# A CHARACTERIZATION OF PERMUTATION MODULES EXTENDING A THEOREM OF WEISS

## JOHN W. MACQUARRIE AND PAVEL A. ZALESSKII

Received: December 18, 2019 Revised: August 16, 2020

Communicated by Julia Pevtsova

ABSTRACT. Let G be a finite p-group with normal subgroup N. A celebrated theorem of A. Weiss gives a sufficient condition for a  $\mathbb{Z}_pG$ -lattice to be a permutation module, looking only at its restriction to N and its N-fixed points. In case N has order p, we extend the condition of Weiss to a characterization.

2020 Mathematics Subject Classification: 20C11 Keywords and Phrases: Permutation modules, finite *p*-groups

## 1 INTRODUCTION

Throughout this article let G be a finite p-group. Let A denote either the field  $\mathbb{F}_p$  or the p-adic integers  $\mathbb{Z}_p$ . Let U be an AG-module and N a normal subgroup of G. Denote by  $U \downarrow_N$  the restricted AN-module, namely U with coefficients restricted to AN. Denote by  $U^N$  (resp.  $U_N$ ) the N-invariants (resp. N-coinvariants) of U – that is, the largest AG submodule (resp. AG quotient module) of U on which N acts trivially. Both  $U^N$  and  $U_N$  are thus A[G/N]-modules.

An AG-permutation module is an AG-lattice (that is, a finitely generated AGmodule that is free as an A-module) having an A-basis preserved set-wise by the action of G. Permutation modules are extremely well-behaved, and act as a fundamental starting point when trying to understand more general modules for G. However, given a lattice U, it is a surprisingly difficult task to identify whether or not U is a permutation module. The most remarkable detection theorem for  $\mathbb{Z}_pG$ -permutation modules is due to A. Weiss. In certain circumstances, it identifies a lattice U as being a permutation module by looking only at modules for strictly smaller subgroups:

THEOREM 1 ([9, Theorem 2]). Let U be a  $\mathbb{Z}_pG$ -lattice and suppose there is a normal subgroup N of G for which

•  $U \downarrow_N$  is a free  $\mathbb{Z}_p N$ -module and

1160

•  $U^N$  is a permutation  $\mathbb{Z}_p[G/N]$ -module.

Then U itself is a permutation  $\mathbb{Z}_pG$ -module.

Weiss' Theorem has important applications to group rings and block theory, and is considered nowadays to be a fundamental theorem of integral representation theory. However, it is not a characterization of permutation modules, because a permutation module need not be free over N. Of course, a permutation  $\mathbb{Z}_pG$ -module is necessarily a permutation  $\mathbb{Z}_pN$ -module (a  $\mathbb{Z}_p$ -basis preserved by G is preserved by N), but there are lattices U for which both the restricted  $\mathbb{Z}_pN$ -lattice  $U \downarrow_N$  and the lattice  $U^N$  of N-invariants are permutation modules, but which are not themselves permutation modules (see Section 4). Our main theorem gives a characterization of permutation  $\mathbb{Z}_pG$ -modules in terms of modules for a group of order strictly less than |G|:

THEOREM 2. Let U be a  $\mathbb{Z}_pG$ -lattice and let N be a normal subgroup of G of order p. Then U is a permutation module if, and only if

- 1.  $U^N$  and  $U_N$  are permutation  $\mathbb{Z}_p[G/N]$ -modules and
- 2.  $(U/U^N)_N$  is a permutation  $\mathbb{F}_p[G/N]$ -module.

A characterization of this type has until now only been obtained in case G is cyclic [8, Proposition 6.12].

In Section 2 we give the definitions and preliminary observations required for the discussion, in Section 3 we prove Theorem 2, and in Section 4 we provide some illustrative examples.

#### Acknowledgements

The authors thank the anonymous referee. The first author was partially supported by a FAPEMIG PPM Grant. The second author wishes to acknowledge the financial support of CNPq and FAPDF.

#### 2 Preliminaries

Notations introduced here will be used throughout our discussion. In what follows, G is always a finite p-group and N a normal subgroup of G. If ever U is a  $\mathbb{Z}_pG$ -lattice, we denote by  $\overline{U}$  the  $\mathbb{F}_pG$ -module U/pU. We will at times write  $\overline{X}$  when X is a submodule of U – this notation is unambiguous because our submodules will always be  $\mathbb{Z}_p$ -direct summands of U, so the two possible interpretations, X/pX or (X + pU)/pU, will coincide.

LEMMA 3. Let U be a  $\mathbb{Z}_pG$ -lattice such that  $\overline{U}$  is free as an  $\mathbb{F}_pG$ -module. Then U is free.

*Proof.* Let X be an  $\mathbb{F}_pG$ -basis of  $\overline{U}$  and let F be the free  $\mathbb{Z}_pG$ -module with basis X. The natural map  $F \to \overline{U}$  lifts to a homomorphism  $\gamma: F \to U$ , which is an isomorphism modulo p. By Nakayama's lemma [1, Lemma 1.2.3]  $\gamma$  is surjective, and is thus an isomorphism because U is a lattice.

LEMMA 4. Let U be a permutation  $\mathbb{Z}_pG$ -module and let  $\overline{U} = X' \oplus Y'$  be an  $\mathbb{F}_pG$ -module decomposition. There is a  $\mathbb{Z}_pG$ -module decomposition  $U = X \oplus Y$  with  $\overline{X} = X'$  and  $\overline{Y} = Y'$ .

*Proof.* Let  $a', b' \in \operatorname{End}_{\mathbb{F}_pG}(\overline{U})$  be the projections onto X' and Y', respectively. As U is a permutation module, the natural map  $\operatorname{End}(U) \to \operatorname{End}(\overline{U})$  is surjective by [1, Corollary 3.11.4], so that

$$\operatorname{End}(\overline{U}) = \overline{\operatorname{End}(U)}.$$

By [1, Theorem 1.9.4] there is thus a decomposition into orthogonal idempotents  $\mathrm{id}_U = a + b$  such that  $\overline{a} = a', \overline{b} = b'$ . Accordingly, U is a direct sum of  $\mathbb{Z}_p G$ -modules  $X \oplus Y$  with  $\overline{X} = X', \overline{Y} = Y'$ .

LEMMA 5. Let  $0 \to A \to B \to C \to 0$  be a short exact sequence of  $\mathbb{Z}_pG$ -lattices. If A and C are permutation modules then the sequence splits.

*Proof.* This is a special case of [6, Corollary 6.8]. For the convenience of the reader we sketch a proof, following the argument of [5, Lemma 4.1]. As A, C are permutation modules, using the additivity of Ext, the Mackey decomposition and Shapiro's Lemma, we see that  $\operatorname{Ext}_{\mathbb{Z}_p G}^1(C, A)$  is a direct sum of modules of the form

$$\operatorname{Ext}^{1}_{\mathbb{Z}_{p}K}(\mathbb{Z}_{p},\mathbb{Z}_{p}[K/L])\cong H^{1}(L,\mathbb{Z}_{p})$$

for subgroups  $L \leq K$  of G. But each  $H^1(L, \mathbb{Z}_p)$ , being isomorphic to group homomorphisms  $L \to \mathbb{Z}_p$ , is 0. Hence  $\text{Ext}^1(C, A) = 0$  and the sequence splits.

Let U be a  $\mathbb{Z}_pG$ -lattice and N a normal subgroup of G. The  $\mathbb{Z}_p[G/N]$ -modules of N-invariants  $U^N$  and N-coinvariants  $U_N$  are, respectively, the largest submodule and the largest quotient module of U on which N acts trivially. Explicitly

$$U^{N} = \{ u \in U \mid nu = u \ \forall n \in N \}$$
$$U_{N} = U/I_{N}U$$

where  $I_N$ , the augmentation ideal of  $\mathbb{Z}_p N$ , is the kernel of the natural map  $\mathbb{Z}_p N \to \mathbb{Z}_p$  sending  $\sum_{n \in N} \lambda_n n$  to  $\sum \lambda_n$ . If N is cyclic with generator  $n_0$ , then  $I_N$  is generated as an ideal by  $n_0 - 1$ . If ever u is an element of U, we denote by  $\tilde{u}$  its image in  $U_N$ . There is a natural map  $\psi : U^N \to U_N$  sending u to  $\tilde{u}$ , which is injective (because its composition with the map  $\varphi : U_N \to U^N$  sending  $\tilde{u}$  to  $\sum_{n \in N} nu$  is multiplication by |N|) but not usually surjective.

For the rest of the article we will suppose that  $N = \langle n_0 \rangle$  has order p. By [4, Theorem 2.6] there are three isomorphism classes of indecomposable  $\mathbb{Z}_p N$ -lattice, being the trivial module  $\mathbb{Z}_p$ , the free module  $\mathbb{Z}_p N$  and a non-permutation module S of  $\mathbb{Z}_p$ -rank p-1, which can be described in any of the following equivalent ways:

$$S = I_N = \mathbb{Z}_p N / (\mathbb{Z}_p N)^N = \mathbb{Z}_p(\zeta),$$

where the latter is the totally ramified extension of  $\mathbb{Z}_p$  by a primitive *p*th root of unity  $\zeta$ , on which  $n_0$  acts as multiplication by  $\zeta$ . Note that *S* has no non-zero *N*-fixed points. If *V* is an indecomposable  $\mathbb{Z}_p N$ -lattice, then  $V/V^N$  is 0 if *V* is trivial, and is isomorphic to *S* if *V* is free or *S*. In the latter cases,  $(V/V^N)_N$ is a non-zero indecomposable *N*-trivial  $\mathbb{Z}_p N$ -module on which *p* acts as 0, and hence it is  $\mathbb{F}_p$ . It follows that for any  $\mathbb{Z}_p G$ -lattice *U*, the module  $(U/U^N)_N$  is an  $\mathbb{F}_p[G/N]$ -module.

LEMMA 6. Let U be a  $\mathbb{Z}_pG$ -lattice with  $U\downarrow_N$  a permutation module and choose a decomposition  $U\downarrow_N = T \oplus F$  with T trivial and F free.

- 1. The  $\mathbb{F}_p N$ -submodule  $\overline{T}$  of  $\overline{U_N}$  does not depend on the choice of decomposition and is G-invariant.
- 2. The  $\mathbb{F}_pG$ -modules  $\overline{U_N}/\overline{T}$  and  $(U/U^N)_N$  are naturally isomorphic.
- Proof. 1. The homomorphism  $\psi$  induces an  $\mathbb{F}_pG$ -homomorphism  $\overline{\psi}: \overline{U^N} \to \overline{U_N}$ . The image of  $\overline{\psi}$  is an  $\mathbb{F}_pG$ -submodule X of  $\overline{U_N}$ . But on the other hand writing  $\overline{U^N} = \overline{T} \oplus \overline{F^N}$  the image of  $\overline{\psi}$  is  $\overline{T}$ , because  $\overline{T}$  in  $\overline{U^N}$  goes isomorphically onto  $\overline{T}$  in  $\overline{U_N}$ , while elements of  $\overline{F^N}$  have the form  $\sum_{n \in N} nf$  for  $f \in \overline{F}$ , and hence go to 0 in  $\overline{U_N}$ . Thus  $\overline{T} = X$  is unique and G-invariant.
  - 2. The natural surjection of  $\mathbb{Z}_p G$ -modules  $\rho: U \to U/U^N$  induces a surjection  $\overline{\rho_N}: \overline{U_N} \to (U/U^N)_N$ . Treating this map as an N-module homomorphism we see that its kernel is exactly  $\overline{T}: (U/U^N)_N = (F/F^N)_N$ , so  $\overline{T}$  clearly goes to 0. Furthermore,  $\overline{\rho_N}|_{\overline{F_N}}$  is an isomorphism because the modules  $\overline{F_N}$  and  $(F/F^N)_N$  have the same dimension (the number of  $\mathbb{Z}_p N$ -summands of F).

Remark 1. We observe in passing that the conditions of Weiss' Theorem 1 imply the conditions of Theorem 2: if  $U \downarrow_N$  is free then  $\varphi : U_N \to U^N$  defined before Lemma 6 is an isomorphism so that if  $U^N$  is a permutation module then so is  $U_N$ , and hence so is  $(U/U^N)_N$ , being isomorphic by Lemma 6 to  $\overline{U_N}/\overline{T} = \overline{U_N}$ .

LEMMA 7. Let U be a permutation  $\mathbb{Z}_p N$ -lattice with maximal trivial summand T. If L' is a complement of  $\overline{T}$  in  $\overline{U}_N$ , there exists a  $\mathbb{Z}_p N$ -complement F of T in U such that  $\overline{F_N} = L'$ .

Documenta Mathematica 25 (2020) 1159-1169

1163

*Proof.* Using Lemma 4 (applied with G = 1) we obtain a decomposition  $U_N = T' \oplus L$  with  $\overline{T'} = \overline{T}$  and  $\overline{L} = L'$ .

We claim that L is a complement to T in  $U_N$ : the intersection  $T \cap L$  is pure because T, L are and  $\mathbb{Z}_p$  is torsion free, but is 0 modulo p and hence is 0. Further  $T + L = U_N$  by Nakayama's lemma, because  $\overline{T + L} = \overline{U_N}$ . This proves the claim.

The submodule L of  $U_N$  is the image of a map from  $(U/T)_N$  and hence we obtain the diagram



Projectivity of U/T yields a  $\mathbb{Z}_p N$ -module homomorphism  $U/T \to U$  whose image is the submodule F we require.

The reader might wonder why, in Theorem 2, we are not required to make any hypotheses at all on  $U\downarrow_N$ . This is because  $U_N$  being a lattice already has strong implications for  $U\downarrow_N$ :

LEMMA 8. Let N be a cyclic group of order p and V a  $\mathbb{Z}_pN$ -lattice. Then  $V_N$  is a lattice if, and only if, V is a permutation module.

*Proof.* This is a simple consequence of the classification and discussion of indecomposable  $\mathbb{Z}_p N$ -lattices given before Lemma 6: the *N*-coinvariants of the indecomposable trivial and free  $\mathbb{Z}_p N$ -modules are  $\mathbb{Z}_p$ -lattices of rank 1, whereas  $S_N = \mathbb{F}_p$  is not a lattice.

The following theorem generalizes [10, Theorem 2.6]

THEOREM 9. Let U be a  $\mathbb{Z}_pG$ -lattice and suppose that  $U_N$  is a permutation module. Let T be a maximal trivial summand of  $U\downarrow_N$  and suppose that  $\overline{T}$  has an  $\mathbb{F}_pG$ -complement in  $\overline{U_N}$ . Then U is a permutation module.

*Proof.* By Lemma 8,  $U \downarrow_N$  is a permutation module. Note that  $\overline{T}$  is *G*-invariant in  $\overline{U_N}$  by Lemma 6. By Lemma 7 there is a  $\mathbb{Z}_p N$ -decomposition  $U \downarrow_N = F \oplus T$ such that the  $\mathbb{Z}_p G$ -complement to  $\overline{T}$  in  $\overline{U_N}$  given in the statement is  $\overline{F_N}$ . By Lemma 4 we obtain a decomposition of  $\mathbb{Z}_p G$ -modules  $U_N = X \oplus Y$ , with  $\overline{X} = \overline{T}, \overline{Y} = \overline{F_N}$ . The natural projection  $\gamma : U \to U_N \to X$  now yields a short exact sequence of  $\mathbb{Z}_p G$ -modules

$$0 \to K \to U \xrightarrow{\gamma} X \to 0,$$

where  $K = \text{Ker}(\gamma)$ . We have the following commutative diagram, in which the

rows are exact:



The module X, being a summand of the permutation module  $U_N$ , is a permutation module by [3, Lemma 0.3]. If we show that K is also a permutation module, then the sequence splits by Lemma 5. For this we use Weiss' Theorem.

•  $K \downarrow_N$  is free: We have that  $\overline{F} \subseteq \overline{K}$ , because the diagram above yields by taking the upper row modulo p the commutative diagram

An element  $\overline{f} \in \overline{F} \subseteq \overline{U}$  drops modulo N into  $\overline{F}_N = \overline{F}_N$  and hence by exactness of the lower sequence goes to 0 in  $\overline{T}$ , as claimed. But both  $\overline{F}$  and  $\overline{K}$  complement  $\overline{T}$ , and hence they are equal. Thus  $\overline{K} \downarrow_N$  is free, so by Lemma 3,  $K \downarrow_N$  is free.

•  $K_N$  is a permutation module: since  $K \downarrow_N, X \downarrow_N$  are permutation modules, the sequence splits when restricted to N. Hence applying coinvariants the sequence

$$0 \to K_N \to U_N \xrightarrow{\gamma_N} X \to 0$$

is exact. Thus  $K_N$  is isomorphic to the kernel of the split surjection  $\gamma_N$  and is thus a permutation module, being isomorphic to a summand of  $U_N$ .

As K, X are permutation modules, the sequence splits by Lemma 5 and so  $U \cong K \oplus X$  is also a permutation module, as required.

We have already observed that the  $\mathbb{Z}_p G$ -module  $U/U^N$  is, as a  $\mathbb{Z}_p N$ -module, isomorphic to a direct sum of copies of  $\mathbb{Z}_p(\zeta)$  with a fixed generator of N acting as  $\zeta$ . That is, we may treat  $U/U^N$  as an RG-lattice, where  $R = \mathbb{Z}_p(\zeta)$ . If ever H is a finite p-group, an RH-lattice is said to be *monomial* (or a *generalized permutation* module) if its indecomposable summands are induced from rank 1 lattices for subgroups L of H, whose action from L necessarily comes via a group homomorphism  $L \to \langle \zeta \rangle$ .

Documenta Mathematica 25 (2020) 1159–1169

1164

LEMMA 10. If  $(U/U^N)_N$  is a permutation  $\mathbb{F}_pG$ -module, then  $U/U^N$  is a monomial RG-module.

*Proof.* Taking N-coinvariants corresponds to quotienting out by the maximal ideal of R, and hence this result is [9, Theorem 3].

A  $\mathbb{Z}_pG$ -module V is projective relative to proper subgroups if, whenever a  $\mathbb{Z}_pG$ module homomorphism onto V splits when restricted to any proper subgroup, then it splits. The module V is projective relative to proper subgroups if, and only if, every indecomposable summand of V is a direct summand of a module induced from a proper subgroup of G [2, Lemma 2.2.3]. In particular, a permutation  $\mathbb{Z}_pG$ -module is projective relative to proper subgroups if, and only if, it has no trivial summands. For later use we also recall that a  $\mathbb{Z}_pG$ -module V is projective relative to the subgroup H if every  $\mathbb{Z}_pG$ -module homomorphism onto V that splits over H also splits over G. This is the case if, and only if, V is a direct summand of a  $\mathbb{Z}_pH$ -module induced up to G.

LEMMA 11. Suppose that N is contained in the Frattini subgroup  $\Phi(G)$  of G. If  $U \downarrow_N$  and  $(U/U^N)_N$  are permutation modules, then  $(U/U^N)_N$  is projective relative to proper subgroups of G.

Proof. Being a permutation  $\mathbb{F}_p G$ -module by hypothesis, we must check that  $(U/U^N)_N$  does not possess a trivial summand. By the Krull-Schmidt Theorem and because  $U/U^N$  is monomial by Lemma 10, if  $(U/U^N)_N$  had a trivial summand then some indecomposable monomial summand of  $U/U^N$  would be trivial modulo N. This summand is necessarily of the form  $\mathbb{Z}_p(\zeta)$ , where G acts on  $\zeta$  via a group homomorphism  $\varphi : G \to \langle \zeta \rangle$ . The module  $U/U^N = F/F^N$  has no N-fixed points, so that N is not in the kernel of  $\varphi$ . But the kernel has index p, and hence  $G = N \times \text{Ker}(\varphi)$ , contradicting the hypothesis that  $N \leq \Phi(G)$ .

#### 3 Proof of the main theorem

*Proof.* (of Theorem 2) To show the forward implication, we may suppose that  $U = \mathbb{Z}_p[G/H]$  for some subgroup H of G, in which case  $U^N$  and  $U_N$  are both isomorphic to  $\mathbb{Z}_p[G/HN]$ . If N is contained in H then  $(U/U^N)_N = 0$  and if not, then  $(U/U^N)_N$  is isomorphic to  $\mathbb{F}_p[G/HN]$ .

In order to show the reverse implication, We work by induction on |G|. Note that by Lemma 8,  $U \downarrow_N$  is a permutation module. The strategy of the proof is to find an  $\mathbb{F}_pG$ -complement in  $\overline{U_N}$  to the image of a maximal N-trivial summand of U and then apply Theorem 9. There are two cases, which we treat separately. Either  $N \leq \Phi(G)$  or  $G = N \times H$  for some maximal subgroup H of G.

#### <u>CASE 1:</u> $N \leq \Phi(G)$ .

Fix a subgroup H of index p in G. Then H contains N since N is in the Frattini subgroup. Note that the conditions of the theorem are satisfied for  $U \downarrow_H$ , so that  $U \downarrow_H$  is a permutation module by the induction hypothesis.

So write  $U \downarrow_H = T \oplus F$ , where the indecomposable summands of T are N-trivial and the indecomposable summands of F are N-free. Lemma 6 tells us that  $\overline{T}$ is G-invariant in  $\overline{U_N}$  and that the short exact sequence of  $\mathbb{F}_pG$ -modules

$$0 \to \overline{T} \to \overline{U_N} \to \overline{U_N} / \overline{T} \to 0$$

does not depend on H. Moreover, the sequence splits over H for any choice of H, and hence over every proper subgroup of G. As  $\overline{U_N}/\overline{T} \cong (U/U^N)_N$ , the sequence thus splits over G by Lemma 11. The result now follows from Theorem 9.

<u>CASE 2:</u> N is a direct factor of G.

If  $G = N \times H$ , observe that  $U/U^N$  can be treated as a  $\mathbb{Z}_p(\zeta)H$ -module with  $\zeta$  acting as a fixed generator of N. Since  $(U/U^N)_N$  is a permutation module,  $U/U^N$  is monomial by Lemma 10.

Let  $\rho: U \to U/U^N$  be the canonical projection and let A be an indecomposable G-summand of  $U/U^N$ . Then either A is projective relative to a proper subgroup containing N, or  $A = \mathbb{Z}_p(\zeta)$ . In both cases, treated separately, we will find a G-submodule  $Z_A$  of  $\overline{U_N}$  mapping isomorphically onto  $A_N$  under  $\overline{\rho_N}$ .

- First suppose that  $A = \mathbb{Z}_p(\zeta) \uparrow_{N \times L}^{N \times H}$  for some complement H of N and proper subgroup L of H, and where N acts as  $\zeta$  on  $\mathbb{Z}_p(\zeta)$ . The module  $U \downarrow_{N \times L}$  is a permutation module, so write it as a direct sum  $T \oplus F$  with T trivial over N and F free over N. As observed in the proof of Part 2 of Lemma 6,  $\overline{\rho_N}$  has kernel  $\overline{T}$  and it splits as an  $\mathbb{F}_p[N \times L]$ -module homomorphism because  $U \downarrow_{N \times L}$  is a permutation module. As  $A_N$  is a summand of  $(U/U^N)_N$ , the induced map  $\overline{U_N} \to A_N$  also splits over  $N \times L$ and so, since  $A_N$  is projective relative to  $N \times L$ , it also splits over G. Define  $Z_A$  to be the image of this splitting.
- $A = \mathbb{Z}_p(\zeta)$ . Let Y be the inverse image of A under the G-homomorphism  $\rho : U \to U/U^N$ . We claim that  $Y \downarrow_N$  is a permutation module. If  $U \downarrow_N = T \oplus F$  with T trivial and F free, then  $\rho|_F : F \to U/U^N$  is surjective, and so there is  $z \in Y \cap F$  generating an N-free summand of Y and such that  $\rho(z)$  generates A. Now,  $Y = \langle z \rangle + U^N$  because  $Y/U^N \cong A$ . Choose any  $\mathbb{Z}_p$ -complement  $T_Y$  of  $\langle z \rangle$  (in Y) that is contained inside  $U^N$ . The direct sum  $Y = \langle z \rangle \oplus T_Y$  is a direct sum of N-modules, the first being N-free and the second being N-trivial. So  $Y \downarrow_N$  is a permutation module.

The action of G on A is given by a group homomorphism  $G \to \langle \zeta \rangle$ , whose kernel, a subgroup S of index p complementing N, acts trivially on A. It follows that the first and third terms in the short exact sequence

$$0 \to U^N \downarrow_S \to Y \downarrow_S \xrightarrow{\rho} A \downarrow_S \to 0$$

are permutation modules, so the sequence splits via  $\alpha : A \downarrow_S \to Y \downarrow_S$ . If A is generated by a as a G-module, consider  $y = \alpha(a)$ . The G-module

generated by y is equal to the N-module generated by y, because S acts trivially on y. The module  $Z = \langle y \rangle$  is not N-trivial, because N doesn't act trivially on  $\rho(y) = a$ . Also  $Z \not\cong \mathbb{Z}_p(\zeta)$  because if it were, as Y is a permutation module, Z would be in the kernel of the map  $Y \to Y_N$ . But  $A_N \neq 0$  and so

$$0 \neq \widetilde{a} = \rho_N(\alpha_N(\widetilde{a})) = \rho_N(\widetilde{y}),$$

showing that  $\tilde{y} \neq 0$  in  $Y_N$ . Hence Z is N-free and we take  $Z_A = \overline{Z_N}$ .

So, for each indecomposable summand A in a decomposition of  $U/U^N$  we have found an  $\mathbb{F}_pG$ -submodule  $Z_A$  of  $\overline{U_N}$  mapping isomorphically onto A. We claim that

$$\overline{U_N} = \overline{T} \oplus \bigoplus_A Z_A.$$

One easily checks that  $W := \sum Z_A = \bigoplus Z_A$  (because each  $\overline{\rho_N} : Z_A \to A_N$  is injective) and that  $W \cap \overline{T} = 0$  (because the kernel of  $\overline{\rho_N}$  is  $\overline{T}$ ), so we need only check that  $\overline{T} + W = \overline{U_N}$ . But this follows because we have a short exact sequence

$$0 \to \overline{T} \to \overline{U_N} \to (U/U^N)_N \to 0$$

and, since  $\overline{T} \cap W = 0$  and  $W \cong (U/U^N)_N$ , we have

$$\dim(\overline{U_N}) = \dim(\overline{T}) + \dim((U/U^N)_N) = \dim(\overline{T}) + \dim(W).$$

Thus  $\overline{T} + W = \overline{U_N}$ . The result now follows by Theorem 9.

For certain groups we may remove hypotheses.

COROLLARY 12. Let G be a generalized quaternion group (cf. [7, §5.3] for example) and let N be a normal subgroup of order 2. The  $\mathbb{Z}_2G$ -lattice U is a permutation module if, and only if

- 1.  $U_N$  is a permutation  $\mathbb{Z}_p[G/N]$ -module and
- 2.  $(U/U^N)_N$  is a permutation  $\mathbb{F}_p[G/N]$ -module.

*Proof.* For such a group, N is contained in  $\Phi(H)$  for every non-trivial subgroup H of G. It follows that we only ever use Case 1 of the proof of Theorem 2, which does not require that  $U^N$  be a permutation module.

# 4 Examples

If G is a cyclic p-group and N a subgroup of G, then [8, Proposition 6.12] shows that a  $\mathbb{Z}_pG$ -lattice is a permutation module if, and only if,  $U \downarrow_N$  and  $U^N$  are permutation modules for  $\mathbb{Z}_pN$  and  $\mathbb{Z}_p[G/N]$  respectively. However, the following examples show that in general we cannot remove either the hypothesis that  $U^N$  is a permutation module, nor that  $U_N$  is a permutation module, from Theorem 2.

*Example* 1. Let  $G = C_2 \times C_2 = \langle n \rangle \times \langle h \rangle$  and let  $N = \langle n \rangle$ . Consider the  $\mathbb{Z}_2G$ -lattice U with  $\mathbb{Z}_2$ -basis a, b, x and action

$$na = b, nb = a, nx = x,$$
$$= -a, hb = -b, hx = x + a + b.$$

ha

Then  $U \downarrow_N$  is isomorphic to  $\mathbb{Z}_2 N \oplus \mathbb{Z}_2$  and  $U^N$  is free as a  $\mathbb{Z}_2[G/N]$ -module. The module  $U/U^N$  has rank 1 with n acting as multiplication by -1, so  $(U/U^N)_N = \mathbb{F}_2$  is also a permutation module. But U itself is not a permutation module, as can be seen by observing that  $U^G$  has  $\mathbb{Z}_2$ -rank 1, which is impossible for a  $\mathbb{Z}_2G$ -permutation module of  $\mathbb{Z}_2$ -rank 3. Note that in this example  $U_N$  is not a permutation module, being isomorphic as a  $\mathbb{Z}_2[G/N]$ -module to the trivial module with basis  $\widehat{a} + x$  plus the sign module (wherein h acts as multiplication by -1) with basis  $\widehat{a}$ .

*Example 2.* With notation as in Example 1, let U have the same action from N but multiplication

$$ha = a + x$$
,  $hb = b + x$ ,  $hx = -x$ .

One checks as above that  $U_N$  and  $(U/U^N)_N$  are permutation modules, while U itself is not. In this case,  $U^N$  is not a permutation module.

#### References

- D. J. Benson. Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, volume 30 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1991.
- [2] S. Bouc. Tensor induction of relative syzygies. J. Reine Angew. Math., 523:113–171, 2000.
- [3] M. Broué. On Scott modules and p-permutation modules: an approach through the Brauer morphism. Proc. Amer. Math. Soc., 93(3):401–408, 1985.
- [4] A. Heller and I. Reiner. Representations of cyclic groups in rings of integers. I. Ann. of Math. (2), 76:73–92, 1962.
- [5] I. Lima and P. Zalesskii. Virtually free groups and integral representations. *Journal of Algebra*, 500:303–315, 2018.
- [6] J. W. MacQuarrie, P. Symonds, and P. A. Zalesskii. Infinitely generated pseudocompact modules for finite groups and Weiss' Theorem. Advances in Mathematics, 361:106925, 2020.

- [7] D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.
- [8] B. Torrecillas and T. Weigel. Lattices and cohomological Mackey functors for finite cyclic *p*-groups. *Advances in Mathematics*, 244:533–569, 2013.
- [9] A. Weiss. Rigidity of p-adic p-torsion. Ann. of Math. (2), 127(2):317–332, 1988.
- [10] P. A. Zalesskii. Infinitely generated virtually free pro-p groups and p-adic representations. J. Topol., 12(1):79–93, 2019.

John W. MacQuarrie Universidade Federal de Minas Gerais Brazil john@mat.ufmg.br Pavel A. Zalesskii Universidade de Brasília Brazil pz@mat.unb.br

1170