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Abstract. This work is concerned with Mishchenko and Fomenko’s
celebrated theory of completely integrable systems on a complex
semisimple Lie algebra g. Their theory associates a maximal Poisson-
commutative subalgebra of C[g] to each regular element a ∈ g, and
one can assemble free generators of this subalgebra into a moment
map Fa : g → Cb. This leads one to pose basic structural questions
about Fa and its fibres, e.g. questions concerning the singular points
and irreducible components of such fibres.

We examine the structure of fibres in Mishchenko–Fomenko systems,
building on the foundation laid by Bolsinov, Charbonnel–Moreau,
Moreau, and others. This includes proving that the critical values
of Fa have codimension 1 or 2 in Cb, and that each codimension is
achievable in examples. Our results on singularities make use of a
subalgebra ba ⊆ g, defined to be the intersection of all Borel subal-
gebras of g containing a. In the case of a non-nilpotent a ∈ greg and
an element x ∈ ba, we prove the following: x+ [ba, ba] lies in the sin-
gular locus of F−1

a (Fa(x)), and the fibres through points in ba form
a rank(g)-dimensional family of singular fibres. We next consider the
irreducible components of our fibres, giving a systematic way to con-
struct many components via Mishchenko–Fomenko systems on Levi
subalgebras l ⊆ g. In addition, we obtain concrete results on irre-
ducible components that do not arise from the aforementioned con-
struction. Our final main result is a recursive formula for the number
of irreducible components in F−1

a (0), and it generalizes a result of
Charbonnel–Moreau. Illustrative examples are included at the end of
this paper.
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1 Introduction

1.1 Context and main results

There is a fruitful and well-developed synergy between Lie theory and complete
integrability, and this is perhaps best witnessed by the Mishchenko–Fomenko
systems on a complex semisimple Lie algebra g. Such systems were formally
introduced in the late 1970s [20], and they have received considerable attention
in the research literature (e.g. [1–6, 8, 11, 12, 14, 18, 21–26, 29]). Particular em-
phasis has been placed on the fibres of Fa : g → Cb, the Mishchenko–Fomenko
system determined by a regular element a ∈ g and a chosen basis of invariant
polynomials on g. While these fibres are known to be pure-dimensional [22],
they are sometimes singular and often admit complicated decompositions into
irreducible components. The singularities are partly governed by Bolsinov’s
description of Fa and its critical points [5], while Charbonnel and Moreau [7]
give significant insight into the aforementioned irreducible components.
We study the singularities and irreducible components of fibres in Mishchenko–
Fomenko systems, building on the foundation laid by Bolsinov [5], Charbonnel–
Moreau [7], Moreau [22], and others. To describe our results, let greg denote
the set of regular elements in g and consider its complement gsing := g \ greg.
Bolsinov [5] shows the critical points of Fa to be given by Singa := gsing+Ca ⊆
g, and we use this to investigate the critical values of Fa. More precisely, we
obtain the following result.

Theorem 1.1. For all a ∈ greg, the codimension of the closure Fa(Sing
a) in

Cb is 1 or 2.

We then use examples to show that each codimension is achievable.
While Theorem 1.1 gives information about the critical values of Fa, it has no
implications for identifying the smooth and singular fibres. We address this
by introducing a subalgebra ba ⊆ g, defined to be the intersection of all Borel
subalgebras of g containing a. This leads us to prove the following.

Theorem 1.2. Assume that a ∈ greg is not nilpotent. If x ∈ ba, then x +
[ba, ba] is contained in the singular locus of F−1

a (Fa(x)). In particular, the
fibre F−1

a (Fa(x)) is singular.

This gives context for considering the fibres F−1
a (Fa(x)) appearing above, i.e.

the fibres lying over points in Fa(b
a) ⊆ Cb. One is motivated to gauge the

prevalence of these singular fibres amongst all fibres of Fa, which amounts to
computing dim(Fa(b

a)). Our next result gives this dimension in addition to
supplementary facts about Fa(b

a).
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Theorem 1.3. Let a = s + n be the Jordan decomposition of a ∈ greg into
a semisimple element s ∈ g and a nilpotent element n ∈ g. Fix a Cartan
subalgebra h ⊆ g containing s and let W be the Weyl group of (g, h). Then
Fa(b

a) is a smooth, r-dimensional, closed subvariety of Cb with coordinate ring
canonically isomorphic to C[h]Ws , where r is the rank of g and Ws is the W -
stabilizer of s.

Our attention subsequently turns to describing the irreducible components of
the fibres of Fa. To this end, suppose that p is a parabolic subalgebra of g
containing a ∈ greg. Let a = s + n be the Jordan decomposition, and choose
a Cartan subalgebra h ⊆ p containing s. One then has a unique h-stable Levi
factor l ⊆ p. Let al ∈ l denote the projection of a onto l with respect to the
decomposition p = l ⊕ u, where u is the nilpotent radical of p. We establish
that al is regular in l, allowing us to form an appropriate Mishchenko–Fomenko
system Fal

: l → Cb(l). We then prove the following fact about the irreducible
components of F−1

a (Fa(x)) for x ∈ p.

Theorem 1.4. Use the objects and notation described in the previous para-
graph, and let xl ∈ l denote the projection of x ∈ p onto l. If Y is an irre-
ducible component of F−1

al
(Fal

(xl)) containing xl, then Y + u is an irreducible
component of F−1

a (Fa(x)) containing x and contained in p. The associated map

{irred. comp. Y ⊆ F−1
al

(Fal
(xl)) s.t. xl ∈ Y } −→

{irred. comp. Z ⊆ F−1
a (Fa(x)) s.t. x ∈ Z ⊆ p}

Y 7→ Y + u.

is a bijection.

This result has an interesting inductive quality, as it reduces certain questions
about Mishchenko–Fomenko fibres in g to questions about such fibres in lower-
dimensional reductive Lie algebras. On the other hand, it only constructs irre-
ducible components lying in the union of parabolic subalgebras containing a.
We are thereby motivated to find fibres F−1

a (z) with the following property:
there exists at least one irreducible component Z ⊆ F−1

a (z) that is not con-
tained in any proper parabolic subalgebra of g containing a. We call all such
irreducible components exotic, and we prove the following result.

Proposition 1.5. Assume that g is simple and that a ∈ greg is semisimple.
Let ga be the g-centralizer of a, and choose a collection of simple positive roots
with respect to the Cartan subalgebra ga. Denote the resulting positive Borel
subalgebra by b ⊆ g. Let ξ ∈ g be a sum of non-zero negative simple root vectors,
one for each negative simple root. If x ∈ ξ + b has a non-zero component
in the highest root space, then the fibre F−1

a (Fa(x)) has an exotic irreducible
component.

By virtue of Tarasov’s work [26], the above-mentioned subset ξ+ b is a section
of Fa : g → Cb. Proposition 1.5 therefore gives a b-dimensional family of fibres
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admitting exotic irreducible components. One shortcoming is that this family
turns out not to include the zero-fibre F−1

a (0), arguably one of the most natural
fibres to study. We address this issue in the context of a specific example.

Proposition 1.6. If g = sl3(C), then F−1
a (0) has an exotic irreducible com-

ponent for all a ∈ greg.

The zero-fibre also features prominently in Charbonnel and Moreau’s paper [7].
These authors take a ∈ greg to be nilpotent and give a recursive formula for
the number of irreducible components in F−1

a (0). We generalize this formula
to the case of an arbitrary a ∈ greg, proving the result below.

Theorem 1.7. For all a ∈ greg, the number of irreducible components in
F−1
a (0) is given by (25).

To formulate our last main result, we consider the adjoint group G of g and
the adjoint representation Ad : G → GL(g). Each x ∈ g thereby determines an
adjoint orbit Gx := {Adg(x) : g ∈ G} ⊆ g, and these orbits bear the following
relation to fibres of Fa.

Theorem 1.8. If a ∈ greg and x ∈ g \ Singa, then there exists a finite subset
Λa ⊆ C for which

F−1
a (Fa(x)) =

⋂

λ∈Λa

(
G(x + λa)− λa

)

and
F−1
a (Fa(x)) \ Singa =

⋂

λ∈Λa

(
G(x + λa)− λa

)
.

While this result is incidental to the overall emphasis of our paper, we believe
it to be interesting and worth documenting.

Remark 1.9. It is worthwhile to examine and distinguish between two extreme
cases, i.e. that of a semisimple a ∈ greg and that of a nilpotent a ∈ greg. The
former exhibits a so-called Tarasov section of Fa : g → Cb (see Theorem 3.7),
without which we would not have been able to prove Proposition 1.5. While this
section has no obvious analogue if a ∈ greg is nilpotent (see Remark 3.10), the
nilpotent case is nonetheless special; the map Fa : g → Cb is then intimately
related to the finite, non-periodic Toda lattice [1], and it is the subject of [7].
This is also the one case to which Theorem 1.2 does not apply.

1.2 Organization

Section 2 gathers some of the purely Lie-theoretic ideas on which this paper
depends. We begin with Section 2.1, which is largely devoted to notation,
conventions, and classical facts. Section 2.2 then establishes some results about
interactions between invariant polynomials, regular elements, and parabolic
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subalgebras. Section 2.3 subsequently gives a Lie-theoretic introduction to the
subalgebra ba ⊆ g mentioned above.
Section 3 is concerned with fundamental properties of Mishchenko–Fomenko
systems on g. This section begins with 3.1, which recalls the Mishchenko–
Fomenko system Fa : g → Cb and subalgebra Fa ⊆ C[g] associated to each
a ∈ greg. Section 3.2 then connects Fa to the Borel subalgebras of g that
contain a. This leads to Section 3.3, where we recall Tarasov’s sections of Fa and
discuss mild extensions thereof. Section 3.4 subsequently harnesses Moreau’s
work to consider Mishchenko–Fomenko systems on reductive Lie algebras. Such
systems are shown to have pure-dimensional fibres, and the fibre dimensions
are expressed in Lie-theoretic terms. Section 3.5 next gives a non-standard set
of free generators for Fa, and Section 3.6 uses this set to prove Theorem 1.8.
Section 4 studies the irreducible components of the fibres of Fa : g → Cb. The
proofs of Theorem 1.4 and related facts constitute Section 4.1. These results
are then used in Section 4.2 to obtain Theorem 1.7. Section 4.3 subsequently
discusses exotic irreducible components and proves Proposition 1.5.
Section 5 deals with the singularities of Mishchenko–Fomenko systems. Theo-
rem 1.1 is proved in Section 5.1, while Section 5.2 is concerned with the proofs
of Theorems 1.2 and 1.3.
Section 6 illustrates some of our main results in the cases g = sl2(C) (Section
6.1) and g = sl3(C) (Section 6.2). In addition, Section 6.2 contains the proof
of Proposition 1.6.
After Section 6, we list and describe some of the notation appearing throughout
our paper. This is merely a quick and convenient reference for the reader, and
should not be viewed as a source of definitions.
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several helpful discussions, and the referee for contextualizing our work. The
first author is supported by an NSERC Postdoctoral Fellowship.

2 Lie-theoretic foundations

In what follows, we establish and discuss the fundamental Lie-theoretic under-
pinnings of our work. The objects and notation introduced in Section 2.1 shall
remain fixed throughout this paper.

2.1 Conventions

Let g be a rank-r complex semisimple Lie algebra with Killing form 〈·, ·〉 :
g⊗C g → C, adjoint group G, and exponential map exp : g → G. One then has
the adjoint representation of G on g, to be denoted by

Ad : G → GL(g), g 7→ Adg, g ∈ G.
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The Killing form is Ad-invariant and therefore induces aG-module isomorphism

g
∼=−→ g∗, x 7→ x∨ := 〈x, ·〉, x ∈ g. (1)

Abusing notation slightly, we denote the inverse isomorphism by

g∗
∼=−→ g, γ 7→ γ∨, γ ∈ g∗. (2)

The canonical Lie–Poisson structure on g∗ thereby corresonds to a Poisson
bracket {·, ·} on C[g] := Sym(g∗), defined as follows:

{f1, f2}(x) := 〈x, [df1(x)∨, df2(x)∨]〉, f1, f2 ∈ C[g], x ∈ g, (3)

where df1(x), df2(x) ∈ g∗ are the differentials at x of f1 and f2, respectively.
Note that the symplectic leaves associated with this Poisson bracket are pre-
cisely the adjoint orbits of G, i.e. the locally closed subvarieties

Gx := {Adg(x) : g ∈ G} ⊆ g, x ∈ g.

Now let
ad : g → gl(g), x 7→ adx = [x, ·], x ∈ g

denote the adjoint representation of g on itself. Each x ∈ g then determines a
G-stabilizer

Gx := {g ∈ G : Adg(x) = x}
and a g-centralizer

gx := ker(adx) = {y ∈ g : adx(y) = 0}.

The former is a closed subgroup of G with Lie algebra equal to the latter, and
x is called regular if these two objects are r-dimensional. Let greg denote the
set of all regular elements, which is known to be an open, dense, G-invariant
subvariety of g. Its complement is the closed subvariety gsing := g \ greg of all
singular elements in g.
Recall that x ∈ g is called semisimple (resp. nilpotent) if adx is semisimple
(resp. nilpotent) as a vector space endomorphism of g. Every x ∈ g has a
decomposition of the form x = s+ n, where s, n ∈ g are uniquely determined
by the following properties: s is semisimple, n is nilpotent, and [s, n] = 0. One
calls s (resp. n) the semisimple (resp. nilpotent) part of x, and refers to the
statement x = s+ n as the Jordan decomposition of x.
We now discuss some conventions regarding the root space decomposition. If
h ⊆ g is a Cartan subalgebra, we shall let ∆ ⊆ h∗ denote the associated set of
roots. Note that each α ∈ ∆ determines a one-dimensional root space

gα := {x ∈ g : [h, x] = α(h)x for all h ∈ h},

and that one has
g = h⊕

⊕

α∈∆

gα.
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Now suppose that we have chosen a Borel subalgebra b ⊆ g containing h.
This choice induces a partition of ∆ into positive roots ∆+ and negative roots
∆− = −∆+, so that

b = h⊕
⊕

α∈∆+

gα.

The nilpotent radical of b is then given by

u = [b, b] =
⊕

α∈∆+

gα.

Let us use Π ⊆ ∆+ to denote the set of simple roots. The subsets of Π are
in bijective correspondence with the standard parabolic subalgebras of g, i.e.
the parabolic subalgebras p ⊆ g satisfying b ⊆ p. This bijection associates the
subset

Πp := {α ∈ Π : g−α ⊆ p}
to each standard parabolic subalgebra p. The inverse bijection takes a sub-
set Q ⊆ Π to a standard parabolic subalgebra pQ, defined via the following
procedure. Let ∆Q be the set of roots occurring as Z-linear combinations of
elements in Q, i.e.

∆Q := ∆ ∩ spanZ(Q) ⊆ h∗.

Consider the reductive subalgebra

lQ := h⊕
⊕

α∈∆Q

gα

and the nilpotent subalgebra

uQ :=
⊕

α∈∆+\∆Q

gα.

The vector space direct sum

pQ := lQ ⊕ uQ

is then a standard parabolic subalgebra of g with Levi factor lQ and nilpotent
radical uQ.
Let us conclude with a few aspects of invariant polynomials on g. To this end,
recall that a polynomial f ∈ C[g] is called invariant if f(Adg(x)) = f(x) for
all g ∈ G and x ∈ g. One has the subalgebra C[g]G ⊆ C[g] of all invariant
polynomials on g, and this subalgebra is known to be generated by r-many
homogeneous, algebraically independent elements. Let f1, . . . , fr be a fixed
choice of such generators, and let d1, . . . , dr ∈ Z>0 denote their respective
homogeneous degrees. If b is the dimension of any Borel subalgebra in g, then
one has

b = 1
2 (dim(g) + r) =

r∑

i=1

di. (4)
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It will be advantageous to briefly consider the map

F := (f1, . . . , fr) : g → Cr (5)

and its fibres. We note that the closure of an adjoint orbit O ⊆ greg is a fibre
of F , provided that this closure is taken in g. The association O 7→ O then
defines a bijection from the set of adjoint orbits O ⊆ greg to the set of fibres of
F . It follows that

F−1(F (x)) = Gx and F−1(F (x)) ∩ greg = Gx (6)

for all x ∈ greg. If x ∈ greg is semisimple, then Gx is closed in g and
F−1(F (x)) = Gx = F−1(F (x))∩ greg. We also note that F−1(0) is the cone of
all nilpotent elements in g.

2.2 Some basic results

We now establish a few Lie-theoretic facts needed in subsequent sections, be-
ginning with the following slight generalization of [9, Corollary 3.1.43].

Lemma 2.1. Let p ⊆ g be a parabolic subalgebra with nilpotent radical u. If
f ∈ C[g]G and x ∈ p, then f is constant on x+ u.

Proof. Let U be the closed, connected subgroup of G having Lie algebra u,
observing that U = exp(u). Given u ∈ U and ξ ∈ u, let us consider the element
Adu(x+ ξ) ∈ g. We have u = exp(η) for some η ∈ u, so that

Adu(x+ ξ) = x+ ξ +

∞∑

k=1

1

k!
adkη(x + ξ).

Since u is an ideal of p, this calculation establishes that Adu(x+ ξ) ∈ x+ u. It
follows that x+ u is invariant under the adjoint action of U .
Now assume that our element x is regular and semisimple. The centralizer
gx is then a Cartan subalgebra, and as such it must consist of semisimple
elements. The subalgebra u consists entirely of nilpotent elements, implying
that gx ∩ u = {0}. Noting again that u is an ideal in p, we conclude that adx
restricts to a vector space isomorphism

adx : u
∼=−→ u.

This combines with the U -invariance of x+ u and [9, Lemma 1.4.12] to imply
the following: Ux is a Zariski-dense subset of x + u, where Ux ⊆ g denotes
the U -orbit of x. Since an orbit of a unipotent group on an affine variety is
Zariski-closed (see [9, Lemma 3.1.1]), we deduce that

x+ u = Ux.
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Our invariant polynomial f must therefore satisfy

f(x+ ξ) = f(x)

for all ξ ∈ u. This proves the lemma in the case that x is regular and semisimple.
At the same time, the regular semisimple elements of g in p form a dense subset
of p. Continuity thereby forces f to be constant on x+ u for all x ∈ p.

Remark 2.2. Note that Lemma 2.1 reduces to [9, Corollary 3.1.43] if p = b

is a Borel subalgebra. In this particular case, our proof becomes essentially
identical to the one given for [9, Lemma 3.1.44].

The proof of Lemma 2.1 turns out to imply the following extra result.

Corollary 2.3. Let p ⊆ g be a parabolic subalgebra with nilpotent radical u
and chosen Levi factor l, and let x ∈ p be such that gx ∩ u = {0}. Write
x = xl + xu with xl ∈ l and xu ∈ u. Then

x+ u = xl + u = Ux

is a single U -orbit. If x is also regular and semisimple, then xl is regular and
semisimple in l.

Proof. The proof of Lemma 2.1 shows that if x ∈ p satisfies gx ∩ u = {0}, then
x + u is a single U -orbit. Hence xl = x − xu ∈ x + u must be U -conjugate
to x. If x is regular and semisimple in g, then the previous sentence forces xl

to be regular and semisimple in g. It is then straightforward to show that xl is
regular and semisimple in l.

Lemma 2.4. Let p ⊆ g be a parabolic subalgebra with nilpotent radical u and
chosen Levi factor l, so that p = l ⊕ u. Assume that a ∈ p is regular and
nilpotent in g, and let al ∈ l denote the projection of a onto l. Then al is
regular in l.

Proof. Let bl ⊆ l be a Borel subalgebra. Note that al is L-conjugate to a point
in bl, and that L respects the decomposition p = l ⊕ u. We may therefore
assume that al ∈ bl, in which case a ∈ b := bl ⊕ u. Now let h be a Cartan
subalgebra of g contained in bl. Note that h and b (resp. h and bl) determine
sets of roots ∆ (resp. ∆l), positive roots ∆+ (resp. (∆+)l), and simple roots
Π (resp. Πl) for g (resp. l), and that we have

b = h⊕
⊕

α∈∆+

gα.

Since a is nilpotent and contained in b, we conclude that

a =
∑

α∈∆+

rα
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with rα ∈ gα for each α ∈ ∆+. The regularity of a and [15, Theorem 5.3] then
imply that rα 6= 0 for all α ∈ Π. It follows that

al =
∑

α∈(∆+)l

rα

with rα 6= 0 for each α ∈ Π∩ (∆+)l = Πl. Another application of [15, Theorem
5.3] then shows al to be regular in l.

To prepare for what lies ahead, we record the following standard fact (cf. [27,
Proposition 20.7.6]).

Lemma 2.5. Let p be a parabolic subalgebra of g. If x ∈ p, then the semisimple
and nilpotent parts of x are contained in p. In particular, this holds if p = b is
a Borel subalgebra.

Lemma 2.6. Let a ∈ greg have a Jordan decomposition of a = s+n, where s ∈ g

is semisimple and n ∈ g is nilpotent. Suppose that h ⊆ g is a Cartan subalgebra
containing s, and that b ⊆ g is a Borel subalgebra containing a and h. Fix a
subset Q of the simple roots determined by h and b, and let ΠQ, ∆Q, lQ, uQ,
and pQ := lQ ⊕ uQ be as described at the end of Section 2.1. Let alQ ∈ lQ be
the projection of a ∈ pQ onto lQ. Then alQ is regular in lQ.

Proof. Lemma 2.5 implies that n ∈ b, while we know that n ∈ gs. These
considerations force n to take the form

n =
∑

(α∈∆+)s

nα,

where ∆+ is the set of positive roots determined by h and b, (∆+)s := {α ∈
∆+ : α(s) = 0}, and nα ∈ gα for all α ∈ (∆+)s. On the other hand, ga = gs∩gn
is the gs-centralizer of n. The regularity of a in g thus forces n to be regular in
gs. The previous three sentences and [15, Theorem 5.3] then imply that nα 6= 0
for all simple roots α of g satisfying α(s) = 0.
Now let Q be a subset of the simple roots. Noting that s ∈ h ⊆ lQ, we have
alQ = s+ nlQ with

nlQ =
∑

α∈(∆+)s∩∆Q

nα. (7)

The element s commutes with all nα appearing above, so that alQ = s + nlQ

is the Jordan decomposition of alQ . We conclude that the lQ-centralizer of alQ
equals the centralizer of nlQ in (lQ)s. It will therefore suffice to prove that nlQ

is regular in (lQ)s. We thus observe that the simple roots of (lQ)s are precisely
the simple roots of g that lie in Q and annihilate s. At the same time, the
previous paragraph implies that nα 6= 0 for all α ∈ Q satisfying α(s) = 0.
It now follows from (7) and [15, Theorem 5.3] that nlQ is regular in (lQ)s,
completing the proof.

Documenta Mathematica 25 (2020) 1195–1239



On the Fibres of Mishchenko–Fomenko Systems 1205

Proposition 2.7. Suppose that a ∈ greg has a Jordan decomposition of a =
s + n. Let p ⊆ g be a parabolic subalgebra with a ∈ p, and choose a Cartan
subalgebra h ⊆ g with s ∈ h ⊆ p. Write l for the unique h-stable Levi factor of
p, and let u denote the nilpotent radical of p. Let al ∈ l be the projection of a
onto l with respect to the decomposition p = l⊕ u. Then al is regular in l.

Proof. Choose a Borel subalgebra bl of l that contains h. Since p = l⊕ u is an
L-module decomposition and al is L-conjugate to a point in bl, we may assume
that al ∈ bl. It then follows that a ∈ b := bl ⊕ u. We also have b ⊆ p, so that
p = pQ for some subset Q of the simple roots determined by h and b. Using the
definition of lQ given at the end of Section 2.1, we see that lQ is h-invariant. It
follows that lQ = l.
The previous paragraph shows us to be in the situation of Lemma 2.6, implying
that al is regular in l.

Remark 2.8. Let p ⊆ g be a parabolic subalgebra with Levi factor l and nilpotent
radical u. Our last few results make extensive use of the decomposition p = l⊕u

and the induced projection map p → l. This projection extends to a projection
g → l, defined as follows. Given a ∈ g, consider the linear functional a∗l ∈ l∗

defined by a∗l (l) = 〈a, l〉, l ∈ l. Since the Killing form on g is non-degenerate
when restricted to a bilinear form on l, a∗l = 〈al, ·〉 for some unique element
al ∈ l. Our projection g → l is then defined by a 7→ al. One then readily verifies
that this extends the above-mentioned projection p → l.
In light of Proposition 2.7, it is tempting to imagine that a ∈ greg implies
al ∈ lreg. This implication turns out to be false.

2.3 The subalgebra ba associated with a ∈ greg

To prepare for Section 5, we now associate a certain subalgebra ba ⊆ g to
each a ∈ greg. Explaining this association here allows us to avoid a purely
Lie-theoretic digression in Section 5.
Let a ∈ greg have a Jordan decomposition of a = s + n, so that s ∈ g is
semisimple, n ∈ g is nilpotent, and [s, n] = 0. The centralizer gs ⊆ g is a
reductive subalgebra with rank(gs) = r. We also have the decomposition

gs = z(gs)⊕ [gs, gs],

where z(gs) denotes the centre of gs. Let us set l := dim(z(gs)), observing
that the semisimple subalgebra [gs, gs] has rank r− l. Noting that a is regular
and ga = gs ∩ gn, the previous sentence and a simple dimension count imply
that n is regular in [gs, gs]. It follows that n lies in a unique Borel subalgebra
b̃a ⊆ [gs, gs], and that the [gs, gs]-centralizer [gs, gs]n is contained in b̃a. We
thus have

ga = gs ∩ gn = z(gs)⊕ [gs, gs]n ⊆ z(gs)⊕ b̃a =: ba. (8)

Observe that a ∈ ba, and that ba is a Borel subalgebra of gs.
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Lemma 2.9. If a ∈ greg has a Jordan decomposition of a = s + n, then ba is
the unique Borel subalgebra of gs that contains n.

Proof. Given a Borel subalgebra b ⊆ gs containing n, note that b∩ [gs, gs] is a
solvable subalgebra of [gs, gs] containing n. We conclude that b∩ [gs, gs] ⊆ b̃a,
which implies the inclusion

z(gs)⊕ (b ∩ [gs, gs]) ⊆ ba. (9)

Now observe that the codimension of [gs, gs] in gs is precisely l = dim(z(gs)),
so that

dim(b ∩ [gs, gs]) ≥ dim(b)− l.

It follows that the left hand side of (9) has dimension at least dim(b). Since
this left hand side is also contained in b, it must equal b. The inclusion (9)
thus becomes b ⊆ ba. This forces b = ba to hold, as b and ba are both Borel
subalgebras of gs.

Lemma 2.10. Suppose that a ∈ greg has a Jordan decomposition of a = s+ n.
If a is contained in a Borel subalgebra b ⊆ g, then ba = b ∩ gs. In particular,
ba ⊆ b.

Proof. Lemma 2.5 implies that s, n ∈ b, so that there exists a Cartan subalge-
bra h of g satisfying s ∈ h ⊆ b. Note also that b determines the positive and
negative roots of (g, h), to be denoted ∆+ ⊆ h∗ and ∆− ⊆ h∗, respectively.
Now observe that h is a Cartan subalgebra of gs, allowing us to consider the
roots ∆s ⊆ h∗ of (gs, h). It is straightforward to check that ∆s ∩ ∆+ and
∆s∩∆− form positive and negative roots in ∆s, respectively. One then readily
verifies that b ∩ gs is the Borel subalgebra of gs corresponding to the positive
roots ∆s ∩∆+. Together with Lemma 2.9 and the fact that n ∈ b ∩ gs, this
implies that ba = b ∩ gs.

Proposition 2.11. If a ∈ greg, then ba is the intersection of all Borel subal-
gebras of g that contain a.

Proof. Let q denote the intersection of Borel subalgebras that contain a. The
inclusion ba ⊆ q follows immediately from Lemma 2.10. To show the oppo-
site inclusion, we choose a Borel subalgebra b ⊆ g containing a and let h,
∆+, ∆−, and ∆s be exactly as introduced in the proof of Lemma 2.10. The
aforementioned lemma gives ba = b ∩ gs, which becomes

ba = h⊕
⊕

α∈∆+∩∆s

gα (10)

once b ∩ gs is decomposed into h-weight spaces.
Let W := W (g, h) and Ws := W (gs, h) be the Weyl groups of (g, h) and (gs, h),
respectively. Recall that the length l(t) of an element t ∈ W is the number
of negative roots that t sends into ∆+. Denote by u ∈ W and v ∈ Ws the
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longest elements in W and Ws, respectively. One knows that u∆+ = ∆−,
l(v) = |∆− ∩∆s| and v(∆− ∩∆s) = ∆+ ∩∆s. This implies that vα ∈ ∆− for
each α ∈ ∆− \∆s. With these last two sentences in mind, set w = vu and note
that

∆+ ∩ w∆+ = ∆+ ∩ v(u∆+)

= ∆+ ∩ v∆−

= ∆+ ∩ v
(
(∆− ∩∆s) ∪ (∆− \∆s)

)

= ∆+ ∩
(
v(∆− ∩∆s) ∪ v(∆− \∆s)

)

= ∆+ ∩∆s.

This calculation and (10) imply that b ∩ wb = ba, where wb is the Borel
subalgebra of g defined by

wb := h⊕
⊕

α∈w∆+

gα.

It follows that a lies in both b and wb, implying the inclusion q ⊆ b∩wb = ba.
This completes the proof.

Corollary 2.12. Suppose that a ∈ greg. If b ⊆ g is a Borel subalgebra con-
taining a, then ga ⊆ b.

Proof. The statement (8) gives ga ⊆ ba, while Proposition 2.11 implies that
ba ⊆ b. We conclude that ga ⊆ b.

3 Generalities on Mishchenko–Fomenko systems

We devote the next few sections to a general discussion of Mishchenko–Fomenko
systems on g. While Sections 3.1–3.3 largely review relevant parts of the liter-
ature, Sections 3.4–3.6 contain new results.

3.1 The Mishchenko–Fomenko subalgebra

Let us fix a ∈ greg. Given f ∈ C[g] and λ ∈ C, consider the argument-shifted
polynomial fλ,a ∈ C[g] given by

fλ,a(x) := f(x+ λa), x ∈ g. (11)

Denote by Fa ⊆ C[g] the subalgebra generated by all fλ,a with f ∈ C[g]G and
λ ∈ C, i.e.

Fa :=
〈
fλ,a| f ∈ C[g]G, λ ∈ C

〉
⊆ C[g]. (12)

We refer to Fa as the Mishchenko–Fomenko subalgebra determined by a, largely
to recognize its origins in the work [20].
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Now recall the generators f1, . . . , fr ∈ C[g]G fixed in Section 2.1, and let
d1, . . . , dr ∈ Z>0 be their respective homogeneous degrees. The expansion

(fi)λ,a(x) = fi(x+ λa) = fi(a)λ
di +

di−1∑

j=0

fa
ij(x)λ

j , x ∈ g, λ ∈ C (13)

implicitly defines new polynomials fa
ij ∈ C[g] for i ∈ {1, . . . , r} and j ∈

{0, . . . , di − 1}. Note that fa
i0 = fi for all i ∈ {1, . . . , r}, while (4) implies

that total number of polynomials fij is b. These considerations justify our enu-
merating the fa

ij as f1, . . . , fb, where f1, . . . , fr are exactly as fixed in Section
2.1. Observe that this notation suppresses the dependence on a.
It is straightforward to verify that f1, . . . , fb generate Fa as an algebra. This
is an instance of the following more substantial fact (cf. [20, Theorem 4.2]).

Theorem 3.1 (Mishchenko–Fomenko). If a ∈ greg, then Fa is a Poisson-
commutative subalgebra of C[g] freely generated by f1, . . . , fb.

Remark 3.2. The freeness part amounts to f1, . . . , fb being algebraically inde-
pendent in C[g]. Mishchenko and Fomenko’s arguments in [20] only establish
this algebraic independence for a semisimple element a ∈ greg. Algebraic inde-
pendence for all a ∈ greg can be extracted from [5, Theorem 1.3] or [23, Sec-
tion 3].

Theorem 3.1 implies that f1, . . . , fb form a completely integrable system on
the Poisson variety g, i.e. fr+1, . . . , fb restrict to form a completely integrable
system on each generic adjoint orbit in g (cf. [12,20,23]). To study this system,
one often assembles f1, . . . , fb into a map

Fa := (f1, . . . , fb) : g → Cb. (14)

We will sometimes refer to Fa as the Mishchenko–Fomenko map, and to the
fibres of Fa as Mishchenko–Fomenko fibres.

Remark 3.3. Observe that the map Fa satisfies

Fa(Adg(x)) = FAd
g−1 (a)(x)

for all g ∈ G and x ∈ g. In particular, the essential properties of Fa only
depend on the adjoint orbit of a.

Remark 3.4. One can verify that

F−1
a (Fa(x)) = {y ∈ g : f(x+ λa) = f(y + λa) ∀f ∈ C[g]G, λ ∈ C} (15)

for all x ∈ g, a fact that we use extensively in this paper. Now suppose that
h1, . . . , hb ∈ C[g] is another collection of algebraically independent generators
for Fa, and consider the map

Ha := (h1, . . . , hb) : g → Cb.

It is then a straightforward consequence of (15) that F−1
a (Fa(x)) =

H−1
a (Ha(x)) for all x ∈ g.
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It will be advantageous to recall Bolsinov’s work on the critical points of Fa,
i.e. the points x ∈ g for which dFa(x) : Txg → C has rank less than b. His
result [5, Proposition 3.1] states that the critical points of Fa constitute the
subset

Singa := gsing + Ca ⊆ g. (16)

This means that the regular points of Fa are given by

gasreg := g \ Singa = {x ∈ g : x+ Ca ⊂ greg}.
Notice that gasreg is invariant under the dilation action of C× on g. This reflects
the fact that each component fa

ij of Fa is homogeneous of degree di − j.

3.2 Some elementary results about Fa

In what follows, we establish some straightforward facts about the Mishchenko–
Fomenko map Fa. These facts are exploited in later parts of the paper.

Proposition 3.5. Suppose that a ∈ greg is contained in a Borel subalgebra
b ⊆ g. If B ⊆ G is the corresponding Borel subgroup, then the restriction
Fa

∣∣
b
: b → Cb is B-invariant.

Proof. Choose a Cartan subalgebra h ⊆ b and set u := [b, b]. We then have
b = h ⊕ u as vector spaces, so that each x ∈ b decomposes as x = xh + xu,
xh ∈ h, xu ∈ u. Now let T ⊆ B (resp. U ⊆ B) be the maximal torus (resp.
maximal unipotent subgroup) corresponding to h (resp. u). It follows that
B = TU , so that each b ∈ B takes the form b = tu, t ∈ T , u ∈ U . Since the
exponential map defines an isomorphism from u to U , we may write u = exp(y)
for some y ∈ u.
Now suppose that b ∈ B and x ∈ b. The previous paragraph justifies our
writing b = texp(y), t ∈ T , y ∈ u and x = xh + xu, xh ∈ h, xu ∈ u. We thus
have

Adexp(y)(x) = xh + xu +

∞∑

k=1

1

k!
adky(x) ∈ xh + u,

so that
Adb(x) = Adt(Adexp(y)(x)) ∈ Adt(xh + u) = xh + u.

It follows that any f ∈ C[g]G satisfies

f(Adb(x) + λa) = f(xh + λa) = f(x+ λa),

where we have used [9, Corollary 3.1.43] twice. We conclude that Fa(Adb(x)) =
Fa(x) (see (15)), completing the proof.

Corollary 3.6. Let all objects and notation be as set in the statement of
Proposition 3.5. If x ∈ b, then Bx ⊆ F−1

a (Fa(x)). In particular, x + [b, b] ⊆
F−1
a (Fa(x)) for all regular semisimple x ∈ b.

Proof. Our first assertion is an immediate consequence of Proposition 3.5. The
second assertion follows from the first, together with the fact thatBx = x+[b, b]
for all regular semisimple x ∈ b (see [9, Lemma 3.1.44]).
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3.3 Sections of Fa

Given a ∈ greg, the following question is natural: does the Mishchenko–
Fomenko map Fa : g → Cb admit a global section, i.e. a closed subvariety
Z ⊆ g for which Fa

∣∣
Z
: Z → Cb is a variety isomorphism? Tarasov [26] pro-

vides an affirmative answer for semisimple elements a ∈ greg (cf. [26, Lemma
4], [18, Theorem 3.6]).

Theorem 3.7. Let a ∈ greg be semisimple, and choose a collection Π of simple
roots for g with respect to the Cartan subalgebra ga. Let b ⊆ g denote the
positive Borel subalgebra induced by the choice of simple roots, and let ξ ∈ g be
of the form

ξ =
∑

α∈Π

e−α, e−α ∈ g−α \ {0}, α ∈ Π.

The affine subspace ξ + b is then a global section of Fa.

We will sometimes refer to ξ + b as a Tarasov section. Such sections have
interesting implications, some of which we now discuss.

Lemma 3.8. If a ∈ greg and Z ⊆ g is a global section of Fa, then Z ⊆ gasreg.

Proof. Since Fa

∣∣
Z
is an isomorphism, it follows that the differential d(Fa

∣∣
Z
)(z) :

TzZ → Cb is an isomorphism for all z ∈ Z. We conclude that dFa(z) : Tzg → Cb

has rank b for all z ∈ Z, i.e. every point in Z is a regular point of Fa. Since
gasreg is exactly the set of regular points of Fa (see Section 3.1), we must have
Z ⊆ gasreg.

Corollary 3.9. Suppose that a ∈ greg is semisimple, and adopt all notation
from Theorem 3.7. The following statements then hold.

(i) ξ + b ⊆ gasreg;

(ii) Fa

∣∣
ga
sreg

: gasreg → Cb is surjective.

Proof. Theorem 3.7 implies that ξ + b is a global section of Fa. Lemma 3.8
then yields ξ + b ⊆ gasreg, proving (i). Part (ii) follows from (i) and the fact
that ξ + b is a global section of Fa.

Remark 3.10. Charbonnel and Moreau [7, Remark 3] take a ∈ greg to be
nilpotent and explain that F−1

a (0) need not intersect gasreg (e.g. g = sln(C) for
certain n > 3). By Lemma 3.8, this means that Fa need not admit a global
section when a ∈ greg is nilpotent. One can nevertheless develop the following
counterpart of Theorem 3.7.
Let a ∈ greg be nilpotent, in which case ba is the unique Borel subalgebra of g
that contains a. The Jacobson–Morozov theorem allows us to include a into an
sl2-triple (a, h, e), meaning that h, e ∈ g satisfy

[a, e] = h, [h, a] = 2a, and [h, e] = −2e.
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Set h := gh, noting that h ⊆ ba. The Cartan subalgebra h ⊆ ba allows us to
define an opposite Borel subalgebra ba− ⊆ g. It is then straightforward to verify
that e ∈ ba−.
Now suppose that x ∈ h ∩ greg and let Ba ⊆ G be the Borel subgroup with Lie
algebra ba. Noting that a ∈ ua := [ba, ba], [9, Lemma 3.1.44] implies that

x+ a+ λa ∈ x+ ua = Bax

for all λ ∈ C. This observation establishes that a+ x ∈ gasreg, so that

dim(ker(dFa(a+ x))) = dim(g)− b = dim(ua).

Now note that Lemma 2.1 gives

f(a+ x+ µv + λa) = f(a+ x+ λa)

for any µ ∈ C, v ∈ ua, and f ∈ C[g]G, implying that ua ⊆ ker(dFa(a + x)).
These last two sentences imply that

ua = ker(dFa(a+ x)).

In particular, the differential of

Fa

∣∣
a+ba

−

: a+ ba− → Cb

is invertible at a+ x for all x ∈ h∩ greg. We may therefore find an open dense
neighbourhood V ⊆ a+ ba− of a+ (h ∩ greg) such that Fa

∣∣
V
: V → Cb is a local

biholomorphism.
Note that Fa

∣∣
V

need not be injective. To see this, suppose that f ∈ C[g]G,
x ∈ h ∩ greg, and w ∈ W , the Weyl group of (g, h). Lemma 2.1 then yields

f(a+ wx + λa) = f(wx) = f(x) = f(a+ x+ λa),

which implies that Fa(a+wx) = Fa(a+x). We thus expect Fa

∣∣
a+ba

−

: a+ba− →
Cb to be generically |W |-to-one as a map to its image. So while there does not
seem to be a direct analogue of the Tarasov section in the nilpotent case, we
have an affine subspace that intersects generic fibres in finitely many points.

Remark 3.11. Our previous remark discusses the non-existence of global sec-
tions for certain Mishchenko–Fomenko maps. There turns out to be an in-
teresting counterpart in the context of Gelfand–Zeitlin theory. In more detail,
Colarusso and Evens [10, Corollary 5.19] prove that the Gelfand–Zeitlin map
on son(C) admits no global sections for n > 3.

3.4 Mishchenko–Fomenko fibres in reductive Lie algebras

In the interest of what lies ahead, we now establish some general properties
of Mishchenko–Fomenko fibres. We begin by considering the part of Section
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3.1 that precedes Equation (14), noting that everything makes sense if one
replaces g with an arbitrary reductive Lie algebra k. We may thereby form a
Mishchenko–Fomenko map Fa : k → Cb(k) for each a ∈ kreg, where b(k) is the
dimension of a Borel subalgebra in k.

Proposition 3.12. Let k be a complex reductive Lie algebra of rank rk(k). If
a ∈ kreg, then all fibres of Fa are pure-dimensional with irreducible components
of dimension b(k)− rk(k).

Proof. We first assume that k is semisimple. By [22, Theorem 1.2], Fa is flat
and surjective. It then follows from [13, Corollary 9.6] that every fibre of Fa

is pure-dimensional with irreducible components of dimension dim(k) − b(k) =
b(k)− rk(k).
Now assume that k is reductive, and let z(k) be the centre of k. One has

k = z(k) ⊕ [k, k], (17)

where [k, k] =: l is semisimple with rank rk(l) = rk(k) − dim(z(k)). If a ∈ kreg,
then we may write a = a′ + a′′ with a′ ∈ z(k) and a′′ ∈ l. Since ka = z(k)⊕ la′′ ,
we must have a′′ ∈ lreg.
Let d := dim(z(k)) and choose a basis f1, . . . , fd of z(k)∗. Let us also choose
homogeneous, algebraically independent generators fd+1, . . . , frk(k) of C[l]L,
where L is the adjoint group of L. Note that the decomposition (17) allows
us to regard f1, . . . , frk(k) as polynomials on k. It is then not difficult to ver-
ify that f1, . . . , frk(k) are homogeneous, algebraically independent generators of

C[k]K , where K is the adjoint group of k. We then have Fa : k → Cb(k), the
Mishchenko–Fomenko map obtained from a ∈ kreg and f1, . . . , frk(k) ∈ C[k]K .

Let us also consider the Mishchenko–Fomenko map Fa′′ : l → Cb(k)−d ob-
tained from a′′ ∈ lreg and fd+1, . . . , frk(k) ∈ C[l]L. If we use (17) to regard the
f1, . . . , fd and the components of Fa′′ as polynomials on k, then

Fa = (f1, . . . , fd, Fa′′ ).

Each fibre of Fa must therefore take the form {z} × F−1
a′′ (w) for z ∈ z(k) and

w ∈ Cb(k)−d. The first paragraph of this proof then implies that every fibre of
Fa is pure-dimensional with irreducible components of dimension b(l) − rk(l),
where b(l) (resp. rk(l)) denotes the dimension of a Borel subalgebra in l (resp.
the rank of l). Note also that b(l) = b(k)− d and rk(l) = rk(k) − d, so that

b(l)− rk(l) = b(k)− rk(k).

This completes the proof.

3.5 Alternative generators of Fa

Returning to the notation and conventions used prior to Section 3.4, we now
introduce an alternative set of algebraically independent generators for the
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Mishchenko–Fomenko subalgebra Fa. Fix a ∈ greg and recall the meaning
of fλ,a for f ∈ C[g] and λ ∈ C. Recall also that d1, . . . , dr ∈ Z>0 are the
homogeneous degrees of f1, . . . , fr ∈ C[g]G, respectively. We have the following
lemma.

Lemma 3.13. Let Λ = {λ(i)
j : i ∈ {1, . . . , r}, j ∈ {0, . . . , di − 1}} ⊆ C be such

that λ
(i)
0 , . . . , λ

(i)
di−1 are pairwise distinct for each fixed i ∈ {1, . . . , r}. Fix a ∈

greg and define

gij := (fi)λ(i)
j

,a
− (fi)λ(i)

j
,a
(0) ∈ C[g]

for each i ∈ {1, . . . , r} and j ∈ {0, . . . , di − 1}. The polynomials gij then freely
generate Fa as an algebra.

Proof. The homogeneity of fi implies that (fi)λ,a(0) = fi(a)λ
di for any i ∈

{1, . . . , r} and λ ∈ C, so that (13) yields

(fi)λ,a(x) − (fi)λ,a(0) =

di−1∑

j=0

fa
ij(x)λ

j , x ∈ g.

Setting λ = λ
(i)
j for i ∈ {1, . . . , r} and j ∈ {0, . . . , di − 1}, we obtain

gij =

di−1∑

k=0

(λ
(i)
j )kfa

ik.

This amounts to the statement

(gi0,...,gi(di−1))=(fa
i0,...,f

a
i(di−1))




1 1 . . . 1

λ
(i)
0 λ

(i)
1 . . . λ

(i)
di−1

(λ
(i)
0 )2 (λ

(i)
1 )2 . . . (λ

(i)
di−1)

2

...
... . . .

...

(λ
(i)
0 )di−1 . . . . . . (λ

(i)
di−1)

di−1




.

for all i ∈ {1, . . . , r}. Now note that the above-defined di × di matrix is in-

vertible, owing to the fact that λ
(i)
0 , . . . , λ

(i)
di−1 are pairwise distinct. Since the

algebra Fa is freely generated by the fa
ij for i ∈ {1, . . . , r} and j ∈ {0, . . . , di−1}

(see Theorem 3.1), the previous two sentences imply that Fa is freely generated
by the gij for i ∈ {1, . . . , r} and j ∈ {0, . . . , di − 1}.

3.6 Some additional properties of Mishchenko–Fomenko fibres

The preceding sections allow us to derive some additional results about the
fibres of Fa. We begin with the following simple observation.

Lemma 3.14. If a ∈ greg, then F−1
a (Fa(x)) ⊆ Gx for all x ∈ greg.
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Proof. Consider the map F = (f1, . . . , fr) : g → Cr, noting that F−1
a (Fa(x)) ⊆

F−1(F (x)) for all x ∈ g. If x ∈ greg, then F−1(F (x)) = Gx by (6). It follows
that F−1

a (Fa(x)) ⊆ Gx for all x ∈ greg.

Lemma 3.13 allows us to refine Lemma 3.14 as follows.

Theorem 3.15. Suppose that a ∈ greg.

(i) If x ∈ gasreg, then

F−1
a (Fa(x)) =

⋂

λ∈C

(
G(x + λa)− λa

)
(18)

and
F−1
a (Fa(x)) ∩ gasreg =

⋂

λ∈C

(G(x+ λa)− λa) . (19)

(ii) If x ∈ greg, then there exists a finite subset Λ ⊆ C with the following
property: (18) and (19) are true if one only intersects over all λ ∈ Λ.

Proof. We begin with the proof of (i). Suppose that x, y ∈ g, and recall the
polynomials f1, . . . , fb ∈ C[g] from Section 3.1. We see that

fi(x)=fi(y) ∀i∈{1,...,b} ⇐⇒ fi(x+λa)=fi(y+λa) ∀ i∈{1,...,r}, λ∈C.

Now suppose that x ∈ gasreg. This means precisely that x + Ca ⊆ greg, which

by (6) yields F−1(F (x+ λa)) = G(x+ λa) for all λ ∈ C.
Assuming that x ∈ gasreg and using the previous paragraph where apprpriate,
we obtain

F−1
a (Fa(x)) = {y ∈ g : fi(y) = fi(x) ∀i ∈ {1, . . . , b}}

= {y ∈ g : fi(y + λa) = fi(x+ λa) ∀i ∈ {1, . . . , r}, λ ∈ C}
= {y ∈ g : y + λa ∈ G(x + λa) ∀λ ∈ C}
=

⋂

λ∈C

(
G(x + λa)− λa

)
.

This verifies (18). Using (6) and the fact that y ∈ gasreg implies y + λa ∈ greg
for all λ ∈ C, one can obtain (19) via a similar argument.
Now we come to the proof of (ii). Note that if x ∈ greg, then x + λa ∈ gsing
for only finitely many λ ∈ C. Keeping this in mind, we may find a finite set

Λ = {λ(i)
j : i ∈ {1, . . . , r}, j ∈ {0, . . . , di−1}} ⊆ C with the following properties:

• λ
(i)
0 = 0 for all i ∈ {1, . . . , r};

• λ
(i)
0 , . . . , λ

(i)
di−1 are pairwise distinct for all i ∈ {1, . . . , r};

• x+ λ
(i)
j a ∈ greg for all i ∈ {1, . . . , r} and j ∈ {0, . . . , di − 1}.
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Lemma 3.13 then constructs algebraically independent generators {gij} of Fa,
and we may use these generators to compute F−1

a (Fa(x)) (see Remark 3.4).

Note also that the condition λ
(i)
0 = 0 yields gi0 = fi for all i ∈ {1, . . . , r}. The

proof of (ii) then proceeds analogously to that of (i), after we replace f1, . . . , fb
with the gij .

We now provide some incidental descriptions of the tangent spaces to
Mishchenko–Fomenko fibres. To this end, recall the Poisson bracket (3) and
all associated notation.

Proposition 3.16. Suppose that a ∈ greg and x ∈ gasreg. The tangent space
Tx(F

−1
a (Fa(x))) ⊆ g can then be described as follows.

(i) If {hi}i∈I ⊆ C[g] generates Fa as an algebra, then

Tx(F
−1
a (Fa(x))) = span{[x, dhi(x)

∨] : i ∈ I}. (20)

Taking the components of Fa as our generators (cf. (14)), we get

Tx(F
−1
a (Fa(x))) = span{[x, dfi(x)∨] : i ∈ {r + 1, . . . , b}}. (21)

(ii) We have

Tx(F
−1
a (Fa(x))) = span{[a, df(x+ λa)∨] : f ∈ C[g]G, λ ∈ C×}. (22)

Proof. We begin by proving (i). Note that Tx(F
−1
a (Fa(x))) is the span of the

Hamiltonian vector fields of f1, . . . , fb at x. On the other hand, f1, . . . , fb and
{hi}i∈I generate the same subalgebra of Fa of C[g]. It is then easy to deduce
that Tx(F

−1
a (Fa(x))) is the span of the Hamiltonian vector fields of the hi

at x. Note also that (3) forces the Hamiltonian vector field of hi at x to be
[x, dhi(x)

∨]. This proves (20). The statement (21) follows from the first part of
(i) and the fact that [x, dfi(x)

∨] = 0 for all i ∈ {1, . . . , r} (see [17, Proposition
1.3]). This proves (i).
We now verify (ii). By applying (i) to the generating set {fλ,a : f ∈ C[g]G, λ ∈
C} of Fa, we obtain

Tx(F
−1
a (Fa(x))) = span{[x, df(x+ λa)∨] : f ∈ C[g]G, λ ∈ C}.

Now note that [x+ λa, df(x + λa)∨] = 0 for all f ∈ C[g]G and λ ∈ C (see [17,
Proposition 1.3]), which together with the last sentence yields (22).

4 Irreducible components of Mishchenko–Fomenko fibres

Our attention now turns to the irreducible components of Mishchenko–Fomenko
fibres. Some of our results specialize to those of Charbonnel–Moreau [7] when
a ∈ greg is taken to be nilpotent. This reflects the degree to which [7] inspired
our work.
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4.1 Irreducible components contained in parabolics

Suppose that a parabolic subalgebra p ⊆ g contains a ∈ greg. Proposition 2.7
then explains how to choose a Levi factor l ⊆ p such that al ∈ lreg. We could
next choose free generators of the invariant polynomials on l, subsequently
using such generators to construct a Mishchenko–Fomenko map Fal

: l → Cb(l)

(cf. Section 3.1). By Remark 3.4, the fibres F−1
al

(Fal
(x)) are independent of

the aforementioned generators. It is with this understanding that we formulate
the following result.

Theorem 4.1. Let a ∈ greg be contained in a parabolic subalgebra p ⊆ g having
nilpotent radical u. Let h ⊆ p be a Cartan subalgebra containing the semisimple
part of a, and let l ⊆ p be the h-stable Levi factor. Consider the Mishchenko–
Fomenko map Fal

: l → Cb(l), and suppose that we have a point x = xl+xu ∈ p

with xl ∈ l and xu ∈ u. If Y is an irreducible component of F−1
al

(Fal
(xl)) con-

taining xl, then Y +u is an irreducible component of F−1
a (Fa(x)) containing x.

We thereby obtain a bijection

{irred. comp. Y ⊆ F−1
al

(Fal
(xl)) s.t. xl ∈ Y } −→

{irred. comp. Z ⊆ F−1
a (Fa(x)) s.t. x ∈ Z ⊆ p}

Y 7→ Y + u.

Proof. We begin by claiming that Fa is constant-valued on F−1
al

(Fal
(xl)). To

this end, suppose that y ∈ F−1
al

(Fal
(xl)). An application of Lemma 2.1 estab-

lishes that
f(y + λa) = f(y + λal)

for all f ∈ C[g]G and λ ∈ C, where al is the projection of a ∈ p onto l. Now
observe that Remark 3.4 applies to Fal

and shows that the right hand side is
f(xl + λal), i.e.

f(y + λa) = f(xl + λal).

A second application of Lemma 2.1 then gives

f(y + λa) = f(xl + λa).

Since this holds for all f ∈ C[g]G and λ ∈ C, Remark 3.4 implies that y ∈
F−1
a (Fa(xl)). We conclude that Fa is indeed constant-valued on F−1

al
(Fal

(xl)).
Now let Y be an irreducible component of F−1

al
(Fal

(xl)) such that xl ∈ Y ,
noting that Fa must also be constant-valued on Y . An application of Lemma 2.1
then shows that Fa is constant-valued on Y + u. Since x = xl + xu ∈ Y + u,
this means precisely that Y + u ⊆ F−1

a (Fa(x)). At the same time, Proposition
3.12 implies that

dim(Y + u) = b(l)− rk(l) + dim(u).

We also know that b(g) = b(l) + dim(u) and rk(g) = rk(l), meaning that

dim(Y + u) = b(g)− rk(g).
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By Proposition 3.12, the right hand side is precisely the dimension of each
irreducible component in F−1

a (Fa(x)). The irreducibility of Y + u now implies
that Y + u must be an irreducible component of F−1

a (Fa(x)). Having already
noted that x ∈ Y + u, we have verified the first part of our proposition.
It remains only to prove that Y 7→ Y +u defines a bijection between the above-
indicated sets of irreducible components. This association is clearly injective,
reducing us to verifying surjectivity. To this end, let Z ⊆ p be an irreducible
component of F−1

a (Fa(x)) such that x ∈ Z ⊆ p. The decomposition p = l ⊕ u

induces a projection p → l, and we let Zl ⊆ l denote the image of Z under this
projection. Lemma 2.1 then implies that Zl + u ⊆ F−1

a (Fa(x)). At the same
time, it is easy to see that Zl + u is irreducible and contains Z. These last two
sentences force Z = Zl + u to hold.
In light of the previous paragraph, it suffices to show that Zl is an irreducible
component of F−1

al
(Fal

(xl)) containing xl. We first note that the containment
xl ∈ Zl is clear, as x ∈ Z. To show that Zl is an irreducible component of
F−1
al

(Fal
(xl)), we study the intersection F−1

a (Fa(x))∩l. Let X be an irreducible
component of F−1

a (Fa(x))∩ l, noting that X+u is irreducible. Lemma 2.1 also
implies that X + u ⊆ F−1

a (Fa(x)), so that Proposition 3.12 yields

dim(X + u) ≤ b(g)− rk(g).

Since b(l) = b(g) − dim(u) and rk(l) = rk(g), this amounts to the statement
that

dim(X) ≤ b(l)− rk(l).

It follows that each irreducible component of F−1
a (Fa(x)) ∩ l has dimension

at most b(l) − rk(l). In particular, any closed, irreducible, (b(l) − rk(l))-
dimensional subvariety of F−1

a (Fa(x))∩l is necessarily an irreducible component
of F−1

a (Fa(x)) ∩ l.
Now recall the first paragraph of this proof. One can use similar ideas to
show that the component functions of Fa

∣∣
l
: l → Cb belong to the subalgebra

Fal
⊆ C[l]. This implies that F−1

a (Fa(x)) ∩ l is a union of fibres of Fal
. We

may therefore write

F−1
a (Fa(x)) ∩ l =

⋃

z∈S

F−1
al

(z)

for some subset S ⊆ Cb(l). For each z ∈ S, let Xz,1, . . . , Xz,n(z) be the irre-
ducible components of F−1

al
(z). We then have

F−1
a (Fa(x)) ∩ l =

⋃

z∈S

n(z)⋃

i=1

Xz,i, (23)

while Proposition 3.12 implies that dim(Xz,i) = b(l) − rk(l) for all z ∈ S and
i ∈ {1, . . . , n(z)}. Together with the last sentence of the previous paragraph,
this implies that (23) is the decomposition of F−1

a (Fa(x)) ∩ l into irreducible
components.
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We now observe that Zl is irreducible and satisfies

dim(Zl) = dim(Zl + u)− dim(u)

= dim(Z)− dim(u) (since Z = Zl + u)

= b(g)− rk(g)− dim(u) (by Proposition 3.12)

= b(l)− rk(l) (since b(l)=b(g)−dim(u) and rk(l)=rk(g)).

We may also use Lemma 2.1 and the fact that Z ⊆ F−1
a (Fa(x)) to establish

that Zl ⊆ F−1
a (Fa(x)) ∩ l. These last two sentences combine with the previous

paragraph to imply that Zl = Xz,i for some z ∈ S and i ∈ {1, . . . , n(z)}. This
means that Zl is an irreducible component of a fibre of Fal

. Since xl ∈ Zl, the
fibre in question must be F−1

al
(Fal

(xl)). The proof is complete.

A similar approach can be used to describe the irreducible components of
F−1
a (Fa(x)) that are contained in a given parabolic p, provided that p con-

tains a ∈ greg.

Proposition 4.2. Let a, p, l, and u be exactly as described in the first two
sentences of Theorem 4.1. If x ∈ p, then F−1

a (Fa(x)) ∩ l is a union of fibres of
Fal

. Furthermore, we have a bijection

{

Y ⊆ F
−1

a
(Fa(x)) ∩ l s.t. Y is an irred. comp. of a fibre of Fal

}

−→
{

irred. comp. Z ⊆ F
−1

a
(Fa(x)) s.t. Z ⊆ p

}

Y 7→ Y + u.

Proof. The proof of Theorem 4.1 works with minor modifications.

We may build on Theorem 4.1 and Proposition 4.2 as follows.

Proposition 4.3. Suppose that a ∈ greg is contained in a Borel subalgebra
b ⊆ g with nilpotent radical u. Let h ⊆ g be a Cartan subalgebra contained in
b, and assume that x ∈ b.

(i) The variety x+u is the unique irreducible component of F−1
a (Fa(x)) that

contains x and is contained in b.

(ii) If x is regular and semisimple, then x+ u is an irreducible component of
F−1
a (Fa(x)) ∩Gx.

(iii) Write x = xh + xu with xh ∈ h and xu ∈ u, and let W be the Weyl group
of (g, h). If a is nilpotent, then the irreducible components of F−1

a (Fa(x))
contained in b are the subvarieties wxh + u, w ∈ W .

Proof. To prove (i), observe that the component functions of Fah
: h → Cr

are homogeneous, algebraically independent generators of C[h]. It follows that
Fah

is a vector space isomorphism, so that F−1
ah

(Fah
(xh)) = {xh}. With this

in mind, consider the bijective correspondence implied by Theorem 4.1 when
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p = b and l = h. We conclude that xh + u = x + u is the unique irreducible
component of F−1

a (Fa(x)) that contains x and is contained in b.
To prove (ii), we recall from Lemma 3.14 that F−1

a (Fa(x)) ⊆ Gx. The orbit
Gx is open in its closure, which together with the previous sentence means that
F−1
a (Fa(x))∩Gx is open in F−1

a (Fa(x)). Since x+u is an irreducible component
of F−1

a (Fa(x)) that intersects this open set, it follows that (x + u) ∩ Gx is an
irreducible component of F−1

a (Fa(x))∩Gx. We are therefore reduced to proving
that (x + u) ∩ Gx = x + u. Accordingly, let B denote the Borel subgroup
of G having Lie algebra b. The result [9, Lemma 3.1.44] then implies than
Bx = x+ u, so that (x+ u) ∩Gx = x+ u. This completes the proof.
To prove (iii), recall that (i) gives x + u ⊆ F−1

a (Fa(x)). It follows that xh ∈
F−1
a (Fa(x)), so that F−1

a (Fa(x)) = F−1
a (Fa(xh)). We also note that a ∈ u, a

consequence of a being nilpotent. A straightforward application of Lemma 2.1
then shows that

Fa

∣∣
h
= (f1

∣∣
h
, . . . , fr

∣∣
h
, 0, . . . , 0) : h → Cb. (24)

We thus have

F−1
a (Fa(x)) ∩ h = F−1

a (Fa(xh)) ∩ h = F−1(F (xh)) ∩ h,

where F := (f1, . . . , fr) : g → Cr. At the same time, [15, Lemma 9.2] tells us
that F−1(F (xh)) ∩ h is the W -orbit of xh, i.e.

F−1
a (Fa(x)) ∩ h = {wxh : w ∈ W}.

The desired result now follows from setting p = b and l = h in Proposition 4.2,
along with the observation that Fah

: h → Cr has only singleton fibres (see the
proof of (i)).

Remark 4.4. It is illuminating to consider Proposition 4.3(ii) in the case of
a regular element x ∈ b. In this case, the last b − r components of Fa form a
completely integrable system on the symplectic leaf Gx ⊆ g (see [12] or [24]).
Proposition 4.3(ii) then amounts to the following statement: x + u is an irre-
ducible component of the fibre through x in the integrable system on Gx.

Remark 4.5. The irreducible component x + u ⊆ F−1
a (Fa(x)) constructed in

Proposition 4.3(i) need not meet gasreg. To see this, let a be any regular nilpotent
element, b the unique Borel subalgebra of g containing a, and u the nilpotent
radical of b. It then follows that a ∈ u. Now choose a Cartan subalgebra h of
g contained in b, which then renders u a sum of the positive root spaces. We
may therefore write

a =
∑

α∈∆+

rα,

where ∆+ is the set of positive roots and rα ∈ gα for all α ∈ ∆+. Since a is
regular, it follows from [15, Theorem 5.3] that rα 6= 0 for all simple roots α.
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Now take an arbitrary y ∈ u, writing

y =
∑

α∈∆+

sα

with sα ∈ gα for all α ∈ ∆+. If we fix a particular simple root α, then rα
being non-zero allows us to find λ ∈ C with sα + λrα = 0. We conclude that
y + λa 6∈ greg, by [15, Theorem 5.3]. It follows that y 6∈ gasreg, implying that
u ∩ gasreg = ∅. In particular, every x ∈ u has the property that x+ u (= u) does
not meet gasreg.

4.2 A recursive formula

We now use the results established in Section 4.1 to derive a recursive formula
for the number of irreducible components in F−1

a (0). To this end, the following
elementary lemma is needed.

Lemma 4.6. If a ∈ greg, then every irreducible component of F−1
a (0) contains

the origin 0 ∈ g.

Proof. The formula (13) implies that each polynomial fa
ij ∈ C[g] is homoge-

neous of degree di − j. It follows that F−1
a (0) is invariant under the dilation

action of C× on g. This forces each irreducible component of F−1
a (0) to be

invariant under the aforementioned C×-action. Since each of these irreducible
components is also closed, it must contain 0.

We now introduce the notation on which our recursive formula is based. Given
a ∈ greg, let us set

Ba := {Borel subalgebras b of g s.t. a ∈ b},

P̃a := {parabolic subalgebras p of g s.t. p 6= g and a ∈ p},
and

Pa := P̃a \ Ba.

We also consider the sets

gIa := {irreducible components of F−1
a (0)}

and
gI ′

a := {Z ∈ gIa : Z * p ∀p ∈ Pa}.
Remark 4.7. One can phrase the definition of gI ′

a in slightly different terms.
To see this, note that the irreducible components of

⋃
p∈Pa

p are the maximal
elements of Pa with respect to inclusion. It follows that a closed, irreducible
subvariety of g belongs to

⋃
p∈Pa

p if and only it belongs to some p ∈ Pa. We
deduce that

gI ′
a = {Z ∈ gIa : Z *

⋃

p∈Pa

p}.
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Given any fixed p ∈ Pa, we write

gIp
a := {Z ∈ gIa : Z ⊆ p and Z * p′ for all p′ ∈ Pa with p′ ( p}.

Let us consider the Jordan decompositon a = s + n and choose a Cartan
subalgebra h ⊆ g such that s ∈ h. Given any p ∈ Pa, let lp denote the unique
h-stable Levi factor and alp ∈ lp the projection of a onto lp. Proposition 2.7
tells us that alp is regular in lp, and we thus have analogous definitions of Balp

,

P̃alp
, Palp

, lpIalp
, and lpI ′

alp
. Now decompose [lp, lp] into its simple factors

l1, . . . , lN , so that
lp = z(lp)⊕ l1 ⊕ · · · ⊕ lN .

If ali denotes the projection of alp onto li, then ali ∈ (li)reg and one has

analogous definitions of Bali
, P̃ali

, Pali
, liIali

, and liI ′
ali

.

Theorem 4.8. Using the notation explained above, we have the following re-
cursive formula for |gIa|:

|gIa| = |gI ′
a|+

∑

p∈Pa


 ∏

l ⊆ [lp, lp] simple factor

|lI ′al
|


+ |Ba|. (25)

Proof. Proposition 4.3 implies that each b ∈ Ba yields an irreducible component
[b, b] of F−1

a (0). At the same time, observe that gIp
a ∩ gIp′

a = ∅ if p 6= p′. These
last two sentences allow us to write gIa as the disjoint union

gIa = gI ′
a ∪


 ⋃

p∈Pa

gIp
a


 ∪ {[b, b] : b ∈ Ba}.

It therefore suffices to prove that

|gIp
a | =

∏

l ⊆ [lp, lp] simple factor

|lI ′
al
|

for each p ∈ Pa. Our approach is similar to that appearing in the proof
of [7, Proposition 52], and the relevant details are given below.
Fix an element p ∈ Pa and let up denote its nilpotent radical. Lemma 4.6 and
Theorem 4.1 tell us that Y 7→ Y +up defines a bijection from elements of lpIalp

to those elements of gIa that are contained in p. This restricts to a bijection
between lpI ′

alp
and gIp

a . We are therefore reduced to proving that

|lpI ′
alp

| =
∏

l ⊆ [lp, lp] simple factor

|lI ′
al
|.

Let us decompose [lp, lp] into its simple factors l1, . . . , lN . It follows that the
elements of lpIalp

are precisely those varieties of the form

{0} × Z1 × · · · × ZN ⊆ z(lp)⊕ l1 ⊕ · · · ⊕ lN = lp,
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where each Zi is an irreducible component of F−1
ali

(0) ⊂ li. We therefore have

bijections
lpIalp

∼= l1Ial1
× · · · × lNIalN

and
lpI ′

alp

∼= l1I ′
al1

× · · · × lNI ′
alN

,

proving the theorem.

Remark 4.9. Lemma 51 in [7] shows that gI ′
a 6= ∅ if a ∈ greg is nilpotent. In

Secton 6, we will see that gI ′
a 6= ∅ for every a ∈ greg when g = sl3(C).

Remark 4.10. If a ∈ greg is nilpotent, then |Ba| = 1 and Theorem 4.8 reduces
to [7, Proposition 52]. If a ∈ greg is semisimple, then |Ba| = |W | in the
recursive formula (25).

Remark 4.11. Our recursive formula allows us to obtain lower bounds on the
numbers |gIa|, by determining |Ba|, |Pa| and the decompositions of the Levi
factors into simple parts. If one works in Type Ar for small r, then these
numbers and Levi factors are easy to obtain. We refer the reader to Section 6
for further details.

4.3 Exotic irreducible components

Fix a ∈ greg and recall the statements of Theorem 4.1 and Proposition 4.2.
Note that these become completely tautological in the case p = g, so that
interesting results necessitate taking p 6= g. In this latter case, every irreducible
component constructed via Theorem 4.1 and Proposition 4.2 is constrained to
lie in some p ∈ P̃a. It is therefore natural to consider irreducible components
of Mishchenko–Fomenko fibres that do not lie in a proper parabolic subalgebra
containing a. We begin with the following result.

Proposition 4.12. Suppose that a ∈ greg is semisimple. If p ∈ P̃a, then every
fibre of Fa has an irreducible component that is not contained in p.

Proof. Observe that h := ga is a Cartan subalgebra of g contained in p. Let
∆ ⊆ h∗ be the associated set of roots, noting that

p = h⊕
⊕

α∈Q

gα (26)

for some proper subset Q ( ∆. Choose an element β ∈ ∆ \ Q, as well as a
set of negative roots ∆− ⊆ ∆ with β ∈ ∆−. It follows that ∆+ := −∆− is
the associated choice of positive roots, and that we have the opposite Borel
subalgebras

b := h⊕
⊕

α∈∆+

gα and b− := h⊕
⊕

α∈∆−

gα.
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Now let Π ⊆ ∆+ be the set of simple roots and consider

ξ :=
∑

α∈Π

e−α, (27)

where e−α ∈ g−α \ {0} for each α ∈ Π. The subset ξ + b ⊆ g is then a section
of Fa (see Theorem 3.7), so that it will suffice to prove (ξ + b) ∩ p = ∅.
Assume that (ξ + b) ∩ p 6= ∅. It follows that ξ + x ∈ p for some x ∈ b, which
by (26) and (27) implies that −Π ⊆ Q. The subalgebra p then contains h and
every negative simple root space, forcing b− ⊆ p to hold. At the same time,
our condition β ∈ ∆− yields the inclusion gβ ⊆ b−. It follows that gβ ⊆ p,
contradicting the fact that β 6∈ Q. We conclude that (ξ+b)∩p = ∅, completing
the proof.

While Proposition 4.12 considers irreducible components that are not contained
in a fixed p ∈ P̃a, one could ask about components not contained in any p ∈ P̃a.
We formalize the latter situation as follows.

Definition 4.13. Suppose that a ∈ greg and x ∈ g. We call an irreducible

component Z ⊆ F−1
a (Fa(x)) exotic if Z * p for all p ∈ P̃a.

Our next result identifies a family of fibres that have exotic irreducible compo-
nents.

Proposition 4.14. Assume that g is simple, and let a ∈ greg be a semisimple
element. Choose a collection of simple positive roots with respect to the Cartan
subalgebra h := ga, and denote the resulting positive Borel subalgebra by b ⊆ g.
Let ξ ∈ g be a sum of non-zero negative simple root vectors, one for each
negative simple root. If x ∈ ξ+ b has a non-zero component in the highest root
space, then the fibre F−1

a (Fa(x)) has an exotic irreducible component.

Proof. Denote the sets of roots, positive roots, and simple roots by ∆, ∆+, and
Π, respectively, so that

b = h⊕
⊕

α∈∆+

gα. (28)

Let us also set

V := h⊕
⊕

α∈∆+\{λ}

gα,

where λ ∈ ∆+ is the highest root. Since ξ + b is a section of Fa (see Theo-
rem 3.7), it suffices to prove that (ξ + b) \ (ξ + V ) is disjoint from

⋃
p∈P̃a

p.

This is equivalent to verifying that (ξ + b) ∩ p ⊆ ξ + V for all p ∈ P̃a.

Let p ∈ P̃a be given, noting that h ⊆ p. It follows that

p = h⊕
⊕

α∈∆p

gα (29)
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for some proper subset ∆p ( ∆. We then have the following two possibilities:
−Π * ∆p or −Π ⊆ ∆p. In the first case, (28), (29), and the definition of ξ
collectively force

(
ξ+b

)
∩p = ∅ to hold. This certainly implies that

(
ξ+b

)
∩p ⊆

ξ + V , as desired.
If −Π ⊆ ∆p, then one has

(
ξ + b

)
∩ p = ξ +

(
h⊕

⊕

α∈∆p∩∆+

gα

)
.

We conclude that
(
ξ+b

)
∩p ⊆ ξ+V if and only if λ 6∈ ∆p. The latter condition is

best investigated via the following classical fact: gλ and the negative simple root
spaces generate g. Since p is properly contained in g and contains the negative
simple root spaces, we must have λ 6∈ ∆p. It follows that

(
ξ + b

)
∩ p ⊆ ξ + V ,

completing the proof.

Remark 4.15. Since ξ + b is a (b-dimensional) section of Fa : g → Cb for all
semisimple a ∈ greg, Proposition 4.14 provides a b-dimensional family of fibres
with exotic irreducible components.

Remark 4.16. With only mild adjustments, one can formulate Proposition 4.14
for semisimple Lie algebras g.

5 Singularities in Mishchenko–Fomenko fibres

Our attention now turns to the smooth and singular loci of Mishchenko–
Fomenko fibres. Section 5.1 studies the critical values of Fa, while Section 5.2
elucidates a role for the subalgebra ba ⊆ g discussed in Section 2.3.

5.1 Critical values

Recall that the critical points of Fa constitute the set Singa = gsing + Ca ⊆ g

(see Section 3.1). Our objective is to discuss the set of critical values
Fa(Sing

a) ⊆ Cb, and this necessitates using the following rephrased version
of [28, Theorem 4.2].

Theorem 5.1. The codimension of gsing in g is 3.

We may now gauge the codimension of the closure Fa(Sing
a) ⊆ Cb.

Proposition 5.2. If a ∈ greg, then Fa(Sing
a) ⊆ Cb has codimension 1 or 2 in

Cb.

Proof. By Theorem 5.1, some irreducible component X of Singa = gsing + Ca
has codimension 2 in g. Let j : X → g be the inclusion map, observing that
j∗ : C[g] → C[X ] is surjective with kernel equal to a prime ideal I ⊆ C[g].
We claim that the prime ideal I ∩ Fa ⊆ Fa has height at most 2. To see this,
we first note that Fa ⊆ C[g] is a flat extension of rings (see [22, Theorem 1.2]).
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It follows from [19, Theorem 9.5] that this extension satisfies the going-down
property for prime ideals. Now let J0 ( J1 ( · · · ( Jn = I ∩ Fa be a strictly
increasing sequence of prime ideals in Fa. The going-down property allows us
to find a strictly increasing sequence I0 ( I1 ( · · · ( In = I of prime ideals in
C[g] satisfying Jk = Ik∩Fa for all k ∈ {1, . . . , n}. Note also that I has height 2
in C[g], owing to the fact that X has codimension 2 in g. It follows that n ≤ 2,
and we conclude that I ∩ Fa has height at most 2 in Fa.
Now note that Fa is a polynomial algebra in b-many indeterminates (see The-
orem 3.1). This combines with the result of the previous paragraph to yield

Kdim

(
(Fa)/(I ∩ Fa)

)
≥ b− 2,

where Kdim denotes Krull dimension. Observing that j∗(Fa) ∼= Fa/(I ∩ Fa),
we obtain

Kdim(j∗(Fa)) ≥ b− 2.

We also know that the functions j∗(f1), . . . , j
∗(fb) ∈ C[X ] generate j∗(Fa).

Taken together, these last two sentences have the following consequence: for
all generic x ∈ X , the differentials of j∗(f1), . . . , j

∗(fb) at x span a subspace of
T ∗
xX of dimension at least b−2. This is in turn equivalent to the differential of

Fa

∣∣
X

: X → Cb having rank at least b−2 at all generic points ofX . We conclude

that the dimension of Fa(X) ⊆ Cb is at least b − 2. The inclusion Fa(X) ⊆
Fa(Sing

a) then establishes that the latter set has dimension at least b − 2.
On the other hand, it is a straightforward consequence of Sard’s theorem that
Fa(Sing

a) cannot be b-dimensional. It follows that the dimension of Fa(Sing
a)

is b− 1 or b− 2, completing the proof.

Remark 5.3. Each of the codimensions 1 and 2 is achievable in examples, as
we later discuss in Remark 6.1.

Remark 5.4. It would be worthwhile to completely characterize those a ∈ greg

for which Fa(Sing
a) has codimension 1 in Cb. We intend to make this part of

a forthcoming paper.

Remark 5.5. Bolsinov and Oshemkov [6] provide a framework for studying
singularities in the bi-Hamiltonian context. The authors subsequently apply
their findings to Mishchenko–Fomenko systems on real semisimple Lie alge-
bras. Another noteworthy approach appears in Izosimov’s paper [14], which
develops connections between Lax representations and singularities. In this
context, Izosimov examines Mishchenko–Fomenko systems on compact simple
Lie algebras. It would be interesting to integrate our approach to singularities
with those adopted in [6] and [14].

5.2 A family of singular fibres

Fix a ∈ greg and recall the subalgebra ba ⊆ g from Section 2.3. This subalgebra
and its nilpotent radical ua := [ba, ba] ⊆ ba turn out to play the following role
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with respect to singular points in Mishchenko–Fomenko fibres.

Proposition 5.6. Suppose that a ∈ greg is not nilpotent. If x ∈ ba, then x+ua

lies in the singular locus of F−1
a (Fa(x)).

Proof. Let a = s+n be the Jordan decomposition of a, where s ∈ g is semisim-
ple and n ∈ g is nilpotent. Since a is not nilpotent, s 6= 0 and the Levi
subalgebra gs is properly contained in g. It follows that no Borel subalgebra of
gs can have the dimension necessary to be a Borel subalgebra of g. In particu-
lar, ba cannot be a Borel subalgebra of g. It now follows from Proposition 2.11
that there exist distinct Borel subalgebras b1, b2 ⊆ g such that ba ⊆ b1 ∩ b2.
Proposition 4.3 then implies that x+ u1 and x+ u2 are irreducible components
of F−1

a (Fa(x)), where u1 and u2 are the nilpotent radicals of b1 and b2, respec-
tively. Since b1 and b2 are distinct Borel subalgebras, we see that x + u1 and
x + u2 are distinct irreducible components of F−1

a (Fa(x)). We also note that
ua ⊆ u1 ∩ u2, implying that x + ua lies in the intersection of the two compo-
nents x+ u1 and x+ u2. We conclude that x+ ua consists of singular points in
F−1
a (Fa(x)).

One immediate consequence of Proposition 5.6 is that the Mishchenko–
Fomenko fibres over Fa(b

a) ⊆ Cb are singular when a ∈ greg is not nilpotent.
In other words, the points in Fa(b

a) index a family of singular Mishchenko–
Fomenko fibres. This leads us to study Fa(b

a) in more detail, for which the
following lemma will be helpful.

Lemma 5.7. Suppose that a ∈ greg has a Jordan decomposition of a = s + n,
where s ∈ g is semisimple and n ∈ g is nilpotent. Let h be a Cartan subalgebra
of gs contained in ba. The polynomials f1

∣∣
h
, . . . , fb

∣∣
h
then generate C[h]Ws ,

where W is the Weyl group of (g, h) and Ws is the W -stabilizer of s.

Proof. An application of [9, Corollary 3.1.43] gives fi(x+ λa) = fi(x+ λs) for
all i ∈ {1, . . . , r}, x ∈ h, and λ ∈ C. It follows that fa

ij(x) = f s
ij(x) for all

i ∈ {1, . . . , r}, j ∈ {0, . . . , di − 1}, and x ∈ h, where the fa
ij are defined in (13)

and the f s
ij are defined analogously. In other words, we have

fa
ij

∣∣
h
= f s

ij

∣∣
h
, i ∈ {1, . . . , r}, j ∈ {0, . . . , di − 1}.

We are thus reduced to proving that the f s
ij

∣∣
h
generate C[h]Ws . To this end,

the first lemma appearing on page 302 of [25] implies that the f s
ij

∣∣
gs

generate

C[gs]Gs . Note also that f s
ij

∣∣
h
is the image of f s

ij

∣∣
gs

under Chevalley’s restriction

isomorphismC[gs]Gs
∼=−→ C[h]Ws . It follows that the f s

ij

∣∣
h
must generate C[h]Ws ,

completing the proof.

We may now establish the following qualitative features of Fa(b
a).
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Theorem 5.8. Suppose that a ∈ greg has a Jordan decomposition of a = s+n,
where s ∈ g is semisimple and n ∈ g is nilpotent. Let πr : Cb → Cr denote
projection onto the first r components, and let h be a Cartan subalgebra of gs
satisfying h ⊆ ba. Consider the Weyl group W of (g, h), and let Ws ⊆ W be
the W -stabilizer of s.

(i) We have Fa(b
a) = Fa(h).

(ii) The image Fa(b
a) is an r-dimensional closed subvariety of Cb satisfying

πr(Fa(b
a)) = Cr. If a is nilpotent, then Fa(b

a) = Cr × {0} ⊆ Cb.

(iii) Consider the restricted map Fa

∣∣
h
: h → Fa(b

a) obtained by virtue of (i).

The associated comorphism (Fa

∣∣
h
)∗ : C[Fa(b

a)] → C[h] is injective with

image C[h]Ws .

(iv) The restriction πr

∣∣
Fa(ba)

: Fa(b
a) → Cr is a finite morphism of degree

|W/Ws|.

Proof. We begin by verifying (i). Suppose that x ∈ ba and write x = xh + xua

with xh ∈ h and xua ∈ ua := [ba, ba]. If f ∈ C[g]G is an invariant polynomial,
then [9, Corollary 3.1.43] allows us to write

f(x+ λa) = f(xh + λa+ xua) = f(xh + λa) (30)

for all λ ∈ C. It follows that Fa(b
a) = Fa(h).

We now verify (ii). Consider the restriction Fa

∣∣
h
: h → Cb, as well as the

induced map of coordinate rings (Fa

∣∣
h
)∗ : C[x1, . . . , xb] → C[h]. We then have

(Fa

∣∣
h
)∗(xi) = fi

∣∣
h
for all i = 1, . . . , b. The polynomials f1

∣∣
h
, . . . , fr

∣∣
h
generate

the subalgebra C[h]W , so that the image of (Fa

∣∣
h
)∗ must contain C[h]W . Since

the Chevalley–Shephard–Todd theorem shows C[h] to be a free module of finite
rank |W | over C[h]W , it follows that C[h] is finitely generated over C[x1, . . . , xb].
This amounts to Fa

∣∣
h
being a finite morphism of affine varieties. Noting that

finite morphisms are closed, we see that Fa(h) = Fa(b
a) is a closed subset of Cb.

The equality Fa(b
a) = Fa(h) implies dim(Fa(b

a)) ≤ dim h = r. On the other
hand, note that πr ◦ Fa : g → Cr is the map F from (5). The restriction
F
∣∣
h
: h → Cr is known to be surjective (see the proof of [16, Proposition 10]),

so that we must have
πr(Fa(b

a)) = Cr.

This implies that dim(Fa(b
a)) ≥ r, and we conclude that dim(Fa(b

a)) = r.
To prove the second claim in (ii), suppose that a is nilpotent. The equation (24)
then implies that

Fa

∣∣
h
= (F

∣∣
h
, 0, . . . , 0) : g → Cb.

It follows that Fa(b
a) = Fa(h) = F (h)× {0} = Cr × {0} ⊆ Cb, where the final

instance of equality comes from F
∣∣
h
: h → Cr being surjective.
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To prove (iii), we consider the restricted map Fa

∣∣
h
: h → Fa(b

a). Since this

map is surjective (by (i)), it induces an injection (Fa

∣∣
h
)∗ : C[Fa(b

a)] → C[h]

of coordinate rings. At the same time, note that (ii) shows the inclusion j :
Fa(b

a) →֒ Cb to be a closed immersion. It follows that j∗ : C[x1, . . . , xb] →
C[Fa(b

a)] is surjective, so that C[Fa(b
a)] is generated by j∗(x1), . . . , j

∗(xb). On
the other hand, it is straightforward to verify that

(Fa

∣∣
h
)∗(j∗(xi)) = fi

∣∣
h

for all i = 1, . . . , b. We conclude that the image of (Fa

∣∣
h
)∗ is generated by

f1
∣∣
h
, . . . , fb

∣∣
h
, which by Lemma 5.7 means that the image is exactly C[h]Ws .

Let us now prove (iv). Note that Chevalley’s restriction theorem forces
f1
∣∣
h
, . . . , fr

∣∣
h
to be algebraically independent generators of C[h]W , so that there

is a unique C-algebra isomorphism C[x1, . . . , xr ] → C[h]W sending xi to fi
∣∣
h
,

i = 1, . . . , r. This isomorphism fits into the commutative diagram

C[x1, . . . , xr]
∼=

//

(
πr

∣∣
Fa(ba)

)∗

��

C[h]W

��

C[Fa(b
a)]

(
Fa

∣∣
h

)∗

∼=
// C[h]Ws ,

where the rightmost vertical map is the obvious inclusion,
(
Fa

∣∣
h

)∗
is the map

from (iii), and
(
πr

∣∣
Fa(ba)

)∗
is the map of coordinate rings corresponding to

πr

∣∣
Fa(ba)

: Fa(b
a) → Cr. Now consider the corresponding commutative dia-

gram

h/Ws

∼=
//

��

Fa(b
a)

πr

∣∣
Fa(ba)

��

h/W ∼=
// Cr

in the category of affine varieties, noting that the map h/Ws → h/W is a
finite morphism of degree |W/Ws|. Since the horizontal arrows in this second
diagram are isomorphisms, it follows that πr

∣∣
Fa(ba)

is a finite morphism of

degree |W/Ws|.

6 Examples

In the interest of concreteness, we illustrate some of our results in the cases
g = sl2(C) and g = sl3(C).
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6.1 The case g = sl2(C)

Consider g = sl2(C) and let h ⊆ sl2(C) be the standard Cartan subalgebra of
diagonal matrices. We also have the positive Borel subalgebra b+ ⊆ sl2(C) of
upper-triangular matrices, as well as the negative Borel subalgebra b− ⊆ sl2(C)
of lower-triangular matrices.
Observe that a ∈ sl2(C) is regular if and only if a 6= 0. At the same time, recall
that the relevant properties of Fa only depend on the conjugacy class of a (see
Remark 3.3). We will therefore assume that a is one of

s =

(
a1 0
0 −a1

)
(a1 6= 0) and n =

(
0 1
0 0

)
.

Note that Singa = Ca in each case.
The Killing form determines a quadratic form on sl2(C), and this freely gener-
ates the algebra of invariant polynomials on sl2(C). Note that the aforemen-
tioned quadratic form takes x ∈ sl2(C) to a constant multiple of tr(x2). A
straightforward calculation then justifies our taking Fa : sl2(C) → C2 to be

Fa(x) = (
1

2
tr(x2), tr(ax)).

If we now write

x =

(
x1 x2

x3 −x1

)
∈ sl2(C), (31)

then we obtain

Fs(x1, x2, x3) = (x2
1 + x2x3, 2a1x1),

Fn(x1, x2, x3) = (x2
1 + x2x3, x3).

It follows that

F−1
s (0) = {x ∈ sl2(C) : x

2
1 + x2x3 = 0 = 2a1x1}

= {x ∈ sl2(C) : x1 = 0, x2x3 = 0} = u+ ∪ u−,

F−1
n (0) = {x ∈ sl2(C) : x

2
1 + x2x3 = 0 = x3} = u+,

where u+ and u− are the nilpotent radicals of b+ and b−, respectively. Note
that F−1

a (0) has no exotic irreducible components in each case. Using the
notation of Section 4.2, these last two sentences imply that |sl2(C)Is| = 2,
|sl2(C)In| = 1, and |sl2(C)I ′

s| = 0 = |sl2(C)I ′
n|. One can also establish that

Bs = {b+, b−}, Bn = {b+}, and Ps = Pn = ∅. The reader will note that the
previous two sentences are consistent with our recursive formula (25).
We now describe the images Fa(Sing

a) and F (ba), treating the cases a = s and
a = n separately. To this end, suppose that a = s and z = (z1, z2) ∈ C2. Let
us write T for the maximal torus of diagonal matrices in SL2(C), in which case
we have following:

F−1
s (z) =








z2
2a1

x2(
z1 − z2

2

4a2
1

)
1
x2

− z2
2a1




: x2∈C\{0}





=T




z2
2a1

1

z1 − z2
2

4a2
1

− z2
2a1




if z1−
z2
2

4a2
1

6=0
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and

F−1
s (z) =








z2
2a1

x2

0 − z2
2a1


 : x2∈C





∪








z2
2a1

0

x3 − z2
2a1


 : x3∈C





if z1−
z2
2

4a2
1

=0.

If z1 − z2
2

4a2
1
6= 0, then F−1

s (z) does not meet Sings = h and is irreducible. If

z1− z2
2

4a2
1
= 0, then the irreducible components of F−1

s (z) are x+u+ and x+u−

with x = z2
2a2

1
s ∈ Sings. This shows that F−1

s (z) meets Sings if and only if

z1 − z2
2

4a2
1
= 0. Noting that Sings = bs = h, we have

Fs(Sing
s) = Fs(b

s) =
{
(z1, z2) ∈ C2 : z1 − z2

2

4a2
1
= 0

}
. (32)

Observe that projection onto the first factor Fs(bs) → C is two-to-one, except
over the origin (cf. Theorem 5.8(iv)).
In the case a = n, we have

F−1
n (z) = {x ∈ sl2(C) : x

2
1 − x2z2 = z1, x3 = z2}

for all z = (z1, z2) ∈ C2. We see that F−1
n (z) is irreducible if z2 6= 0 or

z1 = 0 = z2, and we have already noted that F−1
n (0) = u+ = Cn = Singn in

the latter case. If z2 = 0 6= z1, then denote by
√
z1 a fixed square root of z1.

We then have

F−1
n (z) =

(
diag (

√
z1,−

√
z1) + u+

)
∪
(
diag(−√

z1,
√
z1) + u+

)
.

This consists of two irreducible components, each contained in b+ (cf. Propo-
sition 4.3(iii)).
We now compute Fn(b

n) and Fn(Sing
n), noting that bn = b = {x3 = 0} in the

notation (31). Since Fn(x1, x2, 0) = (x2
1, 0), we see that

Fn(b
n) =

{
(z1, z2) ∈ C2 : z2 = 0

}
= C× {0}.

We also have Singn = Cn = {x1 = 0 = x3} = u+, yielding

Fn(Sing
n) = {0}. (33)

Remark 6.1. Recall that Proposition 5.2 reduces the possible codimensions of
Fa(Sing

a) to 1 and 2. Equations (32) and (33) show that each of these possible
codimensions is achievable.

6.2 The case g = sl3(C)

Suppose that g = sl3(C) and that a ∈ sl3(C)reg. The map Fa : sl3(C) → C5

is more complicated than its sl2(C) counterpart, to the point that general
fibres of Fa are more difficult to describe explicitly. We will nevertheless show
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that F−1
a (0) has an exotic irreducible component, and we will illustrate the

assertions of Theorem 5.8.
We may take Fa : sl3(C) → C5 to be given by

Fa(x) = (tr(x2), tr(x3), 2tr(ax), 3tr(ax2), 6tr(a2x)). (34)

It is also straightforward to verify that

s=




s1 0 0
0 s2 0
0 0 s3


(si 6=sj ∀i6=j), r=




ρ 1 0
0 ρ 0
0 0 −2ρ


(ρ6=0), and n=




0 1 0
0 0 1
0 0 0




are a complete collection of representatives for the conjugacy classes of regular
elements in sl3(C). In light of Remark 3.3, we will assume that a is one of s,
r, and n.
Recalling the notation established in Section 4.2, we obtain the following data.

Bs =

{

∗ ∗ ∗
0 ∗
0 0 ∗


 ,



∗ 0 0
∗ ∗ 0
∗ ∗ ∗


 ,



∗ ∗ 0
0 ∗ 0
∗ ∗ ∗


 ,



∗ 0 ∗
∗ ∗ ∗
0 0 ∗


 ,



∗ 0 0
∗ ∗ ∗
∗ 0 ∗


 ,



∗ ∗ ∗
0 ∗ 0
0 ∗ ∗




}
,

Ps =

{
p1 =



∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


, p−1 =



∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗


, p2 =



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗




}

∪
{
p−2 =



∗ 0 0
∗ ∗ ∗
∗ ∗ ∗


, p3 =



∗ ∗ ∗
0 ∗ 0
∗ ∗ ∗


, p−3 =



∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗




}
,

Br =

{

∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 ,



∗ ∗ 0
0 ∗ 0
∗ ∗ ∗


 ,



∗ ∗ ∗
0 ∗ 0
0 ∗ ∗




}
,

Pr =

{
p1 =



∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


, p−1 =



∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗


, p2 =



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗


, p3 =



∗ ∗ ∗
0 ∗ 0
∗ ∗ ∗


,

}
,

Bn =

{

∗ ∗ ∗
0 ∗ ∗
0 0 ∗




}
,

Pn =

{
p1 =



∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


, p2 =



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗




}
.

In what follows, h ⊆ sl3(C) is the usual Cartan subalgebra of diagonal matrices
and u+ ⊆ sl3(C) and u− ⊆ sl3(C) are the maximal nilpotent subalgebras of
upper-triangular and lower-triangular matrices, respectively.

Proposition 6.2. If s ∈ sl3(C) is as defined above, then there exists an element

x ∈ F−1
s (0) ∩ (u− ⊕ u+) that is not contained in any p ∈ P̃s.
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Proof. Given i ∈ {1, 2, 3}, let ǫi ∈ h∗ be the linear functional that picks out
the diagonal entry in position (i, i). We then have the standard simple roots
α := α1 = ǫ1− ǫ2 and β := α2 = ǫ2− ǫ3, and we put γ := α3 = α+β = ǫ1− ǫ3.
It follows that ∆ = {α, β, γ,−α,−β,−γ} and ∆+ = {α, β, γ}.
If i, j ∈ {1, 2, 3} are distinct, let eij ∈ sl3(C) be the matrix with 1 in position
(i, j) and all remaining entries equal to 0. Let us set

eα := e12, eβ := e23, eγ := e13, e−α := e21, e−β := e32, e−γ := e31,

reflecting the fact that e12 lies in the α-root space, e23 is in the β-root space,
etc. We also consider the matrices in h given by

hα := [eα, e−α] = diag(1,−1, 0) and hβ := [eβ , e−β] = diag(0, 1,−1).

Now expand s in the basis {hα, hβ} of h, i.e.

s = sαhα + sβhβ = diag(sα, sβ − sα,−sβ)

for sα, sβ ∈ C. Note that

α(s) = 2sα − sβ , and β(s) = 2sβ − sα. (35)

Now consider an element

x =
∑

ν∈∆

xνeν ∈ u− ⊕ u+,

where all xν ∈ C. Let us choose xα, xβ , x−γ ∈ C such that

(xαxβx−γ)
2 = α(s)β(s)γ(s).

Note that xα, xβ , and x−γ are non-zero, as s being a regular element forces
each of α(s), β(s), and γ(s) to be non-zero. Now define x−α, x−β , xγ ∈ C by
the conditions

xαx−α = α(s), xβx−β = β(s), xγx−γ = −γ(s).

It follows that xν 6= 0 for all ν ∈ ∆. A glance at the above-listed elements of
P̃s = Bs ∪ Ps then reveals that x /∈ p for all p ∈ P̃s.
It remains only to verify that x solves Fs(x) = 0. To this end, recall the form
of our Mishchenko–Fomenko map Fs : sl3(C) → C5. We have tr(s2x) = 0 =
tr(sx), so that the equation Fs(x) = 0 is equivalent to the system of equations

xαx−α + xβx−β + xγx−γ = 0 ( ⇐⇒ tr(x2) = 0)

sβxαx−α − sαxβx−β − (sβ − sα)xγx−γ = 0 ( ⇐⇒ tr(sx2) = 0)

xαxβx−γ + xγx−βx−α = 0 ( ⇐⇒ tr(x3) = 0).

To address the first equation, note that

xαx−α + xβx−β + xγx−γ = α(s) + β(s)− γ(s) = 0.
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The second equation is also satisfied, as (35) gives

sβxαx−α − sαxβx−β − (sβ − sα)xγx−γ = sβα(s)− sαβ(s) + (sβ − sα)γ(s)

= sβα(s)− sαβ(s)

+ (sβ − sα)(α(s) + β(s))

= 2sαsβ − s2β − 2sαsβ + s2α

+ (sβ − sα)(sα + sβ)

= s2α − s2β + s2β − s2α

= 0.

To deal with the third equation, observe that

(xαxβx−γ) (xαxβx−γ + xγx−βx−α) = (xαxβx−γ)
2 + xαx−αxβx−βxγx−γ

= α(s)β(s)γ(s) − α(s)β(s)γ(s)

= 0

Since xαxβx−γ 6= 0, this implies

xαxβx−γ + xγx−βx−α = 0.

Remark 6.3. Recall the notation used in the proof of Proposition 6.2. One
can verify that the element x =

∑
ν xνeν is regular nilpotent, i.e. x2 6= 0 = x3.

We also have

tr(sx) = tr(s2x) = tr(sx2) = tr(x2) = tr(x3) = 0,

so that

tr((x + λs)2) = tr((λs)2) and tr((x + λs)3) = tr((λs)3).

This is easily seen to imply that x+λs and λs belong to the same adjoint orbit
for all λ 6= 0. Since x and s are both regular, we conclude that x ∈ sl3(C)ssreg.

Proposition 6.4. If r ∈ sl3(C) is as defined above, then there exists an element

x ∈ F−1
r (0) ∩ image(adr) that is not contained in any p ∈ P̃r.

Proof. Let us write

x =



x11 x12 x13

x21 x22 x23

x31 x32 x33


 ∈ sl3(C).

Now recall the definition of r and observe that x ∈ image(adr) if and only if
x11 + x22 = 0 = x33 = x21. In this case, the equation Fr(x) = 0 reduces to the
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system

x2
11 + x13x31 + x23x32 = 0

x11(x13x31 − x23x32) + x12x23x31 = 0

2ρx2
11 − ρx13x31 − ρx23x32 + x23x31 = 0.

One can use a direct calculation to check that

x =



−3ρ 1 3ρi
0 3ρ 9ρ2i
3ρi 0 0




is a solution, where i =
√
−1. An inspection of the list P̃r = Br ∪ Pr shows

that x is not contained in any p ∈ P̃r, since x23, x31 6= 0.

Remark 6.5. A direct calculation establishes that the above-constructed matrix

x =



−3ρ 1 3ρi
0 3ρ 9ρ2i
3ρi 0 0




is regular nilpotent, i.e. x2 6= 0 = x3. One can also check that x + λr and λr
have the same Jordan canonical form for all λ 6= 0. It follows that x+ λr and
λr are SL3(C)-conjugate for all λ 6= 0, and we conclude that x 6∈ Singr.

It remains to consider the case a = n. To this end, Charbonnel and Moreau
establish that

x =



0 0 0
1 0 0
0 −1 0


 (36)

is contained in F−1
n (0). It is also clear that x does not lie in any p ∈ P̃n. This

combines with Propositions 6.2 and 6.4 to yield the following result.

Theorem 6.6. If a ∈ sl3(C)reg, then F−1
a (0) has a point that does not lie in

any p ∈ P̃a. Equivalently, F−1
a (0) has an exotic irreducible component.

Remark 6.7. Note that Fa is invariant under the action of the centralizer
SL3(C)a ⊆ SL3(C). Note also that F−1

a (0) is invariant under the dilation ac-
tion of C× on sl3(C), and that this action commutes with the adjoint action of
SL3(C)a on sl3(C). Now let x be the element constructed in the proof of Propo-
sition 6.2 if a = s, Proposition 6.4 if a = r, and Equation (36) if a = n. It is
then straightforward to deduce that the exotic irreducible component referenced
in Theorem 6.6 is the orbit closure (C× × SL3(C)a)x ⊆ F−1

a (0).

We now illustrate Theorem 5.8, and this involves considering the subalgebra
ba in each of the cases a = s, a = r, and a = n. A first observation is that

bs =



∗ 0 0
0 ∗ 0
0 0 ∗


 = h, br =



∗ ∗ 0
0 ∗ 0
0 0 ∗


 , and bn =



∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 .
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Recall also that the Weyl group W is generated by the simple reflec-
tions σ1 : diag(x11, x22,−x11 − x22) 7→ diag(x22, x11,−x11 − x22) and σ2 :
diag(x11, x22,−x11 − x22) 7→ diag(−x22 − x11, x22, x11).
A straightforward computation reveals that the restriction of Fs to bs = h is

Fs(x) =




2(x2
11 + x2

22 + x11x22)
−3(x2

11x22 + x11x
2
22)

2(2s1 + s2)x11 + 2(s1 + 2s2)x22

−3(s2x
2
11 + 2(s1 + s2)x11x22 + s1x

2
22)

−6(2s1s2 + s22)x11 − 6(s21 + 2s1s2)x22




,

where xij denotes the entry of x ∈ bs in position (i, j). One can also show that
the restriction of Fr to br is given by

Fr(x) =




2(x2
11 + x2

22 + x11x22)
−3(x2

11x22 + x11x
2
22)

6ρ(x11 + x22)
−3ρ(x2

11 + 4x11x22 + x2
22)

−18ρ2(x11 + x22)




, x ∈ br.

The restriction of Fn to bn = b is given by

Fn(x) =




2(x2
11 + x2

22 + x11x22)
3(−x2

11x22 − x11x
2
22)

0
0
0




, x ∈ bn.

Note that each of these restrictions only depends on the diagonal part xh of x
(cf. Theorem 5.8(i)). We also see that Fn(b

n) = C2 × {0}, which is consistent
with Theorem 5.8(ii).
We now illustrate Theorem 5.8(iv) by computing the degree of π2 : Fr(b

a) →
C2. Consider the semisimple part rh := diag(ρ, ρ,−2ρ) of r, observing that
Wrh = {id, σ1}. The restriction Fr

∣∣
h
: h → C5 is easily seen to be invariant

under Wrh . At the same time, one can verify the following fact: if x ∈ h∩ greg,
then

Fr(σ(x)) 6= Fr(x)

unless σ ∈ Wrh . Using these last three sentences and recalling that Fr(b
a) =

Fr(h) (see Theorem 5.8(i)), it is straightforward to deduce that π2 : Fr(b
r) →

C2 has degree |W/Wrh | = 3.

Notation

• |M | cardinality of a set M

• f
∣∣
Z
restriction of a map f to a subset Z
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• df(x) differential of a map f at a point x

• Hx orbit of x under a group H

• Hx ⊆ H the H-stabilizer of x

• g semisimple Lie algebra

• r = rk(g) rank of g

• b = b(g) dimension of a Borel subalgebra of g

• 〈·, ·〉 Killing form on g

• G adjoint group of g

• exp : g → G exponential map

• Ad, ad adjoint representations of G, g, respectively

• gx ⊆ g the g-centralizer of x ∈ g

• h ⊆ g Cartan subalgebra; T = exp(h)

• ∆,∆+,Π sets of roots, positive roots, simple roots, respectively

• W = W (g, h) = NG(T )/T Weyl group

• B ⊆ G Borel subgroup; b = Lie(B)

• ba intersection of all Borel subalgebras of g that contain a ∈ greg

• ua nilpotent radical of ba

• P ⊆ G parabolic subgroup; p = Lie(P )

• l Levi factor in a parabolic subalgebra

• greg regular elements in g

• gsing = g \ greg singular elements in g

• Singa = gsing + Ca

• gasreg = g \ Singa

• C[X ] coordinate algebra of a complex affine variety X

• C[g]G ⊆ C[g] algebra of G-invariant polynomials on g

• f1, . . . , fr homogeneous, algebraically independent generators of C[g]G

• F the adjoint quotient map (f1, . . . , fr) : g → Cr
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• Fa : g → Cb Mishchenko–Fomenko map associated with a ∈ greg

• Fa ⊆ C[g] Mishchenko–Fomenko subalgebra associated with a ∈ greg

• Ba set of all Borel subalgebras of g that contain a ∈ greg

• P̃a set of all proper parabolic subalgebras of g that contain a ∈ greg

• Pa = P̃a \ Ba

• gIa set of all irreducible components in F−1
a (0)

• gI ′
a set of all Z ∈ gIa satisfying Z * p for all p ∈ Pa
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