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Abstract. Let V be a complete discrete valuation ring with fraction
field F of characteristic zero and with residue field F. We introduce
analytic cyclic homology of complete torsion-free bornological algebras
over V . We prove that it is homotopy invariant, stable, invariant
under certain nilpotent extensions, and satisfies excision. We use these
properties to compute it for tensor products with dagger completions
of Leavitt path algebras. If R is a smooth commutative V -algebra of
relative dimension 1, then we identify the analytic cyclic homology of
its dagger completion with Berthelot’s rigid cohomology of R⊗V F.
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1 Introduction

Analytic cyclic homology of complete bornological algebras over R and C was
introduced in [16] as a bivariant generalisation from Banach to bornological
algebras of the entire cyclic cohomology defined by Connes [5] and further
studied by Khalkhali [14]. It was shown to be stable under tensoring with
algebras of nuclear operators and invariant under differentiable homotopies
and under analytically nilpotent extensions and to satisfy excision for semi-
split extensions [18].
Let V be a complete discrete valuation ring whose fraction field F has charac-
teristic zero. Let π be a uniformiser and let F ∶= V /πV be the residue field. In
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1354 G. Cortiñas, R. Meyer, D. Mukherjee

this article, we define and study an analytic cyclic homology theory for com-
plete, torsion-free bornological V -algebras (see Section 2 for the definitions of
these terms). For example, if R is a torsion-free, finitely generated, commuta-
tive V -algebra, then its Monsky–Washnitzer dagger completion R† introduced
in [20] is such a complete bornological algebra (see [7, 19]).
We prove that analytic cyclic homology is invariant under dagger homotopies
and under certain nilpotent extensions, that it is matrix stable, and that it
satisfies excision for semi-split extensions. We use these properties to com-
pute the analytic cyclic homology for dagger completed Leavitt and Cohn path
algebras of countable graphs. For finite graphs, we also compute the analytic
cyclic homology for tensor products with such algebras. In particular, it follows
that the analytic cyclic homology of the completed tensor product of R with
V [t, t−1]† is isomorphic to the direct sum HA∗(R) ⊕ HA∗(R)[1], where HA∗
denotes analytic cyclic homology. This is a variant of the fundamental theorem
in algebraic K-theory.

We also compute HA∗(R†) for a smooth, commutative V -algebra R of relative
dimension 1. Namely, it is isomorphic to the de Rham cohomology of R†. If F
has finite characteristic, then this agrees with Berthelot’s rigid cohomology of
R⊗F (see [7]). Partial results that we have for smooth, commutative V -algebras
of higher dimension have not been included because we have not been able to
prove that analytic and periodic cyclic homology coincide in this generality.
Monsky–Washnitzer cohomology and Berthelot’s rigid cohomology are defined
for varieties in finite characteristic by lifting them to characteristic zero. In
order to define analogous theories for noncommutative F-algebras, it is natural
to replace de Rham cohomology by cyclic homology. Indeed, in [7], Berthelot’s
rigid cohomology for commutative F-algebras is linked to the periodic cyclic
homology of suitable dagger completed commutative V -algebras. When we
allow noncommutative algebras, however, then the dagger completion process
forces us to replace periodic cyclic homology by the analytic cyclic homology
that is studied here.
In work in progress, we are going to use the theory defined in this article in
order to define an analytic cyclic homology theory for algebras over the residue
field F. We want to prove HA∗(A) ≅ HA∗(R†) whenever R is a torsion-free
V -algebra and A ≅ R/πR is its reduction to an F-algebra. The crucial point
is that this should not depend on the choice of R – and this is where we need
analytic instead of periodic cyclic homology.

All theorems in this paper require the fraction field F to have characteristic 0.
This is needed for the homotopy invariance of analytic cyclic homology be-
cause the proof involves integration of polynomials. Our proofs of the excision
theorem and of matrix stability use characteristic 0 indirectly because they
are based on homotopy invariance. Variants of periodic cyclic homology such
as (negative) cyclic homology are not homotopy invariant. This is why our
methods do not apply to these theories.

Several groups of authors have recently been studying cohomology theories
for varieties in finite characteristic with different approaches. We mention, in
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particular, the work of Petrov and Vologodsky [21] that uses topological cyclic
homology.
This paper is organised as follows. Some notational conventions used through-
out the article are reviewed at the end of this introduction.
In Section 2, we recall some basic notions from bornological analysis and from
the Cuntz–Quillen approach to cyclic homology theories. In particular, we in-
troduce dagger completions relative to an ideal (Section 2.2) and review the
appropriate notions of extension of bornological modules, noncommutative dif-
ferential forms, tensor algebra, and X-complex for bornological algebras.
Section 3 introduces the analytic cyclic pro-complex HA(R) of a complete,
torsion-free bornological algebra R. It is defined as the X-complex of the scalar
extension T R⊗V F of a certain projective system T R of complete bornological
V -algebras functorially associated to R. Hence, by definition, HA(R) is a pro-
supercomplex (that is, a projective system of Z/2-graded chain complexes) of
complete bornological vector spaces over F . The analytic cyclic homology of R
is defined as the homology of the homotopy limit of HA(R),

HA∗(R) ∶=H∗(holimHA(R)).
By definition, this is a Z/2-graded bornological vector space over F .
The results about excision, homotopy invariance and matrix stability in this ar-
ticle are all about HA as a functor to the homotopy category of chain complexes
of projective systems of complete bornological F -vector spaces. Here “homo-
topy category” means that we take chain homotopy classes of chain maps as
arrows. It seems, however, that we must pass to a suitable derived category for
results that compare HA for two different liftings of an algebra over the residue
field F. We do not discuss here which weak equivalences must be inverted in
order to make the theory well defined for algebras over F.
Section 4 is concerned with analytic nilpotence. Analytically nilpotent pro-
algebras and analytically nilpotent extensions of algebras and pro-algebras are
introduced. A pro-algebra R is called analytically quasi-free if every semi-split,
analytically nilpotent extension of R splits. In particular, the analytic tensor
pro-algebra T R (see Definition 4.4.1) is analytically quasi-free and is part of a
semi-split, analytically nilpotent extension

JR ↣ T R↠ R.

We define dagger homotopy of (pro-)algebra homomorphisms using the dagger
completion V [t]†, and we show that any semi-split analytically nilpotent exten-
sion N ↣ E↠ R with analytically quasi-free E is dagger homotopy equivalent
to the extension above. We use this and the invariance of the X-complex un-
der dagger homotopies to show that HA is invariant under dagger homotopies.
This implies that HA is invariant under analytically nilpotent extensions and
that HA(R) is homotopy equivalent to X(R⊗F ) if R is analytically quasi-free.
Section 5 is devoted to the proof of the Excision Theorem, which says that if

K
i↣ E

p↠Q
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is a semi-split pro-algebra extension, then there is a natural exact triangle

HA(K) i∗Ð→ HA(E) p∗Ð→ HA(Q) δÐ→ HA(K)[−1].
Applying the homotopy projective limit and taking homology, this implies a
natural 6-term exact sequence

HA0(K) HA0(E) HA0(Q)

HA1(Q) HA1(E) HA1(K).

i∗ p∗

δδ

p∗ i∗

The proof of the excision theorem follows the structure of its archimedean
version in [17, 18], and adapts it to the present case.
The stability of HA under matricial embeddings is proved in Section 6. Any
pair X,Y of torsion-free bornological V -modules with a surjective bounded
linear map ⟨⋅ , ⋅⟩∶Y ⊗ X → V gives rise to a dagger algebra M(X,Y ) with
underlying bornological V -module X⊗ Y . We show in Proposition 6.2 that HA

is invariant under tensoring withM(X,Y ). For example, the algebra of finite
matrices Mn with n ≤∞ and the algebra of matrices with entries going to zero
at infinity are of the formM(X,Y ) for suitableX and Y . Thus HA is invariant
under tensoring with such algebras. This implies that HA for unital algebras
is functorial for certain bimodules and invariant under Morita equivalence (see
Section 7).
Section 8 is concerned with Leavitt path algebras. For a directed graph E with
finitely many vertices and a complete bornological algebra R, Theorems 8.1
and 8.3 compute HA(R⊗ L(E)†) in terms of HA(R) and a matrix NE related
to the incidence matrix of E:

HA(R⊗ L(E)†) ≃ (coker(NE)⊕ ker(NE)[1])⊗HA(R).
For trivial R, the homotopy equivalence

HA(L(E)†) ≃ (coker(NE)⊕ ker(NE)[1])
is shown also for graphs with countably many vertices. If E is the graph
with one vertex and one loop, it follows that HA satisfies a version of Bass’
fundamental theorem:

HA(R⊗ V [t, t−1]†) ≃ HA(R)⊕HA(R)[−1].
We also compute HA(R ⊗ C(E)†) for the Cohn path algebra of E if E has
finitely many vertices, and HA(C(E)†) if E has countably many vertices.
In Section 9 we show that if R is smooth commutative of relative dimension
one, then the analytic cyclic homology of its dagger completion is the same as
the rigid cohomology of its reduction modulo π (see Theorem 9.2.9). That is,

HAn(R†) ≅Hn
rig(R/πR)
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for n = 0,1. We outline the idea of the proof. By [7], Hn
rig(R/πR) is isomorphic

to the periodic cyclic homology of R† ⊗ F . And by Corollary 4.7.2, HA and
HP(⋅ ⊗ F ) agree on analytically quasi-free bornological V -algebras. It is well
known that a smooth algebra R of relative dimension 1 is quasi-free in the sense
that any square-zero extension of R splits or, equivalently, that the bimodule
Ω1(R) of noncommutative differential 1-forms admits a connection. We show in
Theorem 9.1.9 that if R is a torsion-free, complete bornological algebra and ∇ is
a connection on Ω1(R) that satisfies an extra condition, then R† is analytically
quasi-free. We prove that a smooth commutative algebra of relative dimension 1
with the fine bornology admits such a connection (see Lemma 9.2.3).
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1.1 Some notation

Throughout this article, we shall use the following notation. Let N∗ be the set
of nonzero natural numbers. Let V be a complete discrete valuation ring, π ∈ V
a uniformiser, F the residue field V /(π) of V , and F the fraction field of V .
While our definitions work in complete generality, our homotopy invariance,
stability and excision theorems only work if F has characteristic zero. All
tensor products ⊗ are taken over V . By convention, algebras are allowed to be
non-unital throughout this article. An ideal in a possibly non-unital V -algebra
means a two-sided ideal that is also a V -submodule.

2 Preparations

2.1 Bornologies

As in [7], bornological V -algebras play a crucial role. We first recall some basic
terminology about bornologies from [7, 19].

Definition 2.1.1. A bornology on a set S is a set B of subsets, called bounded

subsets, such that finite unions and subsets of bounded subsets are bounded
and finite subsets are bounded. A bornological set is a set with a bornology.

Definition 2.1.2. A map f ∶S1 → S2 between bornological sets is bounded if
it maps bounded subsets to bounded subsets. It is a bornological embedding if
it is injective and T ⊆ S1 is bounded if and only if f(T ) ⊆ S2 is bounded. It is
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a bornological quotient map if it is bounded and any bounded subset T ⊆ S2 is
the image of a bounded subset of S1.

Definition 2.1.3. A bornological V -module is a V -module R with a bornol-
ogy such that any bounded subset is contained in a bounded V -submodule
or, equivalently, the V -submodule generated by a bounded subset is again
bounded. A bornological V -algebra is a bornological V -module R with a mul-
tiplication R × R → R that is bounded in the sense that S ⋅ T is bounded if
S,T ⊆ R are bounded.

Definition 2.1.4. A bornological V -module is complete if any bounded subset
is contained in a bounded V -submodule that is π-adically complete. The com-

pletion M of a bornological V -module M is a complete bornological V -module
with a bounded map M →M that is universal in the sense that any bounded
map from M to a complete bornological V -module factors uniquely through it
(see [7, Definition 2.14]).

Example 2.1.5. Let M be a V -module. The fine bornology on M consists of
those subsets of M that are contained in a finitely generated V -submodule. It
is the smallest V -module bornology on M . It is the only bornology on M if M
itself is finitely generated. If R is a V -algebra, then the fine bornology makes
it a bornological V -algebra. The fine bornology is automatically complete.
We always equip the fraction field F with the fine bornology.

Definition 2.1.6. Let M1 and M2 be bornological V -modules. The tensor

product bornology on the V -module M1 ⊗M2 consists of all subsets that are
contained in S1 ⊗ S2 for bounded V -submodules Sj ⊆ Mj for j = 1,2. The
complete bornological tensor product M1 ⊗ M2 is defined as the bornological
completion of M1 ⊗M2 with the tensor product bornology.

The universal property of tensor products easily implies the following:

Proposition 2.1.7. Let M1, M2 and N be bornological V -modules. Bounded

V -linear maps M1 ⊗M2 → N are in natural bijection with bounded V -bilinear

maps M1 ×M2 → N .

Corollary 2.1.8. Let M1, M2 and N be complete bornological V -modules.

Bounded V -linear maps M1 ⊗ M2 → N are in natural bijection with bounded

V -bilinear maps M1 ×M2 → N .

Example 2.1.9. Continuing Example 2.1.5, let M1 be a V -module with the
fine bornology and let M2 be a complete bornological V -module. Then the
tensor product bornology on M1 ⊗M2 is already complete because the tensor
product of a π-adically complete V -module with a finitely generated V -module
is complete. Thus M1⊗M2 =M1⊗M2 in this case. This applies, in particular,
ifM1 = F . If bothM1 andM2 carry the fine bornology, then the tensor product
bornology on M1 ⊗ M2 =M1 ⊗M2 is the fine bornology as well.
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Definition 2.1.10 ([19, Definition 4.1]). A bornological V -module is (bornolog-
ically) torsion-free if multiplication by π is a bornological embedding.

Remark 2.1.11. Let M be a bornological V -module. If S ⊆M , then define

π−1S ∶= {x ∈M ∶π ⋅ x ∈ S}.
This depends on M and not just on S. By definition, M is torsion-free if and
only if multiplication by π is injective and π−1S is bounded for all bounded
subsets S ⊆M .

Proposition 2.1.12 ([19, Proposition 4.3]). A bornological V -module M is

torsion-free if and only if the canonical map M → M ⊗ F is a bornological

embedding.

Example 2.1.13. A V -module M with the fine bornology is torsion-free if and
only if M is torsion-free in the usual sense.

Definition 2.1.14. Let M be any bornological V -module and define Mtf ⊆
M ⊗ F as the image of the canonical map M → M ⊗ F , equipped with the
restriction of the bornology of M ⊗F .
Proposition 2.1.15 ([19, Proposition 4.4]). The canonical map M → Mtf is

the universal map from M to a torsion-free bornological V -module.

Definition 2.1.16. A bornological V -algebra R is semi-dagger if any bounded
subset S ⊆ R is contained in a bounded V -submodule T ⊆ R with π ⋅ T ⋅ T ⊆ T
(see [19, Proposition 3.4]). Let R with the bornology B be a bornological
V -algebra. There is a smallest semi-dagger bornology on R that contains B. It
is denoted Blg and called the linear growth bornology on R; we write Rlg for R
with the linear growth bornology (see [19, Definition 3.5 and Lemma 3.6]).

Definition 2.1.17. A dagger algebra is a bornological V -algebra that is com-
plete, (bornologically) torsion-free, and semi-dagger. The dagger completion of
a bornological V -algebra R is a dagger algebra R† with a bounded V -algebra
homomorphism R → R† that is universal in the sense that any bounded homo-
morphism from R to a dagger algebra factors uniquely through it.

Theorem 2.1.18 ([19, Theorem 5.3]). If R is already torsion-free, then R† is

the completion of Rlg. In general, it is the completion of (Rtf)lg.
Example 2.1.19. The dagger completion R† of a torsion-free, finitely gener-
ated, commutative V -algebra is usually defined as the weak completion of R by
Monsky and Washnitzer [20]. This agrees with our definition of R† by [7, The-
orem 3.2.1]: the dagger completion of R with the fine bornology is naturally
isomorphic to the weak completion of R, equipped with a canonical bornology.

Proposition 2.1.20 ([7, Proposition 3.1.25]). Let A and B be torsion-free,

complete bornological algebras. Then (A ⊗ B)lg ≅ Alg ⊗ Blg and (A ⊗ B)† ≅
A† ⊗ B†.
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Corollary 2.1.21. A completed tensor product of two dagger algebras is again

a dagger algebra.

Proof. A completed tensor product is complete by definition. It remains semi-
dagger by Proposition 2.1.20, and torsion-free by [19, Proposition 4.12].

2.2 Relative dagger completions

We shall define analytic cyclic homology for torsion-free, complete bornological
V -algebras R that need not be dagger algebras. This uses a variant of the
linear growth bornology relative to an ideal.
Let R be a V -algebra and let M and N be V -submodules of R. Let MN ⊆ R
be the V -submodule generated by all products xy with x ∈M and y ∈ N . Let

M◇ ∶= ∞∑
i=0

πiM i+1. (2.2.1)

A subset of R has linear growth if and only if it is contained in M◇ for
some bounded V -submodule M of R; with the present definitions, this is
[19, Lemma 3.6].

Lemma 2.2.2. Let R be a V -algebra and let M,N ⊆ R be V -submodules. Then

(1) M◇ +N◇ ⊆ (M +N)◇;
(2) M ⋅N◇ ⊆ (M ⋅N +N)◇ and N◇ ⋅M ⊆ (N ⋅M +N)◇;
(3) π ⋅M◇ ⋅M◇ ⊆M◇;

(4) M◇ ⋅N◇ ⊆ (M +N +MN)◇;
(5) (M◇)◇ =M◇.

Proof. The definition of M◇ immediately implies (1).
The following computation shows (4):

M◇ ⋅N◇ = ∞

∑
i,j=0

πi+jM i(MN)N j ⊆
∞

∑
i,j=0

πi+j(M +N +MN)i+j+1

Similar calculations give (2).
And (3) follows from π ⋅ πiM i+1 ⋅ πjM j+1 = πi+j+1M (i+j+1)+1 for all i, j ∈ N.
Then πi(M◇)i+1 ⊆M◇ follows by induction on i. This implies (5).

Definition 2.2.3. Let R be a bornological V -algebra and I ◁ R an ideal. LetBlg(I) be the set of all subsets of R that are contained in M +N◇ for bounded
V -submodules M ⊆ R and N ⊆ I. This is a bornology on R, called the linear

growth bornology relative to I. Let Rlg(I) be R with this bornology.

Example 2.2.4. By definition, Blg(0) = B and Blg(R) is the usual linear growth
bornology on R. So Rlg(0) = R and Rlg(R) = Rlg.
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Lemma 2.2.5. The bornology Blg(I) is an algebra bornology, and its restriction

to I is semi-dagger. Let S be a bornological V -algebra. A homomorphism

f ∶R → S is bounded for the bornology Blg(I) if and only if f(N) has linear

growth in S for all bounded subsets N ⊆ I and f(M) is bounded in S for all

bounded subsets M ⊆ R.

Proof. Since I is an ideal, Lemma 2.2.2 implies that Blg(I) makes R a bornolog-
ical V -algebra. And a subset of I belongs to Blg(I) if and only if it is contained
in N◇ for some bounded V -submodule N ⊆ I. The restriction of Blg(I) to I
is semi-dagger by Lemma 2.2.2. If M and N are as in Definition 2.2.3, then
f(M + N◇) = f(M) + f(N)◇. This is bounded in S if and only if f(M) is
bounded and f(N) has linear growth.
Lemma 2.2.6. Let R be a bornological algebra and let I and J be ideals in R

with I ⊆ J and R/I = (R/I)lg(J/I). Then Rlg(J) = Rlg(I). In particular, if R/I
is semi-dagger, then Rlg(I) = Rlg.

Proof. By Lemma 2.2.5, the bornology Blg(J) on R is the smallest one that
contains the given bornology and makes J semi-dagger, and similarly for I. And
the assumption R/I = (R/I)lg(J/I) says that J/I ⊆ R/I is semi-dagger in the
quotient bornology on R/I. This is the same as the quotient bornology induced
by Blg(I). [19, Theorem 3.7] says that an extension of semi-dagger algebras
remains semi-dagger. This theorem applied to the extension I ↣ J ↠ J/I,
equipped with the restrictions of the bornology Blg(I) on I and J and the
resulting quotient bornology on J/I shows that J is semi-dagger also in the
bornology Blg(I). Then Blg(J) ⊆ Blg(I). And Blg(I) ⊆ Blg(J) is trivial.

Lemma 2.2.7. Let R be a bornological algebra and I ◁ R an ideal. If R is

torsion-free, then so is Rlg(I).

Proof. Let S ⊆ πR be a bounded subset in Rlg(I). By definition, there are
bounded submodules M ⊆ R and N ⊆ I with S ⊆M +N◇. And

M +N◇ =M +N + ∞∑
i=1

πiN i+1 =M +N + π ⋅ (∞∑
i=0

πiN i+2).
Since πiN i+2 ⊆ πi(N +N2)i+1 for all i ≥ 0, the subset ∑∞i=0 πiN i+2 belongs toBlg(I). Since M +N is bounded in R and R is torsion-free, π−1 ⋅ (M +N) is
bounded. Then

π−1S ⊆ π−1(M +N◇) ⊆ π−1(M +N) + ∞∑
i=0

πiN i+2 ∈ Blg(I).

Definition 2.2.8. Let R be a torsion-free bornological algebra and I ◁ R an
ideal. The dagger completion of R relative to I is the completion

(R, I)† ∶= Rlg(I) .
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We shall never apply (relative) dagger completions when R is not already
bornologically torsion-free. In general, the correct definition of the relative
dagger completion of (R, I) would be (Rtf , Itf)†, where Itf is identified with its
image in Rtf (compare Theorem 2.1.18).

Proposition 2.2.9. Let R and S be torsion-free bornological V -algebras, I ⊆ R
an ideal, and f ∶R → S a bounded algebra homomorphism. Assume S to be

complete. There is a bounded algebra homomorphism (R, I)† → S extending f

– necessarily unique – if and only if f(M) has linear growth for each bounded

V -submodule M of I.

Proof. Use Lemma 2.2.5 and the universal property of the completion.

We know no analogue of Proposition 2.1.20 for relative dagger completions.

2.3 Extensions of bornological modules

An extension of V -modules is a diagram of V -modules

K
i↣ E

p↠Q (2.3.1)

that is algebraically exact and such that i is a bornological embedding and p
is a bornological quotient map. Equivalently, i is a kernel of p and p is a
cokernel of i in the additive category of bornological V -modules. The following
elementary lemma says that this category is quasi-abelian (see [24]):

Lemma 2.3.2. Let (2.3.1) be an extension of bornological V -modules and let

f ∶K →K ′ and g∶Q′′ → Q be bounded V -module maps. The pushout of i, f and

the pullback of p, g exist and are part of morphisms of extensions

K E Q

K ′ E′ Q,

i

f

p

f̂

i′ p′

K E′′ Q′′

K E Q.

i′′ p′′

ĝ g

i p

Here

E′ ∶= K ′ ⊕E
{(f(k),−i(k)) ∶k ∈K} , E′′ ∶= {(e, q′′) ∈ E ×Q′′ ∶ p(e) = g(q′′)},

equipped with the quotient and the subspace bornology, respectively, and f̂(e) =[(0, e)], i′(k′) = [(k′,0)], p′[(k′, e)] = p(e), ĝ(e, q′′) = e, p′′(e, q′′) = q′′, and

i′′(k) = (i(k),0) for e ∈ E, k′ ∈K ′, q′′ ∈ Q′′, k ∈K.

The following proposition is an analogue of Lemma 2.2.6 for completions, de-
scribing a situation when a partial completion relative to a submodule is equal
to the completion.

Documenta Mathematica 25 (2020) 1353–1419



Nonarchimedean Analytic Cyclic Homology 1363

Proposition 2.3.3. Assume Q in an extension (2.3.1) of bornological V -mod-

ules to be complete and bornologically torsion-free. Form the pushout diagram

K E Q

K E′ Q.

i

canK

p

γ

i
′ p

′

Then there is a unique isomorphism ϕ∶E′ ≃Ð→ E such that ϕ○γ is the canonical

map E → E .

Proof. The bottom row is an extension by Lemma 2.3.2. Then E′ is complete
by [19, Theorem 2.3]. The maps canE ∶E → E and i ∶K → E induce a bounded

V -module map ϕ∶E′ → E by the universal property of pushouts. Since E′

is complete, the universal property of E gives a unique map ψ∶E → E′ with
ψ ○ canE = γ. Then ϕ○ψ ○ canE = ϕ○γ = canE . This implies ϕ○ψ = id

E
. Next,

ψ ○ i ○ canK = γ ○ i = i′ ○ canK implies ψ ○ i = i′, and then ψ ○ ϕ ○ i′ = ψ ○ i = i′
and ψ ○ϕ ○ γ = ψ ○ canE = γ imply ψ ○ϕ = idE′ . So ϕ is an isomorphism.

2.4 Injective maps between completions

Unlike in the archimedean case, all Banach spaces over F have a simple struc-
ture. This implies that they all satisfy a variant of Grothendieck’s Approxi-
mation Property. This is Proposition 2.4.5, and it will be useful to describe
completions of tensor products.

Definition 2.4.1. Let D be a set. Let C0(D,V ) be the V -module of all
functions f ∶D → V such that for each δ > 0 there is a finite subset S ⊆D with∣f(x)∣ < δ for all x ∈ D ∖ S. Define C0(D,F ) similarly. Equip C0(D,V ) and
C0(D,F ) with the supremum norm.

Theorem 2.4.2. Any π-adically complete, torsion-free V -module M is isomor-

phic to C0(D,V ) for some set D.

Proof. The mapM →M⊗F is an embedding becauseM is torsion-free. Define
the gauge norm on F ⋅M by

∥x∥ ∶= inf{∣π∣j ∶π−j ⋅ x ∈M}.
It is a nonarchimedean norm and makes F ⋅M a Banach F -vector space with
unit ballM . It takes values in {∣π∣n ∶n ∈ Z}∪{0} by construction. Hence there is
a set D and an isometric isomorphism FM ≅ C0(D,F ) (see [23, Remark 10.2]).
It maps M isomorphically onto the unit ball C0(D,V ) of C0(D,F ).
Corollary 2.4.3. Any complete, torsion-free bornological V -module W is iso-

morphic to the colimit of an inductive system of complete V -modules of the

form (C0(Dn, V ), fn,m)n,m∈S with a directed set (S,≤), sets Dn for n ∈ S, and
injective, bounded V -linear maps fn,m∶C0(Dm, V ) ↪ C0(Dn, V ) for n,m ∈ S,
n ≥m.
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Proof. The complete V -submodules of W form a directed set under inclusion.
By [7, Proposition 2.10], this is an inductive system with injective structure
maps and with colimit W . Each complete V -submodule of W is π-adically
complete and torsion-free. Then it is isomorphic to C0(D,V ) for some set D
by Theorem 2.4.2.

Lemma 2.4.4. Let f ∶C0(D1, V ) ↪ C0(D2, V ) and g∶C0(D3, V ) ↪ C0(D4, V )
be injective, bounded V -linear maps. Then the induced bounded map

f ⊗̂ g∶C0(D1, V ) ⊗̂C0(D3, V ) → C0(D2, V ) ⊗̂C0(D4, V )
is injective as well. And here C0(Dm, V ) ⊗̂C0(Dn, V ) ≅ C0(Dm ×Dn, V ).
Proof. The universal property of the complete bornological tensor product im-
plies that C0(D1, V ) ⊗̂ C0(D3, V ) ≅ C0(D1 × D3, V ) for all sets D1 and D3.
Define C0(D1,C0(D3, V )) to be the space of all functions f ∶D1 → C0(D3, V )
for which the gauge norm ∥f∥ vanishes at∞. There is a canonical isomorphism

C0(D1 ×D3, V ) ≅→ C0(D1,C0(D3, V )), f ↦ (s↦ f(s, ⋅)).
Similarly, C0(D1×D3, V ) ≅ C0(D3,C0(D1, V )). Now we factorise the map f⊗ g
as

C0(D1, V ) ⊗̂C0(D3, V ) ≅ C0(D1 ×D3, V ) ≅ C0(D1,C0(D3, V ))
g∗↪ C0(D1,C0(D4, V )) ≅ C0(D4,C0(D1, V ))

f∗↪ C0(D4,C0(D2, V )) ≅ C0(D2 ×D4, V ) ≅ C0(D2, V ) ⊗̂C0(D4, V );
here the maps f∗ and g∗ are injective because f and g are injective.

Proposition 2.4.5. Let M1, W1, M2 and W2 be complete, torsion-free

bornological V -modules and let ϕj ∶Mj ↪ Wj for j = 1,2 be injective bounded

V -module maps. Then ϕ1 ⊗ ϕ2∶M1 ⊗ M2 →W1 ⊗ W2 is injective.

Proof. WriteW1 andW2 as inductive limits as in Corollary 2.4.3. ThenW1⊗W2

is naturally isomorphic to the inductive limit of the inductive system defined
by the maps

f1,n1,m1
⊗ f2,n2,m2

∶C0(Dn1
, V )⊗C0(Jn2

, V )→ C0(Dm1
, V )⊗C0(Jm2

, V ),
and W1 ⊗ W2 is naturally isomorphic to the inductive limit of the inductive
system defined by the maps

f1,n1,m1
⊗̂ f2,n2,m2

∶C0(Dn1
, V ) ⊗̂C0(Jn2

, V )→ C0(Dm1
, V ) ⊗̂C0(Jm2

, V ).
All these bounded maps are injective by Lemma 2.4.4. Therefore, the tensor
product is isomorphic to an ordinary union of these V -modules, equipped with
the bornology cofinally generated by these V -submodules. The tensor products
M1 ⊗M2 and M1 ⊗ M2 are described similarly, and the maps ϕ1 and ϕ2 are
described by injective maps between the entries of the appropriate inductive
systems. Then Lemma 2.4.4 shows that ϕ1 ⊗ ϕ2 is injective.
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2.5 The bimodule of differential 1-forms

We are going to define the (complete) bimodule Ω 1(A) of noncommutative

differential 1-forms over a complete bornological V -algebra A.
For a unital algebra in the usual sense, Ω1(A) is defined in [10, Section 1] as
A ⊗ (A/C ⋅ 1) with a certain bimodule structure. Its elements are denoted by
adb with a ∈ A, b ∈ A/C ⋅ 1. We shall use the version for non-unital algebras,
which uses the unitalisation A+ instead of A. This is A+ ∶= A ⊕ V with the
multiplication

(x,λ) ⋅ (y,µ) ∶= (xy + µx + λy,λµ)
for x, y ∈ A, λ,µ ∈ V . So (0,1) is the unit element in A+, which we denote simply
by 1. The inclusion map A → A+ is the universal bounded homomorphism
from A to a unital bornological algebra.
It is clear from the definition that the map Ω1(A) → A+⊗A+, adb↦ a⊗b−ab⊗1,
is an isomorphism onto the kernel of the multiplication map A+ ⊗ A+ → A+.
In [18, Appendix A.3], Ω1(A) is defined as this kernel when A is an algebra in
an additive monoidal category. This definition applies in our setting, using the
tensor product ⊗ . By definition, Ω1(A) ⊆ A+ ⊗ A+ is a complete bornological
A-bimodule. The map

d∶A→ Ω 1(A), d(x) ∶= 1⊗ x − x⊗ 1,

is the universal bounded derivation into a complete A-bimodule, that is, any
bounded derivation ∂∶A → M into a complete A-bimodule factors uniquely
through d. Namely, there is a unique bounded bimodule homomorphism
Ω 1(A) → M , a0 da1 ↦ a0 ⋅ ∂(a1). This factorisation exists because there are
bornological isomorphisms

A+ ⊗ A→ Ω 1(A), x⊗ y ↦ xdy,

A⊗ A+ → Ω 1(A), x⊗ y ↦ (dx) ⋅ y = d(x ⋅ y) − xdy.
The first one is left and the second one right A-linear.
We now relate Ω 1(A) to sections of semi-split, square-zero extensions of A (see
[18, Theorem A.53] or [10, Proposition 3.3]). LetM be a complete bornological
A-bimodule. Give A⊕M the multiplication

(a1,m1) ⋅ (a2,m2) ∶= (a1 ⋅ a2, a1 ⋅m2 +m1 ⋅ a2).
The inclusion M ↣ A⊕M and the projection A ⊕M ↠ A form a square-zero
extension that splits by the inclusion homomorphism A↪ A⊕M .

Lemma 2.5.1. Let A be a complete bornological algebra and let M be a complete

bornological A-bimodule. There is a natural bijection between bounded bimodule

homomorphisms Ω 1(A) → M and bounded V -algebra homomorphisms A →
A⊕M that split the extension M ↣ A⊕M ↠ A.
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Proof. Any bounded linear section s∶A → A ⊕M has the form a ↦ (a, ∂(m))
for a bounded linear map ∂∶A → M . And s is multiplicative if and only if ∂
is a derivation. Bounded bimodule maps Ω 1(A) → M are in bijection with
bounded derivations.

We shall also apply the definition and the lemma above to incomplete bornolog-
ical algebras, where we define Ω1(A) by leaving out the completions in the con-
struction above. And we shall use a variant of Ω1(A) for projective systems of
algebras. In general, the definition and the lemma above carry over to algebras
in any additive monoidal category.

2.6 Tensor algebras and noncommutative differential forms

We describe the tensor algebra of a bornological V -module and the algebra
of differential forms over a bornological algebra and relate the two. All this
goes back to Cuntz and Quillen [10]. Their constructions make sense in any
additive monoidal category with countable direct sums, and we specialise this
generalisation of their constructions to bornological V -modules and to complete
bornological V -modules. We shall mainly use the incomplete versions below
because we are going to modify tensor algebras further before completing them.

Let W be a bornological V -module. Equip W⊗n for n ≥ 1 with the tensor
product bornology and TW ∶=⊕n≥1W

⊗n with the direct sum bornology; that
is, a subset M of TW is bounded if and only if it is contained in the image
of ⊕n

j=1N
⊗j for some n ≥ 1 and some bounded submodule N ⊆ W . The

multiplication TW ×TW → TW defined by

(x1 ⊗⋯⊗ xn) ⋅ (xn+1 ⊗⋯⊗ xn+m) ∶= x1 ⊗⋯⊗ xn+m
makes TW a bornological algebra, called the tensor algebra of W . Let
σW ∶W → TW be the inclusion of the first summand. It is a bounded V -module
homomorphism, but not an algebra homomorphism.

Lemma 2.6.1. The map σW ∶W → TW is the universal bounded V -module map

from W to a bornological algebra. That is, TW is a bornological V -algebra and

if f ∶W → S is a bounded V -module map to a bornological V -algebra S, then

there is a unique bounded algebra homomorphism f#∶TW → S with f#○σW = f .
Proof. The multiplication above is well defined and bounded by the universal
property of the bornological tensor product. Let f ∶W → S be a bounded
V -module map. Then there is a unique bounded V -module map f#∶TW → S

with

f#(x1 ⊗⋯⊗ xn) ∶= f(x1)⋯f(xn)
for all x1, . . . , xn ∈ W . This is a bounded algebra homomorphism. And it is
the unique one with f# ○ σW = f .
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Let W be a complete bornological V -module. The completion of TW is

TW ∶=⊕
n≥1

W⊗n,
the direct sum of the completed tensor products, equipped with the direct
sum bornology. By the universal property of completions, the canonical arrow
σW ∶W → TW is the universal bounded V -module map from W to a complete
bornological algebra. That is, TW is a complete bornological V -algebra and if
f ∶W → S is a bounded V -module map to a complete bornological V -algebra S,
then there is a unique bounded algebra homomorphism f#∶TW → S with
f# ○ σW = f .
Remark 2.6.2. If W is torsion-free, then so is TW . If W is complete and
torsion-free, then so is TW . This uses [19, Theorem 4.6 and Proposition 4.12]
and that completeness and torsion-freeness are hereditary for direct sums.

Let R be a bornological V -algebra. Then so is TR. The identity map on R

induces a bounded homomorphism p ∶= id#R ∶TR → R by Lemma 2.6.1. Let

JR ∶= ker(p∶TR↠ R). (2.6.3)

This is a closed two-sided ideal in TR. The inclusion JR ↣ TR and the pro-
jection p∶TR ↠ R form an extension of bornological V -algebras, which splits
by the bounded V -module map σR∶R → TR. Similarly, if R is a complete
bornological V -algebra, then there is an extension of complete bornological
V -algebras

JR ↣ TR↠ R

that splits by the bounded V -module map σR .

We are going to rewrite the tensor algebra using the Fedosov product on the
algebra of noncommutative differential forms, following Cuntz and Quillen [10].
This alternative picture is important because it allows to describe the ideal JR
and the tube algebras that we shall need. It is sketched in [18, Appendix A.3–
4] why all this continues to work for algebras in additive monoidal categories.
This observation goes back further to [9].

Let Ω0R ∶= R and, for n ≥ 1, let ΩnR ∶= R+ ⊗R⊗n, equipped with the tensor
product bornology. That is, a submodule N ⊆ ΩnR is bounded if and only if
there is a bounded submodule M ⊆ R such that N is contained in the image
of ΩnM = M+ ⊗M⊗n. Let ΩR ∶= ⊕n≥0Ω

nR, equipped with the direct sum
bornology. We interpret an element x0 ⊗x1 ⊗⋯⊗xn ∈ ΩnR as a noncommuta-
tive differential form x0 dx1 . . .dxn. There is a unique structure of differential
graded algebra on ΩR whose multiplication restricts to the given multiplication
on R = Ω0R and whose differential satisfies

d(x0 dx1 . . .dxn) ∶= 1 ⋅ dx0 dx1 . . .dxn.
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Namely, the (graded) Leibniz rule dictates that

x0 dx1 . . .dxn ⋅ xn+1 dxn+2 . . . dxn+m
∶= n

∑
j=0

(−1)n−jx0 dx1 . . . d(xj ⋅ xj+1) . . .dxn+m.
The Fedosov product on a differential graded algebra such as ΩR is defined by

ξ ⊙ η ∶= ξη − (−1)i⋅jd(ξ)d(η) for ξ ∈ ΩiR, η ∈ ΩjR. (2.6.4)

If p, q ≥ 0 and M,N ⊆ R are bounded V -submodules, then

ΩpM ⊙ΩqN ⊆ Ωp+q(M +N +MN +M2)⊕Ωp+q+2(M +N). (2.6.5)

Hence (ΩR,⊙) is a bornological algebra. Its completion ΩR is the bornological

direct sum ⊕n≥0Ω
nR of the completed differential forms. Let ΩevR ⊆ ΩR

be the bornological subalgebra of differential forms of even degree. In the
following, we always equip ΩevR with the Fedosov product.
The inclusion map R = Ω0R ↪ ΩevR induces a bounded homomorphism

TR → ΩevR, x1 ⊗⋯⊗ xn ↦ x1 ⊙⋯⊙ xn, (2.6.6)

by Lemma 2.6.1, which is, in fact, a bornological isomorphism. To understand
why, let f ∶R → S be a V -module map. Its curvature is the V -module map

ωf ∶R ⊗R → S, ωf(x, y) = f(x ⋅ y) − f(x) ⋅ f(y).
It is bounded if f is. The composite of the induced homomorphism f#∶TR → S

with the inverse of the map in (2.6.6) must be given by the formula

f#(x0 dx1 . . .dx2n) = f(x0) ⋅ ωf(x1, x2)⋯ωf(x2n−1, x2n) (2.6.7)

because the inclusion map R → ΩevR has the curvature (x, y) ↦ x ⋅ y − x ⊙
y = dxdy. Indeed, this defines a bounded homomorphism f#∶ΩevR → S. So
ΩevR enjoys the same universal property as TR. Then the map in (2.6.6) is a
bornological isomorphism.
The map p∶TR → R corresponds to the map p∶ΩevR → R that vanishes on
Ω2nR for n ≥ 1 and is the identity on Ω0R = R. Therefore, the isomorphism
TR ≅ ΩevR maps JR onto ⊕n≥1Ω

2nR. Then it follows by induction that the
isomorphism maps the ideal JRm onto ⊕n≥mΩ2nR. This simple description of
all the powers JRm is the main point of rewriting the tensor algebra using the
Fedosov product on the even-degree differential forms.

Remark 2.6.8. The map JR⊗m → JRm splits by the bounded V -module map

a0 da1 . . .da2(m+n) ↦ a0 da1 da2⊗da3 da4⊗⋯⊗da2m−3 da2m−2⊗da2m−1 . . .da2n.
Thus JR⊗m → JRm is a quotient map, and the same is true upon completion.
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2.7 The X-complex

The X-complex introduced by Cuntz and Quillen in [11] is an important ingre-
dient in their approach to cyclic homology theories. It is defined for algebras in
additive monoidal categories (see also [18, Appendix A.6]). We shall specialise
this definition to the additive monoidal category of complete bornological al-
gebras over F or V .
Let Ω 1(S)/[, ] be the commutator quotient of Ω 1(S), that is, the quotient

of Ω 1(S) by the closure of the image of

S ⊗ Ω 1(S)→ Ω 1(S), x⊗ ω ↦ x ⋅ ω − ω ⋅ x.
With the quotient bornology, this is a complete bornological V -module (see
[19, Theorem 2.3]). The closure comes in because we take a cokernel in the
category of complete bornological V -modules, which forces us to make the
quotient separated.
Let q∶Ω 1(S) → Ω 1(S)/[, ] be the quotient map. There is a unique bounded

linear map b∶Ω 1(S) → S that satisfies b(xdy) = x ⋅ y − y ⋅ x. It descends to a

bounded linear map b̃∶Ω 1(S)/[, ] → S. The X-complex of S is the following
Z/2-graded chain complex of complete bornological V -modules:

X(S) ∶= ( S Ω 1(S)/[⋅, ⋅]q○d

b̃

).
We briefly call Z/2-graded chain complexes supercomplexes. If S is a complete
bornological F -algebra, then X(S) is a supercomplex of complete bornological
F -vector spaces.

3 Definition of analytic cyclic homology

Let A be a torsion-free, complete bornological V -algebra. We are going to define
the analytic cyclic homology of A. The idea is to make a universal “analytically
nilpotent” extension of A and then take the X-complex of that, tensored with F
to ensure its homotopy invariance. (The concept of analytic nilpotence will
be introduced later in Section 4.3.) The starting point is the tensor algebra
extension, which is the universal extension with a bounded linear section. To
make the kernel of this extension nilpotent mod π, we pass to a tube algebra.
Then we dagger complete this kernel to make it analytically nilpotent. The
tube algebra construction produces a projective system of algebras. Tensoring
with F and taking the X-complex, we thus get a projective systems of chain
complexes. We could define analytic cyclic homology as an invariant in a
suitable derived category of such chain complexes. Our main theorems hold in
that setting. We prefer, however, to define it as an ordinary F -vector space.
Therefore, we also apply the homotopy projective limit and take homology in
the very end.
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Now we go through the construction in small steps. In the first step, let

R ∶= TA, I ∶= JA,
be the tensor algebra over A and the kernel of the canonical homomorphism
TA↠ A.

The second step enlarges R to a projective system of tube algebras relative to
powers of the ideal I:

Definition 3.1. Let R be a torsion-free bornological V -algebra and I an ideal
in R. Let Ij for j ∈ N∗ denote the V -linear span of products x1⋯xj with
x1, . . . , xj ∈ I. The tube algebra of I l ◁ R for l ∈ N∗ is

U(R, I l) ∶= ∞∑
j=0

π−jI l⋅j ⊆ R⊗ F
with the subspace bornology; this is indeed a V -subalgebra of R⊗ F . If l ≥ j,
then U(R, I l) ⊆ U(R, Ij) is a bornological subalgebra. Let U(R, I∞) be the
projective system of bornological V -algebras (U(R, I l))l∈N∗ .
Since U(R, I l) is defined as a bornological submodule of an F -vector space,
it is bornologically torsion-free. And the inclusion R ↪ U(R, I l) induces a
bornological isomorphism U(R, I l)⊗F ≅ R⊗F .
Remark 3.2. In [7, Definition 3.1.19], the tube algebra U(R, I l) of a bornolog-
ical V -algebra is equipped with a different bornology, namely, the bornology
that is generated by subsets bounded in R and subsets of the form π−1M l for
bounded subsets M ⊆ I. This makes no difference if R carries the fine bornol-
ogy. For general R, however, the two bornologies on the tube algebra need
not be the same. It is easy to check that both bornologies induce the same
bornology on U(R, I l)⊗ F ≅ R ⊗ F . Thus the two bornologies coincide if and
only if the bornology defined in [7] is bornologically torsion-free. This concept
is introduced only later in [19]. The more complicated bornology defined in [7]
gives the tube algebra the expected universal property for bornological algebras
that are torsion-free as algebras, but not bornologically torsion-free.

The third step equips U(R, I l) for l ∈ N∗ with the linear growth bornology
relative to the ideal U(I, I l). This gives a projective system of bornological
algebras

U(R, I∞)lg(U(I,I∞)) = (U(R, I l)lg(U(I,Il)))l∈N∗
because the inclusion homomorphism U(R, I l+1) ↪ U(R, I l) maps U(I, I l+1) toU(I, I l). All these bornological algebras are torsion-free by Lemma 2.2.7.
The fourth step applies the completion functor. By [19, Theorem 4.6], this
gives a projective system of complete, torsion-free bornological V -algebras

(U(R, I∞),U(I, I∞))† = ((U(R, I l),U(I, I l))†)
l∈N∗

.
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The fifth step is to tensor with F . This gives a projective system of complete
bornological F -algebras

(U(R, I∞),U(I, I∞))† ⊗F ∶= ((U(R, I l),U(I, I l))† ⊗F )l∈N∗ .
The sixth step is to take the X-complex. Being natural, it extends to a functor
from projective systems of complete bornological algebras to projective systems
of supercomplexes. In particular, the canonical maps U(R, I l+1) → U(R, I l)
induce bounded chain maps

σl∶X((U(R, I l+1),U(I, I l+1))† ⊗ F )→X((U(R, I l),U(I, I l))† ⊗F ).
These define a projective system of supercomplexes of complete bornological
F -vector spaces, which we denote by

HA(A) ∶=X((U(R, I∞),U(I, I∞))† ⊗F ).
The seventh step takes the homotopy projective limit holimHA(A). Explicitly,
this is the mapping cone of the chain map

∏
l∈N∗

X((U(R, I l),U(I, I l))† ⊗ F )→ ∏
l∈N∗

X((U(R, I l),U(I, I l))† ⊗F ),
(xl)↦ (xl − σl(xl+1))l∈N∗ .

It is a supercomplex of complete bornological F -vector spaces.
The final, eighth step takes its homology:

Definition 3.3. The analytic cyclic homology HA∗(A) of a complete, torsion-
free bornological -algebra A for ∗ ∈ Z/2 is the homology of holimHA(A), that
is, the quotient of the kernel of the differential by the image of the differen-
tial. We do not take the closure of the image, so that this quotient need not
be bornologically separated. For this reason, we prefer to forget the induced
bornology on HA∗(A).
3.1 Bivariant analytic cyclic homology

Besides the analytic cyclic homology functor HA∗, we also have the functor HA

taking values in suitable homotopy categories of chain complexes of projective
systems of bornological V -modules. This functor contains more information.
In particular, it yields a bivariant analytic cyclic homology theory by letting
HA∗(A1,A2) be the set of morphisms HA(A1)→ HA(A2). Cuntz and Quillen
use the same idea in [11] to extend periodic cyclic homology to a bivariant
theory. The actual definition of HA∗(A1,A2) depends on the choice of the
target category, however, and this is somewhat flexible. We do not pick any
choice in this article, but only point out two natural options.
The analytic cyclic homology computations in this paper often prove a chain ho-
motopy equivalence HA(A) ≃ HA(B), as supercomplexes of projective systems
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of bornological V -modules. These are equivalences in the homotopy category
of supercomplexes, where homotopy is understood simply as chain homotopy.
In all cases where we compute HA∗(A) in this paper, we actually prove that
HA(A) is chain homotopy equivalent to a supercomplex with zero boundary
map, so that it contains no more information than the bornological F -vector
space HA∗(A). Homotopy projective limits are sufficiently compatible with
chain homotopies to preserve chain homotopy equivalence; and this implies an
isomorphism on homology.
A larger class of weak equivalences is used in [9] to define a homotopy category
of chain complexes of projective systems. A good aspect of this construction
is that it clarifies the role of the homotopy projective limit: this just replaces
a given complex by one that is weakly equivalent to it and fibrant in a suitable
sense, so that the arrows to it in the homotopy category are the same as chain
homotopy classes of chain maps. Thus HA∗(A) is isomorphic to the space of
arrows from the trivial supercomplex V to HA(A) in the homotopy category
of [9]. We will see later that HA(V ) is chain homotopy equivalent to the
trivial supercomplex F (see Corollary 4.7.3). So the homotopy category of [9]
is such that the bivariant analytic cyclic homology group HA∗(V,A) simplifies
to HA∗(A).
4 Analytic nilpotence and analytically quasi-free resolutions

Cuntz and Quillen described the periodic cyclic homology of an algebra A as
the homology of the X-complex of a certain projective system built from the
tensor algebra TA of A. This approach to periodic cyclic homology is the key
to proving that it satisfies excision. The Cuntz–Quillen approach is carried
over to more analytic versions of periodic cyclic homology in [18]. Our proof
of excision for HA∗ in Section 5 will follow the pattern in [18]. In this section,
we explain how HA∗ as defined above fits into this framework.

4.1 Pro-Algebras

An important idea in [18] is that an analytic variant of periodic cyclic homol-
ogy is defined by a suitable notion of “analytic nilpotence”. This leads to an
analytic tensor algebra of an algebra A, which is universal among analytically
nilpotent extensions of A. It also leads to the concept of analytically quasi-
free algebras. The theory is set up so that any two analytically quasi-free,
analytically nilpotent extensions of a given algebra are homotopy equivalent.
In characteristic 0, this implies that their X-complexes are chain homotopy
equivalent. Thus the X-complex of the analytic tensor algebra is chain ho-
motopy equivalent to the X-complex of any analytically quasi-free resolution
of A. In this discussion, “algebras” are always more complex objects – such
as projective systems of algebras or bornological algebras – because there is no
suitable concept of analytic nilpotence for mere algebras without extra struc-
ture. For the analytic cyclic homology defined above, the appropriate type of
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algebra is a projective system of torsion-free, complete bornological V -algebras.
For brevity, we call torsion-free, complete bornological V -algebras algebras and
projective systems of them pro-algebras.

A pro-algebra is given by a directed set (N,≤), algebras An for n ∈ N , and
bounded algebra homomorphisms αm,n∶An → Am for m,n ∈ N with n ≥m that
satisfy αm,m = idAm

for all m ∈ N and αm,n ○ αn,p = αm,p for all m,n, p ∈ N
with p ≥ n ≥m. The morphism set between two pro-algebras is

Hom((Al)l∈L, (Bn)n∈N) ∶= lim←Ð
n

limÐ→
l

Hom(Al,Bn).

We shall only need pro-algebras (An)n∈N where N is countable. Restricting to
a cofinal increasing sequence in N gives an isomorphic pro-algebra with N = N.
Then the maps αm,n are uniquely determined by αn,n+1∶An+1 → An for n ∈ N.

An algebra A is also a pro-algebra by taking An = A and αn,n+1 ∶= idA for
all n ∈ N. Such projective systems are called constant. For a pro-algebra
A = (An, αm,n), there are canonical morphisms A→ const(An) for all n ∈ N .

The analytic tensor algebra of a torsion-free algebra A is the torsion-free pro-
algebra (U(TA, JA∞),U(JA, JA∞))† in the above definition of analytic cyclic
homology. This comes with a canonical homomorphism to A, whose kernel is
the pro-algebra (U(JA, JA∞))†. This projective system of complete, torsion-
free bornological algebras has two important extra properties: it is semi-dagger
– hence dagger – and nilpotent mod π – this concept will be defined below. A
pro-algebra with these two properties is called analytically nilpotent. The tube
algebra construction and the relative dagger completion in the construction
of the analytic tensor algebra are the universal way to make a pro-algebra
extension with an analytically nilpotent kernel.

Any functor from algebras to algebras extends canonically to an endofunctor on
the category of pro-algebras by applying it entrywise. The definition of analytic
cyclic homology already used this extension to pro-algebras for completions and
tensor products with F . The constructions of TA and JA for algebras are also
functors and thus extend to pro-algebras. So is the tensor product bifunctor−⊗ −, which extends to pro-algebras by

(An, αm,n)m,n∈N ⊗ (Bn, βm,n)m,n∈N ′
∶= (An1

⊗ Bn2
, αm1,n1

⊗ βm2,n2
)m1,n1∈N,m2,n2∈N ′ .

In particular, we may tensor a pro-algebra with an algebra such as V [t]†, viewed
as a constant pro-algebra.

Definition 4.1.1. An elementary dagger homotopy between two morphisms
of pro-algebras f0, f1∶A ⇉ B is a morphism of pro-algebras f ∶A → B ⊗ V [t]†
that satisfies (idA ⊗ evt) ○ f = ft for t = 0,1. We call f0, f1 elementary dagger

homotopic if there is such a homotopy. Dagger homotopy is the equivalence
relation generated by elementary dagger homotopy.
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4.2 The universal property of the tube algebra construction

First, we generalise the construction of tube algebras to pro-algebras. Actually,
in this subsection, we drop the completeness assumption for algebras because
tube algebras are usually incomplete. So “algebras” are torsion-free bornolog-
ical algebras and pro-algebras are projective systems of such algebras until the
end of this subsection.
An ideal in a pro-algebra A = (An, αm,n)i∈N is a family of ideals In ◁ An with
αm,n(In) ⊆ Im for all n,m ∈ N with n ≥m; then αm,n induces homomorphismsU(An, I ln) → U(Am, I lm) for all l ∈ N∗, which intertwine the inclusion mapsU(An, I ln)↪ U(An, Ijn) for l ≥ j. These homomorphisms form a pro-algebra

U(A, I∞) ∶= (U(An, I ln))n∈N,l∈N∗ .
If l ∈ N∗, then U(A, I l) ∶= (U(An, I ln))n∈N is a pro-algebra. The pro-algebra

U(A, I l) for l ∈ N∗ ∪ {∞} contains U(I, I l) as an ideal. Since An ⊆ U(An, I ln)
for all n ∈ N , l ∈ N∗, the inclusion maps define a pro-algebra homomorphism
ιA,I ∶A → U(A, I∞).
Remark 4.2.1. The notion of ideal above suffices for our purposes and is con-
venient to define the tube algebra quickly. It has the problem of not being
invariant under isomorphism of pro-algebras. A better definition would be to
define an ideal to be the kernel of a pro-algebra homomorphism. It is, however,
possible to switch to isomorphic pro-algebras to make a pro-algebra homo-
morphism into a homomorphism of diagrams. And then the kernel becomes
a family of ideals as above. This allows to extend the construction of tube
algebras to ideals in the more general sense.

Definition 4.2.2. A pro-algebra (An, αm,n)n∈N is nilpotent mod π if, for each
m ∈ N , there are n ∈ N≥m and l ∈ N∗ such that αm,n(Aln) ⊆ πAm; here Aln
denotes the V -submodule generated by all products x1⋯xl of l factors in An.
Remark 4.2.3. Let A = (An, αm,n)m,n∈N be a pro-algebra. Let A/(π) be the
projective system of F-algebras formed by the quotients An/(π) with the ho-
momorphisms induced by αm,n. By definition, A is nilpotent mod π if and
only if A/(π) has the following property: for each n ∈ N there are m ∈ N and
l ∈ N∗ such that the l-fold multiplication map (Am/(π))⊗l → An/(π) is zero.
This is equivalent to the definition that a projective system of F-algebras is
pro-nilpotent in [18, Definition 4.3].

Proposition 4.2.4. Let A and B be pro-algebras and let I and J be ideals in

A and B, respectively. Let ϕ∶A → B be a pro-algebra morphism that restricts

to a pro-algebra morphism I → J . Let ιA,I ∶A→ U(A, I∞) denote the canonical

pro-algebra morphism.

(1) The pro-algebra U(I, I∞) is nilpotent mod π.

(2) If J is nilpotent mod π, then there is a unique morphism ϕ̄∶U(A, I∞)→ B

with ϕ̄ ○ ιA,I = ϕ. It restricts to a morphism U(I, I∞) → J .
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(3) There is a unique morphism ϕ∗∶U(A, I∞) → U(B,J∞) with ϕ∗ ○ ιA,I =
ιB,J ○ϕ. It restricts to a morphism U(I, I∞)→ U(J,J∞).

Proof. Write A = (An, αm,n)n∈N , I = (In)n∈N with ideals In in An with
αm,n(In) ⊆ Im and B = (Bn, βm,n)n∈N ′ , J = (Jn)n∈N ′ with ideals Jn in Bn
with βm,n(Jn) ⊆ Jm. The tube algebra U(A, I∞) is the projective limit of the
tube algebras U(An, I∞n ) in the category of pro-algebras.
Being nilpotent mod π is hereditary for projective limits. So it suffices to
prove (1) when A is a constant pro-algebra. Fix n ∈ N∗ and let m = 2n, l = n.
Then

U(I, Im)l = U(I, I2n)n = (I + ∞∑
j=1

π−jI2nj)
n

⊆ In + ∞∑
j=1

π−jI2nj (4.2.5)

because ∑∞j=1 π−jI2nj is an ideal in U(A, I2n). Since π−1In and π−2jI2nj are
contained in U(I, In), all summands on the right hand side of (4.2.5) are con-
tained in π ⋅ U(I, In). Thus U(I, I∞) is nilpotent mod π.
We prove statement (2). The morphism ϕ∶A → B is described by a coherent
family of V -algebra homomorphisms ϕn∶Aψ(n) → Bn for all n ∈ N ′. Each Bn
is torsion-free by our definition of “algebra”. Then the homomorphism ϕn is
determined by ϕn⊗ idF ∶Aψ(n)⊗F → Bn⊗F . By construction, U(Aν , Im)⊗F =
Aν ⊗ F for all ν ∈ N , m ∈ N∗. Thus a factorisation of ϕ through U(A, I∞) is
unique if it exists.
Fix n ∈ N ′. Since J is nilpotent mod π, there are m ∈ N ′≥n and l ∈ N∗ with
βn,m(J lm) ⊆ π ⋅ Jn. Since ϕ is coherent, there is ν ∈ N≥ψ(m) with βn,m ○ ϕm ○
αψ(m),ν = ϕn○αn,ν. Since ϕ restricts to a morphism I → J , we may also arrange
that ϕm ○ αψ(m),ν(Iν) ⊆ Jm by increasing ν if necessary. Hence

ϕn ○ αn,ν(I lν) = βn,m ○ϕm ○ αψ(m),ν(I lν) ⊆ βn,m(J lm) ⊆ π ⋅ Jn.
Thus the homomorphism (ϕn ○ αn,ν) ⊗ idF ∶Aν ⊗ F → Bn ⊗ F maps the tube
algebra U(Aν , I lν) ⊆ Aν ⊗ F into Bn ⊆ Bn ⊗ F and U(Iν , I lν) ⊆ Aν ⊗ F into
Jn ⊆ Bn⊗F . This gives a homomorphism ϕ̄n∶U(Aν , I lν) → Bn with ϕ̄n○ιAν ,Ilν

=
ϕn ○ αn,ν . Since U(Aν , Im) ⊆ Aν ⊗ F , the homomorphisms ϕ̄n inherit the
coherence property of a pro-algebra morphism from the maps ϕn.
We prove statement (3) of the proposition. We compose ϕ∶A → B with the
canonical map B → U(B,J∞) to get a morphism A→ U(B,J∞). It restricts to
a morphism I → J → U(J,J∞). The ideal U(J,J∞) in U(B,J∞) is nilpotent
mod π by (1). So (2) shows that our morphism extends uniquely to a morphismU(A, I∞)→ U(B,J∞) that maps U(I, I∞) to U(J,J∞).
We summarise the tube algebra construction in category-theoretic language.
Let Pro be the category whose objects are pairs (A, I), where A is a pro-
algebra and I is an ideal in A and whose morphisms are pro-algebra morphisms
that restrict to a morphism between the ideals. The pairs (A, I) where I is
nilpotent mod π form a subcategory Pronil in Pro. The first two statements in
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Proposition 4.2.4 say that the canonical arrow (A, I) → (U(A, I∞),U(I, I∞))
is a universal arrow from (A, I) to an object in Pronil. Thus Pronil is a
reflective subcategory in Pro and the reflector acts on objects by (A, I) ↦(U(A, I∞),U(I, I∞)). Its functoriality is Proposition 4.2.4.(3). If I is already
nilpotent mod π, then it follows that the identity map on A extends uniquely
to an isomorphism of pro-algebras U(A, I∞) ≅ A.
The inheritance properties of nilpotence mod π proven in the following propo-
sition are needed by the analytic cyclic homology machinery in [18].

Proposition 4.2.6. The class of nilpotent mod π pro-algebras has the following

properties:

• Let A
i↣ B

p↠ C be an extension of pro-algebras. If A and C are nilpotent

mod π, then so is B, and vice versa.

• A pro-subalgebra D ⊆ B is nilpotent mod π if B is so and B/D is isomor-

phic to a projective system of torsion-free bornological V -modules.

• Being nilpotent mod π is hereditary for projective limits.

• A tensor product A⊗ B is nilpotent mod π if A or B is nilpotent mod π.

Proof. Remark 4.2.3 translates all these statements to statements about the
class of pro-nilpotent projective systems of F-algebras. In this way, the state-
ments follow from [18, Theorem 4.4]. We briefly explain direct proofs for the
first two claims. The claims about projective limits and tensor products are
easy and left to the reader.

As in [18], we may write any extension of pro-algebras A
i↣ B

p↠ C as a

projective system of extensions An
in↣ Bn

pn↠ Cn, with morphisms of extensions

An Bn Cn

Am Bm Cm

in

αm,n

pn

βm,n γm,n

im pm

for n ≥ m as structure maps (this construction is also explained during the
proof of Proposition 4.3.13 below). Assume that A and C are nilpotent mod π.
Pick m ∈ N . There are n1 ∈ N≥m and j1 ∈ N

∗ so that αm,n1
(Aj1n1

) ⊆ π ⋅ Am.
And there are n2 ∈ N≥n1

and j2 ∈ N
∗ so that γn1,n2

(Cj2n2
) ⊆ π ⋅ Cn1

. Then
pn1
(βn1,n2

(Bj2n2
)) ⊆ π ⋅Cn1

. This implies βn1,n2
(Bj2n2

) ⊆ π ⋅Bn1
+ in1

(An1
). Then

βm,n2
(Bj1 ⋅j2n2

) ⊆ βm,n1
(π ⋅Bn1

+ in1
(An1

))j1 ⊆ π ⋅Bm + im(αm,n1
(Aj1n1

))
⊆ π ⋅Bm + im(πAm) ⊆ π ⋅Bm.

So B is nilpotent mod π. Conversely, if B is nilpotent mod π, then C is
nilpotent mod π because pm(Bm) = Cm and pm(π ⋅Bm) = π ⋅ Cm. The claim
that A is nilpotent mod π if B is follows from the claim about pro-subalgebras.
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Given a pro-subalgebra D ⊆ B, we may write B = (Bn, βm,n)n∈N and D =(Dn, δm,n)n∈N so that Dn ⊆ Bn for all n ∈ N and δm,n = βm,n∣Dn
∶Dn → Dm

for all m,n ∈ N with m ≤ n. Let m ∈ N . Since B/D is isomorphic to a
projective system of torsion-free bornological V -modules, there is n ∈ N≥m so
that the structure map Bn/Dn → Bm/Dm kills all elements x ∈ Bn/Dn with
π ⋅ x = 0. Equivalently, if x ∈ Bn satisfies π ⋅ x ∈ Dn, then βm,n(x) ∈ Dm. Thus
βm,n(π ⋅Bn ∩Dn) ⊆ π ⋅Dm. If B is nilpotent mod π, then there are l ∈ N≥n and

j ∈ N∗ with βn,l(Bjl ) ⊆ π ⋅Bn. Hence
δm,l(Dj

l ) ⊆ δm,n(δn,l(Dj
l )) ⊆ βm,n(π ⋅Bn ∩Dn) ⊆ π ⋅Dm.

Thus D is nilpotent mod π.

4.3 Analytically nilpotent pro-algebras

From now on, “algebra” means a complete, torsion-free bornological algebra.

Definition 4.3.1. A pro-algebra J is analytically nilpotent if it is isomorphic to
a pro-dagger algebra and nilpotent mod π. It is square-zero if its multiplication
map is 0. An extension of pro-algebras J ↣ E ↠ A is analytically nilpotent or
square-zero if J is analytically nilpotent or square-zero, respectively.

In an analytically nilpotent pro-algebra, any power series ∑ cnxn for an “ele-
ment” x ∈ J and a bounded sequence (cn)n∈N in V may be evaluated (see the
proof of Proposition 4.3.6 for the precise meaning of this in a pro-algebra). This
uses nilpotence mod π in order to reduce to sequences whose valuation grows
linearly, and being a pro-dagger algebra to ensure that such series converge.

Definition 4.3.2. A pro-linear map between two pro-algebras is a morphism
of projective systems of bornological V -modules between them; so pro-linear
maps need not be multiplicative. An extension of pro-algebras J ↣ E ↠ A is
semi-split if it splits by a pro-linear map.

Definition 4.3.3. A pro-algebra A is analytically quasi-free if any semi-split
analytically nilpotent extension J ↣ E ↠ A splits by a pro-algebra homo-
morphism A → E. It is quasi-free if any semi-split square-zero extension
J ↣ E ↠ A splits by a pro-algebra homomorphism A→ E.

The following lemma gives an equivalent reformulation of the last definition:

Lemma 4.3.4. A pro-algebra A is analytically quasi-free if and only if, for any

semi-split analytically nilpotent extension J ↣ E ↠ B, any homomorphism

f ∶A→ B lifts to a homomorphism A→ E. A pro-algebra A is quasi-free if and

only if, for any semi-split square-zero extension J ↣ E ↠ B, any homomor-

phism f ∶A→ B lifts to a homomorphism A→ E.

Proof. We may pull the given extension back to a semi-split extension J ↣
Ê ↠ A, such that a section A→ Ê is equivalent to a lifting of f .
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Remark 4.3.5. A pro-algebra is square-zero if and only if it is isomorphic
to a projective system of torsion-free complete bornological V -modules, each
equipped with the zero map as multiplication. Then it is analytically nilpotent.
As a consequence, analytically quasi-free algebras are quasi-free.

Proposition 4.3.6. The base ring V viewed as a constant pro-algebra is ana-

lytically quasi-free.

Proof. The proof follows [11, Section 12]. This idea is, in fact, much older,

see [15, Section 3.6]. Let J ↣ E
p↠ Q be a semi-split, analytically nilpotent

extension of pro-algebras. Analytic quasi-freeness of V is equivalent to the
assertion that any idempotent in Q lifts to an idempotent in E. Here by an
idempotent in a pro-algebra A = (An)n, we mean a collection a = (an)n of
idempotents an ∈ An. Each an ∈ An is equivalent to a homomorphism V → An.
Let ė = (ėn)n ∈ Q be an idempotent and let e ∈ E be the image of ė under a
pro-linear section for p∶E ↠Q. Let x ∶= e−e2 ∈ J . We use an Ansatz by Cuntz
and Quillen to find an idempotent ê ∈ E with e − ê ∈ J . Namely, we assume
ê = e + (2e − 1)ϕ(x) for some power series ϕ ∈ tZ[[t]]. We compute

ê2 − ê = (ϕ(x)2 +ϕ(x))(1 − 4x) − x.
So ê2 = ê if and only if ϕ(x)2 + ϕ(x) = x

1−4x
. This is solved by ϕ(x) ∶=

∑∞n=1 (2n−1n )xn. Write J = (Jl)l∈N . We show that the power series∑∞n=1 (2n−1n )xnl
converges in Jl for each l ∈ N .
As J is nilpotent mod π, there are m ≥ l and j ∈ N so that the multiplication
and the structure map send Jjm to πJl. Since x

j
l
is the image of xjm, it follows

that xj
l
∈ πJl. Since J is semi-dagger, the set {π−⌊k/(2j)⌋xkl ∶k ∈ N} is bounded

in Jl. Since J is complete, the series ∑∞n=1 (2n−1n )xnl converges. These series for
l ∈ N define an element ϕ(x) of J . And then ê ∶= e+ (2e−1)ϕ(x) is the desired
idempotent lifting of e.

Proposition 4.3.7. An algebra A is analytically quasi-free if and only if its

unitalisation A+ is analytically quasi-free.

Proof. Proposition 4.3.6 implies this as in the proof of [18, Proposition 5.53].

Proposition 4.3.8. Let (An)n∈N be a sequence of unital, analytically quasi-free

pro-algebras. Then ⊕n∈NAn is analytically quasi-free.

Proof. The proof of [18, Proposition 5.53] carries over to this context.

Corollary 4.3.9. The direct sum ⊕n∈N V is analytically quasi-free.

Proposition 4.3.10. Let Ji ↣ Ei ↠ Ai for i = 1,2 be semi-split, analytically

nilpotent extensions of pro-algebras. Assume that E1 is analytically quasi-free.
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(1) Any pro-algebra morphism f ∶A1 → A2 lifts to a morphism of extensions

J1 E1 A1

J2 E2 A2

q1

f̂ f

q2

This lifting is unique up to dagger homotopy.

(2) Let f̂ , ĝ∶E1 ⇉ E2 be pro-algebra homomorphisms that lift pro-algebra

homomorphisms f, g∶A1 ⇉ A2. Then an elementary dagger homotopy

h∶A1 → A2 ⊗ V [t]† between f and g lifts to an elementary dagger homo-

topy ĥ∶E1 → E2 ⊗ V [t]† between f̂ and ĝ.

(3) Any elementary dagger homotopy A1 → A2⊗ V [t]† lifts to an elementary

dagger homotopy E1 → E2 ⊗ V [t]†.
Proof. Let f ∶A1 → A2 be a pro-algebra homomorphism. Since E1 is analyti-
cally quasi-free and the extension J2 ↣ E2 ↠ A2 is semi-split and analytically
nilpotent, the homomorphism f ○q1 lifts to a homomorphism f̂ ∶E1 → E2. Since
q2 ○ f̂ = f ○ q1 vanishes on J1, f̂ restricts to a homomorphism J1 → J2. Thus f̂
gives a morphism of extensions.
The uniqueness claim in (1) follows from (2) by taking f = g. And (3) follows
from (1) and (2). So it remains to prove (2). Assume that we are in the
situation of (2). Let ev0, ev1∶A2 ⊗ V [t]† ⇉ A2 and ev0, ev1∶E2 ⊗ V [t]† ⇉ E2

denote the evaluation homomorphisms. Form the pull-back pro-algebra

E E2 ⊕E2

A2 ⊗ V [t]† A2 ⊕A2.

q2⊕q2

(ev0 ev1)

The universal property of the pull back gives pro-algebra homomorphisms

q ∶= (ev0, ev1, q2 ⊗ idV [t]†)∗∶E2 ⊗ V [t]† → E ,
(f̂ , ĝ, h ○ q1)∗∶E1 → E ,

because f̂ and ĝ lift evt ○ h for t = 0,1, respectively. Let

V [t]†0 ∶= {ϕ ∈ V [t]† ∶ϕ(0) = 0, ϕ(1) = 0}.
We claim that q is part of a semi-split extension of pro-algebras

J2 ⊗ V [t]†0 ↣ E2 ⊗ V [t]† ↠ E . (4.3.11)

To see this, we forget multiplications and treat everything as a projective sys-
tem of bornological V -modules. In this category, a pro-linear section s∶A2 → E2
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for the semi-split extension J2 → E2 → A2 gives a direct sum decomposition
E2 ≅ J2 ⊕A2. And V [t]† ≅ V [t]†0 ⊕ V ⊕V , where the latter two summands are,
say, spanned by the functions 1 − t and t. This induces decompositions

A2⊗ V [t]† ≅ (A2 ⊗ V [t]†0)⊕A2⊕A2, E2⊗ V [t]† ≅ (E2⊗ V [t]†0)⊕E2⊕E2,

such that (ev0, ev1) is the projection to the second and third summand both
for A2 and E2. These direct sum decompositions imply

E2 ⊗ V [t]† ≅ (J2 ⊗ V [t]†0)⊕ (A2 ⊗ V [t]†0)⊕E2 ⊕E2 ≅ (J2 ⊗ V [t]†0)⊕ E .
And this proves the claim.
Corollary 2.1.21 and Proposition 4.2.6 imply that the tensor product J2⊗ V [t]†0
is analytically nilpotent. Since E1 is analytically quasi-free, the homomor-
phism (f̂ , ĝ, h ○ q1) lifts to a homomorphism ĥ∶E1 → E2 ⊗ V [t]† in the exten-
sion (4.3.11). This finishes the proof of (2).

Corollary 4.3.12. Any two analytically quasi-free, analytically nilpotent ex-

tensions of a pro-algebra are dagger homotopy equivalent.

Proof. By Proposition 4.3.10, there are morphisms of extensions in both direc-
tions which lift the identity map on A and whose composite maps are dagger
homotopic to the identity maps.

Proposition 4.3.13. Let A ↣ E ↠ B be an extension of pro-algebras. If A

and B are isomorphic to projective systems of dagger algebras, then so is E. If

A and B are analytically nilpotent, then so is E.

Proof. Being nilpotent mod π is hereditary for pro-algebra extensions by Propo-
sition 4.2.6. Hence the second statement follows from the first one. Its proof
has several steps. First, we rewrite the given extension of pro-algebras as a
projective limit of a projective system of algebra extensions. Similar ideas in a
less specialised setting also appear in [4, Appendix].
Write E and B as projective systems of (torsion-free, complete bornologi-
cal) algebras (En, γn,m) and (Bn, βn,m) that are indexed by directed sets NE
and NB, respectively. By assumption, B is isomorphic to a projective system
of dagger algebras. We assume that we have picked this representative above,
that is, each Bn is a dagger algebra. We describe the pro-algebra morphism
E → B by a coherent family of bounded homomorphisms ϕn∶Em(n) → Bn
for all n ∈ NB. Let N ∶= {(m,n) ∈ NE × NB ∶m ≥ m(n)}. Define a partial
order on N by (m1, n1) ≥ (m2, n2) if m1 ≥ m2, n1 ≥ n2, m1 ≥ m(n2), and
βn2,n1

○ϕn1
○ γm(n1),m1

= ϕn2
○ γm(n2),m1

. This partially ordered set is directed
because NB and NE are directed and the maps ϕn for n ∈ N form a morphism
of projective systems. The objects Em and Bn for (m,n) ∈ N and the maps
γm1,m2

and βn1,n2
for m1 ≥m2 and n1 ≥ n2 form projective systems E′ and B′

of bornological algebras. They are isomorphic to E and B, respectively. The
homomorphisms

ϕ′(m,n) ∶= ϕn ○ γm(n),m∶E′(m,n) = Em → Bn = B
′(m,n)
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for (m,n) ∈ N are coherent in the strong sense that

β′(m1,n1),(m2,n2) ○ϕ′(m2,n2) = ϕ
′(m1,n1) ○ γ′(m1,n1),(m2,n2)

for all (m1, n1), (m2, n2) ∈ N with (m1, n1) ≤ (m2, n2). Here γ′ and β′ de-
note the structure maps of the projective systems E′ and B′, respectively. By
construction, each B′n is a dagger algebra.
By assumption, the inclusion A → E is the kernel of the morphism E → B.
This is isomorphic to the kernel of ϕ′∶E′ → B′. So A is isomorphic to the
projective system A′ formed by the closed ideals A′n ∶= kerϕn ⊆ E′n for n ∈ N
with the structure maps α′n1,n2

= γ′n1,n2
∣An2

for n1, n2 ∈ N with n1 ≤ n2; and
the canonical morphism A′ → E′ is the strongly coherent family of inclusion
maps A′n ↪ E′n for n ∈ N . Each A′n is complete and torsion-free because E′n
and B′n are (see [19, Theorem 2.3 and Lemma 4.2]).
The quotients E′n/A′n with the structure maps γ̇′n,m induced by γ′n,m form a
projective system of complete bornological algebras, which is the cokernel for
the inclusion A′ ↪ E′. The map ϕ′n for n ∈ N descends to an injective, bounded
homomorphism ̺n∶E′n/A′n → B′n. The pro-algebra morphism ̺ = (̺n)n∈N is
an isomorphism because E → B is assumed to be another cokernel for the
map A → E. Next, we modify our projective systems so that these become
equalities; this replaces the quotients E′n/A′n by dagger algebras. The inverse
of ̺ is given by a choice of m(n) ∈ N for n ∈ N and bounded homomorphisms
ψn∶B′m(n) → E′n/A′n. Increasing m(n) if necesessary, we may arrange that

̺n○ψn = β′n,m(n)∶B′m(n) → B′n and ψn○̺m(n) = γ̇′n,m(n)∶E′m(n)/A′m(n) → E′n/A′n.
Let N ′ ∶= {(m,n) ∈ N ×N ∶m ≥ m(n)}. For (m,n) ∈ N ′, pull the extension
A′n ↣ E′n↠ E′n/A′n back along ψn as in Lemma 2.3.2. This gives a diagram of
extensions of bornological V -modules

A′′(m,n) E′′(m,n) B′′(m,n)

A′n E′n E′n/A′n
ψn

with A′′(m,n) = A′n and B′′(m,n) = B′m. The latter is a dagger algebra because it

is equal to Bm for suitable m ∈ NB depending on n ∈ N ′. There is a unique
bornological algebra structure on E′′(m,n) for which all maps in this diagram

are homomorphisms. We claim that E′′(m,n) is complete. First, A′n is closed

in E′n because B′n is separated. Then E′n/A′n is separated (see [19, Lemma 2.1]).
Then E′′(m,n) is closed in B′m ⊕E′n. And then E′′(m,n) is complete by [19, The-

orem 2.3]. As above, there is a partial order on N ′ that makes it a directed
set and such that A′′n ↣ E′′n ↠ B′′n becomes a projective system of algebra ex-
tensions. This projective system is isomorphic to A′ ↣ E′ ↠ E′/A′ because
it is the pullback along the pro-algebra isomorphism B′

≃Ð→ E′/A′. Thus it is
isomorphic to the original extension A ↣ E ↠ B. We have now replaced this
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pro-algebra extension by a projective system of algebra extensions where the
quotients B′′n are dagger algebras.
To simplify notation, we remove the primes now and assume that our pro-
algebra extension already comes to us as a projective system of algebra exten-
sions An ↣ En↠ Bn, where An and En are torsion-free, complete bornological
algebras and Bn are dagger algebras for all n ∈ N . The dagger completions E†

n

for n ∈ N form a projective system of dagger algebras, and the canonical maps
En → E†

n form a pro-algebra morphism. We claim that this pro-algebra mor-
phism is an isomorphism. Equivalently, for each n ∈ N there are m ∈ N with
m ≥ n and a bounded homomorphism γ̃n,m∶E†

m → En such that the composite
map Em → E†

m → En is γn,m; then the other composite map E†

m → En → E†

n is
the map on the dagger completions induced by γn,m, and these two equalities
of compositions say that we are dealing with morphisms of pro-algebras inverse
to each other.
Fix n ∈ N . We are going to build the following commuting diagram, where the
dashed arrow is the desired map γ̃n,m:

Am Em Bm

E†

m

Ãn′ Ẽn Bm

An En Bn

f

αn,m γn,m

γ̃n,m
g βn,m

By assumption, A is isomorphic to a projective system of dagger alge-
bras (Ãn′)n′∈N ′ . Therefore, there are m ∈ N , n′ ∈ N ′, and maps f ∶Am → Ãn′

and g∶ Ãn′ → An such that m ≥ n and g ○ f = αn,m∶Am → An. Let Ẽn be the

pushout bornological V -module of the maps Am → Em and Am → Ãn′ . This fits
in an extension of bornological V -modules Ãn′ ↣ Ẽn ↠ Bm by Lemma 2.3.2.
Since Ãn′ and Bm are torsion-free and complete, Ẽn is complete by [19, The-
orem 2.3]. Since Ãn′ is semi-dagger, the canonical map Em → Ẽn remains
bounded when we give Em the linear growth bornology relative to the ideal A′m.
This bornology is equal to the absolute linear growth bornology on Em by
Lemma 2.2.6 because Bm = Em/Am is a dagger algebra. Since Ẽn is complete,
the map Em → Ẽn extends to a bounded V -module homomorphism E†

m → Ẽn.
By construction, the map γn,m∶Em → En agrees on Am with the composite
map

Am
f→ Ãn′

g→ An → En.

Then the universal property of pushouts gives an induced bounded V -module
homomorphism τ ∶ Ẽn → En. Let γ̃n,m∶E†

m → En be the composite of the

bounded V -module homomorphisms E†

m → Ẽn and Ẽn → En defined above.
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The composite map Em → E†

m → En is γn,m by construction. This finishes the
proof that En is isomorphic to a projective system of dagger algebras.

4.4 The analytic tensor algebra

Let R be a constant pro-algebra. The definitions of HA(R) and HA∗(R) use
a certain pro-algebra T R defined by completing the tensor algebra TR. We
call T R the analytic tensor algebra of R. We show that there is a semi-split
analytically nilpotent extension JR ↣ T R ↠ R and that T R is analytically
quasi-free. Since it is not more difficult, we extend the construction of the
analytic tensor algebra to pro-algebras right away.

Definition 4.4.1. Let R = (Rn, αm,n)m,n∈N be a pro-algebra. Extending
the tensor algebra construction to pro-algebras gives a natural semi-split pro-
algebra extension

JR ↣ TR↠ R

with TR = (TRn)n∈N and JR = (JRn)n∈N . For each n ∈ N , we form the tube al-
gebras U(TRn, (JRn)l) with the ideals U(JRn, (JRn)l), and their relative dag-
ger completions (U(TRn, (JRn)l),U(JRn, (JRn)l))†. These form a pro-algebra
indexed by the product set N × N, which we call the analytic tensor algebra

of R and denote by T R.
Lemma 4.4.2. The canonical homomorphism p∶TR → R extends uniquely to

a pro-algebra homomorphism p̃∶T R → R. The composite σan of the pro-linear

map σR∶R → TR and the canonical homomorphism TR → T R is a section

for p̃.

Proof. Fix n ∈ N and l ∈ N∗. The canonical homomorphism TRn → Rn vanishes
on JRn. Then it extends uniquely to the tube algebra U(TRn, (JRn)l) by
Proposition 4.2.4. This extension vanishes on U(JRn, (JRn)l). Then it remains
bounded for the linear growth bornology relative to this ideal and extends
uniquely to a homomorphism on the relative dagger completion. These maps
for all n and l form a morphism of pro-algebras p̃∶T R → R. The canonical
maps σRn

∶Rn → TRn form a pro-linear section for p∶TR → R. Composing with
the canonical map TR → T R gives a section for p̃.

Definition 4.4.3. Let JR be the kernel of p̃∶T R↠ R.

Lemma 4.4.2 implies that there is a semi-split extension of pro-algebras

JR T R R.
p̃

σR

Proposition 4.4.4. The pro-algebra JR is analytically nilpotent.

Proof. It suffices to prove this when R is a constant pro-algebra. Let m ∈ N∗.
The linear growth bornology on U(TR, (JR)m) relative to U(JR, (JR)m)
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restricts to the “absolute” linear growth bornology on U(JR, (JR)m) by
Lemma 2.2.5. The tensor algebra is bornologically torsion-free by Remark 2.6.2.
Then so is U(TR, (JR)m) by the definition of the bornology on the tube algebra.
Then the relative linear growth bornology on it is torsion-free by Lemma 2.2.7,
and this property is preserved by completions (see [19, Theorem 4.6]). Hence,
the completion of U(JR, (JR)m) in the linear growth bornology is a dagger
algebra. Then JR is a pro-dagger algebra. And U(JR, (JR)∞) is nilpotent
mod π by Proposition 4.2.4. This remains unaffected when we equip the tube
algebras with the linear growth bornology and complete.

Remark 4.4.5. Let R = (Rn, αm,n)m,n∈N be a projective system of dagger alge-
bras. Since U(TR, (JR)l) / U(JR, (JR)l) ≅ R is semi-dagger, the linear growth

bornology on U(TR, (JR)l) is equal to the linear growth bornology relative
to U(JR, (JR)l) by Lemma 2.2.6. Hence T R is also equal to the “absolute”
dagger completion, T R ≅ U(TR, (JR)∞)†.
Proposition 4.4.6. The analytic tensor algebra T R is analytically quasi-free

and quasi-free. The bimodule Ω 1(T R) is isomorphic to the free bimodule on R,

that is, (T R)+ ⊗ R⊗ (T R)+ ≅ Ω 1(T R); (4.4.7)

the isomorphism is the map ω ⊗ x ⊗ η ↦ ω ⋅ (dσR(x)) ⋅ η. And the following

maps are isomorphisms of left or right T R-modules, respectively:

(T R)+ ⊗ R ≃Ð→ T R, ω ⊗ x↦ ω ⊙ σR(x),
R⊗ (T R)+ ≃Ð→ T R, x⊗ ω ↦ σR(x)⊙ ω.

Proof. Let J ↣ E
q↠ T R be a semi-split, analytically nilpotent pro-algebra

extension. Pull it back along the inclusion JR ↪ T R to a pro-algebra extension
J ↣ K ↠ JR and identify K with an ideal in E. Since J and JR are
analytically nilpotent, so is K by Proposition 4.3.13. Let s∶T R → E be a
pro-linear section and let σR∶R → T R be the canonical pro-linear section. The
pro-linear map s ○σR induces a pro-algebra homomorphism (s ○σR)#∶TR → E

by Lemma 2.6.1. It satisfies q ○ (s ○ σR)# = σ#
R
, and σ

#
R
∶TR → T R is the

canonical homomorphism because σ#
R and the inclusion map agree on the image

of R in TR. In particular, (s ○ σR)# maps JR into K ◁ E. Since K is
nilpotent mod π, Proposition 4.2.4 shows that (s ○ σR)# extends to the tube
algebra U(TR, (JR)∞), in such a way that U(JR, (JR)∞) is mapped to K.
Since K is a pro-dagger algebra, the criterion in Proposition 2.2.9 shows that
the morphism U(TR, (JR)∞) → E extends uniquely to the dagger completion
relative to U(JR, (JR)∞). This gives a pro-algebra morphism T R → E that is

a section for the extension J ↣ E
q↠ T R. So T R is analytically quasi-free.

If h∶R → E is any pro-linear map with q○h = σR, then the argument above shows
that h#∶TR → E extends uniquely to a pro-algebra morphism T R → E that is
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a section for the extension. Conversely, any multiplicative section g∶T R → E

is of this form for h ∶= g ○σR. Thus the multiplicative sections for the extension

J ↣ E
q↠ T R are in bijection with pro-linear maps R → E with q ○ h = σR.

Any such pro-linear map is equal to s ○ σR + h0 for a unique pro-linear map
h0∶R → J . So multiplicative sections for our extension are in bijection with pro-
linear maps R → J . Combined with Lemma 2.5.1, we get a natural bijection
for all T R-bimodulesM between pro-bimodule homomorphisms Ω 1(T R)→M

and pro-linear maps R →M . Thus Ω 1(T R) is isomorphic to the free complete
bimodule on R, which is (T R)+⊗ R⊗ (T R)+. And this isomorphism is indeed
induced by the map ω ⊗ x⊗ η ↦ ω ⋅ (dσR(x)) ⋅ η.
Now let M be a left T R-module. Turn M into a T R-bimodule by taking the
zero map as right module structure. Then a bimodule derivation T R →M is
just a left module map. Therefore, left module homomorphisms T R →M are
in bijection with pro-linear maps R →M . Thus the map

(T R)+ ⊗ R, ω ⊗ x↦ ω ⊙ σR(x),
is an isomorphism of left T R-modules. Here we have written ⊙ for the multi-
plication in T R because we will later use these formulas when T R is identified
with ΩevR with the Fedosov product. A similar argument works for right
modules.

We now describe the analytic tensor algebra and its bornology more concretely.
For this, we assume that R is a torsion-free, complete bornological algebra. A
projective system (Rn)n∈N is treated by applying the following discussion to Rn
for each n ∈ N . We identify TR with ΩevR with the Fedosov product as in
Section 2.6. Recall that the isomorphism TR ≅ ΩevR maps the ideal JRm onto

⊕n≥mΩ2nR. Thus U(TR, (JR)m) is spanned by π−jΩ2nR with n ≥m ⋅ j. AndU(JR, (JR)m) is spanned by π−jΩ2nR with n ≥m ⋅ j and n ≥ 1. Equivalently,

U(TR, (JR)m) = ∞∑
n=0

π−⌊n/m⌋Ω2nR, U(JR, (JR)m) = ∞∑
n=1

π−⌊n/m⌋Ω2nR.

(4.4.8)
The following lemma estimates the growth of Fedosov products in ΩR. We
define

M (n) ∶= n

∑
i=1

M i. (4.4.9)

Lemma 4.4.10. Let R be an algebra and let M ⊆ R be a submodule. Let

i0, . . . , in ≥ 1 and i ∶= i0 +⋯+ in. Then

Ωi0M ⊙⋯⊙ΩinM ⊆
n

⊕
j=0

Ωi+2j(M (3)).
Proof. As in the proof of [18, Theorem 5.11], we show the more precise estimate

Ωi0M ⊙⋯⊙ΩinM ⊆
n

⊕
j=0

(M (2))+ d(M (3))i+2j (4.4.11)
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by induction on n. This is trivial for n = 0. The induction step uses (2.6.5) and

ΩiM ⊙ (M (2))+ ⊆ (M (2))+d(M (3))i + (dM)i+1 d(M (2)).
Proposition 4.4.12. Let R be a torsion-free bornological algebra and m ≥ 1.
If M ⊆ R is bounded, α ∈ Q ∩ (0,1/m), and f ∈ N0, then define

Dm(M,α, f) ∶= ∞⊕
n=0

π−⌊min{n/m,α⋅n+f}⌋Ω2nM. (4.4.13)

These are V -submodules of U(TR, (JR)m) that cofinally generate its linear

growth bornology relative to the ideal U(JR, (JR)m).
Proof. Let M ⊆ R be bounded, α ∈ Q ∩ (0,1/m), and f ∈ N0. Equation (4.4.8)
impliesDm(M,α, f) ⊆ U(TR, JRm). Our first goal is to show thatDm(M,α, f)
has linear growth relative to U(JR, JRm). Let e ≥ 1. We claim that

M+ ⋅ ( em∑
n=1

π−⌊n/m⌋(dM dM)n)
◇

=
∞

⊕
n=1

π−⌊n/m⌋+⌈ n
em
⌉−1Ω2nM. (4.4.14)

By definition, the left hand side is spanned by Fedosov products

πj−1−⌊i1/m⌋−⋯−⌊ij/m⌋M+ ⊙ (dMdM)i1 ⊙⋯⊙ (dMdM)ij
= πj−1−⌊i0/m⌋−⋯−⌊ij/m⌋Ω2(i1+⋯+ij)(M)

for j ≥ 1 and 1 ≤ i1, . . . , ij ≤ em. These contribute to Ω2nM if i1 +⋯ + ij = n.
For fixed n and j, the sum of floors ⌊i1/m⌋+⋯+⌊ij/m⌋ is maximal if all but one
of the ij are divisible by m, and then it becomes ⌊n/m⌋. For fixed n, the term
j −1− ⌊n/m⌋ becomes minimal if j is minimal. Equivalently, we choose ij = em
for all but one j, and then j = ⌈n/em⌉. This finishes the proof of (4.4.14).
The submodule in (4.4.14) is one of the generators of the linear growth bornol-
ogy relative to U(JR, (JR)m). For fixed α < 1/m and f as above, there is e ∈ N∗

with 1/m − 1/(em) > α. Then there is k ∈ N with

⌊n/m⌋ − ⌈ n
em
⌉ + 1 ≥ ⌊min{n/m,α ⋅ n + f}⌋

for n > k. Then

Dm(M,α, f) ⊆ k

∑
n=0

π−⌊min{n/m,α⋅n+f}⌋Ω2nM +M+ ⋅ ( em∑
n=1

π−⌊n/m⌋(dM dM)n)
◇

.

The first, finite sum is already bounded in U(TR, JRm). As a result,
Dm(M,α, f) has linear growth relative to U(JR, (JR)m).
Now let S be any V -submodule of U(TR, JRm) that has linear growth relative
to U(JR, (JR)m). We claim that S is contained in Dm(M,α, f) for suitable
M,α, f . By definition of the relative linear growth bornology, there are k, e ∈ N
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and a bounded submodule M ⊆ R such that S is contained in the sum of

∑kn=0 π−⌊n/m⌋Ω2nM and (∑emi=1 π−⌊ i
m
⌋Ω2iM)◇. The latter is spanned by Fedosov

products

π
j−1−⌊ i1

m
⌋−⋯−⌊ ij

m
⌋
Ω2i1M ⊙⋯⊙Ω2ijM

with j ∈ N∗, 1 ≤ i1, . . . , ij ≤ em. By Lemma 4.4.10, Ω2i1M ⊙ ⋯ ⊙ Ω2ijM is

contained in the sum of Ω2n(M (3)), where n lies between i ∶= ∑jk=1 ik and i+ j.
As above, the sum of the floors ⌊ik/m⌋ for fixed i is maximal if all but one ik are
divisible by m, and then it is ⌊i/m⌋. The constraints ik ≤ em are equivalent to
the constraint i ≤ j ⋅ em. So S is contained in the sum of πj−1−⌊i/m⌋Ω2n(M (3))
with i ≤ n ≤ i + j and i ≤ j ⋅ em. For fixed n, j, the exponent j − 1 − ⌊i/m⌋
is minimal if i is maximal. So we may assume that i is the minimum of n
and jem. Then the optimal choice for j is the minimal one, which is ⌈n/(em)⌉
if i = n and j = ⌈n/(em + 1)⌉ if i = jem. The resulting exponents of π become⌈n/(em)⌉−1−⌊n/m⌋ in the first case and ⌈n/(em+1)⌉−1−⌈n/(em+1)⌉ ⋅e in the
second. If α > 1/m−1/(em) and n is large enough, then both terms are greater
or equal −⌊αn⌋. Choosing f big enough, we may arrange that both are greater
or equal −⌊min{n/m,αn + f}⌋ for all n ∈ N. Then S ⊆Dm(M (3), α, f).
Corollary 4.4.15. For m ∈ N∗, let Bm be the bornology on U(TR, JRm)
that contains a subset if and only if it is contained in ⊕∞n=0 π−⌊ n

m
⌋Ω2nM for

some bounded V -submodule M ⊆ R. This bornology makes U(TR, JRm) a

torsion-free bornological algebra. The projective system of bornological alge-

bras (U(TR, JRm),Bm)m∈N∗ is isomorphic to the projective system formed byU(TR, JRm) with the linear growth bornology relative to U(JR, JRm).
Proof. The Fedosov product is bounded for the bornology Bm by Lemma 4.4.10.
The subsets Dm(M,α, f) in (4.4.13) are clearly in Bm. Conversely,

∞

⊕
n=0

π−⌊ n
m+1

⌋Ω2nM =Dm(M, 1
m+1

,0).
Thus any subset in Bm+1 is mapped to a subset of U(TR, JRm) with linear
growth relative to U(JR, JRm). The asserted isomorphism of projective systems
follows.

Now we can describe the completion T R. Recall that ΩnR denotes the comple-

tion R+ ⊗ R⊗n of ΩnR = R+ ⊗R⊗n. For m ∈ N∗ and a bounded V -submodule
M ⊆ R, the canonical map Ω 2nM → Ω 2nR is injective by Proposition 2.4.5.
Then we may view ∏∞n=0 π−⌊ n

m
⌋Ω 2nM as a V -submodule of ∏∞n=0Ω 2nR ⊗ F .

Let Ω ev(R)m be the union of∏∞n=0 π−⌊ n
m
⌋Ω 2nM for all bounded V -submodules

M ⊆ R, with the bornology where a subset is bounded if and only if it
is contained in ∏∞n=0 π−⌊ n

m
⌋Ω 2nM for some bounded V -submodules M ⊆ R.

These form a decreasing sequence of subalgebras with bounded inclusion maps
Ω ev(R)m+1 ↪ Ω ev(R)m.

Documenta Mathematica 25 (2020) 1353–1419
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Proposition 4.4.16. If R is a torsion-free, complete bornological algebra,

then T R is naturally isomorphic to the projective system of complete bornolog-

ical algebras (Ω ev(R)m)m∈N∗ .
Proof. We shall use the explicit description of the relative linear growth
bornology in Proposition 4.4.12. Each π−⌊n/m⌋Ω2nR is a direct summand ofU(TR, JRm), and the projection is bounded in the linear growth bornology
relative to U(JR, JRm). This gives us maps from the completed tube to

π−⌊n/m⌋Ω 2nR for all n ∈ N. It is easy to see that the π-adic completion of
Dm(M,α, f) is isomorphic to the subspace of ∏∞n=0 π−⌊n/m⌋Ω 2nM consisting
of all (ωn)n∈N for which there is a sequence (hj)j∈N in N with limhj =∞ and

ωn ∈ π
−⌊min{n/m,α⋅n+f}⌋+hn Ω 2nM for all n ∈ N. Any such subset is bounded

in Ω ev(R)m. Conversely, any bounded subset in Ω ev(R)m+1 is contained in a
subset of this form with f = 0 and m < 1/α < m + 1. Therefore, the projective

system formed by the relative dagger completions (U(TR, JRm),U(JR, JRm))†
is isomorphic to the projective system (Ω ev(R)m)m∈N∗ .
4.5 Pro-Linear maps with nilpotent curvature

Let R and S be pro-algebras. We are going to describe pro-algebra homomor-
phisms T R → S through a certain class of pro-linear maps R → S, namely,
those with analytically nilpotent curvature. This follows rather easily from the
concrete description of the relative linear growth bornology on the tensor al-
gebra above. The main issue is to define analytically nilpotent curvature. We
begin with the analogue of nilpotent curvature mod π.

Definition 4.5.1. Let X = (Xn′)n′∈N ′ be a bornological pro-module, S =(Sn)n∈N a pro-algebra, and ω∶X → S a pro-linear map. We call ω nilpotent

mod π if, for each n ∈ N , there is m ∈ N∗ such that the composite map

X⊗m
ω⊗mÐÐ→ S⊗mm

multÐÐ→ Sm → Sm/πSm (4.5.2)

is zero; here mult denotes the m-fold multiplication map of S.

Let ω∶X → S be nilpotent mod π and represent ω by a coherent family of
bounded V -module maps ωn∶Xr(n) → Sn with r(n) ∈ N ′ for n ∈ N . For
n ∈ N and n′ ∈ N ′ with n′ ≥ r(n), let ωn,n′ ∶Xn′ → Sn be the composite map
Xn′ →Xr(n) → Sn. Let n ∈ N and choosem so that the map in (4.5.2) vanishes.
Then there is n′ ∈ N ′ with n′ ≥ r(n) such that the composite map X⊗mn′ →
S⊗mn → Sn → Sn/πSn vanishes. That is, ωn,n′(x1)⋯ωn,n′(xm) ∈ π ⋅ Sn for all
x1, . . . , xm ∈ Xn′ . Let M ⊆ Xn′ be bounded. Since ωn,n′ is bounded and Sn is
torsion-free, it follows that ωn,n′(M)m ⊆ πSn and that π−1 ⋅ωn,n′(M)m ⊆ Sn is
bounded. Then

ωn,n′(M)e ∶= em∑
j=1

π−⌊j/m⌋ωn,n′(M)j (4.5.3)

is bounded for every e ≥ 1.

Documenta Mathematica 25 (2020) 1353–1419



Nonarchimedean Analytic Cyclic Homology 1389

Definition 4.5.4. Let X = (Xm)m∈N ′ be a bornological pro-module, S =(Sn)n∈N a pro-algebra, and ω∶X → S a pro-linear map. Represent ω by a
coherent family of bounded V -module maps ωn,n′ ∶Xn′ → Sn as above. The
map ω is called analytically nilpotent if, for every n, there are m ∈ N∗ and
n′ ∈ N ′ with n′ ≥ r(n) such that for any bounded subset M ⊆Xn′ , the subset

∞

∑
j=0

π−⌊j/m⌋ωn,n′(M)j ⊆ Sn ⊗ F
is bounded in Sn.

Proposition 4.5.5. Let R and S be pro-algebras and f ∶R → S a pro-linear

map. Let ω∶R⊗R → S, x⊗y ↦ f(x ⋅y)−f(x) ⋅f(y), be its curvature. There is

a pro-algebra homomorphism f#∶T R → S with f = f#σR = f if and only if ω

is analytically nilpotent.

Proof. Write R = (Rn′)n′∈N ′ and S = (Sn)n∈N as projective systems of alge-
bras. Identify T R with the completion of the projective system of bornological
algebras T ∶= (U(TRn′ , JRmn′),Bm)n′∈N ′,m∈N∗ with the bornologies Bm in Corol-
lary 4.4.15. Since S is complete, any homomorphism of projective systems of
bornological algebras T → S extends uniquely to T R. Since S is torsion-free,
such a homomorphism T → S is determined by its restriction to TR. Then
there is a unique pro-linear map f ∶R → S such that the homomorphism is
f#∶TR → S as in (2.6.7). Corollary 4.4.15 shows that f# extends to a homo-
morphism T → S if and only if f has analytically nilpotent curvature.

Corollary 4.5.6. Let f ∶R → S, g∶S → T be pro-linear maps and let U be

a projective system of dagger algebras. If f and g have analytically nilpotent

curvature, then so do g ○ f and f ⊗ U ∶R ⊗ U → S ⊗ U .

Proof. The assertion about g ○ f follows as in the proof of [18, Theorem 5.23],
using [19, Theorems 3.7 and 4.5]. Since f has analytically nilpotent curvature,
there is a homomorphism f#∶T R → S with f# ○ σR = f . The extension

(JR)⊗ U ↣ (T R)⊗ U ↠ R⊗ U
is analytically nilpotent by Proposition 4.2.6 because (JR) ⊗ U is nilpotent
mod π. And (JR) ⊗ U is a pro-dagger algebra by the extension of Corol-
lary 2.1.21 to projective systems. The pro-linear section σR ⊗ U induces a
homomorphism T (R ⊗ U) → (T R)⊗ U . When composed with f#, it gives a
homomorphism T (R⊗ U)→ S that extends f⊗ U . Thus f⊗ U has analytically
nilpotent curvature.

4.6 Homotopy invariance of the X-complex

In this section, we assume that the field F has characteristic 0. This is needed
to prove that homotopic homomorphisms defined on a quasi-free algebra induce
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chain homotopic maps between the X-complexes. If we understand homotopy
to mean “polynomial homotopy”, then this is already shown by Cuntz and
Quillen (see [11, Sections 7–8]). In our context, the proof for polynomial homo-
topies still works for dagger homotopies. The corresponding statement for the
B, b-bicomplexes is [7, Proposition 4.3.3]. For quasi-free algebras, the canoni-
cal projection from the B, b-bicomplex to the X-complex is a chain homotopy
equivalence. This implies the following:

Proposition 4.6.1. Let R and S be projective systems of complete bornological

F -algebras. Let f, g∶R ⇉ S be two homomorphisms that are dagger homotopic.

Assume that F has characteristic 0 and that R is quasi-free. Then the induced

chain maps X(f),X(g)∶X(R)⇉X(S) are chain homotopic.

Proof. It suffices to treat an elementary dagger homotopy. Define

ηn∶Ωn(S ⊗ V [t])⊗ F → Ωn−1(S)⊗ F,
a0 da1 . . .dan ↦ ∫

1

0
a0(t)∂a1(t)

∂t
da2(t) . . .dan(t)dt,

for n = 1,2. Here integration and differentiation are defined formally by rescal-
ing the coefficients of polynomials ai ∈ S ⊗ F [t]. We claim that ηn extends to
a bounded linear map ηn∶Ωn(S ⊗ V [t]†) ⊗ F → Ωn−1(S) ⊗ F . To see this, let
T ∶= S ⊗ V [t]lg. Then Ωn(T ) ≅ T + ⊗ T⊗n ≅ T⊗n ⊕ T⊗n+1. So it suffices to show
that ηn is bounded on T⊗n ⊗F ≅ S⊗n ⊗ V [t]⊗n

lg
⊗ F . This follows if the map

V [t]⊗n+1lg ⊗F → F,

a0 ⊗ a1 ⊗⋯⊗ an ↦ ∫ 1

0
a0(t)∂a1(t)

∂t
⋅ a2(t)⋯an(t)dt

is bounded. The formal differentiation on V [t]lg is clearly bounded. And V [t]lg
is a bornological algebra. So this happens if and only if the integration map

V [t]lg ⊗F → F, a(t) = ∞∑
l=0

clt
l ↦

∞

∑
l=0

cl

l + 1
is bounded. If F has characteristic 0, then l + 1 is invertible in V for all l ∈
N. If F has finite characteristic p, then the valuation of l + 1 grows at most
logarithmically. In any case, this is dominated by the linear growth of the
exponents of π for a subset of linear growth in V [t]. Thus the integration map
above is bounded. And then so are the maps ηn. We still write ηn for their
unique bounded extensions to the completions.
Let η0 = 0. Then [η, b] = 0. Therefore, η2(b(Ω 3(S ⊗ V [t]†))) ⊆ b(Ω 2(S)).
Let X(2) be the truncated B + b-complex defined in [18, Definition A.122]. We
get a map η∶X(2)(S⊗ V [t]†)→X(S). Let ξ2∶X(2)(S⊗ V [t]†)→X(S⊗ V [t]†)
be the canonical projection. Then

[η,B + b] = (X(ev1) −X(ev0)) ○ ξ∶X(2)(S ⊗ V [t]†)→X(S).
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Now let H ∶R → S⊗V [t]† be an elementary dagger homotopy between f and g.
Then η○X(2)(H)∶X(2)(R)→X(S) is a chain homotopy between X(f)○ξ2 and
X(g) ○ ξ2, where ξ2∶X(2)(R) → X(R) is the canonical projection. Since R is
analytically quasi-free, it is in particular quasi-free. So ξ2 is a chain homotopy
equivalence. Let α∶X(R)→X(2)(R) be the homotopy inverse of ξ2. Then η○α
is the desired chain homotopy between X(f) and X(g).
Theorem 4.6.2. Let A and B be pro-algebras. If two homomorphisms

f0, f1∶A ⇉ B are dagger homotopic, then they induce homotopic chain maps

HA(A)→ HA(B). And then HA∗(f0) = HA∗(f1).
Proof. The homomorphisms T f0,T f1∶T A ⇉ T B lift f0 and f1. Since T A
is analytically quasi-free and JB is analytically nilpotent, Proposition 4.3.10
provides a dagger homotopy between T f0 and T f1. Then the chain maps
X(T A ⊗ F ) ⇉ X(T B ⊗ F ) induced by f0 and f1 are chain homotopic by
Proposition 4.6.1. This remains so on the homotopy projective limits. And then
f0 and f1 induce the same map on the homology of the homotopy projective
limits. That is, HA∗(f0) = HA∗(f1).
4.7 Invariance under analytically nilpotent extensions

We continue to assume that F has characteristic 0.

Theorem 4.7.1. Let J ↣ E
p↠ A be a semi-split, analytically nilpotent exten-

sion of pro-algebras. Then p induces a chain homotopy equivalence HA(E) ≃
HA(A), and HA(J) is contractible. So HA∗(E) ≅ HA∗(A) and HA∗(J) = 0.
If E is analytically quasi-free, then HA(A) is chain homotopy equivalent to

X(E⊗F ) and HA∗(A) is isomorphic to the homology of the homotopy projec-

tive limit of X(E ⊗F ).
Proof. The composite map T E ↠ E ↠ A is a pro-algebra homomorphism
with a pro-linear section. Its kernel K is an extension of JE by J and hence
analytically nilpotent by Proposition 4.3.13. Both T E and T A are analyt-
ically quasi-free by Proposition 4.4.6. Proposition 4.3.10 applied to the ex-
tensions K ↣ T E ↠ A and JA ↣ T A ↠ A shows that T A and T E are
dagger homotopy equivalent. This together with Proposition 4.6.1 implies that
HA(A) =X(T A⊗F ) and HA(E) =X(T E⊗F ) are homotopy equivalent. This
remains so for their homotopy projective limits. So HA∗(E) ≅ HA∗(A). More
precisely, the isomorphism is the map induced by the quotient map E↠ A.
Since J and J J are analytically nilpotent, so is T J by Proposition 4.3.13.
Since T J is analytically quasi-free, Proposition 4.3.10 may be applied to the
extensions T J = T J → 0 and 0 = 0 = 0 of 0. Thus T J is dagger homotopy
equivalent to 0. Then HA(J) ≃ 0 and HA∗(J) ≅ 0.
Now assume E to be analytically quasi-free. Then Proposition 4.3.10 shows
that the extensions of A by T A and E are dagger homotopy equivalent. Then
X(E)⊗ F is homotopy equivalent to X(T A) ⊗ F . Then HA(A) is homotopy
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equivalent to the homotopy projective limit of the projective system of chain
complexes X(E)⊗F .
Corollary 4.7.2. Let A be an analytically quasi-free algebra. Then HA(A)
is chain homotopy equivalent to X(A ⊗ F ) and HA∗(A) is isomorphic to the

homology of X(A⊗ F ).
Proof. By Theorem 4.7.1, HA(A) is homotopy equivalent to X(A⊗ F ). Then
HA∗(A) is isomorphic to the homology of holimX(A⊗F ). Since X(A⊗F ) is
a constant projective system, it is chain homotopy equivalent to its homotopy
projective limit. So we simply get the ordinary homology of X(A⊗F ).
Corollary 4.7.3. HA(V ) is homotopy equivalent to F with zero boundary

map.

Proof. The algebra V is analytically quasi-free by Proposition 4.3.6. Then
HA(V ) ≃X(V ) by Corollary 4.7.2. A small calculation shows that any element
of Ω1(V ) is a commutator. So X(V ) is F with zero boundary map.

5 Excision

The goal of this section is to prove the following excision theorem for analytic
cyclic homology:

Theorem 5.1. Let K
i↣ E

p↠ Q be a semi-split extension of pro-algebras with

a pro-linear section s∶Q → E. Then there is a natural exact triangle

HA(K) i∗Ð→ HA(E) p∗Ð→ HA(Q) δÐ→ HA(K)[−1]
in the homotopy category of chain complexes of projective systems of bornolog-

ical V -modules. Thus there is a natural long exact sequence

HA0(K) HA0(E) HA0(Q)

HA1(Q) HA1(E) HA1(K).

i∗ p∗

δδ

p∗ i∗

Here the arrows in the “homotopy category” are chain homotopy classes of
chain maps. This homotopy category is triangulated over any additive category,
with triangles coming from mapping cones of chain maps.
The proof will take up the rest of this section. It follows [17, 18]. We use the
left ideal L in T E generated by K and prove chain homotopy equivalences
X(TK) ≃ X(L) and X(L) ≃ X(T E ∶ T Q) as chain complexes in the additive
category of projective systems of bornological V -modules. First, the pro-linear
section s yields two bounded maps sL, sR∶ΩevQ⇉ ΩevE defined by

sL(q0 dq1 . . .dq2n) ∶= s(q0)ds(q1) . . . ds(q2n),
sR(dq1 . . .dq2n q2n+1) ∶= ds(q1) . . .ds(q2n) s(q2n+1)
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for all q0, q2n+1 ∈ Q
+ and qi ∈ Q for 1 ≤ i ≤ 2n. Let m ∈ N∗. Both sL and sR

map JQmj to JEmj for all j ∈ N by (4.4.8). Thus they induce bounded lin-
ear maps on the tubes, from U(TQ, JQm) to U(TE, JEm). Both are sections
for the canonical projection U(TE, JEm) → U(TQ, JQm). These sections re-
main bounded for the linear growth bornologies relative to U(JE, JEm) andU(JQ, JQm) by Proposition 4.4.12. Thus they extend to bounded V -module
maps on the completions. These maps for all m ∈ N∗ form two pro-linear sec-
tions for T p∶T E → T Q. They induce two sections for the canonical chain map
X(T p)∶X(T E) →X(T Q). Let

X(T E ∶ T Q) ∶= ker(X(T p)∶X(T E) →X(T Q)).
There is a semi-split extension of chain complexes

X(T E ∶ T Q) ↣ T E → T Q.
Since X(T p) ○X(T i) =X(T (p ○ i)) = 0, the chain map X(T i) factors through
a chain map X(TK)→X(T E ∶ T Q). We are going to prove that the latter is
a chain homotopy equivalence. Then the homotopy projective limit of X(TK)
is homotopy equivalent to that of X(T E ∶ T Q). And the latter fits into a
semi-split extension of chain complexes with the homotopy projective limits of
X(T E) and X(T Q). As a result, Theorem 5.1 follows if the inclusion map
X(TK)→X(T E ∶ T Q) is a chain homotopy equivalence.
Our construction of the chain homotopy equivalence will, in principle, be ex-
plicit and natural, using only the multiplication maps in our pro-algebras and
the pro-linear sections sL and sR above. Therefore, we assume for simplicity
from now on that we are dealing with an extension of (complete, torsion-free
bornological) algebras K ↣ E ↠ Q. In general, we may rewrite the semi-
split extension above as a projective system of semi-split algebra extensions
Kn ↣ En ↠ Qn with compatible bounded linear sections; this uses arguments
as in the proof of Proposition 4.3.13. To simplify notation, we write down
the proof below only for a semi-split algebra extension. The chain maps and
homotopies that we are going to build for the extensions Kn ↣ En↠ Qn form
morphisms of projective systems. So the same proof works for a semi-split
extension of pro-algebras.

5.1 The pro-algebra L
In the following, we identify TE with ΩevE and E with Ω0(E) ⊆ ΩevE. So
the map σE ∶E → T E disappears from our notation. Proposition 4.4.6 gives an
isomorphism of left T E-modules

(T E)+ ⊗ E ≃Ð→ T E, ω ⊗ x↦ ω ⊙ x. (5.1.1)

Explicitly, the inverse of this isomorphism is given by

ω de2n−1 de2n ↦ ω ⊗ (e2n−1 ⋅ e2n) − (ω ⊙ e2n−1)⊗ e2n. (5.1.2)
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These two maps also define an isomorphism for the purely algebraic tensor
algebras:

(TE)+ ⊗E ≃Ð→ TE, ω ⊗ e↦ ω ⊙ e. (5.1.3)

Variants of this isomorphism and the following ones were proven already in
[18, Section 4.3.2]. Let L ⊆ TE be the left ideal generated by K. The bounded
linear section s∶Q → E yields an isomorphism of bornological V -modules E ≅
K ⊕Q. Then (5.1.3) implies an isomorphism

(TE)+ ⊗K ≃Ð→ L, ω ⊗ k ↦ ω ⊙ k. (5.1.4)

The explicit formula for the isomorphism in (5.1.2) and its inverse imply

L =K ⊕⊕
n≥1

Ω2n−1(E)dK
as in the proof of [18, Lemma 4.55]. Let I ∶= ker(Tp∶TE ↠ TQ). This is part
of semi-split extensions

I TE TQ
Tp

sL

I (TE)+ (TQ)+.(Tp)+

sL

(5.1.5)

Lemma 5.1.6. The following maps are isomorphisms:

Ψ∶L+ ⊗ (TQ)+ ≃Ð→ (TE)+, l⊗ η ↦ l ⊙ sL(η), (5.1.7)

L⊗ (TQ)+ ≃Ð→ I, l⊗ η ↦ l ⊙ sL(η), (5.1.8)

(TE)+ ⊗K ⊗ (TQ)+ ≃Ð→ I, ω ⊗ k ⊗ η ↦ ω ⊙ k ⊙ sL(η), (5.1.9)

(TQ)+ ⊗K ⊗ (TE)+ ≃Ð→ I, η ⊗ k ⊗ ω ↦ sR(η)⊙ k ⊙ ω, (5.1.10)

(TQ)+ ⊗K ⊗L+ ≃Ð→ L, η ⊗ k ⊗ l ↦ sR(η)⊙ k ⊙ l. (5.1.11)

Proof. The computations in [18, Section 4.3.1] show this. We briefly sketch
them. The isomorphisms (5.1.7) and (5.1.8) are equivalent because of the semi-
split extension (5.1.5). And (5.1.8) and (5.1.9) are equivalent because of the
isomorphism (5.1.4). The isomorphisms (5.1.9) and (5.1.10) imply each other
by taking opposite algebras because this reverses the order of multiplication and
exchanges sL and sR. And (5.1.10) implies (5.1.11) by substituting (TE)+ ≅
L+⊗(TQ)+ and I ≅ L⊗(TQ)+ in (5.1.10) and then cancelling the factor (TQ)+
on both sides.
So it suffices to prove that Ψ is an isomorphism. We describe its inverse Ψ−1.
Split a differential form e0 de1 . . .de2n ∈ Ω

2nE so that each coefficient ej belongs
either to K or s(Q), or is 1 in case of e0; this is possible because of the direct
sum decomposition E ≅K ⊕ s(Q); write ki ∶= ei or qi ∶= s−1(ei) accordingly. If
no ei belongs to K, then

Ψ−1(s(q0)ds(q1) . . .ds(q2n)) = 1⊗ q0 dq1 . . .dq2n.
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Otherwise, there is a largest i ≤ 2n with ei ∈K. If i = 0, then

Ψ−1(k0 ds(q1) . . .ds(q2n)) = k0 ⊗ dq1 . . .dq2n.

If i is even and non-zero, then

Ψ−1(e0 de1 . . .dei−1 dki ds(qi+1) . . .ds(q2n)) = e0 de1 . . .dei−1 dki⊗dqi+1 . . .dq2n.
If i is odd, then

Ψ−1(e0 de1 . . .dei−1 dki ds(qi+1) . . .ds(q2n))
= e0 de1 . . .dei−1 ⊙ (ki ⋅ s(qi+1))⊗ dqi+2 . . . dq2n

− e0 de1 . . .dei−1 ⊙ ki ⊗ qi+1 dqi+2 . . .dq2n.
A direct computation using dki ds(qi+1) = ki ⋅ s(qi+1) − ki ⊙ s(qi+1) shows that

Ψ ○Ψ−1(e0 de1 . . . de2n) = e0 de1 . . . de2n
for all e0 ∈ {1} ∪K ∪ s(Q), e1, . . . , en ∈ K ∪ s(Q). Then one shows that the
map Ψ−1 is surjective: its image contains all elements of the form 1 ⊗ η for
η ∈ (TQ)+ and ω ⊗ dq1 . . .dq2n with ω ∈ L+ by the first two cases with no i or
even i, respectively. And modulo a term of this form, the image of Ψ−1 contains
all ω ⊙ k ⊗ q0 dq1 . . .dq2n with ω ∈ (TE)+, k ∈ K because of the formula in the
case of odd i. This exhausts L+⊗(TQ)+ because of the isomorphism (5.1.4).

We are going to pass to the analytic tensor algebras and describe “analytic”
analogues of L, I ⊆ TE and of the isomorphisms and semi-split extensions
above. For m ∈ N∗, let

I(m) ∶= ker(U(TE, JEm)→ U(TQ, JQm)),
L(m) ∶=K ⊕⊕

n≥1

π−⌊n/m⌋ ⋅Ω2n−1(E)dK.
It is easy to see that I(m) is a two-sided and L(m) a left ideal in U(TE, JE∞).
In particular, both are V -algebras in their own right. Inspection shows that

I(m) = U(TE, JEm) ∩ (I ⊗ F ), L(m) = U(TE, JEm) ∩ (L⊗F ) (5.1.12)

as V -submodules of TE ⊗ F . The maps in the projective system U(TE, JE∞)
make (I(m))m∈N∗ and (L(m))m∈N∗ projective systems by restriction. We equip
each U(TE, JEm) with the bornology Bm described in Corollary 4.4.15; using
the linear growth bornology instead would slightly complicate the estimates
below. We give I(m) and L(m) the subspace bornologies. So the bornology
on L(m) is cofinally generated by

(M ∩K)⊕ ∞

⊕
n=1

π−⌊n/m⌋Ω2n−1M d(M ∩K) (5.1.13)
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for bounded V -submodules M ⊆ E. Let I ∶= (I(m) )m∈N∗ and L ∶= (L(m) )m∈N∗
be the projective systems formed by the completions.

Since U(TE, JEm) is a subalgebra of TE ⊗ F and the maps in (5.1.3), (5.1.4)
and (5.1.7)–(5.1.11) only involve Fedosov products and the maps sL and sR,
(5.1.12) implies that these maps still exist and are bounded if TE,TQ,I,L are
replaced by U(TE, JEm),U(TQ, JQm), I(m), L(m), respectively, each equipped
with the bornologies specified above. The inverse maps for these isomorphisms
are slightly more complicated, however: they may shift the index m in the
projective system:

Lemma 5.1.14. The inverses to the isomorphisms above extend to bounded maps

U(TE, JEm+1)→ U(TE, JEm)+ ⊗E,
L(m+1) → U(TE, JEm)+ ⊗K,

U(TE, JE2m)+ → L+(m) ⊗ U(TQ, JQm)+,
I(2m) → L(m) ⊗ U(TQ, JQm)+,
I(2m) → U(TE, JEm)+ ⊗K ⊗ U(TQ, JQm)+,
I(2m) → U(TQ, JQm)+ ⊗K ⊗ U(TE, JEm)+,
L(2m) → U(TQ, JQm)+ ⊗K ⊗L+(m).

Proof. Our explicit formula for the first map shows that it reduces the to-
tal degree of a differential form by at most 2. Since n+1

m+1
≤ n

m
for all

n ≥ m and ⌊ n+1
m+1

⌋ = ⌊ n
m
⌋ = 0 if n < m, it follows that it defines a map

U(TE, JEm+1) → U(TE, JEm)+ ⊗ E that is bounded for the bornologies de-
scribed in Corollary 4.4.15. The second map is a restriction of the first map,
so that it is covered by the same argument.

Our explicit formula for the third map shows that it maps a differential form of
degree 2n to a sum of tensor products involving differential forms of degree 2j
and 2(n−j−1) or 2(n−j); in the first case, j < n and the differential form in L is
already explicitly written as ω⊙k, so that the isomorphism L→ (TE)+⊗K does
not reduce the degree any further. This shows that the same degree estimate
applies to the fourth map in the lemma. The fifth map differs from that only
by taking opposite algebras, and the sixth map is a restriction of the fifth one.
This is why the following estimates cover all these maps at the same time.

That these maps are well defined between the relevant tube algebras amounts
to the estimate ⌊n/2m⌋ ≤ ⌊j/m⌋ + ⌊(n − j − 1)/m⌋ for all n ∈ N, 0 ≤ j < n.
This is trivial for n < 2m, so that we assume n ≥ 2m. For fixed n, the right
hand side is minimal if j = m − 1. And then the needed estimate simplifies to⌊n/2m⌋ ≤ ⌊(n −m)/m⌋. This is true for 2m ≤ n < 4m. Since adding 2m to n
increases ⌊n/2m⌋ by 1 and ⌊(n−m)/m⌋ by 2, the inequality follows for all n ∈ N.
Now it follows that the maps in the lemma are well defined and bounded for
the bornologies described in Corollary 4.4.15.
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The composite maps

U(TE, JEm+1)+ ⊗E → U(TE, JEm+1) → U(TE, JEm)+ ⊗E,
U(TE, JEm+1) → U(TE, JEm)+ ⊗E → U(TE, JEm)+

are the structure maps in our projective systems because they extend the iden-
tity maps on (TE)+⊗E and TE, respectively. Thus these two families of maps
for m ∈ N∗ are isomorphisms of projective systems of bornological V -modules
that are inverse to each other. This remains so when we complete, giving an

isomorphism (T E)+ ⊗ E
≃Ð→ T E. The same argument applies to the other

isomorphisms above. Summing up, we get the following isomorphisms of pro-
jective systems of bornological V -modules:

(T E)+ ⊗ E ≃Ð→ T E, ω ⊗ e↦ ω ⊙ e, (5.1.15)

(T E)+ ⊗ K ≃Ð→ L, ω ⊗ k ↦ ω ⊙ k, (5.1.16)

L+ ⊗ (T Q)+ ≃Ð→ (T E)+, l ⊗ η ↦ l ⊙ sL(η), (5.1.17)

L⊗ (T Q)+ ≃Ð→ I, l ⊗ η ↦ l ⊙ sL(η), (5.1.18)

(T E)+ ⊗ K ⊗ (T Q)+ ≃Ð→ I, ω ⊗ k ⊗ η ↦ ω ⊙ k ⊙ sL(η), (5.1.19)

(T Q)+ ⊗ K ⊗ (T E)+ ≃Ð→ I, η ⊗ k ⊗ ω ↦ sR(η)⊙ k ⊙ ω, (5.1.20)

(T Q)+ ⊗ K ⊗ L+ ≃Ð→ L, η ⊗ k ⊗ l ↦ sR(η)⊙ k ⊙ l. (5.1.21)

In addition, there are semi-split extensions

I T E T QT p

sL

I (T E)+ (T Q)+.(T p)+

sL

(5.1.22)

Here (5.1.15) is the same as (5.1.1). So it follows already from the analytic
nilpotence machinery in Section 4. And (5.1.15) easily implies (5.1.16). The
isomorphisms (5.1.18)–(5.1.21) follow from (5.1.15)–(5.1.17) and the semi-split
extension (5.1.22) as in the proof of Lemma 5.1.6. It seems, however, that the
existence of the maps sL, sR∶T Q ⇉ T E and (5.1.17) do not follow from the
machinery in Section 4 and must be checked by hand.

Theorem 5.1.23. The chain map X(L)→X(T E ∶ T Q) induced by the inclu-

sion L ↪ T E is a chain homotopy equivalence.

Proof. The proofs of [18, Theorems 4.66 and 4.67] carry over literallly to our
analytic tensor algebras, using the isomorphisms (5.1.15)–(5.1.21) and the semi-

split extension (5.1.22). We merely have to replace the symbols ⊗, A ∶= ←ÐTE,←Ð
TQ,

←Ð
L ,
←Ð
I and

←Ð
G in that proof by ⊗ , T E, T Q, L, I and (T Q)+⊗ K, respec-

tively; and
←Ð
Ω evE and

←Ð
Ω oddE in [18] become T E and (T E)+⊗ E, respectively,
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with the latter identified with differential forms of odd degree. [18, Theo-
rem 5.80] is a similar translation exercise for the analytic cyclic homology the-
ory for bornological algebras over the complex numbers, and the situation in
this article is quite similar.
We briefly sketch the main idea of the proof. Proposition 4.4.6 and the defini-
tion of Ω 1(T E) imply that there is a semi-split free T E-bimodule resolution

Ω 1(T E) ↣ (T E)+ ⊗ (T E)+↠ (T E)+
with a natural pro-linear section (T E)+ → (T E)+ ⊗ (T E)+, x↦ 1⊗ x. Let

P0 ∶= L+ ⊗ L+ + (T E)+ ⊗ L ⊆ (T E)+ ⊗ (T E)+,
P1 ∶= (T E)+DL ⊆ Ω 1(T E)+.

This together with L+ ⊆ (T E)+ gives a subcomplex of the resolution above. The
standard section above yields a contracting homotopy for it, making it a resolu-
tion. The bimodules P0 and P1 are free; this is where the isomorphisms above
enter. So P1 ↣ P0 ↠ L+ is a free L-bimodule resolution. Then L is quasi-free,
and the X-complex computes its periodic cyclic homology. And the commu-
tator quotient complex P1/[L, P1] → P0/[L, P0] computes the Hochschild ho-
mology of L. These commutator quotients are computed explicitly and shown
to compute the relative Hochschild homology for the quotient map T E↠ T Q.
And then the isomorphism on Hochschild homology implies an isomorphism in
cyclic homology and thus periodic cyclic homology.

5.2 Analytic quasi-freeness of L
The proof of the excision theorem is completed by the following theorem:

Theorem 5.2.1. The pro-algebra L is analytically quasi-free and there is a

semi-split, analytically nilpotent extension JE ∩L ↣ L↠K.

This theorem and Theorem 4.7.1 imply that HA(K) is chain homotopy equiv-
alent to the X-complex of L. Theorem 5.1.23 identifies this with the relative
X-complex X(T E ∶ T Q). And this yields the excision theorem. So it only
remains to prove Theorem 5.2.1.
The canonical projection T E ↠ E restricts to a semi-split projection L↠ K.
Its kernel JE ∩L ⊆ JE is a projective system of closed subalgebras. These are
complete and torsion-free by [19, Theorem 2.3 and Lemma 4.2]; and subalgebras
also clearly inherit the property of being semi-dagger. So JE∩L is a projective
system of dagger algebras. Proposition 4.2.6 implies that it is again nilpotent
mod π because JE/(JE ∩L) is torsion-free.
The proof of Theorem 5.1.23 already shows that L is quasi-free. We need it to
be analytically quasi-free, however. This is the main difficulty in Theorem 5.2.1.
The proof of this uses the same ideas as the proof of the corresponding state-
ment for analytic cyclic homology for bornological algebras over C in [18]. First,
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we define a homomorphism υ∶L → TL for the purely algebraic version L of L.
Then we show that this homomorphism extends uniquely to a homomorphism
of pro-algebras L → T L that is a section for the canonical projection T L↠ L.
We need some notation for elements of TL and a certain grading on TL.
Elements of TL are sums of differential forms l0Dl1 . . .Dl2n with l0 ∈ L

+,
l1, . . . , l2n ∈ L. We write ⊚ for the Fedosov product in ΩevL to distinguish
it from the Fedosov product ⊙ in L and the resulting usual multiplication on
ΩL. Call an element of TL elementary if it is of the form l0Dl1 . . .Dl2n with
lj = ej,0 dej,1 . . .dej,2ij for 0 ≤ j ≤ 2n, and ej,k ∈ K ∪ s(Q) for all occurring
indices j, k, except that we allow ej,0 = 1 if ij ≥ 1 and l0 = 1 if i0 = 0; here
ej,2ij ∈ K because lj ∈ L. Any element of TL is a finite linear combination
of such elementary elements. The entries of an elementary element ξ are the
elements ej,l ∈ E; its internal degree is degi(ξ) = ∑2n

j=0 2ij; its external degree is
dege(ξ) = 6n if l0 ∈ L and dege = 6n − 4 if l0 = 1, and the total degree degt(ξ)
is the sum of these two degrees; this particular total degree already appears in
the proof of [18, Lemma 5.102].
The definition of υ is based on the isomorphism L ≅ (TE)+ ⊗ K in (5.1.4).
The restriction of υ to K = (Ω0

TE ∩ L) ⊆ L is the obvious inclusion of K
into TL. We extend this map to L using a homomorphism from TE to the
algebra of V -module homomorphisms TL → TL. Such a homomorphism is
equivalent to a linear map E → Hom(TL,TL), which is, in turn, equivalent to
a V -bilinear map E ×TL→ TL, which we denote as an operation (e, ξ) ↦ e▷ ξ
for e ∈ E, ξ ∈ TL. As in [18], we first define the map ∇∶L → Ω1(L) by∇(sR(ξ) ⊙ k ⊙ l) ∶= sR(ξ) ⊙ kDl for all ξ ∈ (TQ)+, k ∈ K, l ∈ L+, with the
understanding that D1 = 0 if l is the unit element of L; this uses the inverse of
the isomorphism (5.1.11). Then we let

e▷ x0Dx1 . . .Dx2n = e⊙ x0Dx1 . . .Dx2n −D∇(e⊙ x0)Dx1 . . .Dx2n,
e▷Dx1Dx2 . . .Dx2n = ∇(e⊙ x1)Dx2 . . .Dx2n.

The curvature of the corresponding map E → Hom(TL,TL) acts by the oper-
ation ω▷(e1, e2)ξ ∶= (e1 ⋅ e2)▷ ξ − e1 ▷ (e2 ▷ ξ). It is computed in [18, Equa-
tion (5.91)]:

ω▷(e1, e2)l0Dl1 . . .Dl2n = (de1de2 ⊙ l0)Dl1 . . .Dl2n
+∇(e1 ⊙∇(e2 ⊙ l0))Dl1 . . .Dl2n
−D∇(de1de2 ⊙ l0)Dl1 . . .Dl2n,

ω▷(e1, e2)Dl1 . . .Dl2n = ∇((e1 ⋅ e2)⊙ l1)Dl2 . . .Dl2n
− e1 ⊙∇(e2 ⊙ l1)Dl2 . . .Dl2n
+D∇(e1 ⊙∇(e2 ⊙ l1))Dl2 . . .Dl2n.

Finally, we define

υ(e0 de1 . . .de2n ⊙ k) ∶= e0▷ (ω▷(e1, e2) ○ ⋯ ○ ω▷(e2n−1, e2n))(k).
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Lemma 5.2.2. The map υ∶L→ TL is an algebra homomorphism, and p○υ = idL
for the canonical projection p∶TL→ L.

If l ∈ Ω2n−1(E)dK ⊆ L has degree 2n, then υ(l) is a sum of elementary elements

of TL with total degree at least 2n.

Let M ⊆ E be a bounded V -submodule. There is a bounded subset M ′ ⊆ E such

that if e0 de1 . . .de2n ∈ Ω
2nM ∩L, then υ(e0 de1 . . .de2n) is a sum of elementary

elements of TL with entries in M ′.

Proof. As shown in [18] or in [17], the left action ▷ is by left multipliers, that
is, e▷ (ξ ⊚ τ) = (e▷ ξ) ⊚ τ for all e ∈ E, ξ, τ ∈ TL. And k ▷ ξ = k ⊚ ξ for all
k ∈K. This implies that υ is a homomorphism.

A short computation shows that each summand in the formula for ω▷(e1, e2)
increases the total degree defined above by at least 2; this is already shown in
the proof of [18, Lemma 5.102]. By induction on n, it follows that υ maps Ω2nL

into the subgroup spanned by elementary elements of TL with total degree at
least 2n.

Given a bounded subset M ⊆ E, the proof of [18, Lemma 5.92] provides a
bounded subset M ′ ⊆ E such that υ(e0 de1 . . .de2n ⊙ k) is a sum of elementary
elements of TL with entries in M ′.

The homomorphism υ induces an F -algebra homomorphism L⊗ F → TL⊗ F .
Recall that

L(m) ∶=K ⊕ ∞

⊕
n=1

π−⌊n/m⌋Ω2n−1(E)dK
for m ∈ N∗. These are V -subalgebras of L ⊗ F that satisfy L(n) ⊆ L(m) if
n ≥ m. Each L(m) is equipped with the bornology cofinally generated by the
submodules in (5.1.13).

Let (TL)(m) ⊆ TL⊗ F be the subgroup generated by π−⌊d/m⌋ξ for elementary
elements ξ of total degree d. These are V -subalgebras of TL ⊗ F that satisfy(TL)(n) ⊆ (TL)(m) if n ≥ m. If M ⊆ E is a bounded V -submodule, then let

DT

m(M) ⊆ (TL)(m) be the subgroup generated by π−⌊d/m⌋ξ for elementary ele-
ments ξ of total degree d. We give (TL)(m) the bornology that is cofinally gen-
erated by these V -submodules. This bornology is the analogue of the bornology
in Corollary 4.4.15. It is torsion-free and makes the multiplication in (TL)(m)
and the inclusion maps (TL)(n) ↪ (TL)(m) for n ≥ m bounded. So we have

turned ((TL)(m))m∈N∗ into a projective system of torsion-free bornological al-
gebras.

The second paragraph in Lemma 5.2.2 says that the extension L⊗F → TL⊗F
of υ maps L(m) to (TL)(m) for each m ∈ N∗. And the third paragraph says
that this homomorphism is bounded. Thus υ is a homomorphism of projective
systems of bornological algebras. By Corollary 4.4.15, L is isomorphic to the
projective system of the completions L(m) for m ∈ N∗, with the bornologies
described above.
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Lemma 5.2.3. The embedding TL ↪ T L extends to an isomorphism of pro-

jective systems from the projective system of completions (TL)(m) for m ∈ N∗

to T L.
Proof. For a bounded V -submodule M ⊆ E, let MK ∶= M ∩ K and let
Ω 0
L(M) ∶= MK and Ω 2k

L (M) ∶= Ω 2k−1(M) ⊗ MK for k > 1. A proof like
that for Proposition 4.4.16 shows that the completion of (TL)(m) is the union
of the products

∞

∏
j≥0,i0,...,i2j≥0

π−⌊(6j+2i0+⋯+2i2j)/m⌋Ω 2i0
L
(M)⊗ Ω 2i1

L
(M)⊗ ⋯⊗ Ω

2i2j
L
(M)

× ∞

∏
j≥0,i1,...,i2j≥0

π−⌊(6j−4+2i0+⋯+2i2j)/m⌋Ω 2i1
L
(M)⊗ Ω 2i2

L
(M)⊗ ⋯⊗ Ω

2i2j
L
(M)
(5.2.4)

taken over all bounded V -submodules M ⊆ E; elementary tensors in a fac-
tor of the first product correspond to differential forms l0Dl1 . . .Dl2j with
l0, . . . , l2j ∈ L and deg(lj) = 2ij, whereas those for the second product cor-
respond to differential forms Dl1 . . .Dl2j . The exponent of π is the total degree
defined above.
Proposition 4.4.16 describes T E. The pro-subalgebra L is described similarly,
by also asking for the last entry of all differential forms to belong to K. Then a
second application of Proposition 4.4.16 describes T L. The result is very similar
to the projective system above. The only difference is that the exponent of π
in the bornology is replaced by h ∶= ⌊j/k⌋+∑2j

l=0 ⌊il/m⌋ for each factor in (5.2.4),
for some parameters k,m ∈ N∗. Here we may take k = m because this gives
a cofinal subset. So it remains to prove linear estimates between these two
notions of “degree”. In one direction, this is the trivial estimate

⌊ j
m
⌋ + 2j

∑
l=0

⌊ il
m
⌋ ≤ ⌊ j

m
+ 2j

∑
l=0

il

m
⌋ ≤ ⌊ 1

m
(6j + 2j

∑
l=0

2il)⌋
for j ≥ 0 and a similar estimate with 6j−4 = 4(j−1)+2j instead of 6j for j ≥ 1.
In the other direction, we distinguish two cases. Let i ∶= ∑ il. If i < 4j ⋅m, then
6j + 2i < j ⋅ (6 + 8m) and we estimate

⌊ j
m
⌋ + 2j

∑
l=0

⌊ il
m
⌋ ≥ ⌊ j

m
⌋ ≥ ⌊ 6j + 2i

(6 + 8m) ⋅m⌋.
The other case is i ≥ 4j ⋅m. Each floor operation changes a number by at
most 1, and 6j + 2i ≤ 3

2m
i + 2i ≤ 4i. So

⌊ j
m
⌋ + 2j

∑
l=0

⌊ il
m
⌋ ≥ i

m
− 2j ≥ i

2m
≥ ⌊6j + 2i

8m
⌋.

As a result, υ defines a pro-algebra homomorphism L → T L. Then L is ana-
lytically quasi-free. This ends the proof of the excision theorem.
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6 Stability for algebras of matrices

A matricial pair consists of two torsion-free bornological modules X and Y

and a surjective linear map ⟨⋅ , ⋅⟩∶Y ⊗X → V . Any such map is bounded. A
homomorphism from (X,Y ) to another matricial pair (W,Z) is a pair f =(f1, f2) of bounded linear homomorphisms f1∶X → W , f2∶Y → Z such that⟨f2(y) , f1(x)⟩ = ⟨y , x⟩ for all x ∈ X and y ∈ Y . An elementary homotopy is a
pairH = (H1,H2) of bounded linear maps, whereH1∶X →W [t] and H2∶Y → Z

or H1∶X →W and H2∶Y → Z[t], such that the following diagram commutes:

Y ⊗X Z ⊗W [t]

V V [t]
⟨ , ⟩

H2⊗H1

⟨ , ⟩⊗id
inc

Let (X,Y ) be a matricial pair. LetM =M(X,Y ) be X ⊗Y with the product

(x1 ⊗ y1)(x2 ⊗ y2) = ⟨y1 , x2⟩x1 ⊗ y2.
This product is associative and bounded, and it even makesM a semi-dagger al-
gebra. The bornological algebraM is also torsion-free by [19, Proposition 4.12].

Thus the completion M is a dagger algebra andM =M†.
Homomorphisms and homotopies of matricial pairs induce homomorphisms
and homotopies of the corresponding algebras. Any pair (ξ, η) ∈ X × Y with⟨η , ξ⟩ = 1 yields a bounded algebra homomorphism

ι = ιξ,η ∶V →M, ι(1) = ξ ⊗ η.
We shall also write ι for the composite of the map above with the completion
map M →M =M†. If R is a torsion-free bornological algebra, then R⊗M†

is torsion-free by [19, Theorem 4.6 and Propositions 14.11 and 14.12]. Define

ιR ∶= idR ⊗ ι∶R → R⊗M†. (6.1)

Proposition 6.2. Let R be a complete, torsion-free bornological algebra. Then

the map ιR induces a chain homotopy equivalence HA(R) ≃ HA(R⊗M†) and
an isomorphism HA∗(R) ≅ HA∗(R⊗M†).
Proof. Corollary 4.5.6 yields a natural pro-algebra homomorphism

T (R⊗M†)→ T (R)⊗M†

covering the identity of R ⊗ M†. And any elementary homotopy between
matricial pairs (X,Y ) and (W,Z) yields an elementary dagger homotopyM(X,Y )† → M(Z,W )† ⊗ V [t]†. The X-complex is invariant under dagger
homotopies by Proposition 4.6.1. Taking all this into account, the argument of
the proof of [18, Theorem 5.65] now applies verbatim and proves the proposi-
tion.
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Let Λ be a set. We now describe increasingly complicated algebras of matrices
indexed by the set Λ.

Example 6.3. Let V (Λ) be the V -module of finitely supported functions
Λ → V . This is the free V -module on Λ. The characteristic functions of
the singletons {χλ ∶λ ∈ Λ} form a module basis. The algebra M(V (Λ), V (Λ))
associated to the bilinear form ⟨χλ , χµ⟩ = δλ,µ is the algebraMΛ of finitely sup-
ported Λ ×Λ-matrices with the fine bornology. It is already a dagger algebra.
Proposition 6.2 implies HA(R) ≅ HA(MΛ ⊗R) for all R.
Example 6.4. Define V (Λ) as in Example 6.3. Its π-adic completion is the
Banach module c0(Λ) ∶= c0(Λ, V ) with the supremum norm. The bilinear form
in Example 6.3 extends to c0(Λ). The π-adic completion of M(c0(Λ), c0(Λ))
is isomorphic to the Banach V -algebra M0

Λ ≅ c0(Λ ×Λ) of matrices indexed by
Λ×Λ with entries in V that go to zero at infinity. The Banach V -modules above
become bornological by declaring all subsets to be bounded. The completions
and tensor products as Banach V -modules and as bornological V -modules are
the same. Proposition 6.2 implies HA(R) ≅ HA(M0

Λ ⊗ R) for all R.
Example 6.5. Let ℓ∶Λ → N be a proper function, that is, for each n ∈ N the
set of x ∈ Λ with ℓ(x) ≤ n is finite. Define V (Λ) as in Example 6.3 and give it
the bornology that is cofinally generated by the V -submodules

Sm ∶= ∑
λ∈Λ

π⌊ℓ(λ)/m⌋χλ

for m ∈ N∗. The bilinear form in Example 6.3 remains bounded for this bornol-
ogy on V (Λ). So M(V (Λ), V (Λ)) with the tensor product bornology from the
above bornology is a bornological algebra as well. It is torsion-free and semi-
dagger. So its dagger completion is the same as its completion. We denote
it by M ℓ

Λ. It is isomorphic to the algebra of infinite matrices (cx,y)x,y∈Λ for
which there is m ∈ N∗ such that cx,y ∈ π

⌊(ℓ(x)+ℓ(y))/m⌋ for all x, y ∈ Λ; this
is the same as asking for lim ∣cx,yπ−⌊(ℓ(x)+ℓ(y))/m⌋∣ = 0 because ℓ is proper.
It makes no difference to replace the exponent of π by ⌊ℓ(x)/m⌋ + ⌊ℓ(y)/m⌋
or ⌊max{ℓ(x), ℓ(y)}/m⌋ because we may vary m. Proposition 6.2 implies
HA(R) ≅ HA(M ℓ

Λ ⊗ R) for all R.
The following completed matrix algebras will be needed in Section 8.

Example 6.6. Let Λ be a set with a filtration by a directed set I. That is,
there are subsets ΛS ⊆ Λ for S ∈ I with ΛS ⊆ ΛT for S ≤ T and Λ = ⋃S∈I ΛS .
Let ℓ∶Λ → N be a function whose restriction to ΛS is proper for each S ∈ I.
For S ∈ I, form the matrix algebra M ℓ

ΛS
as in Example 6.5. These algebras

for S ∈ I form an inductive system. Let limÐ→M
ℓ
ΛS

be its bornological inductive
limit. This bornological algebra is also associated to a matricial pair, namely,
the pair based on limÐ→V

(ΛS), where each V (ΛS) carries the bornology described

in Example 6.5. Proposition 6.2 implies HA(R) ≅ HA(limÐ→M
ℓ
ΛS
⊗ R) for all R.
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7 Morita functoriality

In this section, we show that analytic cyclic homology is functorial for cer-
tain bimodules. Let A and B be unital, torsion-free, complete bornological
V -algebras and let P be an A-B-bimodule. Assume P to be finitely generated
and projective as a right B-module. Then there are n ∈ N and an idempotent
matrix e ∈ Mn(B) such that P ≅ eBn. The left action of A on P induces a
V -algebra homomorphism

ιA∶A→ EndB(P ) ≅ eMn(B)e ⊆Mn(B).
Proposition 6.2 describes a chain homotopy equivalence HA(B) ≅ HA(Mn(B))
for any n ∈ N≥1. Composing this with the map induced by ιA gives a chain map

HA(P )∶HA(A) → HA(B).
This induces maps HA∗(P )∶HA∗(A) → HA∗(B) for ∗ = 0,1.
Lemma 7.1. The homotopy class of HA(P ) only depends on the isomorphism

class of P . That is, if P ≅ e ⋅ Bn ≅ f ⋅ Bm for n,m ∈ N and idempotent

e ∈ Mn(B), f ∈ Mm(B), then the resulting chain maps HA(A) → HA(B) are
chain homotopic. If A = B = P , then HA(P ) is homotopic to the identity chain

map.

Proof. The chain homotopy equivalence HA(B) ≅ HA(Mn(B)) in Proposi-
tion 6.2 is induced by the corner embedding ιn∶B → Mn(B), b ↦ b ⋅ E11. If
k ≥ n, then the inclusion jkn∶Mn(B) →Mk(B) that appends zeros on the right
and at the bottom satisfies jkn ○ ιn = ιk. Hence there is a commuting diagram
of chain homotopy equivalences

HA(B) HA(Mn(B))

HA(Mk(B)).

HA(ιn)

HA(ιk) HA(jkn)

Therefore, the maps HA(A) → HA(B) remain unchanged when we replace e
and f by jkn(e) ∈Mk(B) and jkm(f) ∈Mk(B) for k ≥ n,m. This allows us to
reduce to the case n =m. And then we may still choose k = 2n = 2m to create
extra room.
Since fBm ≅ eBm, the idempotent matrices e and f are Murray–von-Neumann

equivalent. That is, there are matrices v,w ∈Mm(B) with
e = vw, f = wv, vwv = v, wvw = w.

Let ιeA, ι
f
A∶A ⇉ Mm(B) be the two homomorphisms defined above using the

idempotent elements e and f , respectively. By construction, ιeA(a) = vιfA(a)w
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and ιfA(a) = wιeA(a)v for all a ∈ A. It is well known that j2m,m(e) and j2m,m(f)
are homotopic. We recall the elementary proof. Let

vt ∶= tv + (1 − t), wt ∶= tw + (1 − t)
in Mm(B[t]) and let

ut ∶= ( vt vtwt − 1
1 −wtvt 2wt −wtvtwt) , u−1t ∶= (2wt −wtvtwt 1 −wtvt

vtwt − 1 vt
) .

Easy computations show that the latter two elements of M2m(B[t]) satisfy
u0 = 1 and utu

−1
t = 1 = u

−1
t ut. And

u1 (ιfA(a) 0
0 0

)u−11 = (ιeA(a) 0
0 0

)
for all a ∈ A. Therefore, conjugation by ut defines a polynomial homotopy
between the homomorphisms ιeA and ι

f
A. Since HA is homotopy invariant by

Theorem 4.6.2, it follows that the chain maps HA(A) → HA(M2m(B)) induced
by ιeA and ιfA are chain homotopic.
To prove the last claim about HA(A) for the identity bimodule A, use m = 1
and e = 1. Then ιA∶A →Mm(A) is the identity map.

Lemma 7.2. Let A, B, C be unital, torsion-free, complete bornological

V -algebras and let P be an A-B-bimodule and Q a B-C-bimodule. Assume

P and Q to be finitely generated and projective as right modules. Then P ⊗BQ
is finitely generated and projective as a right module, and HA(P ⊗BQ) is chain
homotopic to HA(P ) ○HA(Q).
Proof. By assumption, there are m,n ∈ N and idempotent matrices e ∈Mm(B)
and f ∈Mn(C) with P ≅ eBm and Q ≅ fCn. Then

P ⊗BQ ≅ (e ⋅Bm)⊗B (f ⋅Cn) ≅ (e⊗B 1) ⋅(Bm⊗B (f ⋅Cn)) = (e⊗B 1) ⋅(f ⋅Cn)m.
This identifies P ⊗BQ with the image of Mm(ιB)(e) ∈Mm⋅n(C), where ιB ∶B →
Mn(C) is the homomorphism associated to f andMm(ιB)∶Mm(B)→Mm⋅n(C)
is the induced homomorphism on matrices. Inspection shows that the homo-
morphism A→Mm⋅n(C) defined by realising P ⊗BQ in this way is equal to the
composite homomorphism Mm(ιB)○ιA∶A→Mm(B)→Mm⋅n(C). This implies
the claim because the chain homotopy equivalences HA(B) ≅ HA(Mm(B)) are
natural.

Theorem 7.3. Let A and B be unital, torsion-free, complete bornological

V -algebras. A Morita equivalence between them induces a chain homotopy

equivalence HA(A) ≃ HA(B) and isomorphisms HA∗(A) ≅ HA∗(B) for ∗ =
0,1.
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Proof. The Morita equivalence is given by bimodules P and Q over A,B
and B,A with P ⊗B Q ≅ A and Q⊗A P ≅ B. It is well known that the equiva-
lence bimodules P and Q are finitely generated and projective as right modules.
Hence they induce well defined chain maps HA(A)↔ HA(B) by the construc-
tion above. These are inverse up to chain homotopy by Lemma 7.2. This
homotopy equivalence implies isomorphisms HA∗(A) ≅ HA∗(B) for ∗ = 0,1 on
analytic cyclic homology.

When dealing with non-unital algebras, Morita theory gets more difficult. In
particular, we know less about the bimodules involved in a Morita equivalence.
The issue is to impose the right assumptions on an A,B-bimodule so that
there are a matricial pair as in Section 6, an idempotent double centraliser e of
B ⊗M , and an algebra homomorphism A → e(B ⊗M)e. We do not discuss
sufficient conditions on bimodules that allow to associate such data to them.

8 Leavitt path algebras

Our next goal is to compute the analytic cyclic homology for tensor products
with Leavitt and Cohn path algebras of directed graphs and their dagger com-
pletions. A directed graph E consists of a set E0 of vertices and a set E1 of
edges together with source and range maps s, r∶E1 → E0. A vertex v ∈ E0 is
regular if 0 < ∣s−1({v})∣ <∞. Let reg(E) ⊆ E0 be the subset of regular vertices.
Define

NE ∶E0 × reg(E) → Z, (v,w) ↦ δv,w − ∣s−1({w}) ∩ r−1({v})∣.
Let L(E) and C(E) be the Leavitt and Cohn path algebras over V , as defined
in [1, Definitions 1.2.3 and 1.2.5]. We consider them as bornological algebras
with the fine bornology. The following theorem follows from the results in [8]
and the formal properties of analytic cyclic homology:

Theorem 8.1. Assume charF = 0. Let R be a complete bornological algebra.

Let E be a graph with countably many vertices. Then

HA(R⊗C(E)) ≃ HA(R⊗ V (E0)), HA(C(E)) ≃ V (E0),
HA(L(E)) ≃ coker(NE)⊕ ker(NE)[1],

If E0 is finite, then

HA(R⊗C(E)) ≃ ⊕
v∈E0

HA(R),
HA(R⊗L(E)) ≃ (coker(NE)⊕ ker(NE)[1])⊗HA(R).

Proof. We define a functor H from the category of V -algebras to the triangu-
lated category of pro-supercomplexes by giving A the fine bornology and taking
HA(R ⊗ A). The functor H is homotopy invariant for polynomial (and even
dagger) homotopies by Theorem 4.6.2, stable for algebras of finite matrices over

Documenta Mathematica 25 (2020) 1353–1419



Nonarchimedean Analytic Cyclic Homology 1407

any set Λ by Proposition 6.2 applied to Example 6.3, and exact on semi-split
extensions by Theorem 5.1. Theorem 5.1 also implies that HA is finitely ad-
ditive. It is not countably additive in general, but Corollary 4.3.9 shows that
it is countably additive on the ground ring V . Now [8, Theorem 4.2] proves a
homotopy equivalence

HA(R⊗C(E)) ≃ HA(R⊗ V (E0)).
If E0 is finite, then this is homotopy equivalent to HA(R) ⊗ V (E0) =
⊕v∈E0 HA(R) by finite additivity. And if R = V , then Corollary 4.3.9 iden-

tifies HA(V (E0)) ≃ V (E0).
[8, Proposition 5.2] yields a distinguished triangle of pro-supercomplexes

HA(R⊗ V (reg(E))) fÐ→ HA(R⊗ V (E0))→ HA(R⊗L(E))→ HA(R⊗ V (reg(E)))
and partly describes the map f . If R = V and E0 is countable, then Corol-

lary 4.3.9 identifies HA(V (E0)) ≃ V (E0) and HA(V reg(E)) ≃ V reg(E), and the
information about the map f in [8, Proposition 5.2] shows that it multiplies
vectors with the matrix NE . If E

0 is finite, then HA is E0-additive because of
excision. Then [8, Theorem 5.4] gives a distinguished triangle

HA(R)⊗F reg(E) id⊗NEÐÐÐÐ→ HA(R)⊗FE0 → HA(R⊗L(E))→⋯ .
Since char(F ) = 0, there are invertible matrices x, y with entries in F such that
xNEy is a diagonal matrix with only zeros and ones in the diagonal. We may
replace the map NE or id⊗NE above by id⊗ (xNEy). Then the formulas for
HA(L(E)) in general and for HA(R⊗L(E)) for finite E0 follow.

Corollary 8.2. HA(R⊗V [t, t−1]) is chain homotopy equivalent to HA(R)⊕
HA(R)[1] and HA∗(R⊗ V [t, t−1]) ≅ HA∗(R)⊕HA∗(R)[1].
Proof. Apply Theorem 8.1 to the graph with one vertex and one loop.

The following theorem says that Theorem 8.1 remains true for the dagger com-
pletions C(E)† and L(E)† of C(E) and L(E):
Theorem 8.3. Let R be a complete bornological algebra and let E be a graph.

Then

HA(R⊗C(E)) ≃ HA(R⊗ C(E)†), HA(R⊗L(E)) ≃ HA(R⊗ L(E)†).
So Theorem 8.1 also computes HA(R⊗ C(E)†) and HA(R⊗ L(E)†) – assum-
ing E0 to be countable or finite or R = V for the different cases.

Corollary 8.4 (Fundamental Theorem). HA(R⊗ V [t, t−1]†) is chain homo-

topy equivalent to HA(R) ⊕ HA(R)[1] and HA∗(R ⊗ V [t, t−1]†) ≅ HA∗(R) ⊕
HA∗(R)[1].
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Proof. Combine Theorem 8.3 and Corollary 8.2.

We are going to prove Theorem 8.3 by showing that the proofs in [8] continue
to work when we suitably complete all algebras that occur there. We must be
careful, however, because the dagger completion is not an exact functor. We
first recall some basic facts that are used in [8]. These will be used to describe
the dagger completions C(E)† and L(E)†.
By definition, L(E) has the same generators as C(E) and more relations. This
provides a quotient map p∶C(E)↠ L(E). Let K(E) ⊆ C(E) be its kernel.

Lemma 8.5. There is a semi-split extension of V -algebras

K(E)↣ C(E)↠ L(E).
Proof. Let P be the set of finite paths in E. For v ∈ reg(E), choose ev ∈
s−1({v}). Let

B ∶= {αβ∗ ∶α,β ∈ P , r(α) = r(β)},
B′ ∶= B ∖ {αeve∗vβ∗ ∶v ∈ reg(E), α, β ∈ P , r(α) = r(β) = v}.

By [1, Propositions 1.5.6 and 1.5.11], B is a basis of C(E) and B′ is a basis
of L(E). Let σ∶L(E)→ C(E) be the linear map that sends each element of B′
to itself. This is a section for the quotient map p∶C(E) → L(E).
Next we describe K(E) as in [1, Proposition 1.5.11]. Let v ∈ reg(E). Define

qv ∶= v − ∑
s(e)=v

ee∗.

Let Pv ⊆ P be the set of all paths with r(α) = v. Let V (Pv) be the free
V -module on the set Pv and letMPv

be the algebra of finite matrices indexed
by Pv as in Example 6.3. The map

⊕
v∈reg(E)

MPv
→K(E), α⊗ β ↦ αqvβ

∗,

is a V -algebra isomorphism by [1, Proposition 1.5.11]. EachMPv
with the fine

bornology is a dagger algebra because it is a union of finite-dimensional subal-
gebras. Thus K(E) is a dagger algebra as well. In contrast, C(E) and L(E)
with the fine bornology are not semi-dagger. The restriction to K(E) of the
linear growth bornology of C(E) is not just the fine bornology: this is visible
in the special case where C(E) is the Toeplitz algebra and L(E) = V [t, t−1].
We are going to describe the linear growth bornology on C(E). Let F be the
set of all finite subsets S ⊆ E0 ∪E1 such that

e ∈ S ∩E1 and s(e) ∈ reg(E)⇒ {s(e)} ∪ s−1(s(e)) ⊆ S.
Let S(∞) for S ∈ F be the set of all paths that consist only of edges in S. Let ∣α∣
be the length of a path α ∈ P . For n ∈ N, let

Sn ∶= {αβ∗ ∶α,β ∈ S(∞), ∣α∣ + ∣β∣ ≤ n} ⊆ B.
This is an increasing filtration on the basis B of C(E).
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Lemma 8.6. A subset of C(E) has linear growth if and only if there are S ∈ F
and m ∈ N∗ such that it is contained in the V -linear span of ⋃n∈N π⌊n/m⌋Sn.
Proof. It is easy to see that the V -linear span of ⋃n∈N π⌊n/m⌋Sn in C(E) has lin-
ear growth. Conversely, we claim that any subset of linear growth is contained
in one of this form. Every finite subset of E0 ∪E1 is contained in an element
of F . It follows that, for every finitely generated submodule M ⊆ C(E), there
are S ∈ F and m ≥ 1 such that M is contained in the V -submodule generated
by Sm. Then M j is contained in the V -submodule generated by Smj for all
j ∈ N∗. Thus M◇ is contained in the V -submodule generated by πj−1Smj for
all j ∈ N∗. This is the V -linear span of ⋃n∈N∗ π⌈n/m⌉−1Sn. Letting m vary, we
may replace ⌈n/m⌉ − 1 by ⌊n/m⌋.
Constructing linear growth bornologies commutes with taking quotients. So
a subset of L(E) has linear growth if and only if it is the image of a subset
of linear growth in C(E). Next we show that the section σ∶L(E) → C(E)
is bounded for the linear growth bornologies, and we describe the restriction
to K(E) of the linear growth bornology on C(E):
Lemma 8.7. Give V (Pv) ⊆ V (P) the bornology where a subset is bounded if

and only if it is contained in the linear span of {π⌊∣α∣/m⌋α ∶α ∈ S(∞)} for some

S ∈ F and some m ∈ N∗. Equip the matrix algebra MPv
= V (Pv×Pv) with

the resulting tensor product bornology and the multiplication defined by the

obvious bilinear pairing as in Section 6, and give ⊕v∈reg(E)MPv
the direct

sum bornology. There is a semi-split extension of bornological algebras

⊕
v∈reg(E)

MPv
C(E)lg L(E)lg.i p

σ

Proof. Let S ∈ F . We claim that σ ○ p maps the linear span of Sn into itself. If
αβ∗ ∈ B′, then σ ○ p(αβ∗) = αβ∗. If αβ∗ ∉ B′, then α = α0ev, β = β0ev for some
v ∈ reg(E), α0, β0 ∈ Pv. And then

p(αβ∗) = p(α0β
∗
0 ) − ∑

s(e)=v,e≠ev
p(α0ee

∗β0).

Since α0β
∗
0 is shorter than αβ∗ and α0ee

∗β0 ∈ B′ for e ∈ E1 with s(e) = v and
e ≠ ev, an induction over ∣α∣ + ∣β∣ shows that σ ○ p(αβ∗) is always a V -linear
combination of shorter words; in addition, all edges in these words are again
contained in S because S ∈ F . This proves the claim. Now Lemma 8.6 implies
that σ ○p preserves linear growth of subsets. Equivalently, σ is a bounded map
L(E)lg → C(E)lg. Then a subset of K(E) has linear growth in C(E) if and
only if it is of the form (id− σ ○ p)(M) for a V -submodule M ⊆ C(E) that has
linear growth. The projection id − σ ○ p kills αβ∗ ∈ B′. Thus we may disregard
these generators when we describe the restriction to K(E) of the linear growth
bornology on C(E). Instead of applying id−σ○p to the remaining basis vectors
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αeve
∗
vβ
∗ for r(α) = r(β) = v ∈ reg(E), we may also apply it to αeve

∗
vβ
∗ − αβ∗

because αβ∗ is a shorter basis vector that involves the same edges. And

(id − σ ○ p)(αeve∗vβ∗ − αβ∗) = αeve∗vβ∗ − αβ∗ + σ( ∑
s(e)=v, e≠ev

p(αee∗β∗))
= −αβ∗ + ∑

s(e)=v
αee∗β∗ = −αqvβ∗.

Now Lemma 8.6 implies that a subset of K(E) has linear growth in C(E) if
and only if there are S ∈ F and m ∈ N∗ so that it belongs to the V -linear span
of π⌊n/m⌋αqvβ∗ with v ∈ reg(E), α,β ∈ Pv ∩ S(∞), and ∣α∣ + ∣β∣ + 2 ≤ n. Under
the isomorphism ⊕v∈reg(E)MPv

≅K(E), this becomes equal to the bornology
on ⊕v∈reg(E)MPv

specified in the statement of the lemma.

The semi-split extension in Lemma 8.7 implies a similar semi-split exten-
sion involving the dagger completions C(E)†, L(E)† and the completion of

⊕v∈reg(E)MPv
for the bornology specified in Lemma 8.7.

Now Theorem 8.3 is proven by showing that all homomorphisms and quasi-
homomorphisms that are used in [8] remain bounded and all homotopies among
them remain dagger homotopies when we give all algebras that occur the suit-
able “linear growth” bornology, defined using the lengths of paths to define
linear growth. This is because all maps in [8] are described by explicit formulas
in terms of paths, which change the length only by finite amounts. We have
put linear growth in quotation marks because the correct bornologies on the
ideals K(E) and K̂(E) in [8] are restrictions of linear growth bornologies on
larger algebras as in Lemma 8.7. These bornological algebras are special cases
of Example 6.6, and so HA is stable for such matrix algebras. The bornology
on K(E) in Lemma 8.7 actually deserves to be called a “linear growth bornol-
ogy”. But the relevant length function is specified by hand and not by the
length of products as in Definition 2.1.16.

9 Filtered Noetherian rings and analytic quasi-freeness

In Section 9.1, we develop a criterion for a quasi-free algebra to be analytically
quasi-free. It uses a connection with a growth condition, called finite degree.
In Section 9.2, we show that the criterion from Section 9.1 applies to dagger
completions of smooth, commutative V -algebras of relative dimension 1. And
we show that any smooth curve over F lifts to such a V -algebra.

9.1 Finite-degree connections

Recall that a complete bornological V -algebra R is called quasi-free if all its
square-zero extensions split. This is equivalent to the existence of a connection

on Ω 1(R), that is, a linear map ∇∶Ω 1(R)→ Ω 2(R) satisfying
∇(aω) = a∇(ω) and ∇(ωa) = ∇(ω)a + ω da,
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for all a ∈ R and ω ∈ Ω 1(R). And this is, in turn, equivalent to Ω 1(R)
being projective for extensions of complete bornological R-bimodules with a
bounded V -linear section. The above claims go back to Cuntz and Quillen [10]
for algebras without extra structure. They also hold for algebras in additive
monoidal categories and hence for complete bornological V -algebras (see, for
instance, [18]). A related result is Proposition 4.4.6.
We are going to prove that a quasi-free algebra R is analytically quasi-free if
Ω 1(R) has a connection whose growth is controlled in a certain way. This
uses increasing filtrations. An (increasing) filtration on a V -module M is an
increasing sequence of V -submodules (FnM)n∈N with ⋃FnM = M . For a
V -algebra R, we require, in addition, that FnR ⋅FmR ⊆ Fn+mR for all n,m ∈ N.
And for a module M over a V -algebra R with a fixed filtration (FnR)n∈N, we
require, in addition, that FnR ⋅ FmM ⊆ Fn+mM for all n,m ∈ N. Then we
speak of a filtered algebra and a filtered module, respectively.

Definition 9.1.1. A map f ∶M → N between filtered V -modules has finite

degree if there is a ∈ N – the degree – such that f(FnM) ⊆ Fn+a(N) for all
n ∈ N. Two filtrations (FnM)n and (F ′nM)n on a filtered V -module M are
shift equivalent if there is a ∈ N such that FnM ⊆ F ′n+aM and F ′nM ⊆ Fn+aM
for all n ∈ N.

Example 9.1.2. Let R be a torsion-free bornological V -algebra. Define M (j)
for a complete bounded submodule M ⊆ R and j ≥ 0 as in (4.4.9). Put

FMr Ω jR ∶= ∑
i0+⋯+ij≤r

M (i0) dM (i1) . . .dM (ij) ⊕ ∑
i1+⋯+ij≤r

dM (i1) . . .dM (ij)

(9.1.3)
for r ∈ N. This is an increasing filtration on the differential j-forms of the
subalgebra M (∞) ⊆ R generated by M .

The following lemma relates such filtrations to the linear growth bornology:

Lemma 9.1.4. Let R be a torsion-free bornological algebra, M ⊆ R a bounded

V -submodule and n ≥ 0. Then

∑
i≥0

πiFMi+nΩnR ⊆ Ωn(M◇) ⊆∑
i≥0

πiFMi+n+1ΩnR.

Proof. We compute

Ωn(M◇) =M◇ d(M◇)n ⊕ d(M◇)n
=∑
i≥0

πi( ∑
i0+⋅⋅⋅+in=i

M (i0+1) dM (i1+1) . . .dM (in+1)

⊕ ∑
i1+⋅⋅⋅+in=i

dM (i1+1) . . .dM (in+1)).
Lemma 9.1.5. Let M ⊆ R be a bounded submodule, r, b ≥ 1 and s ≥ 0. Then

FMr Ω sR ⊆ FM(b)

⌈r/b⌉+sΩ sR ⊆ FMr+b(s+1)Ω sR.
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Proof. Straightforward.

Lemma 9.1.6. Let X and Y be torsion-free bornological modules. Let (fn) be
a sequence of bounded linear maps X → Y . Assume that for each bounded

submodule M ⊆ X there is a bounded submodule N ⊆ Y and a sequence of

nonnegative integers (an) with liman = ∞ and fn(M) ⊆ πanN for all n ∈ N.

Then the series s(x) ∶= ∑n fn(x) converges in Y for every x ∈ X, and the

assignment x ↦ s(x) is bounded and linear. So it extends to a bounded linear

map s∶X → Y .

Proof. Straightforward.

Definition 9.1.7. Let R be a torsion-free bornological V -algebra. A connec-
tion ∇∶Ω 1(R) → Ω 2(R) has finite degree on a bounded submodule M ⊆ R
if it has finite degree as a V -module map with respect to the filtrations on
Ω 1(M (∞)) and Ω 2(M (∞)) from Example 9.1.2. A connection ∇ has finite de-

gree on R if any bounded subset is contained in a bounded submodule of R on
which ∇ has finite degree.

Remark 9.1.8. Lemma 9.1.5 implies that if ∇ has finite degree on M , then it
also has finite degree on M (b) for all b. Then ∇ is a finite degree connection on
M (∞) with the bornology that is cofinally generated by M (n) for n ∈ N.
The following theorem is an analytic version of the formal tubular neighbour-
hood theorem by Cuntz and Quillen in [10].

Theorem 9.1.9. Let R be a complete, torsion-free bornological algebra.

If Ω 1(R) has a connection of finite degree, then R† is analytically quasi-free.

Proof. We introduce some notation on Hochschild cochains. If X is a com-

plete, bornological R-bimodule and ψ∶R⊗n → X is an n-cochain, write δ(ψ)
for its Hochschild coboundary. If ξ∶R⊗m → Y is another cochain, write

ψ ∪ ξ∶R⊗n+m → X ⊗R Y for the cup product. Let ∇∶Ω 1R → Ω 2R be a con-
nection of finite degree, and let M ⊆ R be a bounded submodule and a ≥ 0 an
integer such that ∇ has degree a on M . The connection ∇ is equivalent to a
1-cochain ϕ2∶R → Ω 2R satisfying δ(ϕ2) = d ∪ d, via ∇(x0 dx1) = x0ϕ2(x1) for
x0 ∈ R

+, x1 ∈ R. Then ϕ2 raises the M -filtration degree by at most a. If X is a
filtered R-bimodule and ψ∶R⊗ R →X is a 2-cocycle of degree at most b, then

ψ̄∶Ω 2R →X, ψ̄(x0 dx1 dx2) = x0ψ(x1, x2)
is a bimodule homomorphism. And the 1-cochain

ψ′ = ψ̄ ○ϕ2
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raises filtration degree by at most a+ b and satisfies δ(ψ′) = ψ. We inductively

define 2-cocycles and 1-cochains with values in Ω 2(n+1)R for n ≥ 1 by

ψ2(n+1) ∶= n

∑
j=0

dϕ2j ∪ dϕ2(n−j) − n

∑
j=1

ϕ2j ∪ϕ2(n+1−j),

ϕ2(n+1) ∶= ψ′2(n+1).
Put ϕ0 = id∶R → R. To see that the maps ψ2n are cocycles, one proves first
that

δ(dϕ2n) = − n

∑
j=0

d(ϕ2j ∪ϕ2(n−j)).
Then a long but straightforward calculation using the Leibniz rule for both
d and δ shows by induction that δ(ψ2n) = 0 (see [6, Theorem 2.1]). By con-
struction, the bounded linear map ϕ≤2n ∶= ∑ni=0 ϕ2i is a section of the canonical
projection TR → R, and its curvature vanishes modulo JRn+1. So it defines
a bounded algebra homomorphism R → TR/JRn+1. Hence the infinite series

∑∞i=0 ϕ2i is an algebra homomorphism into the projective limit. It suffices to
show that, for each m, the series ∑∞i=0 ϕ2i defines a bounded linear homomor-
phism Rlg → (U(TRlg, JR

m
lg ),U(JRlg, JR

m
lg ))†.

One checks by induction on n that ϕ2n(M (i)) ⊆ FM
i+(2n−1)aΩ 2nR. Hence

ϕ2n(M◇) ⊆ ∞∑
i=0

πiFMi+(2n−1)a+1Ω 2nR. (9.1.10)

Next let m ≥ 1 and choose an integer c >max{1,2am}. Then
i + ⌊ n

m
⌋ − ⌈ i + (2n − 1)a + 1

c
⌉ ≥ (1 − 1/c)i ≥ 0 (9.1.11)

for all i ≥ 0 and sufficiently large n. Then i ≥ ⌈ i+(2n−1)a+1
c

⌉ − ⌊ n
m
⌋. Set

D(i, n, c) ∶= ⌈ i+(2n−1)a+1
c

⌉. Equations (9.1.10) and (9.1.11) and Lemmas 9.1.4

and 9.1.5 imply

ϕ2n(M◇) ⊆∑
i≥0

πiFM(c)

D(i,n,c)+2nΩ 2n(R)
⊆ π−⌊ n

m
⌋∑
i≥0

πD(i,n,c)FM(c)

D(i,n,c)+2nΩ 2n(R) ⊆ π−⌊ n
m
⌋Ω 2n((M (c))◇).

By Proposition 4.4.16, the subset of infinite series ∑∞n=0ϕ2n(M◇) is bounded in(U(TRlg, JR
m
lg ),U(JRlg, JR

m
lg ))†. By Lemma 9.1.6, ∑∞n=0 ϕ2n defines a bounded

homomorphism
R → (U(TRlg, JR

m
lg ),U(JRlg, JR

m
lg ))†

for each m ≥ 1; this completes the proof.
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Corollary 9.1.12. Let R be as in Theorem 9.1.9. Then the natural map

HA(R†)→X(R†⊗F ) is a chain homotopy equivalence and HA∗(R) is isomor-

phic to the homology of X(R† ⊗F ).
Proof. Immediate from Theorem 9.1.9 and Corollary 4.7.2.

9.2 Filtered Noetherian rings and smooth algebras

We now show that some quasi-free algebras have a connection of finite degree.
In particular, this includes smooth, commutative finitely generated V -algebras
of relative dimension 1. For the remainder of this section, let R be a finitely
generated V -algebra, equipped with the fine bornology. Let S ⊆ R be a finite
generating subset and let S≤n be the set of all products of elements of S of length
at most n. As above, let FnR ⊆ R be the V -submodule generated by S≤n.
By convention, S≤0 = {1} and F0R = V ⋅ 1. This is an increasing filtration
on R. It induces filtrations on the bimodules Ωl(R) as in Example 9.1.2. More
concretely, Fn(Ωl(R)) is the V -submodule of Ωl(R) generated by x0 dx1 . . .dxl
with x0 ∈ Fn0

(R) or x0 = 1 and n0 = 0, and xi ∈ Fni
(R) for i = 1, . . . , l, and

n0+⋯+nl ≤ n. By construction, the V -submodule FnR ⋅FmR that is generated
by products x⋅y with x ∈ FnR, y ∈ FmR is equal to Fn+mR for all n,m ∈ N. This
is more than what is required for a filtered algebra, and the extra information
is crucial for the filtration to generate the linear growth bornology.
Let M be an R-module with a finite generating set SM ⊆ M . Then we de-
fine a filtration on M , called the canonical filtration, by letting FnM be the
V -submodule generated by a ⋅ x with a ∈ FnR and x ∈ SM . This satisfiesFmR ⋅ FnM ⊆ Fn+mM because FmR ⋅ FnR ⊆ Fn+mR. The following proposi-
tion characterises canonical filtrations by a universal property:

Proposition 9.2.1. Let R be a filtered V -algebra and let M be a finitely

generated R-module. Equip M with the filtration described above. Then any

R-module map from M to a filtered R-module Y is of finite degree. The canon-

ical filtrations for two different finite generating sets of M are shift equivalent.

Proof. Let {m1, . . . ,mn} be a finite generating set for M as an R-module.
Let h∶M → Y be an R-module homomorphism into a filtered R-module Y .
Since Y = ⋃FlY , there is an l ∈ N with h(mi) ∈ FlY for all i = 1, . . . ,m.
Then h(a ⋅ mi) ∈ Fn+lR for a ∈ FnR. Hence h(FnM) ⊆ Fn+lY for all n ∈
N. That is, h has finite degree. In particular, if we equip M with another
filtration (F ′nM)n∈N, then the identity map has finite degree, that is, there is
l ∈ N with FnM ⊆ F ′n+lM for all n ∈ N. If the other filtration comes from
another finite generating set, then we may reverse the roles and also get l′ ∈ N
with inclusions F ′nM ⊆ Fn+l′M for all n ∈ N.

Definition 9.2.2. A filtered V -algebra R is called (left) filtered Noetherian

if every left ideal I is finitely generated and the filtration (FnR ∩ I)n∈N is
shift equivalent to the canonical filtration of Proposition 9.2.1 from a finite
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generating set. In other words, there are finitely many x1, . . . , xn ∈ I and l ∈ N
such that for allm ∈ N and y ∈ FmR∩I, there are ai ∈ Fm+lR with y = ∑ni=1 aixi.
Lemma 9.2.3. Let R be a finitely generated, quasi-free V -algebra. Assume that

R+ ⊗ (R+)op is filtered Noetherian. Then Ω1(R) has a connection of finite

degree.

Proof. Since R is quasi-free, the left multiplication map R+ ⊗Ω1(R)↠ Ω1(R)
splits by an R-bimodule homomorphism s∶Ω1(R)→ R+⊗Ω1(R). By definition,
Ω1(R) is a left ideal in R+ ⊗ (R+)op. By assumption, it is finitely generated
as such, and the filtration on R+ ⊗ (R+)op restricted to Ω1(R) is the canonical
filtration on Ω1(R) as a module over R+⊗(R+)op. Now Proposition 9.2.1 shows
that the section s above has finite degree. The section s yields a connection∇∶Ω1(R) → Ω2(R), which is defined by ∇(ω) = 1⊗ ω − s(ω). It follows that ∇
has finite degree.

Our next goal is to show that a commutative, finitely generated V -algebra
with the filtration coming from a finite generating set is filtered Noetherian.
First consider the polynomial ring in n variables. The filtration defined by the
obvious generating set is the total degree filtration, where Fm(V [x1, . . . , xn])
is the V -submodule generated by the monomials of total degree at most m,
that is, terms of the form xα = xα1

1 xα2

2 ⋯xαn
n with ∣α∣ ∶= ∑ni=1 αi ≤m.

Theorem 9.2.4. The polynomial ring R = V [x1, . . . , xn] with the total degree

filtration is filtered Noetherian.

Proof. Let I be any ideal in R. Since R is Noetherian, I is finitely generated.
Since V is a principal ideal domain, I has a finite, strong Gröbner basis with
respect to any term order on the monomials xα (see [2, Theorem 4.5.9]). We
use the degree lexicographic order (see [2, Definition 1.4.3]); the only property
we need is that ∣α∣ < ∣β∣ implies xα ≺ xβ . The chosen order on monomials
defines the leading term lt(f) of a polynomial f . Let G = {f1, . . . , fN} be a
strong Gröbner basis for I. By [2, Theorem 4.1.12], any g ∈ I can be written
as g =∑Mj=1 cjtjfij , where M ∈ N, cj ∈ V , tj is a monomial in R, ij ∈ {1, . . . ,N},
and lt(tjfij ) ≺ lt(g) for each j. So the total degree of tjfij is at most the total
degree of g for each j = 1, . . . ,M , and this remains so for the total degree of tj .
Combining the monomials tj with the same ij, we write any element g ∈ I of

total degree at most m in the form ∑Ni=1 pjfj with pj ∈ FmR.
Proposition 9.2.5. A quotient of a filtered Noetherian V -algebra with the

induced filtration is again filtered Noetherian.

Proof. Let R be a filtered Noetherian V -algebra and let I be an ideal. Any
ideal in the quotient ring R/I is of the form J/I for a unique ideal J in R

containing I. Let x1, . . . , xn ∈ J and l ∈ N be such that for all m ∈ N and
y ∈ FmR ∩ I, there are ai ∈ Fm+lR with y = ∑ni=1 aixi. Then the images of
x1, . . . , xn in J/I and the same l will clearly work for the ideal J/I in the
quotient R/I.
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Corollary 9.2.6. Any finitely generated, commutative V -algebra is filtered

Noetherian.

Proof. Let A be a finitely generated, commutative V -algebra. Let S be any
finite generating set. Turn it into a surjective homomorphism from the poly-
nomial algebra R = V [x1, . . . , xn] onto A. This identifies A ≅ R/I for an ideal I
in R. The filtration on A defined by S is equal to the filtration on the quo-
tient R/I defined by the degree filtration on R. Now the claim follows from
Theorem 9.2.4 and Proposition 9.2.5.

Proposition 9.2.7. Let R be a smooth commutative V -algebra of relative di-

mension 1. Then R admits a connection of finite degree.

Proof. The assumptions on R imply that Ω1(R) a projective, finitely generated
R-bimodule. Furthermore, by Corollary 9.2.6, R is filtered Noetherian. The
result now follows from Lemma 9.2.3.

Remark 9.2.8. In their seminal article [20], Paul Monsky and Gerard Wash-
nitzer introduced the so-called Monsky–Washnitzer cohomology H∗MW(A) for a
smooth unital F-algebra A that has a “very smooth” lift. This is a presentation
A = S/πS where S is dagger complete and very smooth ([20, Definition 2.5]);
by definition, H∗MW(A) =HdR(S⊗F ) is the de Rham cohomology of S⊗F . As
in the current article, Monsky and Washnitzer assumed that char(F ) = 0 but
made no assumption about the characteristic of F. The very smooth liftabil-
ity assumption in [20] was crucial for their proof of the functoriality of H∗MW.
Later on, Marius van der Put [22] managed to remove that assumption; for any
smooth commutative unital F-algebra A of finite type, he defines H∗MW(A) as
the de Rham cohomology of the dagger completion of any smooth V -algebra R
with R/πR = A. The existence of such a lift follows from a theorem of Renée
Elkik [12]; van der Put proves functoriality of H∗MW using Artin approxima-
tion. However, in his paper he assumes F to be finite. More recently, under
very general assumptions (in particular, for F of arbitrary characteristic) Al-
berto Arabia [3] proved that every smooth F-algebra admits a very smooth lift,
and extended the original definition of Monsky and Washnitzer. In a parallel
development, Pierre Berthelot introduced rigid cohomology H∗rig(X) of general
schemesX over a field F with char(F) > 0, which for smooth affineX = Spec(A)
agrees with H∗MW(A). With no assumptions on char(F), Große-Klönne [13] in-
troduced the de Rham cohomology of dagger spaces over V , and he related it
to rigid cohomology in the case when char(F) > 0.
The following is one of the main applications of our theory:

Theorem 9.2.9. Let X be a smooth affine variety over the residue field F of

dimension 1 and let A = O(X) be its algebra of polynomial functions. Let R be a

smooth, commutative algebra of relative dimension 1 with R/πR ≅ A . Equip R

with the fine bornology and let R† be its dagger completion. If ∗ = 0,1, then
HA∗(R†) is naturally isomorphic to the de Rham cohomology of R†. This is
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isomorphic to the Monsky–Washnitzer cohomology of A, which, if char(F) > 0,
agrees with the rigid cohomology H∗rig(A,F ) of X.

Proof. By our hypothesis and Proposition 9.2.7, R is quasi-free. Equipping R
with the fine bornology, we are in the situation of Theorem 9.1.9. Then Corol-
lary 9.1.12 and [7, Theorem 5.5] imply that HA∗(R†) is isomorphic to the de
Rham cohomology of R†. Remark 9.2.8 discusses the generality in which the
latter is known to be isomorphic to different cohomology theories over F.

Elkik [12] has shown that any smooth curve over F has a smooth lift over V .
The following lemma shows that we may also arrange this lift to have relative
dimension 1 as required in Theorem 9.2.9:

Lemma 9.2.10. Let R be a smooth algebra, A = R/πR, and d = dimA. Then

R = R1 ×R2, where R1 is smooth of relative dimension d and R1/πR1 = A.

Proof. Since R is smooth, Ω1
R/V is projective. So its rank r is a continuous

function on Spec(R). Thus the set of primes P where r(P) = d is clopen. This
clopen subset induces a product decomposition R ≅ R1 × R2. Since dimA =
d, the relative dimension is d at all primes containing π. Now the lemma
follows.
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