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Abstract. Let G be a finite p-group with normal subgroup N .
A celebrated theorem of A. Weiss gives a sufficient condition for a
ZpG-lattice to be a permutation module, looking only at its restriction
to N and its N -fixed points. In case N has order p, we extend the
condition of Weiss to a characterization.
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1 Introduction

Throughout this article let G be a finite p-group. Let A denote either the
field Fp or the p-adic integers Zp. Let U be an AG-module and N a normal
subgroup of G. Denote by U ↓N the restricted AN -module, namely U with
coefficients restricted to AN . Denote by UN (resp. UN) the N -invariants (resp.
N -coinvariants) of U – that is, the largest AG submodule (resp. AG quotient
module) of U on which N acts trivially. Both UN and UN are thus A[G/N ]-
modules.

An AG-permutation module is an AG-lattice (that is, a finitely generated AG-
module that is free as an A-module) having an A-basis preserved set-wise by
the action of G. Permutation modules are extremely well-behaved, and act as
a fundamental starting point when trying to understand more general modules
for G. However, given a lattice U , it is a surprisingly difficult task to identify
whether or not U is a permutation module. The most remarkable detection
theorem for ZpG-permutation modules is due to A. Weiss. In certain circum-
stances, it identifies a lattice U as being a permutation module by looking only
at modules for strictly smaller subgroups:

Theorem 1 ([9, Theorem 2]). Let U be a ZpG-lattice and suppose there is a
normal subgroup N of G for which
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• U ↓N is a free ZpN -module and

• UN is a permutation Zp[G/N ]-module.

Then U itself is a permutation ZpG-module.

Weiss’ Theorem has important applications to group rings and block theory,
and is considered nowadays to be a fundamental theorem of integral represen-
tation theory. However, it is not a characterization of permutation modules,
because a permutation module need not be free over N . Of course, a per-
mutation ZpG-module is necessarily a permutation ZpN -module (a Zp-basis
preserved by G is preserved by N), but there are lattices U for which both the
restricted ZpN -lattice U ↓N and the lattice UN of N -invariants are permutation
modules, but which are not themselves permutation modules (see Section 4).
Our main theorem gives a characterization of permutation ZpG-modules in
terms of modules for a group of order strictly less than |G|:

Theorem 2. Let U be a ZpG-lattice and let N be a normal subgroup of G of
order p. Then U is a permutation module if, and only if

1. UN and UN are permutation Zp[G/N ]-modules and

2. (U/UN)N is a permutation Fp[G/N ]-module.

A characterization of this type has until now only been obtained in case G is
cyclic [8, Proposition 6.12].
In Section 2 we give the definitions and preliminary observations required for
the discussion, in Section 3 we prove Theorem 2, and in Section 4 we provide
some illustrative examples.
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2 Preliminaries

Notations introduced here will be used throughout our discussion. In what
follows, G is always a finite p-group and N a normal subgroup of G. If ever
U is a ZpG-lattice, we denote by U the FpG-module U/pU . We will at times
write X when X is a submodule of U – this notation is unambiguous because
our submodules will always be Zp-direct summands of U , so the two possible
interpretations, X/pX or (X + pU)/pU , will coincide.

Lemma 3. Let U be a ZpG-lattice such that U is free as an FpG-module. Then
U is free.
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Proof. Let X be an FpG-basis of U and let F be the free ZpG-module with
basis X . The natural map F → U lifts to a homomorphism γ : F → U , which
is an isomorphism modulo p. By Nakayama’s lemma [1, Lemma 1.2.3] γ is
surjective, and is thus an isomorphism because U is a lattice.

Lemma 4. Let U be a permutation ZpG-module and let U = X ′ ⊕ Y ′ be an
FpG-module decomposition. There is a ZpG-module decomposition U = X ⊕ Y
with X = X ′ and Y = Y ′.

Proof. Let a′, b′ ∈ EndFpG(U) be the projections onto X ′ and Y ′, respectively.

As U is a permutation module, the natural map End(U) → End(U) is surjective
by [1, Corollary 3.11.4], so that

End(U) = End(U).

By [1, Theorem 1.9.4] there is thus a decomposition into orthogonal idempo-
tents idU = a + b such that a = a′, b = b′. Accordingly, U is a direct sum of
ZpG-modules X ⊕ Y with X = X ′, Y = Y ′.

Lemma 5. Let 0 → A→ B → C → 0 be a short exact sequence of ZpG-lattices.
If A and C are permutation modules then the sequence splits.

Proof. This is a special case of [6, Corollary 6.8]. For the convenience of the
reader we sketch a proof, following the argument of [5, Lemma 4.1]. As A,C are
permutation modules, using the additivity of Ext, the Mackey decomposition
and Shapiro’s Lemma, we see that Ext1

ZpG
(C,A) is a direct sum of modules of

the form
Ext1

ZpK
(Zp,Zp[K/L]) ∼= H1(L,Zp)

for subgroups L 6 K of G. But each H1(L,Zp), being isomorphic to group
homomorphisms L → Zp, is 0. Hence Ext1(C,A) = 0 and the sequence splits.

Let U be a ZpG-lattice and N a normal subgroup of G. The Zp[G/N ]-modules
of N -invariants UN and N -coinvariants UN are, respectively, the largest sub-
module and the largest quotient module of U on which N acts trivially. Ex-
plicitly

UN = {u ∈ U |nu = u ∀n ∈ N}

UN = U/INU

where IN , the augmentation ideal of ZpN , is the kernel of the natural map
ZpN → Zp sending

∑
n∈N λnn to

∑
λn. If N is cyclic with generator n0, then

IN is generated as an ideal by n0−1. If ever u is an element of U , we denote by
ũ its image in UN . There is a natural map ψ : UN → UN sending u to ũ, which
is injective (because its composition with the map ϕ : UN → UN sending ũ to∑

n∈N nu is multiplication by |N |) but not usually surjective.
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For the rest of the article we will suppose thatN = 〈n0〉 has order p. By [4, The-
orem 2.6] there are three isomorphism classes of indecomposable ZpN -lattice,
being the trivial module Zp, the free module ZpN and a non-permutation mod-
ule S of Zp-rank p−1, which can be described in any of the following equivalent
ways:

S = IN = ZpN/(ZpN)N = Zp(ζ),

where the latter is the totally ramified extension of Zp by a primitive pth root
of unity ζ, on which n0 acts as multiplication by ζ. Note that S has no non-zero
N -fixed points. If V is an indecomposable ZpN -lattice, then V/V N is 0 if V is
trivial, and is isomorphic to S if V is free or S. In the latter cases, (V/V N )N
is a non-zero indecomposable N -trivial ZpN -module on which p acts as 0, and
hence it is Fp. It follows that for any ZpG-lattice U , the module (U/UN)N is
an Fp[G/N ]-module.

Lemma 6. Let U be a ZpG-lattice with U ↓N a permutation module and choose
a decomposition U ↓N= T ⊕ F with T trivial and F free.

1. The FpN -submodule T of UN does not depend on the choice of decompo-
sition and is G-invariant.

2. The FpG-modules UN/T and (U/UN)N are naturally isomorphic.

Proof. 1. The homomorphism ψ induces an FpG-homomorphism ψ : UN →
UN . The image of ψ is an FpG-submodule X of UN . But on the other

hand writing UN = T ⊕ FN the image of ψ is T , because T in UN

goes isomorphically onto T in UN , while elements of FN have the form∑
n∈N nf for f ∈ F , and hence go to 0 in UN . Thus T = X is unique

and G-invariant.

2. The natural surjection of ZpG-modules ρ : U → U/UN induces a surjec-
tion ρN : UN → (U/UN )N . Treating this map as an N -module homo-
morphism we see that its kernel is exactly T : (U/UN )N = (F/FN )N ,
so T clearly goes to 0. Furthermore, ρN |FN

is an isomorphism because

the modules FN and (F/FN )N have the same dimension (the number of
ZpN -summands of F ).

Remark 1. We observe in passing that the conditions of Weiss’ Theorem 1
imply the conditions of Theorem 2: if U ↓N is free then ϕ : UN → UN defined
before Lemma 6 is an isomorphism so that if UN is a permutation module
then so is UN , and hence so is (U/UN)N , being isomorphic by Lemma 6 to
UN/T = UN .

Lemma 7. Let U be a permutation ZpN -lattice with maximal trivial sum-
mand T . If L′ is a complement of T in UN , there exists a ZpN -complement F
of T in U such that FN = L′.
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Proof. Using Lemma 4 (applied with G = 1) we obtain a decomposition UN =
T ′ ⊕ L with T ′ = T and L = L′.

We claim that L is a complement to T in UN : the intersection T ∩ L is pure
because T, L are and Zp is torsion free, but is 0 modulo p and hence is 0.
Further T +L = UN by Nakayama’s lemma, because T + L = UN . This proves
the claim.

The submodule L of UN is the image of a map from (U/T )N and hence we
obtain the diagram

U/T

��

U // // UN = T ⊕ L

Projectivity of U/T yields a ZpN -module homomorphism U/T → U whose
image is the submodule F we require.

The reader might wonder why, in Theorem 2, we are not required to make
any hypotheses at all on U ↓N . This is because UN being a lattice already has
strong implications for U ↓N :

Lemma 8. Let N be a cyclic group of order p and V a ZpN -lattice. Then VN
is a lattice if, and only if, V is a permutation module.

Proof. This is a simple consequence of the classification and discussion of in-
decomposable ZpN -lattices given before Lemma 6: the N -coinvariants of the
indecomposable trivial and free ZpN -modules are Zp-lattices of rank 1, whereas
SN = Fp is not a lattice.

The following theorem generalizes [10, Theorem 2.6]

Theorem 9. Let U be a ZpG-lattice and suppose that UN is a permutation
module. Let T be a maximal trivial summand of U ↓N and suppose that T has
an FpG-complement in UN . Then U is a permutation module.

Proof. By Lemma 8, U ↓N is a permutation module. Note that T is G-invariant
in UN by Lemma 6. By Lemma 7 there is a ZpN -decomposition U ↓N= F ⊕ T
such that the ZpG-complement to T in UN given in the statement is FN . By
Lemma 4 we obtain a decomposition of ZpG-modules UN = X ⊕ Y , with
X = T , Y = FN . The natural projection γ : U → UN → X now yields a short
exact sequence of ZpG-modules

0 → K → U
γ
−→ X → 0,

where K = Ker(γ). We have the following commutative diagram, in which the
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rows are exact:

0 // K //

��

U
γ

//

��

X // 0

0 // Y //

��

UN

γN
//

��

X //

��

0

0 // FN
// UN

// T // 0

The module X , being a summand of the permutation module UN , is a per-
mutation module by [3, Lemma 0.3]. If we show that K is also a permutation
module, then the sequence splits by Lemma 5. For this we use Weiss’ Theorem.

• K ↓N is free: We have that F ⊆ K, because the diagram above yields by
taking the upper row modulo p the commutative diagram

0 // K //

��

U
γ

//

��

T // 0

0 // FN
// UN

// T // 0

An element f ∈ F ⊆ U drops modulo N into FN = FN and hence by
exactness of the lower sequence goes to 0 in T , as claimed. But both F
and K complement T , and hence they are equal. Thus K ↓N is free, so
by Lemma 3, K ↓N is free.

• KN is a permutation module: since K ↓N , X ↓N are permutation modules,
the sequence splits when restricted to N . Hence applying coinvariants the
sequence

0 → KN → UN
γN
−−→ X → 0

is exact. Thus KN is isomorphic to the kernel of the split surjection γN
and is thus a permutation module, being isomorphic to a summand of
UN .

As K,X are permutation modules, the sequence splits by Lemma 5 and so
U ∼= K ⊕X is also a permutation module, as required.

We have already observed that the ZpG-module U/UN is, as a ZpN -module,
isomorphic to a direct sum of copies of Zp(ζ) with a fixed generator of N acting
as ζ. That is, we may treat U/UN as an RG-lattice, where R = Zp(ζ). If ever
H is a finite p-group, an RH-lattice is said to be monomial (or a generalized
permutation module) if its indecomposable summands are induced from rank
1 lattices for subgroups L of H , whose action from L necessarily comes via a
group homomorphism L→ 〈ζ〉.
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Lemma 10. If (U/UN )N is a permutation FpG-module, then U/UN is a mono-
mial RG-module.

Proof. Taking N -coinvariants corresponds to quotienting out by the maximal
ideal of R, and hence this result is [9, Theorem 3].

A ZpG-module V is projective relative to proper subgroups if, whenever a ZpG-
module homomorphism onto V splits when restricted to any proper subgroup,
then it splits. The module V is projective relative to proper subgroups if,
and only if, every indecomposable summand of V is a direct summand of a
module induced from a proper subgroup of G [2, Lemma 2.2.3]. In particular, a
permutation ZpG-module is projective relative to proper subgroups if, and only
if, it has no trivial summands. For later use we also recall that a ZpG-module
V is projective relative to the subgroup H if every ZpG-module homomorphism
onto V that splits over H also splits over G. This is the case if, and only if, V
is a direct summand of a ZpH-module induced up to G.

Lemma 11. Suppose that N is contained in the Frattini subgroup Φ(G) of G.
If U ↓N and (U/UN )N are permutation modules, then (U/UN)N is projective
relative to proper subgroups of G.

Proof. Being a permutation FpG-module by hypothesis, we must check that
(U/UN )N does not possess a trivial summand. By the Krull-Schmidt Theo-
rem and because U/UN is monomial by Lemma 10, if (U/UN)N had a trivial
summand then some indecomposable monomial summand of U/UN would be
trivial modulo N . This summand is necessarily of the form Zp(ζ), where G acts
on ζ via a group homomorphism ϕ : G → 〈ζ〉. The module U/UN = F/FN

has no N -fixed points, so that N is not in the kernel of ϕ. But the kernel
has index p, and hence G = N × Ker(ϕ), contradicting the hypothesis that
N 6 Φ(G).

3 Proof of the main theorem

Proof. (of Theorem 2) To show the forward implication, we may suppose that
U = Zp[G/H ] for some subgroup H of G, in which case UN and UN are both
isomorphic to Zp[G/HN ]. If N is contained in H then (U/UN )N = 0 and if
not, then (U/UN )N is isomorphic to Fp[G/HN ].
In order to show the reverse implication, We work by induction on |G|. Note
that by Lemma 8, U ↓N is a permutation module. The strategy of the proof is to
find an FpG-complement in UN to the image of a maximal N -trivial summand
of U and then apply Theorem 9. There are two cases, which we treat separately.
Either N 6 Φ(G) or G = N ×H for some maximal subgroup H of G.

CASE 1: N 6 Φ(G).
Fix a subgroupH of index p in G. Then H contains N since N is in the Frattini
subgroup. Note that the conditions of the theorem are satisfied for U ↓H , so
that U ↓H is a permutation module by the induction hypothesis.
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So write U ↓H= T ⊕F , where the indecomposable summands of T are N -trivial
and the indecomposable summands of F are N -free. Lemma 6 tells us that T
is G-invariant in UN and that the short exact sequence of FpG-modules

0 → T → UN → UN/T → 0

does not depend on H . Moreover, the sequence splits over H for any choice
of H , and hence over every proper subgroup of G. As UN/T ∼= (U/UN )N ,
the sequence thus splits over G by Lemma 11. The result now follows from
Theorem 9.

CASE 2: N is a direct factor of G.
If G = N ×H , observe that U/UN can be treated as a Zp(ζ)H-module with
ζ acting as a fixed generator of N . Since (U/UN)N is a permutation module,
U/UN is monomial by Lemma 10.
Let ρ : U → U/UN be the canonical projection and let A be an indecomposable
G-summand of U/UN . Then eitherA is projective relative to a proper subgroup
containing N , or A = Zp(ζ). In both cases, treated separately, we will find a
G-submodule ZA of UN mapping isomorphically onto AN under ρN .

• First suppose that A = Zp(ζ) ↑
N×H
N×L for some complement H of N and

proper subgroup L of H , and where N acts as ζ on Zp(ζ). The module
U ↓N×L is a permutation module, so write it as a direct sum T ⊕ F with
T trivial over N and F free over N . As observed in the proof of Part
2 of Lemma 6, ρN has kernel T and it splits as an Fp[N × L]-module
homomorphism because U ↓N×L is a permutation module. As AN is a
summand of (U/UN )N , the induced map UN → AN also splits overN×L
and so, since AN is projective relative to N × L, it also splits over G.
Define ZA to be the image of this splitting.

• A = Zp(ζ). Let Y be the inverse image of A under the G-homomorphism
ρ : U → U/UN . We claim that Y ↓N is a permutation module. If
U ↓N= T ⊕ F with T trivial and F free, then ρ|F : F → U/UN is
surjective, and so there is z ∈ Y ∩F generating an N -free summand of Y
and such that ρ(z) generates A. Now, Y = 〈z〉+UN because Y/UN ∼= A.
Choose any Zp-complement TY of 〈z〉 (in Y ) that is contained inside UN .
The direct sum Y = 〈z〉 ⊕ TY is a direct sum of N -modules, the first
being N -free and the second being N -trivial. So Y ↓N is a permutation
module.

The action of G on A is given by a group homomorphism G→ 〈ζ〉, whose
kernel, a subgroup S of index p complementing N , acts trivially on A. It
follows that the first and third terms in the short exact sequence

0 → UN ↓S→ Y ↓S
ρ
−→ A↓S→ 0

are permutation modules, so the sequence splits via α : A ↓S→ Y ↓S . If
A is generated by a as a G-module, consider y = α(a). The G-module
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generated by y is equal to the N -module generated by y, because S acts
trivially on y. The module Z = 〈y〉 is not N -trivial, because N doesn’t
act trivially on ρ(y) = a. Also Z 6∼= Zp(ζ) because if it were, as Y is a
permutation module, Z would be in the kernel of the map Y → YN . But
AN 6= 0 and so

0 6= ã = ρN (αN (ã)) = ρN (ỹ),

showing that ỹ 6= 0 in YN . Hence Z is N -free and we take ZA = ZN .

So, for each indecomposable summand A in a decomposition of U/UN we have
found an FpG-submodule ZA of UN mapping isomorphically onto A. We claim
that

UN = T ⊕
⊕

A

ZA.

One easily checks that W :=
∑
ZA =

⊕
ZA (because each ρN : ZA → AN

is injective) and that W ∩ T = 0 (because the kernel of ρN is T ), so we need
only check that T +W = UN . But this follows because we have a short exact
sequence

0 → T → UN → (U/UN )N → 0

and, since T ∩W = 0 and W ∼= (U/UN )N , we have

dim(UN) = dim(T ) + dim((U/UN )N ) = dim(T ) + dim(W ).

Thus T +W = UN . The result now follows by Theorem 9.

For certain groups we may remove hypotheses.

Corollary 12. Let G be a generalized quaternion group (cf. [7, §5.3] for
example) and let N be a normal subgroup of order 2. The Z2G-lattice U is a
permutation module if, and only if

1. UN is a permutation Zp[G/N ]-module and

2. (U/UN)N is a permutation Fp[G/N ]-module.

Proof. For such a group, N is contained in Φ(H) for every non-trivial subgroup
H of G. It follows that we only ever use Case 1 of the proof of Theorem 2,
which does not require that UN be a permutation module.

4 Examples

If G is a cyclic p-group and N a subgroup of G, then [8, Proposition 6.12]
shows that a ZpG-lattice is a permutation module if, and only if, U ↓N and
UN are permutation modules for ZpN and Zp[G/N ] respectively. However, the
following examples show that in general we cannot remove either the hypothesis
that UN is a permutation module, nor that UN is a permutation module, from
Theorem 2.
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Example 1. Let G = C2 × C2 = 〈n〉 × 〈h〉 and let N = 〈n〉. Consider the
Z2G-lattice U with Z2-basis a, b, x and action

na = b , nb = a , nx = x,

ha = −a , hb = −b , hx = x+ a+ b.

Then U ↓N is isomorphic to Z2N⊕Z2 and U
N is free as a Z2[G/N ]-module. The

module U/UN has rank 1 with n acting as multiplication by −1, so (U/UN )N =
F2 is also a permutation module. But U itself is not a permutation module,
as can be seen by observing that UG has Z2-rank 1, which is impossible for a
Z2G-permutation module of Z2-rank 3. Note that in this example UN is not
a permutation module, being isomorphic as a Z2[G/N ]-module to the trivial
module with basis ã+ x plus the sign module (wherein h acts as multiplication
by −1) with basis ã.

Example 2. With notation as in Example 1, let U have the same action from
N but multiplication

ha = a+ x , hb = b+ x , hx = −x.

One checks as above that UN and (U/UN )N are permutation modules, while
U itself is not. In this case, UN is not a permutation module.
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