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1 Introduction

In this paper, we use arithmetic information to obtain algebraic ones. Let G be
a finite group, and let M be a G-lattice. Let ℓ′/ℓ a finite unramified extension
of number fields with Galois group G; such an extension exists by [F 62]. Let T
be an ℓ-torus with character group M . We have the following isomorphisms

(∗) X
2
cycl(G,M) ≃ X

2(ℓ,M) ≃ X
1(ℓ, T )∗;

the first isomorphism is Proposition 4.1, the second one follows from Poitou-
Tate duality (see §2 and §3 for the notation). In the following, we combine (∗)
with arithmetic results as well as some theorems of Colliot-Thélène and Sansuc;
we illustrate the results with the following example (see §12):

Example. Let k be a field, and let L = K1 × · · · ×Kn, where K1, . . . ,Kn are
cyclic extensions of k of prime degree p. Let NL/k : L → k denote the norm

map, and let TL/k = R
(1)
L/k(Gm) be the k-torus defined by

1 → TL/k → RL/k(Gm)
NL/k
−→Gm → 1.
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Let k′/k be a Galois extension of minimal degree splitting TL/k, and let G =
Gal(k′/k). Set T = TL/k, let T c be a smooth compactification of T , and let
Br(T c) be its Brauer group.

Let a ∈ k×, and let X be the affine k-variety determined by the equation
NL/k(t) = a; X is a torsor under TL/k. Let Xc be a smooth compactification
of X . We denote by Br(Xc) the Brauer group of Xc.

Theorem. (a) If G 6≃ Cp × Cp, then

Br(T c)/Br(k) = Br(Xc)/Im(Br(k)) = 0.

(b) If G ≃ Cp × Cp, then

Br(T c)/Br(k) ≃ Br(Xc)/Im(Br(k)) ≃ (Z/pZ)n−2.

This is proved in Theorem 12.1 using (∗) as well as some (arithmetic) results
of [BLP 19].

Further, we also give generators for the group Br(Xc)/Im(Br(k)) (see Theorem
12.2), in the spirit of Colliot-Thélène’s results for biquadratic extensions (see
[CT 14], §4).

The starting point is the following key observation of Jean-Louis Colliot-
Thélène :

Proposition. Let G be a finite group, and let M be a G-lattice. If for all
number fields k and every k-torus T with character group isomorphic to the
Galois module M via a surjection Γk → G one can show that X

1(k, T ) = 0,
then X

2
cycl(G,M) = 0, and every such k-torus T has weak approximation.

Since every finite group is the Galois group of some unramified extension of
number fields, we may realize the purely algebraic group X

2
cycl(G,M) as the

Tate-Shafarewich group of a torus over a number field; this is summarized in (∗).
If the module satisfies the hypothesis of the proposition, then X

2
cycl(G,M) = 0,

and weak approximation follows from an exact sequence due to Voskresenskii
(see 3.4). As we will see, the hypotheses of the proposition can be weakened
(see Corollary 5.3).
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2 Algebraic preliminaries

Let k be a field, let ks be a separable closure of k and set Γk = Gal(ks/k). We
fix once and for all this separable closure ks, and all separable extensions of k
that will appear in the paper will be contained in ks. We use standard notation
in Galois cohomology; in particular, if M is a discrete Γk-module and i is an
integer ≥ 0, we set Hi(k,M) = Hi(Γk,M). A Γk-lattice will be a torsion free
Z-module of finite rank on which Γk acts continuously.

Lemma 2.1. Let M be a Γk-lattice, and let k′/k be a finite Galois extension
with Galois group G such that Γk′ acts trivially on M . Then the natural map
H2(G,M) → H2(k,M) has trivial kernel.

Proof. SinceM is isomorphic to the trivial Γk′ -module Zn for some n, we have
H1(k′,M) = 0. Hence the exact sequence of groups 0 → Γk′ → Γk → G → 0
induces an exact sequence in Galois cohomology (cf. [S 79], page 118, Prop. 5)

(∗) 0 → H2(G,M) → H2(k,M) → H2(k′,M)G.

Therefore the map H2(G,M) → H2(k,M) has trivial kernel, as claimed.

Let G be a finite group. A G-lattice is by definition a Z-torsion free Z[G]-
module of finite rank. For a k-torus T , we denote by T̂ = Hom(T,Gm) its
character group; it is a Γk-lattice.

Proposition 2.2. Let M be a G-lattice. Let η : Γk → G be a continuous
surjective homomorphism. There exists a k-torus T such that T̂ is isomorphic
to the G-lattice M , regarded as Γk-lattice through η.

Proof. See [Bo 91], Chapter III, 8.12.
If g ∈ G, we denote by 〈g〉 the cyclic subgroup of G generated by g. Let M be
a G-lattice. The cyclic Tate-Shafarevich group X

2
cycl(G,M) is the group

X
2
cycl(G,M) = Ker[H2(G,M) →

∏

g∈G

H2(〈g〉,M)].

We recall a result of Colliot-Thélène and Sansuc:

Theorem 2.3. Let G be a finite group, let T be a k-torus, and assume that
the character group of T is a G-lattice via a surjection Γk → G. Let T c be a
smooth compactification of T . We have Br(T c)/Br(k) ≃ X

2
cycl(G, T̂ ).

Proof. See [CTS 87], Theorem 9.5 (ii). In [CTS 87] , the hypothesis char(k) =
0 is only used to ensure the existence of a a smooth compactification of T ; since
this is now known in any characteristic (see [CTHSk 05]), the result holds in
general.

Let Y be a smooth projective, geometrically connected k-variety, and set Y =
Y ×k ks. We have the following spectral sequence
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Hp(k,Hq(Y ,Gm)) =⇒ Hp+q(Y,Gm)

giving the exact sequence

(∗∗) H2(k,Gm) → Ker[H2
et(Y,Gm) → H2

et(Y ,Gm)] → H1(k,Pic(Y )) →

→ Ker[H3
et(k,Gm) → H3

et(Y,Gm)].

We refer to [CTHSk 03], Section 2 for the following theorem.

Theorem 2.4. Let Y be a smooth projective variety defined over k with Y
birational to the projective space. Then there is an injection

Br(Y )/Im(Br(k)) → H1(k,Pic(Y )).

If further Y (k) 6= ∅, the above injection yields an isomorphism Br(Y )/Br(k) ≃
H1(k,Pic(Y )).

Proof. Since Y is birational to the projective space, H2
et(Y ,Gm) = Br(Y ) = 0

(cf. [CTSk 19], Theorem 5.1.3, Corollary 5.2.6) and we have an injection

Br(Y )/Im(Br(k)) → H1(k,Pic(Y )).

If further Y (k) 6= ∅, Ker[Hi(k,Gm) → Hi
et(Y,Gm)] = 0 for all i, so that the

injection above becomes an isomorphism

Br(Y )/Br(k) ≃ H1(k,Pic(Y )).

3 Arithmetic preliminaries

Let k be a global field, and let Ωk be the set of all places of k; if v ∈ Ωk, we
denote by kv the completion of k at v.

For any k-torus T , set X
i(k, T ) = Ker(Hi(k, T ) →

∏
v∈Ωk

Hi(kv, T )). If M

is a Γk-module, set X
i(k,M) = Ker(Hi(k,M) →

∏
v∈Ωk

Hi(kv,M)), and let

X
i
ω(k,M) be the set of x ∈ Hi(k,M) that map to 0 in Hi(kv,M) for almost

all v ∈ Ωk. Recall that by Poitou-Tate duality, we have an isomorphism of fi-
nite groups X

2(k, T̂ ) ≃ X
1(k, T )∗, where X

1(k, T )∗ = Hom(X1(k, T ),Q/Z)
denotes the dual of X

1(k, T ). We denote by GM the kernel of the map
Γk → Aut(M); set kM = (ks)

GM , and let G = Γk/GM . If v ∈ Ωk, we de-
note by Gv the decomposition group of a prime w lying over v in the extension
kM/k. For various w over v, the groups Gv’s are conjugate and are subgroups
of G. Let X

i
cycl(k,M) be the set of x ∈ Hi(k,M) that map to 0 in Hi(kv,M)

for all v ∈ Ωk such that Gv is cyclic. The following lemmas are well-known:

Lemma 3.1. Let Z be the trivial Γk-module. Then X
2
ω(k,Z) = 0. In particular

X
2(k,Z) = 0.
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Proof. Let L/k be a field extension. The trivial ΓL-module Q is uniquely
divisible, hence Hi(L,Q) = 0 for all i ≥ 1. Hence the connecting map for the
exact sequence 0 → Z → Q → Q/Z → 0 yields an isomorphism H1(L,Q/Z) ≃
H2(L,Z). Thus X

1
ω(k,Q/Z) ≃ X

2
ω(k,Z). Since X

1
ω(k,Q/Z) classifies cyclic

extensions of k (together with a generator of the Galois group) which are locally
almost everywhere split, by Chebotarev density theorem, X1

ω(k,Q/Z) = 0. In
particular X

2(k,Z) = 0.

Lemma 3.2. Let M be a Γk-module and GM the kernel of the map Γk →
Aut(M). Let G = Γk/GM . The image of the homomorphism H2(G,M) →
H2(k,M) contains X

2
ω(k,M).

Proof. Let x ∈ X
2
ω(k,M). Let kM = (ks)

GM . Since M becomes isomorphic
to Zn over kM , by Lemma 3.1 x restricts to zero in H2(kM ,M). Hence from
the exact sequence (∗), x belongs to the image of H2(G,M) → H2(k,M).

Lemma 3.3. Let M be a Γk-module, let GM be the kernel of the map Γk →
Aut(M) and let that Γk/GM = G. Then X

2
ω(k,M) = X

2
cycl(k,M).

Proof. If v ∈ Ωk is unramified in kM/k, then Gv is cyclic. Hence
X

2
cycl(k,M) ⊂ X

2
ω(k,M). We show that X

2
ω(k,M) ⊂ X

2
cycl(k,M). Let

x ∈ X
2
ω(k,M). By Lemma 3.2, there is y ∈ H2(G,M) mapping to x ∈

H2(k,M). Let v ∈ Ωk be such that Gv is cyclic. By Chebotarev’s density the-
orem, there exist infinitely many w ∈ Ωk such that Gw is conjugate to Gv. Pick
w ∈ Ωk such that x maps to zero in H2(kw ,M) and there is a g ∈ G such that
gGwg

−1 = Gv. The map ψg : M → M given by m → gm is Int(g) semilinear
and induces an isomorphism H2(ψg) : H2(G,M) → H2(G,M) which is the
identity [HS 71] Proposition 16.2. Further, H2(ψg) restricts to an isomorphism
H2(Gw,M) → H2(Gv,M). Thus the restriction of y in H2(Gw ,M) being zero,
its restriction toH2(Gv,M) is zero and therefore its image inH2(kv,M) is zero.
But this coincides with the image of x in H2(kv,M). Thus x maps to zero in
H2(kv,M). This is true for every v with Gv is cyclic so that x ∈ X

2
cycl(k,M).

Let ι : T (k) →
∏

v∈Ωk

T (kv) be the diagonal embedding, and let A(T ) be the

quotient of
∏

v∈Ωk

T (kv) by the closure of the image of ι; the group A(T ) is the

obstruction to weak approximation on T . Set X(T ) = X
1(k, T ); this is the

obstruction to the Hasse principle for torsors under T .

The following is a reformulation of a result of Voskresenskii:

Proposition 3.4. Let G be a finite group, let T be a k-torus, and assume that
the character group of T is a G-lattice via a surjection Γk → G. We have an
exact sequence

0 → A(T ) → X
2
cycl(G, T̂ )

∗ → X(T ) → 0.
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Proof. Let T c be a smooth compactification of T ; by [San 81], Theorem 9.5.
(M) we have the exact sequence

0 → A(T ) → Bra(T
c)∗ → X(T ) → 0,

Note that since Tks is split and hence rational, we have Br(T c
ks
) = 0 (see

[CTSk 19], Corollary 5.2.6). By Proposition 2.3 we have Br(T c)/Br(k) ≃
X

2
cycl(G, T̂ ), hence we get the exact sequence

0 → A(T ) → X
2
cycl(G, T̂ )

∗ → X(T ) → 0.

4 The group X
2
cycl(G,M)

Let G be a finite group.

Proposition 4.1. Let ℓ′/ℓ be a finite Galois extension of global fields with
Galois group G which is unramified at all the finite places. Let M be a G-
lattice regarded as a Γℓ-module via the surjection Γℓ → G . Then we have

X
2
cycl(G,M) ≃ X

2(ℓ,M).

This proposition is an immediate consequence of Proposition 4.2 below :

Proposition 4.2. Let ℓ′/ℓ be a finite Galois extension of global fields with
Galois group G. Assume that all the decomposition groups of ℓ′/ℓ are cyclic.
Let M be a G-lattice, regarded as Γℓ-lattice through the surjection Γℓ → G.
Then we have

X
2
cycl(G,M) ≃ X

2(ℓ,M).

Proposition 4.2 follows from Proposition 4.3 below. We use the notation of the
previous section.

Proposition 4.3. Let ℓ be a global field, let M be a Γℓ-module, and assume
that Γℓ/GM ≃ G. Then we have

X
2
cycl(G,M) ≃ X

2
cycl(ℓ,M).

Proof of Proposition 4.3. Set ℓ′ = ℓM ; note that ℓ′/ℓ is a Galois extension
with group G. The homomorphism f : H2(G,M) → H2(ℓ,M) induced by the
surjection Γℓ → G is injective by Lemma 2.1. By Lemmas 3.2 and 3.3, the
image of f contains X

2cycl(ℓ,M). We next prove that the restriction of f to
X

2
cycl(G,M) maps it into X

2
cycl(ℓ,M). Let x ∈ X

2
cycl(G,M). Let v ∈ Ωℓ

such that the decomposition group Gv of ℓ′/ℓ at v is a cyclic subgroup of G.
Then the restriction of x ∈ H2(G,M) to H2(Gv,M) is zero. The composite
H2(G,M) → H2(ℓ,M) → H2(ℓv,M) factors as H2(G,M) → H2(Gv,M) →
H2(ℓv,M). Hence f(x) maps to zero in H2(ℓv,M). Thus f(x) ∈ X

2
cycl(ℓ,M).
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Clearly X
2
cycl(G,M) → X

2
cycl(ℓ,M) is injective. We prove that this map is

surjective. Let y ∈ X
2
cycl(ℓ,M) and let x ∈ H2(G,M) be such that f(x) = y.

Let g ∈ G. By Chebotarev’s density theorem, there is a finite place v ∈ Ωℓ such
that Gv = 〈g〉. We claim that the restriction of x to H2(〈g〉,M) = H2(Gv,M)
maps to zero in H2(ℓv,M). In fact this image is the same as the restriction
of y to H2(ℓv,M). Since y ∈ X

2
cycl(ℓ,M) and Gv is cyclic, the image of y

in H2(ℓv,M) is zero. By lemma 2.1, the map H2(Gv,M) → H2(ℓv,M) is
injective. It follows that the restriction of x to H2(Gv,M) is zero and hence x
belongs to X

2
cycl(G,M). This completes the proof of the proposition.

Proof of Proposition 4.2. Since all the decomposition groups of ℓ′/ℓ
are cyclic, we have X

2(ℓ,M) = X
2
cycl(ℓ,M). By Proposition 4.3, we have

X
2
cycl(G,M) ≃ X

2
cycl(ℓ,M), hence X

2
cycl(G,M) ≃ X

2(ℓ,M), as claimed.

Proof of Proposition 4.1. Since ℓ′/ℓ is unramified at all the finite places,
all the decomposition groups are cyclic; we conclude by applying Proposition
4.2.

Corollary 4.4. Let ℓ be a global field, let M be a Γℓ-module, and assume that
Γℓ/GM ≃ G. Then we have Theorem 9.3 (b)

X
2
cycl(G,M) ≃ X

2
ω(ℓ,M).

Proof. This follows from Proposition 4.3 and Lemma 3.3.

Corollary 4.5. Let M be a G-lattice. Let ℓ′/ℓ be as in Proposition 4.2, and
let T be an ℓ-torus with character group M . We have

X
2
cycl(G,M) ≃ X

2(ℓ,M) = X
2(ℓ, T̂ ) ≃ X

1(ℓ, T )∗.

Proof. This follows from Proposition 4.2, and from Poitou-Tate duality.

In the following sections, we also need a result of Fröhlich :

Proposition 4.6. (Fröhlich) There exists a Galois extension of number fields
with Galois group G that is unramified at all the finite places.

Proof. This is the main result of [F 62].

In the next sections we use Corollary 4.5 together with 4.6 to realize the purely
algebraic group X

2
cycl(G,M) as the Tate-Shafarevich group of a torus over

a number field. This makes it possible to apply arithmetic results to obtain
algebraic ones.

5 Vanishing results

The aim of this section is to apply the results of §4 and, under an additional
hypothesis (condition (C) below) prove some vanishing theorems. Let G be a
finite group.
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Definition 5.1. Let M be a G-lattice. We say that M satisfies condition (C)
if there exists a Galois extension ℓ′/ℓ of number fields with Galois group G such
that all the decomposition groups of ℓ′/ℓ are cyclic, and such that the ℓ-torus
S associated to the Galois lattice M with the Galois group Γℓ acting through
the quotient group G has the property X

1(ℓ, S) = 0.

Corollary 5.2. Let M be a G-lattice satisfying condition (C). Then

X
2
cycl(G,M) = 0.

Proof. By Poitou-Tate duality, we have X
1(ℓ, S) ≃ X

2(ℓ, Ŝ)∗ = X
2(ℓ,M)∗.

Corollary 4.5 implies that the groups X
2(ℓ, Ŝ) = X

2(ℓ,M) and X
2
cycl(G,M)

are isomorphic. Hence X
1(ℓ, S) is dual to the group X

2
cycl(G,M). Since

X
1(ℓ, S) = 0, we have X

2
cycl(G, Ŝ) = X

2
cycl(G,M) = 0.

Corollary 5.3. Let k be a global field with a surjection Γk → G, and let T
be a k-torus; assume that the character group of T is a G-lattice satisfying
condition (C). Then

X
2
ω(k, T̂ ) = 0,

and Hasse principle and weak approximation hold for torsors under T .

Proof. By Proposition 3.4, we have the exact sequence

0 → A(T ) → X
2
cycl(G, T̂ )

∗ → X(T ) → 0,

We have X
2
cycl(G, T̂ )

∗ = 0 by Corollary 5.2, hence A(T ) = X(T ) = 0. By

Corollary 4.4, we have Xω(k, T̂ ) = 0; weak approximation holds for T , and
Hasse principle holds for torsors under T .

This implies Colliot-Thélène’s observation cited in the introduction :

Corollary 5.4. Let G be a finite group, and let M be a G-lattice. If for
all number fields k and every k-torus T of character group isomorphic to the
Galois module M via a surjection of Γk → G, one can show that X1(k, T ) = 0,
then X

2
cycl(G,M) = 0, and every such k-torus T satisfies weak approximation.

6 Unramified Brauer groups

Let k be a field, T a k-torus and X a torsor under T . Let T c be a smooth
equivariant compactification of T ; such a compactification exists in any char-
acteristic (see [CTHSk 05]). Then, the contracted product Xc = X ×T T c

is a smooth compactification of X . Note that T
c
≃ X

c
is birational to the

projective space; further T c(k) 6= ∅. We therefore have exact sequences, by
Theorem 2.4,

Br(k) → Br(Xc) → H1(k,Pic(X
c
))
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and

0 → Br(k) → Br(T c) → H1(k,Pic(T
c
)) → 0.

By [CTHSk 03, Lemma 2.1], H1(k,Pic(X
c
)) ≃ H1(k,Pic(T

c
)), we have an

injection

Br(Xc)/Im(Br(k)) → Br(T c)/Br(k).

The aim of this section and the following ones is to use the results of the
previous sections to obtain information on the quotients Br(T c)/Br(k) and
Br(Xc)/Im(Br(k)). We start with some vanishing results,

Proposition 6.1. Let G be a finite group. Assume that the character group
of T is a G-lattice satisfying condition (C). Then Br(T c)/Br(k) = 0. If X is a
torsor over T , we have Br(Xc)/Im(Br(k)) = 0.

Proof. By Corollary 5.2, we have X
2
cycl(G, T̂ ) = 0. On the other hand, by

Theorem 2.3, Br(T c)/Br(k) ≃ X
2
cycl(G, T̂ ) ), therefore Br(T c)/Br(k) = 0. As

we saw above, Br(Xc)/Im(Br(k)) injects into Br(T c)/Br(k), hence this implies
that Br(Xc)/Im(Br(k)) = 0.

7 Norm equations

Let k be a field, and let L be an étale k-algebra of finite rank (in other words, a

product of a finite number of separable extensions of k). Let TL/k = R
(1)
L/k(Gm)

be the k-torus defined by

1 → TL/k → RL/k(Gm)
NL/k
−→Gm → 1.

Let a ∈ k×. Let X be the affine k-variety associated to the norm equation

NL/k(t) = a.

The variety X is a torsor under TL/k; let Xc be a smooth compactification
of X .

In the later sections, we need the following result

Theorem 7.1. Suppose L = K × E with K/k a cyclic extension and E an
étale k-algebra of finite rank. Then

Br(T c)/Br(k) ≃ Br(Xc)/Im(Br(k)).
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Proof. SinceK⊗kL ≃ K×L′ for some étale algebra L′ overK, the varietyXK

is isomorphic to RL′/K(Gm) and hence is K-rational. Since K/k is cyclic, by

[CT 14, Proposition 1.1], the map H1(k,PicX
c
) → H3(k,Gm) in the sequence

(∗∗) is zero and one has an isomorphism (cf. Theorem 2.4) Br(Xc)/Im(Br(k)) ≃
H1(k,PicX

c
). We also have an isomorphism (cf. Theorem 2.4)

Br(T c)/Br(k) ≃ H1(k,PicT
c
).

By [CTHSk 03, Lemma 2.1], we have an isomorphism

H1(k,PicX
c
) ≃ H1(k,PicT

c
).

This leads to an isomorphism

Br(T c)/Br(k) ≃ Br(Xc)/Im(Br(k)).

8 Norm equations - first examples

The aim of this section and the next ones is to give some examples of étale
algebras for which we apply the results of the previous sections, obtaining
information about the unramified Brauer group, Hasse principle and weak ap-
proximation (in the case where k is a global field) for the variety X . We keep
the notation of the previous section.

The first examples concern étale algebras that are products of two fields, finite
extensions of the ground field k.

Products of two fields

We start by introducing some notation that will be used in the two examples
of this section. Let L = K1 × K2, where K1 and K2 are finite extensions
of k. Let k′/k be a Galois extension of minimal degree splitting TL/k, and let

G = Gal(k′/k); let M = T̂L/k be the character G-lattice of TL/k. For i = 1, 2,
let Hi be the subgroup of G such that Ki = (k′)Hi .We have the exact sequence
of G-modules

0 → Z → Z[G/H1]⊕ Z[G/H2] →M → 0.

Let ℓ′/ℓ be an unramified extension of number fields with Galois group G.

Some consequences of Hrlimann’s theorem

The first example is based on a result of Hürlimann [H 84]. With the notation
above, we assume that K1/k is a cyclic extension.

Theorem 8.1. We have X
2
cycl(G,M) = 0.
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Proof. Set ℓi = (ℓ′)Hi for i = 1, 2. Let S be the norm torus corresponding to
the étale ℓ-algebra ℓ1 × ℓ2. Hürlimann’s result [H 84], Proposition 3.3 implies
that X1(ℓ, S) = 0 (in [H 84], the extension K2/k is supposed to be Galois, but
this is not necessary; see [BLP 19], Proposition 4.1 for a different proof of the
general case). We have Ŝ ≃ M by construction, hence by Proposition 4.1 we
have X

2
cycl(G,M) = 0.

Remark 8.2. Theorem 8.1 was proved by Sansuc (unpublished) by algebraic
methods. His proof is rather involved; the proof presented here, passing from
arithmetic to algebra, is simpler, since the proof of the arithmetic result in
[BLP 19], Proposition 4.1 is quite short.

Theorem 8.3. We have Br(T c
L/k)/Br(k) = 0, and Br(Xc)/Im(Br(k)) = 0.

Proof. By Theorem 8.1 and Proposition 6.1, we have Br(T c
L/k)/Br(k) = 0

and Br(Xc)/Im(Br(k)) = 0.

Linearly disjoint Galois extensions

This example is based on a result of Pollio and Rapinchuk, [PR 13]. Let L =
K1 × K2, where K1 and K2 are finite extensions of k such that the Galois
closures of K1 and K2 are linearly disjoint.

Theorem 8.4. We have Br(T c
L/k)/Br(k) = 0, and Br(Xc)/Im(Br(k)) = 0.

Proof. Let K ′

1 and K ′

2 be the Galois closures of K1, respectively K2, and
let H ′

1, H
′

2 be the subgroups of G such that K ′

i = (k′)H
′

i , for i = 1, 2. By
hypothesis, the extensions K ′

1 and K ′

2 are linearly disjoint, hence G = H ′

1.H
′

2.

Recall that ℓ′/ℓ is an unramified extension of number fields with Galois group
G. Set ℓi = (ℓ′)Hi and ℓ′i = (ℓ′)H

′

i for i = 1, 2. Since H ′

i is a normal subgroup
of G for i = 1, 2, the extensions ℓ′i/ℓ are Galois, and |H ′

i| = [ℓ′ : ℓ′i]. Since
G = H ′

1.H
′

2, the fields ℓ′i are linearly disjoint.

Let S be the norm torus corresponding to the étale ℓ-algebra ℓ1 × ℓ2; the
main theorem of [PR 13] implies that X

1(ℓ, S) = 0. We have Ŝ ≃ M by
construction, hence by Corollary 5.2 we have X2

cycl(G,M) = 0. By Proposition
6.1, we have Br(T c

L/k)/Br(k) = 0 and Br(Xc)/Im(Br(k)) = 0.

9 Products of cyclic extensions of prime power degree - state-

ment of results and notation

The proofs of the results of this section will be given in §11. Let p be a prime
number. If K/k is a cyclic extension of degree a power of p, we denote by
(K)prim the unique subfield of K of degree p over k; if E =

∏
i∈I

Ki, where Ki/k

is a cyclic extension of degree a power of p for all i ∈ I, set Eprim =
∏
i∈I

(Ki)prim.

Let L be a product of n cyclic extensions of degrees powers of p. With the
notation of the previous section, set T = TL/k. Let a ∈ k×, and X be the
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affine k-variety associated to the norm equation NL/k(t) = a; let Xc be a
smooth compactification of X .

Let Tprim = TLprim/k. We denote by Xprim the affine k-variety associated to
NLprim/k(t) = a, and by Xc

prim a smooth compactification of Xprim.

Theorem 9.1. We have

Br(T c)/Br(k) = 0 ⇐⇒ Br(T c
prim)/Br(k) = 0.

Let k′/k be a Galois extension of minimal degree splitting T , and let G =
Gal(k′/k); similarly, let k′prim/k be a Galois extension of minimal degree split-
ting Tprim, and let Gprim = Gal(k′prim/k).

Theorem 9.2. We have

X
2
cycl(G, T̂ ) = 0 ⇐⇒ X

2
cycl(Gprim, T̂prim) = 0.

Products of at least p+ 2 pairwise disjoint cyclic extensions

With the notation above, we now consider the case where n ≥ p+ 2.

Theorem 9.3. Assume that L is a product of at least p + 2 pairwise disjoint
cyclic extensions of degrees powers of p. Then we have

(a)
Br(T c)/Br(k) = 0.

(b)
Br(Xc)/Im(Br(k)) = 0.

(c) Suppose that k is a global field. Then X
2
ω(k, T̂L/k) = 0, and Hasse principle

and weak approximation hold for X.

Theorem 9.4. Assume that n ≥ p+ 2. Then we have

X
2
cycl(G, T̂ ) = 0.

At least one cyclic factor of degree p

In the next results, we assume that L has at least one factor of degree p.

Theorem 9.5. Assume that L is a product of n pairwise disjoint cyclic exten-
sions of degrees powers of p, and that at least one of these is of degree p. Then
we have

Br(T c)/Br(k) ≃ Br(T c
prim)/Br(k).

Documenta Mathematica 25 (2020) 1263–1284



On Unramified Brauer Groups 1275

Theorem 9.6. Assume that L is a product of n pairwise disjoint cyclic exten-
sions of degrees powers of p, and that at least one of these is of degree p. Then
we have

X
2
cycl(G, T̂ ) ≃ X

2
cycl(Gprim, T̂prim).

Products of cyclic extensions of degree p

Finally, we determine Br(T c
prim)/Br(k). Let us denote by Cp the cyclic group

of order p.

Theorem 9.7. (a) If Gprim 6≃ Cp × Cp, then

Br(T c
prim)/Br(k) = Br(Xc

prim)/Im(Br(k)) = 0.

(b) If Gprim ≃ Cp × Cp, then

Br(T c
prim)/Br(k) ≃ Br(Xc

prim)/Im(Br(k)) ≃ (Z/pZ)n−2.

Theorem 9.8. (a) If Gprim 6≃ Cp × Cp, then X
2
cycl(Gprim, T̂prim) = 0.

(b) If Gprim ≃ Cp × Cp, then X
2
cycl(Gprim, T̂prim) ≃ (Z/pZ)n−2.

In the case where k is a global field, we obtain the following corollaries

Corollary 9.9. Suppose that k is a global field. Assume that L is a product
of n pairwise disjoint cyclic extensions of degrees powers of p, and that at least
one of these is of degree p.

(a) If Gprim 6≃ Cp ×Cp, then Hasse principle and weak approximation hold for
T .

(b) If Gprim ≃ Cp × Cp, then either Hasse principle holds for torsors over T
(and weak approximation for T fails), or weak approximation holds for T (and
Hasse principle for torsors over T fails).

Proof. Part (a) follows from Theorems 9.8 (a), 9.6 and 3.4. To prove part
(b), we apply Theorems 9.8 (b), 9.6, 3.4, as well as [BLP 19], Theorem 8.3 and
Corollary 5.17.

Corollary 9.10. Assume that k is a global field, and that L is a product of n
distinct cyclic extensions of degree p. If G 6≃ Cp × Cp, then

Xω(k, T̂L/k) = 0.

If G ≃ Cp × Cp, then

Xω(k, T̂L/k) ≃ (Z/pZ)n−2.

Proof. This follows from Theorem 9.8 and Lemma 4.4.

Remark 9.11. Corollary 9.10 was also proved by Macedo, see [Ma 19], Theo-
rem 4.9 and Corollary 4.10, with different methods (namely, using a general-
ization of the approach of Drakokhrust and Platonov).
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10 Products of cyclic extensions of prime power degree - global

fields

We recall some results from [BLP 19]; these will be used in the next section
to prove the results of §9. Let k be a global field. We start by recalling
some notation from [BLP 19]. If L is an étale algebra of finite rank over k
having at least one factor that is a cyclic extension of k, the paper [BLP 19]
introduces a finite abelian group X(L) (see [BLP 19], §5) and proves (see
[BLP 19], Corollary 5.17) that X(L)∗ ≃ X

1(k, TL/k); equivalently, by Poitou-

Tate duality, we have X(L) ≃ X
2(k, T̂L/k).

Let p be a prime number.

Proposition 10.1. Let L be a product of cyclic extensions of degrees powers
of p. The group X

1(k, TLprim/k)
∗ injects into X

1(k, TL/k)
∗.

Proof. This follows from [BLP 19], Lemma 8.7.

Theorem 10.2. Let L be a product of cyclic extensions of degrees powers of p.
Then we have

X
1(k, TL/k) = 0 ⇐⇒ X

1(k, TLprim/k) = 0.

Proof. This is an immediate consequence of [BLP 19], Theorem 8.1.

Proposition 10.3. Let L be a product of n distinct cyclic extensions of degrees
powers of p, and assume that at least one of the extensions is of degree p. Then
X

1(k, TL/k) is a finite abelian group of type (p, ..., p) of order at most pn−2.

Proof. Let us write L as a product L = K×K ′, where K is a cyclic extension
of k of degree p, and K ′ is a product of n−1 cyclic extensions of degrees powers
of p. In [BLP 19], 5.1, we construct a finite abelian group X(L) = X(K,K ′)
such that when K is cyclic of order p, the group X(K,K ′) is of type (p, ..., p)
of order at most pn−2. It is shown in [BLP 19], 5.3 that the group X(K,K ′)
does not depend on the decomposition of L as K × K ′, where K is a cyclic
extension of k, and that X(K,K ′)∗ ≃ X

1(k, TL/k) (see [BLP 19], Corollary

5.17). Hence X
1(k, TL/k) is a finite abelian group of type (p, ..., p) of order at

most pn−2, as claimed.

Theorem 10.4. Let L = K1×· · ·×Kn, where Ki are distinct cyclic extensions
of degree p of k.

(a) If n ≤ 2, or n ≥ p+ 2, or 3 ≤ n ≤ p+ 1 and K1, . . . ,Kn are not contained
in some field extension of k of degree p2 having all local degrees ≤ p, then

X
1(k, TL/k) = 0.

(b) Assume that 3 ≤ n ≤ p+ 1 and that the fields K1, . . . ,Kn are contained in
some field extension of k of degree p2 having all local degrees ≤ p, then

X
1(k, TL/k) ≃ (Z/pZ)n−2.
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Proof. This follows from [BLP 19], Theorem 8.3, Proposition 8.5 and Corol-
lary 5.17.

Remark. More generally, one can treat the case where the Ki’s are field ex-
tensions of degree p, with at least one of them cyclic (see [BLP 19], Proposition
8.5).

Theorem 10.5. Let L be a product of n pairwise disjoint cyclic extensions
of degrees powers of p, and assume that at least one of the extensions is of
degree p. Then we have

X
1(k, TL/k) ≃ X

1(k, TLprim/k).

Proof. By Theorem 10.4, we have either X
1(k, TLprim/k) = 0 or

X
1(k, TLprim/k) ≃ (Z/pZ)n−2. If X1(k, TLprim/k) = 0, then by Theorem 10.2,

we have X
1(k, TL/k) = 0. Assume now that X

1(k, TLprim/k) 6= 0; then by

Theorem 10.4 we have X
1(k, TLprim/k) ≃ (Z/pZ)n−2, therefore the order of

X
1(k, TLprim/k) is equal to pn−2. By Proposition 10.1, this implies that the

order of X1(k, TL/k) is at least pn−2. On the other hand, since at least one of

the factors of L is of order p, Proposition 10.3 implies that X
1(k, TL/k) is a

finite abelian group of type (p, . . . , p) of order at most pn−2. Hence the order
of X1(k, TL/k) is equal to pn−2, and this completes the proof of the Theorem.

11 Products of cyclic extensions of prime power degree - proofs

We keep the notation of §9. In particular, p is a prime number, L is a product
of n cyclic extensions of degrees powers of p, k′/k is a Galois extension of
minimal degree splitting T = TL/k, and G = Gal(k′/k). Let M = T̂ be the
G-lattice of characters of T . Let us write L =

∏
i∈I

Ki. Since k′ splits T , k′ also

splits RL/k(Gm) and it follows that k′ contains all the factors Ki of L. Let Hi

be the subgroup of G such that Ki = (k′)Hi . We have the exact sequence of
G-modules

0 → Z → ⊕
i∈I

Z[G/Hi] → M → 0.

Recall that k′prim/k is a Galois extension of minimal degree splitting Tprim,
and that Gprim = Gal(k′prim/k). Let Mprim be the Gprim-lattice of charac-
ters of Tprim. Let (Hi)prim be the subgroup of Gprim such that (Ki)prim =
(k′prim)

(Hi)prim . We have the exact sequence of Gprim-modules

0 → Z → ⊕
i∈I

Z[Gprim/(Hi)prim] →Mprim → 0.

Set Γi = (G/Hi)/(Gprim/(Hi)prim), and note that (Ki)prim = KΓi

i .

Let ℓ′/ℓ be an extension of number fields with Galois group G which is unram-
ified at all the finite places. For all i ∈ I, let Li be the fixed field of Hi in ℓ′,
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and set E =
∏
i∈I

Li. The character lattice of the torus TE/ℓ is isomorphic to the

G-lattice M . We have (Li)prim = LΓi

i . Note that X
2
cycl(G,M) ≃ X

2(ℓ, T̂E/ℓ)

and that X
2
cycl(Gprim,Mprim) ≃ X

2(ℓ, T̂Eprim/ℓ).

Proof of Theorem 9.2. By Theorem 10.2, we have

X
1(ℓ, TE/ℓ) = 0 ⇐⇒ X

1(ℓ, TEprim/ℓ) = 0,

therefore, since T̂E/ℓ ≃M and T̂Eprim/ℓ ≃Mprim, we have

X
2(ℓ,M) = 0 ⇐⇒ X

2(ℓ,Mprim) = 0.

By Proposition 4.1, we have

X
2
cycl(G,M) ≃ X

2(ℓ,M)

and
X

2
cycl(Gprim,Mprim) ≃ X

2(ℓ,Mprim).

Since M = T̂ and Mprim = T̂prim, we obtain

X
2
cycl(G, T̂ ) = 0 ⇐⇒ X

2
cycl(Gprim, T̂prim) = 0,

as claimed.

Proof of Theorem 9.1. Theorems 9.2 and 9.1 are equivalent by Theorem
2.3.

From now on, we assume that the extensions Ki/k are pairwise disjoint which
implies the same property for the extensions Li/l.

Proof of Theorem 9.8 Note that Gprim is an elementary abelian p-group,
with |Gprim| = p if n = 1, and |Gprim| ≥ p2 if n ≥ 2. We may assume that
n ≥ 2.

Assume first that Gprim 6≃ Cp ×Cp. Then all the factors of the étale ℓ-algebra
E are not contained in a field extension of degree p2 of ℓ, therefore Theo-
rem 10.4 implies that X

1(ℓ, T ) = 0, and by Corollary 5.2 this implies that
X

2
cycl(Gprim,M) = 0.

Assume now that Gprim ≃ Cp × Cp. Then, ℓ′ is a degree p2 extension of l
containing all the factors of E. Since the extensions Li are pairwise disjoint,
n ≤ p + 1. Since ℓ′/ℓ is unramified at all the finite places, the local degrees
are ≤ p. By Theorem 10.4, this implies that X

1(ℓ, T ) ≃ (Z/pZ)n−2. Hence
X

2(ℓ, T̂ )) ≃ (Z/pZ)n−2. Since the G-lattices T̂ and M are isomorphic, by
Corollary 4.5 we have X

2
cycl(G,M) ≃ (Z/pZ)n−2.

Proof of Theorem 9.7. Both (a) and (b) follow directly from Theorems
2.3, 7.1 and 9.8.
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Proof of Theorem 9.4. By Theorem 9.8, we have X
2
cycl(Gprim, T̂prim) = 0,

and by Theorem 9.2 this implies that X
2
cycl(G, T̂ ) = 0.

Proof of Theorem 9.3. Theorems 9.4 and 9.3 (a) are equivalent by Theorem
2.3. Theorem 9.3 (b) follows Theorem 7.1. Theorem 9.3 (c) follows from
Corollary 4.4 and Proposition 3.4.

Proof of Theorem 9.6. By Theorem 10.5, we have

X
1(ℓ, TE/ℓ)

∗ ≃ X
1(ℓ, TEprim/ℓ)

∗,

and by Poitou-Tate duality this implies that X
2(ℓ, T̂E/ℓ) ≃ X

2(ℓ, T̂Eprim/ℓ).

Since T̂E/ℓ ≃ M ≃ T̂ , and T̂Eprim/ℓ ≃ Mprim ≃ T̂prim, applying Corollary 4.5,

we obtain X
2
cycl(Gprim, T̂prim) ≃ X

2
cycl(G, T̂ ), as claimed.

Proof of Theorem 9.5. Theorems 9.6 and 9.5 are equivalent by Theo-
rem 2.3.

12 Unramified Brauer groups and products of cyclic extensions

Let p be a prime number, and let L = K1 × · · · × Kn, where K1, . . . ,Kn are

distinct cyclic extensions of k of degree p. Let TL/k = R
(1)
L/k(Gm) be the k-torus

defined by

1 → TL/k → RL/k(Gm)
NL/k
−→Gm.

Let k′/k be a Galois extension of minimal degree splitting TL/k, and let G =
Gal(k′/k). Let M be the G-lattice of characters of TL/k.

Let a ∈ k×, and let X be the affine k-variety determined by the equation
NL/k(t) = a, and note that X is a torsor under T = TL/k. Let Xc be a smooth
compactification of X .

The following result is an immediate consequence of Theorems 9.7 and 7.1:

Theorem 12.1. (a) If G 6≃ Cp × Cp, then

Br(T c)/Br(k) = Br(Xc)/Im(Br(k)) = 0.

(b) If G ≃ Cp × Cp, then

Br(T c)/Br(k) ≃ Br(Xc)/Im(Br(k)) ≃ (Z/pZ)n−2.

Assuming that char(k) 6= p, we obtain a more precise result, namely we give
generators for the group Br(Xc)/Im(Br(k)).

Set I = {1, . . . , n}. We consider the norm polynomials NKi/k(ti) for i ∈ I as
elements of k(X). For all i ∈ I, set Ni = NKi/k(ti) and let σi be a generator
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of Gal(Ki/k). Let K̃n ∈ H1(k,Z/pZ) be the element associated to the pair
(Kn, σn). We identify H1(k(Xc), µp) with k(Xc)∗/k(Xc)∗p via the Kummer
isomorphism and regard [Ni] ∈ H1(k(Xc), µp). The variety X is defined by

N1N2 . . . Nn = a in the affine space k[ti, 1 ≤ i ≤ n]. Let (Ni, K̃n) denote
the class of the cyclic algebra of degree p over k(Xc) associated to [Ni] ∈
H1(k(Xc), µp) and K̃n ∈ H1(k(Xc),Z/pZ).

Theorem 12.2. Suppose that char(k) 6= p, and that G ≃ Cp × Cp. Then
Br(Xc)/Im(Br(k)) is generated by the n− 2 linearly independent elements

(Ni, K̃n), i = 1, . . . , n− 2.

in Br(k(Xc)).

We begin with the following lemma:

Lemma 12.3. Let K/k be a cyclic extension of degree n with (n, char(k)) = 1.
Let σ be a generator of Gal(K/k) and let A be the cyclic algebra over k defined
by ((K,σ), c) for some c ∈ k×. Let X be the variety NK/k(t) = c. Then the
kernel of Br(k) → Br(k(X)) is generated by the class of A.

Proof. Let YA be the Severi-Brauer variety of A. Since A is split by k(YA),
the element c is a norm from the extension Kk(YA)/k(YA). Thus X has a
rational point over k(YA) and the map Br(k(YA)) → Br(k(YA)(X)) has trivial
kernel. We have,

Ker(Br(k) → Br(k(X))) ⊂ Ker(Br(k) → Br(k(X)(YA))) =

= Ker(Br(k) → Br(k(YA))) = 〈[A]〉

by a theorem of Amitsur [GS 06], Theorem 5.4.1. Since [A] is zero in Br(k(X)),
it follows that Ker(Br(k) → Br(k(X)) = 〈[A]〉.

In the following proof of Theorem 12.2, we use the fact that the Brauer group
of Xc is the unramified Brauer group of Xc (cf [CT 14], Section 2), namely
the subgroup of Br(k(Xc)) consisting of all elements which are unramified at
all discrete valuations of k(Xc). This is a consequence of the purity results of
Cesnavius [C 19], Theorem 1.2.

Proof of Theorem 12.2. The strategy of the proof is the following. We
first show that the algebras (Ni, K̃n), i = 1, . . . , n − 2 belong to Br(Xc).
By Theorem 12.1 (b), we know that Br(T c)/Br(k) ≃ (Z/pZ)n−2. Moreover,
Br(Xc)/Im(Br(k)) injects into Br(T c)/Br(k) (see §6). We next show that the
elements (Ni, K̃n), i = 1, . . . , n− 2. are linearly independent over Z/pZ, and
this yields the desired result.

Identifying G with Z/pZ×Z/pZ, let σ(i, j) ∈ G correspond to (i, j) ∈ Z/pZ×
Z/pZ, 0 ≤ i ≤ p − 1, 0 ≤ j ≤ p − 1. We assume K1 = (k′)σ(0,1) and
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Kn = (k′)σ(1,0). Pick a generator σ1 of Gal(K1/k) and let K̃1 = [(K1, σ1)] ∈
H1(k,Z/pZ). For each j ∈ I, one can choose a generator σj of Gal(Kj/k) such

that for j ≥ 2, we have K̃j = ijK̃1 + K̃n for some ij with 1 ≤ ij ≤ p − 1. In
fact for j ≥ 2, we have Kj = (k′)σ(1,j), and σj is determined by σ1 and σn.

Since Ni ∈ NKik(Xc)/k(Xc)(Kik(X
c)), we get (Ni, K̃i)k(Xc) = 0. Hence we have

(N1, K̃j) = (N1, ijK̃1 + K̃n) = (N1, K̃n) for every j ∈ I, j ≥ 2.

We show that the cyclic algebras (Ni, K̃n) are unramified on Xc for all i ∈ I,
and that (N1, K̃n), . . . , (Nn−2, K̃n) are linearly independent in Br(Xc)/Br(k).

Let R be a discrete valuation ring containing the field k, with fraction field of
R equal to k(Xc). We prove that the algebras (Ni, K̃n) are unramified with
respect to the valuation vR. Let us denote by κ the residue field of R, and let
∂R : Br(k(Xc)) → H1(κ,Q/Z) be the residue map.

Let [Ki] denote the image of K̃i in H1(κ,Z/pZ). We have (see for instance
[GS 06] Lemma 6.8.4 and construction 6.8.5),

∂R(Ni, K̃n) = [Kn]
vR(Ni)

.

If Kn ⊂ κ we have [K̃n] = 0 and ∂R(Ni, K̃n) = 0 for 1 ≤ i ≤ n − 2.. Sup-
pose that ∂R(N1, K̃n) 6= 0. Then Kn is not contained in κ. In this case, Knκ
is a degree p cyclic extension of κ. The extension k(Xc)Kn/k(X

c) is cyclic
of degree p, and has residual degree p, hence is unramified at R. Further
Nn ∈ k(Xc) is a norm from the extension k(Xc)Kn/k(X

c). Hence the valua-
tion vR(Nn) is divisible by p. Since (N1, K̃j) = (N1, K̃n) for j ≥ 2, we have

∂R(N1, K̃j) 6= 0, and Kj is not contained in κ. Repeating the above argument,
we see that p divides vR(Nj) for all j ≥ 2. Since a = N1 . . . Nn ∈ k, vR(a) = 0,
p divides vR(Nj) for 2 ≤ j ≤ n, and it follows that p divides vR(N1). This

implies that ∂R(N1, K̃n) = (Kn)
vR(N1) = 0, contradicting the assumption that

∂R(N1, K̃n) 6= 0. This implies that ∂R(N1, K̃n) = 0. A similar argument, in-
terchanging 1 and i, with i ≤ n − 1, gives that ∂R(Ni, K̃n) = 0. Hence the
elements (Ni, K̃n) are unramified at R for every discrete valuation ring R with
field of fractions k(Xc). By purity for Br(Xc), we have (Ni, K̃n) ∈ Br(Xc).

Let us check that the algebras (N1, K̃n), . . . , (Nn−2, K̃n) are linearly indepen-
dent in Br(k(Xc))/Br(k). Let us project X to the d-dimensional affine space,
where d = (n− 1)p, corresponding to the coordinates involving the first n− 1
norm polynomials. Let M be the function field of this affine space; we have
k ⊂ M ⊂ k(Xc). Note that N1, . . . , Nn−1 ∈ M . We have (Ni, K̃n) ∈ Br(M)
for all i = 1, . . . , n− 1.

We want to show that the algebras (N1, K̃n), . . . , (Nn−2, K̃n) are linearly in-
dependent in Br(k(Xc))/Br(k). If not, then there exist r1, . . . , rn−2 ∈ Z not
all zero with 0 ≤ ri ≤ p − 1 such that

∑
i=1,...,n−2

ri(Ni, K̃n)k(Xc) = α for some

α ∈ Br(k).
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The kernel of the natural homomorphism Br(M) → Br(k(Xc)) is generated
by the class of the algebra (a−1N1 . . . Nn−1, K̃n), by Lemma 12.3 applied to
c = aN−1

1 .N−1
2 .....N−1

n−1.
Hence there exists s ∈ Z with 0 ≤ s ≤ p− 1 such that

∑

i=1,...,n−2

ri(Ni, K̃n)M − α = s(a−1N1 . . . Nn−1, K̃n)M

in Br(M). The polynomials Ni are irreducible (see [F 53], Theorem 2). Take
residue on both sides at the valuation vNi corresponding to the irreducible
polynomial Ni for all i = 1, . . . , n − 2. The residue of the left side is ri[Kn],
and the right side is s[Kn].

Claim. [Kn] 6= 0 in the residue field κ(vNi) for all i = 1, . . . , n− 2.

Assume that the claim holds. Then we have ri = s 6= 0 for all i = 1, . . . , n− 2,
and we get s(a−1Nn−1, K̃n) = −α. With respect to the valuation vNn−1

, we

have the residue ∂(a−1Nn−1, K̃n) = [Kn] 6= 0 by the claim, and this leads to a
contradiction since ∂(α) = 0, α being an element of k, and s 6= 0.

It remains to prove the claim. Let us show that Kn is not contained in κ(vNi)
for all i = 1, . . . , n−2. Let Mi be the function field of the k-variety determined
by the polynomial Ni. Since κ(vNi) is a purely transcendental extension of
Mi obtained by adjoining the coordinates involved in the polynomials {Nj, j 6=
i, j ≤ n− 1}, it suffices to show that Kn is not contained in Mi. Suppose that
Kn is a subfield of Mi. Let us base change to Ki : the field KiKn is a subfield
of KiMi. After base change to Ki, the polynomial Ni is transformed to the
product X1 . . . Xp for some variables X1, . . . , Xp. Hence KiMi is a product of
rational function fields over Ki; therefore it cannot contain Kn, thereby leading
to contradiction.

13 Some consequences for semi-global fields

Let K be a complete discrete valued field with valuation ring O and residue
field κ. Let X/K be a normal projective, geometically integral curve over K
and let F = K(X). We call F a semi-global field. In [CTPS 16], §2.3, certain
higher reciprocity obstructions were constructed to study the failure of the
Hasse principle for varieties over F with respect to discrete valuations of F
centered on a regular proper model X/O of the curve X/K. It was also proved
in [CTPS 16], Example 2.6, that these obstructions do not suffice to detect
the failure of the Hasse principle on principal homogeneous spaces under tori
defined over F . Using an example of a multinorm torus constructed in [Su 19],
Corollary 7.12, we give another example where the obstructions constructed in
[CTPS 16] do not suffice to detect failure of Hasse principle.

We recall the following construction from [Su 19], Corollary 7.12. Let K =
C((t)) and F = C((t))(X)[Y ]/(XY (X + Y − 1)(X − 2) − t). Let L1 =
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F ((XY )1/n, (Y (X+Y −1))1/n) and L2 = F ((XY θ1)
1/n, (Y (X+Y −1)θ2)

1/n),
where θ1 = (X − 2)/(X − 2 + XY (X + Y − 1)) and θ2 = (Y − 2)/(Y − 2 +
XY (X+Y − 1). Then L1 and L2 are Galois extensions of F which are linearly
disjoint over F (c.f [Su 19], Corollary 7.12). Let T = R1

L1×L2/F
(Gm) be the

associated norm one torus. It is proved in [Su 19], Corollary 7.12, there is a
principal homogeneous space under T which fails the Hasse principle with re-
spect to all discrete valuations of F . The proof invokes R-equivalence of tori to
prove that Hasse principle fails in the patching setting of Harbater-Hartmann-
Krashen. The second step is to prove that failures of Hasse principle in the
patching setting implies the failure of the Hasse principle with respect to all
discrete valuations of F . Since the cohomological dimension of F is 2, the only
obstruction of [CTPS 16] in this case is the one coming from the Brauer group
of Xc. In view of Theorem 8.4, we have Br(Xc)/Br(k) = 0, and the obstruction
vanishes. However, Hasse principle fails for X .
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