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ABSTRACT. Let G be a finite p-group with normal subgroup N.
A celebrated theorem of A. Weiss gives a sufficient condition for a
Z,G-lattice to be a permutation module, looking only at its restriction
to N and its N-fixed points. In case N has order p, we extend the
condition of Weiss to a characterization.
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1 INTRODUCTION

Throughout this article let G be a finite p-group. Let A denote either the
field F,, or the p-adic integers Z,. Let U be an AG-module and N a normal
subgroup of G. Denote by U |y the restricted AN-module, namely U with
coefficients restricted to AN. Denote by UY (resp. Uy) the N-invariants (resp.
N-coinvariants) of U — that is, the largest AG submodule (resp. AG quotient
module) of U on which N acts trivially. Both UY and Uy are thus A[G/N]-
modules.

An AG-permutation module is an AG-lattice (that is, a finitely generated AG-
module that is free as an A-module) having an A-basis preserved set-wise by
the action of G. Permutation modules are extremely well-behaved, and act as
a fundamental starting point when trying to understand more general modules
for G. However, given a lattice U, it is a surprisingly difficult task to identify
whether or not U is a permutation module. The most remarkable detection
theorem for Z,G-permutation modules is due to A. Weiss. In certain circum-
stances, it identifies a lattice U as being a permutation module by looking only
at modules for strictly smaller subgroups:

THEOREM 1 (]9, Theorem 2|). Let U be a Z,G-lattice and suppose there is a
normal subgroup N of G for which
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o Uln is a free Z,N-module and
e U™ is a permutation Z,|G/N]-module.
Then U itself is a permutation Z,G-module.

Weiss’ Theorem has important applications to group rings and block theory,
and is considered nowadays to be a fundamental theorem of integral represen-
tation theory. However, it is not a characterization of permutation modules,
because a permutation module need not be free over N. Of course, a per-
mutation Z,G-module is necessarily a permutation Z,N-module (a Z,-basis
preserved by G is preserved by N), but there are lattices U for which both the
restricted Z, N-lattice U |y and the lattice U N of N-invariants are permutation
modules, but which are not themselves permutation modules (see Section 4).
Our main theorem gives a characterization of permutation Z,G-modules in
terms of modules for a group of order strictly less than |G|:

THEOREM 2. Let U be a Z,G-lattice and let N be a normal subgroup of G of
order p. Then U is a permutation module if, and only if

1. UN and Uy are permutation Z,[G/N]-modules and
2. (U/UN)n is a permutation F,[G/N]-module.

A characterization of this type has until now only been obtained in case G is
cyclic [8, Proposition 6.12].
In Section 2 we give the definitions and preliminary observations required for
the discussion, in Section 3 we prove Theorem 2, and in Section 4 we provide
some illustrative examples.
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2 PRELIMINARIES

Notations introduced here will be used throughout our discussion. In what
follows, G is always a finite p-group and N a normal subgroup of G. If ever
U is a Z,G-lattice, we denote by U the F,G-module U/pU. We will at times
write X when X is a submodule of U — this notation is unambiguous because
our submodules will always be Z,-direct summands of U, so the two possible
interpretations, X/pX or (X + pU)/pU, will coincide.

LEMMA 3. Let U be a Z,G-lattice such that U is free as an F,G-module. Then
U is free.
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Proof. Let X be an F,G-basis of U and let F be the free Z,G-module with
basis X. The natural map F — U lifts to a homomorphism v : F' — U, which
is an isomorphism modulo p. By Nakayama’s lemma [1, Lemma 1.2.3] v is
surjective, and is thus an isomorphism because U is a lattice. o

LEMMA 4. Let U be a permutation Z,G-module and let U = X' @Y’ be an
F,G-module decomposition. There is a Zy,G-module decomposition U = X @Y
with X = X" and Y =Y.

Proof. Let a/,b € Endppg(U) be the projections onto X’ and Y’, respectively.

As U is a permutation module, the natural map End(U) — End(U) is surjective
by [1, Corollary 3.11.4], so that

End(U) = End(U).

By [1, Theorem 1.9.4] there is thus a decomposition into orthogonal idempo-
tents idy = a + b such that @ = a’,b = V'. Accordingly, U is a direct sum of
Zp,G-modules X @Y with X = X" )Y =Y. O

LEMMA 5. Let 0 =+ A — B — C — 0 be a short exact sequence of Z,G-lattices.
If A and C are permutation modules then the sequence splits.

Proof. This is a special case of [6, Corollary 6.8]. For the convenience of the
reader we sketch a proof, following the argument of [5, Lemma 4.1]. As A, C are
permutation modules, using the additivity of Ext, the Mackey decomposition
and Shapiro’s Lemma, we see that Ext%pG(C’, A) is a direct sum of modules of
the form

Bxt}, i (Zy, Z,[K/L) = H'(L, Z,)

for subgroups L < K of G. But each H'(L,Z,), being isomorphic to group
homomorphisms L — Z,,, is 0. Hence Ext!(C, A) = 0 and the sequence splits.
O

Let U be a Z,G-lattice and N a normal subgroup of G. The Z,[G/N]-modules
of N-invariants UY and N-coinvariants Uy are, respectively, the largest sub-
module and the largest quotient module of U on which N acts trivially. Ex-
plicitly

UN ={ueU|nu=uVneN}
Uy = U/INU

where I, the augmentation ideal of Z,N, is the kernel of the natural map
ZypN — Zyp sending » -y Apn to DA, If N is cyclic with generator ng, then
Iy is generated as an ideal by ng — 1. If ever u is an element of U, we denote by
w its image in Uy. There is a natural map ¢ : UV — Uy sending u to @, which
is injective (because its composition with the map ¢ : Uy — U¥ sending @ to
> nen N is multiplication by [N|) but not usually surjective.
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For the rest of the article we will suppose that N = (ng) has order p. By [4, The-
orem 2.6] there are three isomorphism classes of indecomposable Z,N-lattice,
being the trivial module Z,, the free module Z, N and a non-permutation mod-
ule S of Z,-rank p—1, which can be described in any of the following equivalent
ways:

S=1In= ZPN/(ZPN)N = Zp(¢),

where the latter is the totally ramified extension of Z, by a primitive pth root
of unity ¢, on which ng acts as multiplication by {. Note that S has no non-zero
N-fixed points. If V' is an indecomposable Z,N-lattice, then V/VNis 0if V is
trivial, and is isomorphic to S if V is free or S. In the latter cases, (V/VY)y
is a non-zero indecomposable N-trivial Z, N-module on which p acts as 0, and
hence it is F,. It follows that for any Z,G-lattice U, the module (U/U™ )y is
an Fp,[G/N]-module.

LEMMA 6. Let U be a Z,G-lattice with U ln a permutation module and choose
a decomposition Uln=T & F with T trivial and F free.

1. The F,N -submodule T of Un does not depend on the choice of decompo-
sition and is G-invariant.

2. The F,G-modules Ux /T and (U/UN)y are naturally isomorphic.

Proof. 1. The homomorphism 1 induces an F,G-homomorphism I UN —
Ux. The image of E is an F,G-submodule X of Un. But on the other
hand writing UN =T @ FN the image of ¢ is T, ‘because T in UN
goes isomorphically onto T in Uy, while elements of FN have the form
Yonennf for f e F', and hence go to 0 in Uy. Thus T = X is unique
and G-invariant.

2. The natural surjection of Z,G-modules p : U — U/UY induces a surjec-
tion py : Uy — (U/UN)y. Treating this map as an N-module homo-
morphism we see that its kernel is exactly T: (U/UN)n = (F/FN)y,
so T clearly goes to 0. Furthermore, p_N|ﬁ is an isomorphism because
the modules Fy and (F/F~)y have the same dimension (the number of
ZpN-summands of F).

o

Remark 1. We observe in passing that the conditions of Weiss’” Theorem 1
imply the conditions of Theorem 2: if U |y is free then ¢ : Uy — UY defined
before Lemma 6 is an isomorphism so that if UY is a permutation module
then so is Uy, and hence so is (U/U")x, being isomorphic by Lemma 6 to
Un/T =Un.

LEMMA 7. Let U be a permutation Z,N -lattice with mazimal trivial sum-
mand T. If L' is a complement of T' in Un, there exists a Z,N-complement F'
of T in U such that Fy = L.
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Proof. Using Lemma 4 (applied with G = 1) we obtain a decomposition Uy =
T"®LwithT' =T and L =L'.

We claim that L is a complement to 7" in Uy: the intersection T'N L is pure
because T, L are and Z, is torsion free, but is 0 modulo p and hence is 0.
Further 7'+ L = Uy by Nakayama’s lemma, because T + L = Uy. This proves
the claim.

The submodule L of Uy is the image of a map from (U/T)y and hence we
obtain the diagram

UJT

|

U——»Un=TdL

Projectivity of U/T yields a Z,N-module homomorphism U/T — U whose
image is the submodule F' we require. O

The reader might wonder why, in Theorem 2, we are not required to make
any hypotheses at all on U |y. This is because Uy being a lattice already has
strong implications for U |y

LEMMA 8. Let N be a cyclic group of order p and V' a Z,N -lattice. Then Vi
is a lattice if, and only if, V is a permutation module.

Proof. This is a simple consequence of the classification and discussion of in-
decomposable Z, N-lattices given before Lemma 6: the N-coinvariants of the
indecomposable trivial and free Z, N-modules are Z,-lattices of rank 1, whereas
Sn = F, is not a lattice. O

The following theorem generalizes [10, Theorem 2.6)

THEOREM 9. Let U be a Z,G-lattice and suppose that Uy is a permutation
module. Let T' be a mazimal trivial summand of Uln and suppose that T' has
an FpG-complement in Uy . Then U is a permutation module.

Proof. By Lemma 8, U |y is a permutation module. Note that T is G-invariant
in Uy by Lemma 6. By Lemma 7 there is a ZpN-decomposition U [y=F & T
such that the Z,G-complement to T in Uy given in the statement is Fy. By
Lemma 4 we obtain a decomposition of Z,G-modules Uy = X ®© Y, with
X =T,Y = Fy. The natural projection v : U — Uy — X now yields a short
exact sequence of Z,G-modules

05K—>UL X >0,
where K = Ker(). We have the following commutative diagram, in which the
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rows are exact:

0 K U X 0
[l

0 Y Uy X 0

0 Fn Un T 0

The module X, being a summand of the permutation module Uy, is a per-
mutation module by [3, Lemma 0.3]. If we show that K is also a permutation
module, then the sequence splits by Lemma 5. For this we use Weiss’ Theorem.

o K |y is free: We have that F' C K, because the diagram above yields by
taking the upper row modulo p the commutative diagram

K T
Fn T
An element f € F C U drops modulo N into Fy = Fy and hence by
exactness of the lower sequence goes to 0 in 7', as claimed. But both F'

and K complement T, and hence they are equal. Thus K |y is free, so
by Lemma 3, K |y is free.

5

§‘<—Q|

0 0

e K is a permutation module: since K |y, X |n are permutation modules,
the sequence splits when restricted to N. Hence applying coinvariants the
sequence

0= Ky —Uy 2 X =0

is exact. Thus Ky is isomorphic to the kernel of the split surjection vy
and is thus a permutation module, being isomorphic to a summand of

Un.

As K, X are permutation modules, the sequence splits by Lemma 5 and so
U= K & X is also a permutation module, as required. O

We have already observed that the Z,G-module U/U" is, as a Z,N-module,
isomorphic to a direct sum of copies of Z,(¢) with a fixed generator of N acting
as (. That is, we may treat U/U” as an RG-lattice, where R = Z,(¢). If ever
H is a finite p-group, an RH-lattice is said to be monomial (or a generalized
permutation module) if its indecomposable summands are induced from rank
1 lattices for subgroups L of H, whose action from L necessarily comes via a
group homomorphism L — (¢).
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LemMA 10. If (U/UN) N is a permutation F,G-module, then U/UY is a mono-
mial RG-module.

Proof. Taking N-coinvariants corresponds to quotienting out by the maximal
ideal of R, and hence this result is [9, Theorem 3]. O

A Z,G-module V is projective relative to proper subgroups if, whenever a Z,G-
module homomorphism onto V' splits when restricted to any proper subgroup,
then it splits. The module V is projective relative to proper subgroups if,
and only if, every indecomposable summand of V is a direct summand of a
module induced from a proper subgroup of G [2, Lemma 2.2.3]. In particular, a
permutation Z,G-module is projective relative to proper subgroups if, and only
if, it has no trivial summands. For later use we also recall that a Z,G-module
V' is projective relative to the subgroup H if every Z,G-module homomorphism
onto V that splits over H also splits over GG. This is the case if, and only if, V'
is a direct summand of a Z,H-module induced up to G.

LEMMA 11. Suppose that N is contained in the Frattini subgroup ®(G) of G.
If Uly and (U/UN)N are permutation modules, then (U/UN)y is projective
relative to proper subgroups of G.

Proof. Being a permutation F,G-module by hypothesis, we must check that
(U/UN)N does not possess a trivial summand. By the Krull-Schmidt Theo-
rem and because U/UY is monomial by Lemma 10, if (U/U% )y had a trivial
summand then some indecomposable monomial summand of U/U® would be
trivial modulo N. This summand is necessarily of the form Z,(¢), where G acts
on ¢ via a group homomorphism ¢ : G — (¢). The module U/UN = F/F~
has no N-fixed points, so that N is not in the kernel of ¢. But the kernel
has index p, and hence G = N x Ker(yp), contradicting the hypothesis that
N < 9(G). O

3 PROOF OF THE MAIN THEOREM

Proof. (of Theorem 2) To show the forward implication, we may suppose that
U = 7Z,|G/H] for some subgroup H of G, in which case UY and Uy are both
isomorphic to Z,[G/HN]. If N is contained in H then (U/U")y = 0 and if
not, then (U/UY)y is isomorphic to F,[G/HN].

In order to show the reverse implication, We work by induction on |G|. Note
that by Lemma 8, U | is a permutation module. The strategy of the proof is to
find an IF,G-complement in Uy to the image of a maximal N-trivial summand
of U and then apply Theorem 9. There are two cases, which we treat separately.
Either N < ®(G) or G = N x H for some maximal subgroup H of G.

CASE 1: N < 9(G).

Fix a subgroup H of index pin G. Then H contains NN since N is in the Frattini
subgroup. Note that the conditions of the theorem are satisfied for U |z, so
that U g is a permutation module by the induction hypothesis.
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So write U lgp= T'@ F', where the indecomposable summands of 7" are N-trivial
and the indecomlﬁable summands of F' are N-free. Lemma 6 tells us that T
is G-invariant in Uy and that the short exact sequence of IF,G-modules

0T Uy —UN/T—0

does not depend on H. Moreover, the sequence splits over H for any choice
of H, and hence over every proper subgroup of G. As Uy/T = (U/UN)y,
the sequence thus splits over G by Lemma 11. The result now follows from
Theorem 9.

CASE 2: N is a direct factor of G.

If G = N x H, observe that U/U" can be treated as a Z,(¢)H-module with
¢ acting as a fixed generator of N. Since (U/U)y is a permutation module,
U/UY is monomial by Lemma 10.

Let p: U — U/UY be the canonical projection and let A be an indecomposable
G-summand of U/UY. Then either A is projective relative to a proper subgroup
containing N, or A = Z,(¢). In both cases, treated separately, we will find a
G-submodule Z4 of Uy mapping isomorphically onto Ay under py.

e First suppose that A = Z,(() Nilz for some complement H of N and
proper subgroup L of H, and where N acts as ¢ on Z,(¢). The module
U lnxr is a permutation module, so write it as a direct sum T & F with
T trivial over N and F free over N. As observed in the proof of Part
2 of Lemma 6, px has kernel 7' and it splits as an F,[N x L]-module
homomorphism because U |y« is a permutation module. As Ay is a
summand of (U/U™ )y, the induced map Uy — A also splits over N x L
and so, since Ay is projective relative to N x L, it also splits over G.
Define Z 4 to be the image of this splitting.

o A=17,(¢). Let Y be the inverse image of A under the G-homomorphism
p: U — U/UN. We claim that Y |y is a permutation module. If
Uly= T ® F with T trivial and F free, then p|r : F — U/UY is
surjective, and so there is z € Y N F' generating an N-free summand of Y’
and such that p(z) generates A. Now, Y = (2) + U because Y/UN = A.
Choose any Z,-complement Ty of (z) (in Y) that is contained inside U™ .
The direct sum Y = (z) @ Ty is a direct sum of N-modules, the first
being N-free and the second being N-trivial. So Y |y is a permutation
module.

The action of G on A is given by a group homomorphism G — (¢), whose
kernel, a subgroup S of index p complementing N, acts trivially on A. It
follows that the first and third terms in the short exact sequence

05UV s> Yi]sD Alg—0

are permutation modules, so the sequence splits via o : A |s— Y |g. If
A is generated by a as a G-module, consider y = a(a). The G-module
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generated by y is equal to the N-module generated by y, because S acts
trivially on y. The module Z = (y) is not N-trivial, because N doesn’t
act trivially on p(y) = a. Also Z % Z,(¢) because if it were, as Y is a
permutation module, Z would be in the kernel of the map ¥ — Yy. But
An # 0 and so

0# a=pn(an(a)) = pn(Y),

showing that 7 # 0 in Yy. Hence Z is N-free and we take Z4 = Zy.

So, for each indecomposable summand A in a decomposition of U/U" we have
found an IF,G-submodule Z4 of Uy mapping isomorphically onto A. We claim
that
U_N =T & @ Z4.
A

One easily checks that W := " Z4 = @ Z4 (because each py : Z4 — Apn
is injective) and that W NT = 0 (because the kernel of py is T'), so we need
only check that T 4+ W = Uy. But this follows because we have a short exact

sequence o
0T —=Ux — (U/UY)Ny =0

and, since TNW =0 and W = (U/U")y, we have

dim(Uy) = dim(T) + dim((U/UY)x) = dim(T) + dim(W).
Thus T + W = Uy. The result now follows by Theorem 9. O
For certain groups we may remove hypotheses.

COROLLARY 12. Let G be a generalized quaternion group (cf. [7, §5.8] for
example) and let N be a normal subgroup of order 2. The ZoG-lattice U is a
permutation module if, and only if

1. Uy is a permutation Z,|G/N]-module and
2. (U/UN)n is a permutation F,[G/N]-module.

Proof. For such a group, N is contained in ®(H) for every non-trivial subgroup
H of G. Tt follows that we only ever use Case 1 of the proof of Theorem 2,
which does not require that U” be a permutation module. o

4 EXAMPLES

If G is a cyclic p-group and N a subgroup of G, then [8, Proposition 6.12]
shows that a Z,G-lattice is a permutation module if, and only if, U |5 and
UY are permutation modules for Z, N and Z,[G/N] respectively. However, the
following examples show that in general we cannot remove either the hypothesis
that UY is a permutation module, nor that Uy is a permutation module, from
Theorem 2.
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Ezample 1. Let G = Cy x Cy = (n) x (h) and let N = (n). Consider the
ZoG-lattice U with Zs-basis a, b,z and action

na=>b,nb=a, nr=ur,

ha=—-a,hb=-b,hxt=x+a+0.

Then U | is isomorphic to Zy N®Zy and U™ is free as a Zo[G/N]-module. The
module U/UY has rank 1 with n acting as multiplication by —1, so (U/UN )y =
Fy is also a permutation module. But U itself is not a permutation module,
as can be seen by observing that U® has Zs-rank 1, which is impossible for a
ZoG-permutation module of Zs-rank 3. Note that in this example Uy is not
a permutation module, being isomorphic as a Z[G/N]-module to the trivial
module with basis @ + = plus the sign module (wherein h acts as multiplication
by —1) with basis .

Ezample 2. With notation as in Example 1, let U have the same action from
N but multiplication

ha=a+2x, hb=b+x, hr = —z.

One checks as above that Uy and (U/U™)x are permutation modules, while
U itself is not. In this case, U is not a permutation module.
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