
Documenta Math. 1079

A Dolbeault–Dirac Spectral Triple for

Quantum Projective Space
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Abstract. The notion of a Kähler structure for a differential calcu-
lus was recently introduced by the second author as a framework in
which to study the noncommutative geometry of quantum flag mani-
folds. It was subsequently shown that any covariant positive definite
Kähler structure has a canonically associated triple satisfying, up to
the compact resolvent condition, Connes’ axioms for a spectral triple.
In this paper we begin the development of a robust framework in
which to investigate the compact resolvent condition, and moreover,
the general spectral behaviour of covariant Kähler structures. This
framework is then applied to quantum projective space endowed with
its Heckenberger–Kolb differential calculus. An even spectral triple
with non-trivial associated K-homology class is produced, directly q-
deforming the Dolbeault–Dirac operator of complex projective space.
Finally, the extension of this approach to a certain canonical class of
irreducible quantum flag manifolds is discussed in detail.
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1 Introduction

In Connes’ K-theoretic approach to noncommutative geometry, spectral triples
generalise Riemannian spin manifolds and their associated Dirac operators to
the noncommutative setting. The question of how to reconcile the theory of
spectral triples with Drinfeld–Jimbo quantum groups is one of the major open
problems in noncommutative geometry. Since their appearance in the 1980s,
quantum groups have attracted serious and significant attention at the highest
mathematical levels. In the compact case, the foundations of their noncommu-
tative topology and their noncommutative measure theory have now been firmly
established. By contrast, the noncommutative spectral geometry of quantum
groups is still very poorly understood. Indeed, despite a large number of impor-
tant contributions over the last thirty years, there is still no consensus on how
to construct a spectral triple for Oq(SU2), probably the most basic example
of a quantum group. These difficulties aside, the prospect of reconciling these
two areas still holds great promise for their mutual enrichment. On one hand,
it would provide quantum groups with powerful tools from operator algebraic
K-theory and K-homology. On the other hand, it would provide the theory of
spectral triples with a large class of examples of fundamental importance with
which to test and guide the future development of the subject.
One of the most important lessons to emerge from the collected efforts to
understand the noncommutative geometry of quantum groups is that quantum
homogeneous spaces tend to be more amenable to geometric investigation than
quantum groups themselves. Philosophically, one can think of the process
of forming a quantum homogeneous spaces as quotienting out the most exotic
noncommutativity of the quantum group. This produces quantum spaces which
are closer to their classical counterparts, and which possess more recognisable
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differential structures. The prototypical example here is the standard Podleś
sphere, the Drinfeld–Jimbo q-deformation of the Hopf fibration presentation of
the 2-sphere S2. In contrast to the case of Oq(SU2), the Podleś sphere admits a
canonical spectral triple which directly q-deforms the classical Dolbeault–Dirac
operator of the 2-sphere [13]. Moreover, it is the most widely and consistently
accepted example of a spectral triple in the Drinfeld–Jimbo setting. The Podleś
sphere also forms a well behaved and motivating example for Majid’s Hopf
algebraic theory of braided noncommutative geometry [39]. In particular, it
admits an essentially unique differential calculus, the Podleś calculus, to which
Majid was able to apply his quantum frame bundle theory to directly q-deform
the classical Kähler geometry of the 2-sphere (cf. [40]).
The Podleś sphere is itself a special example of a large and very beautiful family
of quantum homogeneous spaces: the quantum flag manifolds [36, 15]. In one
of the outstanding results of the algebraic approach to the noncommutative
geometry of quantum groups, Heckenberger and Kolb showed that the quantum
flag manifolds of irreducible type admit an essentially unique q-deformation of
their classical Dolbeault double complex. This result forms a far reaching
generalisation of the Podleś calculus endowed with Majid’s complex structure,
and strongly suggests that the irreducible quantum flag manifolds, or more
generally the quantum flag manifolds, have a central role to play in reconciling
quantum groups and spectral triples.
The Heckenberger–Kolb classification, however, contains no generalisation of
the Kähler geometry of the Podleś sphere (cf. [40]). In a recent paper by
the second author, the notion of a noncommutative Kähler structure was in-
troduced to provide a framework in which to do just this. In the quantum
homogeneous space case many of the fundamental results of Kähler geometry
have been shown to follow from the existence of such a structure. For exam-
ple, it implies noncommutative generalisations of Lefschetz decomposition, the
Lefschetz and Kähler identities, Hodge decomposition, the hard Lefschetz the-
orem, and the refinement of de Rham cohomology by Dolbeault cohomology.
The existence of a Kähler structure was verified for the quantum projective
spaces in [50], and it was conjectured that a Kähler structure exists for all the
compact quantum Hermitian spaces. Subsequently, for all but a finite number
of values of q, the conjecture was verified for every irreducible quantum flag
manifold by Matassa in [41].

The Dolbeault–Dirac operator D∂ := ∂ + ∂
†

associated to a Kähler structure is
an obvious candidate for a noncommutative Dirac operator. In [12] the authors
associated to any covariant positive definite Hermitian structure (Ω(•,•), κ),
over a quantum homogeneous space B = Gco(H), a Hilbert space L2(Ω(0,•)),
carrying a bounded ∗-representation ρ of B. Moreover, D∂ was shown to act on
L2(Ω(0,•)) as an essentially self-adjoint operator, with bounded commutators
[D∂ , b], for all b ∈ B. Hence, to show that the triple

(
B,L2(Ω(0,•)), D∂

)
is a

spectral triple, it remains to verify the compact resolvent condition. Even in
the Drinfeld–Jimbo case, however, it is not clear at present how to conclude the
compact resolvent condition from the properties of a general covariant Kähler
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structure. (See §7.4.4 for a brief discussion on how this might be achieved.)
In the study of classical homogeneous spaces, a difficult problem can often be
approached by assuming restrictions on the multiplicities of the U(g)-modules
appearing in an equivariant geometric structure [29]. Taking inspiration from
this approach, we choose to focus on covariant complex structures of weak
Gelfand type, that is to say, those for which ∂Ω(0,k) is multiplicity-free as a
Uq(g)-module. This implies diagonalisability of the Dolbeault–Dirac opera-
tor D∂ over irreducible modules, which when combined with the considerable
geometric structure of the calculus, allows us to make a number of strong state-
ments about the spectral behaviour of D∂ . In particular, for those covariant
complex structures of Gelfand type, that is to say, those for which Ω(0,k) is
multiplicity-free, we produce a sufficient set of routinely verifiable conditions
for D∂ to have compact resolvent.

To place our efforts in context, we briefly recall previous spectral calculations
for quantum groups, and in particular for quantum flag manifolds. The con-
struction of spectral triples over quantum groups can be very roughly divided
into two approaches. The first is isospectral deformation, as exemplified by the
work of Neshveyev and Tuset, who constructed isospectral Dirac operators for
all the Drinfeld–Jimbo quantum groups [46]. In this approach one takes as an
ansatz that the spectrum of the Dirac survives q-deformation unchanged. A
representation of the quantum group is then constructed around this ansatz so
as to retain bounded commutators. This approach has the advantage of avoid-
ing the need for spectral calculations, but the disadvantage that the spectral
triples produced are too close to the classical case to be completely natural. By
contrast, the second approach constructs canonical q-deformations of the clas-
sical spin geometry of a space, and then calculates the spectrum of the resulting
q-deformed Dirac. The prototypical examples here are the Da̧browski–Sitarz
construction of a spectral triple on the Podleś sphere, as discussed above, and
Majid’s spectral calculations for his Dolbeault–Dirac operator over the Po-
dleś sphere, as also mentioned above. This is the approach followed in this
paper, and just as for the Podleś examples, an unavoidable consequence is a
q-deformation of the classical spectrum.

At around the same time as these works, Krähmer introduced an influential
algebraic Dirac operator for the irreducible quantum flag manifolds, which gave
a commutator realisation of their Heckenberger–Kolb calculus [31]. A series of
papers by Da̧browski, D’Andrea, and Landi, followed, where spectral triples
were constructed for the all quantum projective spaces [10, 9]. This approach
used a noncommutative generalisation of the Parthasarathy formula [54] to
calculate the Dirac spectrum and hence verify Connes’ axioms. Matassa would
subsequently reconstruct this spectral triple [43] in a more formal manner by
connecting with the work of Krähmer and Tucker–Simmons [32]. This approach
was subsequently extended to the quantum Lagrangian Grassmannian Oq(L2),
a C-series irreducible quantum flag manifold [42, 44]. We note that in the
quantum setting the Parthasarathy relationship with the Casimir is much more
involved than in the classical case. This reflects our poor understanding of
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Casimirs in the Drinfeld–Jimbo setting, and the resulting challenges associated
with a quantum Casimir approach to spectral calculations.
One of the primary purposes of a spectral triple is to serve as unbounded repre-
sentatives for the K-homology classes of a C∗-algebra. Having an unbounded
representative constructed in such a geometric manner has a number of ad-
vantages. In particular, it allows us to convert index theory calculations into
questions about the Dolbeault cohomology of the complex structure. In [12,
Theorem 5.4] the index of the associated K-homology class has been shown
to be equal to the anti-holomorphic Euler characteristic of the calculus. This
is calculable using Hodge decomposition in general. In particular, in the non-
commutative Fano seting, it follows from the Kodaira vanishing theorem for
noncommutative Kähler structures that all cohomologies are concentrated in
degree 0 [52]. Hence, the index will be non-zero and the associated K-homology
class non-trivial. This is particularly important given the well-known difficulty
of applying Connes’ local index formula in the quantum group setting.
This paper forms part of a series of works investigating the noncommutative
geometry of the quantum flag manifolds and their connections with Nichols
algebras, Schubert calculus, and non-commutative projective algebraic geom-
etry [2, 51, 58]. It is intended that this paper will serve as a point of contact
between these areas and operator algebraic K-theory. Moreover, in its discus-
sion of order I and order II presentations, the paper can be regarded as a first
step towards a systematic extension of the classical results on Harish-Chandra
modules (cf. [28], [60]) to the quantum group setting. The typical structure
here is a pair (g,K) consisting of a real reductive Lie group G with complexified
Lie algebra g, and a compact subgroup K ⊂ G, for which the differential of
Ad(K) and the restriction ad(g)|k are compatible. The representation category
C(g,K) of (g,K)-modules, if an infinitesimal character is specified, is char-
acterized by the existence of finitely irreducible representations of K termed
the collection of minimal K-types (every irreducible (g,K)-module with an in-
finitesimal character contains one of these K-types.) As we shall discuss in the
present article, this property conveniently carries over to the quantum group
setting. Moreover, there is an analogous transfer of the other important related
structures such as the Hecke algebra of the pair (g,K), dualities, and so on,
which will be treated elsewhere. Finally, an important issue to be addressed is
how the refined spectral analysis of [55] extends to the general quantum pro-
jective space setting, and if a local index formula in twisted cyclic cohomology
can be produced.
The paper is organised as follows: In §2 we recall the necessary basics of differ-
ential calculi, complex structures, and Kahler structures, as well as their inter-
action with compact quantum matrix group algebras, as originally considered
in [12]. We also recall the necessary basics of spectral triples and K-homology.
In §3, we show that the Laplacian ∆∂ decomposes with respect to Hodge decom-
position, allowing us to deduce the spectrum of ∆∂ from the spectrum of the op-

erator ∂
†
∂. Restricting to the covariant case, we then consider multiplicity-free

comodules as a framework in which to present complex structures of Gelfand
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type. In this case, it is observed that the operator ∂
†
∂ always diagonalises over

irreducible comodules.
In §4, we restrict for the first time to the setting of Drinfeld–Jimbo quantum
groups, exploiting the associated highest weight structure of their representa-
tion theory. In particular we consider products of a highest weight form ω,
with powers of a zero form zl, for l ∈ N0. The form zlω is shown to always
be an eigenvector of the Laplacian, and the corresponding eigenvalues µl are
described explicitly. Such sequences {µl}l∈N0

of eigenvalues form the basis of
our approach to the spectrum of the Dolbeault–Dirac operator.
In §5, we abstract the representation theoretic properties of CPn−1 and intro-
duce the notion of an order I compact quantum homogeneous complex space.
We then establish a necessary and sufficient set of conditions (given in terms
of the eigenvalue sequences {µl}l∈N0 discussed above) for such a space to have
a Dolbeault–Dirac operator with compact resolvent.
In §6 we examine our motivating example Oq(CPn−1). We begin by recalling
the necessary details about its definition as a quantum homogeneous space, its
Heckenberger–Kolb calculus, and its covariant complex and Kähler structures.
We then construct an order I presentation for the calculus in §6.2. This allows
us to apply the general framework of the paper and to prove one of its main
results:
Theorem 6.21 For quantum projective space Oq(CPn−1), endowed with its
Heckenberger–Kolb calculus and its unique covariant Kähler structure, a pair
of spectral triples is given by(

Oq(CPn−1), L2
(
Ω(•,0)

)
, D∂

)
,

(
Oq(CPn−1), L2

(
Ω(0,•)), D∂

)
.

In §7 we generalise the notion of Gelfand type to weak Gelfand type, and de-
termine which non-exceptional irreducible quantum flag manifolds satisfy the
condition. We show that in addition to Oq(CPn−1), we have the quantum
2-plane Grassmannians Oq(Grn,2), the odd- and even-dimensional quantum
quadrics Oq(Qn). The extension of the framework of the paper to this larger
class of examples is then discussed in detail.
We finish with three appendices. In the first we recall the basic definitions
of compact quantum group algebras, and quantum homogeneous spaces. In
the second we recall basic results about Drinfeld–Jimbo quantised enveloping
algebras and their representation theory. In the third we use Frobenius reci-
procity for quantum homogeneous spaces, along with some classical branching
laws, to derive the decomposition of the anti-holomorphic forms into irreducible
Uq(sln)-modules.
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2 Preliminaries

We recall necessary details about complex, Hermitian, and Kähler structures
for differential calculi. We highlight in particular the Dirac and Laplace op-
erators associated to an Hermitian structure, as well as the associated Hodge
theory, which plays a central in our spectral calculations. We also introduce
the novel notions of CQH-complex, CQH-Hermitian, and CQH-Kähler spaces.
These serve as a convenient setting in which to present Dolbeault–Dirac spec-
tral triples in the coming sections.

2.1 Complex, Hermitian, and Kähler Structures on Differential
Calculi

In this subsection we present the basic definitions and results for complex struc-
tures, as introduced in [25] and [2]. (For a presentation using the conventions
of this paper see [49].) We also recall the basic definitions and results of Hermi-
tian and Kähler structures, as introduced in [50]. For an excellent presentation
of classical complex and Kähler geometry see [23].
Recall that a differential calculus is a differential graded algebra

(
Ω• '⊕

k∈N0
Ωk,d

)
which is generated in degree 0 as a differential graded algebra,

which is to say, it is generated as an algebra by the elements a,db, for a, b ∈ Ω0.
We denote the degree of a homogeneous element ω ∈ Ω• by |ω|. For a given
algebra B, a differential calculus over B is a differential calculus such that
B = Ω0. A differential calculus is said to be of total degree m ∈ N0 if Ωm 6= 0,
and Ωk = 0, for every k > m. A differential ∗-calculus over a ∗-algebra B is a
differential calculus over B such that the ∗-map of B extends to a (necessarily
unique) conjugate linear involutive map ∗ : Ω• → Ω• satisfying d(ω∗) = (dω)∗,
and (

ω ∧ ν
)∗

= (−1)klν∗ ∧ ω∗, for all ω ∈ Ωk, ν ∈ Ωl.

For A a Hopf algebra, and P a left A-comodule algebra, a differential calculus
Ω• over P is said to be covariant if the coaction ∆L : P → A ⊗ P extends to
a (necessarily unique) comodule algebra structure ∆L : Ω• → A ⊗ Ω•, with
respect to which the differential d is a left A-comodule map.
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Definition 2.1. A complex structure Ω(•,•) for a differential ∗-calculus (Ω•,d),
over a ∗-algebra A, is an N2

0-algebra grading
⊕

(a,b)∈N2
0

Ω(a,b) for Ω• such that,

for all (a, b) ∈ N2
0:

1. Ωk =
⊕

a+b=k Ω(a,b),

2. ∗
(
Ω(a,b)

)
= Ω(b,a),

3. dΩ(a,b) ⊆ Ω(a+1,b) ⊕ Ω(a,b+1).

We call an element of Ω(a,b) an (a, b)-form. Denoting by projΩ(a+1,b) , and
projΩ(a,b+1) , the projections from Ωa+b+1 onto Ω(a+1,b), and Ω(a,b+1) respec-
tively, we can define the operators

∂|Ω(a,b) := projΩ(a+1,b) ◦ d, ∂|Ω(a,b) := projΩ(a,b+1) ◦ d.

Part 3 of the definition of a complex structure then implies the following iden-
tities:

d = ∂ + ∂, ∂ ◦ ∂ = − ∂ ◦ ∂, ∂2 = 0, ∂
2

= 0.

Thus
(⊕

(a,b)∈N2 Ω(a,b), ∂, ∂
)

is a double complex, which we call the Dolbeault

double complex of the Ω(•,•). Moreover, it is easily seen that

∂(ω∗) =
(
∂ω
)∗
, ∂(ω∗) =

(
∂ω
)∗
, for all ω ∈ Ω•. (1)

For any complex structure Ω(•,•) =
⊕

(a,b)∈N0
Ω(a,b), a second complex

structure, called its opposite complex structure, is given by Ω
(•,•)

=⊕
(a,b)∈N2

0
Ω

(a,b)
, where Ω

(a,b)
= Ω

(b,a)

.

For a left A-comodule algebra P , and a covariant differential ∗-calculus Ω•

over P , we say that a complex structure for Ω• is covariant if Ω(a,b) is a left
A-sub-comodule of Ω•, for all (a, b) ∈ N2

0. A direct consequence of covariance
is that the maps ∂ and ∂ are left A-comodule maps.

Definition 2.2. An Hermitian structure (Ω(•,•), σ) for a differential ∗-calculus
Ω•, of even total degree 2n, is a pair consisting of a complex structure Ω(•,•),
and a central real (1, 1)-form σ, called the Hermitian form, such that, with
respect to the Lefschetz operator

L : Ω• → Ω•, ω 7→ σ ∧ ω,

isomorphisms are given by

Ln−k : Ωk → Ω2n−k, for all 1 ≤ k < n. (2)

For L the Lefschetz operator of an Hermitian structure, we denote

P (a,b) :=

{
{α ∈ Ω(a,b) |Ln−a−b+1(α) = 0}, if a+ b ≤ n,
0 if a+ b > n.

Moreover, we denote P k :=
⊕

a+b=k P
(a,b), and P • :=

⊕
k∈N0

P k. An element
of P • is called a primitive form.
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Proposition 2.3 (Lefschetz decomposition). For L the Lefschetz operator of
an Hermitian form, an A-bicomodule decomposition, called the Lefschetz de-
composition, is given by

Ω(a,b) '
⊕
j≥0

Lj
(
P (a−j,b−j)).

Finally, we come to the definition of a Kähler structure, a simple strengthening
of the Hermitian structure requirements, but one with profound consequences.

Definition 2.4. A Kähler structure (Ω(•,•), κ) for a differential ∗-calculus is
an Hermitian structure such that dκ = 0. We call κ a Kähler form.

One of the most important consequences of the Kähler condition (which is not
necessarily true for a general Hermitian structure) is the equality, up to a scalar
multiple of the three Laplacian operators

∆∂ = ∆∂ =
1

2
∆d. (3)

Let A be a Hopf algebra, P a left A-comodule algebra, and Ω• a covariant
∗-calculus over P . A covariant Hermitian structure for Ω• is an Hermitian
structure (Ω(•,•), σ) such that Ω(•,•) is a covariant complex structure, and such
that the Hermitian form σ is left A-coinvariant, which is to say ∆L(σ) = 1⊗σ.
A covariant Kähler structure is a covariant Hermitian structure which is also
a Kähler structure. Note that in the covariant case, in addition to being a
P -bimodule map and a ∗-homomorphism, L is also a left A-comodule map.

2.2 Metrics, Adjoints, and the Hodge Map

In classical Hermitian geometry, the Hodge map of an Hermitian metric is re-
lated to the associated Lefschetz decomposition through the well-known Weil
formula (see [61, Theorem 1.2] or [23, Proposition 1.2.31]). In the noncom-
mutative setting we take the direct generalisation of the Weil formula for our
definition of the Hodge map.

Definition 2.5. The Hodge map associated to an Hermitian structure(
Ω(•,•), σ

)
is the morphism uniquely defined by

∗σ
(
Lj(ω)

)
= (−1)

k(k+1)
2 ia−b

j!

(n− j − k)!
Ln−j−k(ω), ω ∈ P (a,b) ⊆ P k,

Many of the basic properties of the classical Hodge map can now be understood
as consequences of the Weil formula. (See [50, §4.3] for a proof.)

Lemma 2.6. Let Ω• be a differential ∗-calculus, of total degree 2n. For
(Ω(•,•), σ) a choice of Hermitian structure for Ω• and ∗σ the associated Hodge
map, it holds that:
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1. ∗σ is a ∗-map,

2. ∗σ(Ω(a,b)) = Ω(n−b,n−a),

3. ∗2σ(ω) = (−1)kω, for all ω ∈ Ωk,

4. whenever Ω• is a covariant calculus over a left A-comodule algebra, and
(Ω(•,•), σ) is a covariant Hermitian structure, then ∗σ is a left A-comodule
map.

Reversing the classical order of construction we now define a metric in terms
of the Hodge map.

Definition 2.7. The metric associated to the Hermitian structure
(
Ω(•,•), σ

)
is the unique map gσ : Ω• × Ω• → A for which g

(
Ωk × Ωl

)
= 0, for all k 6= l,

and

gσ(ω, ν) = ∗σ
(
∗σ (ω∗) ∧ ν

)
, ω, ν ∈ Ωk.

2.3 CQH-Complex and CQH-Hermitian Spaces

We now introduce the definitions of the various compact quantum homogeneous
spaces which form the framework for our investigation of Dolbeault–Dirac oper-
ators. These definitions detail a natural list of compatibility conditions between
differential calculi, complex structures, and Hermitian structures on one hand
and compact quantum group algebras on the other.
Throughout this subsection, and indeed the rest of the paper, A and H will
denote Hopf algebras, π : A→ H a Hopf algebra map, and

B := Aco(H) = {b ∈ A | b(1) ⊗ π(b(2))}

the associated quantum homogeneous space. See Appendix A for further details
on quantum homogeneous spaces.

Definition 2.8. A compact quantum calculus homogeneous space, or simply a
CQH-calculus space is a triple

B =
(
B = Aco(H),Ω•, vol

)
,

comprised of the following elements:

1. B = Aco(H) a CMQGA-homogeneous space, for which A is a domain,

2. Ω• a covariant differential ∗-calculus over B, finite-dimensional as an
object in A

BMod0, and of total degree m ∈ N,

3. vol : Ωm ' B an isomorphism in A
BMod0, which is also a ∗-map, and with

respect to which the integral∫
:= h ◦ vol : Ωm → C

is closed, which is to say, satisfies
∫

dω = 0, for all ω ∈ Ωm−1.
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Definition 2.9. A compact quantum homogeneous complex space, or a CQH-
complex space, is a pair C =

(
B,Ω(•,•)) where

1. B =
(
B = Aco(H),Ω•, vol) is a CQH-calculus space,

2. Ω(•,•) is covariant complex structure for Ω•.

The associated opposite CQH-complex space is the pair Cop :=
(
B,Ω

(•,•))
In the same spirit, a CQH-Hermitian space is a CQH-calculus space endowed
with an Hermitian structure in a natural way. The interaction here, however,
is a little more subtle.

Definition 2.10. A compact quantum homogeneous Hermitian space, or alter-
natively a CQH-Hermitian space, is a triple

(
C,Ω(•,•), σ

)
consisting of

1. C =
(
B,Ω(•,•)) a CQH-complex space,

2.
(
Ω(•,•), σ

)
a covariant Hermitian structure for the differential ∗-calculus

Ω• ∈ B,

3. vol = ∗σ|Ω2n : Ω2n → B, for 2n the total degree of the constituent calculus
of B,

4. the associated metric g is positive definite, which is to say, for all ω ∈ Ω•,

gσ(ω, ω) ∈ B>0 :=
{ l∑
i=1

λib
∗
i bi 6= 0 | bi ∈ B, λi ∈ R>0, l ∈ N

}
.

As an immediate consequence of the definition, we get the following useful
lemma.

Lemma 2.11. For any CQH-Hermitian space
(
C,Ω(•,•), σ

)
, it holds that zω

and ωz are non-zero, for all non-zero z ∈ B, and ω ∈ Ω•.

Proof. By the definition of gσ, it holds that gσ(ω, ωz) = gσ(ω, ω)z. Since B is a
domain, and gσ is positive definite, gσ(ω, ω)z is necessarily non-zero, implying
that ωz is non-zero. The proof that zω is non-zero is entirely analogous.

For any CQH-Hermitian space, composing h with gσ gives a sesqui-linear map

〈·, ·〉 : Ω(•,•) × Ω(•,•) → C, (ω, ν) 7→ h ◦ gσ(ω, ν).

We note that positivity of g, together with positivity of the Haar state h, imply
that 〈·, ·〉 is an inner product. We finish with the obvious extension of these
definitions to the Kähler case.

Definition 2.12. A compact quantum Kähler homogeneous space, or a CQH-
Kähler space, is a CQH-Hermitian space K =

(
B,Ω(•,•), κ

)
such that the co-

variant Hermitian structure (Ω(•,•), κ) is a Kähler structure.
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2.3.1 Hodge Theory

We now recall the noncommutative generalisation of Hodge theory associated
to any CQH-Hermitian space. Hodge decomposition will play a central role in
our calculation of Laplace operator spectra, and the implied equivalence be-
tween harmonic forms and cohomology groups allows us to calculate the Dirac
operator index in terms of the anti-holomorphic holomorphic Euler character-
istic of the calculus, as defined in Definition 2.24.
The exterior derivatives d, ∂, ∂ are adjointable with respect to the inner prod-
uct. Moreover, as established in [50, §5.3.3], their adjoints also are expressible
in terms of the Hodge operator:

d† = − ∗σ ◦ d ◦ ∗σ, ∂† = − ∗σ ◦ ∂ ◦ ∗σ, ∂
†

= − ∗σ ◦ ∂ ◦ ∗σ.

For any Hermitian structure on a differential calculus, generalising the classical
situation, we define the d-, ∂-, and ∂-Dirac operators to be respectively,

Dd := d + d†, D∂ := ∂ + ∂†, D∂ := ∂ + ∂
†
.

Moreover, we define the d-, ∂-, and ∂-Laplace operators to be

∆d := (d + d†)2, ∆∂ := (∂ + ∂†)2, ∆∂ := (∂ + ∂
†
)2.

We introduce d-harmonic, ∂-harmonic, and ∂-harmonic forms, respectively,
according to

Hd := ker(∆d), H∂ := ker(∆∂), H∂ := ker(∆∂).

For the case of CQH-Hermitian space, it was shown in [12, Corollary 4.17] that
the Dirac and Laplace operators are diagonalisable. Just as in the classical
case, this allows us to show ([50, Lemma 6.1]) that the harmonic forms admit
the following alternative presentation

Hd = ker(d) ∩ ker(d†), H∂ = ker(∂) ∩ ker(∂†), H∂ = ker(∂) ∩ ker(∂
†
). (4)

Moreover, as shown in [50, Theorem 6.2], building on earlier work in [35],
diagonalisability also allows us to conclude the following noncommutative gen-
eralisation of Hodge decomposition for Hermitian manifolds.

Theorem 2.13 (Hodge decomposition). For a CQH-Hermitian space, direct
sum decompositions of Ω•, orthogonal with respect to 〈·, ·〉, are given by

1. Ω• = Hd ⊕ dΩ• ⊕ d†Ω•,

2. Ω• = H∂ ⊕ ∂Ω• ⊕ ∂†Ω•,

3. Ω• = H∂ ⊕ ∂Ω• ⊕ ∂†Ω•.
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From Hodge decomposition it is easy to conclude the following equivalence of
harmonic forms and cohomologies, see [50, §6.2] for details.

Corollary 2.14. It holds that

1. ker(d) = Hd ⊕ dΩ•,

2. ker(∂) = H∂ ⊕ ∂Ω•,

3. ker(∂) = H∂ ⊕ ∂Ω•,

and so, we have isomorphisms

Hkd → Hk
d , H(a,b)

∂ → H
(a,b)
∂ , H(a,b)

∂
→ H

(a,b)

∂
,

where Hk
d , H

(a,b)
∂ , and H

(a,b)

∂
, denote the cohomology groups of the complexes

(Ω•,d), (Ω•, ∂), and (Ω•, ∂) respectively.

We finish with an easy but novel observation that directly generalises the clas-
sical situation.

Lemma 2.15. For any Hermitian structure (Ω(•,•), σ), the Hodge operator re-
stricts to linear isomorphisms

∗σ : ∂Ω• → ∂†Ω•, ∗σ : ∂Ω• → ∂
†
Ω•.

Proof. The fact that ∗σ
(
∂Ω•) is contained in ∂†Ω• follows from

∗σ(∂ω) = (−1)k ∗σ ◦ ∂ ◦ ∗σ
(
∗σ (ω)

)
= (−1)k+1∂†

(
∗σ (ω)

)
∈ ∂†Ω•,

where ω ∈ Ωk. Similarly, the fact that ∗σ
(
∂†Ω•

)
is contained in ∂Ω• follows

from the identity

∗σ
(
∂†ω

)
= − ∗2σ ◦ ∂ ◦ ∗σ(ω) = (−1)2n−k+1 ∂

(
∗σ (ω)

)
∈ ∂Ω•, for ω ∈ Ωk.

Thus, since ∗σ : Ω• → Ω• is a linear isomorphism, it must restrict to an
isomorphism between ∂Ω• and ∂†Ω•. The proof of the second isomorphism is
completely analogous, and hence omitted.

2.4 Dolbeault–Dirac Spectral Triples

In this subsection we recall the definition of a spectral triple, Connes’ notion
of a noncommutative Riemannian spin manifold [8]. For a presentation of the
classical Dolbeault–Dirac operator of an Hermitian manifold as a commutative
spectral triple, see [22] or [18]. For a standard reference on the general theory of
spectral triples, see [19] or [7]. Motivated by our construction of spectral triples
from CQH-Hermitian spaces, we find it convenient to break the definition into
two parts.
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Definition 2.16. A bounded-commutator triple (A,H, D), or simply a BC-
triple, consists of a unital ∗-algebra A, a separable Hilbert space H endowed
with a faithful
∗-representation ρ : A → B(H), and D : dom(D) → H a densely-defined
self-adjoint operator on H, such that

1. ρ(a)dom(D) ⊆ dom(D), for all a ∈ A,

2. [D, ρ(a)] is a bounded operator, for all a ∈ A.

An even BC-triple is a BC-triple (A,H, D) together with a Z2-grading H =
H0⊕H1 of Hilbert spaces, with respect to which D is a degree 1 operator, and
ρ(a) is a degree 0 operator, for each a ∈ A.

It follows the discussions of [12, §4] that every CQH-Hermitian space auto-
matically gives a BC-triple. We now briefly recall the relevant details. Let
H =

(
B,Ω(•,•), σ

)
be a CQH-Hermitian space, with constituent quantum ho-

mogeneous space B = Aco(H). We denote by L2
(
Ω•
)

the Hilbert space com-
pletion of Ω• with respect to its inner product 〈·, ·〉. By [50, Lemma 5.2.1] the
N2

0-grading of the complex structure is orthogonal with respect to 〈·, ·〉, hence
we have the following decomposition of Hilbert spaces

L2 (Ω•) =
⊕

(a,b)∈N2
0

L2
(
Ω(a,b)

)
. (5)

The constituent Hopf algebras of H are CMQGAs, in particular, they are
finitely generated. This implies that the Hilbert space L2 (Ω•) is separa-
ble [12, Lemma 4.3]. Since B is a unital algebra, a faithful ∗-representation
ρ : B → B

(
L2(Ω•)

)
is given by

ρ(b)ω := bω, for ω ∈ Ω•, b ∈ B. (6)

It follows from the basic theory of unbounded operators [57, §13]
that the Dirac operators D∂ and D∂ , as well as the Laplace op-
erators ∆∂ and ∆∂ , are essentially self-adjoint, see [12, Corollary
4.17] for details. By abuse of notation, we will not distinguish no-
tationally between an operator and its closure. As observed in
[12, §7.2], it now follows from [17, Proposition 2.1] that, for dom(D∂)
and dom(D∂) the domain of the closures of the respective Dirac operators,

ρ(b)dom(D∂) ⊆ dom(D∂), ρ(b)dom(D∂) ⊆ dom(D∂), for all b ∈ B.

Moreover, boundedness of the commutators [D∂ ,m], and [D∂ ,m] follows eas-
ily from the Leibniz rule [12, Corollary 4.11]. Collecting these observations
together gives us the following proposition.

Proposition 2.17. For a CQH-Hermitian space H = (B,Ω(•,•), σ), with con-
stituent quantum homogeneous space B, a pair of BC-triples, which we call a
Dolbeault–Dirac pair, is given by(

B,L2
(
Ω(•,0)

)
, D∂

)
,

(
B,L2

(
Ω(0,•)), D∂

)
. (7)
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Corollary 2.18. The Hilbert space decompositions

L2
(
Ω(•,0)

)
=
⊕
k∈2N0

L2
(
Ω(k,0)

)
⊕

⊕
k∈2N0+1

L2
(
Ω(k,0)

)
,

L2
(
Ω(0,•)) =

⊕
k∈2N0

L2
(
Ω(0,k)

)
⊕

⊕
k∈2N0+1

L2
(
Ω(0,k)

)
,

define an even structure for the Dolbeault–Dirac pair of BC-triples.

Finally, we come to the definition of a spectral triple, which we present as a
BC-triple whose unbounded operator D has compact resolvent.

Definition 2.19. A spectral triple is a BC-triple (A,H, D) such that

(1 +D2)−1 ∈ K (H) ,

where K(H) denotes the compact operators on H.

As discussed in the introduction, it is not clear at present how to conclude the
compact resolvent condition from the properties of a general CQH-Hermitian
space. (See §7.4.4 for a brief discussion on how this might be achieved.) Hence,
in our examples we resort to calculating the spectrum explicitly, and directly
confirming the appropriate eigenvalue growth. We do, however, know two
important general results. Firstly, since the ∗-map satisfies ∗ ◦∆∂ = ∆∂ ◦ ∗ we
have the following lemma.

Lemma 2.20. For a CQH-Hermitian space, the operator D∂ : Ω(0,•) → Ω(0,•)

has compact resolvent if and only if the operator D∂ : Ω(•,0) → Ω(•,0) has
compact resolvent.

Secondly, we know from [12, Corollary 4.17] that the operators D∂ and D∂

are diagonalisable on L2
(
Ω•
)
. Hence, a CQH-Hermitian space gives a spectral

triple if and only if the eigenvalues {µn}n∈N0
of ∆∂ (with repetitions represent-

ing multiplicities) tend to infinity. When dealing with questions of eigenvalue
growth, we find the following notation useful.

Notation 2.21. For T : dom(T )→ H a diagonalisable operator on a separable
Hilbert spaceH, we write σP (T )→∞ to denote that the eigenvalues of T (with
repetitions representing multiplicities) tend to infinity.

2.5 Analytic K-Homology and the Anti-Holomorphic Euler
Characteristic

Let us now recall the basics of analytic K-homology, bearing in mind that
one of the main aims of this paper is to establish a connection between K-
theoretic index theory and the Dolbeault cohomology of noncommutative Her-
mitian structures.
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Definition 2.22. Let A be a separable unital C∗-algebra. A Fredholm module
over A is a triple (H, ρ, F ), where H is a Hilbert space, ρ : A → B(H) is a
∗-representation, and F : H → H a bounded linear operator, such that

F 2 − 1, F − F ∗, [F, ρ(a)],

are all compact operators, for any a ∈ A. An even Fredholm module is a
Fredholm module (ρ, F,H) together with a Z2-grading H = H0⊕H1 of Hilbert
spaces, with respect to which F is a degree 1 operator, and ρ(a) is a degree 0
operator, for each a ∈ A.

The direct sum of two even Fredholm modules is formed by taking the direct
sum of Hilbert spaces, representations, and operators. For (H, ρ, F ) an even
Fredholm module, and U : H → H′ a degree 0 unitary transformation, the triple
(H′, U∗ρU,U∗FU) is again a Fredholm module. This defines an equivalence
relation on Fredholm modules over A, which we call unitary equivalence. We
say that a norm continuous family of Fredholm modules (ρ,H, Ft), for t ∈ [0, 1],
defines an operator homotopy between the two Fredholm modules (ρ,H, F0) and
(ρ,H, F1).

Definition 2.23. The K-homology group K0(A) of a C∗-algebra A is the
abelian group with one generator for each unitary equivalence class of even
Fredholm modules, subject to the following relations: for any two even Fred-
holm modules x0, x1,

1. [x0] = [x1] if there exists an operator homotopy between x0 and x1,

2. [x0 ⊕ x1] = [x0] + [x1], where + denotes addition in K0(A).

Denoting the Fredholm operator F+ := F |H+
: H+ → H−, a well-defined group

homomorphism is given by

Index : K0(A)→ Z, [F ]K 7→ Index(F+).

Spectral triples are important primarily because they provide unbounded rep-
resentatives for K-homology classes. For a spectral triple (A,H, D), its bounded
transform is the operator

b(D) :=
D√

1 +D2
∈ B(H),

defined via the functional calculus. Denoting by A the closure of ρ(A) with
respect to the operator topology of B(H), an even Fredholm module over A is
given by (H, ρ, b(D)). (See [6] for details.)
For a classical Hermitian manifold, the index of the Dolbeault–Dirac operator,
and the associated index of its K-homology class, are equal to the holomorphic
Euler characteristic of the manifold. This picture extends to the noncommu-
tative setting.
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Definition 2.24. Let H := (B,Ω(•,•), σ) be a CQH-Hermitian space with con-
stituent differential calculus Ω• ∈ B of total degree 2n. The anti-holomorphic
Euler characteristic of H is given by

χ∂ :=

n∑
k=1

(−1)k dimC
(
H(0,k)

)
.

The following proposition now allows us to conclude non-triviality of the K-
homology class of a Dolbeault–Dirac spectral triple from non-vanishing of the
Euler characteristic.

Proposition 2.25. [12, Theorem 5.4] For a CQH-Hermitian space
(B,Ω(•,•), σ), with an associated pair of Dolbeault–Dirac spectral triples,
it holds that

Index
(
b(D∂)

)
= Index

(
b(D∂)

)
= χ∂ .

Remark 2.26. The calculation of cohomology groups can in general be quite
difficult. However, in the Kähler setting there exists a powerful noncommu-
tative generalisation of the Kodaira vanishing theorem [52]. In the more spe-
cialised Fano setting (whose definition directly generalises the classical defi-
nition) this implies vanishing of all higher cohomologies, implying that the
anti-holomorphic Euler characteristic is equal to dimC

(
H(0,0)

)
. Since H(0,0)

always contains the identity element of B, this implies that the K-homology
class of b(D∂) is always non-zero in the Fano setting.

3 CQH-Complex Spaces of Gelfand Type

In this section we begin our examination of the spectral behaviour of the Lapla-
cian operator associated to a CQH-Hermitian space. Our strategy is to exploit
the subtle interactions between the Laplace spectrum, Hodge decomposition,
and comodule multiplicities. This leads us to focus on a special type of CQH-
Hermitian space, Gelfand type spaces, for which the problem is significantly
more tractable. The work of this section underlies our investigation of the
Drinfeld–Jimbo case in §4.

3.1 Hodge Decomposition of the Laplacian

We decompose the Laplacian with respect to Hodge decomposition and then,
in Corollary 3.6, show that σP

(
∆∂

)
→ ∞ if and only if σP (∂∂

†
)→ ∞. We

emphasise the fact that nowhere in this subsection do we make any assumption
on multiplicities, all results hold for a general CQH-Hermitian space.

Lemma 3.1. For any CQH-Hermitian space, the Laplacian operator ∆∂ admits
a direct sum decomposition with respect to Hodge decomposition Ω• = H• ⊕
∂Ω• ⊕ ∂†Ω•, namely

∆∂ = 0 ⊕ ∂∂
† ⊕ ∂

†
∂.

Documenta Mathematica 25 (2020) 1079–1157



A Dolbeault–Dirac Spectral Triple for Oq(CPn−1) 1097

Proof. By definition, ∆∂ restricts to the zero map on the harmonic forms H•.
For a non-harmonic ω ∈ Ω•, we have

∆∂(∂ω) = (∂∂
†

+ ∂
†
∂)(∂ω) = ∂∂

†
(∂ω) ∈ ∂Ω•.

Thus we see that ∂Ω• is closed under the action of the Laplacian, and moreover,
that

∆∂ | ∂Ω• = ∂∂
†
.

Similarly, ∂
†
Ω• is closed under the action of ∆∂ , and ∆∂ restricts to the oper-

ator ∂
†
∂ on ∂

†
Ω•.

Lemma 3.2. For any CQH-Hermitian space, it holds that [∆∂ , ∂] = [∆∂ , ∂
†
] =

0.

Proof. Starting with the first commutator, for ω ∈ Ω•, we see that

[∆∂ , ∂](ω) = ∆∂ ◦ ∂(ω)− ∂ ◦∆∂(ω) = ∂∂
†
∂(ω)− ∂∂†∂(ω) = 0.

Vanishing of the commutator [∆∂ , ∂
†
] is established similarly.

Proposition 3.3. For a CQH-Hermitian space, with constituent quantum ho-
mogeneous space B = Aco(H), left A-comodule isomorphisms are given by

1. ∂ : ∂
†
Ω• → ∂Ω•,

2. ∂
†

: ∂Ω• → ∂
†
Ω•.

Proof. Since by assumption the calculus Ω• and the Hermitian structure

(Ω(•,•), σ) are covariant, the maps ∂ and ∂
†

are left A-comodule maps. Hence,

it suffices to show that ∂ and ∂
†

are linear isomorphisms. By Hodge decompo-

sition ∂
†
Ω(0,•) is orthogonal to the space of harmonic forms, and so, the kernel

of the restriction of the Laplacian to ∂
†
Ω(0,•) is trivial. Now Lemma 3.1 tells

us that the Laplacian restricts to ∂
†
∂ on the subspace ∂

†
Ω(0,•), giving us that

ker
(
∂
†
∂ |

∂
†
Ω(0,•)

)
= 0.

Similarly, the kernel of the restriction of ∂∂
†

to the subspace ∂Ω(0,•) is trivial.
Since the Laplacian is a self-adjoint operator, its restrictions to the subspaces

∂Ω(0,•) and ∂
†
Ω(0,•) are diagonalisable. Thus, both operators

∂
†
∂ : ∂

†
Ω• → ∂

†
Ω•, ∂∂

†
: ∂Ω• → ∂Ω•,

are diagonalisable with trivial 0-eigenspaces. From this we see that we can con-

struct explicit inverses for ∂ and ∂
†
, implying that both maps are isomorphisms

as required.
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We now discuss the relationship between the eigenvalues of ∆∂ and its de-
composition with respect to Hodge decomposition. In doing so, we find the
following notation useful:

Notation 3.4. For f : W → W a linear operator on a vector space W , we
denote by E(µ, f) the eigenspace of an eigenvalue µ of f .

Corollary 3.5. The non-zero eigenvalues of the following three operators
coincide:

1. ∆∂ : Ω(0,•) → Ω(0,•),

2. ∂
†
∂ : ∂

†
Ω(0,•) → ∂

†
Ω(0,•),

3. ∂∂
†

: ∂Ω(0,•) → ∂Ω(0,•).

Moreover, for any eigenvalue µ of ∆∂ with finite multiplicity, it holds that

dimC
(
E(µ,∆∂)

)
= 2 dimC

(
E
(
µ, ∂

†
∂ |

∂
†
Ω•

))
= 2 dimC

(
E
(
µ, ∂∂

† | ∂Ω•

))
. (8)

Proof. The decomposition of ∆∂ with respect to Hodge decomposition, as given
in Lemma 3.1 above, implies that its non-zero eigenvalues are equal to the union

of the eigenvalues of ∂
†
∂ |

∂
†
Ω•

and the eigenvalues of ∂∂
† | ∂Ω• . Hence, for any

eigenvalue µ,

E
(
µ,∆∂

)
= E

(
µ, ∂

†
∂ |

∂
†
Ω•

)
⊕ E

(
µ, ∂∂

† | ∂Ω•

)
.

Moreover, Lemma 3.2 and Proposition 3.3 together imply that the set of eigen-

values of the operators ∂
†
∂ |

∂
†
Ω•

and ∂∂
† | ∂Ω• coincide and have the same

multiplicity. The fact that these three operators have a common set of non-
zero eigenvalues now follows, as does that identity for multiplicities given in
(8).

An immediate consequence of the above corollary is now given. In short, it
says that verifying the compact resolvent for the Laplacian can be reduced to

verifying the condition for either ∂
†
∂ |

∂
†
Ω•

or ∂∂
† | ∂Ω•

Corollary 3.6. Assuming finite-dimensional cohomologies, the following
three conditions are equivalent:

1. σP
(
∆∂ : Ω(0,•) → Ω(0,•))→∞,

2. σP
(
∂∂
†

: ∂Ω(0,•) → ∂Ω(0,•))→∞,

3. σP
(
∂
†
∂ : ∂

†
Ω(0,•) → ∂

†
Ω(0,•))→∞.
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We finish with an easy observation which follows from the equality of Laplacians
in the Kähler case. While not needed elsewhere, the identity is interesting as an
alternative description of the action of the Laplacian ∆∂ on anti-holomorphic
forms.

Lemma 3.7. For a CQH-Kähler space K, the operators ∆∂ and ∂†∂ coincide
on Ω(0,•).

Proof. From (3) we know that in the Kähler case ∆∂ = ∆∂ . Thus the identity
follows from the fact that ∆∂ = ∂∂† + ∂†∂ restricts to ∂†∂ on Ω(0,•).

3.2 CQH-Complex Spaces of Gelfand Type

In this subsection we introduce CQH-complex spaces of Gelfand type. As shown
in Lemma 3.11 below, the Laplacians associated to CQH-Hermitian spaces of
Gelfand type admit a particularly nice diagonalisation, which makes the calcu-
lation of their spectrum significantly more tractable. We begin by introducing
graded multiplicty-free comodules as a convenient abstract framework in which
to discuss comodule multiplicities for covariant calculi.

Definition 3.8.

1. We say that a left A-comodule C is multiplicity-free if for any irreducible
left A-comodule V , it holds that

dimC
(
HomA(V,C)

)
= 1.

2. A graded left A-comodule P is a left A-comodule, together with an
N0-algebra grading P =

⊕
m∈N0

Pm, such that each Pm is a left A-
sub-comodule of P , or equivalently, such that the decomposition P =⊕

m∈N0
Pm is a decomposition in the category AMod.

3. We say that a graded comodule P =
⊕

m∈N0
Pm is graded multiplicity-free

if the left A-comodule Pm is multiplicity-free, for all m ∈ N0.

An elementary, but very useful, observation about multiplicity-free comodules
is presented in the following lemma. The proof is a direct application of Schur’s
lemma, and so, is omitted.

Lemma 3.9. Let P be a graded multiplicity-free left A-comodule, ϕ : P → P
a degree 0 left A-comodule map, and V an irreducible A-sub-comodule of P .
Then ϕ acts on V as a scalar multiple of the identity. Consequently, ϕ is
diagonalisable on P .

We now present the notion of a CQH-complex space of Gelfand type. The
definition is given in terms of graded multiplicity-free comodules, and is followed
by a direct application of Lemma 3.9.
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Definition 3.10. We say that a CQH-complex space C =
(
B,Ω(•,•)) is of

Gelfand type if Ω(0,•) is a graded multiplicity-free left A-comodule. We say
that a CQH-Hermitian space is of Gelfand type if its constituent CQH-complex
space is of Gelfand type.

Since the Laplacian is a self-adjoint operator, we already know that it is diag-
onalisable. However, since it is a degree 0 operator, Corollary 3.9 implies the
following stronger result.

Lemma 3.11. For a CQH-Hermitian space of Gelfand type, the Laplacian ∆∂

acts on every irreducible left A-sub-comodule of Ω(0,•) as a scalar multiple of
the identity.

We now use the various symmetries of the Dolbeault double complex to find
four equivalent formulations of Gelfand type. We begin with the symmetry
induced by the ∗-map of the calculus.

Lemma 3.12. For C =
(
B,Ω(•,•)) a CQH-complex space, the following condi-

tions are equivalent:

1. C is of Gelfand type,

2. Cop, the opposite CQH-complex space, is of Gelfand type,

3. the graded left A-comodule Ω(•,0) is graded multiplicity-free.

Proof.

1⇔ 3 The image of an irreducible A-sub-comodule of Ω• under the ∗-map

is again an irreducible A-sub-comodule. Thus if Ω(0,k) '
⊕

α Ω
(0,k)
α

denotes a decomposition of Ω(0,k) into irreducible A-sub-comodules,
then a decomposition of Ω(k,0) into irreducible A-sub-comodules is
given by

Ω(k,0) '
⊕
α

(
Ω(0,k)
α

)∗
.

Thus we see that Ω(k,0) is multiplicity-free if and only if Ω(0,k) is
multiplicity-free, which is to say C is of Gelfand type if and only if
Cop is of Gelfand type.

2⇔ 3 The equivalence of 2 and 3 follows directly from the definition of
opposite complex structure and the definition of Gelfand type.

If we additionally assume the existence of a covariant Hermitian structure, then
the symmetries induced by the Hodge map imply two additional equivalent
formulations of Gelfand type. Note that in this case the Gelfand condition can
be verified on any of the outer edges of the Hodge diamond.
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Lemma 3.13. For H =
(
B,Ω(•,•), σ

)
a CQH-Hermitian space, the following

conditions are equivalent:

1. H is of Gelfand type,

2. the graded left A-comodule Ω(•,n) is graded multiplicity-free,

3. the graded left A-comodule Ω(n,•) is graded multiplicity-free.

Proof.

1⇔ 2: By Lemma 2.6, the Hodge map ∗σ associated to σ restricts to a left
A-comodule isomorphism ∗σ : Ω(0,•) ' Ω(•,n). Thus Ω(•,n) is graded
multiplicity-free if and only if Ω(0,•) is graded multiplicity-free, which
is to say, if and only if H is of Gelfand type.

1⇔ 3: By Lemma 7.7 above, H is of Gelfand type, if and only if Ω(•,0) is
graded multiplicity-free. Moreover, using the Hodge map, just as
above, we see that Ω(n,•) is graded multiplicity-free if and only if
Ω(0,•) is graded multiplicity-free, giving the required equivalence.

4 Drinfeld–Jimbo Quantum Groups and CQH-Hermitian
Spaces

From now on we restrict to the case of Drinfeld–Jimbo quantised enveloping
algebras Uq(g) and their quantised coordinate algebras Oq(G), as presented in
Appendix B. This allows us to exploit the associated highest weight structure
on the category Uq(g)-modules of type 1, leading to the construction of canon-
ical sequences of eigenvalues in σP (∆∂). In the next section, under suitable
assumptions, we decompose σP

(
∆∂

)
into unions of such sequences allowing

us to give sufficient and necessary conditions for σP (∆∂) → ∞. Note that
throughout this section, we assume the notation and conventions presented in
Appendix B.

4.1 Highest and Lowest Weight Vectors

In this subsection we examine the behaviour of highest weight vectors in an
Oq(G)-comodule algebra P . We show that the space of highest weight elements
is a multiplicative submonoid of P . Moreover, we show that in the graded
multiplicity-free case, any pair of highest weight vectors commute up to a scalar.
The algebra of anti-holomorphic forms Ω(0,•) of a covariant complex structure
is then presented as a motivating example.

Definition 4.1. For any Z ∈ Oq(G)Mod, with respect to the Uq(g)-action
induced by the dual pairing Uq(g)×Oq(G)→ C, we denote

Zhw :={f ∈ Z | f is a highest weight vector of Z},
Zlw :={f ∈ Z | f is a lowest weight vector of Z}.
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Lemma 4.2. For a left Oq(G)-comodule algebra P , which is to say a monoid
object in the category Oq(G)Mod, it holds that

1. wt(ab) = wt(ba) = wt(a) + wt(b), for all a, b ∈ P ,

2. the multiplication of P restricts to the structure of a monoid on Phw and
Plw.

Proof. Let a, b ∈ Phw. For k = 1, . . . , r,

Ek . (ab) =(Kk . a)(Ek . b) + (Ek . a)(1 . b) = 0.

Moreover, Kk . (ab) = (Kk . a)(Kk . b) = q(wt(a),αk)+(wtk(b),αk)ab. Thus ab ∈
Phw. To show that we have a monoid it remains to show that the unit of P is
contained in Phw. This follows directly from the properties of a dual pairing
since X . 1 = ε(X)1.

In this subsection we discuss graded multiplicity-free comodules for the
Drinfeld–Jimbo quantum groups. This allows us to produce a collection of
identities describing proportionality relations between certain highest weight
vectors. For the special case of CQH-Hermitian spaces, these identities will be
our main tool for calculating the spectrum of a Dolbeault–Dirac operator. The
proof of the following lemma is elementary and hence omitted.

Lemma 4.3. Let A '
⊕

i∈N0
Ai be a graded multiplicity-free Oq(G)-comodule,

and a, b ∈ Ahw such that

1. |a| = |b|, 2. wt(a) = wt(b), 3. b 6= 0.

Then there exists a uniquely defined scalar C ∈ C such that a = Cb.

Definition 4.4. A graded A-comodule algebra is a graded A-comodule P =⊕
i∈N0

Pi, which is also an A-comodule algebra, such that the grading and
multiplication of P combine to give it the structure of a graded algebra.

The following result now follows immediately from Lemma 4.3.

Corollary 4.5. Let P be a graded multiplicity-free A-comodule algebra. If
c, d ∈ Phw such that dc 6= 0, then there exists a unique scalar C ∈ C such that

cd = C dc.

Example 4.6. The simplest example of a left Oq(G)-comodule algebra is a
quantum homogeneous space B = Oq(G)co(H). As discussed in §7, the highest
weight monoid is always finitely generated as a monoid. However, as we will
see in §6 and §7 the number of generators has strong consequences for the
complexity of the spectrum of the Dolbeault–Dirac operators constructed to a
CQH-Hermitian spaces over B.
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Example 4.7. Each of the following objects are left Oq(G)-comodule algebras

Ω•, Ω(0,•), Ω(•,0).

Lemma 4.2 implies that the respective multiplications restrict to monoid struc-
tures on the sets

Ω•hw, Ω
(0,•)
hw , Ω

(•,0)
hw .

Note that by restriction of the monoid structure of Ω•hw, we have the following
monoid actions

Ω
(•,0)
hw × Ω

(•,n)
hw → Ω

(•,n)
hw Ω

(0,•)
hw × Ω

(n,•)
hw → Ω

(n,•)
hw .

Moreover, restricting to highest weight forms of degree 0, we have the following
monoid action

Bhw × Ω
(a,b)
hw → Ω

(a,b)
hw , for all (a, b) ∈ N2

0.

Remark 4.8. The previous examples can be extended to a more formal general
setting using the language of relative Hopf modules over comodule algebras.
Let A be a Hopf algebra, and (P,∆P ) a left A-comodule algebra. A relative
Hopf P -module algebra N is a left A-comodule (N,∆N ), which is also a module
over the algebra P , satisfying the compatibility condition

∆N (pn) = ∆P (p)∆N (n), for all p ∈ P, n ∈ N.

Alternatively, considering P as a monoid object in the category AMod, a rel-
ative Hopf P -module algebra is just a module object over P in the category
AMod. It is instructive to observe that any object in

Oq(G)
B Mod is a relative

Hopf B-module algebra. Following the same argument as in Lemma 4.2, one
can now establish the following result, formalising the actions appearing in
Example 4.7.

Lemma 4.9. For P a left Oq(G)-comodule algebra, and N a relative Hopf P -
module algebra, the action of P on N restricts to the structure of a Phw-space

Phw ×Nhw → Nhw, (p, n) 7→ pn.

4.2 CQH-Complex Spaces and Leibniz Constants

In this subsection we apply the general results of the previous subsection to
the CQH-complex spaces of Gelfand type. As a result we identify a collection
of constants, which we call Leibniz constants, intrinsic to the structure of the
calculus. First however, we prove a useful result relating highest weight vectors
and the ∗-map of a covariant ∗-calculus.

Lemma 4.10. For a CQH-complex space C =
(
B,Ω(•,•)), the ∗-map of the con-

stituent calculus Ω• ∈ B restricts to a bijection between Ω•hw and Ω•lw. More-
over, the bijection is an anti-monoid map.
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Proof. For any ω ∈ Ω•hw, we have, for k = 1, . . . , rank(g),

Fk . ω
∗ =

〈
S(Fk), ω∗(−1)

〉
ω∗(0) =

〈
S2(Fk)∗, ω(−1)

〉
ω∗(0)

=
(〈
S
(
S−3(F ∗k )

)
, ω(−1)

〉
ω(0)

)∗
=
(
S−3(F ∗k ) . ω

)∗
.

A direct calculation confirms that S−3(F ∗k ) = −q−2K−2
k Ek. Thus, since ω

is by assumption a highest weight vector, we must have that Fk . ω
∗ = 0.

Analogously, it can be shown that Kk . ω
∗ = q−wtk(ω)ω∗. Hence, ω is a lowest

weight element of Ω•. The proof that ∗ sends lowest weight forms to highest
weight forms is analogous. Thus since the ∗-map is an involution, it must
induce a bijection between highest and lowest weight forms. Moreover, since
the ∗-map is an anti-algebra map, it restricts to an anti-monoid map between
Ω•hw and Ω•lw.

We now restrict to the Gelfand case, beginning with the following lemma which
is a direct consequence of Corollary 4.5.

Lemma 4.11. Let H =
(
B,Ω(•,•)) be a CQH-complex space of Gelfand type,

and ω, ν ∈ Ω
(0,•)
hw such that ν ∧ ω 6= 0. Then there exists a uniquely defined

scalar C satisfying

ω ∧ ν = C ν ∧ ω.

A very special, but very important, case of this result are the Leibniz com-
mutation constants presented in the corollary below. These constants play a
central part in our later description of the spectrum of the Dolbeault–Dirac
operator associated to a CQH-space Hermitian space.

Corollary 4.12. For every non-harmonic element z ∈ Bhw, there exist non-
zero constants λz, ζz ∈ C, uniquely defined by(

∂z
)
z = λz z∂z,

(
∂z
)
z = ζz z∂z.

We call λz, and ζz, the holomorphic Leibniz constant, and anti-holomorphic
Leibniz constant, of z respectively.

Proof. By Lemma 2.11, the product z∂z is non-zero. Since the complex struc-
ture is of Gelfand type by assumption, Lemma 4.11 implies the existence and
uniqueness of the constants λz and ζz.

Corollary 4.13. For any z ∈ Bhw, with Leibniz constant λz, and l ∈ N0, it
holds that

1. ∂zl = (l)λz z
l−1∂z,

2. ∂zl = (l)ζz z
l−1∂z,
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where (l)λz and (l)ζz are quantum integers, as presented in Appendix B.1.

Proof. Let us assume that the required identity holds for some l > 1. Then

∂zl+1 =
(
∂z
)
zl + z∂zl

=λlz z
l∂z + (l)λzz

l∂z

= (λlz + (l)λz )z
l∂z

= (l + 1)λzz
l∂z.

The required formula now follows by an inductive argument. The formula for
∂zl is established analogously.

In what follows, it proves very useful to have a simple relationship between
the holomorphic and anti-holomorphic Leibniz constants. While it is not clear
that such a relation exists in general, the assumption of a certain type of self-
conjugacy on zero forms is enough to imply an inverse relation between λz
and ζz.

Definition 4.14. We say that a quantum homogeneous space B = Oq(G)co(H)

is self-conjugate if every irreducible sub-comodule V ⊆ B is a ∗-closed subspace,
which is to say V = {v∗ | v ∈ V }.

The following technical lemma serves as a useful means of checking ∗-invariance
of an irreducible submodule V in terms of the highest weight vectors of V .

Lemma 4.15. For a quantum homogeneous space B = Oq(G)co(H), and an
element z ∈ Bhw, the irreducible sub-comodule Uq(g)z is a ∗-closed subspace if
and only if z∗ ∈ Uq(g)z.

Proof. Since z is a highest weight vector of the irreducible comodule Uq(g)z,
for every v ∈ Uq(g)z, there exists an X ∈ Uq(g), such that X . z = v. Note
next that

v∗ = (X . z)∗ =
( 〈
S(X), z(1)

〉
z(2)

)∗
=
〈
S(X), z(1)

〉
z∗(2).

Recalling now that we have a dual pairing of Hopf ∗-algebras, we see that〈
S(X), z(1)

〉
z∗(2) =

〈
S2(X)∗, z∗(1)

〉
z∗(2)

=
〈
S−2(X∗), z∗(1)

〉
z∗(2)

=
〈
S
(
S−3(X∗)

)
, z∗(1)

〉
z∗(2)

=S−3(X∗) . z∗.

Thus if we assume that z∗ ∈ Uq(g)z, then we necessarily have v∗ ∈ Uq(g)z,
for all elements v ∈ Uq(g)z, implying that Uq(g)z is ∗-closed. The opposite
implication is obvious.
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We finish by showing that the assumption of self-conjugacy does indeed imply
an inverse relation between the Leibniz constants λz and ζz.

Proposition 4.16. Let H be a self-conjugate CQH-Hermitian space of Gelfand
type. For any z ∈ Bhw with real Leibniz constants, it holds that(

∂z
)
z = λ−1

z z∂z, or equivalently, ζz = λ−1
z .

Proof. Applying the ∗-map to the identity
(
∂z
)
z = λzz∂z gives us the new

identity

λ−1
z z∗∂z∗ =

(
∂z∗
)
z∗. (9)

Lemma 4.10, combined with our assumption that H is self-conjugate, implies
that z∗ is a lowest weight vector of the irreducible module Uq(g)z. Thus there
exists an X ∈ Uq(g) such that X . z∗ = z. Note next that

X2 .
(
z∗∂z∗

)
=
(
X . z∗

)
∂
(
X . z∗

)
= z∂z,

and that analogously, X2 .
(
(∂z∗)z∗

)
= (∂z)z. Thus applying X2 to both sides

of (9) gives the required identity (∂z)z = λ−1
z z∂z.

4.3 Laplacian Eigenvalues for CQH-Hermitian Spaces of Gelfand
Type

In the final subsection of this section we show that for a CQH-Hermitian spaces
of Gelfand type, Hodge decomposition is a decomposition of Bhw-spaces. Com-
bining this result with the Hodge decomposition of the Laplacian, we compute
the eigenvalues of a general sequence of eigenvectors of the form zlω, where

z ∈ Bhw, and ω ∈ ∂Ω
(0,•)
hw . In the next section, our strategy is to decompose the

point spectrum of the Laplacian σP (∆∂) into a finite union of such sequences
and to use this to conclude that, under sufficient assumptions, σP

(
∆∂

)
→∞.

As discussed in §7, the general ideas of this section can be extended to the
more general weak Gelfand setting with sufficient care.
Note that in this subsection we make heavy use of the quantum integer notation
as presented in Appendix B.1.

Lemma 4.17. Let H =
(
M,Ω(•,•), σ

)
be a CQH-Hermitian space of Gelfand

type, and z ∈ Bhw. Then, for every ω ∈ ∂Ω
(0,•)
hw , there exists unique scalars

Az,ω, Bz,ω ∈ C, such that

1. ∂z ∧ ∗σ(ω) = Az,ω z
(
∂ ◦ ∗σ(ω)

)
,

2. ∂z ∧ ∂†ω = Bz,ωz
(
∂ ∂
†
(ω)
)
.

Proof. 1. Note first that both sides of the identity are highest weight vectors.
Next we see that

Ki . (∂z ∧ ∗σ(ω)) = ∂
(
Ki . z

)
∧ ∗σ

(
Ki . ω

)
= q(wt(z),αi)+(wt(ω),αi)∂z ∧ ∗σ(ω).
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Analogously, we have that Ki .
(
z(∂ ◦ ∗σ(ω)

)
= q(wt(z),αi)+(wt(ω),αi)z

(
∂ ◦

∗σ(ω)
)
, meaning that both forms are highest weight vectors of the same

weight. Moreover, both forms are homogeneous elements, of the same
degree, of the graded comodule Ω(•,n). Now Ω(•,n) is multiplicity-free by
Lemma 3.13. Thus if z

(
∂ ◦ ∗σ(ω)

)
6= 0, then the existence of the required

constant would follow from Lemma 4.3. By Lemma 2.15 the form ∗σ(ω)
is contained in ∂†Ω•, and so, ∂ ◦ ∗σ(ω) 6= 0. Thus it follows from Lemma
2.11 that the product z

(
∂ ◦ ∗σ(ω)

)
6= 0 as required.

2. The proof is analogous to the proof of 1, and so, is omitted.

We now use the existence of the constant Az,ω presented in the above lemma
to establish an identity needed for the proofs of Proposition 4.19 and Theorem
4.20.

Corollary 4.18. It holds that

∂
†
(zlω) =

(
Az,ω(l)λz + 1

)
zl∂
†
(ω).

Proof. From the identity ∂
†

= − ∗σ ◦∂ ◦ ∗σ, we have that

∂
†
(zlω) =− ∗σ ◦ ∂ ◦ ∗σ(zlω)

=− ∗σ ◦ ∂
(
zl ∗σ (ω)

)
=− ∗σ

(
(l)λzz

l−1∂z ∧ ∗σ(ω) + zl
(
∂ ◦ ∗σ(ω)

))
=− (l)λzz

l−1 ∗σ
(
∂z ∧ ∗σ(ω)

)
− zl

(
∗σ ◦ ∂ ◦ ∗σ(ω)

)
.

Recalling Lemma 4.17, we see that there exists a scalar Az,ω such that

∂
†
(zlω) =− (l)λzz

lAz,ω
(
∗σ ◦ ∂ ◦ ∗σ(ω)

)
+ zl∂

†
(ω)

=
(
Az,ω(l)λz + 1

)
zl∂
†
(ω),

which gives us the claimed identity.

With these results in hand we are now ready to show that Hodge decomposition
implies a decomposition of highest weight forms into Bhw-subspaces.

Proposition 4.19. For any CQH-complex space of Gelfand type, with con-

stituent quantum homogeneous space B, the spaces ∂Ω
(0,•)
hw and ∂

†
Ω

(0,•)
hw are

closed under the action of the monoid Bhw.

Proof. Consider elements ω ∈ ∂Ω(0,k), and z ∈ Bhw. Since Hodge decompo-
sition is a decomposition of left Oq(G)-comodules, either Uq(g)zlω ⊆ ∂Ω(0,k),

or Uq(g)zlω ⊆ ∂
†
Ω(0,k), for all l ∈ N0. In particular either zlω ∈ ∂Ω(0,k), or

zlω ∈ ∂†Ω(0,k). We observe that

∂(zlω) = ∂(zl) ∧ ω + zl∂ω = (l)λ−1
z
zl−1∂z ∧ ω = (l)λ−1

z
zl−1∂(zω).
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Thus ∂(zlω) = 0 if and only if ∂(zω) = 0. This means that zω ∈ ∂Ω(0,•) if and
only if zlω ∈ ∂Ω(0,•), for all l ∈ N0.

Now, for l = 1, this is zero if and only if Bz,ω = −1. In that case, for l > 1,
recalling that q ∈ R (and hence not a complex root of unity), we have

∂
†
(zlω) =

(
− (l)λz + 1

)
zl ∂
†
(ω) 6= 0.

However, this contradicts our earlier observation that zlω ∈ ∂Ω(0,•) if and only

if zω is contained in ∂Ω(0,•). Hence, we can conclude that ∂Ω
(0,•)
hw is closed

under the action of Bhw. The proof that ∂
†
Ω

(0,•)
hw is closed under the action of

Bhw is analogous.

We now use this lemma to construct an explicit sequence of eigenvalues start-
ing from an element z ∈ Bhw and a form ω ∈ ∂Ω

(0,k)
hw . In the next section,

we introduce an approach to verifying the compact resolvent condition based
around such sequences of eigenvalues. The eigenvalues are presented in terms
of quantum λz-integers, and quantum λ−1

z -integers, where as usual λz is the
Leibniz constant of z. In the case of quantum projective space, as presented in
§6, we see that eigenvalues of its Dolbeault–Dirac operator are exactly of this
form, with the quantum λz-integers q-deforming the integer eigenvalues of the
classical operator.

Theorem 4.20. Let H :=
(
B,Ω(•,•), σ

)
be a CQH-Hermitian space of Gelfand

type. For any form ω ∈ ∂Ω
(0,k)
hw , and z ∈ Bhw, it holds that

1. zlω is an eigenvector of ∆∂ , for all l ∈ N0,

2. denoting by µω the eigenvalue of ω, it holds that

∆∂(zlω) =
(
Az,ω (l)λz + 1

)(
Bz,ω (l)λ−1

z
+ 1
)
µω z

lω.

Proof. By Corollary 4.13 we have that

∂
(
zl ∂
†
ω
)

= ∂(zl) ∧ ∂†ω + zl
(
∂∂
†
ω
)

= (l)λ−1
z
zl−1∂z ∧ ∂†ω + zl

(
∂∂
†
ω
)
.

Lemma 4.17 implies that there exists a uniquely defined scalar Bz,ω such that

(l)λ−1
z
zl−1∂z ∧

(
∂
†
ω
)

+ zl ∂∂
†
ω =Bz,ω(l)λ−1

z
zl ∂∂

†
ω + zl ∂∂

†
ω

=
(
Bz,ω(l)λ−1

z
+ 1
)
zl∂∂

†
ω.

From Proposition 4.19 above, we know that zlω ∈ ∂Ω(0,•). Moreover by Hodge

decomposition of the Laplacian, we know that ∆∂ restricts to ∂∂
†

on ∂Ω(0,•).
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Combining these facts with Corollary 4.18, we now see that

∆∂(zlω) = ∂∂
†(
zlω
)

=
(
1 +Az,ω(l)λz

)
∂
(
zl ∂
†
ω
)

=
(
1 +Az,ω(l)λz

)(
1 +Bz,ω(l)λ−1

z

)
zl∂∂

†
(ω)

= (1 +Az,ω(l)λz )(1 +Bz,ω(l)λ−1
z

)zl∆∂(ω)

= (1 +Az,ω(l)λz )(1 +Bz,ω(l)λ−1
z

)µωz
lω,

establishing the required identity.

4.4 Connectedness for Gelfand Type CQH-Complex Spaces

We finish with a discussion of connectedness in the Gelfand type setting,
proving that it is equivalent to finite-dimensionality of the zeroth cohomol-
ogy group H0. This is an interesting, and useful, application of the notion of
Gelfand type, especially given the difficulty of demonstrating connectedness in
general. We begin by recalling the standard definition of connectedness for a
differential calculus.

Definition 4.21. We say that a differential calculus (Ω•,d) is connected if

H0 = ker(d : Ω0 → Ω1) = C1.

It is important to note that if Ω• is endowed with a complex structure Ω(•,•),
then an elementary application of the ∗-map demonstrates that the calculus is
connected if and only if

ker(∂ : Ω(0,0) → Ω(1,0)) = ker(∂ : Ω(0,0) → Ω(0,1)) = C1.

Note that the following lemma does not rely on our discussions above. What
is used is no more than a multiplicity-free assumption for forms of degree 0
(as implied by Gelfand type) and the assumption that we are working with
Drinfeld–Jimbo quantum groups.

Lemma 4.22. Let C = (B,Ω(•,•)) be a CQH-complex space for which Ω0 is
multiplicity-free as a left A-comodule. Then the following are equivalent:

1. The constituent different calculus Ω• ∈ B is connected,

2. dimC
(
H0
)
<∞.

Proof. Assume that the constituent calculus Ω• ∈ B is not connected, which
is to say, assume that B contains a ∂-closed element y which is not a scalar
multiple of the identity. Denote by y =

∑
k yk the decomposition of y into

summands which are homogeneous with respect to the decomposition of B
into irreducible Uq(g)-modules. Since Ω0 is multiplicity-free by assumption,
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1110 B. Das, R. O Buachalla, and P. Somberg

and ∂ is a left Uq(g)-module map, ∂y = 0 if and only if ∂yk = 0, for all k.
Hence, we can assume, without loss of generality, that y is homogeneous with
respect to the decomposition of B into irreducibles. By Schur’s lemma every
element in the irreducible module containing y must be ∂-closed. Thus we
can assume, without loss of generality, that y is a weight vector with non-zero
weight. Since weights are additive Ki . y

l = ql(wt(y),αi)yl, for any l ∈ N0,
and i = 1, . . . , rank(g). Thus the weights of the elements yl are distinct, for
each l. In particular, the set {yl | l ∈ N0} is linearly independent, and so,
infinite-dimensional. Since ∂y = 0, the Leibniz rule implies that ∂(yl) = 0,
for all l ∈ N0. This means that the space of harmonic elements is infinite-
dimensional, and so, by Hodge decomposition H0 is infinite-dimensional. The
proof in the other direction is trivial, meaning that we have established the
required equivalence.

5 CQH-Complex Spaces of Order I and Spectral Triples

In this section we introduce the notion of CQH-complex space of order I, which
can be viewed as an abstraction of the essential representation theoretic prop-
erties of the space of holomorphic forms of complex projective space. Necessary
and sufficient conditions are then produced for a CQH-Hermitian space to give
a Dolbeault–Dirac pair of spectral triples, under the assumption that its un-
derlying CQH-complex space is of order I.
It is proposed in Conjecture 7.11 that the only irreducible quantum flag man-
ifolds of order I are the quantum projective spaces Oq(CPn−1). We formalise
its properties for three principal reasons. Firstly, the abstract picture helps to
clarify and elucidate the processes at work for quantum projective space. Sec-
ondly, it sets the stage for our subsequent investigation of the compact quantum
Hermitian spaces of weak Gelfand type, highlighting the subtle but significant
changes that occur when passing to this more general setting. Finally, it is
hoped that new examples will arise from non-Drinfeld–Jimbo quantisations of
Uq(g). In fact, it is important to note that the only essential feature of Uq(g)
used in this paper is the preservation under q-deformation of the highest weight
structure of the category of U(g)-modules.
Note that in this subsection we make heavy use of the quantum integer notation
as presented in Appendix B.1.

5.1 Positivity for Leibniz Constants

In this subsection we give sufficient conditions for real Leibniz constants to be
positive. As well as being an interesting observation in its own right, positivity
must hold for any CQH-Hermitian space satisfying σP (∆∂) → ∞, as we will
see in §5.4.

Lemma 5.1. Let H = (B,Ω(•,•), σ) be a self-conjugate CQH-Hermitian space
of Gelfand type, with constituent quantum homogeneous space B. For any
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z ∈ Bhw, and l ∈ N0,

∆∂(zl∂z) =
(
Az,∂z(l)λz + 1

)
(l + 1)λ−1

z
µzz

l, (10)

where µz is the ∆∂-eigenvalue of z, and as usual λz is the Leibniz constant of
z.

Proof. For µz the ∆∂-eigenvalue of z,

∂z ∧ ∂†∂z = ∂z ∧ (µzz) = µzλ
−1
z z∂z = λ−1

z z∂(µzz) = λ−1
z z∂∂

†
∂z.

Thus we see that Bz,∂z = λ−1
z . Equation (10) now follows from Theorem

4.20.

Proposition 5.2. Let H = (B,Ω(•,•), σ) be a connected self-conjugate CQH-
Hermitian space of Gelfand type. For any non-harmonic z ∈ Bhw, with real
Leibniz constant λz, it holds that

1. λz /∈ [−1, 0),

2. if Az,∂z 6= 0, then λz ∈ R>0.

Proof.

1. Assume that −1 < λz < 0. As l→∞, the sign of the scalar

(l + 1)λ−1
z

=
1− λ−(l+1)

z

1− λ−1
z

alternates, and its absolute value goes to infinity. Moreover, (l)λz is pos-
itive for all l ∈ N0, implying that Az,∂z(l)λz + 1 will eventually have a
constant sign. Thus there exist values of l for which the eigenvalue in
(10) is negative. However, this contradicts the fact that ∆∂ is a pos-
itive operator, forcing us to conclude that λz /∈ (−1, 0). Moreover, if
λz = −1, then [2]λz = 0, implying that z2 is harmonic, contradicting our
assumption that H is connected. Thus we must have that λz /∈ [−1, 0).

2. For λz < −1, assuming that Az,∂z 6= 0 allows one to produce a negative
eigenvalue for ∆∂ , just as above. Since this again contradicts the positiv-
ity of ∆∂ , we are forced to conclude that −1 < λz. Taken together with
the fact that λz /∈ [−1, 0), this means that λz ∈ R>0.

5.2 CQH-Complex Spaces of Order I

In this subsection we introduce the notion of a CQH-complex space of order I.
This collects the properties of Gelfand type and self-conjugacy together with
the existence of a ladder presentation, a particularly convenient form for the
decomposition of the exact anti-holomorphic forms into irreducibles. When
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reading the definition below, it is important to bear Proposition 4.19 in mind,
in particular the fact that ∂Ω(0,•) is closed under the action of the monoid Bhw.
The definition is an abstraction of the Uq(sln)-module structure of the anti-
holomorphic forms of complex projective form, and in particular of the K-types
appearing in the decomposition into irreducibles. (See §1 and [60] for a more
detailed discussion of Vogan’s minimal K-types.)

Definition 5.3. Let C =
(
B,Ω(•,•)) be a CQH-complex space. A ladder

presentation for C is a pair (z,Θ), where z ∈ Bhw, and Θ ⊆ ∂Ω
(0,•)
hw is a finite

subset of homogeneous forms (that is Θ = ∪kΘk, where Θk := Θ ∩ ∂Ω(0,k))
satisfying

∂Ω(0,k) '
⊕
ω∈Θk

⊕
l∈N0

Uq(g) zlω. (11)

A ladder presentation (z,Θ) is said to be real if the Lefschetz constant of z
is a real number, which is to say, if λz ∈ R. Moreover, (z,Θ) is said to be
positive if the Lefschetz constant of z is a positive real number, which is to say,
if λz ∈ R>0.

It is instructive to note that in the Hermitian case we have the following im-
plication of the existence of a ladder presentation.

Lemma 5.4. Let H = (B,Ω(•,•), σ) be a CQH-Hermitian space of Gelfand type.
If (z,Θ) is a ladder presentation of (B,Ω(•,•)), then

∂
†
Ω(0,k) '

⊕
ω∈Θk

⊕
l∈N0

Uq(g) zl∂
†
ω, for all k.

Proof. Operating by ∂
†

on the decomposition (11) associated to (z,Θ) gives

∂
†
∂Ω(0,k) '

⊕
ω∈Θk

⊕
l∈N0

Uq(g) ∂
†(
zlω
)
, for all k.

By Hodge decomposition

∂
†
∂ Ω(0,k) = ∂

†
∂
(
∂Ω(0,k−1) ⊕ ∂†Ω(0,k+1) ⊕H(0,k)

)
= ∂
†
∂
(
∂
†
Ω(0,k+1)

)
= ∂
†
Ω(0,k),

where in the last identity we have used the fact that ∂
†
∂ : ∂

†
Ω(0,•) → ∂

†
Ω(0,•)

is an isomorphism, as established in Proposition 3.3. Moreover, since H is

assumed to be of Gelfand type, and ∂
†
(zlω) and zl ∂

†
ω are clearly highest

weight elements of the same degree, it follows from Lemma 4.3 that they are
linearly proportional. Thus

∂
†
Ω(0,k) '

⊕
ω∈Θk

⊕
l∈N0

Uq(g) zl ∂
†
ω,

as claimed.
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Finally, we come to the definition of CQH-complex space of order I. As stated
above, this can be viewed as a noncommutative generalisation of projective
space. More explicitly, it can be viewed as a noncommutative generalisation
of the properties of CPn−1 considered as the homogeneous space SUn/Un−1 '
Un/(Un−1 × U1).

Definition 5.5. A CQH-complex space C is said to be of order I if it is

1. self-conjugate,

2. of Gelfand type,

3. admits a real ladder presentation.

Note that if C is of order I, properties 1 and 2 of the definition together imply
that every highest weight space contains an element of the form zlω, for some
l ∈ N0, and some ω ∈ Θ. The notion of an order II presentation, which
deals with CQH-spaces of weak Gelfand type, is discussed in §7 along with the
motivating quantum flag manifolds.

5.3 CQH-Hermitian Spaces of Order I and Solidity

In this subsection we introduce a crucial property, which we call solidity, for
those CQH-Hermitian spaces whose underlying CQH-complex spaces are of
order I. In the next subsection, it will be shown that solidity is equivalent to
the Laplace operator having eigenvalues tending to infinity.

Definition 5.6. Let H = (B,Ω(•,•), σ) be a CQH-Hermitian space.

1. We say that H is solid 0 if (B,Ω(•,•)) admits a real ladder presentation(
z,Θ

)
and satisfies

(a) λz = 1, (b) Az,ω 6= 0, or Bz,ω 6= 0. (12)

2. We say that H is solid+ if (B,Ω(•,•)) admits a real ladder presentation(
z,Θ

)
and satisfies

(a) 1 < λz, (b) Az,ω 6= 0, (c) Bz,ω 6= λz − 1. (13)

3. We say that H is solid− if (B,Ω(•,•)) admits a real ladder presentation(
z,Θ

)
and satisfies

(a) 0 < λz < 1, (b) Az,ω 6= λz − 1, (c) Bz,ω 6= 0. (14)

4. We say that H is solid if it is either solid 0, solid+, or solid−.

In practice it can be difficult to directly verify condition (b) in (12) and con-
ditions (b) and (c) in (13) and (14). The following two lemmas give more
convenient reformulations of condition (b) in (13) and condition (b) in (14).
As is easily confirmed, the proof extends to analogous reformulations of condi-
tion (c) in (13) and condition (c) in (14).
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Lemma 5.7. Let H be a CQH-Hermitian space of order I, and (z,Θ) a ladder
presentation of H. For any ω ∈ Θ, the following are equivalent:

1. Az,ω 6= 0,

2. ∂z ∧ ω is a non-primitive form.

Proof. From the defining formula of the Hodge map, and centrality of the
Hermitian form, for any ω ∈ Ω(0,k), we have

∂z ∧ ∗σ(ω) = (−1)
k(k+1)

2 i−k
1

(n− k)!
∂z ∧ Ln−k(ω)

= (−1)
k(k+1)

2 i−k
1

(n− k)!
∂z ∧ σn−k ∧ ω

= (−1)
k(k+1)

2 i−k
1

(n− k)!
σn−k ∧ ∂z ∧ ω

= (−1)
k(k+1)

2 i−k
1

(n− k)!
Ln−k

(
∂z ∧ ω).

Thus we see that ∂z ∧ ∗σ(ω) 6= 0 if and only if Ln−(k+1)+1
(
∂z ∧ ω) 6= 0, which

is to say, if and only if ∂z ∧ ω is a non-primitive form.

Lemma 5.8. Let H be a CQH-Hermitian space of order I, and (z,Θ) a real
ladder presentation of H. If Az,ω 6= 0, then for any ω ∈ Θ, the following are
equivalent:

1. Az,ω 6= λz − 1,

2. ω ∧ ∂z is a non-primitive form.

Proof. By Lemma 2.11, both ∗σ(ω)z and z (∂ ◦ ∗σ(ω)) are non-zero forms.
Since both forms have the same weight and degree, Lemma 3.13 and Lemma
4.3 imply the existence of scalars C,C ′ ∈ C such that

z ∗σ (ω) = C ∗σ (ω)z, (∂ ◦ ∗σ(ω)) z = C ′z (∂ ◦ ∗σ(ω)) . (15)

Combining these two identities with Lemma 4.17 we see that

∂z ∧ z ∗σ (ω) =C(∂z ∧ ∗σ(ω))z

=CAz,ωz(∂ ◦ ∗σ(ω))z

=CC ′Az,ωz
2(∂ ◦ ∗σ(ω)).

Moreover,

∂z ∧ z ∗σ (ω) = λzz(∂z ∧ ∗σ(ω)) = λzAz,ωz
2(∂ ◦ ∗σ(ω)).

Since Az,ω 6= 0 by assumption, comparing the two expressions for ∂z ∧ z ∗σ (ω)
gives us that

CC ′ = λz. (16)
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Returning now to (15), we apply ∂ to the first identity to obtain

∂z ∧ ∗σ(ω) + z(∂ ◦ ∗σ(ω)) = C
(
∂ ◦ ∗σω

)
z + (−1)|∗σ(ω)| C ∗σ (ω) ∧ ∂z.

Now by (15) and (16) it holds that C
(
∂ ◦∗σ(ω)

)
z = CC ′z(∂ ◦∗σ(ω)) = λzz(∂ ◦

∗σ(ω)). Hence

∂z ∧ ∗σ(ω) = (λz − 1) z(∂ ◦ ∗σ(ω)) + (−1)|∗σ(ω)| C∗σ (ω) ∧ ∂z.

Thus we see that ∗σ(ω)∧∂z = 0 if and only if ∂z∧∗σ(ω) = (λz−1)z(∂ ◦∗σ(ω)).
Following the same argument as given in Lemma 5.7 above, it can be shown that
the form ∗σ(ω)∧ ∂z is non-zero if and only if the form ω ∧ ∂z is non-primitive.
The claimed equivalence now follows.

5.4 Solidity and Dolbeault–Dirac Spectral Triples

In this subsection, we show that for a CQH-Hermitian space of order I, the
eigenvalues of its Laplacian tend to infinity if and only if it is solid. Combining
this equivalence with Proposition 2.17 we can give necessary and sufficient con-
ditions for a CQH-Hermitian space to give a Dolbeault–Dirac pair of spectral
triples. For the convenience of the reader we break the proof into two parts.

Lemma 5.9. The Laplacian of a CQH-Hermitian space H of order I has eigen-
values tending to infinity only if H has finite-dimensional anti-holomorphic
cohomologies and all ladder presentations are solid.

Proof. If the eigenvalues of ∆∂ tend to infinity then by definition no eigenvalue
can have infinite multiplicity, and in particular 0 cannot have infinite multi-
plicity. By Hodge decomposition this is equivalent to the complex structure
having finite-dimensional anti-holomorphic cohomologies, giving us one part of
the implication.
Next we show that λz ≥ 0. Since we have just shown that dimC

(
H(0,0)

)
<∞,

Proposition 4.22 implies that the calculus is connected. Thus Proposition 5.2
tells us that either λz > 0, or λz < −1 and Az,∂z = 0. In the latter case,
Lemma 5.1 implies that

∆∂

(
zl∂z

)
= (l + 1)λ−1

z
zl∂z.

Since (l−1)λ−1
z

converges as l→∞, in this case we cannot have that σP (∆∂)→
∞. Thus we are forced to conclude that λz is positive.
For a general ladder presentation (z,Θ), we now have three possibilities: 0 <
λz < 1, λz = 1, or 1 < λz.
1. Let us assume that λz = 1. If Az,ω and Bz,ω are both zero, for some ω ∈ Θ,
then it follows directly from Theorem 4.20 that µω is an eigenvalue of ∆∂ with
infinite-dimensional multiplicity. Thus if λz = 1, then (z,Θ) must be solid0.
2. Let us assume that 1 < λz, and show that if condition (b) or (c) of the
definition of solid+ does not hold for H, then σP (∆∂) has a limit point. We
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start with condition (b), which is to say, let us assume that Az,ω = 0, for some
ω ∈ Θ. It follows directly from Theorem 4.20 that, in this case,

∆∂(zlω) =
(
1 +Bz,ω(l)λ−1

z

)
zlω, for all l ∈ N0.

Looking now at the limit of this sequence of eigenvalues, we see that

lim
l→∞

(
1 +Bz,ω(l)λ−1

z

)
= 1 +Bz,ω lim

l→∞

(
(l)λ−1

z

)
= 1 +Bz,ω lim

l→∞

( 1− λ−lz
1− λ−1

z

)
= 1 +

Bz,ω

1− λ−1
z

.

Thus σP (∆∂) has a limit point in R.
Let us next assume that condition (c) of the definition of solid+ does not hold,
which is to say, let us assume that Bz,ω = λ−1

z − 1, for some ω ∈ Θ. The limit
of the eigenvalues of zlω, as l→∞, is given by

lim
l→∞

((
1 +Az,ω(l)λz

)(
1 +Bz,ω(l)λ−1

z

))
= lim
l→∞

[(
1 +Az,ω(l)λz

)(
1− (1− λ−1

z )
1− λ−lz
1− λ−1

z

)]
= lim

l→∞

[(
1 +Az,ω

1− λlz
1− λ−1

z

)
λ−lz

]
= lim

l→∞

(
λ−lz +Az,ω

λ−lz − 1

1− λ−1
z

)
=

Az,ω

λ−1
z − 1

.

Thus the point spectrum of ∆∂ again has a limit point in R.
Taking these two results together we see that if either of the requirements for a
solid+ fail to hold for (z,Θ), then the eigenvalues of ∆∂ do not tend to infinity.
Thus we are forced to conclude that (z,Θ) is solid+.
3. Finally, for the case of 0 < λz < 1, an argument analogous to that in 2
verifies that if σP

(
∆∂

)
→∞, then (z,Θ) must be solid−.

Theorem 5.10. Let H be a CQH-Hermitian structure of order I. Then the
following are equivalent:

1. σP (∆∂)→∞,

2. H is solid and has finite-dimensional anti-holomorphic cohomologies.

Proof. By Lemma 5.9 above, we need only show that 2 implies 1. Since the
complex structure is of order I by assumption, it is in particular of Gelfand
type. Thus by Lemma 3.9, the Laplacian ∆∂ : ∂Ω(0,k) → ∂Ω(0,k) acts on any
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irreducible Uq(g)-submodule V ⊆ ∂Ω(0,k) as a scalar multiple of the identity.
This scalar can be determined by letting ∆∂ act on any element of V . In
particular, it can be determined by letting ∆∂ act on a highest weight vector
of V . Since we are assuming that H admits a ladder presentation (z,Θ), every
highest weight space must contain an element of the form zlω, for some l ∈
N0, and some ω ∈ Θ. Thus, if the eigenvalues of zlw tend to infinity, for
each ω ∈ Θ, then we know that the eigenvalues of ∆∂ : ∂Ω(0,•) → ∂Ω(0,•)

tend to infinity, and have finite multiplicity. Since by assumption we have
finite-dimensional anti-holomorphic cohomologies, Corollary 3.6 says that this
is sufficient to imply that σP (∆∂)→∞.
Let us now break the rest of the proof into the three cases where (z,Θ) is either
solid0, solid+, or solid−.

1. We first assume that (z,Θ) is solid0, and recall for convenience the iden-
tity from Theorem 4.20 above:

∆∂

(
zlω
)

=
(
1 +Az,ω(l)λz

)(
1 +Bz,ω(l)λ−1

z

)
zlω.

Looking at the first factor, we see that since Az,ω 6= 0,

lim
l→∞

(1 +Az,ω(l)λz ) = 1 +Az,ω lim
l→∞

((l)λz ) =∞.

Similarly, the second factor tends to infinity, as l →∞. Thus the eigen-
values of zlω tend to infinity, with finite multiplicity, for all ω ∈ Θ.

2. Let us now assume that (z,Θ) is solid+. Just as in the solid0 case, the
first factor tends to infinity. Looking next at the limit of the second
factor, we see

lim
l→∞

(
1 +Bz,ω(l)λ−1

z

)
= 1 +Bz,ω lim

l→∞

(
1− λ−(l+1)

z

1− λ−1
z

)
= 1 +

Bz,ω

1− λ−1
z

.

Since we are assuming that Bz,ω 6= λ−1
z −1, we see that the second factor

does not approach zero. Combining these two observations, we see that
the eigenvalues of zlω go to infinity, with finite multiplicity, as l goes to
infinity, for all ω ∈ Θ.

3. An analogous argument proves that the existence of a solid− ladder pre-
sentation implies that the eigenvalues of zlω go to infinity, with finite
multiplicity, as l goes to infinity.

Combining the results of this section we arrive at the following theorem, which
will be used in the next section to construct spectral triples for Oq(CPn−1).

Theorem 5.11. Let H =
(
B,Ω(•,•), σ

)
be a CQH-Hermitian space of order I,

with constituent quantum homogeneous space B. Then a Dirac–Dolbeault pair
of spectral triples is given by(

B,L2
(
Ω(0,•)), D∂

)
,

(
B,L2

(
Ω(•,0)

)
, D∂

)
,

Documenta Mathematica 25 (2020) 1079–1157



1118 B. Das, R. O Buachalla, and P. Somberg

if and only if H is solid and has finite-dimensional anti-holomorphic cohomolo-
gies.

6 A Dolbeault–Dirac Spectral Triple for Quantum
Projective Space

We are now ready to apply the general framework developed in the previous
sections to our motivating example Oq(CPn−1) [15, 45]. We begin by recalling
the necessary basics about Oq(CPn−1) and its Heckenberger–Kolb calculus.
We then construct an order I presentation of the associated CQH-space. This
allows us to verify the compact resolvent condition by demonstrating solidity,
and hence produce a Dolbeault–Dirac pair of spectral triples for Oq(CPn−1)
with non-trivial K-homology class.

6.1 Quantum Projective Space as a Quantum Homogeneous Space

Consider the Hopf subalgebra Uq(ln−1) ⊆ Uq(sln) generated by the elements

Ki, Ej , Fj for i = 1, . . . , n− 1, and j = 1, . . . , n− 2.

Note that Uq(sln−1) canonically embeds into Uq(ln−1) as a subalgebra. For any
irreducible Uq(sln−1)-module Vµ, and any m ∈ Z, we see that there exists an
irreducible representation of Uq(ln−1) on Vµ, extending the action of Uq(sln−1),
uniquely determined by

Kn−1 . v = qmv, for v a highest weight vector in Vµ.

We denote this irreducible representation by Vµ(m), and call m the weight of
Kn−1. (See [34, §4.4] for a more detailed discussion of the representation theory
of Uq(ln−1).)
As standard, we use the superscript ◦ to denote the Hopf dual of a Hopf algebra.
Dual to the Hopf algebra embedding ι : Uq(ln−1) ↪→ Uq(sln), we have the Hopf
algebra map ι◦ : Uq(sln)◦ → Uq(ln−1)◦. By construction Oq(SUn) ⊆ Uq(sln)◦,
and so we can consider the restriction map

π := ι◦|Oq(SUn) : Oq(SUn)→ Uq(ln−1)◦,

as well as the Hopf subalgebra Oq(Un−1) := π
(
Oq(SUn)

)
. Quantum projective

space Oq(CPn−1) is the quantum homogeneous space associated to the surjec-
tive Hopf ∗-algebra map π : Oq(SUn) → Oq(Un−1), which is to say, it is the
space of coinvariants

Oq(CPn−1) = Oq(SUn)co(Oq(Un−1)).

A standard set of generators for Oq(CPn−1) is given by{
zij := uinS(unj ) | i, j = 1, . . . , n

}
.
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6.1.1 The Heckenberger–Kolb Calculus

We present the calculus in two steps, beginning with Heckenberger and Kolb’s
classification of first-order differential calculi over Oq(CPn−1), and then dis-
cussing the maximal prolongation of the direct sum of the two calculi identified.
First, we recall that a differential map between two differential calculi (Ω•,d)
and (Γ•, δ), is a degree 0 algebra map ϕ : Ω• → Γ• such that ϕ ◦ δ = δ ◦ ϕ.
Moreover, a first-order differential calculus is a differential calculus of total
degree 1. We say that a first-order differential calculus is irreducible if Ω1 is
irreducible as a bimodule over Ω0.

Theorem 6.1. [20, Theorem 7.2] There exist exactly two non-isomorphic ir-
reducible, left-covariant, finite-dimensional, first-order differential calculi over
Oq(CPn−1).

We denote these two calculi by Ω(1,0) and Ω(0,1). Moreover, we denote their
direct sum by Ω1 := Ω(1,0)⊕Ω(0,1) and call it the Heckenberger–Kolb first-order
differential calculus of Oq(CPn−1). For a proof of the following lemma see [48,
Lemma 5.2].

Lemma 6.2. Bases of Φ(Ω(1,0)) and Φ(Ω(0,1)) are given respectively by{
e+
a := [∂zan] | a = 1, . . . , n− 1

}
,

{
e−a := [∂zna] | i = 1, . . . , n− 1

}
.

Moreover, it holds that

[∂znn] = [∂znn] = [∂zab] = [∂zab] = 0, for all a, b = 1, . . . , n− 1.

We now present the action of the generators of Uq(ln−1) on the basis elements
of V (0,k). The proof is a direct calculation in terms of the dual pairing (31)
and the definition of the action (27).

Lemma 6.3. The only non-zero actions of the generators of Uq(ln−1) on the
basis elements of V (0,1) are given by

Ek . e
−
k = q2e−k+1, Kk . e

−
a = q−δk,n−1−δka+δk,a−1e−a , Fk . e

−
k+1 = q−2e−k .

Proof. The first identity is established by the calculation

Ek . e
−
a = Ek . [∂zna] = [∂(Ek . zna)] = q2δka[∂zn,k+1] = q2δkae

−
k+1.

The other two identities are established similarly.

We say that a differential calculus over an algebraA, of total degree greater than
or equal to 2, extends a first-order calculus if there exists a differential injection,
which is to say, an injective differential map, from the first-order calculus to
the differential calculus. Any first-order calculus admits an extension (Ω•,d)
which is maximal in the sense that, for any other extension (Γ•, δ), there exists
a unique surjective differential map ϕ : Ω• → Γ•. We call this extension, which
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is necessarily unique up to differential isomorphism, the maximal prolongation
of the first-order calculus. The maximal prolongation of a covariant calculus is
again covariant. (See [49, §2.5] for a more detailed discussion in the notation
of this paper.)
We denote the maximal prolongation of the Heckenberger–Kolb first-order cal-
culus by Ω•, and call it the Heckenberger–Kolb differential calculus. Note that
since Ω• is covariant, it is a monoid object in

Oq(SUn)

Oq(CPn−1)
Mod0. Consequently,

since Takeuchi’s equivalence is a monoidal equivalence, Φ
(
Ω•
)

is a monoid ob-
ject in Oq(Un−1)Mod. We denote the multiplication in Φ(Ω•) by ∧. We call a
subset I ⊆ {1, . . . , n− 1} ordered if i1 < · · · < ik. For any two ordered subsets
I, J ⊆ {1, . . . , n− 1}, we denote

e+
I ∧ e

−
J := e+

i1
∧ · · · ∧ e+

ik
∧ e−j1 ∧ · · · ∧ e

−
jl
,

where J = {j1, . . . , jl}. We now collect some basic facts about Φ(Ω•) as an
algebra. Theorem 6.4.1 was established in [20, §3.3]. For a proof of Theorem
6.4.2 and Theorem 6.4.3 see [49, Proposition 5.8].

Theorem 6.4. For Ω• the Heckenberger–Kolb calculus of Oq(CPn−1):

1. Φ(Ωk) has dimension
(

2n−2
k

)
,

2. a basis of Φ(Ωk) is given by those elements e+
I ∧e

−
J such that |I|+ |J | = k,

3. a full set of relations for Φ
(
Ω(0,•)) is given by

e−j ∧ e
−
i + q−1e−i ∧ e

−
j , e−i ∧ e

−
i ,

for i, j = 1, . . . , n− 1, with i < j.

We now use the given basis of Φ
(
Ω•
)

to define a complex structure for the

calculus. Denote by V (a,b) the subspace of Φ
(
Ω•
)

spanned by those basis

elements of the form e+
I ∧ e

−
J for which |I| = a, |J | = b. We see immediately

that

dimC
(
V (a,b)

)
=

(
n− 1

a

)(
n− 1

b

)
,

and that

Φ
(
Ωk
)
'
⊕
a+b=k

V (a,b), for all k.

The following proposition is implied by the presentation of [21, §3.3.4]. (Alter-
natively, see [49, §6, §7] for a direct proof in the notation of this paper.)

Theorem 6.5. For Ω• the Heckenberger–Kolb calculus over Oq(CPn−1), there
is a unique covariant complex structure Ω(•,•) on Ω• such that

Φ(Ω(a,b)) = V (a,b).
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As shown in [50, Lemma 4.17] there exists a left Oq(SUn)-coinvariant form
κ ∈ Ω(1,1) uniquely defined by

[κ] = i

n−1∑
a=1

e−a ∧ e+
a = i

n−1∑
a=1

(Ka
a . e

+
a ) ∧ (K−aa . e−a ). (17)

This (1, 1)-form is a direct q-deformation of the fundamental form of the classi-
cal Fubini–Study Kähler metric on complex projective space. As the following
theorem shows, much of the associated Kähler geometry survives intact under
q-deformation, see [50, §4.5] for details.

Theorem 6.6. Let Ω• be the Heckenberger–Kolb calculus of quantum projective
space Oq(CPn−1).

1. The pair
(
Ω(•,•), κ

)
is a covariant Hermitian structure for Ω•.

2. Up to real scalar multiple of κ, it is the unique covariant Hermitian struc-
ture for the calculus Ω•.

3. The pair
(
Ω(•,•), κ

)
is a Kähler structure for Ω•.

4. There exists an open interval I ⊆ R, containing 1, such that the associated
metric gκ is positive definite, for all q ∈ I.

Thus we see that, for every q ∈ I, quantum projective space Oq(CPn−1), en-
dowed with the Heckenberger–Kolb calculus, is a CQH-Kähler space with an
associated pair of Dolbeault–Dirac BC-triples.
We finish with some results on the anti-holomorphic cohomology of the
Heckenberger–Kolb
calculus of Oq(CPn−1). Taken together, these two results determine the
anti-holomorphic Euler characteristic of the calculus.

Theorem 6.7 ([26] Corollary 4.2). The Heckenberger–Kolb calculus Ω•q(CPn−1)
is connected, which is to say H0 = C1.

Theorem 6.8 ([11] Proposition 7.2). For the unique covariant complex struc-
ture Ω(•,•) of the Heckenberger–Kolb calculus Ω•q(CPn−1), it holds that

H(0,k) = 0, for all k = 1, . . . , n− 1.

Corollary 6.9. The anti-holomorphic Euler characteristic of Ω(•,•) is given
by

χ∂
(
Ω•
)

=

n−1∑
i=0

(−1)i dimC
(
H(0,i)

)
= dimC

(
H(0,0)

)
= 1.

In Corollary 6.17 below, it is observed that the vanishing of higher cohomolo-
gies can alternatively be concluded from our given ladder presentation of the
complex structure of Ω•q(CPn−1).
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Remark 6.10. Most of the results of this subsection have been extended to
the more general setting of the quantum Grassmannians (see §7 for a defini-
tion of quantum Grassmannnians). The existence of a noncommutative Kähler
structure was established in [34, 41]. Connectedness of the calculus was ex-
tended to the case of the quantum Grassmannians in [51]. The vanishing of
higher cohomologies for the quantum Grassmannians was established in [52]
using a noncommutative generalisation of the Kodaira vanishing theorem, for-
mulated within the framework of noncommutative Kähler and Fano structures.
Thus the anti-holomorphic Euler characteristic of the quantum Grassmannian
is again 1.

6.2 An Order I Presentation of the CQH-Complex Space

In this subsection we introduce a distinguished family of highest weight forms
νk ∈ ∂Ω(0,k), for k = 1, . . . , n−2, and use them to produce a ladder presentation
(recall Definition 5.3) of the complex structure in Theorem 6.15. From this we
then conclude in Corollary 6.16 that Oq(CPn−1) is an order I CQH-complex
space. We begin by identifying a highest weight element of Oq(CPn−1), and
then calculate its associated Leibniz constants.

Lemma 6.11. The element z1n is a highest weight vector of Oq(CPn−1)hw, with
weight

wt(z1n) = $1 +$n−1.

Moreover, it holds that(
∂z1n

)
z1n = q2z1n∂z1n,

(
∂z1n

)
z1n = q−2z1n∂z1n. (18)

Proof. The fact that z1n ∈ Oq(CPn−1)hw, with the given weight, is a direct
consequence of the definition of the action . and the dual pairing, as presented
in Appendix B.4 and Appendix B.5. To establish (18) we use the unit U :
Ω(1,0) ' Oq(SUn)�Oq(Un−1)Φ

(
Ω(1,0)

)
of Takeuchi’s equivalence. Note first

that

U
((
∂z1n

)
z1n

)
= U

(
∂z1n

)
z1n

= projΩ(1,0)

(( n∑
a,b=1

u1
aS(ubn)�Oq(Un−1)[∂zab]

)
z1n

)

=

n−1∑
a=1

u1
aS(unn)z1n�Oq(Un−1)[∂zan].

From the defining relations of Oq(SUn) given in Appendix B.5, it is easy to
conclude the identity

u1
aS(unn)z1n = q2 z1nu

1
aS(unn), for all a 6= n. (19)

Documenta Mathematica 25 (2020) 1079–1157



A Dolbeault–Dirac Spectral Triple for Oq(CPn−1) 1123

Hence, as claimed,

U
((
∂z1n

)
z1n

)
= q2z1n

n−1∑
a=1

u1
aS(unn)�Oq(Un−1)[∂zan] = q2 U

(
z1n∂z1n

)
.

The second identity comes from Lemma 4.16 and the fact that Oq(CPn−1) is
self-conjugate, as established in Corollary C.6. Alternatively, it can be calcu-
lated directly just as for the first identity.

In the q-deformed setting it is no longer guaranteed that ω ∧ ω = 0, for all
forms ω. However, as the following lemma shows, this identity does hold true
for forms of type ∂z1j .

Corollary 6.12. It holds that

1. ∂z1j ∧ ∂z1,j−1 = −q−1∂z1,j−1 ∧ ∂z1j, for all j = 3, . . . , n,

2. ∂z1j ∧ ∂z1j = 0, for all j = 2, . . . , n.

Proof. By Corollary 4.13

0 = ∂
2(
z2

1n

)
= (2)q−2∂

(
z1n∂z1n

)
= (2)q−2∂z1n ∧ ∂z1n.

Assuming now that ∂z1j ∧ ∂z1j = 0, for some j ≥ 3, we see that

0 =Fj−1 .
(
∂z1j ∧ ∂z1j

)
= ∂z1j ∧

(
Fj−1 . ∂z1j) +

(
Fj−1 . ∂z1j

)
∧
(
K−1
j−1 . ∂z1j

)
= ∂z1j ∧ ∂(Fj−1 . z1j) + ∂(Fj−1 . z1j) ∧ ∂(K−1

j−1 . z1j)

= q−2∂z1j ∧ ∂z1,j−1 + q−3∂z1,j−1 ∧ ∂z1j .

Thus whenever ∂z1j ∧ ∂z1j = 0, we necessarily have that

∂z1j ∧ ∂z1,j−1 = −q−1∂z1,j−1 ∧ ∂z1j .

Assume next that

∂z1j ∧ ∂z1,j−1 = −q−1 ∂z1,j−1 ∧ ∂z1j . (20)

Operating by Fj−1 gives us that

0 =Fj−1 .
(
∂z1j ∧ ∂z1,j−1 + q−1 ∂z1,j−1 ∧ ∂z1j

)
= q−1 ∂z1,j−1 ∧ ∂z1,j−1 + q−3 ∂z1,j−1 ∧ ∂z1,j−1

= (q−1 + q−3) ∂z1,j−1 ∧ ∂z1,j−1.

Thus we see that whenever (20) holds, we necessarily have that ∂z1,j−1 ∧
∂z1,j−1 = 0. The corollary now follows by an inductive argument.
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Lemma 6.13. For k = 0, . . . , n− 2, a highest weight vector is given by

νk =

k∑
l=0

(−q)lz1,n−l∂z1n ∧ · · · ∧ ∂̂z1,n−l ∧ · · · ∧ ∂z1,n−k ∈ Ω(0,k), (21)

where ∂̂z1,n−l denotes that the factor ∂z1,n−l has been omitted. Moreover, it
holds that

wt(νk) = (k + 1)$1 +$n−k−1.

Proof. Since it is clear that νk is a weight vector, we need only show that
Ei . νk = 0, for all i = 1, . . . , n − 1. Note first that, for 1 ≤ i ≤ n − k − 1, we
must have Ei . νk = 0. Next, for any i = n− k, . . . , n− 1, Lemma 6.3 and (28)
imply that

Ei .

(
n−i−2∑
l=0

(−q)lz1,n−l∂z1n ∧ · · · ∧ ∂̂z1,n−l ∧ · · · ∧ ∂z1,n−k

)
is equal to the following sum

n−i−2∑
l=0

(−q)lz1,n−l∂z1n ∧ · · · ∧ ∂̂z1,n−l ∧ · · ·

· · · ∧ ∂ (Ki . z1,i+1) ∧ ∂
(
Ei . z1i

)
∧ · · · ∧ ∂z1,n−k.

Lemma 6.3 implies that this sum is equal to

q3
n−i−2∑
l=0

(−q)lz1,n−l∂z1n ∧ · · · ∧ ∂̂z1,n−l ∧ · · ·

· · · ∧ ∂z1,i+1 ∧ ∂z1,i+1 ∧ · · · ∧ ∂z1,n−k,

which by Corollary 6.12 is equal to zero. Similarly, it holds that

Ei .

(
k∑

l=n−i+1

(−q)lz1,n−l∂z1,n ∧ · · · ∧ ∂̂z1,n−l ∧ · · · ∧ ∂z1,n−k

)
= 0.

Hence we see that

Ei . νk =Ei .
(

(−q)n−i−1z1,i+1∂z1n ∧ · · · ∧ ∂̂z1,i+1 ∧ · · · ∧ ∂z1,n−k

+ (−q)n−iz1i∂z1n ∧ · · · ∧ ∂̂z1i ∧ · · · ∧ ∂z1,n−k

)
= (−1)n−i−1qn−i+2z1,i+1∂z1,n ∧ · · · ∧ ∂̂z1i ∧ · · · ∧ ∂z1,n−k

+ (−1)n−iqn−i+2z1,i+1∂z1,n ∧ · · · ∧ ∂̂z1i ∧ · · · ∧ ∂z1,n−k
)

= 0.

Documenta Mathematica 25 (2020) 1079–1157



A Dolbeault–Dirac Spectral Triple for Oq(CPn−1) 1125

Thus Ei . νk = 0, for all i = 1, . . . , n − 1. Finally, as a direct examination
confirms, νk is a weight vector of weight (k + 1)$1 + $n−k−1, and so, νk is a
highest weight vector as claimed.

Corollary 6.14. For the form ∂νk ∈ ∂Ω
(0,k)
hw , it holds that:

1. ∂νk = (k + 1)q2∂z1n ∧ · · · ∧ ∂z1,n−k,

2. ∂νk 6= 0,

3. νk ∈ ∂
†
Ω(0,k+1), for k = 0, . . . , n− 1.

Proof.

1. By the commutation relations of Corollary 6.12, we see that

∂νk =

k∑
l=0

(−q)l∂z1,n−l ∧ ∂z1n ∧ · · · ∧ ∂̂z1,n−l ∧ · · · ∧ ∂z1,n−k

=

k∑
l=0

q2l ∂z1n ∧ · · · ∧ ∂z1,n−k

= (k + 1)q2 ∂z1n ∧ · · · ∧ ∂z1,n−k.

2. If the coset of ∂νk in Φ (Ω•) were non-zero, then it is clear that ∂νk would
have to be non-zero. Unfortunately, by Lemma 6.2 we have that

[∂νk] = (k + 1)q2 [∂z1n] ∧ · · · ∧ [∂z1,n−k] = 0.

On the other hand, the coset of ∂zn1∧· · ·∧∂zn,n−k in Φ (Ω•) is non-zero,
as we see from[

∂zn1 ∧ · · · ∧ ∂zn,n−k
]

=
[
∂zn1

]
∧ · · · ∧

[
∂zn,n−k

]
= e−1 ∧ · · · ∧ e

−
k+1.

Hence ∂zn1 ∧ · · · ∧ ∂zn,n−k 6= 0. Now, as a direct calculation confirms,
there exists a non-zero γ ∈ R, such that(

F k+2
n−1 · · ·F

k+2
n−k−1F

k+1
n−k−2 · · ·F

k+1
1

)
. ∂νk = γ ∂zn1 ∧ · · · ∧ ∂zn,n−k.

Thus ∂z1n ∧ · · · ∧ ∂z1,n−k must be non-zero as claimed.

3. Since νk is a highest weight vector, and Hodge decomposition is a decom-
position of left Uq(sln)-modules, the fact that the complex structure is of
Gelfand type implies that νk is either ∂-exact, ∂-coexact, or harmonic.
Since we have just shown that ∂νk 6= 0, we must have that νk is ∂-coexact
as claimed.

With these results in hand we are now ready to establish the main result of
this subsection, an order I presentation of C =

(
Oq(CPn−1),Ω•, ∗σ,Ω(•,•)).
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Theorem 6.15. Denoting Θ := {∂νk | k = 0, . . . , n − 2}, the pair (z1n,Θ) is
a real ladder presentation for C =

(
Oq(CPn−1),Ω•, ∗σ,Ω(•,•)). Moreover, it

holds that

H(0,0) = C1, H(0,m) = 0, for m = 1, . . . , n− 1. (22)

Proof. Example 4.6, together with Lemma 6.11 and Lemma 6.13, imply that
zl1nνk and zl1n∂νk are highest weight vectors, for all l ∈ N0, and k = 0, . . . , n−1.
Moreover, it follows from Lemma 6.11 and Lemma 6.13 that

wt
(
zl1nνk

)
= wt

(
zl1n∂νk

)
= (l + k + 1)$1 +$n−k−1 + l$n−1.

Comparing this with the list of highest weights appearing in the decomposition
of Ω(0,k) in Lemma C.5, and recalling that Ω(0,k) is multiplicity-free, we see
that every non-trivial highest weight space of Ω(0,k) contains an element of the
form zl1n∂νk−1, or zl1nνk, for some l ∈ N0. Hence

Ω(0,0) =C1⊕
⊕
l∈N0

Uq(sln)(zl+1
1n ),

Ω(0,k) =
⊕
l∈N0

Uq(sln)(zl1n∂νk−1)⊕
⊕
l∈N0

Uq(sln)(zl1nνk).

Proposition 4.19 tells us that ∂Ω
(0,k−1)
hw and ∂

†
Ω

(0,k+1)
hw are closed under the

action of the monoid Oq(CPn−1)hw. Thus zl1n∂νk−1 ∈ ∂Ω(0,k−1) and zl1nνk ∈
∂
†
Ω(0,k+1). As a direct consequence⊕

l∈N0

Uq(g)(zl1n∂νk−1) = ∂Ω(0,k−1),
⊕
l∈N0

Uq(g)(zl1nνk) = ∂
†
Ω(0,k+1).

Thus we see that the anti-holomorphic harmonic forms are exactly as claimed in
(22). Finally, we see that (z1n,Θ) is a ladder presentation of the calculus, which
since the Leibniz constants of z1n are q2 and q−2, is a real ladder presentation.

Combining this result with Lemma C.5 and Corollary C.6 now gives us the
following corollary.

Corollary 6.16. The CQH-complex space Oq(CPn−1) is order I.

We finish by observing that Proposition 6.8 can be concluded directly from
Theorem 6.15. Explicitly, since the space of harmonic forms H(0,k) is trivial,
for all k > 0, the bijection between harmonic forms and cohomology classes
presented in Corollary 2.14 gives us the following result.

Corollary 6.17. For all k > 0, the anti-holomorphic cohomology groups
H(0,k) are trivial.
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6.3 A Dolbeault–Dirac Pair of Spectral Triples for Quantum
Projective Space

In this subsection we verify solidity for the unique covariant Kähler structure
of Oq(CPn−1). We then conclude that the Kähler structure gives a Dolbeault–
Dirac pair of spectral triples.

Lemma 6.18. It holds that

1. Az,∂νk 6= 0, 2. Az,∂νk 6= q2 − 1, for all k = 0, . . . , n− 2.

Proof.

1. By Lemma 5.7, non-vanishing of Az,∂νk is equivalent to ∂zn1 ∧ ∂νk being
a non-primitive form. As usual, we would like to demonstrate this by
considering the coset of ∂zn1 ∧ ∂νk in Φ (Ω•). Unfortunately, this coset
is trivial. On the other hand, since the Lefschetz map L is a left Uq(sln)-
module map, ∂z1n ∧ ∂νk is primitive if and only if X .

(
∂z1n ∧ ∂νk

)
is

primitive, for any X ∈ Uq(sln). If we now fix

X := F k+2
n−1 · · ·F

k+2
1 ,

a routine calculation confirms that[
X .

(
∂z1n ∧ ∂νk

)]
= γ e+

n−k−1 ∧ e
−
n−1 ∧ · · · ∧ e

−
n−k−1,

for a certain non-zero scalar γ ∈ R. Note next that[
L(n−1)−(k+2)+1

(
X .

(
∂z1n ∧ ∂νk

))]
is given explicitly by

γ[κn−k−2] ∧ e+
n−k−1 ∧ e

−
n−1 ∧ · · · ∧ e

−
n−k−1. (23)

It was shown in [50, Lemma 4.18] that [κ]n−k−2 is a non-zero scalar
multiple of ∑

I∈O(n−k−2)

e+
I ∧ e

−
I ,

where summation is over all ordered subsets of cardinality n−k−2. This
implies that (23) is equal to a non-zero scalar multiple of

e+
1 ∧ · · · ∧ e

+
n−k−1 ∧ e

−
1 ∧ · · · ∧ e

−
n−1.

Thus we see that X .
(
∂z1n ∧ ∂νk

)
is non-primitive, implying that ∂z1n∧

∂νk is non-primitive. It now follows from Lemma 5.7 that Az,∂νk 6= 0 as
claimed.
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2. Using an analogous argument to the one above, it can be confirmed that
∂νk∧∂z1n is non-primitive. Lemma 5.8 then implies that Az,∂νk 6= q2−1
as claimed.

Lemma 6.19. It holds that

B
z, ∂νk

= q2(k + 1)−1
q2 , for all k = 0, . . . , n− 2.

Proof. Following the same argument as Lemma 6.11, one can establish the
identity

∂z1nz1j = q−1z1j∂z1n, for all j = 2, . . . , n− 1.

It now follows from Corollary 6.12 that

∂z1n ∧ νk =

k∑
l=0

(−q)l ∂z1n ∧ z1,n−l ∂z1n ∧ · · · ∧ ∂̂z1,n−l ∧ · · · ∧ ∂z1,n−k

= q2 z1n∂z1n ∧ ∂z1,n−1 ∧ · · · ∧ ∂z1,n−k

+ q−1
k∑
l=1

(−q)l z1,n−l ∧ ∂z1n ∧ ∂z1n ∧ · · · ∧ ∂̂z1,n−l ∧· · ·∧ ∂z1,n−k

= q2(k + 1)−1
q2 z1n∂νk.

Denoting by µνk the ∆∂-eigenvalue of νk,

∂z1n ∧ ∂
†
∂νk =µνk∂z1n ∧ νk

= q2(k + 1)−1
q2 µνkz1n∂νk

= q2(k + 1)−1
q2 z1n∂ ∂

†
(∂νk),

giving us the claimed value of Bz,∂νk .

Corollary 6.20. The CQH-Hermitian space
(
Oq(CPn−1),Ω•, ∗σ,Ω(•,•), σ

)
is

solid, for all q ∈ R\{−1, 0}.

The following theorem and corollary, the main results of this section, and indeed
two of the principal results of the paper, now follow directly from Theorem
5.11, and the fact that Ω(•,•) is connected and has vanishing higher-order anti-
holomorphic cohomologies (as shown in Lemma 6.17).

Theorem 6.21. A Dolbeault–Dirac pair of spectral triples is given by(
Oq(CPn−1), L2

(
Ω(•,0)

)
, D∂

)
,

(
Oq(CPn−1), L2

(
Ω(0,•)), D∂

)
.

Corollary 6.22. The operators D∂ and D∂ both have non-trivial associated
K-homology classes. In particular,

Index(b(D∂)) = Index(b(D∂)) = 1.
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Remark 6.23. An important question to ask is whether or not the two spectral
triples presented in Theorem 6.21 are unitarily equivalent, or at least have
the same K-homology class. Note that since the ∗-map is neither an algebra
map, nor a bounded operator (see [47, §1.7] for details), it cannot be used to
implement such an equivalence.

7 Irreducible Quantum Flag Manifolds

In the classical setting, complex projective space is a very special example of
a flag manifold. This picture extends directly to the quantum group setting,
where Oq(CPn−1) is a very special type of quantum flag manifold Oq(G/LS)
[15]. Moreover, for the irreducible quantum flag manifolds the Heckenberger–
Kolb classification of differential calculi presented above for Oq(CPn−1) extends
directly, as does the existence of a unique covariant Kähler structure. In this
section we carefully recall this material, and introduce a natural weakening of
the definition of Gelfand type, which we term weak Gelfand type. We classify
those non-exceptional irreducible quantum flag manifolds satisfying this new
condition, and discuss in detail the extension of the order I framework to this
more general setting.

7.1 The Quantum Homogeneous Spaces

Let g be a complex simple Lie algebra of rank r and Uq(g) the corresponding
Drinfeld–Jimbo quantised enveloping algebra. For S a subset of simple roots,
consider the Hopf ∗-subalgebra

Uq(lS) :=
〈
Ki, Ej , Fj | i = 1, . . . , r; j ∈ S

〉
.

From the Hopf ∗-algebra embedding ι : Uq(lS) ↪→ Uq(g), we get the dual Hopf
∗-algebra map ι◦ : Uq(g)◦ → Uq(lS)◦. By construction Oq(G) ⊆ Uq(g)◦, so we
can consider the restriction map

πS := ι◦|Oq(G) : Oq(G)→ Uq(lS)◦,

and the Hopf ∗-subalgebra Oq(LS) := πS
(
Oq(G)

)
⊆ Uq(lS)◦. We call the

CMQGA-homogeneous space associated to πS : Oq(G)→ Oq(LS) the quantum
flag manifold corresponding to S, and denote it by

Oq
(
G/LS

)
:= Oq

(
G)co(Oq(LS)).

We see that the definition of Oq(CPn), as given in the previous section, corre-
sponds to the special case of S = {α1, . . . , αn−2} ⊆ Π(sln).
If S = {1, . . . , r}\{αi}, where αi has coefficient 1 in the highest root of g,
then we say that the associated quantum flag manifold is of irreducible. In
the classical limit of q = 1, these homogeneous spaces reduce to the family of
irreducible flag manifolds, or equivalently the compact Hermitian symmetric
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spaces [1]. These algebras are also referred to as the cominiscule quantum
flag manifolds, again reflecting terminology in the classical setting. Presented
below is a useful diagrammatic presentation of the set of simple roots defining
the irreducible quantum flag manifolds, along with the names of the various
series. See [1] for a more detailed discussion.

An Oq(Grr,s) quantum
Grassmanian

Bn Oq(Q2n+1) odd quantum
quadric

Cn Oq(Ln) quantum
Lagrangian

Grassmannian

Dn Oq(Q2n) even quantum
quadric

Dn Oq(Sn) quantum
spinor variety

E6 Oq(OP2) quantum
Cayley plane

E7 Oq(F) quantum
Freudenthal

variety

7.2 The Heckenberger–Kolb Calculi and their Kähler Struc-
tures

We now recall the extension of Theorem 6.1, the Heckenberger–Kolb classifi-
cation of first-order differential calculi over Oq(CPn−1), to the setting of irre-
ducible quantum flag manifolds.

We call the maximal prolongation of the direct sum of these two calculi the
Heckenberger–Kolb calculus of Oq(G/LS), and denote it by Ω•q(G/LS). It was
shown in [21] that Ω•(G/LS) has classical dimension, and admits a left Oq(G)-
covariant N2

0-grading Ω(•,•) satisfying conditions 1 and 3 of the definition of a
complex structure. It was later shown in [41] that the ∗-algebra structure of
Oq(G/LS) extends to the structure of a differential ∗-calculus on Ω•q(G/LS), for
each irreducible quantum flag manifolds. Moreover, it was shown that the N2

0-
grading Ω(•,•) is a covariant complex structure with respect to this ∗-structure.
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Finally, we note that since Ω(1,0) and Ω(0,1) are non-isomorphic as objects in
Oq(G)

Oq(G/LS)Mod0, this is the unique covariant complex structure for Ω•q(G/LS).

Theorem 7.1. [20, Theorem 7.2] For S a subset of simple roots of irreducible
type, there exist exactly two non-isomorphic, irreducible, left-covariant, finite-
dimensional, first-order differential calculi of finite dimension over Oq(G/LS).

It was observed in [50, §4.5] that, for each Ω•q(G/LS), the space of (1, 1)-forms
contains a left-coinvariant real form κ which is unique up to real scalar multiple.
Moreover, by extending the argument of [50, §4.5] for the case of Oq(CPn−1),
the form κ is easily seen to be a closed central element of Ω•. We now recall a
conjecture originally proposed in [50, §4.5].

Conjecture 7.2. For every irreducible quantum flag manifold Oq(G/LS), a
covariant Kähler structure for the Heckenberger–Kolb calculus of Oq(G/LS) is
given by the pair (Ω(•,•), κ).

The conjecture was motivated by the Kähler structure of Oq(CPn−1), as pre-
sented in §6.6, and as originally considered in [50]. Subsequently, for all but
a finite number of values of q, the conjecture was verified for every irreducible
quantum flag manifold by Matassa.

Theorem 7.3 ([41] Theorem 5.10). Let Ω•q(G/LS) be the Heckenberger–
Kolb calculus of the irreducible quantum flag manifold Oq(G/LS). The pair
(Ω(•,•), κ) is a covariant Kähler structure for all q ∈ R>0 \ F , where F is a
finite, possibly empty, subset of R>0. Moreover, any element of F is necessarily
non-transcendental.

Building on this result, a positive definiteness result for the metric was estab-
lished in [12, Lemma 10.10], allowing us to conclude that we have a CQH-
Hermitian space, and hence a BC-triple.

Corollary 7.4. For each irreducible quantum flag manifold Oq(G/LS), there
exists an open interval I ⊆ R around 1, such that the associated metric
gκ is positive definite, for all q ∈ I. Hence, Oq(G/LS), endowed with its
Heckenberger–Kolb calculus, is a CQH-Hermitian space, for all q ∈ I, with
an associated pair of Dolbeault–Dirac BC-triples.

7.3 Irreducible Quantum Flag Manifolds of Weak Gelfand Type

As is shown below, the only irreducible quantum flag manifold of Gelfand type
is Oq(CPn−1). However, the notion admits a natural generalisation, retaining
many of the features of Gelfand type CQH-complex spaces, as we now present.

Definition 7.5. We say that a CQH-complex space C =
(
B,Ω(•,•)) is of weak

Gelfand type if ∂Ω(0,•) is a graded multiplicity-free left A-comodule. We say
that a CQH-Hermitian space is of weak Gelfand type if its constituent CQH-
complex space is of weak Gelfand type.
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Note first that all the results of §3.1 and §4.1 hold since neither make any as-
sumptions about multiplicities. Moreover, the proof of Lemma 3.11 generalises
directly to the weak Gelfand setting giving us the following lemma.

Lemma 7.6. For a CQH-Hermitian space of weak Gelfand type, the Laplacian

∆∂ acts on every irreducible left A-sub-comodule of ∂Ω(0,•) and ∂
†
Ω(0,•) as a

scalar multiple of the identity.

Just as in the Gelfand setting, we can use the various symmetries of the Dol-
beault double complex to find a number of equivalent formulations of weak
Gelfand type. We omit the proof, which is a straightforward generalisation of
the proof in the Gelfand case.

Lemma 7.7. Let C =
(
B,Ω(•,•)) be a quantum homogeneous complex space,

then the following conditions are equivalent:

1. C is of weak Gelfand type,

2. Cop, the opposite CQH-complex space, is of weak Gelfand type,

3. the graded left A-comodule ∂Ω(•,0) is graded multiplicity-free.

For the case of a quantum homogeneous Hermitian space, the definition of weak
Gelfand type admits an additional number of equivalent formulations. We omit
the proof of the following lemma, which is an easy consequence of Lemma 2.15,
Lemma 3.3, and Lemma 7.7 above.

Lemma 7.8. For H =
(
B,Ω(•,•), σ

)
a CQH-Hermitian space, the following are

equivalent:

1. H is of Gelfand type,

2. the graded left A-comodule ∂
†
Ω(0,•) is graded multiplicity-free,

3. the graded left A-comodule ∂†Ω(•,0) is graded multiplicity-free,

4. the graded left A-comodule ∂Ω(•,n) is graded multiplicity-free,

5. the graded left A-comodule ∂†Ω(•,n) is graded multiplicity-free,

6. the graded left A-comodule ∂Ω(n,•) is graded multiplicity-free,

7. the graded left A-comodule ∂
†
Ω(n,•) is graded multiplicity-free.

Finally, we note that this lemma implies that the assumptions of Lemma 4.22
hold in the weak Gelfand setting. Hence we again have an equivalence between
connectivity and finite-dimensionality of H0.

We would now like to identify those irreducible quantum flag manifolds which
are of weak Gelfand type. As observed by Stokman and Dijkhuizen [15], the
preservation under q-deformation of the Weyl character formula implies that,
for any subset S of simple roots, the branching rules for the inclusion Uq(lS) ↪→
Uq(g) are the same as in the classical case:
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Proposition 7.9 ([15] Proposition 4.2). Let µ ∈ P+. The multiplicity of any
irreducible Uq(lS)-module in the decomposition of Vµ into irreducible Uq(lS)-
modules is the same as in the classical q = 1 case.

For any quantum homogeneous space B = Aco(H), and any left H-comodule V ,
Frobenius reciprocity tells us that the multiplicities of a right A-comodule in
Ψ(V ) is completely determined by the branching rules for the the quantum
homogeneous space. Thus we get the following corollary.

Corollary 7.10. An irreducible quantum flag manifold, endowed with its
Heckenberger –Kolb calculus, is of (weak) Gelfand type if and only if the clas-
sical compact Hermitian space G/LS is of (weak) Gelfand type.

To the best of our knowledge this question has not been explicitly addressed in
the literature. However, there exist numerous suitable formulations of the nec-
essary classical branching laws. (For example, we point the reader to the Young
diagram approach of [30], which is very similar in spirit to the presentation of
Appendix C.) This allows us to answer the question with relative ease for the
non-exceptional cases. To keep the paper to a reasonable length, the technical
details of the proof will be given in later work. Pending this, we present the
following as a conjecture.

Conjecture 7.11. The non-exceptional compact quantum Hermitian spaces,
for which the covariant complex structure of the associated Heckenberger–Kolb
calculus is of weak Gelfand type, are precisely those presented in the following
two diagrams: The first identifies four countable families:

An Oq(CPn)

An Oq(Grn+1,2)

Bn Oq(Q2n+1)

Dn Oq(Q2n)

The second diagram identifies three isolated examples, arising from low-
dimensional redundancies in the table of compact quantum Hermitian spaces
given above.
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B3
∼= Oq(L2) ' Oq(Q5)

D3
∼= Oq(S3) ' Oq(CP3)

D4
∼= Oq(S4) ' Oq(Q8)

Of these CQH-complex spaces, only quantum projective space Oq(CPn−1) is of
Gelfand type.

For the two exceptional cases, that is, the quantum Cayley plane Oq(OP2),
and the quantum Freudenthal variety Oq(F), an explicit presentation of the
necessary branching laws does not seem to have appeared in the literature.
Hence, it is most likely necessary to derive them from a general framework,
such as the Littlemann path model [38, 37]. We postpone such intricacies to
later work, and for now satisfy ourselves with Conjecture 7.13, as motivated in
§7.4.2.

7.4 Towards Order II CQH-Hermitian Spaces

In the previous subsection we presented the definition of weak Gelfand type
and discussed those results which carry over from the Gelfand setting. In this
subsection we detail some of the new behaviours that arise in the weak Gelfand
setting. We finish with some conjectures, motivated by the discussion of the
subsection.

7.4.1 Hodge Decomposition and the Bhw-Action

In the weak Gelfand case Proposition 4.19 is no longer guaranteed to hold.

Explicitly, for any ω ∈ ∂Ω
(0,•)
hw , and any z ∈ Oq(G/LS)hw, it is no longer

guaranteed that the product zω is contained in ∂Ω(0,•). This forces us to con-
sider highest weight vectors of the form Π∂

(
zω
)
, where we have denotes by

Π∂ : Ω(0,•) → ∂Ω(0,•) the projection operator associated to Hodge decomposi-
tion. Such forms are still eigenvectors of ∆∂ , with an important observation

being that ∆∂

(
Π∂(zω)

)
= ∂∂

†
(zω) .

7.4.2 Spherical Generators

By the considerations of §4.1, the weights of the highest weight vectors of
Oq(G/LS) form an additive submonoid ZS ⊆ h under addition. By Proposition
7.9, it is clear that the minimal number of generators of ZS , considered as a
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monoid, is the same in the classical q = 1 case. A distinguished minimal set of
generators for ZS , the spherical weights, was presented in the classical case by
Krämer in [33, Tabelle 1], and reproduced here in the table below.

In this table, the Dynkin nodes for the A-,B-,C-, and D-types are labelled in
increasing order from left to right. For the exceptional cases, we again number
from left to right in increasing order, finishing with the side node. Finally, note
that for the spherical weights of Oq(S2m), the weight 2$2m−1 or 2$2m appears
depending on the defining crossed node.

Comparing this table with the proposed classification of Conjecture 7.11, we
make the following alternative version of the conjecture.

Conjecture 7.12. The non-exceptional irreducible quantum flag manifolds
Oq(G/LS) of Gelfand type are exactly those for which ZS is generated by a
single element, and those of weak Gelfand type are exactly those for which ZS
which is generated by two elements.

Thus to accommodate the irreducible quantum flag manifolds of weak Gelfand
type, it is necessary to generalise the order I requirements and consider irre-
ducible Uq(g)-modules of the form

Uq(g)Π∂

(
yl1zl2ω

)
, for y, z ∈ B, ω ∈ Ω

(0,k)
hw , and l1, l2 ∈ N0.

Coming finally to the exceptional cases, we note that, from the table of spherical
weights below, Oq(OP2) has two spherical generators, while Oq(F) has three.
Speculating that Conjecture 7.12 extends to the non-exceptional setting, we
make the following conjecture.

Conjecture 7.13. It holds that:

1. The quantum Cayley plane Oq(OP2), endowed with its Heckenberger–
Kolb calculus, is of weak Gelfand type.

2. The quantum Freudenthal variety Oq(F), endowed with its Heckenberger–
Kolb calculus, is not of weak Gelfand type.
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Irreducible Quantum Spherical Weights of Oq(G/LS)
Flag Manifold Oq(G/LS)

Oq(Grr,s) $1 +$r+s−1, $2 +$r+s−2, . . . , $r +$s

Oq(Q2n+1) 2$1, $2

Oq(Ln) 2$1, 2$2, . . . , 2$n

Oq(Q2n) 2$1, $2

Oq(S2m) $2, $4, . . . , $2m−2, 2$2m−1 or 2$2m

Oq(S2m+1) $2, $4, . . . , $2m−2, $2m +$2m+1

Oq(OP2) $1 +$5, $6

Oq(F) 2$1, $2, $6

7.4.3 Leibniz Constants

In the weak Gelfand setting, Leibniz constants are not guaranteed to exist,
which is to say Corollary 4.12 does not necessarily hold. We do however have
the following lemma, whose proof is a direct generalisation of Corollary 4.12.

Lemma 7.14. Let C be a CQH-complex space of weak Gelfand type, with con-
stituent quantum homogeneous space Bhw, and z ∈ Bhw a non-harmonic ele-
ment. Then there exist non-zero constants λz, ζz ∈ C, uniquely defined by

Π∂ ((∂z) z) = λzΠ∂ (z∂z) , Π∂

((
∂z
)
z
)

= ζzΠ∂

(
z∂z

)
,

where Π∂ , and Π∂ , are the projections from Ω• to ∂Ω•, and ∂Ω•, respectively,
given by Hodge decomposition.

We now see that Proposition 4.16 extends directly to the weak Gelfand setting.

Corollary 7.15. Let C be a CQH-complex space with constituent quantum
homogeneous space B. If B is self-conjugate, then, for any z ∈ B such that
λz, ζz ∈ R, we have ζz = λ−1

z .

Proof. Note first that we have the identity ∗ ◦Π∂ = Π∂ ◦ ∗. Using this identity,
the proof of Proposition 4.16 now carries over directly to the weak Gelfand
setting.
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7.4.4 Some Conjectures

Taking the above novel features into account, it is possible to generalise the
order I framework, to an order II framework, and include the irreducible quan-
tum flag manifolds of weak Gelfand type. Solidity can be shown to extend
to this setting, as well as its equivalence with the compact resolvent of the
Dolbeault–Dirac operator. This gives us a robust set of tools with which to
construct spectral triples for the irreducible quantum flag manifolds of weak
Gelfand type. Preliminary investigations [14] strongly suggest that solidity
holds, motivating us to make the following conjecture.

Conjecture 7.16. Let Oq(G/LS) be an irreducible quantum flag manifold of
weak Gelfand type, and let

(
Ω(•,•), κ

)
be its covariant Kähler structure, unique

up to real scalar multiple. A Dirac–Dolbeault pair of spectral triples is given by(
Oq(G/LS), L2(Ω(•,0)), D∂

)
,

(
Oq(G/LS), L2(Ω(0,•)), D∂

)
.

Moreover, the associated K-homology class of each spectral triple is non-trivial.

In the above conjecture we restrict to those irreducible quantum flag mani-
folds of weak Gelfand type, reflecting the fact that the approach of this paper
naturally extends to this subfamily of spaces. However, there is no reason to
suspect that the compact resolvent condition does not hold for all the irre-
ducible quantum flag manifolds. Verifying the condition in this more general
setting requires a more formal approach, based on the classical proof of the
compact resolvent condition for general Dirac operators [18, §4]. This is at
present being undertaken in the setting of noncommutative Sobolev spaces [3],
and so, we are motivated to reformulate a conjecture originally presented in
[50].

Conjecture 7.17. For every irreducible quantum flag manifold Oq(G/LS),
a covariant Kähler structure for the Heckenberger–Kolb calculus of Oq(G/LS)
is given by the pair (Ω(•,•), κ). Moreover, a Dirac–Dolbeault pair of spectral
triples is given by(

Oq(G/LS), L2(Ω(•,0)), D∂

)
,

(
Oq(G/LS), L2(Ω(0,•)), D∂

)
,

and the associated K-homology class of each spectral triple is non-trivial.

A CQGAs, Quantum Homogeneous Spaces, and Frobenius
Reciprocity

In this appendix we recall the basics of cosemisimple Hopf algebras, compact
matrix quantum groups algebras, quantum homogeneous spaces, as well as
some natural compatibility requirements between them. We then recall the
version of Takeuchi’s categorical equivalence for quantum homogeneous spaces
most suited to our purposes. Finally, we present an extension of Frobenius
reciprocity to the setting of quantum homogeneous spaces.
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A.1 Hopf Algebras and CQGAs

All algebras are assumed to be unital and defined over C. All unadorned tensor
products are defined over C. The symbols A and H will denote Hopf algebras
with comultiplication ∆, counit ε, antipode S, unit 1, and multiplication m.
We use Sweedler notation throughout, and denote a+ := a− ε(a)1, for a ∈ A,
and A+ = A ∩ ker(ε).
For any left A-comodule (V,∆L), its space of matrix elements is the sub-
coalgebra

C(V ) := spanC{(id⊗ f)∆L(v) | f ∈ HomC(V,C), v ∈ V } ⊆ A.

The notion of cosemisimplicity for a Hopf algebra will be essential in the paper
and all Hopf algebras will be assumed to be cosemisimple. We present three
equivalent formulations of the definition (a proof of their equivalence can be
found in [27, §11.2.1]).

Definition A.1. A Hopf algebra A is called cosemisimple if it satisfies the
following three equivalent conditions:

1. There is an isomorphism A '
⊕

V ∈Â C(V ), where Â denotes the equiva-
lence classes of left A-comodules.

2. The abelian category AMod of left A-comodules is semisimple.

3. There exists a unique linear map h : A → C, which we call the Haar
measure, such that h(1) = 1, and

(id⊗ h) ◦∆(a) = h(a)1, (h⊗ id) ◦∆(a) = h(a)1.

While the assumption of cosemisimplicity is enough for most of our require-
ments, when discussing positive definiteness we need the following stronger
structure introduced in [16].

Definition A.2. A compact matrix quantum group algebra, or a CMQGA, is
a finitely generated cosemisimple Hopf ∗-algebra A such that h(a∗a) > 0, for
all non-zero a ∈ A.

It is important to note that every CMQGA admits a (not necessarily unique)
C∗-algebraic completion to a compact matrix quantum group in the sense of
Woronowicz [63]. Moreover, every compact matrix quantum group contains a
dense CMQGA [16].

A.2 CMQGA-Homogeneous Spaces

A left A-comodule algebra P is a comodule which is also an algebra such that
the comodule structure map ∆L : P → A⊗P is an algebra map. Equivalently,
it can be defined as a monoid object in AMod, the category of left A-comodules.
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For a left A-comodule V with structure map ∆R, we say that an element v ∈ V
is coinvariant if ∆L(v) = 1 ⊗ v. We denote the subspace of all A-coinvariant
elements by co(A)V , and call it the coinvariant subspace of the coaction. We
use the analogous conventions for right comodules.

Definition A.3. A homogeneous right H-coaction on A is a coaction of the
form
(id ⊗ π) ◦ ∆, where π : A → H is a surjective Hopf algebra map. A
quantum homogeneous space B := Aco(H) is the coinvariant subspace of such a
coaction.

As is easily verified, every quantum homogeneous space B := Aco(H) is a
subalgebra of A. Moreover, the coaction of A restricts to a left A-coaction
∆L : B → A ⊗ B giving it the structure of a left A-comodule algebra. We
finish with a convenient, and natural, definition, which identifies the class of
homogeneous spaces we will concern ourselves with in this paper.

Definition A.4. A CMQGA-homogeneous space is a quantum homogeneous
space given by a Hopf ∗-algebra projection π : A→ H, such that A and H are
CMQGA’s.

A.3 Takeuchi’s Equivalence

We briefly recall Takeuchi’s equivalence [59], or more precisely a special case of
the bimodule version of Takeuchi’s equivalence. For a more detailed presenta-
tion we refer the reader to [59], [20], or [49, 50]. Throughout this subsection, A
and H will be Hopf algebras, π : A→ H a Hopf algebra map, and B = Aco(H)

the associated quantum homogeneous space.

Definition A.5. The category A
BMod0 has as objects B-bimodules F , endowed

with a left A-comodule structure ∆L : F → A⊗F , such that

1. FB+ ⊆ B+F

2. ∆L(bfb′) = ∆L(b)∆L(f)∆L(b′), for all b, b′ ∈ B, f ∈ F .

The morphisms in A
BMod0 are those B-bimodule homomorphisms which are

also homomorphisms of left A-comodules. The usual bimodule tensor product
⊗B can be used to give the category a monoidal structure defined by

∆L : F ⊗B D → A⊗F ⊗B D, f ⊗ d 7→ f(−1)d(−1) ⊗ f(0) ⊗B d(0),

for F ,D ∈ A
BMod0.

Definition A.6. The category HMod has left H-comodules as objects, and
right H-comodule maps as morphisms. The usual tensor product of comodules
⊗ now endows the category with a monoidal structure

∆L : V ⊗W → A⊗ V ⊗W, v ⊗ w 7→ v(−1)w(−1) ⊗ v(0) ⊗ w(0).
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If F ∈ A
BMod0, then F/(B+F) becomes an object in HMod with the left

H-coaction

∆L[f ] = π(f(−1))⊗ [f(0)], f ∈ F , (24)

where [f ] denotes the coset of f in F/(B+F). A functor Φ : ABMod0 → HMod
is now defined as follows: Φ(F) := F/(B+F), and if g : F → D is a morphism
in A

BMod0, then Φ(g) : Φ(F)→ Φ(D) is the map to which g descends on Φ(F).
If V ∈ HMod, then the cotensor product of A and V , defined by

A�HV := ker(∆R ⊗ id− id⊗∆L : A⊗ V → A⊗H ⊗ V ),

becomes an object in A
BMod0 by defining a B-bimodule structure

b
(∑

i

ai ⊗ vi
)

:=
∑
i

bai ⊗ vi,
(∑

i

ai ⊗ vi
)
b :=

∑
i

aib⊗ vi, (25)

and a left A-coaction ∆L

(∑
i a
i ⊗ vi

)
:=
∑
i a
i
(1) ⊗ ai(2) ⊗ vi. We now de-

fine a functor Ψ : HMod→ A
BMod0 as follows: Ψ(V ) := A�HV, and if γ is a

morphism in HMod, then Ψ(γ) := id⊗ γ.

Theorem A.7 (Takeuchi’s Equivalence). An adjoint equivalence of categories
between A

BMod0 and HMod is given by the functors Φ and Ψ and the natural
isomorphisms

C : Φ ◦Ψ(V )→ V,
[∑

i

ai ⊗ vi
]
7→
∑
i

ε(ai)vi,

U : F → Ψ ◦ Φ(F), f 7→ f(−1) ⊗ [f(0)].

Moreover, the equivalence is a monoidal equivalence with respect to the the
natural isomorphism

µ : Φ(F)⊗ Φ(D)→ Φ(F ⊗B D), [f ]⊗ [d] 7→ [f ⊗B d].

We define the dimension of an object F ∈ A
BMod0 to be the vector space

dimension of Φ(F). Note that by cosemisimplicity of A, the category HMod is
semisimple, and so, ABMod0 must also be semisimple.

A.4 Frobenius Reciprocity for Quantum Homogeneous Spaces

In this subsection we present a direct Hopf algebraic generalisation of Frobenius
reciprocity for equivariant vector bundles over a homogeneous space. The proof
carries over from the classical situation without difficulty, so we will not state
it. Moreover, there exists a large number of related formulations of this result
in the literature. For example, it is established in the compact quantum group
setting in [53], and in the general setting of coring comodules in [5, §22.12].
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The result is stated for two Hopf algebras A and H, and a surjective Hopf map
π : A → H. For U,W two right A-comodules, we denote by HomA(U,W ) the
space of right A-comodule maps from U to W . Moreover, for any right H-
comodule V , we denote by HomH(U, V ) the space of right H-comodule maps
from U to V , with respect to the right H-comodule structure induced on U by
π.

Lemma A.8 (Frobenius Reciprocity). For U ∈ AMod and V ∈H Mod, it holds
that

dimC
(
HomA(U,A�HV )

)
= dimC

(
HomH(U, V )

)
.

B Drinfeld–Jimbo Quantum Groups

In this appendix we recall some basic material about semisimple complex Lie
algebras g and their associated Drinfeld–Jimbo quantised enveloping algebras
Uq(g). We also discuss their type 1 representation theory, along with the as-
sociated quantum coordinate algebras Oq(G). Throughout, where basic proofs
or details are omitted we refer the reader to [27, §6,§7,§9]. We then specialise
to the A-series quantum coordinate algebra Oq(SUn). We recall its explicit
FRT-presentation and identify it with the abstract quantum coordinate algebra
presentation via a dual pairing of Hopf algebras. We finish with some standard
material on Young diagrams necessary for an unambiguous presentation of the
branching laws of §6.

B.1 Quantum Integers

Quantum integers are ubiquitous in the study of quantum groups. In this
paper they play a significant role in describing the spectrum of noncommutative
Dolbeault–Dirac operators. There are two different but related formulations
for quantum integers, so we take care to clarify our choice of conventions.
For q ∈ C, and m ∈ N, the quantum q-integer (m)q is the complex number

(m)q := 1 + q + q2 + · · ·+ qm−1.

Note that when q 6= 1, we have the identity

(m)q =
1− qm

1− q
.

We contrast this with the alternative (perhaps more standard) version of quan-
tum integers:

[l]q := q−m+1 + q−m+3 + · · · qm−3 + qm−1.

It is instructive to note that the two conventions are related by the identity

[m]q = q1−m(m)q2 .
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The second version of quantum integers was used in [50], but will not be used
in this paper. Instead, we adopt the first formulation, it being the one which
arises naturally in our spectral calculations, as is most readily evidenced by
Corollary 4.13.

B.2 Drinfeld–Jimbo Quantised Enveloping Algebras

Let g be a finite-dimensional complex simple Lie algebra of rank r. We fix
a Cartan subalgebra h with corresponding root system ∆ ⊆ h∗, where h∗

denotes the linear dual of h. Let ∆+ be a choice of positive roots, and let
Π(g) = {α1, . . . , αr} be the corresponding set of simple roots. Denote by (·, ·)
the symmetric bilinear form induced on h∗ by the Killing form of g, normalised
so that any shortest simple root αi satisfies (αi, αi) = 2. The coroot α∨i of a
simple root αi is defined by

α∨i :=
αi
di

=
2αi

(αi, αi)
, where di :=

(αi, αi)

2
.

The Cartan matrix (aij)ij of g defined by aij :=
(
α∨i , αj

)
.

Let q ∈ R such that q 6= −1, 0, 1, and denote qi := qdi . The quantised envelop-
ing algebra Uq(g) is the noncommutative associative algebra generated by the
elements Ei, Fi, and Ki,K

−1
i , for i = 1, . . . , r, subject to the relations

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi,

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

along with the quantum Serre relations∑1−aij

s=0
(−1)s

[
1− aij
s

]
qi

E
1−aij−s
i EjE

s
i = 0, for i 6= j,

∑1−aij

s=0
(−1)s

[
1− aij
s

]
qi

F
1−aij−s
i FjF

s
i = 0, for i 6= j,

where we have used the q-binomial coefficient[
n
r

]
q

:=
[n]q!

[r]q! [n− r]q!
.

A Hopf algebra structure is defined on Uq(g) by setting

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi

S(Ei) = −EiK−1
i , S(Fi) = −KiFi, S(Ki) = K−1

i ,

ε(Ei) = 0, ε(Fi) = 0, ε(Ki) = 1.

Documenta Mathematica 25 (2020) 1079–1157



A Dolbeault–Dirac Spectral Triple for Oq(CPn−1) 1143

A Hopf ∗-algebra structure, called the compact real form, is defined by

K∗i := Ki, E∗i := KiFi, F ∗i := EiK
−1
i .

Finally, we denote by Uq(n+), and Uq(n−), the unital subalgebras of Uq(g)
generated by the elements E1, . . . , Er, and F1, . . . , Fr, respectively.

B.3 Type 1 Representations

The set of fundamental weights {$1, . . . , $r} of g is the dual basis of simple
coroots {α∨1 , . . . , α∨r }, which is to say(

α∨i , $j

)
= δij , for all i, j = 1, . . . , r.

We denote by P the integral weight lattice of g, which is to say the Z-span of
the fundamental weights. Moreover, P+ denotes the cone of dominant integral
weights, which is to say the N0-span of the fundamental weights.
A Uq(g)-module V is irreducible if and only if it is of the form Uq(g)z, for z a
highest weight vector. Moreover, the space of highest weight elements of any
irreducible module is necessarily one-dimensional.
For each µ ∈ P+ there exists an irreducible finite-dimensional Uq(g)-module
Vµ, uniquely defined by the existence of a vector vµ ∈ Vµ, which we call a
highest weight vector, satisfying

Ei . vµ = 0, Ki . vµ = q(µ,αi)vµ, for all i = 1, . . . , r.

Moreover, vµ is unique up to scalar multiple. We call any finite direct sum of
such Uq(g)-representations a type-1 representation. In general, a vector v ∈ Vµ
is called a weight vector of weight wt(v) ∈ P if

Ki . v = q(wt(v),αi)v, for all i = 1, . . . , r. (26)

Each type 1 module Vµ decomposes into a direct sum of weight spaces, which
is to say, those subspaces of Vµ spanned by weight vectors of any given weight.
For any such highest weight vector v, we find it convenient to denote

wt(v) := µ, and wti(v) := µi, where µ =

r∑
i=1

µi$i.

We denote by Uq(g)type1 the full subcategory of Uq(g)-modules whose objects
are finite sums of type-1 modules Vµ, for µ ∈ P+. It is clear that Uq(g)type1

is abelian, semisimple, and equivalent to the category of finite-dimensional
representations of g. Moreover, the Weyl character formula remains unchanged
under q-deformation, which is to say, for any µ ∈ P+, the dimensions of the
weight spaces of the Uq(g)-module Vµ have the same as the dimensions as for
the corresponding classical g-module. Finally, we denote by Uq(g)LF1 the full
subcategory of Uq(g)-modules whose objects are (not necessarily finite) sums
of the type-1 modules. (Note that LF stands for locally finite.)
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B.4 Quantised Coordinate Algebras Oq(G)

Let V be a finite-dimensional Uq(g)-module, v ∈ V , and f ∈ V ∗, the linear
dual of V . Consider the function

cVf,v : Uq(g)→ C, X 7→ f
(
X(v)

)
.

The coordinate ring of V is the subspace

C(V ) := spanC{cVf,v | v ∈ V, f ∈ V ∗} ⊆ Uq(g)∗.

In fact, we see that C(V ) ⊆ Uq(g)◦, and that a Hopf subalgebra of Uq(g)◦ is
given by

Oq(G) :=
⊕

V ∈U1(g)type1

C(V ).

We call Oq(G) the type-1 Hopf dual of Uq(g), or alternatively the quantum
coordinate algebra of G, where G is the unique connected, simply connected,
complex algebraic group having g as its complex Lie algebra.

By construction Oq(G) is cosemisimple. Moreover, Oq(G) is a domain (for a
proof see [4, Theorem I.8.9]). Dualising the compact real form of Uq(g) gives a
Hopf ∗-algebra structure on Oq(G), with respect to which it is a CQGA. Since
every finite-dimensional irreducible representation of Uq(g) is contained in some
tensor product of fundamental representations, Oq(G) is finitely generated, and
hence a CQMGA.

The evaluation pairing Oq(G)× Uq(g) → C is by constructions a dual pairing
of Hopf algebras. In particular it gives us a dual pairing of Hopf ∗-algebras,
which is to say

〈X∗, f〉 = 〈X,S(f)∗〉, 〈X, f∗〉 = 〈S(X)∗, f〉, for all X ∈ Uq(g), f ∈ Oq(G).

For any left Oq(G)-comodule algebra (V,∆L), we can define a left Uq(g)-module
structure on V according to

Uq(g)× V → V, (X, v) 7→
〈
S(X), v(−1)

〉
v(0). (27)

This gives us the equivalence of categories

Oq(G)Mod→ Uq(g)LF1, (V,∆L) 7→ (V, .).

We will use this equivalence throughout the paper, tacitly identifying Oq(G)-
comodules and Uq(g)-modules of type-1. For any left Oq(G)-comodule algebra
P , a useful result is that, for X ∈ Uq(g), and a, b ∈ P , we have

X . (ab) =
(
X(2) . a

)(
X(1) . b

)
. (28)
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B.5 The Hopf Algebra Oq(SUn)

In this subsection, we recall the well-known FRT-presentation of Oq(SUn+1),
see [56] or [27, §9] for further details.
For q ∈ R\{−1, 0}, let Oq(Mn) be the unital complex algebra generated by the
elements uij , for i, j = 1, . . . , n satisfying the relations

uiku
j
k = qujku

i
k, uki u

k
j = qukju

k
i ,

whenever 1 ≤ i < j ≤ n, and 1 ≤ k ≤ n, and the relations

uilu
j
k = ujku

i
l, uiku

j
l = ujlu

i
k + (q − q−1)uilu

j
k,

whenever 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n. A bialgebra structure on
Oq(Mn), with coproduct ∆ and counit ε, is uniquely determined by ∆(uij) :=∑n
k=1 u

i
k ⊗ ukj and ε(uij) := δij . Let detn, the quantum determinant, denote

the element

detn :=
∑

σ∈Sn
(−q)`(σ)u1

σ(1)u
2
σ(2) · · ·u

n
σ(n)

=
∑

σ∈Sn
(−q)`(σ)u

σ(1)
1 u

σ(2)
2 · · ·uσ(n)

n ,

with summation taken over all permutations σ of the set {1, . . . , n}, and `(σ)
the number of inversions in σ. As is well known [27, §9.2.2], detn is a cen-
tral and grouplike element of Oq(Mn). Consider next the quotient algebra
Oq(Mn)/ 〈detn−1〉, where 〈detn−1〉 denotes the ideal generated by detn−1.
Note that the maps ∆ and ε descend to a well-defined bialgebra structure on the
quotient algebra, which in addition can be endowed with a Hopf algebra struc-
ture by defining

S(uij) :=(−q)i−j
∑

σ∈Sn−1

(−q)`(σ)u
σ(k1)
l1

u
σ(k2)
l2

· · ·uσ(kn−1)
ln−1

(29)

=(−q)i−j
∑

σ∈Sn−1

(−q)`(σ)uk1σ(l1)u
k2
σ(l2) · · ·u

kn−1

σ(ln−1), (30)

where {k1, . . . , kn−1} := {1, . . . , n}\{j}, and {l1, . . . , ln−1} := {1, . . . , n}\{i}
as ordered sets. Finally, a Hopf ∗-algebra structure can be defined by setting
(uij)

∗ := S(uji ). We denote this Hopf ∗-algebra by Oq(SUn), and call it the
quantum special unitary group of degree n.
We now present a Hopf algebra isomorphism between Oq(SUn) and the type-1
Hopf dual of Uq(sln). A non-degenerate dual pairing of Hopf algebras between
Oq(SUn) and Uq(sln) is uniquely determined by〈

Ki, u
j
j

〉
= qδi,j−1−δij ,

〈
Ei, u

i+1
i

〉
= 1,

〈
Fi, u

i
i+1

〉
= 1, (31)

with all other pairings of generators being zero. This determines a Hopf alge-
bra embedding of Oq(SUn) into Uq(sln)◦, the image of which is precisely the
quantum coordinate algebra of Uq(sln).
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C Decomposing Ω(0,•) into Irreducible Uq(sln)-Modules

In this appendix, we use Frobenius reciprocity to decompose Ω(0,•) into ir-
reducible left Uq(sln)-submodules. As a direct application, we prove that
Oq(CPn−1), endowed with its Heckenberger–Kolb calculus, is of Gelfand type
and self-conjugate.
Presentations of the irreducible modules occurring in the anti-holomorphic
forms have previously appeared in both the classical [24, Proposition 5.2] and
quantum group literature [9, Proposition 5.5]. We re-establish the presentation
here so as to completely guarantee consistency of conventions, and to give a
self-contained exposition of how such presentations are obtained for the benefit
of non-experts.

C.1 Skew Young Diagrams and Young Tableaux

A Young diagram is a finite collection of boxes arranged in left-justified rows,
with the row lengths in non-increasing order. We see that Young diagrams with
p rows are equivalent to integer partitions of order p, which is to say p-tuples

µ = (µ1, . . . , µp) ∈ Np0, such that µ1 ≥ · · · ≥ µp.

We denote by Fµ the Young diagram corresponding to an integer partition µ.
For a partition µ = (µ1, . . . , µp), its conjugate µ′ = (µ′1, . . . , µ

′
µ1

) is the unique

partition of order µ1 such that µ′s is equal to the number of boxes in the sth

column of Fµ. Note that the Young diagram Fµ
′

can be obtained from Fµ by
reflecting it along its northwest-southeast diagonal.
We can put a partial order on the set of all Young diagrams, or equivalently,
a partial order on the set of all integer partitions, by defining µ � ν whenever
µi ≥ νi, for all i = 1, . . . , p, with the possible addition of trailing zeros. For
any pair µ � ν, the associated skew Young diagram Fµ\ν is given by removing
from Fµ all boxes belonging to the obvious superimposition of F ν on Fµ. The
weight of a skew Young diagram is the number of boxes in the diagram, which
is to say,

|µ\ν| :=
p∑
i=1

µi − νi ∈ N0.

In what follows, we find the following alternative presentation of partitions
useful. Denote by ei, for i = 1, . . . , p, the standard generators of the monoid
Np0. The fundamental partitions are given by

$k := e1 + e2 + · · ·+ ek, for k = 1, . . . , p.

Note that any partition µ = (µ1, . . . , µp) can be expressed as the sum of fun-
damental partitions:

µ = (µ1 − µ2)$1 + (µ2 − µ3)$2 + · · ·+ (µp−1 − µp)$p−1 + µp$p,
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A horizontal strip is a skew Young diagram where every column contains at
most one box. Alternatively, horizontal strips can be presented in terms of
pairs of integer partitions µ � ν such that, for p the order of µ,

µ1 ≥ ν1 ≥ µ2 ≥ · · · ≥ µp ≥ νp. (32)

We denote by HSC(µ) the set of all partitions µ � ν such that Fµ\ν is a
horizontal strip.
As suggested by the notation, we have an obvious bijection between the irre-
ducible representations of the quantised enveloping algebra Uq(sln), and Young
diagrams with r = rank(g) rows. Explicitly, let Vµ be an irreducible Uq(g)-
module, with defining dominant integral weight µ ∈ P+. Expressing µ in
terms of the fundamental weights as µ =

∑r
i=1 ai$i, we have the correspond-

ing partition µ =
∑r
i=1 ai$i, and hence the corresponding Young diagram

Fµ.

C.2 The Decomposition

Applying Frobenius reciprocity requires an understanding of the branching
rules for the inclusion Uq(ln−1) ↪→ Uq(sln). However, as explained in greater
detail in §7, the fact that Weyl’s character formula remains unchanged under
q-deformation implies that the branching laws are equivalent to the classical
case. The branching laws for the inclusion ln−1 ↪→ sln admit a well-known
formulation originally due to Weyl [62] (see also [24, Proposition 5.1]) which
allows us to immediately write down the corresponding q-deformed branching
laws.

Lemma C.1. For any partition µ, with corresponding irreducible Uq(sln)-
module Vµ, an isomorphism of Uq(ln−1)-modules is given by

Vµ '
⊕

ν∈HSC(µ)

Vν
(
νn−1 − |µ\ν|

)
, (33)

where ν =
∑n−1
i=1 νi$i, and ν := ν − νn−1$n−1, for $i the fundamental par-

titions, and where summation is taken over all partitions ν ∈ HSC(µ), for
HSC(µ) the set of partitions complementary to the horizontal strips of µ (as
defined in Appendix C.1). In particular, the decomposition is multiplicity-free
for each Vµ.

In preparation for the application of Frobenius reciprocity below, we now con-
sider two specific applications of the branching rules for the case of Uq(sl3).
The presentation here is given in terms of Young diagrams, with the intention
of providing the reader with some visual intuition.

Example C.2. We begin with an explicit example of the branching procedure
for the inclusion Uq(l2) ↪→ Uq(sl3), corresponding to the quantum homogeneous
space Oq(CP2). Consider the partition µ := (3, 2) with corresponding Young
diagram:
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We present the 6 possible partitions ν ∈ HSC(µ) in Young diagram form,
highlighting those boxes which form horizontal strips:

Removing the highlighted boxes, we arrive at the set of Young diagrams cor-
responding to the partitions in HSC(µ):

Next we present the Young diagrams of the partitions ν = ν − ν2$2. We do
this in two steps, first highlighting the boxes to be removed from F ν in order
to arrive at F ν :

Removing the highlighted columns we arrive at the following list of Young
diagrams, where ∅ denotes the empty Young diagram:

∅
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Thus the decomposition of Vµ into irreducible Uq(sl2)-modules is given by

Vµ 'V$1
⊕ V2$1

⊕ V3$1
⊕ C⊕ V$1

⊕ V$2
. (34)

Finally, subtracting the number of boxes removed in the first step, from the
number of columns removed in the second step, gives us the weight of K2.
Explicitly, the decomposition of Vµ into irreducible Uq(l2)-modules is given by

Vµ ' V$1
(2)⊕ V2$1

(0)⊕ V3$1
(−2)⊕ C(1)⊕ V$1

(−1)⊕ V2$1
(−3). (35)

Note that while the decomposition of Vµ into Uq(sl2)-submodules contains mul-
tiplicities, the decomposition into Uq(l2)-modules is multiplicity-free.

Example C.3. As we saw in the previous example, the Young diagram pre-
sentation of the branching process can be understood as a combination of two
steps:

1. Remove from a Young diagram Fµ a horizontal strip Fµ\ν .

2. Remove all columns of height n− 1.

Thus finding all possible Uq(sln)-modules whose Uq(sln−1)-branching contains
a given module V amounts to finding all possible Young diagrams which can
be operated on by steps 1 and 2 to produce the Young diagram corresponding
to V .
Let us apply this process to a concrete example corresponding to the case of
Oq(CP3): For the Uq(sl3)-module V$1

we will find all possible Uq(sl4)-modules
whose branching contains V$1

as a decomposition. Recall first that V$1
has

the corresponding Young diagram:

We reverse step 2 by adding an arbitrary number k ∈ N0 of columns of height
3 to obtain the Young diagram:

F k$3+$1 = · · · · · · · · ·

︸ ︷︷ ︸
k-times

To reverse step 1, we must find all possible Young diagrams Fµ such that

k$3 +$1 ∈ HSC(µ).

In fact, we see that there exist exactly two such families of Young diagrams.
The first, for a general l ∈ N0, is given by
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F k$3+(l+1)$1 := · · · · · · · · ·

︸ ︷︷ ︸
k−times

· · · · · · · · ·︸ ︷︷ ︸
l−times

The second, for a general l ∈ N0, is given by

F k$3+$2+l$1 := · · · · · · · · ·

︸ ︷︷ ︸
k−times

· · · · · · · · ·︸ ︷︷ ︸
l−times

To perform this process for Uq(l3)-branching, we need to take care of the weight
of K3. Let us assume that we want to branch to the representation V$1

(c), for
some c ∈ Z. As we saw in the previous example, the weight of K3 is precisely
the number of boxes removed in step 1 minus the number of columns removed
in step 2. Thus we see that the branched representation $3 +(l+1)$1 contains
V$1

(c) if and only if l−k = c, while the branched representation $3 +$2 + l$1

contains V$1
(c) if and only if l − k + 1 = c.

Returning now to the general case ofOq(CPn−1). We would now like a complete
description of the Uq(sln)-modules appearing in the irreducible decomposition
of Ω(0,k). First, however, we need to identify the inducing representations
V (0,k) as a Uq(ln−1)-modules. (Note that we present the trivial case of V (0,0)

to highlight the fact that its Kn−1-weight does not follow the general pattern
for the higher forms.)

Corollary C.4. We have the following isomorphisms of left Uq(ln−1)-modules

V (0,0) ' C(0), V (0,k) ' V$n−k−1
(−k − 1), for k = 1, . . . , n− 1.

Proof. Since the isomorphism V (0,0) ' C(0) is obvious, we can move directly
onto the higher forms. Recalling that e−i ∧e

−
i = 0, for all i, we see from Lemma

6.3 that

Ej .
(
e−n−1 ∧ · · · ∧ e

−
n−k

)
= 0, for j = 1, . . . , n− 2.

Another application of Lemma 6.3 confirms that

Kj .
(
e−n−1 ∧ · · · ∧ e

−
n−k

)
= qδj,n−k−1e−n−1 ∧ · · · ∧ e

−
n−k, for j = 1, . . . , n− 2.

Hence e−n−1∧· · ·∧ e
−
n−k is a Uq(sln−1)-highest weight vector of weight $n−k−1.

Recalling that the dimension of universal enveloping algebra modules is un-
changed under q-defor-mation, we see that

dimC

(
Uq(sln−1) e−n−1 ∧ · · · ∧ e

−
n−k

)
=

(
n− 1

k

)
.
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Recalling from Theorem 6.4 that Φ
(
Ω(0,k)

)
is also an

(
n−1
k

)
-dimensional space,

we see that

Uq(sln−1) e−n−1 ∧ · · · ∧ e
−
n−k = V (0,k).

Thus V (0,k) is isomorphic as a Uq(sln−1)-module, to V$n−k−1
. Finally, Lemma

6.3 tells us that

Kn−1 .
(
e−n−1 ∧ · · · ∧ e

−
n−k

)
= q−k−1e−n−1 ∧ · · · ∧ e

−
n−k.

Hence V (0,k) is isomorphic, as a Uq(ln−1)-module, to V$n−k−1
(−k − 1), as

claimed.

Lemma C.5. The complex structure Ω(•,•) is of Gelfand type. Moreover, an ir-
reducible Uq(sln)-module appears in the decomposition of Ω(0,k) into irreducibles
only if its highest weight is of the form

1. 0 when k = 0,

2. (l + k + 1)$1 + $n−k−1 + l$n−1, for l ∈ N0, when k =
0, . . . , n− 2,

3. (l + k)$1 + $n−k + l$n−1, for l ∈ N0, when k =
2, . . . , n− 1.

Proof. Lemma C.1 tells us that the decomposition of any Uq(sln)-module into
Uq(ln−1)-submodules is multiplicity-free. Frobenius reciprocity, as presented in
Proposition A.8, now implies that Ω(•,•) is of Gelfand type.
Let us now assume that k = 1, . . . , n − 2. By Corollary C.4 above, V (0,k) is
isomorphic to V$n−k−1

(−k−1) as a Uq(ln−1)-module. Lemma C.1 tells us that
V$n−k−1

(−k−1) appears as a Uq(ln−1)-submodule, of some Uq(sln)-module Vµ,

if and only if there exists a ν =
∑n−1
i=1 νi$i in HSC(µ) such that ν = $n−k−1

and νn−1 − |µ\ν| = −k − 1. Note first that a partition ν satisfies ν = $n−k−1

if and only if

ν = l$n−1 +$n−k−1, for some l ∈ N0. (36)

Next, recall that ν ∈ HSC(µ), for some partition µ, if and only if (32) is
satisfied. Thus any µ must be of the form

l$n−1 +$n−k−1 + a$1, or l$n−1 +$n−k + a$1, for some a ∈ N0.
(37)

Next we see that the identity νn−1−|µ\ν| = −k−1 is satisfied in the first case
if and only if l − a = −k − 1, and in the second case if l − (a + 1) = −k − 1.
Thus V (0,k) appears as a summand in the decomposition of Vµ into irreducible
Uq(ln−1)-modules if and only if

µ = (l + k + 1)$1 +$n−k−1 + l$n−1, or µ = (l + k)$1 +$n−k + l$n−1.
(38)
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Frobenius reciprocity, for the inclusion Uq(ln−1) ↪→ Uq(sln), now tells us that a
left Uq(sln)-module appears as a submodule of Ω(0,k) if and only if its highest
weight is of the form (38), as claimed. The proofs for the cases k = 0, and
k = n− 1, are analogous, and so, we omit them.

Corollary C.6. Quantum projective space Oq(CPn−1) is self-conjugate.

Proof. From Lemma C.5 above we see that the irreducible submodules of Ω(0,0)

are distinct in dimension. Since the dimension of an irreducible Uq(sln)-module
V is clearly equal to the dimension of its image under the ∗-map, Oq(CPn−1)
must be self-conjugate.
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[14] F. D́ıaz Garćıa, R. Ó Buachalla, and E. Wagner, A spectral
triple for the rank 2 quantum quadric. In preparation.

[15] M. S. Dijkhuizen and J. Stokman, Quantized flag manifolds and
irreducible ∗-representations, Comm. Math. Phys. (2), 203 (1999),
pp. 297–324.

[16] M. S. Dijkhuizen and T. H. Koornwinder, CQG algebras: a direct
algebraic approach to compact quantum groups, Lett. Math. Phys., 32
(1994), pp. 315–330.

[17] I. Forsyth, B. Mesland, and A. Rennie, Dense domains, symmetric
operators and spectral triples, New York J. Math., 20 (2014),
pp. 1001–1020.

[18] T. Friedrich, Dirac operators in Riemannian geometry, vol. 25 of
Graduate Studies in Mathematics, American Mathematical Society,
Providence, RI, 2000. Translated from the 1997 German original by
Andreas Nestke.

[19] J. M. Gracia-Bond́ıa, J. C. Várilly, and H. Figueroa, Elements
of noncommutative geometry, Birkhäuser Advanced Texts: Basler
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