H simple).

A tilting-cotilting correspondence

Proposition 4.3. Let ~H = QcohX be a weighted noncommutatuve regular
projective curve and H = cohX. A class F ⊆ H is torsionfree and generating
if and only if it is resolving (in the sense of [1, Def. 4.2]).

Proof. This is [1, Cor. 4.17].
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We recall that cotilting sheaves C, C′ are equivalent if Cogen(C) = Cogen(C′).
Similarly, tilting sheaves T, T ′ are equivalent if Gen(T ) = Gen(T ′). By slight
abuse of notation we denote the equivalence classes in both cases in the same
way as [C] and [T ], respectively.

Theorem 4.4. If T is a tilting sheaf of finite type there is a cotilting sheaf C
such that ⊥1C ∩H = ⊥1(T⊥1)∩H, and conversely. The assignments Γ: [T ] 7→
[C] and Θ: [C] 7→ [T ] induce mutually inverse bijections between the sets of

• equivalence classes [T ] of tilting sheaves T of finite type, and of

• equivalence classes [C] of cotilting sheaves C.

Proof. Follows from the preceding proposition by invoking Theorem 3.7 and [1,
Thm. 4.14].

For simplicity, we will even just write Γ(T ) = C, without brackets. In Example
7.2 we will see that this assignment appears to be unrelated to the usual bijec-
tion between tilting left modules and cotilting right modules over a noetherian
ring.

5 Pure-injective sheaves of slope infinity

Let ~H = QcohX be a weighted noncommutative regular projective curve over
a field k. Let

M(∞) = ⊥0 vectX = (vectX)⊥1 .

The sheaves in M(∞) are said to have slope ∞. Examples are the torsion
sheaves, but also the generic and the adic sheaves, which are torsionfree. More-
over:

Lemma 5.1. For every non-empty subset V of X the V -divisible sheaves have
slope ∞: DV ⊆M(∞).

Proof. Let E be x-divisible for some point x. If there is a non-zero morphism
from E to a vector bundle, then there is also an epimorphism to a line bundle
L′. Since there is an epimorphism from L′ to a simple object Sx concentrated
in x, we get with Serre duality a contradiction to x-divisibility.

Proposition 5.2. Let E ∈ ~H be pure-injective, torsionfree and of slope ∞.
Then E is rigid.

Proof. Since E is torsionfree, we have E = lim−→Ei for a directed system of
vector bundles (Ei)i∈I . The claim then follows from Theorem 2.7.

Corollary 5.3. Let E, F ∈ {K, S[−∞] | S simple}. Then Ext1(E,F ) = 0.

Proof. By the proposition, E ⊕ F is rigid.
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Definability

Let A be a locally coherent Grothendieck category. A full subcategory C of A is
called definable if it is closed under products, direct limits and pure subobjects.

Proposition 5.4. M(∞) is a definable subcategory of QcohX.

Proof. Let Xi be a family of objects in A and E ∈ vectX. By [10, Cor. A.2] we
have Ext1(E,

∏
iXi) = 0 if and only if Ext1(E,Xi) = 0 for all i. HenceM(∞)

is closed under products.
Assume that the Xi form a directed set of objects. Then Hom(lim

−→
Xi, E) ∼=

lim←−Hom(Xi, E), and thus M(∞) is also closed under direct limits.
By applying Hom(E,−) to a pure-exact sequence 0→ X → Y → Z → 0 with
Y ∈ (vectX)⊥1 , the resulting long exact sequence shows X ∈ (vectX)⊥1 , and
thus M(∞) is closed under pure subobjects.

Pure-injectives of slope ∞

We wish to determine the indecomposable pure-injective objects in the class
M := M(∞) of objects of slope ∞. In order to do this, we consider the

equivalent categoryM that occurs as a subcategory of D( ~H).

In the derived category D( ~H) the compact objects are given by Db(H) =∨
n∈ZH[n] (see the introduction for an explanation of this notation). Given

this description of Db(H), we may partition
∨

n∈ZH[n] into three parts:

p :=

(∨

n<0

H[n]

)
∨ vectX t := H0 q :=

(∨

n>0

H[n]

)
.

We also consider the HRS-tilted t-structure (UD,VR) of the split torsion pair

(D,R) in D( ~H) where we take the class D := {M ∈ ~H | Hom(M,H0) = 0}
of divisible objects and the class R := D⊥0 of reduced objects (see Section

4). By Proposition 2.12 applied to D( ~H) the pure-injective objects in D( ~H)
are exactly those in the class Prod(Db(H)) and so we will use the partition
(p, t,q), to find the indecomposable objects in Prod(Db(H)) ∩M.

Lemma 5.5. Let {Xi}i∈I be a set of objects in H0. Then in T := D( ~H) we

have
∏T

i∈I Xi
∼=
∏ ~H

i∈I Xi, where the product on the left is taken in T and the

product on the right is taken in ~H.

Proof. Note that the class F of torsionfree objects in ~H is a torsionfree class
that contains a system of generators. Moreover, by definition, we have that
F = H0

⊥0 . By applying (generalised) Serre duality, we have that H0 ⊆ F
⊥1 .

Thus, by [10, Prop. 2.12], we have the desired result.

The following lemma is a derived version of [50, 2.2]. In the proof, we will make
use of the following setup several times; we will refer to it as Setup (*). For
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every pure-injective object X in D( ~H), we have the following morphisms:

X

( fp
ft
fq

)

−→ Xp ⊕Xt ⊕Xq

( gp gt gq )
−→ X

such that gpfp + gtft + gqfq = 1 where Xp is a product of objects in p, Xt

is a product of objects in t and Xq is a product of objects in q. All products

and Prod(−) are taken in D( ~H) unless otherwise stated.

Lemma 5.6. We have

(1) (i) Prod(p) ∩M = 0, (ii) Prod(t) ⊆M, (iii) Prod(q) ∩M = D.

(2) The class Prod(t) is the class of pure-injective objects in R∩M.

(3) The following are equivalent for X ∈ ~H.

(a) X = X ′ ⊕X ′′ where X ′ ∈ Prod(t) and X ′′ ∈ D.

(b) X is pure-injective and belongs toM.

Proof. It follows from Proposition 2.13 that the classes Prod(p), Prod(t) and
Prod(q) have pairwise zero intersections.
(1)(i) Let M ∈ M, then HomD( ~H)(M,

∨
n<0H[n]) = 0 and Hom ~H(M, vectX) =

0. That is, we have HomD( ~H)(M,p) = 0 and so the first claim follows.

(ii) Next, note thatM is closed under products in ~H by Proposition 5.4. Then,
as t ⊆M, it follows from Lemma 5.5 that Prod(t) ⊆M.
(iii) For the third claim, let X ∈ D. As D consists of pure-injective objects

in ~H, it follows from Lemma 2.9 that X is a pure-injective object in D( ~H)
and so we are in Setup (*) above. We have that HomD( ~H)(D,Prod(t)) = 0

because Hom ~H(D,H0) = 0, so ft = 0. Similarly, we have that fp = 0 because
Hom ~H(D, vectX) = 0 and HomD( ~H)(D,

∨
n<0H[n]) = 0. So X ∈ Prod(q).

Moreover, we have that D ⊆ M so we have shown that D ⊆ Prod(q) ∩M in

D( ~H).

We wish to show that Prod(q)∩M ⊆ D; in fact we will show that Prod(q)∩ ~H ⊆

D. Let Y ∈ Prod(q) ∩ ~H. We will show that HomD( ~H)(Sx[−1], Y ) ∼=

HomD( ~H)(Sx, Y [1]) ∼= Ext1~H(Sx, Y ) = 0 for all simple Sx ∈ H0 i.e. Y ∈ D. Sup-

pose, for a contradiction, that there is a non-zero morphism f : Sx[−1] → Y .
Since Y ∈ Prod(q), it follows that there exists a non-zero morphism g : Y → Q
with Q ∈ q indecomposable such that gf 6= 0. By definition, we have
Q ∼= X [i] for some X ∈ H and i > 0. But then we have 0 6= gf ∈
HomD( ~H)(Sx[−1], X [i]) ∼= Exti+1

~H
(Sx, Y ), which is a contradiction. Therefore

we must have that Y ∈ D.
(2) We have already seen that Prod(t) consists of pure-injective objects and

also Prod(t) ⊆ M. Since (D,R) is a split torsion pair in ~H, we can write
any X ∈ Prod(t) as X ∼= XD ⊕ XR where XD ∈ D and XR ∈ R. But
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then XD ∈ Prod(q) ∩ Prod(t) = 0. So X ∼= XR ∈ R. We have shown that
Prod(t) ⊆M∩R.
For the reverse inclusion, let X ∈ M ∩ R be pure-injective. Again, we are
in Setup (*) above. In the proof of (1)(i) we saw that HomD( ~H)(X,p) = 0,

therefore fp = 0. We will show that gq = 0. Note that Xq
∼=
⊕

i≥0 Qi[i]

where Qi
∼= H−i(Xq) ∈ ~H for each i ≥ 0 (see, for example, [27, Sec. 1.6]).

Then HomD( ~H)(Xq, X) ∼=
∏

i≥0 HomD( ~H)(Qi[i], X) ∼= HomD( ~H)(Q0[0], X). In

the proof of (1)(iii) we saw that Prod(q) ∩ ~H[0] ⊆ D[0], and so we have
HomD( ~H)(Q0, X) = 0 because X ∈ R and Q0 ∈ D. We therefore have that

X ∈ Prod(t).
(3) (a) ⇒ (b) This implication is clear since Prod(t) and D both consist of
pure-injective objects.
(b) ⇒ (a) Suppose X ∈ M is pure-injective. Using that split torsion pair
(D,R), we may decompose X as XD ⊕XR. Then XD ∈ D and XR ∈ R∩M.
Since XR is pure-injective, we have XR ∈ Prod(t) by part (2).

We obtain in particular:

Lemma 5.7. In ~H we have that Prod(H0) is the class of pure-injective sheaves
in R∩M(∞).

Proof. By Lemma 5.6, we have that Prod(H0[0]) coincides with the class of

pure-injective objects in R[0] ∩M[0] in D( ~H). The result then follows from
Lemma 5.5.

Lemma 5.8. Let M ∈ ~H be reduced and having no non-zero direct summand of
finite length. Then M is torsionfree.

Proof. The canonical sequence 0 → tM → M → M/tM → 0, where tM is
the largest torsion subsheaf of M , is pure-exact. Since finite length sheaves are
pure-injective it follows that tM as well has no non-zero direct summand of
finite length, and thus tM is a coproduct of Prüfer sheaves (cf. [1, Cor. 3.7(2)]).
Since M is reduced, this coproduct must be empty, that is, tM = 0.

Lemma 5.9. Let 0 6= M ∈ ~H be torsionfree and lying in Prod(Ux) for some
x ∈ X. Then M has an indecomposable direct summand isomorphic to the adic
Sx[−∞] for some simple Sx ∈ Ux.

Proof. (1) If ~H = Qcoh(A) with a hereditary order A, let Rx be the en-
domorphism ring of A considered as an object in the quotient category
~Hx = ~H/ lim

−→

(∐
y 6=x Uy

)
. Since Ux ⊆ {Uy | y 6= x}⊥ ≃ Mod(Rx), we consider

M as an Rx-module. Moreover, lim
−→
Ux is the class of torsion modules over

Rx, and the above right-perpendicular category is closed in ~H under limits (in
particular: products) and direct limits (cf. [18]). Thus an Rx-module is (pure-)

injective if and only if it is (pure-) injective in ~H. In particular, M is a reduced,
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torsionfree and pure-injective Rx-module. Since M is a direct summand of a
product of modules in Ux, which are complete, it is also complete.
(2) We first treat the special case where p(x) = 1. By completeness, M is a Vx-

module, where Vx is a complete discrete valuation domain with R̂x
∼= Me(x)(Vx),

where R̂x = lim
←−

Rx/ rad(Rx)i is the rad(Rx)-adic completion of Rx; we refer to
[31, Prop. 3.16]. The class of torsion (resp., finite length) Vx-modules coincides
with the class of torsion (resp., finite length) Rx-modules. In particular, it
follows that M is also reduced, torsionfree and pure-injective as a Vx-module.
Since M is reduced, it has a maximal submodule. Each a ∈M \ radM induces
a monomorphism f : Vx →M which does not belong to rad(Vx,M). Since (cf.
[28, after Ex. 11.9]) EndRx

(Vx) = EndVx
(Vx) ∼= Vx is local, we obtain that

f splits, and thus Vx is a direct summand of M . (For a similar argument
cf. [28, Cor. 11.6].) By construction, the Rx-module Vx = lim

←−
Vx/ rad(Vx)i

corresponds to the adic Sx[−∞] in ~H, where Sx (corresponding to the Rx-
module Vx/ rad(Vx)) is the only simple in Ux.
(3) Now let p = p(x) be arbitrary. Then we have to replace the complete ring
Vx by the ring H = Hp(Vx), see [31, Prop. 13.4]. Since M ∈ Prod(Ux), and
with the same arguments as in (2), M is a complete, torsionfree, reduced and
pure-injective H-module. Since M is reduced, there is a ∈ M \ radM . This
induces a monomorphism f : H → M with f 6∈ rad(H,M). Let e1, . . . , ep be
the canonical complete set of primitive, othogonal idempotents of H . There
is some i and a morphism fi : eiH → M with fi 6∈ rad(eiH,M). Moreover
End(eiH) = eiHei ∼= Vx is local. It follows that fi is a split monomorphism.
Thus eiH is an indecomposable direct summand of M , and it corresponds to
the adic associated with some simple in Ux (cf. also [47, 4.4]).

Remark 5.10. The lemma shows in particular that all the adics S[−∞] are
indecomposable.

Theorem 5.11. The following is a complete list of the indecomposable pure-
injective sheaves in ~H = QcohX of slope ∞:

(1) The indecomposable sheaves of finite length.

(2) The sheaf K of rational functions, the Prüfer and the adic sheaves.

Moreover, each pure-injective sheaf E of slope ∞ is discrete, that is, has –
unless zero – an indecomposable direct summand.

Proof. We assume that M is indecomposable pure-injective of slope∞ and not
coherent. Since M is indecomposable, M is either divisible or reduced. In the
first case it is generic or Prüfer. Thus we can assume that M is reduced, and we
have to show that M is an adic. By Lemma 5.7 we have M ∈ Prod(H0). Since
M is indecomposable there is x ∈ X such that even M ∈ Prod(Ux) (cf. [50,
2.3]; the arguments therein also hold in our setting). Since M is not of finite
length, it is torsionfree by Lemma 5.8. By the Lemma 5.9 then M is an adic
with respect to Ux.
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The additional statement follows also from that lemma. Indeed, it is sufficient
to assume that E is reduced and moreover belonging to Prod(Ux) for some x.

Proposition 5.12. For every simple S there is a short exact sequence

0→ τS[−∞]→ E → S[∞]→ 0

with E a direct sum of copies of K.

Proof. Let p ≥ 1 be the rank of the tube Ux containing S. As in [20] we
get by an inverse limit construction (using S[−p] ∼= τ−S[p]) a short exact
sequence 0 → τS[−∞] → τS[−∞] → S[p] → 0; for exactness of the inverse
limit we note that we may form the inverse limit of a surjective inverse system
in ~Hx = Mod(Rx) as in the proof of Lemma 5.9. Then by a direct limit
construction we get a short exact sequence 0 → τS[−∞] → E → S[∞] → 0;
it follows as in [49, Prop. 4] that E is torsionfree and divisible, hence a direct
sum of copies of K.

The proposition shows (cf. [8, Lem. 2.7]):

Lemma 5.13. Let x, y ∈ X and j be an integer. Then

(1) Ext1(Sx[∞], τ jSy[−∞]) 6= 0 if and only if x = y.

(2) Ext1(Sx[−∞], τ jSy[∞]) = 0.

6 Cotilting sheaves of slope infinity

We will classify all cotilting sheaves having slope ∞.

Proposition 6.1. We have the following.

(1) Let C be a cotilting sheaf and F0 = ⊥1C ∩H. Then C has slope ∞ if and
only if vectX ⊆ F0.

(2) Let C and C′ be two equivalent cotilting sheaves. If one of them has slope
∞, then so has the other.

(3) Each cotilting sheaf of slope ∞ is large.

(4) Let C be a cotilting sheaf and T be a tilting sheaf such that Γ(T ) = C,
with Γ as in Theorem 4.4. Then C has slope ∞ if and only if T has slope
∞.

Proof. (1) is clear.
(2) Follows from Prod(C) = Prod(C′).
(3) Follows since there is no cotilting sheaf consisting only of indecomposable
summands of finite length (cf. [1, Rem. 7.7]).
(4) Follows from Theorem 4.4 and (1) (and its analogue for tilting objects).
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Rigidity

The following basic splitting property will be crucial for our treatment of cotilt-
ing sheaves.

Theorem 6.2 ([1, Thm. 3.8]). Let E ∈ ~H be a rigid sheaf, that is, Ext1(E,E) =
0 holds.

(1) The torsion subsheaf tE is a direct sum of Prüfer sheaves and exceptional
sheaves of finite length. Accordingly it is pure-injective.

(2) The canonical exact sequence 0→ tE → E → E/tE → 0 splits.

Given a rigid sheaf E ∈ ~H, we will use the notation

E = E+ ⊕ E0

where E0 = tE denotes the torsion part and E+
∼= E/tE denotes the torsionfree

part of E. We will say that E has a large torsion part if there is no coherent
sheaf F such that Add(tE) = Add(F ).

Corollary 6.3. Let E ∈ ~H be rigid and indecomposable. Then E is either
torsion or torsionfree.

Proposition 6.4. For any sheaf E, if the Prüfer sheaf S[∞] belongs to
Prod(E), then it is a direct summand of E.

Proof. Suppose S[∞] is a direct summand of EI and let s : S[∞] → EI be
the corresponding split monomorphism. Also let m : S → S[∞] be an essential
monomorphism, which exists since S[∞] is the injective envelope of the simple
object S. Then s◦m is non-zero and hence π◦s◦m is a non-zero monomorphism
for some projection π : N I → N . As m is an essential monomorphism, it follows
that π◦s is a monomorphism. As S[∞] is injective, the proposition follows.

Corollary 6.5. Let C ∈ ~H be cotilting with torsionfree class F = ⊥1C. If
S[∞] ∈ F , then it is a direct summand of C.

Proof. Since S[∞] is injective, we have S[∞] ∈ F ∩ F⊥1 = Prod(C).

Maximal self-orthogonality w.r.t. tubes

Let U be a tube. As in [8] we say that a pure-injective object M belongs to U if
every indecomposable direct summand of M is of the form S[n] with S ∈ U sim-
ple and n ∈ N∪{±∞}. The subcategory formed by all such objects is denoted
by U . The U-component MU of M is defined to be a maximal direct summand
of M belonging to U . If U = Ux, we will also use the notation Mx. The U-
component is unique up to isomorphism. In this context it is useful to recall
that each indecomposable pure-injective object has a local endomorphism ring
and we have the exchange property for such objects U , cf. [42, Thm. E.1.53.];
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for instance, if U is a direct summand of a direct sum M⊕N , then it is a direct
summand of M or of N . Moreover, the U-component of a cotilting object M
is said to be of Prüfer type (resp., adic type) if it has a Prüfer (resp., adic)
summand; it will turn out that each component is either of Prüfer or of adic
type, and not both.
The following lemma is shown as in [8, Prop. 3.3].

Lemma 6.6. Let C be cotilting of slope∞ and U a tube. Then the U-component
CU is maximal self-orthogonal with respect to all objects in U .

Branches

6.7. Branch sheaves. In this section we consider certain coherent sheaves,
called branch sheaves, which turn out to be typical coherent summands of
large cotilting sheaves. Let Ux be a tube of rank p > 1. The exceptional
(i.e. indecomposable and rigid) sheaves E in Ux are exactly those of length
≤ p − 1 and so there are only finitely many of them. The collection W of
subquotients of an exceptional sheaf E is called the wing rooted in E and E
is called the root of W . The set of simple sheaves in W is called the basis
of W . The basis of any wing is of the form S, τ−S, . . . , τ−(r−1)S for a simple
sheaf S where r is the length of the root E. We say that another wing W ′ is
not adjacent to W if their bases are disjoint and neither τS nor τ−rS is in W ′

(we say that the two wings W and W ′ are non-adjacent) [35, Ch. 3].

The full subcategory addW is equivalent to the category of modules over the
path algebra of a linearly ordered Dynkin quiver of type A, cf. [35, Ch. 3].
We define a connected branch B in W in the following way: B has exactly r
nonisomorphic indecomposable summands B1, . . . , Br such that B1

∼= E and for
every j, the wing rooted in Bj contains exactly ℓj indecomposable summands
of B where ℓj is the length of Bj . Each connected branch in W is a tilting
object in the subcategory addW [48, p. 205].

A module B in H0 is called a branch sheaf if it is a multiplicity-free direct sum
of connected branches in pairwise non-adjacent wings [35, Ch. 3]. Any branch
sheaf B is rigid and decomposes as B =

⊕
x∈X Bx. In fact, it is clear from the

definition that Bx = 0 for all x ∈ X corresponding to homogeneous tubes and
there are only finitely many isomorphism classes of branch sheaves.

Given a non-empty subset V ⊆ X, we also write

B = Bi ⊕Be

where Be is supported in X \ V and Bi in V . In this case we will say that Be

is exterior and Bi is interior with respect to V . We will see in Theorem 6.11
that a pair (B, V ) determines a cotilting module C, in which the exterior part
of B with respect to V determines the adic summands of C and the interior
part of B with respect to V determines the Prüfer summands of C.

Documenta Mathematica 25 (2020) 1029–1077



Cotilting Sheaves over Weighted Curves 1057

Lemma 6.8. Let C be a cotilting sheaf of slope ∞ and x a point of weight
p = p(x) ≥ 1. There are two possible cases:

(1) Exterior “adic type” case:

(a) The Ux-component Cx of C contains no Prüfer sheaf. The torsion
part of Cx consists of a direct sum of 0 ≤ s ≤ p− 1 indecomposable
summands of finite length.

(b) The finite length summands are arranged in connected branches in
pairwise non-adjacent wings; let W denote the union of these wings
in Ux.

(c) The p − s adic sheaves Sx[−∞] such that Hom(Sx[−∞], τW) = 0
are (torsionfree) direct summands of C.

(2) Interior “Prüfer type” case:

(a) The Ux-component Cx of C consists of a direct sum of 1 ≤ s ≤ p
Prüfer sheaves, and precisely p − s indecomposable summands of
finite length.

(b) The finite length summands belong to wings of the following form: if
S[∞], τ−rS[∞] are summands of C with 2 ≤ r ≤ p, but the Prüfer
sheaves τ−S[∞], . . . , τ−(r−1)S[∞] in between are not, then there is
a (unique) connected branch in the wing W rooted in S[r − 1] that
occurs as a summand of C.

(c) The torsionfree part C+ of C is x-divisible; thus C is automatically
of slope ∞ in this case.

Proof. We assume without loss of generality that C is minimal cotilting and
hence discrete; thus C is unqiuely determined by its indecomposable direct
summands.

Suppose that Cx does not contain a Prüfer sheaf as a direct summand. Then,
by Theorem 6.2, we must have that Cx is a direct sum of exceptional sheaves in
Ux. There are only finitely many exceptional sheaves in Ux and so let B1, . . . , Bs

denote the exceptional summands of C (up to isomorphism). Since
⊕s

i=1 Bi is
rigid, it has at most the number of summands of a tilting object in Ux, such
objects are well-known and it follows that 0 ≤ s < p, cf. [35, Ch. 3]. By Lemma
6.6, we must have that every adic Sx[−∞] such that Hom ~H(Sx[−∞], τBi) = 0
for all 1 ≤ i ≤ s is a direct summand of C; for future reference, let A denote the
set of these adics. This is a consequence of generalised Serre duality and the
fact that Hom ~H(τ−Bi, Sx[−∞]) = 0 for all 1 ≤ i ≤ s. Since s < p, there is at
least one coray that does not contain any Bi, therefore A is non-empty. Now,
by another application of Lemma 6.6, we have that the Bi are maximal self-
orthogonal (and hence maximal rigid) among the sheaves in {U ∈ Ux | τU ∈
A⊥0}. It follows from a standard argument (e.g. [35, Ch. 3]) that B1, . . . Bs

must form a branch sheaf. It follows from the form of the branches that there
are p− s adics in A.
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Assume the interior case. By Lemma 5.13 no adic sheaf associated with the
tube Ux can be a direct summand of C. Moreover, the same proof as in [1,
Lem. 4.10] shows that C+ is x-divisible. By Lemma 5.1 thus C has slope ∞.
The proof concerning the claim for the wings in the interior case is completely
dual to the arguments given in the proof of [1, Lem. 4.9], and we therefore omit
it.

Suppose C is a cotilting sheaf of slope ∞ such that C falls into case (2) of
Lemma 6.8 with respect to x ∈ X. It follows immediately from Corollary 3.5
that the branch summand B of C in Ux is given by

add(B) = Prod(C) ∩ Ux.

In particular, this shows that a cotilting sheaf C′ with a different branch B′ 6= B
in Ux will have ⊥1C′ 6= ⊥1C, that is, C and C′ cannot be equivalent.

The generating torsionfree classes

We now consider a pair (B, V ) given by a branch sheaf B ∈ H and a subset
V ⊆ X, and we associate a generating torsionfree class in H to it. In order to
do this we next define two pieces of notation.
Firstly, letW be the collection of pairwise non-adjacent wings in Ux determined
by the branch sheaf B. Let S, τ−S, . . . , τ−(r−1)S be a basis for one of the wings
inW . Then Rx is the set of indices j ∈ {0, . . . , p(x)−1} such that τ j+1S /∈ W .
Secondly, given a connected branch A with associated wing WA, we define the
undercut of A as in [1, (4.9)]:

A> :=

{
A⊥0 ∩WA if A is interior,

A⊥0 ∩ τWA if A is exterior.

The torsionfree class F0 associated to (B, V ) will consist of all vector bundles,
of the rays given by the sets Rx, and of some objects determined by B. Up to
τ -shift, these objects will belong to the wings defined by the undercut of B.

Lemma 6.9. Let V ⊆ X and B = Bi ⊕Be be a branch sheaf.

(1) The class

F0 = add
(

vectX ∪ τ−(B>) ∪
⋃

x∈V

{τ jSx[n] | j ∈ Rx, n ∈ N}
)

(6.1)

is a torsionfree class in H which generates.

(2) There is a cotilting sheaf C with cotilting class ⊥1C = lim
−→
F0. For any

such C its torsion part is (up to multiplicities) given by

C0 = B ⊕
⊕

x∈V

⊕

j∈Rx

τ jSx[∞].
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(3) If, moreover, C is assumed to be minimal cotilting, then the inde-
composable summands of its torsionfree part C+ are given by the adic
sheaves Sy[−∞] with y ∈ X \ V and Sy ∈ Uy simple such that
Hom(Sy[−∞], τBe) = 0, and in case V = ∅, additionally by the sheaf
K of rational functions.

Proof. (1) It is shown in [1, Lem. 4.11] that F0 is a resolving class, which in our
setting means, that F0 generates and is closed under subobjects and extensions.

(2) By Theorem 3.7 there is a cotilting object C with ⊥1C = ~F0. Given a

simple object S ∈ Ux, it follows from Corollary 6.5 and the fact that ~F0 is is a
torsion-free class that we have that S[∞] is a direct summand of C if and only

if ~F0 = ⊥1C contains the ray {S[n] | n ≥ 1}. Therefore the objects τ jSx[∞]
with x ∈ V and j ∈ Rx are precisely the Prüfer summands of C. Moreover, by
Lemma 3.4, we have that

F0 ∩ F0
⊥1 = Prod(C) ∩H.

It remains to show that this class coincides with add(B), which then shows
that the torsion part C0 is as indicated. Since, by Proposition 4.3, the resolving
classes in H coincide with the generating torsion-free classes, we may proceed
in exactly the same way as in the proof of [1, Lem. 4.11], replacing S with F0.

(3) After Lemma 6.8 (1) it only remains to show that C+ does not have another
indecomposable summand, except K, if C is assumed to be minimal, since C
is uniquely determined by its indecomposable direct summands (or also by
part (2) of the preceding proposition). By Theorem 5.11 this could only be
either the generic K or another adic. If V 6= ∅ then the generic is already in
Prod(C) (since C contains a Prüfer summand), in case V = ∅ we have to add
it. Additional adics are not possible, using Lemma 5.13.

As a consequence we obtain

Proposition 6.10. Let C be a cotilting sheaf of slope ∞.

(1) Let T be a corresponding tilting sheaf such that Γ(T ) = C. Then the tor-
sion parts C0 and T0 coincide up to “multiplicities”: Add(C0) = Add(T0).

(2) Up to equivalence, C is uniquely determined by its torsion part C0.

The classification

Next we present the main result of this section, which states that, for any pair
(V,B), where V ⊆ X is non-empty and B is a branch sheaf, there is a uniquely
determined cotilting sheaf C of slope ∞. Moreover, every cotilting sheaf of
slope ∞ arises in this way. Each x ∈ V dictates that Ux is of Prüfer type and
the interior part of B with respect to x dictates which Prüfers belonging to Ux
occur. Similarly, the set X \ V and the exterior part of B with respect to V
control the tubes of adic type.
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Theorem 6.11. Let ~H = QcohX, where X is a weighted noncommutative
regular projective curve.

(1) Let V ⊆ X and B ∈ H0 be a branch sheaf. There is a unique large
cotilting sheaf C = C+ ⊕ C0 of slope ∞ up to equivalence such that

C0 = B ⊕
⊕

x∈V

⊕

j∈Rx

τ jSx[∞], (6.2)

where the sets Rx ⊆ {0, . . . , p(x) − 1)} are non-empty and are uniquely
determined by B.

(2) Every cotilting sheaf of slope ∞ is, up to equivalence, as in (1) and C is
V -divisible. (If V 6= ∅ hence C is automatically of slope ∞.)

(3) Assuming C to be minimal, the indecomposable summands of the torsion-
free part C+ are the following:

• the adic sheaves τ ℓSy[−∞] with y ∈ X\V and ℓ such that τ ℓSy 6∈ τW
for any wing W associated with an exterior branch part of B; if
V 6= ∅ then C+ is the pure-injective envelope of the coproduct of
these adic sheaves;

• if V = ∅, additionally the sheaf of rational functions K.

Proof. The result is a consequence of Lemma 6.9 and the fact, that the
classes (6.1) are just the (generating) torsionfree subclasses in H containing
vectX, which follows from the corresponding results on resolving classes and
tilting sheaves, cf. [1, Sec. 4].

6.12. Let V ⊆ X and B be a branch sheaf. The minimal large cotilting sheaf
C = C+ ⊕ C0 from Theorem 6.11 will be denoted by C(B,V ). With the large
tilting sheaf T(B,V ) of finite type from [1, (4.6)] if V 6= ∅ and T(B,∅) = L′⊕B with

L′ a Lukas tilting sheaf (cf. [1, Prop. 4.5]) in B⊥, we have Γ(T(B,V )) = C(B,V )

by construction. It follows that the following holds true:

C(B,V ) is tilting ⇔ T(B,V ) is cotilting ⇔ T(B,V ) is pure-injective ⇔
V = X.

Indeed: because of Proposition 6.10 (1), saying that the pure-injective torsion
parts C0 and T0 agree, we only need to consider the torsionfree parts C+ and
T+, respectively. Here, C+ is always pure-injective. By [1, Thm. 4.8] we have
that T+ is V -divisible, hence by Lemma 5.1 of slope ∞, unless V = ∅. It is
sufficient to show that T+ is pure-injective if and only if V = X. If V = X then
T+ ∈ Add(K) is pure-injective (and up to multiplicities and summands isomor-
phic to K, T(B,X) = C(B,X)). If V = ∅, then T+ is not pure-injective: otherwise
the Lukas sheaf L would be pure-injective and therefore L must have an adic
summand S[−∞]. Let S′ be simple from a different, homogeneous tube. It
is easy to see that S′[−∞] cogenerates every vector bundle, and hence also L,

Documenta Mathematica 25 (2020) 1029–1077



Cotilting Sheaves over Weighted Curves 1061

since L is vect(X)-filtered by [1, Thm. 4.4] together with [53, Cor. 2.15(2)].
Then S′[−∞] also cogenerates S[−∞]. But from Proposition 2.13 we deduce
Hom(S[−∞], S′[−∞]) = 0. Thus we can assume that ∅ 6= V ( X. Then
again T+ is not pure-injective: It follows from [1, Sec. 5] that we can assume
that X is non-weighted and (compare also the proof of Lemma 5.9) that T+ be-

comes a projective generator in ~H/TV , and AV := End(T+) = lim
−→

HomH(L′, L)
(where L is the structure sheaf and the direct limit runs over all sub-line bundles
L′ so that L/L′ has support in V ) is a noncommutative Dedekind domain ([31,
Cor. 3.15] is the special case AX\{x} = Rx), and it is PI since AV ⊆ k(H), with
the latter finite over its centre. It follows from [38, Thm. 4.2], or [41, Thm. 1.6]
(alternatively also from Lemma 5.9), that in case U is a pure-injective inde-

composable summand of T+, it must be the P -adic completion (ÂV )P of AV

for some non-zero prime ideal P . On the other hand, U is a summand of AV .
But in AV the partial sums of the first powers of a non-zero element in P yields
a Cauchy sequence which has no limit in AV . Thus, U is not pure-injective.

The discussion also shows:

C+ is reduced if and only if V 6= ∅. In any case, the reduced part of C (resp.

of C+) is (up to Prod-equivalence) of the form T̂ (resp. T̂+).

Here, the completion M̂ of a sheaf M is defined as
∏

x∈X M̂x, with the x-

completion M̂x of M defined as lim
←−M/M ′∈Ux

M/M ′, like in [55], [50, 2.4]. Note

that M̂x = 0 if M is x-divisible, and M̂x = M if M ∈ Ux. Since Uy
⊥ is

closed under limits, M̂x is y-divisible for any y 6= x, and thus has slope ∞
by Lemma 5.1. In Mod(Rx) we have that M̂x is pure-injective since it is

complete (cf. [28, Thm. 11.4]), and hence it is pure-injective also in ~H. It follows

then that M̂x lies in Prod(Ux) and is discrete. We obtain that M̂ coincides

with PE(
⊕

x∈X M̂x), since they have the same indecomposable (pure-injective)
summands by using Theorem 5.11 and Proposition 2.13.

Maximal rigid objects in a large tube

Following [6], we call an object U in the direct limit closure ~U of a tube U

maximal rigid if it is rigid and every indecomposable Y ∈ ~U satisfying Ext1(U⊕
Y, U ⊕ Y ) = 0 is a direct summand of U . With the preceding results we
complement [1, Cor. 4.19] by the statements (2’) and (3’):

Corollary 6.13. The following statements are equivalent for an object U ∈ ~U .

(1) U is maximal rigid in ~U .

(2) U is tilting in ~U .

(2’) U is cotilting in ~U .
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(3) U is of Prüfer type and it coincides, up to multiplicities, with the sum-
mand (tT )x supported at x in the torsion part of some large tilting sheaf

T ∈ ~H.

(3’) U is of Prüfer type and it coincides, up to multiplicities, with the sum-
mand (tC)x supported at x in the torsion part of some large cotilting sheaf

C ∈ ~H.

7 The case of positive Euler characteristic

We assume that X is of domestic type, that is, the normalized orbifold Euler
characteristic χ′

orb(X) is positive. Let δ(ω) be the (negative) integer such that
for the slopes µ(τE) = µ(E) + δ(ω) holds for each indecomposable vector
bundle E. The collection E of indecomposable vector bundles F such that
0 ≤ µ(F ) < −δ(ω) forms a slice in the sense of [48, 4.2], and Ther :=

⊕
F∈F F

is a tilting bundle having a finite-dimensional tame hereditary k-algebra H
as endomorphism ring. We refer to [36, Prop. 6.5]. In particular Db( ~H) =
Db(Mod(H)), and this is also the repetitive category of Mod(H). Denote by
p and q the preprojective and the preinjective component of H , respectively.
Since H is hereditary, the tilting torsion pair (T ,F) in ~H induced by Ther splits.
Moreover, in Mod(H) there is the (split) torsion pair (Q, C) with Q = Genq.

Theorem 7.1. Let X be a domestic curve.

(1) Each indecomposable pure-injective sheaf in QcohX is either a vector
bundle or has slope ∞.

(2) Each large cotilting sheaf in QcohX has slope ∞.

Hence the classifications of indecomposable pure-injective sheaves and of large
cotilting sheaves in the domestic case are given by Theorem 5.11 (plus the
indecomposable vector bundles) and Theorem 6.11, respectively.

Proof. (1) It is sufficient to proof the following: if E is indecomposable pure-
injective and there is a non-zero morphism to a vector bundle then E is a vector
bundle. The analogue in the module case is well-known (cf. [12, 3. Lem. 1]).
Since E is indecomposable, either E ∈ T or E ∈ F . We regard E as an object
in Db( ~H) = Db(Mod(H)). Thus either E ∈ Mod(H) or E ∈ Mod(H)[−1]. We

invoke Lemma 2.9 applied to D( ~H). Let first E ∈ Mod(H). Since there is even
an epimorphism from E to a vector bundle F , thus F ∈ T and hence F ∈ p,
the claim E ∈ p ⊆ vectX follows from the result in the module case. In case
E ∈ Mod(H)[−1], we have E ∈ Q[−1]. Then E[1] is a direct summand of a
product of finite dimensional H-modules. Since (Q, C) is a torsion pair and C
closed under products, we obtain E[1] ∈ Prod(q). Thus, by [50, 2.2], either

E[1] ∈ C or Hom(q, E[1]) 6= 0. The first case is not possible since E ∈ ~H. In
the latter case we get E ∈ q[−1] ⊆ vectX from [12, 3. Lem. 1].
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(2) We make use of Proposition 6.1 (4) and of the fact that the corresponding
result for tilting sheaves is known, cf. [1, Sec. 6].

Example 7.2. Let X be a domestic curve. Since we have that Db( ~H) =
Db(Mod(H)) and that the sheaves of slope ∞ are contained in the intersec-

tion of ~H and Mod(H), we may observe that our classification coincides with
the classification of infinite-dimensional cotilting left H-modules ([8]). We may
therefore compare the correspondence in Theorem 4.4 with the bijection be-
tween tilting right H-modules and cotilting left H-modules ([3]).
In particular, we consider the case where H is the Kronecker algebra and X =
P1(k) the projective line. In this case there are no branch sheaves so the
following sets are parametrised by subsets V of P1(k):

(1) Equivalence classes of large cotilting sheaves CV in ~H (Theorem 7.1).

(2) Equivalence classes of large tilting sheaves TV of finite type in ~H ([1,
Cor. 6.5]).

(3) Equivalence classes of infinite-dimensional cotilting left H-modules MV

([8, Cor. 3.10]).

(4) Equivalence classes of infinite-dimensional tilting right H-modules NV

([3, Cor. 2.8]).

In each case, we have that x ∈ V if and only if the Prüfer object Sx[∞] occurs as
a direct summand XV (where X is replaced with C, T , M , and N respectively).
Under the bijective correspondence Γ given by Theorem 4.4 between the sets
(1) and (2), we have that Γ(TV ) = CV (and by 6.12 the reduced part of CV

is obtained from TV by completion). The sets (3) and (4) are also in bijective
correspondence that is induced by the functor D := Homk(−, k) : Mod(Hop)→
Mod(H). Under this bijection we have that NV is sent to MU where U = X\V
(see [3, App.]).

8 The case of Euler characteristic zero

Throughout this section let X be a weighted noncommutative projective curve
of orbifold Euler characteristic zero, and ~H = QcohX.

For general information on the tubular case we refer to [34], [33], [45, Ch. 13],
[30, Ch. 8] and [31, Sec. 13], on the elliptic case to [31, Sec. 9].
Let p̄ denote the least common multiple of the weights p1, . . . , pt, that is, p̄ = 1
in the case where X is elliptic and let p̄ > 1 if X is tubular. The formulae for
the degree and for the slope of a non-zero object E ∈ H simplify to µ(E) =
deg(E)
rk(E) ∈ Q̂ = Q ∪ {∞}, with deg(E) = 1

κε 〈〈L,E〉〉, cf. (4.1).

Since we are assuming χ′
orb(X) = 0, it follows that every indecomposable co-

herent sheaf is semistable. We therefore have the following result, which is
analogous to Atiyah’s classification [5].
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Theorem 8.1 ([30, Prop. 8.1.6], [31, Thm. 9.7]). For every α ∈ Q̂ the full
subcategory tα of H formed by the semistable sheaves of slope α is a non-trivial
abelian uniserial category whose connected components form stable tubes; the
tubular family tα is parametrized again by a weighted noncommutative regu-
lar projective curve Xα over k which satisfies χ′

orb(Xα) = 0 and is derived-
equivalent to X.

We therefore write
H =

∨

α∈Q̂

tα.

Note that the component t∞ coincides with the sheaves of finite length.

Quasicoherent sheaves with real slope

We recall that by [45, 1] the notion of slope is extended to all quasicoherent

sheaves using the following partitions of ~H. For w ∈ R̂ = R ∪ {∞} we define

pw =
⋃

α<w

tα qw =
⋃

w<β

tβ ,

where α, β ∈ Q̂. We then have a partition of H as H = pw ∨ tw ∨ qw if w is
rational, and H = pw ∨ qw if w is irrational. We define the sheaves of slope w
to be those contained in M(w) = Bw ∩ Cw where

Cw = qw
⊥0 = ⊥1qw and Bw = ⊥0pw = pw

⊥1 .

For coherent sheaves this definition of slope is equivalent to the former one given
as fraction of degree and rank, and for irrational w there are only non-coherent
sheaves in M(w).
The following fundamental statement can be found in [45, Thm. 13.1], [1,
Thm. 7.6].

Theorem 8.2 (Reiten-Ringel). (1) Hom(M(w′),M(w)) = 0 for w < w′.

(2) Every indecomposable sheaf has a well-defined slope w ∈ R̂.

Cotilting sheaves that have a slope

Theorem 8.3. Let w ∈ R̂.

(1) There is a large cotilting sheaf Ww of slope w and with cotilting class Cw.

(2) If w is irrational, then Ww is, up to equivalence, the unique cotilting
sheaf of slope w.

Proof. (1) The class add(pw) ⊆ H is torsionfree and generates H. Thus there
is, by Theorem 3.7, a cotilting sheaf Ww with Cogen(Ww) = lim

−→
(pw) = Cw.
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Moreover, by the cotilting property clearly Ww ∈ Cw
⊥1 , which is a subclass of

Bw. Since in H no cotilting object has a slope (cf. [1, Rem. 7.7]), Ww is large.
(2) Let C be cotilting of irrational slope w. Since C ∈ Bw, we have pw ⊆
⊥1Ww ⊆ ⊥1C, and thus pw ⊆ ⊥1C ∩ H. Since ⊥1C ⊆ Cw, and since w is
irrational, we obtain ⊥1C ∩H ⊆ pw. We obtain ⊥1C ∩H = pw = ⊥1Ww ∩H.
From Theorem 3.7 the result follows.

Example 8.4. For w = ∞ the Reiten-Ringel sheaf W := W∞, given as the
direct sum of the generic K and all the Prüfer sheaves, is cotilting with class
⊥1W = C∞ = ~H. Since K belongs to Prod(S[∞]) for any Prüfer sheaf, also
W/K is cotilting and equivalent to W.

Interval categories

Let w ∈ R̂. We denote by H〈w〉 the full subcategory of Db(H) defined as

∨

β>w

tβ [−1] ∨
∨

γ≤w

tγ .

The category H〈w〉 is a ([−1]-shifted) HRS-tilt of H in Db(H) with respect
to the split torsion pair (Tw,Fw) in H given by Tw =

∨
β>w tβ and Fw =∨

γ≤w tγ and hence is abelian, see [16, I. Thm. 3.3] and [37, Prop. 2.2]. Moreover

Db(H〈w〉) = Db(H), and H〈w〉 is hereditary abelian, satisfying Serre duality.

If w = α ∈ Q̂, then by [30, Prop. 8.1.6], [31, Thm. 9.7] we have that H〈α〉 =
cohXα for some curve Xα with χ′

orb(Xα) = 0. If k is algebraically closed, then
Xα is always isomorphic to X. The rank function on H〈α〉 defines a linear form
rkα : K0(H)→ Z.

Lemma 8.5 (Reiten-Ringel [45]). For every w ∈ R̂ the pair (Gen(qw), Cw) is a

torsion pair. If w ∈ Q̂, then the torsion pair splits.

Let α ∈ Q̂. By ~H〈α〉 = Gα[−1] we denote the [−1]-shifted heart of the t-

structure in D( ~H) induced by the torsion pair (⊥0Wα,
⊥1Wα) = (Genqα, Cα).

We have ~H〈α〉 = QcohXα, cf. Theorem 8.1. If X ∈ ~H has a rational slope

α, then clearly X ∈ ~H ∩ ~H〈α〉 where the intersection is formed in D( ~H) =

D( ~H〈α〉); in ~H〈α〉 then X has slope∞. In particular, ~H〈α〉 is locally noetherian

with fp( ~H〈α〉) = H〈α〉.

Let w be irrational. Similarly, we denote by ~H〈w〉 = Gw[−1] the [−1]-shifted

heart of the t-structure in D( ~H) associated with the cotilting torsion pair
(⊥0Ww,

⊥1Ww) = (Qw = ⊥0Cw, Cw). We note that Qw = Genqw , which fol-

lows, arguing in ~H, with the same arguments as in [45, Lem. 1.3+1.4] replacing
“finite length” by “noetherian”. In H this induces the (splitting) torsion pair
(Qw ∩H, Cw ∩H), and we have Qw ∩H = Gen(qw) ∩H = addqw =

∨
β>w tβ

and Cw ∩ H = CogenWw ∩ H =
∨

γ<w tγ . Since ~H and H are hereditary,
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(Cw,Qw[−1]) and (Cw ∩H, (Qw ∩H)[−1]) are splitting torsion pairs in, respec-

tively, ~H〈w〉 and H〈w〉. Moreover, Cw = lim
−→

(pw) and Qw = lim
−→

(qw) ⊆ Bw.
The situation is illustrated in Figure 8.1.

Let w ∈ R̂. A sequence η : 0 → E′ u
−→ E

v
−→ E′′ → 0 with objects E′, E,E′′

in ~H ∩ ~H〈w〉 is exact in ~H if and only if it is exact in ~H〈w〉; indeed, both

conditions are equivalent to E′ u
−→ E

v
−→ E′′ η

−→ E′[1] being a triangle in

D( ~H). (Cf. [57, Prop. 2.2].)

~H〈w〉

ww[−1]

Qw [−1]

~H[−1]
∞[−1]

~H
∞

Cw

~H[1]

Qw

Figure 8.1: The interval category ~H〈w〉

For irrational w we will show several properties of ~H〈w〉 in Section 9.

Injective Cogenerators

Proposition 8.6. Let w ∈ R̂. The cotilting sheaf Ww yields an injective
cogenerator of ~H〈w〉.

Proof. This follows from [10, Prop. 4.4].

Remark 8.7. Let w ∈ R̂. We can choose Ww to be a minimal injective
cogenerator in ~H〈w〉, and we will do so in the following. Then Ww is discrete
and its indecomposable summands correspond, up to isomorphism, bijectively
to the simple objects in ~H〈w〉.

Proposition 8.8. Let w ∈ R \ Q. The sheaves of slope w are the pure sub-
sheaves of products of copies of Ww.

Proof. Let E be a sheaf of slope w. Since Ww is an injective cogenerator
in ~H〈w〉 there is a short exact sequence 0 → E → C0 → C1 → 0 in ~H〈w〉

with C0 ∈ Prod(Ww). This sequence is pure-exact in ~H: let F ∈ H be
coherent, without loss of generality, indecomposable. We have to show that
the sequence stays exact under Hom(F,−). Thus we can also assume that
Hom(F,C1) 6= 0. Since w is irrational, this means F ∈ pw. Now Ext1(F,E) = 0
since E ∈ Bw = pw

⊥1 .

Corollary 8.9. Let w ∈ R \Q. The class of pure-injective sheaves of slope w
is given by Prod(Ww).
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Rational slope

Let α ∈ Q̂ and M ∈ ~H. Since the torsion pair from Lemma 8.5 splits, we have
M = M ′ ⊕M ′′ with M ′ ∈ Cα and M ′′ ∈ Genqα.

Lemma 8.10. Let M ∈ ~H be indecomposable of slope α ∈ Q̂. Then M is
pure-injective in ~H if and only if M is pure-injective considered as an object in
~H〈α〉.

Proof. The class M(α) = Cα ∩ Bα is definable, both in ~H and in ~H〈α〉, in

particular closed under forming products in ~H and ~H〈α〉. For every set I,

forming the product M I in ~H is the same as forming the product M I in ~H〈α〉.

Indeed, consider the product M I in ~H〈α〉 with projections pi : M I →M (i ∈ I).

Let X ∈ ~H and f ∈ Hom(X,M). Write X = X ′ ⊕ X ′′ as above, so that

X ′ ∈ ~H〈α〉 and Hom(X ′′,M) = 0. By the universal property of the product

M I in ~H〈α〉 there is a unique f̄ ∈ Hom(X ′,M I) with pi ◦ f̄ = f for all i.
This property is then trivially extended to X , which shows, that M I with the
projections pi is also the product in ~H. The converse direction is similar.
The claim now follows with the Jensen-Lenzing criterion Proposition 2.4.

Indecomposable pure-injective sheaves

We obtain the following version for sheaves of [2, Thm. 6.7].

Theorem 8.11. The following is a complete list of the indecomposable pure-
injective sheaves in ~H = QcohX:

(1) The indecomposable coherent sheaves.

(2) For every α ∈ Q̂ the generic, the Prüfer and the adic sheaves of slope α.

(3) For every irrational w the indecomposable objects of Prod(Ww).

Proof. We recall that each indecomposable object has a slope. Because of
Corollary 8.9 we only need to consider slopes α in Q̂, and by the preceding
lemma we can restrict even to the case α =∞. Let now M be indecomposable
of slope ∞. Then we can apply Theorem 5.11.

Every large cotilting sheaf has a slope

Lemma 8.12. Let C be cotilting and T be a corresponding tilting sheaf (of finite

type): C = Γ(T ). Let w ∈ R̂. Then

C has slope w ⇔ T has slope w.

Proof. We show the following:

(1) C ∈ Bw ⇔ T ∈ Bw.

Documenta Mathematica 25 (2020) 1029–1077



1068 D. Kussin, R. Laking

(2) C ∈ Cw ⇔ T ∈ Cw.

To this end let (⊥0C,⊥1C) and (T⊥1, T⊥0) be the corresponding cotilting, resp.
tilting, torsion pairs. Moreover, let F = ⊥1C ∩ H = ⊥1(T⊥1) ∩H = S be the
corresponding “small” torsionfree/resolving class. We have T⊥1 = S ⊥1 and
⊥0C = ⊥0 ~F . We remark that τ(pw) = pw and τ(qw) = qw.
(1) We have C ∈ Bw = ⊥0pw iff pw ⊆ C⊥0 iff pw ⊆ ⊥1C iff pw ⊆ F = S iff
pw ⊆ (T⊥1)⊥0 iff T ∈ ⊥0pw = Bw.

(2) We have C ∈ Cw = qw
⊥0 iff qw ⊆ ⊥0C = ⊥0 ~F iff qw ⊆ ⊥0F iff qw ⊆

S ⊥1 = T⊥1 iff T ∈ ⊥1qw = qw
⊥0 = Cw.

The main result of this section is the following, which follows from the lemma
and the corresponding result for large tilting sheaves [1, Thm. 8.5 + 9.1].

Theorem 8.13. For every large cotilting sheaf C in ~H, there is w ∈ R̂ such
that C has slope w.

Example 8.14. For every w ∈ R̂ denote by Lw the tilting sheaf in ~H with
tilting class Bw, cf. [1]. Then Γ(Lw) = Ww.

Reduction from rational slope to slope ∞

Lemma 8.15. Let α ∈ Q̂. For an object C in ~H the following conditions are
equivalent:

(1) C is a cotilting sheaf in ~H of slope α;

(2) C is a cotilting sheaf in ~H〈α〉 of slope ∞.

Proof. Clearly, by changing the roles of ~H and ~H〈α〉, it suffices to show (1)⇒(2).

Assuming (1) we show (CS1), (CS2) w.r.t. ~H〈α〉 and that ⊥1C ∩H〈α〉, formed

in ~H〈α〉, generates. For (CS1) it suffices to remark that forming the product

CI in ~H and ~H〈α〉 yields the same; this follows from [10, Cor. 2.13]. For (CS2)

let X ∈ ~H〈α〉 such that Hom ~H〈α〉(X,C) = 0 = Ext1~H〈α〉
(X,C). Since the “cut”

at t∞[−1] defines by Lemma 8.5 a splitting torsion pair (T∞,F∞) in ~H〈α〉, we

can write X = X ′ ⊕ X ′′ with X ′ ∈ T∞, that is, lying in ~H, and X ′′ ∈ F∞,
that is, lying in ~H[−1]. Using (CS2) w.r.t. ~H (for C) and ~H[−1] (for C[−1]),
we conclude X ′ = 0 = X ′′, and hence X = 0. Moreover, the same splitting
property shows that all objects from F∞ belong to Ker Ext1~H〈α〉

(−, C). This

concludes the proof that C is cotilting in ~H〈α〉.

Let Bα be a sheaf of slope α that becomes a branch sheaf of finite length
in ~H〈α〉. Then we call Bα a branch sheaf of slope α. Note that the direct
summands of Bα are contained in a subcategory Wα that becomes a wing in
~H〈α〉. We call Wα a wing of slope α and we adopt all of the appropriate
notation and terminology suggested by Section 6.7.
We conclude this chapter by summarizing our results on large cotilting sheaves
in the tubular and the elliptic cases.
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Theorem 8.16. Every large cotilting sheaf C (minimal, without loss of gener-

ality) in ~H has a slope w ∈ R̂, and for irrational w we have C ∼= Ww. Let α
be rational or infinite.

(1) Let Vα ⊆ Xα and Bα be a branch sheaf of slope α. There is a unique
minimal cotilting sheaf C = C+ ⊕ C0 of slope α whose torsion part is
given by

C0 = Bα ⊕
⊕

x∈Vα

⊕

j∈Rx

τ jSx[∞],

where the non-empty sets Rx ⊆ {0, . . . , p(x)−1)} are uniquely determined
by Bα as in 6.7.

(2) Every cotilting sheaf of slope α is, up to equivalence, as in (1).

(3) The indecomposable summands of the torsionfree part C+ of C are the
following:

• the adic sheaves τ ℓSy[−∞] with y ∈ Xα \ Vα and ℓ such that τ ℓSy 6∈
τW for any wingW associated with an exterior branch part of Bα; if
Vα 6= ∅ then C+ is the pure-injective envelope of these adic sheaves;

• if Vα = ∅, additionally the generic sheaf of slope α.

(4) If Vα = Xα and Rx = {0, . . . , p(x)− 1)} for all x, then C ∼= Wα.

9 Additional results related to irrational slopes

We continue to assume that the orbifold Euler characteristic χ′
orb(X) is zero.

Throughout, we let w be irrational.

Our understanding of Prod(Ww), the class of pure-injectives in ~H of slope w,

is still quite small. The natural home of the object Ww is the category ~H〈w〉,
of which it is an injective cogenerator. One should regard this Grothendieck
category as a geometrical object (in the sense of noncommutative algebraic
geometry, cf. the introductions in [55, 1.2] or [51, Ch. III]), where the points are
given by the simple objects, or equivalently, by the indecomposable summands
of Ww. Some of the statements in the following proposition were already
stated in [1, Rem. 7.5] without proofs; part (2) was obtained in discussions
with H. Lenzing.

Proposition 9.1. The following holds.

(1) ~H〈w〉 is a locally coherent Grothendieck category with coh( ~H〈w〉) =

fp( ~H〈w〉) = H〈w〉.

(2) H〈w〉 does not contain any simple object.

(3) Every non-zero object in H〈w〉 is not noetherian, and thus ~H〈w〉 is not
locally noetherian.
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(4) There exist simple objects in ~H〈w〉.

Proof. (1) This follows from Theorem 3.12.
(2) We assume that there is a simple object S in H〈w〉. Then there is a rational
α < w such that S ∈ tα. We choose a rational β with α < β < w. The sheaf
category H〈β〉 defines a rank function rkβ , which is additive on short exact
sequences in particular in H〈w〉∩H〈α〉 and τ -invariant. Moreover, rkβ(F ) > 0
for every indecomposable F in H〈w〉 ∩ H〈α〉. We choose F such that rkβ(F )
is minimal, and moreover with F ∈ tγ such that γ < α. By [31, Thm. 13.8]
we may assume that HomH〈w〉(F, S) 6= 0. Since S is simple, there is a short
exact sequence 0 → U → F → S → 0 in H〈w〉, and by the choice of F we get
rkβ(U) = 0, that is, U = 0. Hence we get an isomorphism F ∼= S, which gives
a contradiction since F and S have different slopes.
(3) Since a non-zero noetherian object has a maximal subobject, this follows
directly from (2).

(4) Let E be a non-zero, finitely generated object in ~H〈w〉 (for instance, E 6= 0
finitely presented). Then it contains a maximal subobject, and the quotient is
simple. (Thus one might expect that there are even “many” simple objects in
~H〈w〉.)

Corollary 9.2. For w ∈ R̂, the cotilting sheaf Ww is Σ-pure-injective if and
only if w ∈ Q̂.

Proof. This follows from [54, Prop. V.4.3] and the fact that the category ~H〈w〉

is locally noetherian if and only if w ∈ Q̂.

Proposition 9.3. The class of injective objects in ~H〈w〉 is given by Prod(Ww),

where Prod can be formed either in ~H〈w〉 or in ~H. Each injective object and

each simple object in ~H〈w〉 has “internal” slope w, that is, belongs to ⊥0H〈w〉,

this class of objects formed in ~H〈w〉.

Proof. The statement on forming Prod follows from [10, Cor. 2.13]. Every

injective object Q in ~H〈w〉 is a direct summand of a power Ww
I of Ww (for

some set I). Since ⊥0H〈w〉 is closed under products, which follows by the same
arguments as in [45, Prop. 13.5], we conclude that Q ∈ ⊥0H〈w〉.

Let S be a simple object in ~H〈w〉. If S 6∈ ⊥0H〈w〉. Then there is a monomor-
phism S → F for an object F ∈ H〈w〉. Since F is coherent and S finitely
generated, we obtain S ∈ H〈w〉, and S is simple in H〈w〉. This yields a con-
tradiction by Proposition 9.1.

Remark 9.4. The statement in the preceding proposition on simple objects
in ~H〈w〉 is also shown in [44, Thm. 8.2.3] with completely different methods.

Moreover, based on ideas by J. Šťov́ıček, in that thesis a simple object in ~H〈w〉
is constructed in an explicit way as a direct limit of finitely presented objects
of rational slopes.

Question 9.5. Is ~H〈w〉 hereditary?
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This interesting question is still open. We know that H〈w〉 is hereditary, and
by considering the derived category we see that at least Exti~H〈w〉

(−,−) = 0 for

i ≥ 3. Moreover, if S is a simple object (or any object of slope w) in ~H〈w〉, then
E(S)/S is injective. For heredity we would need that every factor object of an

injective object is injective. At least ~H〈w〉 is semihereditary1 in the following
sense:

Proposition 9.6. In ~H〈w〉 each of the following equivalent conditions holds
true.

(1) Each factor object of an fp-injective object is fp-injective.

(2) Each factor object of an injective object is fp-injective.

(3) For all X, Y ∈ ~H〈w〉, with X finitely presented, Ext2~H〈w〉
(X,Y ) = 0.

Moreover, the fp-injective objects coincide with the objects of slope w in ~H〈w〉,

and they form a definable subcategory of ~H〈w〉.

Proof. The equivalence of the conditions follows from standard arguments by
applying Hom ~H〈w〉(X,−) with X finitely presented to a short exact sequence

of the form 0→ Y → Q→ Q/Y → 0 with Q injective or fp-injective.

In ~H〈w〉 we have (generalised) Serre duality, that is, D Ext1~H〈w〉
(X,Y ) =

Hom ~H〈w〉(Y, τX), where X, Y ∈ ~H〈w〉 with X finitely presented. Indeed, this

follows from Lemma 2.10, applied to the derived category D( ~H〈w〉) = D( ~H)

and using that ~H is locally noetherian and the compact objects are given by
Db(H), cf. 2.8.

By this we see ⊥0H〈w〉 = {Y ∈ ~H〈w〉 | Hom ~H〈w〉(Y,H〈w〉) = 0} = {Y ∈

~H〈w〉 | Ext1~H〈w〉
(H〈w〉, Y ) = 0} = H〈w〉⊥1 , and hence the objects of slope w

coincide with the fp-injective objects in ~H〈w〉. Since every factor object of an
injective has slope w, by Proposition 9.3, it is fp-injective. Thus (2) holds.

Moreover, it follows as in Proposition 5.4 that the class of objects in ~H〈w〉 of
slope w is definable.

Since ~H〈w〉 is not locally noetherian, there are fp-injective objects which are
not injective ([23, Prop. A.11]).

We discuss several equivalent formulations of Question 9.5.

Lemma 9.7 (Reiten-Ringel). Let w be irrational, β1 > β2 > · · · > w a sequence
of rational numbers converging to w and Qi ∈ Add(tβi

) (for i = 1, 2, . . . ). Then

in ~H we have
∏

Qi/
⊕

Qi ∈M(w).

Proof. This is a slightly more general version of “The First Construction” in [45,
13.4]; the proof therein still holds.

1For the corresponding ring-theoretic notion we refer to [39].
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Proposition 9.8. Let w be irrational. The following are equivalent:

(1) The abelian category ~H〈w〉 is hereditary.

(2) The torsion pair (Qw, Cw) in ~H splits.

(3) Ext1~H(Prod(Ww),Add(qw)) = 0; in the second argument, one can re-
strict to coproducts of objects in qw whose slopes converge to w.

(4) For each sequence Qi ∈ Add(tβi
) with β1 > β2 > · · · > w converging to

w the canonical monomorphism
⊕

Qi →
∏

Qi splits.

(5) In the category ~H〈w〉 the following holds: for all objects X ∈ ~H〈w〉 of
the form X =

⊕
Xi with Xi ∈ Add(tγi

), the γi converging to w[−1],

and for each monomorphism f from X to an injective object in ~H〈w〉,
and for any object Y of slope w we have Ext1~H〈w〉

(Y,Coker f) = 0 (or

equivalently, Ext2~H〈w〉
(Y,X) = 0).

Proof. (1)⇒(2) Let ~H〈w〉 be hereditary. Let 0 → X ′ → X → X ′′ → 0 be a

short exact sequence in ~H with X ′ ∈ Qw and X ′′ ∈ Cw. Then V = X ′[−1] ∈

Qw[−1] ⊆ ~H〈w〉, and this yields Ext1~H(X ′′, X ′) = HomD( ~H)(X
′′, X ′[1]) =

Ext2~H〈w〉
(X ′′, V ) = 0. Hence (Qw, Cw) splits.

(2)⇒(1) Conversely, we assume that (Qw, Cw) splits. Let X, Y ∈ ~H〈w〉.

Since (Cw,Qw[−1]) is a torsion pair in ~H〈w〉, for showing Ext2~H〈w〉
(X,Y ) = 0

it is sufficient to assume X, Y ∈ Cw ∪ Qw[−1]. Since Ext2~H〈w〉
(X,Y ) =

HomD( ~H)(X,Y [2]) and ~H is hereditary, the only crucial case is when X ∈

Cw and Y ∈ Qw[−1]. But then Y [1] ∈ Qw and HomD( ~H)(X,Y [2]) =

Ext1~H(X,Y [1]) = 0 since (Qw, Cw) splits.

(2)⇔(3) is easy to show since ~H is hereditary, and moreover Ext1~H(Cw,Bβ) =

Ext2~H〈β〉
(Cw,Bβ[−1]) = 0 for every rational β > w, because ~H〈β〉 is hereditary.

(3)⇒(4) Follows directly with Lemma 9.7.
(4)⇒(3) Let η : 0→

⊕
i Qi → E →Ww

J → 0 be a short exact sequence with
Qi as in (4). We have to show that η splits. Since each Qi ∈ Add(tβi

) ⊆

Bβi
with βi > w we have Ext1~H(Ww

J , Qi) = 0 for each i, hence we obtain

Ext1~H(Ww
J ,
∏

Qi) = 0 by [10, Cor. A.2]. Since by (4) the coproduct
⊕

Qi is a

direct summand of the product
∏

Qi, we obtain Ext1~H(Ww
J ,
⊕

Qi) = 0, and
thus η splits.
(1)⇒(5) This is clear.

(5)⇒(1) We recall that there is the splitting torsion pair (Cw,Qw[−1]) in ~H〈w〉,

and since ~H〈w〉 is locally coherent with fp( ~H〈w〉) = H〈w〉, the class Qw[−1]

is generated in ~H〈w〉 by qw [−1]. We have to show that for any short exact

sequence 0→ X →Ww
I → B → 0 in ~H〈w〉, the cokernel object B is injective,

that is, Ext2~H〈w〉
(Y,X) = 0 holds for each Y ∈ ~H〈w〉. Since Ext3~H〈w〉

(−,−) = 0,
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we obtain that for X it is sufficient to assume that it is a coproduct of objects in
qw[−1]. Moreover, since for every rational β we have HomD( ~H〈β〉)(M,N) = 0

for all M ∈ ~H〈β〉[−1] and N ∈ ~H〈β〉[1] (which follows from heredity of ~H〈β〉),
we deduce that we can, moreover, assume X to be of the form as in (5), and
to test injectivity with objects Y of slope w.

The equivalence of (1) and (2) also follows from [57, Thm. 5.2].
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Vitòria.

The first named author was supported by the DFG through SFB/TR 45 at
the University of Bonn. The second named author was supported by the Max
Planck Institute for Mathematics and also by the European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie
Grant Agreement No. 797281.

References
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