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Abstract. We study the unique solution m of the Dyson equation

−m(z)−1 = z1 − a+ S[m(z)]

on a von Neumann algebra A with the constraint Imm ≥ 0. Here, z
lies in the complex upper half-plane, a is a self-adjoint element of A
and S is a positivity-preserving linear operator on A. We show that
m is the Stieltjes transform of a compactly supported A-valued mea-
sure on R. Under suitable assumptions, we establish that this mea-
sure has a uniformly 1/3-Hölder continuous density with respect to
the Lebesgue measure, which is supported on finitely many intervals,
called bands. In fact, the density is analytic inside the bands with a
square-root growth at the edges and internal cubic root cusps when-
ever the gap between two bands vanishes. The shape of these singu-
larities is universal and no other singularity may occur. We give a
precise asymptotic description of m near the singular points. These
asymptotics generalize the analysis at the regular edges given in the
companion paper on the Tracy-Widom universality for the edge eigen-
value statistics for correlated random matrices [8] and they play a key
role in the proof of the Pearcey universality at the cusp for Wigner-
type matrices [15, 19]. We also extend the finite dimensional band
mass formula from [8] to the von Neumann algebra setting by show-
ing that the spectral mass of the bands is topologically rigid under
deformations and we conclude that these masses are quantized in some
important cases.
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1 Introduction

An important task in random matrix theory is to determine the eigenvalue
distribution of a random matrix as its size tends to infinity. Similarly, in free
probability theory, the scalar-valued distribution of operator-valued semicircu-
lar elements is of particular interest. In both cases, the distribution can be
obtained from the corresponding Dyson equation

−m(z)−1 = z1 − a+ S[m(z)] (1.1)

on some von Neumann algebra A with a unit 1 and a tracial state 〈 · 〉. Here, z
lies in H ..= {w ∈ C : Imw > 0}, the complex upper half-plane, a = a∗ ∈ A and
S : A → A is a positivity-preserving linear operator. There is a unique solution
m : H → A of (1.1) under the assumption that Imm(z) ..= (m(z) −m(z)∗)/(2i)
is a strictly positive element of A for all z ∈ H [30]. For suitably chosen a and S
as well as A, this solution characterizes the distributions in the applications
mentioned above. In fact, in both cases, the distribution will be the measure ρ
on R whose Stieltjes transform is given by z 7→ 〈m(z)〉. The measure ρ is
called the self-consistent density of states and its support is the self-consistent
spectrum. This terminology stems from the physics literature on the Dyson
equation, where z is often called spectral parameter and S[m] the self-energy.
The linearity of the self-energy operator S is a distinctive feature of our setup.
We first explain the connection between the eigenvalue density of a large ran-
dom matrix and the Dyson equation. Let H ∈ Cn×n be a Cn×n-valued random
variable, n ∈ N, such that H = H∗. A central objective is the analysis of the
empirical spectral measure µH

..= n−1
∑n

i=1 δλi , or its expectation, the den-
sity of states, for large n, where λ1, . . . , λn are the eigenvalues of H . Clearly,
n−1 Tr(H − z)−1 is the Stieltjes transform of µH at z ∈ H. Therefore, the
resolvent (H − z)−1 is commonly studied to obtain information about µH . In
fact, for many random matrix ensembles, in particular models with decaying
correlations among the entries, the resolvent (H − z)−1 is well-approximated
for large n by the solution m(z) of the Dyson equation (1.1). Here, we choose
A = Cn×n equipped with the operator norm induced by the Euclidean distance
on Cn and the normalized trace 〈 · 〉 = n−1 Tr( · ) as tracial state as well as

a ..= EH, S[x] ..= E[(H − a)x(H − a)], x ∈ C
n×n. (1.2)
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If (H − z)−1 is well-approximated by m(z) for large n then µH will be well-
approximated by the deterministic measure ρ, whose Stieltjes transform is given
by z 7→ 〈m(z)〉. The importance of the Dyson equation (1.1) for random
matrix theory has been realized by many authors on various levels of generality
[10, 13, 25, 31, 39, 48], see also the monographs [24, 37] and the more recent
works [2, 4, 6, 7, 9, 20, 28, 32].

Secondly, we relate the Dyson equation to free probability theory by noticing
that the Cauchy transform of a shifted operator-valued semicircular element
is given by m. More precisely, let B be a unital C∗-algebra, A ⊂ B be a
C∗-subalgebra with the same unit 1 and E : B → A is a conditional expecta-
tion (we refer to Chapter 9 in [36] for notions from free probability theory).
Pick an a = a∗ ∈ A and an operator-valued semicircular element s = s∗ ∈ B.
Then G(z) ..= E[(z − s− a)−1] is the Cauchy-transform of s+ a. In this case,
m(z) = −G(z) satisfies (1.1) with S[x] ..= E[sxs] for all x ∈ A [44]. If A is a
von Neumann algebra with a tracial state, then our results yield information
about the scalar-valued distribution ρ = ρs+a of s+a with respect to this state.
The study of qualitative regularity properties for this distribution has a long
history in free probability. For example, the question of whether ρ has atoms
or not is intimately related to non-commutative identity testing (see [22, 34]
and references therein) and the notions of free entropy and Fischer informa-
tion (see [43, 45] and the survey [47]). We also refer to the recent preprint
[35], where the distribution of rational functions in noncommutative random
variables is studied with the help of linearization ideas from [27, 26] and [29].
Under certain assumptions, our results provide extremely detailed information
about the regularity properties of ρ, thus complementing these more general
insights. In particular, we show that ρs is absolutely continuous with respect
to the Lebesgue measure away from zero for any operator-valued semicircular
element s. For other applications of the Dyson equation (1.1) in free probability
theory, we refer to [30, 41, 44, 46] and the recent monograph [36].

In this paper, we analyze the regularity properties of the self-consistent density
of states ρ in detail. More precisely, under suitable assumptions on S, we show
that the boundedness of m already implies that ρ has a 1/3-Hölder continuous
density ρ(τ) with respect to the Lebesgue measure. We provide a broad class of
models for which the boundedness of m is ensured. Furthermore, the set where
the density is positive, {τ : ρ(τ) > 0}, splits into finitely many connected
components, called bands. The density is real-analytic inside the bands with a
square root growth behavior at the edges. If two bands touch, however, a cubic
root cusp emerges. These are the only possible types of singularities. In fact,
m(z) is the Stieltjes transform of a positive operator-valued measure v and we
establish the properties mentioned above for v as well. We also extend the
band mass formula from [8] expressing the masses that ρ assigns to the bands.
We use it to infer a certain quantization of the band masses that we call band
rigidity, because it is invariant under small perturbations of the data a and S
of the Dyson equation. In particular, we extend a quantization result from [26]
and [40] to cover limits of Kronecker random matrices. We remark that for
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the analogous phenomenon in the context of random matrices the term “exact
separation of eigenvalues” was coined in [11].

In the commutative setup, the band structure and singularity behavior of the
density have been obtained in [3, 1], where a detailed analysis of the regular-
ity of ρ was initiated. In the special noncommutative situation A = Cn×n

and 〈 · 〉 = n−1 Tr( · ), it has been shown that ρ is Hölder-continuous and real-
analytic wherever it is positive [4]. Recently, in the same setup, the precise
behavior of ρ near the spectral edges was obtained in [8], where it was a key
ingredient in the proof of the Tracy-Widom universality of the local spectral
statistics near the spectral edges for random matrices with general correlation
structure. However, this analysis works only at edges that are well separated
from each other (so called regular edges), i.e. away from the cusp where two
edges merge and away from the almost cusps, i.e. regions with small spec-
tral gaps or small but nonzero minima of the density. The main novelty of
the current work is to give an effective regularity analysis for the general non-
commutative case with a precise quantitative description of all singularities
including the almost cusps. One of the main applications is the proof of the
eigenvalue rigidity on optimal scale throughout the entire spectrum. This is
a key input for the recent proof of the local spectral universality at the cusp
for general Wigner-type matrices, i.e. the Pearcey statistics for the complex
hermitian case in [19] and its real symmetric counterpart in [15]. We remark
that cusp universality settles the third and last ubiquitous spectral universality
regime after the bulk and edge universalities studied extensively earlier, see
[21] and references therein.

The key strategy behind the current paper as well as its predecessors [3, 1, 4, 8]
is a refined stability analysis of the Dyson equation (1.1) against small pertur-
bations. It turns out that the equation is stable in the bulk regime, i.e., where
ρ(Re z) is separated away from zero, but is unstable near the points, where
the density vanishes. Even the stability in the bulk requires an unconventional
idea; it relies on rewriting the stability operator, i.e., the derivative of the
Dyson equation with respect to m, through the use of a positivity-preserving
symmetric map, called the saturated self-energy operator, F . We then extract
information on the spectral gap of F by a Perron-Frobenius argument using the
positivity of Imm [3, 1]. In the non-commutative setup this transformation was
based on a novel balanced polar decomposition formula [4]. In the small density
regime, in particular near the regular edges studied in [8], the stability deteri-
orates due to an unstable direction, which is related to the Perron-Frobenius
eigenvector of F . The analysis boils down to a scalar quantity, Θ, the overlap
between the solution and the unstable direction. For the commutative case in
[3, 1], it is shown that Θ approximately satisfies a cubic equation. The struc-
tural property of this cubic equation is its stability, i.e., that the coefficients of
the cubic and quadratic terms do not simultaneously vanish. This guarantees
that higher order terms are negligible and the order of any singularity is either
cubic root or square root.

Now we synthesize both analyses in the previous works to study the small

Documenta Mathematica 25 (2020) 1421–1539



1426 J. Alt, L. Erdős, T. Krüger

density regime in the most general setup. The major obstacle is the noncom-
mutativity that already substantially complicated the bulk analysis [4], but
there the saturated self-energy operator, F , governed all estimates. However,
in the regime of small density the unstable direction is identified via the top
eigenvector of a non-symmetric operator that coincides with the symmetric F
only in the commutative case. Thus we need to perform a non-symmetric
perturbation expansion that requires precise control on the resolvent of the
non-selfadjoint stability operator in the entire complex plane. We still work
with a cubic equation for Θ, but the analysis of its coefficients is considerably
more involved than in [3, 1].

The situation is much simpler near the regular edges, where the cubic equation
simplifies to a quadratic equation; this analysis was performed in [8] at least in
the finite dimensional non-commutative case. The main novelty of the present
paper lies in handling the most complicated case, the cusps and almost cusps,
where we need to deal with a genuine cubic equation. The second goal of the
paper is to give a unified treatment of all spectral regimes in the general von
Neumann algebraic setup. A few arguments pertaining the regular edges are
relatively simple extensions from [8] to the infinite dimensional case. We will
indicate these instances but for the reader’s convenience we chose to include
these proofs since in the current paper we work under weaker conditions and
in a more general setup than in [8].

We stress that along all estimates, the noncommutativity is a permanent enemy;
in some cases it can be treated perturbatively, but for the most critical parts
new non-perturbative proofs are needed. Most critically, the stability of the
cubic equation is proven with a new method.

Another novelty of the current paper, in addition to handling the non-
commutativity and lack of symmetry, is that we present the cubic analysis in a
conceptually clean way that will be used in future works. Our analysis strongly
suggests that our cubic equation for Θ is the key to any detailed singularity
analysis of Dyson-type equations and its remarkable structure is responsible
for the universal behavior of the singularities in the density.

As a final remark we compare our self-consistent density of states ρ, obtained
from the Dyson equation, with the equilibrium density ρV considered in invari-
ant matrix ensembles defined via a Gibbs factor exp(− 1

n TrV (H)), where V is
an external potential. Recall that ρV is the solution of a variational principle
[18]. Both densities approximate the empirical density of states of a prominent
class of random matrix ensembles, but they have quite different singularity
structures at the vanishing points. Our classification theorem shows that ρ has
only square root and cusp singularities. On the other hand, if V ∈ C2 then
ρV is 1/2-Hölder continuous, in particular it cannot have any cusp singularity.
Moreover ρV may vanish at the edges of its support not necessarily as a square
root, see e.g. a behaviour ρV (x) ≈ (x+)5/2 in Example 1.2 of [16]. In general,
only powers α = 2k and α = 2k+ 1

2 , k ∈ N are possible for the vanishing behav-
ior ρV (x) ≈ (x+)α. These patterns persist under small additive perturbations
with an independent GUE matrix, moreover, at critical coupling, a cusp singu-
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larity similar to our case appears as well [17]. A summary of known behaviours
of ρV near its vanishing points in relation with V is found in Section 1.3 of [12].
The complexity of these patterns indicates that a concise classification theorem
of singularities, similar to our result on ρ with merely two types of singularities,
does not hold for ρV .

Acknowledgement The first and second author were partially funded by
ERC Advanced Grant RANMAT No. 338804. The third author was partially
supported by the Hausdorff Center for Mathematics.

2 Main results

Let A be a finite von Neumann algebra over the complex numbers with unit 1

and norm ‖·‖. We recall that a von Neumann algebra A is called finite if there
is a state 〈 · 〉 : A → C which is (i) tracial, i.e., 〈xy〉 = 〈yx〉 for all x, y ∈ A,
(ii) faithful, i.e., 〈x∗x〉 = 0 for some x ∈ A implies x = 0, and (iii) normal,
i.e., continuous with respect to the weak∗ topology. In the following, 〈 · 〉 will
always denote such state. The tracial state defines a scalar product A×A → C

through
〈x, y〉 ..= 〈x∗y〉 (2.1)

for x, y ∈ A. The induced norm is denoted by ‖x‖2
..= 〈x, x〉1/2 for x ∈ A.

Clearly, |〈x〉| ≤ ‖x‖2 ≤ ‖x‖ for all x ∈ A. We note that if A is represented
as algebra of operators on a Hilbert space then ‖·‖ coincides with the operator
norm induced by the scalar product on such Hilbert space. We follow the
convention that small letters are elements of A while capital letters denote
linear operators on A. The spectrum of x ∈ A is denoted by Specx, i.e.,
Specx = C \ {z ∈ C : (x− z)−1 ∈ A}.
For an operator T : A → A, we will work with three norms. We denote these
norms by ‖T ‖, ‖T ‖2 and ‖T ‖2→‖·‖ if T is considered as an operator (A, ‖ · ‖) →
(A, ‖ · ‖), (A, ‖ · ‖2) → (A, ‖ · ‖2) or (A, ‖ · ‖2) → (A, ‖ · ‖), respectively.
We denote by Asa the self-adjoint elements of A, by A+ the cone of positive
definite elements of A, i.e.,

Asa
..= {x ∈ A : x∗ = x}, A+

..= {x ∈ Asa : x > 0},
and by A+, the ‖ · ‖-closure of A+, the cone of positive semidefinite elements
(or positive elements). We now introduce two classes of linear operators on A
that preserve the cone A+. Such operators are called positivity-preserving (or
positive maps). We define

Σ ..= {S : A → A : S is linear, symmetric wrt. (2.1)

and preserves the cone A+}, (2.2a)

Σflat
..=
{
S ∈ Σ: ε1 ≤ inf

x∈A+

S[x]

〈x〉 ≤ sup
x∈A+

S[x]

〈x〉 ≤ ε−1
1 for some ε > 0

}
.

(2.2b)
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Moreover, if S : A → A is a positivity-preserving operator, then S is bounded,
i.e., ‖S‖ is finite (see e.g. Proposition 2.1 in [38]).
Let a ∈ Asa be a self-adjoint element and S ∈ Σ. For the data pair (a, S), we
consider the associated Dyson equation

−m(z)−1 = z1 − a+ S[m(z)] , (2.3)

with spectral parameter z ∈ H ..= {w ∈ C : Imw > 0}, for a function m : H → A
such that its imaginary part is positive definite,

Imm(z) =
1

2i
(m(z) −m(z)∗) ∈ A+ .

There always exists a unique solution m to the Dyson equation (2.3) satisfying
Imm(z) ∈ A+ [30]. Moreover, this solution is holomorphic in z [30]. For Dyson
equations in the context of renormalization theory, a is called the bare matrix
and S the self-energy (operator). In applications to free probability theory, S is
usually denoted by η and called the covariance mapping or covariance matrix
[36].
We now introduce positive operator-valued measures with values in A+. If
v maps Borel sets on R to elements of A+ such that 〈x, v( · )x〉 is a positive
measure for all x ∈ A then we say that v is a measure on R with values in A+

or an A+-valued measure on R.
First, we list a few propositions that are necessary to state our main theorem.
They will be proven in Section 3, Section 4.2 and Section 4.3, respectively.

Proposition 2.1 (Stieltjes transform representation). Let (a, S) ∈ Asa × Σ be
a data pair and m the solution to the associated Dyson equation, (2.3). Then
there exists a measure v on R with values in A+ such that v(R) = 1 and

m(z) =

∫

R

v(dτ)

τ − z
(2.4)

for all z ∈ H. The support of v and the spectrum of a satisfy the following
inclusions

supp v ⊂ Spec a+ [−2‖S‖1/2, 2‖S‖1/2], (2.5a)

Spec a ⊂ supp v + [−‖S‖1/2, ‖S‖1/2], (2.5b)

where for the sum of two subsets I and J of R we used the notation I + J .

.=
{τ1 + τ2 : τ1 ∈ I, τ2 ∈ J}.
Furthermore, for any z ∈ H, m(z) satisfies the bound

‖m(z)‖2 ≤ 2

dist(z,Conv Spec a)
, (2.6)

where Conv Spec a denotes the convex hull of Spec a.
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Our goal is to obtain regularity results for the measure v. We first present
some regularity results on the self-consistent density of states introduced in the
following definition.

Definition 2.2 (Density of states). Let (a, S) ∈ Asa × Σ be a data pair, m
the solution to the associated Dyson equation, (2.3), and v the A+-valued
measure of Proposition 2.1. The positive measure ρ = 〈v〉 on R is called the
self-consistent density of states or short density of states.

We have supp ρ = supp v due to the faithfulness of 〈 · 〉. Moreover, the Stieltjes
transform of ρ is given by 〈m〉 since, by (2.3), for any z ∈ H, we have

〈m(z)〉 =

∫

R

ρ(dτ)

τ − z
.

Proposition 2.3 (Regularity of density of states). Let (a, S) be a data pair
with S ∈ Σflat and ρa,S the corresponding density of states from Definition 2.2.
Then ρa,S has a uniformly Hölder-continuous, compactly supported density with
respect to the Lebesgue measure,

ρa,S(dτ) = ρa,S(τ)dτ .

Furthermore, there exists a universal constant1 c > 0 such that the function
ρ : Asa × Σflat × R → [0,∞), (a, S, τ) 7→ ρa,S(τ) is locally Hölder-continuous
with Hölder exponent c and real-analytic whenever it is positive, i.e., for any
(a, S, τ) ∈ Asa × Σflat × R such that ρa,S(τ) > 0 the function ρ is real-analytic
in a neighbourhood of (a, S, τ) in Asa × Σflat × R. Here, Asa and Σflat are
equipped with the metrics induced by ‖ · ‖ on A and its operator norm on A → A,
respectively.

In addition to the flatness condition S ∈ Σflat, the other essential input of
our analysis is a boundedness assumption on m, the solution to (2.3) (see
(2.7) below). These two assumptions imply several key facts about m. The
most important ones are (i) 1/3-Hölder continuity of m (Proposition 2.4), (ii)
Imm is comparable (as self-adjoint elements of A) with its average 〈Imm〉1
(Proposition 3.5) and, finally, (iii) the specific quadratic or cubic singularity
structure of Imm (Theorem 2.5).
While the flatness condition S ∈ Σflat can be directly checked from the data pair,
the boundedness of m is more subtle. However, in the random matrix context,
in Section 9, we provide, for a large class of models, a sufficient condition for
(2.7) below that is purely expressed in terms of a and S.
We start with the Hölder-continuity of m stated in the following Proposition 2.4.
We remark that in the finite dimensional case, where A = CN×N and 〈·〉 =
1
N Tr(·), this proposition has already been established in [8, Corollary 4.5] and
the arguments there remain valid in our more general setup. Nevertheless, we
will present its proof to keep the current work self-contained.

1By carefully following the proof, we see that choosing c = 1/200 is sufficient.
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Proposition 2.4 (Regularity of m). Let (a, S) be a data pair with S ∈ Σflat

and m the solution to the associated Dyson equation, (2.3). Suppose that for a
nonempty open interval I ⊂ R we have

lim sup
η↓0

sup
τ∈I

‖m(τ + iη)‖ < ∞ . (2.7)

Then m has a 1/3-Hölder continuous extension (also denoted by m) to any
closed interval I ′ ⊂ I, i.e.,

sup
z1,z2∈I′×i[0,∞)

‖m(z1) −m(z2)‖
|z1 − z2|1/3

< ∞ (2.8)

and sup{‖m(z)‖ : z ∈ I ′ × i[0,∞)} < ∞. Moreover, m is real-analytic in I
wherever ρ is positive.

The purpose of the interval I in Proposition 2.4 (see also Theorem 2.5 below)
is to demonstrate the local nature of these statements and their proofs; if m
is bounded on I in the sense of (2.7) then we will prove regularity of m and
later its behaviour close to singularities on a genuine subinterval I ′ ⊂ I. At
first reading, the reader may ignore this subtlety and assume I ′ = I = R.
In Proposition 4.7 below, we provide a quantitative version of (2.8) under
slightly weaker conditions than those of Proposition 2.4.
In the following main theorem, we require that the solutionm to (2.3), originally
defined for all z ∈ H, has a continuous extension to some interval I ⊂ R. This
is apparently a stronger condition than the boundedness condition (2.7), but
they are in fact equivalent as Proposition 2.4 shows. Furthermore, if m has a
continuous extension to I then the restriction of the measure v from (2.4) to I
has a density with respect to the Lebesgue measure, i.e.,

v(A) =
1

π

∫

A

Imm(τ)dτ (2.9)

for each Borel set A ⊂ I.

Theorem 2.5 (Imm close to its singularities). Let (a, S) be a data pair with
S ∈ Σflat and m the solution to the associated Dyson equation, (2.3). Suppose
m has a continuous extension to a nonempty open interval I ⊂ R, i.e., m is
continuous on I × i[0,∞). Then any τ0 ∈ supp ρ ∩ I with ρ(τ0) = 0 belongs to
exactly one of the following cases:

Edge: The point τ0 is a left/right edge of the support of the density of
states ρ, i.e., there is some ε > 0 such that Imm(τ0 ∓ ω) = 0 for
ω ∈ [0, ε] and for some v0 ∈ A+ we have

Imm(τ0 ± ω) = v0ω
1/2 + O(ω) , ω ↓ 0 .

Cusp: The point τ0 lies in the interior of supp ρ and for some v0 ∈ A+ we
have

Imm(τ0 + ω) = v0 |ω|1/3 + O(|ω|2/3) , ω → 0 .
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Moreover, supp ρ ∩ I = supp v ∩ I is a finite union of closed intervals with
nonempty interior.

Theorem 2.5 is a simplified version of our more detailed and quantitative The-
orem 7.1 below. In fact, we can treat all small local minima of ρ on supp ρ ∩ I
– not only those ones, where ρ vanishes – and provide precise expansions cor-
responding to those in Theorem 2.5 which are valid in some neighbourhood of
τ0. In these expansions in Theorem 7.1, we also track the exact dependence on
ρ(τ0). In particular, we completely control the transition between a small gap
in supp ρ and a small local minimum of ρ through the cusp regime that aries
when a data pair with a cusp is subject to a small variation. By applying 〈 · 〉
to the results of Theorem 2.5 and Theorem 7.1, we also obtain an expansion of
the self-consistent density of states ρ near small local minima in Theorem 7.2
below.
Finally, we present our quantization result. This result has appeared in [8,
Proposition 5.1] for the simpler setting A = C

N×N and under the flatness
condition S ∈ Σflat. In the current work we will follow the same strategy of
proof when A is a general von Neumann algebra with certain adjustments to
treat the possibly infinite dimension and the lack of flatness.

Proposition 2.6 (Band mass formula). Let (a, S) ∈ Asa × Σ be a data pair
and m the solution to the associated Dyson equation, (2.3). We assume that
there is a constant C > 0 such that S[x] ≤ C〈x〉1 for all x ∈ A+. Then we
have

(i) For each τ ∈ R \ suppρ, there is m(τ) ∈ Asa such that limη↓0 ‖m(τ +
iη) − m(τ)‖ = 0. Moreover, m(τ) determines the mass of (−∞, τ) and
(τ,∞) with respect to ρ in the sense that

ρ((−∞, τ)) = 〈1(−∞,0)(m(τ))〉, (2.10)

where 1(−∞,0) denotes the characteristic function of the interval (−∞, 0)
and 1(−∞,0)(m(τ)) is defined via the spectral calculus of the self-adjoint
element m(τ).

(ii) If π : A → Cn×n is a faithful representation such that 〈x〉 = n−1 Tr(π(x))
for all x ∈ A and J ⊂ supp ρ is a connected component of supp ρ then we
have

nρ(J) ∈ {1, . . . , n}.
In particular, supp ρ has at most n connected components.

We will prove Proposition 2.6 in Section 8 below. A result similar to part
(ii) has been obtained by a different method in [26], see also [40]. In fact, we
will use the band mass formula, (2.10), in Corollary 9.4 below to strengthen
the quantization result in (ii) for a large class of random matrices (Kronecker
matrices, see Section 9). In Section 10, we study the stability of the Dyson
equation, (2.3), under small general pertubations of the data pair (a, S).
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2.1 Examples

We now present some examples that show the different types of singularities
described by Theorem 2.5. These examples are obtained by considering the
Dyson equation, (2.3), on C

n×n with 〈 · 〉 = n−1 Tr for large n and choosing
a = 0 as well as S = Sα, where

Sα[x] ..=
1

n
D(rα diag(x))

for any x ∈ Cn×n. Here, for x ∈ Cn×n, diag(x) ∈ Cn denotes the column
vector of diagonal entries. We write D(v) with v ∈ Cn for the diagonal ma-
trix in Cn×n with v on its diagonal. Moreover, rα ∈ Cn×n is the symmetric
block matrix from Figure 1 with α ∈ (0,∞). All entries in each block are
the indicated constants. Therefore, Sα[x] is a diagonal matrix with the vector

rα =
1

1α

α

Figure 1: Structure of rα ∈ Cn×n.

rα diag(x)/n on its diagonal. In fact, this example can also be realized on C2

with entrywise multiplication. Here, we choose 〈(x1, x2)〉 = δx1 + (1 − δ)x2,
where δ is the relative block size of the small block in the definition of rα. In-
deed, the solution m ∈ Cn×n of the Dyson equation on Cn×n has the structure
m = D(m1, . . . ,m1,m2, . . . ,m2), where m1 appears nδ times and m2 appears
(1−δ)n times. Thus, in the setup on C2, the Dyson equation for (m1,m2) ∈ C2

can be written as

−
(
m−1

1

m−1
2

)
= z

(
1
1

)
+Rα

(
m1

m2

)
, Rα =

(
αδ 1 − δ
δ α(1 − δ)

)
(2.11)

for (m1,m2) ∈ C
2. We remark that Rα is symmetric with respect to the

scalar product (2.1) induced by 〈 · 〉. Figure 2 contains the graphs of some self-
consistent densities of states ρ obtained from (2.11) for δ = 0.1 and different
values of α. As the self-consistent density of states is symmetric around zero
in these cases, only the part of the density on [0,∞) is shown. The density
in Figure 2 (a) has a small internal gap with square root edges on both sides
of this gap. Figure 2 (b) contains a cusp which is transformed, by increasing
α, into an internal nonzero local minimum in Figure 2 (c). This nonzero local
minimum is covered by Theorem 7.1 (d) below.

2.2 Main ideas of the proofs

In this subsection, we informally summarize several key ideas in the proofs of
Proposition 2.4 and Theorem 2.5.
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(a) α = 0.14
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(b) α = 0.2
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(c) α = 0.23

Figure 2: Examples of the self-consistent density of states ρ from (2.11) for
δ = 0.1 and several values of α.

Hölder-continuity of m. To simplify the notation, we assume in this
outline that2 ‖m(z)‖ . 1 for all z ∈ H. We first show that Imm(z) is 1/3-
Hölder continuous and then conclude the same regularity for m = m(z). To
that end, we now control ∂zImm(z) by differentiating the Dyson equation,
(2.3), with respect to z. Since 2i∂zImm = ∂zm by the holomorphicity of m (as

2In this subsection, we write x . y if the two nonnegative scalars x, y ≥ 0 satisfy x ≤ Cy
for some constant C > 0. For a more general definition specifying the dependence of C on
other constants, we refer to Convention 3.4 below.
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stated below (2.3)), this yields

2i∂zImm = (Id − CmS)−1[m2]. (2.12)

Here, Id denotes the identity map on A and Cm : A → A is defined by Cm[x] ..=
mxm for any x ∈ A.
We first analyse the derivative of Imm and prove that Imm is 1/3-Hölder
continuous since, as we show next, the right-hand side of (2.12) is bounded in
terms of Imm, namely by ‖Imm‖−2. In order to control the norm of the inverse
(Id −CmS)−1 of the stability operator, we rewrite it in a more symmetric form.
We find an invertible V with ‖V ‖, ‖V −1‖ . 1, a unitary operator U and a
self-adjoint operator T acting on A such that

Id − CmS = V −1(U − T )V.

The Rotation-Inversion Lemma from [1] (see Lemma 4.4 below) is designed
to control (U − T )−1 for a unitary operator U and a self-adjoint operator T
with ‖T ‖2 ≤ 1. Applying this lemma in our setup yields ‖(Id − CmS)−1‖ .
‖Imm‖−2.
Since ‖m‖ . 1, we thus obtain

‖∂zImm‖ . ‖Imm‖−2. (2.13)

This bound implies that (Imm)3 : H → A+ is uniformly Lipschitz-continuous.
Hence, we can extend Imm to a 1/3-Hölder continuous function on R∪H and
we obtain

m(z) =
1

π

∫

R

Imm(τ)dτ

τ − z
.

This also implies that m is uniformly 1/3-Hölder continuous on R∪H. Further-
more, m(τ) and Imm(τ) are real-analytic in τ around τ0 ∈ R, wherever ρ(τ0)
is positive.

Behaviour of Imm where it is not analytic. Owing to (2.13), some
unstable behaviour of the Dyson equation is expected close to points τ0 ∈ R,
where Imm(τ0) is zero or small. In order to analyze this behaviour of Imm(τ),
we compute ∆ ..= m(τ0 + ω) − m(τ0) from the Dyson equation, (2.3), with
ω ∈ R. Since m has a continuous extension to R, (2.3) holds true for z ∈ R

as well. We evaluate (2.3) at z = τ0 and z = τ0 + ω and obtain the quadratic
A-valued equation

B[∆] = mS[∆]∆ +ωm∆ +ωm2, B ..= Id −CmS, m ..= m(τ0). (2.14)

The blow-up of the inverse B−1 of the stability operator B close to τ0 requires
analyzing the contributions of ∆ in the unstable direction of B−1 separately.
In fact, B possesses precisely one unstable direction denoted by b since we will
show that ‖T ‖2 is a non-degenerate eigenvalue of T . We decompose ∆ into
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∆ = Θb + r, where Θ is the scalar contribution of ∆ in the direction b and r
lies in the spectral subspace of B complementary to b.
We view τ0 as fixed and consider ω as the main variable with |ω| ≪ 1. Pro-
jecting (2.14) onto b and its complement yield the scalar-valued cubic equation

ψΘ(ω)3 + σΘ(ω)2 + πω = O(|ω||Θ(ω)| + |Θ(ω)|4) (2.15)

with two parameters ψ ≥ 0 and σ ∈ R. In fact, the 1/3-Hölder continuity of
m implies Θ = O(|ω|1/3) and, hence, the right-hand side of (2.15) is indeed of
lower order than the terms on the left-hand side. Analyzing (2.15) instead of
(2.14) is a more tractable problem since we have reduced a quadratic A-valued
equation, (2.14), to the scalar-valued cubic equation, (2.15).
The essential feature of the cubic equation (2.15) is its stability. By this, we
mean that there exists a constant c > 0 such that

ψ + σ2 ≥ c.

This bound will follow from the structure of the Dyson equation and prevents
any singularities of higher order than ω1/2 or ω1/3. Obtaining more detailed
information about Θ from (2.15) requires applying Cardano’s formula with an
error term. Therefore, we switch to normal coordinates, (ω,Θ(ω)) → (λ,Ω(λ)),
in (2.15). We will study four normal forms, one quadratic Ω(λ)2 + Λ(λ) = 0,
and three cubics, Ω(λ)3 + Λ(λ) = 0 and Ω(λ)3 ± 3Ω(λ) + 2Λ(λ) = 0, where
Λ(λ) is a perturbation of the identity map λ 7→ λ. The first case corresponds
to the square root singularity of the isolated edge, the second is the cusp. The
last two cases describe the situation of almost cusps, see later.
The correct branches in Cardano’s formula are identified with the help of four
selection principles for the solution Ω(λ) corresponding to Θ of the cubic equa-
tion in normal form (see SP1 to SP4’ at the beginning of Section 7.2 below).
These selection principles are special properties of Ω which originate from the
continuity of m, Imm ≥ 0 and the Stieltjes transform representation, (2.4),
of m. Once the correct branch is chosen, we obtain the precise behaviour of
Imm around τ0, where τ0 ∈ supp ρ satisfies ρ(τ0) = 0 or even ρ(τ0) ≪ 1, from
Cardano’s formula and careful estimates of r in the decomposition ∆ = Θb+ r
(see Theorem 7.1 below).

Structure of the remainder of the paper

We conclude this section with an overview of the structure of the remaining
sections of the present work. In Section 3, we prove Proposition 2.1 and a few
basic estimates on the solution m of the Dyson equation, (2.3). Section 4 is
devoted to the analysis of the regularity of m and the self-consistent density of
states ρ and contains the proofs of Proposition 2.3 and Proposition 2.4. Sec-
tion 5 and Section 6 prepare the proof of Theorem 2.5 in Section 7. In Section 5,
we analyse the stability operator in the regime where the self-consistent density
of states ρ is small. In particular, we obtain that it has one unstable direction
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which we determine through the use of non-Hermitian perturbation theory. Sec-
tion 6 contains the derivation of the cubic equation (cf. (2.15)) describing the
component of m in this unstable direction as a function of the spectral pa-
rameter z. In Section 7, we then obtain Theorem 2.5 as a consequence of its
extended version, Theorem 7.1. The latter result is also proved in Section 7
by a detailed analysis of the cubic equation from Section 6. Proposition 2.6
is shown in Section 8. Section 9 provides some sufficient checkable conditions
in terms of a and S ensuring the flatness of S and the boundedness of m (see
(2.7)) in the setup of Kronecker random matrices. In Section 10, we study
how the solution m of the Dyson equation changes under small perturbations
of the data pair (a, S). The appendices collect a few auxiliary results applied
throughout the paper as well as their proofs.

3 The solution of the Dyson equation

In this section, we first introduce some notations used in the proof of Propo-
sition 2.1, then prove the proposition and finally give a few further properties
of m.
For x, y ∈ A, we introduce the bounded operator Cx,y : A → A defined through
Cx,y[h] ..= xhy for h ∈ A. We set Cx

..= Cx,x. For x, y ∈ A, the operator Cx,y

satisfies the simple relations

C∗
x,y = Cx∗,y∗ , C−1

x,y = Cx−1,y−1 ,

where C∗
x,y is the adjoint with respect to the scalar product defined in (2.1).

Here, the second identity holds if x and y are invertible in A. In fact, Cx,y is
invertible if and only if x and y are invertible in A.
In the following, we will often use the functional calculus for normal elements
of A. As we will explain now, our setup allows for a direct way to represent A
as a subalgebra of the bounded operators on a Hilbert space. Therefore, one
can think of the functional calculus being performed on this Hilbert space. The
Hilbert space is the completion of A equipped with the scalar product defined in
(2.1) and denoted by L2. In order to represent A as subalgebra of the bounded
operators B(L2) on L2, we denote by ℓx for x ∈ A the left-multiplication on
L2 by x, i.e., ℓx : L2 → L2, ℓx(y) = xy for y ∈ L2. The inclusion A ⊂ L2 and
the Cauchy-Schwarz inequality yield the well-definedness of ℓx and ℓx ∈ B(L2),
the bounded linear operators on L2. In fact,

A → B(L2), x 7→ ℓx

defines a faithful representation of A as a von Neumann algebra in B(L2) [42,
Theorem 2.22].
We now introduce the balanced polar decomposition of m. For any z ∈ H, we
define w = w(z) ∈ A, q = q(z) ∈ A and u = u(z) ∈ A through

w ..= (Imm)−1/2(Rem)(Imm)−1/2 + i1, q ..= |w|1/2(Imm)1/2,

u ..=
w

|w| ,
(3.1)
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where |w| and w/|w| are determined by the spectral calculus of the self-adjoint
operator (Imm)−1/2(Rem)(Imm)−1/2. Thus, we have

m(z) = Rem(z) + iImm(z) = q∗uq. (3.2)

Here, u is unitary and commutes with w. The decomposition m = q∗uq was
already introduced and also called balanced polar decomposition in [4] in the
special setting of matrix algebras. The operators |w|1/2, q and u correspond to
W, W

√
Im M and U

∗ in the notation of [4], respectively. With the definitions
in (3.1), (2.3) reads as

−u∗ = q(z − a)q∗ + F [u], (3.3)

where we introduced the saturated self-energy operator

F ..= Cq,q∗SCq∗,q. (3.4)

It is positivity-preserving as well as symmetric, F = F ∗, and corresponds to
the saturated self-energy operator F in [4].

Proof of Proposition 2.1. The existence of v will be a consequence of the fol-
lowing lemma which will be proven in Appendix A below.

Lemma 3.1. Let A be a von Neumann algebra with unit 1 and a tracial, faithful,
normal state 〈 〉 : A → C. If h : H → A is a holomorphic function satisfying
Im h(z) ∈ A+ for all z ∈ H and

lim
η→∞

iηh(iη) = −1 (3.5)

then there exists a unique measure v : B → A on the Borel sets B of R with
values in A+ such that

h(z) =

∫

R

v(dτ)

τ − z
(3.6)

for all z ∈ H and v(R) = 1.

In order to apply Lemma 3.1, we have to verify (3.5) for h = m. To that end,
we take the imaginary part of (2.3) and use Imm ≥ 0 as well as S ∈ Σ to
conclude

− Imm−1(z) = Im z1 + S[Imm] ≥ Im z1.

Hence, ‖m(z)‖ ≤ (Im z)−1 as for any x ∈ A we have ‖x‖ ≤ 1 if x is invertible
and Im x−1 ≥ 1. Therefore, evaluating (2.3) at z = iη, η > 0, and multiplying
the result by m from the left yield

iηm(iη) = −1 +m(iη)a−m(iη)S[m(iη)] → −1

for η → ∞ as S is bounded. Hence, Lemma 3.1 implies the existence of v, i.e.,
the Stieltjes transform representation of m in (2.4).
This representation has the following well-known bounds as a direct conse-
quence (e.g. [3, 4, 7]).
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Lemma 3.2. Let v be the measure in Proposition 2.1 and ρ = 〈v〉. Then, for
any z ∈ H, we have

‖m(z)‖ ≤ 1

dist(z, suppρ)
, Imm(z) ≤ Im z

dist(z, supp ρ)2
1. (3.7)

For the proofs of (2.5a) and (2.5b), we refer to the proofs of Proposition 2.1
in [4] and (3.4) in [7] in the matrix setup, the same argument works for our
general setup as well.

We now prove (2.6). Taking the imaginary part of the Dyson equation, (3.3),
yields

Im u = (Im z)qq∗ + F [Im u] ≥ max{(Im z)qq∗, F [Im u]} .

Thus, Imu ≥ (Im z)‖(qq∗)−1‖−1
1. We remark that qq∗ is invertible since

Imm(z) > 0 for z ∈ H. Therefore, the following Lemma 3.3 with h =
Im u/‖Imu‖2 implies ‖F‖2 ≤ 1.

Lemma 3.3. Let T : A → A be a positivity-preserving operator which is sym-
metric with respect to (2.1). If there are h ∈ A and ε > 0 such that h ≥ ε1 and
Th ≤ h then ‖T ‖2 ≤ 1.

Proof. The argument in the proof of Lemma 4.6 in [3] also yields this lemma
in our current setup.

We rewrite the Dyson equation (3.3) in the form

q(a− z)q∗ = u∗ + F [u] . (3.8)

We take the ‖ · ‖2-norm on both sides of (3.8) and use that ‖u‖2 = 1 (since it
is unitary) and ‖F‖2 ≤ 1 to find

‖q(a− z)q∗‖2 ≤ 2 . (3.9)

Then we use the polar decomposition m = q∗uq again and with z = τ + iη find

〈m, (Ca−τ + η2)m〉 = Re 〈m,Ca−z,(a−z)∗m〉
≤ |〈m,Ca−z,(a−z)∗m〉|
= |〈q(a− z)q∗ , Cu∗,u[q(a− z)q∗]〉| ≤ 4 ,

where the last step holds because of (3.9). Recall that a = a∗. Since
Spec(Ca−τ ) = {λµ : λ, µ ∈ Spec(a − τ)} we have inf Spec(Ca−τ ) ≥
dist(τ,Conv Spec a)2, provided τ 6∈ Conv Spec a. Thus in this case (2.6) follows.
In case τ ∈ Conv Spec a we simply use the trivial bound ‖m‖2 ≤ ‖m‖ ≤ η−1

from the first inequality of (3.7) and (2.6) still holds. This completes the proof
of Proposition 2.1.
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From now on until the end of Section 4.2, we will always assume that S is flat,
i.e., S ∈ Σflat (cf. (2.2b)). In fact, all of our estimates will be uniform in all
data pairs (a, S) that satisfy

c1〈x〉1 ≤ S[x] ≤ c2〈x〉1, ‖a‖ ≤ c3 (3.10)

for all x ∈ A+ with the some fixed constants c1, c2, c3 > 0. Therefore, the
constants c1, c2, c3 from (3.10) are called model parameters and we introduce
the following convention.

Convention 3.4 (Comparison relation, universal constant). Let x, y ∈ Asa.
We write x . y, or, equivalently, y & x, if there is c > 0 depending only on the
model parameters c1, c2, c3 from (3.10) such that cy−x is positive definite, i.e.,
cy − x ∈ A+. Moreover, we write x ∼ y if x . y and x & y. We also use this
notation for scalars x, y. Moreover, we write x = y + O(α) for x, y ∈ A and
α > 0 if ‖x− y‖ . α.
Constants that do not depend on any parameter are called universal constants.
Their numerical values can easily be obtained from our proofs, but they are
irrelevant and we do not follow them.

We remark that we will choose a different set of model parameters starting
from Section 4.3 below and redefine . as well as ∼ accordingly (cf. Convention
4.6 below).

Proposition 3.5 (Properties of the solution). Let (a, S) be a data pair satis-
fying (3.10) and m be the solution to the associated Dyson equation, (2.3). We
have

‖m(z)‖2 . 1, (3.11)

‖m(z)‖ .
1

〈Imm(z)〉 + dist(z, supp ρ)
, (3.12)

‖m(z)−1‖ . 1 + |z|, (3.13)

〈Imm(z)〉1 . Imm(z) . (1 + |z|2)‖m(z)‖2〈Imm(z)〉1, (3.14)

‖m(z)‖ & (1 + |z|)−1 (3.15)

uniformly for z ∈ H.

The following proof of Proposition 3.5 resembles the one of Proposition 4.2
in [4].

Proof. We take the imaginary part of the Dyson equation, (2.3), multiply the
result by m∗ from the left and m from the right and obtain

Imm = m∗((Im z)1 + S[Imm])m ≥ m∗S[Imm]m & 〈Imm〉m∗m (3.16)

due to the lower bound on S from (3.10). We apply 〈 · 〉 on both sides and
conclude (3.11).
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We now set K ..= ‖a‖ + 2‖S‖1/2. Note that K . 1 since ‖a‖ . 1 and ‖S‖ ≤
‖S‖2→‖·‖ . 1 by the upper bounds on a and S in (3.10) and Lemma B.2 (i). The
Stieltjes transform representation (2.4) implies that ‖m(z)‖ ≤ dist(z, supp v)−1.
Since supp ρ = supp v by the faithfulness of 〈 · 〉, for the proof of (3.12), it thus
suffices to show that ‖m(z)‖ . 〈Imm(z)〉−1 for |z| ≤ 1+K as dist(z, suppρ) &
1 & 〈Imm(z)〉 for |z| ≥ 1 +K by (3.11). Applying the lower bound on S from
(3.10) to the imaginary part of the Dyson equation, (2.3), yields

−Imm(z)−1 ≥ S[Imm(z)] & 〈Imm(z)〉1.

Since Imx−1 ≥ 1 implies ‖x‖ ≤ 1 for any invertible x ∈ A, we conclude
‖m(z)‖ . 〈Imm(z)〉−1, thus, completing the proof of (3.12).
For the proof of (3.13), we start from (2.3) and estimate

‖m(z)−1‖ ≤ |z| + ‖a‖ + ‖S‖2→‖·‖‖m‖2 . 1 + |z|,

where we used ‖a‖ . 1, ‖m‖2 . 1 and ‖S‖2→‖·‖ . 1 in the last step. These
bounds follows from (3.10), (3.11) and Lemma B.2 (i). This proves (3.13) and,
thus, (3.15) since ‖m‖‖m−1‖ ≥ 1.
What remains is showing (3.14). By (2.5a), we know that supp v ⊂ [−K,K].
First, we assume that |z| ≥ 1 + K. The Stieltjes transform representation
(2.4) implies that z 7→ 〈x,m(z)x〉 is the Stieltjes transform of a probabiilty
measure supported in [−K,K] for any x ∈ A such that ‖x‖2 = 1. Hence,
Imm(z) ∼ 〈Imm(z)〉 ∼ |z|−2Im z if |z| ≥ 1 + K. Moreover, ‖m(z)‖ ∼ |z|−1 in
this regime. Thus, we proved (3.14) if |z| ≥ 1 +K.
We now assume that |z| ≤ 1 + K. From (3.16) we conclude that Imm &
〈Imm〉‖m−1‖−2

1, and, thus, the lower bound on Imm in (3.14) as ‖m−1‖ . 1
by (3.13). For the upper bound, we take the imaginary part of the Dyson
equation and estimate

Imm = m∗(Im z1 + S[Imm])m . (Im z + 〈Imm〉)m∗M . 〈Imm〉‖m‖2
1,

where we used in the last step that Imm & (Im z)1 by the Stieltjes transform
representation (2.4) and |z| . 1. This proves the missing upper bound on Imm
in (3.14) and, thus, completes the proof of Proposition 3.5.

4 Regularity of the solution and the self-consistent
density of states

In this section, we will prove Proposition 2.3 and Proposition 2.4. Their proofs
are based on a bound on the inverse of the stability operator Id − CmS of the
Dyson equation, (2.3), which will be given in Proposition 4.1 below. These re-
sults are the basis of the analysis of the singularities in the subsequent sections.

4.1 Linear stability of the Dyson equation

For the formulation of the following proposition, we introduce the harmonic
extension of the density of states ρ defined in Definition 2.2 to H. The harmonic
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extension at z ∈ H is denoted by ρ(z) and given by

ρ(z) ..=
1

π
〈Imm(z)〉.

Proposition 4.1 (Linear Stability). There is a universal constant C > 0 such
that, for the solution m to (2.3) associated to any a ∈ Asa and S ∈ Σ satisfying
(3.10), we have

‖(Id − Cm(z)S)−1‖2 . 1 +
1

(ρ(z) + dist(z, supp ρ))C
(4.1)

uniformly for all z ∈ H.

Before proving Proposition 4.1, we will explain how the linear stability yields
the Hölder-continuity and analyticity of ρ in Proposition 2.3. Indeed, assuming
that m ≡ m(a, S, z) viewed as a function of (a, S, z) ∈ Asa × Σflat ×H depends
differentiably on (a, S, z), we can compute the directional derivative ∇(d,D,δ)

at (a, S, z) of both sides in (2.3). The result of this computation is

(Id − CmS)[∇(d,D,δ)m] = m(δ − d+D[m])m.

Using the bound in Proposition 4.1 and ρ(z) = π−1〈Imm(z)〉, we conclude
from (3.12) that

|∇(d,D,δ)ρ| ≤ 1

ρC
(|δ| + ‖d‖ + ‖D‖) (4.2)

with a possibly larger C. Therefore, it is clear that the control on (Id−CmS)−1

will be the key input in the proof of Proposition 2.3.
In order to prove Proposition 4.1, we will use the representation

Id − CmS = Cq∗,qCu(C∗
u − F )C−1

q∗,q, (4.3)

where q, u and F were defined in (3.1) and (3.4), respectively. This repre-
sentation has the advantage that C∗

u is unitary and F is symmetric. Hence,
it is much easier to obtain some spectral properties for C∗

u − F compared to
Id −CmS. Now, we will first analyze q and F in the following two lemmas and
then use this knowledge to verify Proposition 4.1.

Lemma 4.2. If (3.10) holds true then we have

‖q(z)‖ . (1 + |z|)1/2‖m(z)‖, ‖q(z)−1‖ . (1 + |z|)‖m(z)‖1/2

uniformly for z ∈ H.

Proof. For q = q(z), we will show below that

A1/2

B1/2
‖m(z)−1‖−1

1 ≤ q∗q ≤ B1/2

A1/2
‖m(z)‖1 (4.4)
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if A1 ≤ Imm(z) ≤ B1 for some A,B ∈ (0,∞) and z ∈ H. Choosing A and
B according to (3.14), using the C∗-property of ‖ · ‖, ‖q∗q‖ = ‖q‖2, and (3.13),
we immediately obtain Lemma 4.2.
For the proof of (4.4), we set g ..= Rem and h ..= Imm. Using the monotonicity
of the square root, we compute

q∗q = h1/2
(
1 + h−1/2gh−1gh−1/2

)1/2
h1/2

≤ A−1/2h1/2
(
h−1/2(h2 + g2)h−1/2

)1/2
h1/2

≤ ‖m‖A−1/2h1/2.

Here, we employed h−1 ≤ A−1
1 as well as 1 ≤ A−1h in the first step and

(Rem)2 + (Imm)2 = (m∗m + mm∗)/2 ≤ ‖m‖2 in the second step. Thus,
h ≤ B1 yields the upper bound in (4.4). Similar estimates using 1 ≥ B−1h and
‖m−1‖−2 ≤ (m∗m+ mm∗)/2 prove the lower bound in (4.4) which completes
the proof of the lemma.

Lemma 4.3 (Properties of F ). If the bounds in (3.10) are satisfied then ‖F‖2 is
a simple eigenvalue of F : A → A defined in (3.4). Moreover, there is a unique
eigenvector f ∈ A+ such that F [f ] = ‖F‖2f and ‖f‖2 = 1. This eigenvector
satisfies

1 − ‖F‖2 = (Im z)
〈f , qq∗〉
〈f , Im u〉 . (4.5)

In particular, ‖F‖2 ≤ 1. Furthermore, the following properties hold true uni-
formly for z ∈ H satisfying |z| ≤ 3(1 + ‖a‖ + ‖S‖1/2) and3 ‖F (z)‖2 ≥ 1/2:

(i) The eigenvector f has upper and lower bounds

‖m‖−4
1 . f . ‖m‖4

1. (4.6)

(ii) The operator F has a spectral gap ϑ ∈ (0, 1] satisfying ϑ & ‖m‖−28 and

Spec(F/‖F‖2) ⊂ [−1 + ϑ, 1 − ϑ] ∪ {1}. (4.7)

Proof. The definition of F in (3.4), (3.10) and Lemma 4.2 imply

(1 + |z|)−4‖m(z)‖−2〈a〉1 . F [a] . (1 + |z|)2‖m(z)‖4〈a〉1 (4.8)

for all a ∈ A+ and all z ∈ H. We will use Lemma B.1 (ii) from Appendix B.
The condition (B.1) with T = F is satisfied by (4.8) with constants depending
on ‖m‖ and |z|. Hence, Lemma B.1 (ii) implies the existence and uniqueness
of the eigenvector f . We compute the scalar product of f with the imaginary
part of (3.3). Since F is symmetric, this immediately yields (4.5).
We now assume that z ∈ H satisfies |z| ≤ 3(1+‖a‖+‖S‖1/2) and ‖F (z)‖2 ≥ 1/2.
Then |z| . 1 and, by using this in (4.8), we thus obtain (4.6) and (4.7) from
Lemma B.1 (ii) since ‖m‖ & 1 by (3.13).

3The lower bound 1/2 is chosen solely for convenience. Any other constant in (0, 1) could
be used instead.
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The following proof of Proposition 4.1 proceeds similarly to the one of Propo-
sition 4.4 in [4].

Proof of Proposition 4.1. We will distinguish several cases. If |z| ≥ 3(1 + κ)
with κ ..= ‖a‖ + 2‖S‖1/2 then we conclude from (2.4) and suppρ ⊂ [−κ, κ] by
(2.5a) that ‖m(z)‖ ≤ (|z| − κ)−1. Thus,

‖Cm(z)S‖2 ≤ ‖S‖2

(|z| − κ)2
≤ ‖S‖

4(1 + κ)2
≤ 1

4
.

Here, we used ‖S‖2 ≤ ‖S‖ since S is symmetric and κ ≥ ‖S‖1/2. This shows
(4.1) for large |z|.
Next, we assume |z| ≤ 3(1 + κ). In this regime, we use the alternative repre-
sentation of Id − CmS in (4.3) and the spectral properties of F from Lemma
4.3. Indeed, from (4.3) and Lemma 4.2, we conclude

‖(Id − CmS)−1‖2 . ‖m‖3‖(C∗
u − F )−1‖2

.
1

(ρ(z) + dist(z, suppρ))3
‖(C∗

u − F )−1‖2

(4.9)

as u ∈ A is unitary. Here, we used (3.12) in the last step. If ‖F (z)‖2 ≤ 1/2 then
this immediately yields (4.1) as ‖Cu‖2 = 1. We now assume ‖F (z)‖2 ≥ 1/2.
In this case, we will use the following lemma.

Lemma 4.4 (Rotation-Inversion Lemma). Let U be a unitary operator on L2

and T a symmetric operator on L2. We assume that ‖T ‖2 ≤ 1 is an eigenvalue
of T whose eigenspace is one-dimensional. Moreover, suppose that T has a
spectral gap, i.e., there is a constant θ > 0 such that

SpecT ⊂ [−‖T ‖2 + θ, ‖T ‖2 − θ] ∪ {‖T ‖2}.

Then there is a universal constant C > 0 such that

‖(U − T )−1‖2 ≤ C

θ|1 − ‖T ‖2〈t , U [t]〉| ,

where t ∈ L2 is the normalized, ‖t‖2 = 1, eigenvector of T corresponding to
‖T ‖2.

The proof of this lemma is identical to the proof of Lemma 5.6 in [1], where a
result of this type was first applied in the context of vector Dyson equations.
We start from the estimate (4.9), use the Rotation-Inversion Lemma, Lemma
4.4, with U = C∗

u and T = F as well as (4.7) and (3.12) and obtain

‖(Id − CmS)−1‖2 .
(ρ(z) + dist(z, suppρ))−31

|1 − ‖F‖2〈f , C∗
u[f ]〉|

≤ (ρ(z) + dist(z, suppρ))−31

max{1 − ‖F‖2, |1 − 〈fC∗
u[f ]〉|} .
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In order to complete the proof of (4.1), we now show that

max{1 − ‖F‖2, |1 − 〈fC∗
u[f ]〉|} & (ρ(z) + dist(z, suppρ))6. (4.10)

We first prove auxiliary upper and lower bounds on Im u = (q∗)−1(Imm)q−1.
We have

ρ(z)(ρ(z) + dist(z, suppρ))2
1 . Im u .

Im z‖m‖
dist(z, supp ρ)2

1. (4.11)

For the lower bound, we used the lower bound in (3.14), Lemma 4.2 and (3.12).
The upper bound is a direct consequence of (3.7) as well as Lemma 4.2. Since
〈f , qq∗〉 ≥ ‖(qq∗)−1‖−1〈f〉 & ‖m‖〈f〉 by Lemma 4.2, the relation (4.5) and the
upper bound in (4.11) yield

1 − ‖F‖2 & dist(z, suppρ)2.

As 1 − 〈fCRe u[f ]〉 ≥ 0 and 〈f2〉 = 1, we obtain from the lower bound in (4.11)
that

|1 − 〈fC∗
u[f ]〉| ≥ Re [1 − 〈fC∗

u[f ]〉] = 1 − 〈fCRe u[f ]〉 + 〈fCIm u[f ]〉
& ρ(z)2(ρ(z) + dist(z, supp ρ))4.

(4.12)

This completes the proof of (4.10) and hence of Proposition 4.1.

4.2 Regularity of the self-consistent density of states – Proof
of Proposition 2.3

The following proof of Proposition 2.3 is similar to the one of Proposition 2.2
in [4].

Proof of Proposition 2.3. We first show that ρ : H → (0,∞) has a uniformly
Hölder-continuous extension to H, which we will also denote by ρ. This ex-
tension restricted to R will be the density of the measure ρ from Definition
2.2. Since Id −CmS is invertible for each z ∈ H by (4.1), the implicit function
theorem allows us to differentiate (2.3) with respect to z. This yields

(Id − CmS)[∂zm] = m2. (4.13)

Since z 7→ 〈m(z)〉 is holomorphic on H as remarked below (2.3), we have
2πi∂zρ(z) = 2i∂zIm 〈m(z)〉 = ∂z〈m(z)〉. Thus, we obtain from (4.13) that

|∇zρ| . |∂zρ| + |∂z̄ρ| . ‖∂zm‖2 ≤ ‖(Id − CmS)−1‖2‖m‖2 . ρ−(C+2) (4.14)

Here, we used (4.1), ρ(z) . ‖m(z)‖2 . 1 by (3.11) and (3.12) in the last step.
Hence, ρC+3 is a uniformly Lipschitz-continuous function on H. Therefore, ρ
defines uniquely a uniformly 1/(C + 3)-Hölder continuous function on R which
is a density of the measure ρ from Definition 2.2 with respect to the Lebesgue
measure on R.
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Next, we show the Hölder-continuity with respect to a and S. As before in
(4.2), we compute the derivatives and use (3.12) and (4.1) to obtain

|∇(d,D)ρ(a,S)(z)| . |〈∇(d,D)m〉| . ‖d‖ + ‖D‖
ρC+3

.

Since the constants in (4.1) and (3.12) depend on the constants in (3.10), we
conclude that ρ is also a locally 1/(C + 4)-Hölder continuous function of a
and S.
We are left with showing that ρ is real-analytic in a neighbourhood of (a, S, τ0)
if ρa,S(τ0) > 0. Since ρ(τ0) > 0, we can extend m to τ0 by (4.14). Moreover,
m(τ0) is invertible as Imm(τ0) > 0 and, thus, solves (2.3) with z = τ0. Since
(2.3) depends analytically on a, S and z = τ in a small neighbourhood of
(a, S, τ0), the solution m and thus ρ will depend analytically on (a, S, τ) in this
neighbourhood by the implicit function theorem. This completes the proof of
Proposition 2.3.

4.3 Regularity of the solution – Proof of Proposition 2.4

In this section, we prove Proposition 2.4. In order to modularize the following
arguments, we first collect in Assumptions 4.5 below the essential conditions
on m and F implying the conclusion of Proposition 2.4. Finally, the proof of
Proposition 2.4 will consist of checking that Assumptions 4.5 are satisfied if
S ∈ Σflat and (2.7) holds.
To formulate Assumptions 4.5, for any I ⊂ R and η∗ > 0, we introduce the set

HI,η∗

..= {z ∈ H : Re z ∈ I, Im z ∈ (0, η∗]} (4.15)

and its closure HI,η∗
.

Assumptions 4.5. Let m be the solution of (2.3) for a = a∗ ∈ A satisfying
‖a‖ ≤ k1 with a positive constant k1 and S ∈ Σ satisfying ‖S‖2→‖·‖ ≤ k2 for
some positive constant k2. For an interval I ⊂ R and some η∗ ∈ (0, 1], we
assume that

(i) There are positive constants k3, k4 and k5 such that

‖m(z)‖ ≤ k3, (4.16)

k4〈Imm(z)〉1 ≤ Imm(z) ≤ k5〈Imm(z)〉1, (4.17)

uniformly for all z ∈ HI,η∗
.

(ii) The operator F ..= Cq,q∗SCq∗,q has a simple eigenvalue ‖F‖2 with eigen-
vector f ∈ A+ that satisfies (4.5) for all z ∈ HI,η∗

. Moreover, (4.7) holds
true and there are positive constants k6, k7 and k8 such that

k61 ≤ f ≤ k71, ϑ ≥ k8. (4.18)

uniformly for all z ∈ HI,η∗
.
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We remark that S ∈ Σflat is not necessarily required in Assumptions 4.5. In
fact, we will show in Lemma 4.8 below that S ∈ Σflat and (4.16) imply all other
conditions in Assumptions 4.5.

Convention 4.6 (Model parameters, Comparison relation). For the remainder
of the Section 4 as well as Section 5 and Section 6, we will only consider
k1, . . . , k8 as model parameters and understand the comparison relation ∼ from
Convention 3.4 with respect to this set of model parameters.

We remark that all of our estimates will be uniform in η∗ ∈ (0, 1]. Therefore,
η∗ is not considered a model parameter. At the end of this section, we will
directly conclude Proposition 2.4 from the following proposition.

Proposition 4.7 (Regularity of m). Let Assumptions 4.5 hold true on an in-
terval I ⊂ R for some η∗ ∈ (0, 1].
Then, for any θ ∈ (0, 1], m can be uniquely extended to Iθ

.

.= {τ ∈
I : dist(τ, ∂I) ≥ θ} such that it is uniformly 1/3-Hölder continuous, indeed,

‖m(z1) −m(z2)‖ . θ−4/3|z1 − z2|1/3 (4.19)

for all z1, z2 ∈ Iθ × i[0,∞). Moreover, we have ‖m(z)‖ . 1 + θ−4/3 for all
z ∈ Iθ × i[0,∞).
Furthermore, if ρ(τ0) > 0, τ0 ∈ I, then m is real-analytic in a neighbourhood
of τ0 and

‖∂τm(τ0)‖ . ρ(τ0)−2. (4.20)

We remark that the bound in (4.20) will be extended to higher derivatives in
Lemma 5.7 below.
In the following lemma, we establish a very helpful consequence of (i) in As-
sumptions 4.5. Moreover, part (ii) of the following lemma shows that all con-
ditions in Assumptions 4.5 are satisfied if we assume (4.16) and the flatness of
S.

Lemma 4.8. Let m be the solution to (2.3) for some data pair (a, S) ∈ Asa × Σ.
We have

(i) Let ‖a‖ . 1, ‖S‖ . 1 and U ⊂ H such that sup{|z| : z ∈ U} . 1. If (4.16)
and (4.17) hold true uniformly for z ∈ U then, uniformly for z ∈ U , we
have

‖q‖, ‖q−1‖ ∼ 1, Im u ∼ 〈Im u〉1 ∼ ρ1. (4.21)

(ii) Let I ⊂ [−C,C] for some C ∼ 1 and (4.16) hold true uniformly for all
z ∈ HI,η∗

. If S ∈ Σflat and ‖a‖ . 1 then ‖S‖2→‖·‖ . 1, (4.17) holds true
uniformly for all z ∈ HI,η∗

and part (ii) of Assumptions 4.5 is satisfied.

(iii) If Assumptions 4.5 hold true then, uniformly for z ∈ HI,η∗
, we have

‖(Id − Cm(z)S)−1‖2 + ‖(Id − Cm(z)S)−1‖ . ρ(z)−2. (4.22)
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Proof of Lemma 4.8. For the proof of (i), we use ‖a‖ . 1, ‖S‖ . 1 and (2.3)
to show ‖m(z)−1‖ . 1 uniformly for all z ∈ U . Thus, following the proof of
Lemma 4.2 immediately yields the estimates on q and q−1 in (4.21) due to
(4.16) and (4.17). Thus, as ‖q‖, ‖q−1‖ ∼ 1, we obtain the missing relations in
(4.21) from (4.17) since

Im u = (q∗)−1(Imm)q−1 ∼ Imm ∼ 〈Imm〉 ∼ 〈Im u〉.

We now show (ii). By Lemma B.2 (i), the upper bound in the definition of
flatness, (3.10), implies ‖S‖2→‖·‖ . 1. Owing to (4.16) and (3.13), we have
‖m(z)‖ ∼ 1 for all z ∈ HI,η∗

. Hence, (4.17) follows from (3.14) since |z| ≤ C+1
for z ∈ HI,η∗

. Moreover, (ii) in Assumptions 4.5 is a consequence of Lemma
4.3.
To prove (4.22), we follow the proof of Proposition 4.1 and replace the use of
(3.12) as well as (4.6) and (4.7) from Lemma 4.3 by (4.16) and (4.18), respec-
tively. This yields

‖(Id −CmS)−1‖2 . 1 + |1 − ‖F‖2〈fC∗
u[f ]〉|−1 . |1 − ‖F‖2〈fC∗

u[f ]〉|−1, (4.23)

where we used in the last step that (4.16) implies ρ(z) . 1 on HI,η∗
. Since

Im u ∼ ρ by (4.21) and ‖F‖2 ≤ 1 by (4.5) that holds under Assumptions 4.5
(ii), we conclude

|1 − ‖F‖2〈fC∗
u[f ]〉|−1 . |1 − 〈fC∗

u[f ]〉|−1 . ρ−2

as in (4.12) in the proof of Proposition 4.1. This shows ‖(Id − CmS)−1‖2 .
ρ(z)−2. Using ‖S‖2→‖·‖ . 1 and Lemma B.2 (ii), we obtain the missing ‖ · ‖-
bound in (4.22). This completes the proof of Lemma 4.8.

Proof of Proposition 4.7. Similarly to the proof of Proposition 2.3, we obtain

‖∂zImm(z)‖ . ‖∂zm(z)‖ ≤ ‖(Id −CmS)−1‖‖m(z)‖2 . ρ(z)−2 ∼ ‖Imm(z)‖−2

(4.24)
for z ∈ HI,η∗

from (4.16), (4.22) and (4.17). By the submultiplicativity of
‖ · ‖, (Imm(z))3 : HI,η∗

→ (A, ‖ · ‖) is a uniformly Lipschitz-continuous func-
tion. Hence, Imm(z) is uniformly 1/3-Hölder continuous on HI,η∗

(see e.g. The-
orem X.1.1 in [14]) and, thus, has a uniformly 1/3-Hölder continuous extension
to HI,η∗

. We conclude that the measure v restricted to I has a density with
respect to the Lebesgue measure on I, i.e., (2.9) holds true for all measurable
A ⊂ I. Now, (A.3) in Lemma A.1 implies the uniform 1/3-Hölder continuity
of m on Iθ × i(0,∞). In particular, m can be uniquely extended to a uniformly
1/3-Hölder continuous function on Iθ × i[0,∞) such that (4.19) holds true. By
(3.7), we have that ‖m(z)‖ ≤ 1 if Im z ≥ 1. Thus, ‖m(z)‖ . 1 + θ−4/3 for all
z ∈ Iθ × i[0,∞) follows directly from (4.19).
To prove the analyticity of m, we refer to the proof of the analyticity of ρ in
Proposition 2.3. The bound (4.20) can be read off from (4.24). This completes
the proof of the proposition.
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Proof of Proposition 2.4. By (2.7), there are C0 > 0 and η∗ ∈ (0, 1] such that
‖m(τ + iη)‖ ≤ C0 for all τ ∈ I and η ∈ (0, η∗]. Hence, by Lemma 4.8 (ii), the
flatness of S implies Assumptions 4.5 on I∩[−C,C] for C ..= 3(1+‖a‖+‖S‖1/2),
i.e., C ∼ 1. Therefore, Proposition 4.7 yields Proposition 2.4 on I ∩ [−C,C].
Owing to (3.7) and supp v = supp ρ, we have dist(τ, supp v) ≥ 1 for τ ∈ I
satisfying τ /∈ [−C+1, C−1]. Hence, for these τ , the Hölder-continuity follows
immediately from (A.4) in Lemma A.1. Moreover, we have ‖m(z)‖ ≤ 1 if z ∈ H

with Re z ∈ I \ [−C + 1, C − 1] by (3.7) as dist(z, supp v) ≥ 1. By (2.5a), we
have Imm(τ) = 0 for τ ∈ I satisfying τ /∈ [−C,C]. Therefore, the statement
about the analyticity is trivial outside of [−C,C]. This completes the proof of
Proposition 2.4.

5 Spectral properties of the stability operator for
small self-consistent density of states

In this section, we study the stability operator B = B(z) ..= Id−Cm(z)S, when
ρ = ρ(z) is small and Assumptions 4.5 hold true. Note that we do not require
S to be flat, i.e., to satisfy (3.10). We will first show that B has a single
eigenvalue close to zero while all other eigenvalues of B are well separated from
zero. In a second step, we then obtain precise expansions for this eigenvalue as
well as the corresponding left and right eigenvectors expressing this unstable
direction in terms of basic quantities derived from m. The obtained spectral
information will be employed in Section 6 to deduce a cubic equation for the
component ofm in the unstable direction as a function of the spectral parameter
z. In Subsections 5.3 and 5.4, we will use the precise knowledge about the small
isolated eigenvalue of B and its associated eigenvectors to extend the quantities
derived from m to the real axis and establish a bound on the derivatives of m.

5.1 Spectrum of the stability operator close to zero

This subsection is devoted to the proof of Lemma 5.1 below, a basic result
about the structure of the spectrum of B close to zero. The key ingredient in
the proof is viewing B = Id−CmS as a perturbation of the operator B0, which
we introduce now. We define

s ..= sign Reu, B0
..= Cq∗,q(Id − CsF )C−1

q∗,q,

E ..= (Cq∗sq − Cm)S = Cq∗,q(Cs − Cu)FC−1
q∗,q,

(5.1)

with u and q defined in (3.1) and F defined in (3.4). Note B0 = Id − Cq∗sqS,
i.e., in the definition of B, u in m = q∗uq is replaced by s. Thus, we have
B = B0 + E. Apart from the base change Cq∗,q, the basic constituents of B0

are the two self-adjoint operators Cs and F . Their self-adjointness simplifies
the spectral analysis which is the main advantage of working with B0 instead
of B. Under Assumptions 4.5, (4.21) holds true which we will often use in the
following. Since 1− |Reu| = 1−

√
1 − (Imu)2 ≤ (Im u)2 . ρ2, we also obtain

Reu = s+ O(ρ2), Imu = O(ρ) , Rem = q∗sq + O(ρ2) (5.2)
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and with Cs − Cu = O(‖s− u‖) = O(ρ) we get

E = O(ρ) . (5.3)

Here, we use the notation R = T +O(α) for operators T and R on A and α > 0
if ‖R− T ‖ . α. We introduce

fu
..= ρ−1Im u. (5.4)

By the functional calculus for the normal operator u, Reu, s and fu commute.
Hence, Cs[fu] = fu. From the imaginary part of (3.3) and (4.21), we conclude
that

(Id − F )[fu] = ρ−1Im zqq∗ = O(ρ−1Im z). (5.5)

The following technical lemma provides control on the resolvent of the stability
operator B and its relatives. In particular, it implies that these operators
have one eigenvalue close to zero while all other eigenvalues are separated away
from zero by a controlled amount. It has been stated for the finite dimensional
situation A = CN×N in [8, Corollary 4.8]. For the reader’s convenience we
present its proof following the same line of reasoning as in [8]. For z ∈ C and
ε > 0, we denote by Dε(z) ..= {w ∈ C : |z − w| < ε} the disk in C of radius ε
around z.

Lemma 5.1 (Spectral properties of stability operator). Let T ∈ {Id − F, Id −
CsF,B0, B, Id−Cm∗,mS}. If Assumptions 4.5 are satisfied on an interval I ⊂ R

for some η∗ ∈ (0, 1], then there are ρ∗ ∼ 1 and ε ∼ 1 such that

‖(T − ω Id)−1‖2 + ‖(T − ω Id)−1‖ + ‖(T ∗ − ω Id)−1‖ . 1 (5.6)

uniformly for all z ∈ HI,η∗
satisfying ρ(z) + ρ(z)−1Im z ≤ ρ∗ and for all ω ∈ C

with ω 6∈ Dε(0) ∪ D1−2ε(1). Furthermore, there is a single simple (algebraic
multiplicity 1) eigenvalue λ in the disk around 0, i.e.,

Spec(T ) ∩Dε(0) = {λ} and rankPT = 1 ,

where PT
.

.= − 1

2πi

∫

∂Dε(0)

(T − ωId)−1dω .
(5.7)

Before proving Lemma 5.1, we explain the origin of its assumption ρ(z) +
ρ(z)−1Im z ≤ ρ∗. The condition ρ(z) ≤ ρ∗ ensures the effectivity of pertur-
bation theory as B − B0 = E = O(ρ) by (5.3). The self-adjoint operator
fu is an approximate eigenvector of CsF due to Cs[fu] = fu and (5.5) if
ρ(z)−1Im z ≤ ρ∗.
If Assumptions 4.5 are satisfied on I for some η∗ ∈ (0, 1] then we have

fu = ρ−1Imu ∼ 1. (5.8)

uniformly for z ∈ HI,η∗
due to (4.21). This fact will often be used in the

following without mentioning it.
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Proof. First, we notice that for each choice of the operator T from the lemma,
the bound ‖Id −T ‖2→‖·‖ . 1 holds because of ‖S‖2→‖·‖ . 1, (4.16) and (4.21).
Therefore invertibility of T − ω Id as an operator on L2 implies invertibility as
an operator on A, as long as ω stays away from 1, due to Lemma B.2 (ii). It
suffices thus to show the bound on the ‖·‖2-norm from (5.6) and (5.7). For
T = Id − F both assertions hold by Lemma 4.3. In particular, we find

f = ‖fu‖−1
2 fu + O(ρ−1Im z) , (5.9)

where f is the single top eigenvector of F , Ff = ‖F‖2f (see Lemma 4.3). The
proof of (5.9) follows from (5.5) and ‖F‖2 = 1 + O(ρ−1Im z) (cf. (4.5)) by
straightforward perturbation theory of the simple isolated eigenvalue ‖F‖2.
We will now prove (5.7) and the ‖·‖2-norm bound

‖(T − ω Id)−1‖2 . 1 , ω 6∈ Dε(0) ∪D1−2ε(1) (5.10)

for the choices T = Id − CsF,B0, B, Id − Cm∗,mS in this order. We start
with T = Id − CsF . We introduce the interpolation Tt := Id − VtF between
T0 = Id − F and T1 = Id − CsF by setting

Vt
..= (1 − t)Id + tCs , t ∈ [0, 1] .

Once we have established (5.10) with T = Tt for all t ∈ [0, 1], the assertion
about the single isolated eigenvalue (5.7) also follows for T = Tt. Indeed,
the rank of the spectral projection PTt is a continuous function of t and thus
rankPTt = rankPT0

= 1 by what we have already shown.
In order to show (5.10) we consider two regimes. On the one hand, for |ω| ≥ 3
we simply use ‖F‖2 ≤ 1 and ‖Vt‖2 ≤ 1. On the other hand, for |ω| ≤ 3 we
estimate the norm of ((1 −ω)Id − VtF )[x] from below for any x ∈ L2. For this
purpose we decompose x = αf + y according to the top eigenvector f of F ,
with y ⊥ f and α ∈ C. Then we find

‖((1 − ω)Id − VtF )[x]‖2
2 = |α|2|ω|2 + ‖((1 − ω)Id − VtF )[y]‖2

2

+ O(ρ−1Im z‖x‖2
2)

≥ |α|2ε2 + (ϑ− 2ε)2(‖x‖2
2 − |α|2)

+ O(ρ−1Im z‖x‖2
2) ,

(5.11)

where ϑ ∼ 1 is the spectral gap of F from (4.7). In the equality of (5.11) we
used that VtF [f ] = f + O(ρ−1Im z) and FVt[f ] = f + O(ρ−1Im z) due to (5.9),
Vt[fu] = fu and ‖F‖2 = 1 + O(ρ−1Im z), as well as the orthogonality of y and
f . For the inequality in (5.11) we estimated |ω| ≥ ε and used

‖((1−ω)Id−VtF )[y]‖2
2 ≥ (|1−ω|−‖F‖2(1−ϑ))2‖y‖2

2 ≥ (ϑ−2ε)2(‖x‖2
2 −|α|2) .

From (5.11) we now conclude ‖((1 − ω)Id − VtF )[x]‖2
2 & ‖x‖2

2 by choosing ε
and ρ∗ small enough.
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Since we have established the claim of the lemma for T = Id − CsF it also
follows for T = B0 because of the definition of B0 in (5.1) and (4.21). Thus B0

has a simple isolated eigenvalue in Dε(0) and we can use analytic perturbation
theory to establish the lemma for the choices T = B, Id − Cm∗,mS. Note that
in either case T = B0 + O(ρ) due to ‖s− u‖ . ρ (cf. (5.2)).

5.2 Small eigenvalue of stability operator and corresponding
eigenvectors

Lemma 5.1 asserts that the stability operator B has a simple small eigenvalue
well separated from the rest of its spectrum. In the main result of this section,
Corollary 5.2, we give a precise expansion of this eigenvalue and the correspond-
ing left and right eigenvectors. First we introduce some notation.

If z ∈ HI,η∗
satisfies ρ(z)+ρ(z)−1Im z ≤ ρ∗ for ρ∗ ∼ 1 from Lemma 5.1 then we

denote by Ps,F the spectral projection corresponding to the isolated eigenvalue
of Id − CsF , i.e., Ps,F equals PT in (5.7) with T = Id − CsF . We also set
Qs,F

..= Id − Ps,F . Moreover, for such z, we define ψ and σ by

ψ(z) ..= 〈sf2
u , (Id + F )(Id − CsF )−1Qs,F [sf2

u ]〉, σ(z) ..= 〈sf3
u〉. (5.12)

In the following corollary of Lemma 5.1, we consider B as a perturbation of
B0 and correspondingly expand its isolated eigenvalue and eigenvectors. In
[8, Corollary 4.8] a simpler expansion has been performed in the vicinity of
an edge point, i.e., where Imm follows the square root behaviour from Theo-
rem 2.5. However, here we have to expand to higher order because we cover
the neighbourhood of any cubic root cusp from Theorem 2.5 as well.

Corollary 5.2. Let z ∈ HI,η∗
satisfy ρ(z) + ρ(z)−1Im z ≤ ρ∗ for ρ∗ ∼ 1

from Lemma 5.1. Let β0 and β be the isolated eigenvalues in Dε(0) of B0

and B, respectively (cf. Lemma 5.1). We denote by P0 and P the spectral
projections corresponding to β0 and β, respectively. Then with Q0

.

.= Id − P0

and Q .

.= Id − P we have

‖B−1Q‖ + ‖B−1Q‖2 + ‖B−1
0 Q0‖ . 1. (5.13)

Furthermore, we set b0
.

.= P0Cq∗,q[fu] and l0 .

.= P ∗
0C

−1
q,q∗ [fu]. Then b0 and l0

are right and left eigenvectors of B0 associated to β0 and we have

b0 = Cq∗,q[fu] + O(ρ−1Im z), l0 = C−1
q,q∗ [fu] + O(ρ−1Im z), (5.14a)

β0 =
Im z

ρ

π

〈f2
u〉 + O(ρ−2(Im z)2) = O(ρ−1Im z) . (5.14b)

The definitions b .

.= P [b0] and l .

.= P ∗[l0] yield right and left eigenvectors of B
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associated to β which satisfy

b = b0 + 2iρCq∗,q(Id − CsF )−1Qs,F [sf2
u] + O(ρ2 + Im z) , (5.15a)

l = l0 − 2iρC−1
q,q∗(Id − FCs)−1Q∗

s,FF [sf2
u] + O(ρ2 + Im z) , (5.15b)

β〈l , b〉 = πρ−1Im z − 2iρσ + 2ρ2
(
ψ +

σ2

〈f2
u〉
)

+ O(ρ3 + Im z + ρ−2(Im z)2) .

(5.15c)

Moreover, we have

‖b‖ . 1, ‖l‖ . 1. (5.16)

For later use, we record some identities here. From (5.9) in the proof of Lemma
5.1 with Cs[fu] = fu, we obtain the first relation in

Ps,F =
〈fu , · 〉

〈f2
u〉 fu + O(ρ−1Im z), P ∗

s,F = Ps,F + O(ρ−1Im z),

Q∗
s,F = Qs,F + O(ρ−1Im z).

(5.17)

This first relation together with fu = f∗
u implies the second and third one.

Moreover, the definitions of B0 and Q0 yield

B−1
0 Q0 = Cq∗,q(Id − CsF )−1Qs,FC

−1
q∗,q. (5.18)

By a direct computation starting from the definition of fu in (5.4) and the
balanced polar decomposition, m = q∗uq, we obtain

〈fuqq
∗〉 = ρ−1〈Imm〉 = π. (5.19)

Proof. The bounds in (5.13) follow directly from the analytic functional calcu-
lus and Lemma 5.1. The expressions (5.14a) for the right and left eigenvectors,
b0 and l0, corresponding to the simple isolated eigenvalue β0, follow by simple
perturbation theory from

B∗
0C

−1
q,q∗ [fu] = ρ−1(Im z)1 , B0Cq∗,q[fu] = O(ρ−1Im z) , (5.20)

which in turn is a consequence of (5.5) and Cs[fu] = fu. For (5.14b) we take
the scalar product with b0 on both sides of the first equation in (5.20). Then
we use (5.14a) and (5.19).

Now we show (5.15a) and (5.15b). By analytic perturbation theory of B around
B0 we find b = b0 + b1 + O(ρ2) and l = l0 + l1 + O(ρ2) with b1

..= −(B0 −
β0Id)−1Q0E[b0] and l1 ..= −(B∗

0 − β̄0Id)−1Q∗
0E

∗[l0] (cf. Lemma C.1 with E
satisfying (5.3)). Here the invertibility of B0 − β0Id on the range of Q0 is seen
from the second part of Lemma 5.1 with T = B0. In fact,

(B0 − β0Id)−1Q0 = B−1
0 Q0 + O(β0). (5.21)
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Furthermore, we use (5.14a) and obtain the first equalities below:

E[b0] = Cq∗,q(Cs − Cu)F [fu] + O(Im z)

= −2iρCq∗,q[sf2
u] + 2ρ2Cq∗,q[f3

u ] + O(ρ3 + Im z),
(5.22a)

E∗[l0] = C−1
q,q∗F (Cs − C∗

u)[fu] + O(Im z)

= 2iρC−1
q,q∗F [sf2

u] + 2ρ2C−1
q,q∗F [f3

u ] + O(ρ3 + Im z).
(5.22b)

In the second equality of (5.22a), we applied (Cs − Cu)[fu] = 2(Imu −
iReu)(Im u)fu = −2iρsf2

u + 2ρ2f3
u + O(ρ3), ‖Cs − Cu‖ = O(ρ) (cf. (5.2))

and (5.5). For the second equality in (5.22b), we applied (Cs − C∗
u)[fu] =

2iρsf2
u + 2ρ2f3

u + O(ρ3).
For the proof of (5.15c), we start from (C.4), use E = O(ρ) and obtain

β〈l , b〉 = β0〈l0 , b0〉 + 〈l0 , E[b0]〉 − 〈l0 , EB0(B0 − β0Id)−2Q0E[b0]〉 + O(ρ3).
(5.23)

Each of the terms on the right-hand side is computed individually. For the first
term, we use 〈l0 , b0〉 = 〈f2

u〉 + O(ρ−1Im z) due to (5.14a) and thus obtain from
(5.14b) that

β0〈l0 , b0〉 = πρ−1Im z + O(ρ−2(Im z)2).

Using (5.14a) and (5.22) yields for the second term

〈l0 , E[b0]〉 = −2iρ〈sf3
u〉 + 2ρ2〈f4

u〉 + O(ρ3 + Im z)

= −2iρσ + 2ρ2
( σ2

〈f2
u〉 + 〈sf2

u , Qs,F [sf2
u ]〉
)

+ O(ρ3 + Im z),

where we used Id = Ps,F +Qs,F and 〈sf2
u , Ps,F [sf2

u]〉 = σ2/〈f2
u〉 + O(ρ−1Im z)

by (5.17) in the last step.
For the third term, we use (5.14b) and E = O(ρ) which yields

〈l0 , EB0(B0 − β0Id)−2Q0E[b0]〉 = 〈E∗[l0] , (B0 − β0Id)−1Q0E[b0]〉
+ O(β0‖E‖2)

= 〈E∗[l0] , B−1
0 Q0E[b0]〉 + O(ρIm z)

= −4ρ2〈sf2
u , F (Id − CsF )−1Qs,F [sf2

u]〉
+ O(ρIm z + (Im z)2 + ρ3).

Here, we used (5.21) in the second step and (5.22) as well as (5.18) in the last
step. By collecting the results for the three terms in (5.23), we obtain

β〈l , b〉 =
πIm z

ρ
− 2iρσ + 2ρ2

(〈
sf2

u, (Id − F + 2F )(Id − CsF )−1Qs,F [sf2
u]
〉

+
σ2

〈f2
u〉
)

+ O
(
ρ3 + Im z + ρ−2(Im z)2

)
,
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where we used 〈sf2
u , Qs,F [sf2

u]〉 = 〈sf2
u , (Id − F )(Id − CsF )−1Qs,F [sf2

u]〉,
which follows directly from Cs = C∗

s and Cs[sf2
u] = sf2

u. This yields (5.15c).
The bounds in (5.16) are directly implied by (5.15a) and (5.15b), respectively.
This finishes the proof of the corollary.

The following corollary has appeared prior to this work in [8, Proposition 4.4].
We include its short proof for the reader’s convenience.

Corollary 5.3 (Improved bound on B−1). Let Assumptions 4.5 hold true on
an interval I ⊂ R for some η∗ ∈ (0, 1]. Then, uniformly for all z ∈ HI,η∗

, we
have

‖B−1(z)‖2 + ‖B−1(z)‖ .
1

ρ(z)(ρ(z) + |σ(z)|) + ρ(z)−1Im z
(5.24)

with σ from (5.12).

Proof. If ρ ≥ ρ∗ for some ρ∗ ∼ 1 then (5.24) have been shown in (4.22) as
|σ| . 1. Therefore, we prove (5.24) for ρ ≤ ρ∗ and a sufficiently small ρ∗ ∼ 1.
By ‖S‖2→‖·‖ . 1 and Lemma B.2 (ii), it suffices to show the bound for ‖ · ‖2.
We follow the proof of (4.22) until (4.23). Hence, for the improved bound, we
have to show that

|1 − ‖F‖2〈fC∗
u[f ]〉| & ρ(ρ+ |σ|) + ρ−1Im z. (5.25)

We have |1 − ‖F‖2〈fC∗
u[f ]〉| & max{1 − ‖F‖2, |1 − 〈fC∗

u[f ]〉|} & ρ−1Im z+ |1 −
〈fC∗

u[f ]〉| by (4.5). We continue

|1 − 〈fC∗
u[f ]〉| = |1 − 〈fu∗fu∗〉| & 〈f Imuf Imu〉 + |〈f Im ufReu〉|

& ρ2 + ρ|σ| + O(ρ3 + Im z).

Here, we used 1 ≥ 〈fReufReu〉 due to ‖f‖2 = 1, (4.21) as well as
〈f Im ufReu〉 = ρ‖fu‖−2

2 〈f3
us〉 + O(ρ3 + Im z) by (5.9) and (5.2). By possi-

bly shrinking ρ∗ ∼ 1, we thus obtain (5.25). This completes the proof of
(5.24).

5.3 Behaviour of σ and ψ close to the real axis

This subsection is devoted to several results about the behaviour of σ(z) and
ψ(z) close to the real axis. They are summarised in Lemma 5.5 below in the
form as they will be applied in the next section. We now prepare these results
by extending q, u, fu and s to the real axis.

Lemma 5.4 (Extensions of q, u, fu and s). Let I ⊂ R be an interval, θ ∈ (0, 1]
and Assumptions 4.5 hold true on I for some η∗ ∈ (0, 1]. We set Iθ

.

.= {τ ∈
I : dist(τ, ∂I) ≥ θ}. Then we have

(i) The functions q, u and fu have unique uniformly 1/3-Hölder continuous
extensions to HIθ ,η∗

.
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(ii) The function z 7→ ρ(z)−1Im z has a unique uniformly 1/3-Hölder contin-
uous extension to HIθ,η∗

. In particular, we have

lim
z→τ0

ρ(z)−1Im z = 0 (5.26)

for all τ0 ∈ supp ρ ∩ Iθ. Moreover, for z ∈ HIθ,η∗
, we have

dist(z, suppρ) & 1 ⇐⇒ ρ(z)−1Im z & 1.

(iii) There is a threshold ρ∗ ∼ 1 such that s = sign(Reu) has a unique uni-
formly 1/3-Hölder continuous extension to {w ∈ HIθ,η∗

: ρ(w) ≤ ρ∗}.

Proof. For the proof of (i), we will show below that

fm(z) ..= ρ(z)−1Imm(z)

is uniformly 1/3-Hölder continuous on HIθ,η∗
. Indeed, this suffices to obtain

the Hölder-continuity of q and u since their definitions in (3.1) can be rewritten
as

q = |h−1/2gh−1/2 + i1|1/2h1/2 =
(
ρ(z)2

1 + f−1/2
m gf−1

m gf−1/2
m

)1/4
f1/2

m ,

u =
ρ(z)w

|ρ(z)w| =
iρ(z)1 + f

−1/2
m gf

−1/2
m

|iρ(z)1 + f
−1/2
m gf

−1/2
m |

,
(5.27)

where g = Rem, h = Imm, w is defined in (3.1) and z ∈ H is arbitrary. Since
|ρ(z)w| ∼ 1 and fm ∼ 1 on HIθ,η∗

by (4.21) as well as (4.17) and m, hence ρ and
Rem are Hölder-continuous on Iθ × i[0,∞) (Proposition 4.7), it thus suffices
to show that fm is uniformly Hölder-continuous to conclude from (5.27) that
q and u are Hölder-continuous. As fu = ρ−1Imu = (q∗)−1fmq

−1, the Hölder-
continuity of fm, the Hölder-continuity of q and the upper and lower bounds
on q from (4.21) imply that fu can be extended to a 1/3-Hölder continuous
function on HIθ,η∗

.
Therefore, we now complete the proof of (i) by showing the 1/3-Hölder conti-
nuity of fm. To that end, we distinguish three subsets of HIθ,η∗

.
Case 1: On the set {z ∈ HIθ,η∗

: ρ(z) ≥ ρ∗} for any ρ∗ ∼ 1, the uniform 1/3-
Hölder continuity of fm follows from ρ(z) & 1 and the 1/3-Hölder continuity
of m from Proposition 4.7.
Case 2: In order to analyze fm on the set {z ∈ HIθ,η∗

: ρ(z) ≤ ρ∗} for some
ρ∗ ∼ 1 to be chosen later, we take the imaginary part of the Dyson equation,
(2.3), at z ∈ H and obtain

B∗[Imm] = (Im z)m∗m, B∗ ..= Id − Cm∗,mS, (5.28)

where m = m(z). From m = q∗uq, we obtain the representation

Id − Cm∗,mS = Cq∗,q(Id − Cu∗,uF )C−1
q∗,q.
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Hence, (4.5), Lemma 4.8 (ii) and Lemma B.2 (ii) yield the invertibility of B∗
for each z ∈ HI,η∗

as well as

‖B−1
∗ (z)‖2 + ‖B−1

∗ (z)‖ .
1

1 − ‖F‖2
.
ρ(z)

Im z
(5.29)

for all z ∈ HI,η∗
(compare the proof of (4.22)). Owing to the invertibility of

B∗, we conclude from (5.28) that

fm(z) = π
Imm(z)

〈Imm(z)〉 = π
B−1

∗ [m∗m]

〈B−1
∗ [m∗m]〉

(5.30)

for all z ∈ HIθ,η∗
.

On the set {z ∈ HIθ,η∗
: ρ(z)−1Im z ≥ ρ∗} for any ρ∗ ∼ 1, B−1

∗ [m∗m] is
uniformly 1/3-Hölder continuous due to (5.29) and the 1/3-Hölder continuity
of m. Moreover, from (4.5) and Im u ∼ ρ1, we see that 1 − ‖F‖2 ∼ 1 if
ρ(z)−1Im z & 1. Hence, by Lemma B.3 in Appendix B below, (Id −Cu∗,uF )−1

is positivity-preserving and satisfies

(Id − Cu∗,uF )−1[xx∗] ≥ xx∗ (5.31)

for any x ∈ A. We conclude that B−1
∗ = Cq∗,q(Id − Cu∗,uF )−1C−1

q∗,q is
positivity-preserving. Together with (4.21), (5.31) implies 〈B−1

∗ [m∗m]〉 & 1
as ‖m(z)−1‖ . 1 by ‖a‖ . 1, ‖S‖ . 1 and (2.3). Thus, (5.30) yields the
uniform 1/3-Hölder continuity of fm on {z ∈ HIθ,η∗

: ρ(z)−1Im z ≥ ρ∗} for any
ρ∗ ∼ 1.
Case 3: We now show that fm is Hölder-continuous on {z ∈ HIθ,η∗

: ρ(z) +
ρ(z)−1Im z ≤ ρ∗} for some sufficiently small ρ∗ ∼ 1. In fact, Lemma 5.1
applied to T = B∗ yields the existence of a unique eigenvalue β∗ of B∗ of
smallest modulus. Inspecting the proof of Corollary 5.2 for B reveals that this
proof only used B = B0 + O(ρ) about B. Therefore, the same argument works
if B is replaced by B∗ since B∗ = B0 +O(ρ) (compare the proof of Lemma 5.1).
We thus find a right eigenvector b∗ and a left eigenvector l∗ of B∗ associated
to β∗, i.e.,

B∗[b∗] = β∗b∗, (B∗)∗[l∗] = β∗l∗,

which satisfy

b∗ = b0 + O(ρ) = q∗fuq + O(ρ+ ρ−1Im z), (5.32a)

l∗ = l0 + O(ρ) = q−1fu(q∗)−1 + O(ρ+ ρ−1Im z), (5.32b)

β∗〈l∗ , b∗〉 = πρ−1Im z + O(ρ+ ρ−2(Im z)2). (5.32c)

Moreover, we have
‖B−1

∗ Q∗‖ + ‖B−1
∗ Q∗‖2 . 1, (5.33)

where Q∗ denotes the spectral projection of B∗ to the complement of the spec-
tral subspace of β∗.
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Therefore, as β∗ 6= 0 (cf. (5.29)) if Im z > 0, we obtain

Imm = (Im z)B−1
∗ [m∗m] = (Im z)

(
β−1

∗
〈l∗ ,m∗m〉

〈l∗ , b∗〉 b∗ +B−1
∗ Q∗[m∗m]

)
.

Consequently, as Imm > 0, we have

Imm

〈Imm〉 =
〈l∗ ,m∗m〉b∗ + β∗〈l∗ , b∗〉B−1

∗ Q∗[m∗m]

〈l∗ ,m∗m〉〈b∗〉 + β∗〈l∗ , b∗〉〈B−1
∗ Q∗[m∗m]〉

, (5.34)

which together with (5.30) shows that fm is uniformly 1/3-Hölder continuous
on {z ∈ HIθ,η∗

: ρ(z) + ρ(z)−1Im z ≤ ρ∗}. Here, we used that B∗ and, thus, β∗,
l∗, b∗ and B−1

∗ Q∗ are 1/3-Hölder continuous and the denominator in (5.34) is
& 1 due to

〈l∗ ,m∗m〉 = 〈q−1fu(q∗)−1q∗u∗qq∗uq〉 + O(ρ+ ρ−1Im z)

= ρ−1Im 〈q∗uuu∗q〉 + O(ρ + ρ−1Im z) = π + O(ρ+ ρ−1Im z)

by (5.32a) and (5.32b) as well as 〈b∗〉 = π + O(ρ + ρ−1Im z) by (5.19). Here,
we also used (5.32c) and (5.33). This completes the proof of (i).
For the proof of (ii), we multiply (5.28) by ρ(z)−1(m∗m)−1 which yields

ρ(z)−1Im z = (m∗m)−1B∗[fm].

Owing to m∗m ≥ ‖m−1‖−2 & 1 as well as the 1/3-Hölder continuity of
m, B∗ and fm, we obtain the same regularity for z 7→ ρ(z)−1Im z. Since
limη↓0 ρ(τ +iη)−1η = 0 for τ ∈ supp ρ∩Iθ satisfying ρ(τ) > 0, the continuity of
ρ(z)−1Im z directly implies (5.26). If dist(z, suppρ) & 1 then ρ(z)−1Im z & 1
as ρ(z) ≤ Im z/ dist(z, supp ρ)2 which can be seen by applying 〈 · 〉 to the second
bound in (3.7). Conversely, if dist(z, suppρ) . 1 then the Hölder-continuity of
ρ(z)−1Im z and (5.26) imply ρ(z)−1Im z . 1.
We now turn to the proof of (iii). Owing to the first relation in (5.2), there is
ρ∗ ∼ 1 such that |Reu| ≥ 1

21 if z ∈ HIθ,η∗
satisfies ρ(z) ≤ ρ∗. Therefore, we

find a smooth function ϕ : R → [−1, 1] such that ϕ(t) = 1 for all t ∈ [1/2,∞),
ϕ(t) = −1 for all t ∈ (−∞,−1/2] and s(z) = sign(Reu(z)) = ϕ(Re u(z)) for all
z ∈ HIθ,η∗

satisfying ρ(z) ≤ ρ∗. Since ϕ is smooth, we conclude that ϕ is an
operator Lipschitz function [5, Theorem 1.6.1], i.e., ‖ϕ(x) − ϕ(y)‖ ≤ C‖x− y‖
for all self-adjoint x, y ∈ A. Hence, we conclude

‖s(z1) − s(z2)‖ = ‖ϕ(Reu(z1)) − ϕ(Reu(z2))‖ . ‖z1 − z2‖1/3,

where we used that ϕ is operator Lipschitz and u is 1/3-Hölder continuous in
the last step. This completes the proof of Lemma 5.4.

Lemma 5.5 (Properties of ψ and σ). Let I ⊂ R be an interval and θ ∈ (0, 1]. If
m satisfies Assumptions 4.5 on I for some η∗ ∈ (0, 1] then there is a threshold
ρ∗ ∼ 1 such that, with

Hsmall
.

.= {z ∈ HIθ,η∗
: ρ(z) + ρ(z)−1Im z ≤ ρ∗},

we have
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(i) The functions σ and ψ defined in (5.12) have unique uniformly 1/3-Hölder
continuous extensions to {z ∈ HIθ,η∗

: ρ(z) ≤ ρ∗} and Hsmall, respectively.

(ii) Uniformly for all z ∈ Hsmall, we have

ψ(z) + σ(z)2 ∼ 1. (5.35)

Proof. For the proof of (i), we choose ρ∗ ∼ 1 so small that all parts of Lemma
5.4 are applicable. Thus, Lemma 5.4 and σ = 〈sf3

u〉 yield (i) for σ. Similarly,
since q is now defined on HIθ,η∗

, we can define F via (3.4) on this set as well.
Moreover, owing to the uniform 1/3-Hölder continuity of q from Lemma 5.4,
F is uniformly 1/3-Hölder continuous on HIθ,η∗

. Hence, using Lemma 5.1 for
T = Id − CsF , the Hölder-continuity of s and fu, the function ψ has a unique
1/3-Hölder continuous extension to Hsmall. This completes the proof of (i)
for ψ.

We now turn to the proof of (ii). In fact, we will show (5.35) only on {w ∈
HIθ,η∗

: ρ(w) + ρ(w)−1Imw ≤ ρ∗}, where ρ∗ ∼ 1 is chosen small enough such
that Lemma 5.1 is applicable. By the continuity of σ and ψ, the bound (5.35)
immediately extends to the closure of this set. Instead of (5.35), we will prove
that

〈x, (Id + F )(Id − CsF )−1Qs,F [x]〉 + 〈fu , x〉2 ∼ ‖x‖2
2 (5.36)

for all x ∈ A satisfying Cs[x] = x and x = x∗. Since these conditions are
satisfied by x = sf2

u, (5.36) immediately implies (5.35). In fact, the upper
bound in (5.36) follows from ‖(Id−CsF )−1Qs,F ‖2 . 1 by Lemma 5.1, ‖F‖2 ≤ 1
and fu ∼ 1 due to (5.8).

From Cs[x] = x, we conclude

〈x, (Id + F )(Id − CsF )−1Qs,F [x]〉
= 〈x, (Id + CsF )(Id − CsF )−1Qs,F [x]〉
= 〈x, ((CsF − Id) + 2Id)(Id − CsF )−1Qs,F [x]〉
= 〈x, (−Id + 2(Id − CsF )−1)Qs,F [x]〉.

(5.37)

Using (5.17) and Cs[fu] = fu, we see that

CsPs,F [x] = Ps,F [x] + O(ρ−1Im z),

CsQs,F [x] = Qs,F [x] + O(ρ−1Im z)
(5.38)

for x ∈ A satisfying Cs[x] = x. When applied to (5.37), the expansion (5.38)
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and (Id − FCs)−1 = Cs(Id − CsF )−1Cs yield

〈x, (Id + F )(Id − CsF )−1)Qs,F [x]〉
= 〈Qs,F [x] , (−Id + (Id − CsF )−1 + (Id − FCs)−1)Qs,F [x]〉

+ O(‖x‖2
2ρ

−1Im z)

= 〈Qs,F [x] , (Id − FCs)−1(Id − F 2)(Id − CsF )−1Qs,F [x]〉
+ O(‖x‖2

2ρ
−1Im z)

= 〈(Id − CsF )−1Qs,F [x] , Qf (Id − F 2)Qf (Id − CsF )−1Qs,F [x]〉
+ O(‖x‖2

2ρ
−1Im z)

& ‖Qf(Id − CsF )−1Qs,F [x]‖2
2 + O(‖x‖2

2ρ
−1Im z)

& ‖Qs,F [x]‖2
2 + O(‖x‖2

2ρ
−1Im z).

(5.39)

Here, in the first step, we also used the second and third relation in (5.17). In
the third step, we then defined the orthogonal projections Pf

..= 〈f , ·〉f and
Qf

..= Id − Pf , where Ff = ‖F‖2f (cf. Assumptions 4.5 (ii)), and inserted Qf

using
PfQs,F = O(ρ−1Im z) (5.40)

which follows from (5.9) and (5.17). We also used that Qs,F commutes with
(Id −CsF )−1. The fourth step is a consequence of (4.7) and (4.18). In the last
step, we employed QfQs,F = Qs,F +O(ρ−1Im z) by (5.40) and ‖Id−CsF‖2 ≤ 2.
By (5.17), we have ‖Ps,F [x]‖2

2 = 〈fu , x〉2 + O(‖x‖2
2ρ

−1Im z) if x = x∗.
Combining this observation with (5.39) proves (5.36) up to terms of order
O(‖x‖2

2ρ
−1Im z). Hence, possibly shrinking ρ∗ ∼ 1 and requiring ρ(z)−1Im z ≤

ρ∗ complete the proof of the lemma.

Remark 5.6 (Auxiliary quantities as functions of m). Inspecting the proofs
of Lemma 5.4 and Lemma 5.5 reveals that q, u, fu and s as well as σ and ψ
are Lipschitz-continuous functions of m. More precisely, we have the following
statements:

(i) Let c1, c2, c3 > 0 satisfy c1 < c2 and M(1) = M(1)(c1, c2, c3) ⊂ A be a
nonempty subset of A satisfying that

Imm1 ∈ A+, c1〈Imm1〉1 ≤ Imm1 ≤ c2〈Imm1〉1,
∥∥∥∥

Imm1

〈Imm1〉 − Imm2

〈Imm2〉

∥∥∥∥ ≤ c3‖m1 −m2‖
(5.41)

hold true for allm1,m2 ∈ M(1). Then q, u and fu are uniformly Lipschitz-
continuous functions of m on M(1).

(ii) For some ρ∗ > 0, let M(2) = M(2)(c1, c2, c3, ρ∗) ⊂ A be a subset of
A satisfying (5.41) for all m1,m2 ∈ M(2) and 〈Imm〉 ≤ πρ∗ for all
m ∈ M(2). Then there is a (small) ρ∗ ∼ 1 such that s and σ are uniformly
Lipschitz-continuous functions of m on M(2) ⊂ A.
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(iii) Fix c4 > 0. Let M(3) = M(3)(c1, c2, c3, c4, ρ∗) be a subset of a set M(2)

from (ii) with ρ∗ ∼ 1 chosen as in (ii) such that, for any m ∈ M(3), the
operator Id−Cs(m)F (m) has a unique eigenvalue of smallest modulus and
this eigenvalue is simple (recall that F = Cq,q∗SCq∗,q is a function of m
via q = q(m)). Let Qm denote the spectral projection of Id −Cs(m)F (m)
onto the complement of this eigenvalue. Moreover, we require that

∥∥(Id − Cs(m1)F (m1))−1Qm1
− (Id − Cs(m2)F (m2))−1Qm2

∥∥
≤ c4‖m1 −m2‖ (5.42)

holds true for any m1, m2 ∈ M(3). Then ψ is a uniformly Lipschitz-
continuous function of m on M(3).

We always consider M(i), i = 1, 2, 3, with the metric induced by the norm ‖ · ‖
on A. The constants in the Lipschitz-continuity estimates as well as ρ∗ given
in (ii) only depend on the control parameters c1, c2, c3 and c4.

5.4 Bound on the derivatives of m when self-consistent density
of states is small

The careful analysis of the operator B and its inverse allows for the precise
bounds on the derivatives of m in the following lemma.

Lemma 5.7 (Derivatives of m). Let I ⊂ R be an open interval and θ ∈ (0, 1].
If Assumptions 4.5 hold true on I for some η∗ ∈ (0, 1] then there is C ∼ 1 such
that

‖∂k
zm(τ)‖ .

Ckk!

ρ(τ)2k−1(ρ(τ) + |σ(τ)|)k

uniformly for all τ ∈ Iθ satisfying ρ(τ) > 0 and all k ∈ N satisfying k ≥ 1.
Here, we set |σ(τ)| .

.= 0 if ρ(τ) > ρ∗ with ρ∗ as in Lemma 5.5.

Proof. To indicate the mechanism, we first prove that, for all τ ∈ Iθ satisfying
ρ(τ) > 0, we have

‖∂zm(τ)‖ . ρ−1(ρ+ |σ|)−1, ‖∂2
zm(τ)‖ . ρ−3(ρ+ |σ|)−2,

‖∂3
zm(τ)‖ . ρ−5(ρ+ |σ|)−3,

(5.43)

where ρ ..= ρ(τ) and σ ..= σ(τ).
Since ρ(τ) > 0, m is real analytic around τ by Proposition 4.7 and we can
differentiate the Dyson equation, (2.3), with respect to z and evaluate at z = τ .
Differentiating (2.3) iteratively yields

B[∂zm] = m2, B[∂2
zm] = 2(∂zm)m−1(∂zm),

B[∂3
zm] = −6(∂zm)m−1(∂zm)m−1(∂zm)

+ 3(∂2
zm)m−1(∂zm) + 3(∂zm)m−1(∂2

zm)

(5.44)
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where B = Id −CmS and m ..= m(τ). Since ρ(τ) > 0, B is invertible by (5.24),
(5.26) and the 1/3-Hölder continuity of m by Proposition 4.7.
We set ρ ..= ρ(τ). If ρ > ρ∗ for some ρ∗ ∼ 1 then (5.43) follows trivially from
(5.44), ‖B−1‖ . 1 by (5.24) and ‖m‖ + ‖m−1‖ . 1.
We now prove (5.43) for ρ ≤ ρ∗ and some sufficiently small ρ∗ ∼ 1. Under this
assumption, Lemma 5.1 and Corollary 5.2 are applicable. In the remainder
of this proof, the eigenvalue β, the eigenvectors l and b as well as the spectral
projections P and Q are understood to be evaluated at τ . We will now estimate
the image of B−1 applied to the right-hand sides of (5.44) in order to prove
(5.43).

Inserting P + Q = Id on the right-hand side of the first identity in (5.44),
inverting B and using

P =
〈l , · 〉
〈l , b〉 b

as well as B−1[b] = β−1b yield

∂zm =
〈l ,m2〉
β〈l , b〉 b+B−1Q[m2]. (5.45)

We will now estimate 〈l ,m2〉 and β〈l , b〉. From m = q∗sq + O(ρ) by (5.2),
(5.14a), (5.15b) and (5.26), we obtain

〈l ,m2〉 = 〈fusqq
∗s〉 + O(ρ) = π + O(ρ), (5.46)

where we used sfus = fus
2 = fu and (5.19) in the last step.

From (5.15c) and (5.26), we conclude

β〈l , b〉 = −2iρσ + ρ2
(
ψ +

σ2

〈f2
u〉
)

+ O(ρ3). (5.47)

Here and in the remainder of the proof, σ, ψ, fu, q and s are understood to be
evaluated at τ .

Since σ and ψ are real, we conclude |β〈l , b〉| ∼ ρ(ρ+ |σ|) for ρ∗ ∼ 1 sufficiently
small. As ‖B−1Q‖ . 1 and ‖b‖ . 1, we thus obtain ‖∂zm‖ . ρ−1(ρ + |σ|)−1

from (5.45).
Using (5.44), (5.45), ‖∂zm‖ . ρ−1(ρ + |σ|)−1 and ‖B−1‖ . ρ−1(ρ+ |σ|)−1 by
Corollary 5.3 yield

∂2
zm = 2

〈l ,m2〉2〈l , bm−1b〉
(β〈l , b〉)3

b+ O(ρ−2(ρ+ |σ|)−2) = O(ρ−3(ρ+ |σ|)−2). (5.48)

Here, in the last step, we used ‖b‖ . 1 and |〈l , bm−1b〉| . |σ| + ρ due to the
expansion

〈l , bm−1b〉 = 〈q−1fu(q∗)−1q∗fuqq
−1s(q∗)−1q∗fuq〉 + O(ρ) = σ + O(ρ) (5.49)
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as well as |β〈l , b〉| ∼ ρ(ρ + |σ|) and 〈l ,m2〉 = O(1). The proof of (5.49) is a
consequence of (5.14a), (5.15a), (5.15b), (5.26), m−1 = q−1s(q∗)−1 + O(ρ) by
(5.2) as well as q ∼ 1.

Similarly, owing to (5.44), (5.45) and (5.48), we obtain

∂3
zm = 12

〈l ,m2〉3〈l , bm−1b〉2

(β〈l , b〉)5
b+ O(ρ−5(ρ+ |σ|)−3) = O(ρ−5(ρ+ |σ|)−3).

We now estimate ∂k
zm(z) for k > 3. To that end, we will fix a parameter α > 1

and prove that there are ρ∗ ∼ 1, C1 ∼α 1 and C2 ∼α 1 such that, for k ∈ N,
we have

m(k) ..= ∂k
zm = βkb + qk, (5.50)

where m = m(τ) for τ ∈ Iθ satisfying ρ ..= ρ(τ) ≤ ρ∗ and βk ∈ C and qk ∈ ranQ
satisfy

|βk| ≤ k!C1C
k−1
2

kα
ρ−2k+1(ρ+ |σ|)−k, ‖qk‖ ≤ k!C1C

k−1
2

kα
ρ−2k+2(ρ+ |σ|)−k.

(5.51)
Here, ∼α indicates that the constants in the definition of the comparison rela-
tion ∼ will depend on α.

Before we prove (5.50) below, we note two auxiliary statements. First, as
∂zm

−1 = −m−1(∂zm)m−1 it is easy to check the following version of the usual
Leibniz-rule:

∂k
zm

−1 =

k∑

n=1

∑

a1+...+an=k
1≤ai≤k

k!

a1! . . . an!

× (−1)n m−1m(a1)m−1m(a2) . . .m−1m(an)m−1

(5.52)

for any k ∈ N. Here, in the sum over a1 + . . .+ an = k, the order of a1, . . . , an

has to be taken into account since m−1 and m(a) do not commute in general.

Second, we also have the following auxiliary bound. For all k ∈ N, n ∈ N with
n ≤ k and α > 1, we have

∑

a1+...+an=k
1≤ai≤k

1

aα
1 · · · aα

n

≤ (2α+1ζ(α))n−1

kα
, (5.53)

where ζ(α) =
∑∞

n=1 n
−α is Riemann’s zeta function. The bound in (5.53) can

be proven by induction.

We now show (5.50) and (5.51) by induction on k. The initial step of the
induction with k = 1 has been established in (5.45) with β1 = 〈l ,m2〉/(β〈l , b〉),
q1 = B−1Q[m2] and some sufficiently large C1 ∼ 1. Next, we establish the
induction step by proving (5.50) and (5.51) under the assumption that they
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hold true for all derivatives of lower order. From the induction hypothesis, we
conclude

‖m(a)‖ ≤ k!C1C
a−1
2

kα

‖b‖ + ρ

ρ2a−1(ρ+ |σ|)a
(5.54)

for all a ∈ N satisfying 1 ≤ a ≤ k − 1.
For k ≥ 2, we differentiate (2.3) k-times and obtain

B[∂k
zm] = rk

..= ∂k
zm+m

(
∂k

zm
−1
)
m. (5.55)

By separating the contributions for n = 1 and n ≥ 2 in (5.52), we conclude

rk =

k∑

n=3

∑

a1+...+an=k
1≤ai<k−1

k!

a1! . . . an!
(−1)n m(a1)m−1 . . .m−1m(an)

+

k−1∑

a=1

k!

a!(k − a)!
m(a)m−1m(k−a).

(5.56)

Since n is at least 3 in the first sum, we obtain from (5.54) and (5.53) that

k∑

n=3

∑

a1+...+an=k
1≤ai<k−1

k!

a1! . . . an!
‖m(a1)m−1 . . .m−1m(an)‖

≤ k!

kα

‖b‖ + ρ

ρ2k−3(ρ+ |σ|)k

k∑

n=3

Cn
1 M

n−1
α Ck−n

2 ,

(5.57)

where Mα
..= 2α+2ζ(α)‖m−1‖(‖b‖ + ρ). A similar argument yields

k−1∑

a=1

k!

a!(k − a)!
‖m(a)m−1m(k−a)‖ ≤ k!

kα

‖b‖ + ρ

ρ2k−2(ρ+ |σ|)k
C2

1MαC
k−2
2 .

Thus, we choose C2 ≥ 2MαC1 and conclude

‖rk‖ ≤ k!

kα

‖b‖ + ρ

ρ2k−2(ρ+ |σ|)k

MαC
2
1C

k
2

C2
2 (1 −MαC1/C2)

.

Therefore, we obtain the bound on ‖qk‖ in (5.51) for C2 ∼ 1 sufficiently large
since qk = Q[∂k

zm] = B−1Q[rk] and ‖B−1Q‖ . 1.
Moreover, βk = 〈l , rk〉/(β〈l , b〉). Hence, by using the decomposition of rk in
(5.56) and (5.57), we obtain

|βk| ≤ k!C1C
k−1
2

kα

‖b‖ + ρ

ρ2k−1(ρ+ |σ|)k

‖l‖ρ2

|β〈l , b〉|
C2

1M
2
α

C2
2 (1 −MαC1/C2)

+
k−1∑

a=1

k!

a!(k − a)!

|〈l ,m(a)m−1m(k−a)〉|
|β〈l , b〉|
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We use (5.50) for m(a) and m(k−a) in the argument of the last sum, which
yields

1

a!(k − a)!

|〈l ,m(a)m−1m(k−a)〉|
|β〈l , b〉|

≤ |βa|
a!

|βk−a|
(k − a)!

|〈l , bm−1b〉|
|β〈l , b〉|

+
C2

1C
k−2
2

aα(k − a)αρ2k−1(ρ+ |σ|)k

ρ2‖l‖‖m−1‖
|β〈l , b〉| (2‖b‖ + ρ)

≤ C2
1C

k−2
2

aα(k − a)αρ2k−1(ρ+ |σ|)k

ρ(ρ+ |σ|)
|β〈l , b〉|

( |〈l , bm−1b〉|
ρ+ |σ| + ‖l‖‖m−1‖(2‖b‖ + ρ)

)

Here, we applied (5.51) to estimate qa and qk−a as well as βa and βk−a. Since
|β〈l , b〉| ∼ ρ(ρ + |σ|) as shown below (5.47) and |〈l , bm−1b〉| . |σ| + ρ due
to (5.49), we obtain the bound on |βk| in (5.51) by using (5.53) to perform
the summation over a. This completes the induction argument, which yields
(5.50) and (5.51) for all k ∈ N by possibly increasing C2 ∼ 1. By choosing, say,
α = 2, we immediately conclude Lemma 5.7 for τ ∈ Iθ satisfying ρ(τ) ≤ ρ∗. If
ρ(τ) > ρ∗ then ‖B−1‖ . 1. Hence, a simple induction argument using (5.55)
and (5.56), which hold true for ρ(τ) > ρ∗ as well, yields some C ∼ 1 such that

‖∂k
zm(τ)‖ . k!Ck

for all k ∈ N satisfying k ≥ 1. Since ρ(τ) . 1 for all τ ∈ Iθ, we obtain
Lemma 5.7 in the missing regime.

6 The cubic equation

The following Proposition 6.1 is the main result of this section. It asserts that
m is determined by the solution to a cubic equation, (6.3) below, close to points
τ0 ∈ supp ρ of small density ρ(τ0). In Section 7, this cubic equation will allow
for a classification of the small local minima of τ 7→ ρ(τ). To have a short
notation for the elements of supp ρ of small density well separated from the
edges of I, we introduce the set

Dε,θ
..= {τ ∈ supp ρ ∩ I : ρ(τ) ∈ [0, ε], dist(τ, ∂I) ≥ θ}

for ε > 0 and θ > 0.
The leading order terms of the cubic and quadratic coefficients in (6.3) are given
by ψ(τ0) and σ(τ0), respectively. For their definitions, we refer to Lemma 5.5
(i) and (5.12).

Proposition 6.1 (Cubic equation for shape analysis). Let I ⊂ R be an open
interval and θ ∈ (0, 1]. If Assumptions 4.5 hold true on I for some η∗ ∈ (0, 1]
then there are thresholds ρ∗ ∼ 1 and δ∗ ∼ 1 such that, for all τ0 ∈ Dρ∗,θ, the
following hold true:
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(a) The eigenvectors l = l(τ0), b = b(τ0) and the spectral projection Q = Q(τ0)
of B(τ0) exist as in Corollary 5.2. Consequently, for all ω ∈ [−δ∗, δ∗], we
have

m(τ0 + ω) −m(τ0) = Θ(ω)b+ r(ω), (6.1)

where Θ: [−δ∗, δ∗] → C and r : [−δ∗, δ∗] → A are defined by

Θ(ω) .

.=
〈 l

〈b , l〉 , m(τ0 + ω) −m(τ0)
〉
, r(ω) .

.= Q[m(τ0 +ω)−m(τ0)].

(6.2)
Moreover, b = b∗ + O(ρ) and l = l∗ + O(ρ) as well as b + b∗ ∼ 1 and
l + l∗ ∼ 1 with ρ = ρ(τ0) = 〈Imm(τ0)〉/π.

(b) The function Θ satisfies the cubic equation

µ3Θ3(ω) + µ2Θ2(ω) + µ1Θ(ω) + ωΞ(ω) = 0 (6.3)

for all ω ∈ [−δ∗, δ∗]. The complex coefficients µ3, µ2, µ1 and Ξ in (6.3)
fulfill

µ3 = ψ + O(ρ), (6.4a)

µ2 = σ + iρ
(

3ψ +
σ2

〈f2
u〉
)

+ O(ρ2), (6.4b)

µ1 = 2iρσ − 2ρ2
(
ψ +

σ2

〈f2
u〉
)

+ O(ρ3), (6.4c)

Ξ(ω) = π(1 + ν(ω)) + O(ρ), (6.4d)

where σ = σ(τ0) as well as ψ = ψ(τ0) are the extensions of σ and ψ from
(5.12) to the real line (see Lemma 5.5 (i)). For the error term ν(ω), we
have

|ν(ω)| . |Θ(ω)| + |ω| . |ω|1/3. (6.5)

for all ω ∈ [−δ∗, δ∗]. Uniformly for τ0 ∈ Dρ∗,θ, we have

ψ + σ2 ∼ 1. (6.6)

(c) Moreover, Θ(ω) and r(ω) are bounded by

|Θ(ω)| . min
{ |ω|
ρ2
, |ω|1/3

}
, (6.7a)

‖r(ω)‖ . |Θ(ω)|2 + |ω|, (6.7b)

uniformly for all ω ∈ [−δ∗, δ∗].

(d1) If ρ > 0 then Θ and r are differentiable in ω at ω = 0.
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(d2) If ρ = 0 then we have

Im Θ(ω) ≥ 0, |Im ν(ω)| . Im Θ(ω),

‖Im r(ω)‖ . (|Θ(ω)| + |ω|)Im Θ(ω),
(6.8)

for all ω ∈ [−δ∗, δ∗] and Re Θ is non-decreasing on the connected compo-
nents of {ω ∈ [−δ∗, δ∗] : Im Θ(ω) = 0}.

(e) The function σ : Dρ∗,θ → R is uniformly 1/3-Hölder continuous.

The previous proposition is the analogue of Lemma 9.1 in [3]. It should also be
compared to [8, Proposition 4.12], where the shape analysis was performed only
in a neighbourhood of an edge and thus a lower order accuracy was sufficient.
The cubic equation for Θ, (6.3), will be obtained from an A-valued quadratic
equation for ∆ ..= m(τ0 + ω) − m(τ0) and the results of Section 5. In fact, we
have

(Id − CmS)[∆] = ωm2 +
ω

2

(
m∆ + ∆m

)
+

1

2

(
mS[∆]∆ + ∆S[∆]m

)
, (6.9)

where τ0, τ0 +ω ∈ Iθ
..= {τ ∈ I : dist(τ, ∂I) ≥ θ} and m ..= m(τ0) (see the proof

of Proposition 6.1 in Section 6.3 below for a derivation of (6.9)). Projecting (6.9)
onto the direction b and its complement, where b is the unstable direction of B
defined in Corollary 5.2, yields the cubic equation, (6.3), for the contribution
Θ of ∆ parallel with b. In the next subsection, this derivation is presented in a
more abstract and transparent setting of a general A-valued quadratic equation.
After that, the coefficients of the cubic equation are computed in Lemma 6.3
in the setup of (6.9) before we prove Proposition 6.1 in Section 6.3.

6.1 General cubic equation

Let B, T : A → A be linear maps, A : A × A → A a bilinear map and K : A ×
A → A a map. For ∆, e ∈ A, we consider the quadratic equation

B[∆] −A[∆,∆] − T [e] −K[e,∆] = 0 . (6.10)

We view this as an equation for ∆, where e is a (small) error term. This
quadratic equation is a generalization of the stability equation (6.9) for the
Dyson equation, (2.3) (see (6.23) and (6.28) below for the concrete choices of
B, T , A, e and K in the setting of (6.9)).
Suppose that B has a non-degenerate isolated eigenvalue β and a corresponding
eigenvector b, i.e., B[b] = βb and Dr(β) ∩ Spec(B) = {β} for some r > 0.
We denote the spectral projection corresponding to β and its complementary
projection by P and Q, respectively, i.e.,

P ..= − 1

2πi

∮

∂Dr(β)

(B − ωId)−1dω =
〈l , · 〉
〈l , b〉 b , Q ..= Id − P . (6.11)
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Here, l ∈ A is an eigenvector of B∗ corresponding to its eigenvalue β, i.e.,
B∗[l] = βl. In the following, we will assume that

‖B−1Q[x]‖ . ‖x‖, |〈l , b〉|−1 + ‖b‖ + ‖l‖ . 1, ‖A[x, y]‖ . ‖x‖‖y‖,
‖T [e]‖ . ‖e‖, ‖K[e, y]‖ . ‖e‖‖y‖

(6.12)
for all x, y ∈ A and the e ∈ A from (6.10). The guiding idea is that the main
contribution in the decomposition

∆ = Θb+Q[∆], Θ ..=
〈l ,∆〉
〈l , b〉 (6.13)

is given by Θ, i.e., the coefficient of ∆ in the direction b, under the assumption
that ∆ is small. If A = K = 0 then this would be a simple linear stability
analysis of the equation B[∆] = small around an isolated eigenvalue of B. The
presence of the quadratic terms in (6.10) requires to follow second and third
order terms carefully. In the following lemma, we show that the behaviour of
Θ is governed by a scalar-valued cubic equation (see (6.14) below) and that
Q[∆] is indeed dominated by Θ. The implicit constants in (6.12) are the model
parameters in Section 6.1. We stress that the implicit constants in our estimates
only depend on these model parameters and not on any other quantity.

Lemma 6.2 (General cubic equation). Let β be a non-degenerate isolated eigen-
value of B. Let ∆ ∈ A and e ∈ A satisfy (6.10), Θ be defined as in (6.13) and
the conditions in (6.12) hold true. Then there is ε ∼ 1 such that if ‖∆‖ ≤ ε
then Θ satisfies the cubic equation

µ3 Θ3 + µ2 Θ2 + µ1 Θ + µ0 = ẽ, (6.14)

with some ẽ = O(|Θ|4 + |Θ|‖e‖ + ‖e‖2) and with coefficients

µ3 = 〈l , A[b, B−1QA[b, b]] +A[B−1QA[b, b], b]〉,
µ2 = 〈l , A[b, b]〉,
µ1 = −β〈l , b〉,
µ0 = 〈l , T [e]〉.

(6.15)

Moreover, we have

Q[∆] = B−1QT [e] + O(|Θ|2 + ‖e‖2). (6.16)

If we additionally assume that Im ∆, l, b ∈ A+ and K is linear in its second
argument as well as

B[x]∗ = B[x∗], A[x, y]∗ = A[x∗, y∗], T [e]∗ = T [e], K[e, y]∗ = K[e, y∗]
(6.17)

for all x, y ∈ A then there are ε ∼ 1 and δ ∼ 1 such that ‖∆‖ ≤ ε and ‖e‖ ≤ δ
also imply

‖ImQ[∆]‖ . (|Θ| + ‖e‖)Im Θ, (6.18a)

|Im ẽ| . (|Θ|3 + ‖e‖)Im Θ. (6.18b)
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Proof. Setting r ..= Q[∆], the quadratic equation (6.10) reads as

Θβb+Br = T [e] +A[∆,∆] +K[e,∆]. (6.19)

By applying Q and afterwards B−1 to the previous relation, we conclude that

r =B−1QT [e] + Θ2B−1QA[b, b] + e1,

e1
..= ΘB−1Q(A[b, r] +A[r, b]) +B−1QA[r, r] +B−1QK[e,∆].

(6.20)

We have ‖e1‖ . ‖r‖|Θ| + ‖r‖2 + ‖e‖‖∆‖ and ‖r‖ . ‖e‖ + |Θ|2 + ‖e1‖. Hence,

‖r‖ . |Θ|2 + ‖e‖ + ‖r‖2 + ‖e‖‖∆‖.

From the second bound in (6.12), we conclude ‖P‖ + ‖Q‖ . 1 and, thus,
‖r‖ + |Θ| . ‖∆‖. By choosing ε ∼ 1 small enough, assuming ‖∆‖ ≤ ε and
using ‖r‖ . ‖∆‖ to incorporate ‖r‖2 into the right-hand side, we obtain

‖r‖ . |Θ|2 + ‖e‖. (6.21a)

By (6.12) and (6.13), we have ‖∆‖ . |Θ| + ‖r‖. This together with (6.21a)
plugged into the estimate on ‖e1‖ implies

‖e1‖ . |Θ|3 + ‖e‖|Θ| + ‖e‖2. (6.21b)

This proves (6.16). Defining e2
..= e1 + B−1QT [e] yields ∆ = Θb +

Θ2B−1QA[b, b] + e2. By plugging this into (6.19) and computing the scalar
product with 〈l , · 〉, we obtain

Θβ〈l , b〉 = 〈l , T [e]〉 + Θ2〈l , A[b, b]〉
+ Θ3〈l , A[b, B−1QA[b, b]] +A[B−1QA[b, b], b]〉 − ẽ,

(6.22a)

where we introduced

ẽ ..= − 〈l,K[e,∆] + Θ4A[B−1QA[b, b], B−1QA[b, b]]

+A[∆, e2] +A[e2,∆] +A[e2, e2]〉.
(6.22b)

Since ‖e2‖ . |Θ|3 + ‖e‖ by (6.21b) and ‖∆‖ . |Θ| + ‖e‖ by (6.21a) and (6.16),
we conclude ẽ = O(|Θ|4 + |Θ|‖e‖ + ‖e‖2). Therefore, Θ satisfies (6.14) with the
coefficients from (6.15).
For the rest of the proof, we additionally assume that the relations in (6.17)
hold true. Taking the imaginary part of (6.20) and arguing similarly as after
(6.20) yield

‖Im e1‖ . (‖r‖ + ‖e‖)Im Θ + (‖r‖ + |Θ| + ‖e‖)‖Im r‖,
‖Im r‖ . |Θ|Im Θ + ‖Im e1‖.

Hence, (6.18a) and ‖Im e1‖ . (|Θ|2 + ‖e‖)Im Θ follow for ‖∆‖ ≤ ε and ‖e‖ ≤ δ
with some sufficiently small ε ∼ 1 and δ ∼ 1. From this and taking the
imaginary part in (6.22b), we conclude (6.18b) as ‖Im ∆‖ . Im Θ by (6.18a)
and Im e2 = Im e1. This completes the proof of Lemma 6.2.
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6.2 Cubic equation associated to Dyson stability equation

Owing to (6.15), the coefficients µ3, µ2 and µ1 are completely determined by
the bilinear map A and the operator B. For analyzing the Dyson equation,
(2.3), owing to (6.9), the natural choices for A and B are

B ..= Id − CmS, A[x, y] ..=
1

2
(mS[x]y + yS[x]m) (6.23)

with x, y ∈ A. In particular, Q in (6.11) has to be understood with respect
to B = Id − CmS. In the next lemma, we compute µ3, µ2 and µ1 with these
choices. This computation involves the inverse of Id − CsF .
In order to directly ensure its invertibility, we will assume Im z > 0. This
assumption will be removed in the proof of Proposition 6.1 in Section 6.3 below.

Lemma 6.3 (Coefficients of the cubic for Dyson equation). Let A and B be
defined as in (6.23). If Assumptions 4.5 hold true on an interval I ⊂ R for
some η∗ ∈ (0, 1] then there is a threshold ρ∗ ∼ 1 such that, for z ∈ HI,η∗

satisfying ρ(z) + ρ(z)−1Im z ≤ ρ∗, the coefficients of the cubic (6.14) have the
expansions

µ3 = ψ + O(ρ+ ρ−1Im z), (6.24a)

µ2 = σ + iρ
(

3ψ +
σ2

〈f2
u〉
)

+ O(ρ2 + ρ−1Im z), (6.24b)

µ1 = −πρ−1Im z + 2iρσ − 2ρ2
(
ψ +

σ2

〈f2
u〉
)

+ O(ρ3 + Im z + ρ−2(Im z)2),

(6.24c)

where σ = σ(z) and ψ = ψ(z) are defined as in (5.12). Moreover, we also have

〈l ,mS[b]b〉 = σ + iρ
(

3ψ +
σ2

〈f2
u〉
)

+ O(ρ2 + ρ−1Im z). (6.25)

Proof. In this proof, we use the convention that concatenation of maps on
A and evaluation of these maps in elements of A are prioritized before the
multiplication in A, i.e.,

AB[b]c ..= (A[B[b]])c

if A and B are maps on A and b, c ∈ A. We will obtain all expansions in (6.24)
from (6.15) by using the special choices forA andB from (6.23). Before starting
with the proof of (6.24a), we establish a few identities. Recalling m = q∗uq
from (3.2) and (3.4), we first notice the following alternative expression for A

A[x, y] =
1

2
Cq∗,q

[
uFC−1

q∗,q[x]C−1
q∗ ,q[y] + C−1

q∗,q[y]FC−1
q∗,q[x]u

]
(6.26)

with x, y ∈ A. Owing to (4.21), the operators Cq∗,q and C−1
q∗,q are bounded.

We choose ρ∗ ∼ 1 small enough so that Lemma 5.1 is applicable. By using

Documenta Mathematica 25 (2020) 1421–1539



1470 J. Alt, L. Erdős, T. Krüger

u = s+ iIm u+ O(ρ2) due to (5.2) as well as (5.4), (5.5) and (5.14a) in (6.26),
we obtain

A[b0, b0] = Cq∗,q[sf2
u + iρf3

u] + O(ρ2 + ρ−1Im z). (6.27)

Combining (6.27) and (5.18) implies

B−1
0 Q0A[b0, b0] = Cq∗,q(Id − CsF )−1Qs,F [sf2

u] + O(ρ+ ρ−1Im z).

We now prove the expansion (6.24a) for µ3 by starting from (6.15) and using
l = l0 + O(ρ), b = b0 + O(ρ) by (5.15), B−1Q = B−1

0 Q0 + O(ρ) due to
B = B0 + O(ρ) and Lemma 5.1 and the previous identities. This yields

µ3 = 〈l0 , A[B−1
0 Q0A[b0, b0], b0] +A[b0, B

−1
0 Q0A[b0, b0]]〉 + O(ρ)

=
1

2
〈fu , uF (Id − CsF )−1Qs,F [sf2

u]fu + uF [fu](Id − CsF )−1Qs,F [sf2
u ]

+ fuF (Id − CsF )−1Qs,F [sf2
u ] + (Id − CsF )−1Qs,F [sf2

u]F [fu]〉
+ O(ρ + ρ−1Im z)

= 〈sf2
u , (Id + F )(Id − CsF )−1Qs,F [sf2

u]〉 + O(ρ+ ρ−1Im z).

Here, we also used F [fu] = fu +O(ρ−1Im z) by (5.5) and u = s+O(ρ) by (5.2).
This shows (6.24a).
In order to compute µ2, we define

b1
..= 2iρCq∗,q(Id − CsF )−1Qs,F [sf2

u],

l1 ..= −2iρC−1
q,q∗(Id − FCs)−1Q∗

s,FF [sf2
u].

Then we use (5.15a) as well as (5.15b) and obtain

〈l , A[b, b]〉 = 〈l0 , A[b0, b0]〉 + 〈l1 , A[b0, b0]〉 + 〈l0 , A[b1, b0]〉 + 〈l0 , A[b0, b1]〉
+ O(ρ2 + Im z)

= 〈sf3
u〉 + iρ〈f4

u〉 + 2iρ〈sf2
u , (Id + 2F )(Id − CsF )−1Qs,F [sf2

u]〉
+ O(ρ2 + ρ−1Im z)

= σ + iρ
(

3ψ +
σ2

〈f2
u〉
)

+ O(ρ2 + ρ−1Im z).

Here, in the second step, we used (5.14a), (6.27) and the definition of l1 to
compute the first and second term, (5.14a), the definition of b1 and (6.26) to
compute the third and fourth term. In the last step, we then employed

〈f4
u〉 + 〈sf2

u , 2(Id + 2F )(Id − CsF )−1Qs,F [sf2
u]〉

= 〈sf2
u , (Id + 2(Id + 2F )(Id − CsF )−1)Qs,F [sf2

u]〉
+ 〈sf2

u , Ps,F [sf2
u ]〉

= 3〈sf2
u , (Id + F )(Id − CsF )−1Qs,F [sf2

u]〉 +
σ2

〈f2
u〉

+ O(ρ−1Im z).
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Here, we applied (5.17), Cs = C∗
s and Cs[sf2

u] = sf2
u. Since µ2 = 〈l , A[b, b]〉 by

(6.15), this completes the proof of (6.24b). A similar computation as the one
for µ2 yields (6.25).
Since µ1 = −β〈l , b〉 by (6.15), the expansion in (5.15c) immediately yields
(6.24c). This completes the proof of the lemma.

6.3 The cubic equation for the shape analysis

In this subsection, we will prove Proposition 6.1 by using Lemma 6.2 and
Lemma 6.3. Therefore, in addition to the choices of A and B in (6.23), we
choose ∆ = m(τ0 + ω) −m(τ0), τ0, τ0 + ω ∈ I and

e = ω1, T [x] = xm2, K[x, y] =
1

2
(xmy + ymx) (6.28)

for x, y ∈ A with m = m(τ0) in (6.10).

Proof of Proposition 6.1. We choose ρ∗ ∼ 1 such that Lemma 5.1 and Corol-
lary 5.2 are applicable. We fix τ0 ∈ Dρ∗,θ and set m = m(τ0). The statements
about l and b in (a) of Proposition 6.1 follow from Corollary 5.2. In particular,
|〈l , b〉| ∼ 1. Thus, the conditions in (6.12) are a direct consequence of Assump-
tions 4.5, (4.21), Lemma 5.1 and Corollary 5.2. Furthermore, if ρ = 0 then we
have m = m∗ and, thus, (6.17) follows. For ω ∈ [−δ∗, δ∗], δ∗ ..= θ/2, we set
∆ = m(τ0 + ω) − m. Since Θ(ω)b = P [∆], r(ω) = Q[∆] and P + Q = Id, we
immediately obtain (6.1). This proves (a).
Next, we derive (6.9) for ∆ ..= m(z0 + ω) − m(z0) and m ..= m(z0) with
z0

..= τ0 + iη, τ0 ∈ Dρ∗,θ, ω ∈ [−δ∗, δ∗] and η ∈ (0, η∗]. We subtract (2.3)
evaluated at z = z0 from (2.3) evaluated at z = z0 + ω and obtain (6.9) with
∆ and m defined at z0 = τ0 + iη. Directly taking the limit η ↓ 0 yields (6.9)
with the original choices of ∆ and m at z0 = τ0 by the Hölder-continuity of m
on HI′,η∗

, I ′ ..= {τ ∈ I : dist(τ, ∂I) ≥ θ/2}, due to Proposition 4.7.
Lemma 6.2 is applicable for |ω| ≤ δ∗ with some sufficiently small δ∗ ∼ 1 since
this guarantees ‖∆‖ ≤ ε owing to the Hölder-continuity of m. Hence, Lemma
6.2 yields a cubic equation for Θ as defined in (6.2) with l = l(z0), b = b(z0)
and z0 = τ0 + iη. The coefficients of this cubic equation are given in Lemma
6.2. Owing to the uniform 1/3-Hölder continuity of z 7→ m(z) on HI′,η∗

, we
conclude from the definition of Θ and r ..= Q[∆] in (6.2), the boundedness of
Q and B−1Q as well as (6.16) that |Θ(ω)| . |ω|1/3, i.e., the second bound in
(6.7a), and (6.7b) uniformly for η ∈ [0, η∗].
We now compute the coefficients of the cubic in (6.3) for τ0 ∈ Dρ∗,θ. Set
z0

..= τ0 + iη. Note that for η = Im z0 > 0 these coefficients were already
given in (6.24), so the only task is to check their limit behaviour as η ↓ 0.
Owing to (5.26), the expansions in (6.4a), (6.4b) and (6.4c) follow from (6.24a),
(6.24b) and (6.24c), respectively, using the continuity of σ, ψ and fu on Hsmall

by Lemma 5.5 and Lemma 5.4, respectively. We now show (6.4d). With the
definitions of ẽ and µ0 from Lemma 6.2 (see (6.22b) and (6.15), respectively), we
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set Ξ(ω) ..= ω−1(µ0 − ẽ) for arbitrary |ω| ≤ δ∗. Since l = C−1
q,q∗ [fu]+O(ρ+ρ−1η)

due to (5.14a) and (5.15b), as well as m2 = (Rem)2 + O(ρ) = Cq∗,qCs[qq∗] +
O(ρ) due to Imm ∼ ρ1 and (5.2), we have

ω−1µ0 = 〈l∗m2〉 = 〈fuqq
∗〉 + O(ρ+ ρ−1η) = π + O(ρ+ ρ−1η). (6.29)

Here, we also used Cs[fu] = fu in the second step and (5.19) in the last step.
We set ν(ω) ..= −(ωπ)−1ẽ. We recall e = ω1. Since ẽ = O(|Θ(ω)|4 + |Θ(ω)||ω|+
|ω|2) and |Θ(ω)| . |ω|1/3, we obtain (6.5). This yields (6.4d) by using (5.26) in
(6.29). Since (5.35) implies (6.6), this completes the proof of (b) for τ0 ∈ Dρ∗,θ

and we assume η = 0 in the following.

If ρ = ρ(τ0) > 0 then (4.20) yields the missing first bound in (6.7a) completing
the proof of part (c). Moreover, in this case, the definitions of Θ and r imply
their differentiability at ω = 0 due to Proposition 4.7. This shows (d1).

We now verify (d2). Since ρ = 0, we have Imm(τ0) = 0 and thus Im Θ(ω) ≥ 0
by the positive semidefiniteness of Imm(τ0 + ω). Since µ0 is real as l and T [e]
are self-adjoint, we obtain the second bound in (6.8) directly from (6.18b) and
|Θ(ω)| . |ω|1/3. The third bound in (6.8) follows from (6.18a) and e = ω1.
Since ρ = 0 and hence b = Cq∗,q[fu] by (5.15a) and l = C−1

q,q∗ [fu] by (5.15b) are
positive definite elements of A, Re Θ(ω)+〈l ,m(τ0)〉/〈l , b〉 is the real part of the
Stieltjes transform of a positive measure µ evaluated on the real axis. The real
part of a Stieltjes transform is non-decreasing on the connected components
of the complement in R of the support of its defining measure. Therefore, as
the support of µ is contained in R \ int({ω ∈ [−δ∗, δ∗] : Im Θ(ω) = 0}), where
int denotes the interior, due to Imm(τ0) = 0, we conclude that Re Θ(ω) is
non-decreasing on the connected components of {ω ∈ [−δ∗, δ∗] : Im Θ(ω) = 0}.

Lemma 5.5 (i) directly implies the Hölder-continuity in (e), which completes
the proof of Proposition 6.1.

7 Cubic analysis

In this section, we prove Theorem 2.5. It will follow directly from its more
precise and extended formulation, Theorem 7.1 below, which is the main result
of this section. In contrast to Theorem 2.5, Theorem 7.1 treats all small local
minima τ0 of ρ – not only those, where ρ vanishes. Moreover, the error terms
are effective and express explicitly the dependence on ρ(τ0), thus, making the
statement uniform in the value of the density at the local minimum. Theorem
7.1 describes the behaviour of Imm close to local minima of ρ inside of supp ρ.
This behaviour is governed by the universal shape functions Ψedge : [0,∞) → R
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and Ψmin : R → R defined by

Ψedge(λ) ..=

√
(1 + λ)λ

(1 + 2λ+ 2
√

(1 + λ)λ)
2/3

+ (1 + 2λ− 2
√

(1 + λ)λ)
2/3

+ 1
,

(7.1a)

Ψmin(λ) ..=

√
1 + λ2

(
√

1 + λ2 + λ)2/3 + (
√

1 + λ2 − λ)2/3 − 1
− 1. (7.1b)

We remind the reader that the comparison relations ., & and ∼ were defined
Convention 3.4. In the following Theorem 7.1, the model parameters for these
relations are given by c1, c2 and c3 in (3.10), k3 in (4.16) and θ in the definition
of Iθ in (7.2) below.

Theorem 7.1 (Behaviour of Imm close to local minima of ρ). Let (a, S) be a
data pair such that (3.10) is satisfied. Let m be the solution to the associated
Dyson equation (2.3) and assume that (4.16) holds true on HI,η∗

for some
interval I ⊂ R and some η∗ ∈ (0, 1]. We write v .

.= π−1Imm and, for some
θ ∈ (0, 1], we set

Iθ
.

.= {τ ∈ I : dist(τ, ∂I) ≥ θ}. (7.2)

Then there are thresholds ρ∗ ∼ 1 and δ∗ ∼ 1 such that if τ0 ∈ supp ρ ∩ Iθ is a
local minimum of ρ and ρ(τ0) ≤ ρ∗ then

v(τ0 + ω) = v(τ0) + hΨ(ω) + O
(
ρ(τ0)|ω|1/3

1(|ω| . ρ(τ0)3) + Ψ(ω)2
)

(7.3)

for ω ∈ [−δ∗, δ∗] ∩D with some h = h(τ0) ∈ A satisfying h ∼ 1. Moreover, the
set D and the function Ψ depend only on the type of τ0 in the following way:

(a) Left edge: If τ0 ∈ (∂ supp ρ) \ {inf supp ρ} is the infimum of a connected
component of supp ρ and the lower edge of the corresponding gap is in
Iθ, i.e., τ1

.

.= sup((−∞, τ0) ∩ supp ρ) ∈ Iθ, then (7.3) holds true with
v(τ0) = 0, D = [0,∞) and

Ψ(ω) = ∆1/3Ψedge

( ω
∆

)

where ∆ .

.= τ0 − τ1. If τ0 = inf supp ρ, or more generally ρ(τ) = 0 for all
τ ∈ [τ0 − ε, τ0] with some ε ∼ 1, then the same conclusion holds true with
∆ .

.= 1.

(b) Right edge: If τ0 ∈ ∂ suppρ is the supremum of a connected component
then a similar statement as in the case of a left edge holds true.

(c) Cusp: If τ0 /∈ ∂ supp ρ and ρ(τ0) = 0 then (7.3) holds true with D = R

and Ψ(ω) = |ω|1/3.
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(d) Internal minimum: If τ0 /∈ ∂ supp ρ and ρ(τ0) > 0 then there is ρ̃ ∼ ρ(τ0)
such that (7.3) holds true with D = R and

Ψ(ω) = ρ̃Ψmin

( ω
ρ̃3

)
.

Theorem 7.1 (a) and (b) are formulated in order to track the dependence of
v near an edge on the gap size ∆. The simpler case of a regular edge, i.e.
when ∆ ∼ 1, e.g. at the extreme edges, is detailed in Section 7.6, especially in
Proposition 7.18 below.
Before we proceed we conclude Theorem 2.5 from Theorem 7.1.

Proof of Theorem 2.5. Since S ∈ Σflat, the condition (3.10) is satisfied for some
positive constants c1, c2 and c3. Moreover, by possibly shrinking the interval
I and using the continuity of m, we find constants k3 > 0 and η∗ ∈ (0, 1] such
that ‖m(z)‖ ≤ k3 for all z ∈ HI,η∗

. Thus, the assumptions of Theorem 7.1 are
satisfied and Theorem 2.5 follows.

We remark that working on the slightly smaller interval Iθ instead of I ensures
some stronger a-priori control on m due to the results in the previous sections,
in particular, Proposition 4.7.
If the conditions of Theorem 7.1 hold true, i.e., the data pair (a, S) satisfies
(3.10) and m satisfies (4.16) on HI,η∗

, then Assumptions 4.5 are fulfilled on
HI,η∗

(compare Lemma 4.8 (ii)). In fact, Theorem 7.1 holds true under As-
sumptions 4.5 which will become apparent from the proof.
Theorem 7.1 contains the most important results of the shape analysis. When
considering ρ = 〈v〉 instead of v the coefficient in front of Ψ(ω) in (7.3) can be
precisely identified as demonstrated in part (i) of Theorem 7.2 below. More-
over, Theorem 7.2 contains additional information on the size of the connected
components of supp ρ and the distance between local minima; these are col-
lected in part (ii). Note that the same information were also proven in the
commutative setup in Theorem 2.6 of [3] and Theorem 7.2 shows that they are
also available in our general von Neumann algebra setup.
We remark that Ψmin(ω) = Ψmin(−ω) for ω ∈ R and, for ω > 0, ∆ > 0 and
ρ̃ > 0, we have

∆1/3Ψedge

( ω
∆

)
∼ min

{ ω1/2

∆1/6
, ω1/3

}
, (7.4a)

ρ̃Ψmin

( ω
ρ̃3

)
∼ min

{ω2

ρ̃5
, ω1/3

}
. (7.4b)

In the following Theorem 7.2, the model parameters for the comparison rela-
tions ∼, . and & are the constants k1, . . . , k8 from Assumptions 4.5 and θ in
the definition of Iθ in (7.2).

Theorem 7.2 (Behaviour of ρ near almost cusp points; Structure of the set of
minima of ρ). Let I ⊂ R be an open interval and θ ∈ (0, 1]. If Assumptions 4.5
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hold true on I for some η∗ ∈ (0, 1] (in particular, if the data pair (a, S) satisfies
(3.10) and m satisfies (4.16) on HI,η∗

) then the following statements hold true

(i) There are thresholds ρ∗ ∼ 1, σ∗ ∼ 1 and δ∗ ∼ 1 such that if τ0 ∈
supp ρ ∩ Iθ is a local minimum of ρ satisfying ρ(τ0) ≤ ρ∗ then we set
Γ .

.=
√

27π/(2ψ) with ψ = ψ(τ0) defined as in Lemma 5.5 and have

(a) (Left edge with small gap) If τ0 ∈ ∂ supp ρ \ {inf supp ρ} is the infi-
mum of a connected component of supp ρ, |σ(τ0)| ≤ σ∗ and the lower
edge of the gap lies in Iθ, i.e., τ1

.

.= sup((−∞, τ0) ∩ supp ρ) ∈ Iθ,
then

ρ(τ0 + ω) = (4Γ)
1/3

Ψ(ω) + O
(
|σ(τ0)|Ψ(ω) + Ψ(ω)2

)
,

Ψ(ω) .

.= ∆1/3Ψedge

( ω
∆

) (7.5a)

for all ω ∈ [0, δ∗]. Here, Γ ∼ 1 and ψ ∼ 1.

(b) (Right edge with small gap) If τ0 ∈ ∂ supp ρ \ {sup supp ρ} is the
supremum of a connected component then a similar statement as in
the case of a left edge holds true.

(c) (Cusp) If τ0 /∈ ∂ supp ρ and ρ(τ0) = 0 then

ρ(τ0 + ω) =
Γ1/3

41/3
|ω|1/3 + O

(
|ω|2/3

)
(7.5b)

for all ω ∈ [−δ∗, δ∗]. Here, Γ ∼ 1 and ψ ∼ 1.

(d) (Nonzero local minimum) If τ0 /∈ ∂ supp ρ and ρ(τ0) > 0 then

ρ(τ0 + ω) = ρ(τ0)

+ Γ1/3Ψ(ω) ×





1 + O(ρ(τ0)1/2), if |ω| . ρ(τ0)7/2,

1 + O
(

ρ(τ0)4

|ω|

)
, if ρ(τ0)7/2 . |ω| . ρ(τ0)3,

1 + O(Ψ(ω)), if ρ(τ0)3 . |ω| ≤ δ∗,

Ψ(ω) .

.= ρ̃Ψmin

(
ω

ρ̃3

)
, ρ̃ .

.=
ρ(τ0)

Γ1/3

(7.5c)
for all ω ∈ R. Here, Γ ∼ 1, ψ ∼ 1 and the terms 1 + O(. . .) indicate
multiplicative error factors.

(ii) If supp ρ ∩ Iθ 6= ∅ then supp ρ ∩ Iθ consists of K ∼ 1 intervals, i.e.,
there are α1, . . . , αK ∈ ∂ supp ρ ∪ ∂Iθ and β1, . . . , βK ∈ ∂ supp ρ ∪ ∂Iθ,
αi < βi < αi+1, such that

supp ρ ∩ Iθ =
K⋃

i=1

[αi, βi] (7.6)
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and βi − αi ∼ 1 if βi 6= sup Iθ and αi 6= inf Iθ.

For ρ∗ > 0, we define the set Mρ∗
of small local minima τ of ρ which are

not edges of supp ρ, i.e.,

Mρ∗

.

.= {τ ∈ (supp ρ \ ∂ supp ρ) ∩ Iθ :

ρ(τ) ≤ ρ∗, ρ has a local minimum at τ}. (7.7)

There is a threshold ρ∗ ∼ 1 such that, for all γ1, γ2 ∈ Mρ∗
satisfying

γ1 6= γ2 and for all i = 1, . . . ,K, we have

|γ1 − γ2| ∼ 1, |αi − γ1| ∼ 1, |βi − γ1| ∼ 1 (7.8)

if αi 6= inf Iθ and βi 6= sup Iθ.

The factors 41/3 and 4−1/3 in the cases (a) and (c) of part (i) of Theorem 7.2
can be eliminated by redefining Γ, Ψedge and Ψmin to bring the leading term on
the right-hand sides into the uniform Γ1/3Ψ(ω) form. We have not used these
redefined versions of Γ, Ψedge and Ψmin here in order to be consistent with [3].
We remark that part (i) (a) and (b) of Theorem 7.2 cover only the case of
τ0 ∈ ∂ supp ρ with sufficiently small |σ(τ0)|. We will establish later that the
smallness of |σ(τ0)| corresponds to the smallness of the adjacent gap τ0 − τ1

(see Lemma 7.15 below). Together with the cusps and the small nonzero lo-
cal minima, they form the almost cusp points of ρ (see the set Pcusp in (10.4)
later). At the extreme edges inf supp ρ and sup supp ρ, σ is not so small. Thus,
the exclusion of these edges in the statement of Theorem 7.2 (a) and (b) is
in fact superfluous. If |σ(τ0)| is not so small then ρ(τ0 + ω) is well approxi-
mated by a rescaled version of (ω±)1/2 (positive and negative part of ω for left
and right edge, respectively). The precise statement and scaling are given in
Proposition 7.18 below.

Remark 7.3 (Scaling relations for ρ(z)). Let I ⊂ R be an open interval, θ ∈
(0, 1] and ρ(z) ..= 〈Imm(z)〉/π for z ∈ H. If Assumptions 4.5 hold true on I
with η∗ = 1 then there are ε ∼ 1 and ρ∗ ∼ 1 such that

(i) (Inside support around an edge with small gap) Let τ0, τ1 ∈ supp ρ ∩ Iθ

satisfy τ0 < τ1 and (τ0, τ1) ∩ supp ρ = ∅. We set ∆ ..= τ1 − τ0. For
ω ∈ [0, ε], we have

ρ(τ0 − ω + iη) ∼ ρ(τ1 + ω + iη) ∼ (ω + η)1/2

(∆ + ω + η)1/6

(ii) (Inside a gap) Let τ0, τ1 ∈ supp ρ∩Iθ satisfy τ0 < τ1 and (τ0, τ1)∩supp ρ =
∅. We set ∆ ..= τ1 − τ0. Then, for τ ∈ [τ0, τ1] and η ∈ [0, ε], we have

ρ(τ + iη) ∼ η

(∆ + η)1/6

( 1

(τ1 − τ + η)1/2
+

1

(τ − τ0 + η)1/2

)
.
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(iii) (Around a left edge with large gap) Let τ0 ∈ Iθ ∩∂ supp ρ satisfy ρ(τ) = 0
for all τ ∈ [τ0 − δ, τ0] and some δ ∼ 1. Then, for ω ∈ [0, ε], we have

ρ(τ0 + ω + iη) ∼ (ω + η)1/2,

ρ(τ0 − ω + iη) ∼ η

(ω + η)1/2
.

A similar statement holds true for a right edge τ0, i.e., if ρ(τ) = 0 for all
τ ∈ [τ0, τ0 + δ] and some δ ∼ 1.

(iv) (Close to a local minimum) If τ0 ∈ supp ρ \ ∂ supp ρ is a local minimum
of ρ such that ρ(τ0) ≤ ρ∗ then, for all ω ∈ [−ε, ε] and η ∈ [0, ε], we have

ρ(τ0 + ω + iη) ∼ ρ(τ0) + (|ω| + η)1/3.

These scaling relations for ρ(z) = 〈Imm(z)〉/π are proven in the same way as
the corresponding ones in Corollary A.1 of [3]. The proof in [3] simply relied on
the fact that 〈Imm(z)〉 is the harmonic extension of πρ to the complex upper
half-plane and the behavior of ρ close to its local minima and thus is applicable
equally well in the current situation, due to Theorem 7.2.

7.1 Shape regular points

In the following definition, we introduce the notion of a shape regular point
which collects the properties of m necessary for the proof of Theorem 7.1.
Proposition 7.5 below explains how the statements of Theorem 7.1 are trans-
ferred to this more general setup. In fact, Lemma 4.8 (ii) and Proposition 6.1
show that, under the assumptions of Theorem 7.1, any point τ0 ∈ supp ρ ∩ I
of sufficiently small density ρ(τ0) is a shape regular point for m in the sense of
Definition 7.4 below. By explicitly spelling out the properties of m really used
in the proof of Theorem 7.1 we made our argument modular because a similar
analysis around shape regular points will be applied in later works as well.
This modularity, however, requires to reinterpret the concept of comparison
relations. In earlier sections we used the comparison relation ∼, . and the
O-notation introduced in Convention 3.4 to hide irrelevant constants in var-
ious estimates that depended only on the model parameters c1, c2, c3 from
(3.10), k3 from (4.16) and θ from (7.2), these are also the model parameters in
Theorem 7.1. The model parameters in Theorem 7.2 are given by k1, . . . , k8 in
Assumptions 4.5 and θ in the definition of Iθ.
The formulation of Definition 7.4 also involves comparison relations instead
of carrying constants; in the application these constants depend on the orig-
inal model parameters. When Proposition 7.5 is proven, the corresponding
constants directly depend on the constants in Definition 7.4, hence they also
indirectly depend on the original model parameters when we apply it to the
proof of Theorem 7.1. Since these dependences are somewhat involved and we
do not want to overload the paper with different concepts of comparison rela-
tions, for simplicity, for the purpose of Theorem 7.1, the reader may think of
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the implicit constants in every ∼-relation depending only on the original model
parameters c1, c2, c3, k3 and θ.

Definition 7.4 (Admissibility for shape analysis, shape regular points). Let m
be the solution of the Dyson equation (2.3) associated to a data pair (a, S) ∈
Asa × Σ.

(i) Let τ0 ∈ R, J ⊂ R be an open interval with 0 ∈ J , Θ: J → C and
r : J → A be continuous functions and b ∈ A. We say thatm is (J,Θ, b, r)-
admissible for the shape analysis at τ0 if the following conditions are
satisfied:

(a) The function m : H → A has a continuous extension to τ0 +J , which
we also denote by m. The relation (6.1) and the bounds (6.7a) as
well as (6.7b) hold true for all ω ∈ J .

(b) The function Θ satisfies the cubic equation (6.3) for all ω ∈ J with
the coefficients

µ3 = ψ + O(ρ),

µ2 = σ + i3ψρ+ O(ρ2 + ρ|σ|),
µ1 = −2ρ2ψ + iκ1ρσ + O(ρ3 + ρ2|σ|),

Ξ(ω) = κ(1 + ν(ω)) + O(ρ),

where ρ ..= 〈Imm(τ0)〉/π and ψ, κ ≥ 0 as well as σ, κ1 ∈ R are some
parameters satisfying (6.6) and κ, |κ1| ∼ 1. The function ν : J → C

satisfies (6.5).

(c) The element b ∈ A in (6.1) fulfils b = b∗ + O(ρ) and b+ b∗ ∼ 1.

(d1) If ρ > 0 then Θ and r are differentiable in ω at ω = 0.

(d2) If ρ = 0 then (6.8) holds true for all ω ∈ J and Re Θ is non-decreasing
on the connected components of {ω ∈ J : Im Θ(ω) = 0}.

(ii) Let τ0 ∈ R and J ⊂ R be an open interval with 0 ∈ J . We say that τ0 is a
shape regular point for m on J if m is (J,Θ, b, r)-admissible for the shape
analysis at τ0 for some continuous functions Θ: J → C and r : J → A as
well as b ∈ A.

The key technical step in the proof of Theorem 7.1 is the following Proposition
7.5; it shows that Theorem 7.1 holds under more general weaker conditions, in
fact shape admissibility is sufficient. For the proof of Theorem 7.1 we will first
check shape regularity from Proposition 6.1 and then we will prove Proposition
7.5; both steps are done in Section 7.4 below.

Proposition 7.5 (Theorem 7.1 under weaker assumptions). For the solution
m to the Dyson equation (2.3), we write v .

.= π−1Imm, ρ = 〈v〉.
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There are thresholds ρ∗ ∼ 1 and δ∗ ∼ 1 such that if ρ(τ0) ≤ ρ∗ and τ0 ∈ supp ρ
is a local minimum of ρ as well as a shape regular point for m on J with an open
interval J ⊂ R satisfying 0 ∈ J then (7.3) holds true for all ω ∈ [−δ∗, δ∗]∩J∩D.
Here, as in Theorem 7.1, h = h(τ0) ∈ A with h ∼ 1 and D as well as Ψ depend
only on the type of τ0 in the following way:

Suppose that τ0 ∈ ∂ supp ρ is the infimum of a connected component of supp ρ.
If ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0] with some ε ∼ 1 (e.g. τ0 = inf supp ρ) and
|inf J | & 1, then the conclusion of case (a) in Theorem 7.1 holds true with
∆ = 1 and v(τ0) = 0.

If τ0 6= inf supp ρ and τ1
.

.= sup((−∞, τ0) ∩ supp ρ) is a shape regular point
for m, ∆ . 1 with ∆ .

.= τ0 − τ1 and |σ(τ0) − σ(τ1)| . |τ0 − τ1|1/3 then the
conclusion of case (a) in Theorem 7.1 holds true with this choice of ∆ as well
as v(τ0) = 0.

Similarly to (a), the statement of case (b) in Theorem 7.1 can be translated to
the current setup. The cases (c) and (d) of Theorem 7.1, cusp and internal
minimum, respectively, hold true without any changes.

Furthermore, suppose that τ0 ∈ supp ρ is a shape regular point for m and
ρ(τ0) = 0, then τ0 is a cusp if σ(τ0) = 0 and τ0 is an edge, in particular
τ0 ∈ ∂ supp ρ, if σ(τ0) 6= 0.

Similarly, the following Proposition 7.6 is the analogue of Theorem 7.2 under
the sole requirement of shape admissibility. Owing to the weaker assumptions,
the error term in (7.9) as well as the result in (7.10) of Proposition 7.6 are
weaker than the corresponding results in Theorem 7.2. We will first show
Proposition 7.6 and then conclude Theorem 7.2 by using extra arguments for
the stronger conclusions; both proofs will be presented in Section 7.5 below.

At a shape regular point τ0 ∈ R, we set Γ ..=
√

27κ/(2ψ) (cf. Theorem 7.7 (i)
below), where κ = κ(τ0) and ψ = ψ(τ0) are defined as in Definition 7.4 (i) (b).

Proposition 7.6 (Behaviour of ρ near almost cusp points, set of minima of ρ
under weaker assumptions). Let m be the solution to the Dyson equation, (2.3),
and ρ = π−1〈Imm〉. The following statements hold true

(i) There are thresholds ρ∗ ∼ 1, σ∗ ∼ 1 and δ∗ ∼ 1 such that if τ0 ∈ supp ρ
is a shape regular point for m on an open interval J ⊂ R with 0 ∈ J ,
ρ(τ0) ≤ ρ∗ and τ0 is a local minimum of ρ then we have

(a) (Left edge with small gap) If τ0 ∈ ∂ supp ρ \ {inf supp ρ} is the
infimum of a connected component of supp ρ, |σ(τ0)| ≤ σ∗ and
τ1

.

.= sup((−∞, τ0)∩suppρ) is a shape regular point satisfying ∆ . 1
for ∆ .

.= τ0 − τ1 and |σ(τ0) −σ(τ1)| . |τ0 − τ1|1/3 then (7.5a) for all
ω ∈ [0, δ∗] ∩ J .

(b) (Right edge with small gap) If τ0 ∈ ∂ supp ρ \ {sup supp ρ} is the
supremum of a connected component then a similar statement as in
the case of a left edge holds true.
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(c) (Cusp) If τ0 /∈ ∂ supp ρ and ρ(τ0) = 0 then (7.5b) holds true for all
ω ∈ [−δ∗, δ∗] ∩ J .

(d) (Internal minimum) If τ0 /∈ ∂ supp ρ and ρ(τ0) > 0 then

ρ(τ0 + ω) = ρ(τ0) + Γ1/3Ψ(ω) + O
( |ω|
ρ(τ0)

1(|ω| . ρ(τ0)3) + Ψ(ω)2

)
,

Ψ(ω) .

.= ρ̃Ψmin

(
ω

ρ̃3

)
, ρ̃ .

.=
ρ(τ0)

Γ1/3

(7.9)
for all ω ∈ [−δ∗, δ∗] ∩ J .

(ii) Let I ⊂ R be an open interval with supp ρ ∩ I 6= ∅ and |I| . 1 and let m
have a continuous extension to the closure I of I. Let J ⊂ R be an open
interval with 0 ∈ J and dist(0, ∂J) & 1 such that J + (∂ supp ρ) ∩ I ⊂
I. We assume that all points in (∂ supp ρ) ∩ I are shape regular points
for m on J and all estimates in Definition 7.4 hold true uniformly on
(∂ supp ρ) ∩ I. If |σ(τ0) − σ(τ1)| . |τ0 − τ1|1/3 uniformly for all τ0, τ1 ∈
(∂ supp ρ) ∩ I then supp ρ ∩ I consists of K ∼ 1 intervals, i.e., there are
α1, . . . , αK ∈ ∂ supp ρ ∪ ∂I and β1, . . . , βK ∈ ∂ supp ρ ∪ ∂I, αi < βi <
αi+1, such that (7.6) holds true with Iθ replaced by I and βi − αi ∼ 1 if
βi 6= sup I and αi 6= inf I.

If Mρ∗
is defined as in (7.7) then there is a threshold ρ∗ ∼ 1 such that if, in

addition to the previous conditions in (ii), all points of (Mρ∗
∪∂ supp ρ)∩I

are shape regular points for m on J and all estimates in Definition 7.4
hold true uniformly on (Mρ∗

∪ ∂ suppρ) ∩ I then, for γ ∈ Mρ∗
, we have

|αi − γ| ∼ 1 and |βi − γ| ∼ 1 if αi 6= inf I and βi 6= sup I. Moreover, for
any γ1, γ2 ∈ Mρ∗

, we have either

|γ1 − γ2| ∼ 1, or |γ1 − γ2| . min{ρ(γ1), ρ(γ2)}4. (7.10)

If ρ(γ1) = 0 or ρ(γ2) = 0 then, for γ1 6= γ2, only the first case occurs.

An important step towards Theorem 7.1 and Proposition 7.5 will be to prove
similar behaviours for Θ as Im Θ is the leading term in v. These behaviours are
collected in the following theorem, Theorem 7.7. It has weaker assumptions
than those of Theorem 7.1 and those required in Proposition 7.5 – in particular,
on the coefficient µ1 in the cubic equation (6.3). However, these assumptions
will be sufficient for the purpose of Theorem 7.7.

Theorem 7.7 (Abstract cubic equation). Let Θ(ω) be a continuous solution to
the cubic equation

µ3Θ(ω)3 + µ2Θ(ω)2 + µ1Θ(ω) + ωΞ(ω) = 0 (7.11)

for ω ∈ J , where J ⊂ R is an open interval with 0 ∈ J . We assume that the
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coefficients satisfy
µ3 = ψ + O(ρ),

µ2 = σ + 3iψρ+ O(ρ2 + ρ|σ|),
µ1 = −2ρ2ψ + O(ρ3 + ρ|σ|),

Ξ(ω) = κ(1 + ν(ω)) + O(ρ)

with some fixed parameters ψ ≥ 0, ρ ≥ 0, σ ∈ R and κ ∼ 1. The cubic equation
is assumed to be stable in the sense that

ψ + σ2 ∼ 1. (7.12)

Moreover, for all ω ∈ J , we require the following bounds on ν and Θ:

|ν(ω)| . |ω|1/3, (7.13a)

|Θ(ω)| . |ω|1/3. (7.13b)

Then the following statements hold true:

(i) (ρ > 0) For any Π∗ ∼ 1, there is a threshold ρ∗ ∼ 1 such that if ρ ∈ (0, ρ∗]
and |σ| ≤ Π∗ρ2 then we have

Im Θ(ω) = ρΨmin

(
Γ
ω

ρ3

)
+ O

(
min{ρ−1|ω|, |ω|2/3}

)
, (7.14)

with Γ .

.=
√

27κ/(2ψ). Note that Γ ∼ 1 if ρ∗ ∼ 1 is small enough.

(ii) (ρ = 0) If ρ = 0 and we additionally assume Im Θ(ω) ≥ 0 for ω ∈ J , Re Θ
is non-decreasing on the connected components of {ω ∈ J : Im Θ(ω) = 0}
as well as

|Im ν(ω)| . Im Θ(ω) (7.15)

for all ω ∈ J then we have

(a) If σ = 0 then Im Θ(ω) has a cubic cusp at ω = 0, i.e.,

Im Θ(ω) =

√
3

2

( κ
ψ

)1/3

|ω|1/3 + O(|ω|2/3). (7.16)

(b) If σ 6= 0 then Im Θ(ω) has a square root edge at ω = 0, i.e., there is
c∗ ∼ 1 such that

Im Θ(ω) =





c∆̂1/3Ψedge

( |ω|
∆̂

)
+ O

(
(|ν(ω)| + ε(ω))ε(ω)

)
,

if signω = signσ,

0, if ω ∈ − signσ[0, c∗|σ|3],

(7.17)
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where ∆̂ ∈ (0,∞), c ∈ (0,∞) and ε : R → [0,∞) are defined by

∆̂ .

.= min
{ 4

27κ

|σ|3
ψ2

, 1
}
, c .

.= 3
√
κ

∆̂1/6

|σ|1/2
,

ε(ω) .

.= min
{ |ω|1/2

∆̂1/6
, |ω|1/3

}
.

(7.18)

We have ∆̂ ∼ |σ|3 and c ∼ 1. Moreover, for signω = signσ, we have

|Θ(ω)| . ε(ω). (7.19)

7.2 Cubic equations in normal form

The core of the proof of Theorem 7.7 is to bring (7.11) into a normal form by
a change of variables. We will first explain the analysis of these normal forms,
especially the mechanism of choosing the right branch of the solution based
upon selection principles that will be derived from the constraints on Θ given
in Theorem 7.7. Then, in Section 7.3, we show how to bring (7.11) to these
normal forms.
In the following proposition, we study a special solution Ω(λ) to a one-
parameter family of cubic equations in normal forms with constant term Λ(λ)
(or 2Λ(λ)), where Λ(λ) is a perturbation of the identity map λ 7→ λ. Here,
a-priori, the real parameter λ is always contained in an (possibly unbounded)
interval around 0. This range of definition will not be explicitly indicated in the
statements but will be explicitly restricted for their conclusions. We compare
the solution to this perturbed cubic equation with the solution to the cubic
equation with constant term λ. Depending on the precise type of the cubic
equation, the choice of the solution is based on some of the following selection
principles

SP1 λ 7→ Ω(λ) is continuous

SP2 Ω(0) = Ω0 for some given Ω0 ∈ C

SP3 Im (Ω(λ) − Ω(0)) ≥ 0,

SP4’ |Im Λ(λ)| ≤ γ|λ|Im Ω(λ) for some γ > 0 and Re Ω(λ) is non-decreasing
on the connected components of {λ : Im Ω(λ) = 0}.

We use the notation SP4’ to distinguish this selection principle from SP-4
which was introduced in Lemma 9.9 of [3].
We will make use of the following standard convention for complex powers.

Definition 7.8 (Complex powers). We define C \ (−∞, 0) → C, ζ 7→ ζγ for
γ ∈ C by ζγ ..= exp(γ log ζ), where log : C\(−∞, 0) → C is a continuous branch
of the complex logarithm with log 1 = 0.

With this convention, we record Cardano’s formula as follows:
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Proposition 7.9 (Cardano). The three roots of Ω3 − 3Ω + 2ζ, ζ ∈ C, are

Ω̂+(ζ), Ω̂−(ζ) and Ω̂0(ζ) which are defined by

Ω̂±(ζ) .

.=
1

2
(Φ+(ζ) + Φ−(ζ)) ± i

√
3

2
(Φ+(ζ) − Φ−(ζ)),

Ω̂0(ζ) .

.= −(Φ+(ζ) + Φ−(ζ)),

(7.20)

where

Φ±(ζ) =





(ζ ±
√
ζ2 − 1)1/3, if Re ζ ≥ 1,

(ζ ± i
√

1 − ζ2)1/3, if |Re ζ| < 1,

−(−ζ ∓
√
ζ2 − 1)1/3, if Re ζ ≤ −1.

Proposition 7.10 (Solution to the cubic in normal form). Let Ω(λ) satisfy
SP1 and SP2.

(i) (Non-zero local minimum) Let Ω0 =
√

3(i +χ1) in SP2 and Ω(λ) satisfy

Ω(λ)3 + 3Ω(λ) + 2Λ(λ) = 0, Λ(λ) = (1 + χ2 + µ(λ))λ + χ3, (7.21)

with |µ(λ)| . α|λ|1/3, α > 0. Then there exist δ ∼ 1 and χ∗ ∼ 1 such
that if α, |χ1|, |χ2|, |χ3| ≤ χ∗ then

Ω(λ) − Ω0 = Ω̂(λ) − i
√

3 + O
(
(α+ |χ2| + |χ3|) min{|λ|, |λ|2/3}

)
(7.22)

for all λ ∈ R satisfying |λ| ≤ δ/α3, where Ω̂(λ) .

.= Φodd(λ) + i
√

3Φeven(λ)
and Φodd and Φeven are the odd and even part of the function Φ: C → C,
Φ(ζ) .

.= (
√

1 + ζ2 + ζ)1/3, respectively.

Moreover, we have for |λ| ≤ δ/α3 that

|Ω(λ) − Ω0| . min{|λ|, |λ|1/3}. (7.23)

In the following, we assume that Ω(λ), in addition to SP1 and SP2, also
satisfies SP3 and SP4’.

(ii) (Simple edge) Let Ω0 = 0 in SP2 and Ω(λ) be a solution to

Ω2(λ) + Λ(λ) = 0, Λ(λ) = (1 + µ(λ))λ. (7.24)

If |µ(λ)| ≤ γ2/3|λ|1/3 for the γ > 0 of SP4’ then there is c∗ ∼ 1 such that

Ω(λ) = Ω̂(λ) + O
(
|µ(λ)||λ|1/2

)
,

Ω̂(λ) .

.=

{
iλ1/2, if λ ∈ [0, c∗γ−2],

−(−λ)1/2, if λ ∈ [−c∗γ−2, 0],

(7.25)

and Im Ω(λ) = 0 as well as Imµ(λ) = 0 for all λ ∈ [−c∗γ−2, 0].
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(iii) (Sharp cusp) Let Ω0 = 0 in SP2, γ ∼ 1 in SP4’ and Ω(λ) be a solution
to

Ω3(λ) + Λ(λ) = 0, Λ(λ) = (1 + µ(λ))λ. (7.26)

If |µ(λ)| . |λ|1/3 then there is δ ∼ 1 such that

Ω(λ) = Ω̂(λ) + O
(
|µ(λ)||λ|1/3

)
,

Ω̂(λ) .

.=
1

2

{
(−1 + i

√
3)λ1/3, if λ ∈ (0, δ],

(1 + i
√

3)|λ|1/3, if λ ∈ [−δ, 0].

(7.27)

(iv) (Two nearby edges) Let Ω0 = s for some s ∈ {±1} in SP2, γ ∼ 1 in
SP4’ and Ω(λ) be a solution to

Ω(λ)3 − 3Ω(λ) + 2Λ(λ) = 0, Λ(λ) = (1 + µ(λ))λ + s. (7.28)

Then there are δ ∼ 1, ̺ ∼ 1 and γ∗ ∼ 1 such that if |µ(λ)| . γ̂|λ|1/3 for
some γ̂ ∈ [0, γ∗] then

(a) We have

Ω(λ) = Ω̂+(1 + |λ|) + O
(
|µ(λ)| min{|λ|1/2, |λ|1/3}

)
, (7.29)

for all λ ∈ s(0, 2δ/γ̂3]. (Recall the definition of Ω̂+ from (7.20).)
Moreover, for all λ ∈ s(0, 2δ/γ̂3], we have

|Ω(λ) − Ω0| . min
{

|λ|1/2, |λ|1/3
}
. (7.30)

(b) For all λ ∈ −s(0, 2 − ̺γ̂], we have

Im Ω(λ) . γ̂1/2. (7.31)

(c) We have
Im Ω(−s(2 + ̺γ̂)) > 0. (7.32)

The core of each part in Proposition 7.10 is choosing the correct cubic root. For
the most complicated part (iv), we state this choice in the following auxiliary
lemma. For its formulation, we introduce the intervals

I1
..= −s[−λ1, 0), I2

..= −s(0, λ2], I3
..= −s[λ3, λ1], (7.33)

where we used the definitions

λ1
..= 2

δ

γ̂3
, λ2

..= 2 − ̺γ̂, λ3
..= 2 + ̺γ̂. (7.34)

These definitions are modelled after (9.105) in [3]. We will choose γ̂ = ∆̂1/3 in
the proof of Theorem 7.7 below. Then λ1 corresponds to an expansion range δ
in the ω coordinate. Note that with the above choice of γ̂, we obtain the same
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λ1 as in (9.105) of [3]. However, λ2 and λ3 differ slightly from those in [3],
where λ2,3 were set to be 2 ∓ ̺|σ|. Nevertheless, we will see below that γ̂ ∼ |σ|
but they are not equal in general.
For given δ, ̺ ∼ 1, we will always choose γ∗ ∼ 1 so small that γ̂ ≤ γ∗ implies

λ1 ≥ 4, 1 ≤ λ2 < 2 < λ3 ≤ 3.

Therefore, the intervals in (7.33) are disjoint and nonempty.

Lemma 7.11 (Choice of cubic roots in Proposition 7.10 (iv)). Under the as-
sumptions of Proposition 7.10 (iv), there are δ, ̺, γ∗ ∼ 1 such that if γ̂ ≤ γ∗
then we have

Ω|Ik
= Ω̂+ ◦ Λ|Ik

for k = 1, 2, 3. Here, Ω̂+ is defined as in (7.20).

Proof. The proof is the same as the one of Lemma 9.14 in [3] but SP-4 in [3]
is replaced by SP4’ above. In that proof, SP-4 is used only in the part titled
“Choice of a2”. We redo this part here. Recall that a2 = 0,± denoted the index
such that Ω|I2

= Ω̂a2
◦ Λ|I2

and our goal is to show a2 = +. Similarly as in

[3], we assume without loss of generality s = −1. Since limλ↓−1 Ω̂−(λ) = 2 and
Ω(0) = −1 by SP2, we conclude a2 6= −.
We now prove a2 6= 0. To that end, we take the imaginary part of the cubic
equation, (7.28), and obtain

3((Re Ω)2 − 1)Im Ω = −2λImµ(λ) + (Im Ω)3. (7.35)

Suppose that a2 = 0. From the definition of Ω̂0, Λ(λ) = (1 + µ(λ))λ − 1 and
|µ(λ)| . γ̂|λ|1/3 we obtain

Re Ω̂0(Λ(λ)) ≤ −1−c|λ|1/2+Cγ̂1/2λ2/3, |Im Ω̂0(Λ(λ))| . γ̂1/2λ2/3, (7.36)

(compare (9.120) in [3]). Thus, from (7.35), we conclude

|λ|1/2Im Ω . |λ|Im Ω

for small λ as |Imµ(λ)| . Im Ω by SP4’ and |Im Λ| = |λ||Imµ|. Hence,
Im Ω(λ) = 0 for small enough |λ|. Thus, Re Ω is non-decreasing for such λ
by SP4’, but from Ω(0) = −1 and the first bound in (7.36) we conclude that

Re Ω has to be decreasing if Ω(λ) = Ω̂0(Λ(λ)). This contradiction shows a2 6= 0,
hence, a2 = +. The rest of the proof in [3] is unchanged.

Proof of Proposition 7.10. For the proof of (i), we mainly follow the proof of
Proposition 9.3 in [3] with γ4 = χ1, γ5 = χ2 and γ6 = χ3 in (9.35) and (9.37)
of [3].
Following the careful selection of the correct solution of (7.21) (cf. (9.36) in [3])

by the selection principles till above (9.50) in [3] yields Ω(λ) = Ω̂(Λ(λ)) and

hence, in particular, Ω̂(χ3) = Ω0 =
√

3(i + χ1). (Ω̂ = Ω̂+ in [3].) By defining

Λ0(λ) ..= (1 + χ2 + µ(λ))λ
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and using |µ(λ)| . α|λ|1/3 instead of (9.54) in [3], we obtain

Ω̂(Λ0(λ)) − Ω̂(0) = Ω̂(λ) − Ω̂(0) + O
(

(|χ2| + |µ(λ)|) |λ|
1 + |λ|2/3

)

= Ω̂(λ) − Ω̂(0) + O((α + |χ2|) min{|λ|, |λ|2/3})

instead of (9.56) in [3]. Thus, (9.57) in the proof of Proposition 9.3 in [3] yields

Ω̂(χ3 + Λ0(λ)) − Ω̂(χ3) = Ω̂(λ) − Ω̂(0) + O((α + |χ2| + |χ3|) min{|λ|, |λ|2/3}).

Thus, we obtain (7.22) since Ω̂(χ3) = Ω0 and Ω̂(0) = i
√

3. We remark that
(7.23) is exactly (9.53) in [3].
The proof of (ii) resembles the proof of Lemma 9.11 in [3] but we replace
assumption SP-4 of [3] by SP4’. Since Ω(λ) solves (7.24), there is a function

A : R → {±} such that Ω(λ) = Ω̃A(λ)(Λ(λ)) for all λ ∈ R. Here, Ω̃± : C → C

denote the functions

Ω̃±(ζ) ..= ±
{

iζ1/2, if Re ζ ≥ 0,

−(−ζ)1/2, if Re ζ < 0.

(Note that they were denoted by Ω̂± in (9.78) of [3]). By assumption, there
is c∗ ∼ 1 such that |µ(λ)| < 1 for all |λ| ≤ c∗γ−2. Hence, by SP1, we find
a+, a− ∈ {±} such that A(λ) = a± for λ ∈ ±[0, c∗γ−2].
For λ ≥ 0, we have

Im Ω̃−(Λ(λ)) = −λ1/2 + O(µ(λ)λ1/2).

Thus, possibly shrinking c∗ ∼ 1, we obtain Im Ω̃−(Λ(λ)) < 0 for λ ∈ (0, c∗γ−2].
Therefore, the choice a+ = − would contradict SP3 and we conclude a+ = +.
We now prove that a− = +. Assume to the contrary that a− = −. For small
enough c∗ ∼ 1, we have

Re Ω̃−(Λ(λ)) = |λ|1/2Re (1 + µ(λ))1/2 ∼ |λ|1/2,

Im Ω̃−(Λ(λ)) = |λ|1/2Im ((1 + µ(λ))1/2) . |λ|1/2

for λ ∈ [−c∗γ−2, 0) by the definition of Ω̃− and Λ. Hence, taking the imaginary
part of (7.24) and using SP4’ yield

|λ|1/2Im Ω(λ) . γ|λ|Im Ω(λ)

for λ ∈ [−c∗γ−2, 0). By possibly shrinking c∗ ∼ 1, we obtain Im Ω(λ) = 0
for λ ∈ [−c∗γ−2, 0). Hence, taking the imaginary part of (7.24) also yields
Imµ(λ) = 0 for λ ∈ [−c∗γ−2, 0). Thus, SP4’ implies that Re Ω is non-

decreasing on [−c∗γ−2, 0) which contradicts Re Ω̃−(0) = 0 and Re Ω̃−(Λ(λ)) ∼
|λ|1/2 > 0 for λ ∈ [−c∗γ−2, 0) with small enough c∗ ∼ 1. Hence, a− = + which
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completes the selection of the main term Ω̂ = Ω̃+ in (7.25). The error term in

(7.25) follows by estimating Ω̂(Λ(λ)) directly.
For the proof of (iii), we select the correct root of (7.26) as in the proof of
Lemma 9.12 in [3] under SP4’ instead of SP-4. Since Ω(λ) solves (7.26) there
is a function A : R → {0,±} such that

Ω(λ) = Ω̃A(λ)(Λ(λ))

for all λ ∈ R. Here, we introduced the functions Ω̃a : C → C, a = 0,±, defined
by

Ω̃0
..= −

{
ζ1/3, if Re ζ ≥ 0,

−(−ζ)1/3, if Re ζ < 0,
Ω̃±(ζ) ..=

1 ∓ i
√

3

2
Ω̃0(ζ).

(Note that they were denoted by Ω̂a, a ∈ {0,±}, in (9.87) of [3].) By SP1, A
can only change its value at λ if Λ(λ) = 0. By choosing δ ∼ 1 small enough and
using |µ(λ)| . |λ|1/3, we have A(λ) = a+ and A(−λ) = a− for some constants
a± and for all λ ∈ (0, δ].
We will now use SP3 and SP4’ to determine the value of a+ and a−. As in
(9.91) of the proof of Lemma 9.12 in [3], we have

±(signλ)Im Ω̃±(Λ(λ)) =

√
3

2
|λ|1/3 + O(µ(λ)λ1/3) ≥ |λ|1/3 − C|λ|2/3.

By possibly shrinking δ ∼ 1, we conclude Im Ω̃−(Λ(λ)) < 0 for λ ∈ (0, δ] and

Im Ω̃+(Λ(λ)) < 0 for λ ∈ [−δ, 0). Hence, owing to SP3, we conclude a+ 6= −
and a− 6= +.
Next, we will prove a+ 6= 0. For λ ≥ 0, we have

Re Ω̃0(Λ(λ)) ≤ −λ1/3 + Cλ2/3, Im Ω̃0(Λ(λ)) . λ2/3.

Thus, assuming Ω(λ) = Ω̃0(Λ(λ)) and estimating the imaginary part of (7.26)
yield

λ2/3Im Ω(λ) . (Im Ω(λ))3 + |Im Λ(λ)| . |λ|Im Ω(λ).

Hence, we possibly shrink δ ∼ 1 and conclude Im Ω(λ) = 0 for λ ∈ [0, δ].
Therefore, Re Ω(λ) is non-decreasing on [0, δ] by SP4’. Combined with Ω0 = 0

and Re Ω̃0(Λ(λ)) . −λ1/3, we obtain a contradiction. Hence, this implies
a+ 6= 0, i.e., a+ = +.
A similar argument excludes a− = 0 and we thus obtain a− = −. Now, (7.27)

is obtained from the definition of Ω̂ = Ω̃+, which completes the proof of (iii).
For the proof of (iv), we remark that all estimates follow from Lemma 7.11 in
the same way as they followed in [3] from Lemma 9.14 in [3]. Indeed, (7.29) is
the same as (9.129) in [3]. The bound (7.30) is shown analogously to (9.129)
and (9.130) in [3]. Moreover, (7.31) is (9.137) in [3] and (7.32) is obtained as
(9.109) in [3]. This completes the proof of Proposition 7.10.
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7.3 Proof of Theorem 7.7

Before we prove Theorem 7.7, we collect some properties of Ψedge and Ψmin

which will be useful in the following. We recall that Ψedge and Ψmin were
defined in (7.1).

Lemma 7.12 (Properties of Ψmin and Ψedge). (i) Let Ω̂ be defined as in
Proposition 7.10 (i). Then, for any λ ∈ R, we have

Ψmin(λ) =
1√
3

Im [Ω̂(λ) − Ω̂(0)]. (7.37)

(ii) Let Ω̂+ be defined as in (7.20). Then, for any λ ≥ 0, we have

Ψedge(λ) =
1

2
√

3
Im Ω̂+(1 + 2λ). (7.38)

(iii) There is a function Ψ̃ : [0,∞) → R with uniformly bounded derivatives

and Ψ̃(0) = 0 such that, for any λ ≥ 0, we have

Ψedge(λ) =
λ1/2

3
(1 + Ψ̃(λ)), |Ψ̃(λ)| . min{λ, λ1/3}. (7.39)

(iv) If |ε| ≤ 1/3 then, for any λ ≥ 0, we have

Ψedge((1 + ε)λ) = (1 + ε)1/2Ψedge(λ) + O(εmin{λ3/2, λ1/3}). (7.40)

We remark that (7.37) appeared in the last displayed equation of the proof of
Proposition 9.3 in [3]. The relation (7.38) was present in (9.127) of [3]. Note
that (7.39) is (9.144) of [3]. The relation in (7.40) is identical to (9.145) in [3].
Moreover, we follow the proofs in [3].

Proof. For the proof of (i), we first cancel the summand −1 in the definition of

Ψmin in (7.1b) and −Im Ω̂(0)/
√

3. Multiplying the result by the denominator
in (7.1b) yields a trivial identity.

Part (ii) follows from using 1 + 2λ ≥ 1 in the definition of Im Ω̂+(1 + 2λ) in
(7.20) and multiplying the result by the denominator in the definition of Ψedge

in (7.1a).
Expanding the definition of Ψedge around λ1/2/3 directly implies (iii).
For the proof of (iv), we remark that 1 + ε ∼ 1 for all ε ∈ [−1/3, 1/3]. If
0 ≤ λ . 1 then (7.40) follows from (7.39). For λ & 1, the expansion (7.40) is
a consequence of (7.38) above as well as the stability of Cardano’s solutions,
(9.111) in Lemma 9.15 of [3].

In the following proof of Theorem 7.7, we will choose appropriate normal co-
ordinates Ω and Λ in each case such that (7.11) turns into one of the cubic
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equations in normal form from Proposition 7.10. This procedure has been sim-
ilarly performed in the proofs of Proposition 9.3, Lemma 9.11, Lemma 9.12
and Section 9.2.2 in [3]. However, owing to the weaker error bounds here, we
include the proof for the sake of completeness.

Proof of Theorem 7.7. We start with the proof of part (i) (cf. Proposition 9.3
in [3]). Owing to (7.13b) and |Ψmin(λ)| . |λ|1/3, the statement of (7.14) is
trivial for |ω| & 1 since the error term dominates. Therefore, it suffices to
prove (7.14) for |ω| ≤ δ with some δ ∼ 1.
By possibly shrinking ρ∗ ∼ 1, we can assume that |σ| ≤ Π∗ρ2

∗ is small enough
such that ψ ∼ 1 by (7.12). In the following, γν , γ0, γ1, . . . , γ7 ∈ C denote
ω-independent error terms such that |γk| . ρ for k = ν, 0, 1, . . . , 7. Their
precise forms can be determined along the proof but we omit them as they are
irrelevant. We divide (7.11) by µ3 and obtain

Θ3 + i3ρ(1 + γ2)Θ2 − 2ρ2(1 + γ1)Θ + (1 + γ0 + (1 + γν)ν(ω))
κ

ψ
ω = 0, (7.41)

using |µ3| ∼ 1 and |σ| ≤ Π∗ρ2. We introduce the normal coordinates

λ ..= Γ
ω

ρ3
, Ω(λ) ..=

√
3
[
(1 + γ3)

1

ρ
Θ
(ρ3

Γ
λ
)

+ i + γ4

]
, (7.42)

where Γ ..=
√

27κ/(2ψ). Note that Γ ∼ 1 since ψ ∼ 1. A straightforward
computation starting from (7.41) shows that Ω(λ) and Λ(λ) satisfy (7.21) with

Λ(λ) ..= (1 + γ5 + µ(λ))λ + γ6, µ(λ) ..= (1 + γ7)ν
(ρ3

Γ
λ
)
,

i.e., χ2 = γ5, χ3 = γ6 and α = ρ by (7.13a). Hence, from (7.22) and (7.42), we
obtain δ ∼ 1 and χ∗ ∼ 1 such that

Im Θ(ω) = Im
ρ

1 + γ3

1√
3

[Ω(λ) − Ω0]

= ρΨmin

(
Γ
ω

ρ3

)
+ O

(
ρ2 min{|λ|, |λ|1/3} + ρ2 min{|λ|, |λ|2/3}

)

for |λ| ≤ δ/ρ3 if ρ ≤ min{χ∗, ρ∗}. Here, we also used (7.23) to expand ρ/(1+γ3)
and (7.37). By employing (7.42) again and replacing ρ∗ by min{χ∗, ρ∗}, we
conclude (7.14).
We now turn to the proof of part (ii) of Theorem 7.7. Since ρ = 0, the cubic
equation (7.11) simplifies to the following equation

ψΘ(ω)3 + σΘ(ω)2 + κ(1 + ν(ω))ω = 0. (7.43)

We now prove Theorem 7.7 (ii) (a), i.e., the case σ = 0 (cf. Lemma 9.12 in
[3]). For any δ ∼ 1, the assertion is trivial for |ω| ≥ δ since the error term
dominates |ω|1/3 and Im Θ(ω) in this case (compare (7.13b)). Therefore, it
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suffices to prove the lemma for |ω| ≤ δ with some δ ∼ 1. We choose the normal
coordinates

λ ..= ω, Ω(λ) ..=
(ψ
κ

)1/3

Θ(λ),

and notice that the cubic equation (7.43) becomes (7.26) with µ(λ) = ν(λ).
The bound (7.13a) implies |µ(λ)| . |λ|1/3. Thus, (7.16) is a consequence of
Proposition 7.10 (iii). This completes the proof of (ii) (a).
For the proof of Theorem 7.7 (ii) (b), we first show the following auxiliary
lemma (cf. Lemma 9.11 in [3]).

Lemma 7.13 (Simple edge). Let the assumptions of Theorem 7.7 (ii) hold true.
If σ 6= 0 then there is c∗ ∼ 1 such that

Im Θ(ω) =





√
κ
∣∣ω
σ

∣∣1/2
+ O

((
|ν(ω)| + |σ|−1|Θ(ω)|

)∣∣ω
σ

∣∣1/2)
,

if signω = signσ, |ω| ≤ c∗|σ|3,

0, if signω = − signσ, |ω| ≤ c∗|σ|3.
(7.44)

Moreover, we have |Θ(ω)| . |ω/σ|1/2 for |ω| ≤ c∗|σ|3.

Proof. Dividing (7.43) by κσ yields

(
1 +

ψ

σ
Θ(ω)

)Θ(ω)2

κ
+ (1 + ν(ω))

ω

σ
= 0. (7.45)

We introduce λ, Ω(λ) and µ(λ) defined by

λ ..=
ω

σ
, Ω(λ) ..=

1√
κ

Θ(σλ), µ(λ) ..=
1 + ν(σλ)

1 + ψσ−1Θ(σλ)
− 1.

In the normal coordinates λ and Ω(λ), (7.45) viewed as a quadratic equation,
fulfills (7.24) with the above choice of µ(λ). Since |ψσ−1Θ(σλ)| . |σ|−2/3|λ|1/3

by (7.13b), there is c∗ ∼ 1 such that

|µ(λ)| . |ν(σλ)|+|σ|−1 |Θ(σλ)| . |σ|−2/3|λ|1/3, |Imµ(λ)| . |σ|−1Im Θ(σλ)
(7.46)

for |λ| ≤ c∗|σ|2 by (7.13a), (7.13b) and (7.15). Hence, we apply Proposition 7.10
(ii) with γ ∼ |σ|−1 in SP4’ and obtain (7.44) with an error term O(|µ(λ)||λ|1/2)
instead, as well as |Θ(ω)| . |σ|−1/2|ω|1/2. Thus, the first bound in (7.46)
completes the proof of (7.44).

From the second case in (7.44), we conclude the second case in (7.17). The
first case in (7.17) and (7.19) are trivial if |ω| & 1 due to (7.13b) and (7.4a).
Hence, it suffices to prove this case for |ω| ≤ δ with some δ ∼ 1. If |σ| & 1 then
the first case in (7.17) also follows from (7.44) with δ ..= c∗|σ|3. Indeed, from
(7.39), we conclude

√
κ
∣∣∣ω
σ

∣∣∣
1/2

= c∆̂1/3Ψedge

( |ω|
∆̂

)
+ O(|ω|3/2),
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where c and ∆̂ are defined as in (7.18). Since |ω| . ε(ω) for |ω| ≤ δ and ε(ω)
defined as in (7.18) we obtain the first case in (7.17) if |σ| & 1. Similarly,
|Θ(ω)| . |ω/σ|1/2 by Lemma 7.13 yields (7.19) if |ω| ≤ δ and |σ| & 1. Hence, it
remains to show the first case in (7.17) and (7.19) if |σ| ≤ σ∗ for some σ∗ ∼ 1.

In fact, we choose σ∗ ∼ 1 so small that ψ ∼ 1 by (7.12) and ∆̂ < 1 for |σ| ≤ σ∗.
In order to apply Proposition 7.10 (iv), we introduce

λ ..=
2

∆̂
ω, Ω(λ) ..= 3

ψ

|σ|Θ
(∆̂

2
λ
)

+ signσ, µ(λ) ..= ν
( ∆̂

2
λ
)

(7.47)

(cf. (9.96) and (9.99) in [3]). The cubic (7.43) takes the form (7.28) in the nor-
mal coordinates λ and Ω(λ) with the above choice of µ(λ) and s = signσ

in (7.28). By (7.13a), we have |µ(λ)| . ∆̂1/3|λ|1/3. We set γ̂ ..= ∆̂1/3.
Therefore, Proposition 7.10 (iv) and (7.38) yield δ ∼ 1 and possibly smaller
σ∗ ..= min{σ∗, γ∗} ∼ 1 such that the first case in (7.17) holds true for |σ| ≤ σ∗
and |ω| ≤ δ as µ(λ) = ν(ω) and ∆̂ ∼ |σ|3. Moreover, (7.30) implies (7.19) for
|ω| ≤ δ. This completes the proof of (ii) (b) and hence of Theorem 7.7.

7.4 Proof of Theorem 7.1 and Proposition 7.5

In this section, we prove Theorem 7.1 and Proposition 7.5. Some parts of
the following proof resemble the proofs of Theorem 2.6, Proposition 9.3 and
Proposition 9.8 in [3]. However, owing to the weaker assumptions, we present
it here for the sake of completeness.

Proof of Theorem 7.1 and Proposition 7.5. We will only prove the statements
in Proposition 7.5. Theorem 7.1 is a direct consequence of this proposition as
well as Lemma 4.8 (ii) and Proposition 6.1.
Along the proof of Proposition 7.5, we will shrink δ∗ ∼ 1 such that (7.3) holds
true for all ω ∈ [−δ∗, δ∗] ∩ J ∩ D. We will transfer the expansions of Θ in
Theorem 7.7 to expansions of v by means of (6.1). To that end, we take the
imaginary part of (6.1) and obtain

v(τ0 + ω) = v(τ0) + π−1Re bIm Θ(ω) + π−1Im bRe Θ(ω) + π−1Im r(ω). (7.48)

We first establish (7.3) at a shape regular point τ0 ∈ (supp ρ) \ ∂ supp ρ which
is a local minimum of τ 7→ ρ(τ). If ρ = ρ(τ0) = 0, i.e., the case of a cusp at τ0,
case (c), then σ = 0. Indeed, if σ were not 0, then, by the second case in (7.17),
Im Θ(ω) would vanish on one side of τ0. By the third bound in (6.8), this would
imply the vanishing of ρ as well, contradicting to τ0 ∈ supp ρ \ ∂ supp ρ. Hence,
for any δ∗ ∼ 1, (7.16) and (7.48) immediately yield (7.3) for ω ∈ [−δ∗, δ∗]∩J∩D
with h = (2π)−1b

√
3(κ/ψ)1/3 using (6.7a), (6.7b) and b = b∗ due to ρ = 0.

We now assume ρ > 0 which corresponds to an internal nonzero minimum at
τ0, case (d). Thus, the following lemma implies that the condition |σ| ≤ Π∗ρ2,
σ = σ(τ0), needed to apply Theorem 7.7 (i) is fulfilled. We will prove Lemma
7.14 at the end of this section.
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Lemma 7.14 (Bound on |σ| at nonzero local minimum). There are thresholds
ρ∗ ∼ 1 and Π∗ ∼ 1 such that

|σ(τ0)| ≤ Π∗ρ(τ0)2

for each shape regular point τ0 ∈ supp ρ which is a local minimum of ρ and
satisfies 0 < ρ(τ0) ≤ ρ∗.

Hence, (7.14), (7.48) and (6.7b) yield (7.3) with ρ̃ = ρΓ−1/3 and h =
π−1Γ1/3Re b. Here, we also used

ρ|Θ(ω)|+ |Θ(ω)|2 + |ω|+min{ρ−1|ω|, |ω|2/3} .
|ω|
ρ

1(|ω| . ρ3)+Ψ(ω)2, (7.49)

which is a consequence of (6.7a), (7.4b) for |ω| . 1, as well as Re b ∼ 1 and
Im b = O(ρ). This completes the proof of (7.3) for shape regular points τ0 ∈
(supp ρ) \ ∂ supp ρ, cases (c) and (d).
We now turn to the proof of (7.3) at an edge τ0, case (a), i.e., for a shape

regular point τ0 ∈ ∂ supp ρ. We first prove a version of (7.3) with ∆̂ in place

of ∆, (7.50) below. In a second step, we then replace ∆̂ by ∆ to obtain (7.3).
Since τ0 ∈ ∂ supp ρ, we have ρ = ρ(τ0) = 0. Therefore, v(τ0) = 0 since 〈 · 〉 is
a faithful trace and v(τ0) is positive semidefinite. As τ0 ∈ ∂ supp ρ, we have
σ(τ0) 6= 0. Indeed, assuming σ(τ0) = 0, using Theorem 7.7 (ii) (a), taking
the imaginary part of (6.1) as well as applying the third bound in (6.8) and
the second bound in (6.7a) yield the contradiction τ0 ∈ (supp ρ) \ ∂ supp ρ.

Recalling the definitions of ∆̂ and c from (7.18), (7.48) and (7.17) yield

v(τ0 +ω) = π−1cΨ̂(ω)b+O(Ψ̂(ω)2), Ψ̂(ω) ..= ∆̂1/3Ψedge

( |ω|
∆̂

)
(7.50)

for any ω ∈ [−δ∗, δ∗] ∩ J ∩ D with signω = signσ and some δ∗ ∼ 1. Here, we

also used b = b∗ ∼ 1, the first bound in (6.5), (7.19) and ε(ω) ∼ Ψ̂(ω) by (7.4b)
to obtain

|Θ(ω)|2 + |ω| + (|Θ(ω)| + |ω| + ε(ω))ε(ω) . Ψ̂(ω)2

for any ω ∈ [−δ∗, δ∗]∩J ∩D with signω = signσ and some δ∗ ∼ 1. This means

that we have shown (7.3) with Ψ replaced by Ψ̂.

We now replace ∆̂ by ∆ in (7.50) to obtain (7.3). To that end, we first assume
that |σ| & 1 and ∆ . 1. The second part of (7.17) implies |σ|3 . ∆ . 1 and

thus |σ|3 ∼ ∆ ∼ 1. Since |σ|3 ∼ ∆̂ we conclude ∆̂ ∼ ∆. Therefore, we obtain

∆̂1/3Ψedge

( |ω|
∆̂

)
=
(∆

∆̂

)1/6

∆1/3Ψedge

( |ω|
∆

)
+ O(min{|ω|3/2, |ω|1/3}).

Here, we used Ψedge(|λ|) . |λ|1/3 for |λ| & 1 and (7.39) otherwise. Applying
this relation to (7.50) yields (7.3) for ω ∈ [−δ∗, δ∗] ∩J ∩D with signω = signσ,

δ∗ ∼ 1 and h ..= π−1c(∆/∆̂)1/6b ∼ 1 for |σ| & 1 and ∆ . 1.
The next lemma shows that |σ| & 1 at the edge of a gap of size ∆ & 1. We
postpone its proof until the end of this section.
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Lemma 7.15 (σ at an edge of a large gap). Let τ0 ∈ ∂ supp ρ be a shape regular
point for m on J . If |inf J | & 1 and there is ε ∼ 1 such that ρ(τ) = 0 for all
τ ∈ [τ0 − ε, τ0] then |σ| ∼ 1. We also have |σ| ∼ 1 if sup J & 1 and ρ(τ) = 0
for all τ ∈ [τ0, τ0 + ε] and some ε ∼ 1.

Under the assumptions of the previous lemma, we set ∆ ..= 1 and obtain

trivially ∆̂ ∼ 1 ∼ ∆. Thus, (7.50) implies (7.3) by the same argument as in
the case ∆ . 1.
For |σ| ≤ σ∗ with some sufficiently small σ∗ ∼ 1, we will prove below with the

help of the following Lemma 7.16 and (7.40) that replacing ∆̂ by ∆ in (7.50)
yields an affordable error. We present the proof of Lemma 7.16 at the end of
this section.

Lemma 7.16 (Size of small gap). Let τ0, τ1 ∈ ∂ supp ρ, τ1 < τ0, be two shape
regular points for m on J0 and J1, respectively, where J0, J1 ⊂ R are two open
intervals with 0 ∈ J0 ∩ J1. We assume |inf J0| & 1 and sup J1 & 1 as well as
(τ1, τ0) ∩ supp ρ = ∅. We set ∆(τ0) .

.= τ0 − τ1. Then there is σ̃ ∼ 1 such that
if |σ(τ0)| ≤ σ̃ and |σ(τ0) − σ(τ1)| . |τ0 − τ1|1/3 then

∆(τ0)

∆̂(τ0)
= 1 + O(σ(τ0)).

The same statement holds true when τ0 is replaced by τ1 with ∆(τ1) .

.= τ0 − τ1.

From Lemma 7.16, we conclude that there is γ ∈ C such that |γ| . 1 and

∆ = (1 +γ|σ|)∆̂. By possibly shrinking σ∗ ∼ 1, we can assume that |γσ| ≤ 1/3
for |σ| ≤ σ∗. Thus, (7.40) in Lemma 7.12 (iv) yields

∆̂1/3Ψedge

( |ω|
∆̂

)
=
(∆

∆̂

)1/6

∆1/3Ψedge

( |ω|
∆

)
+ O

(
min

{ |ω|3/2

∆5/6
, |ω|1/3

})
.

Hence, choosing h ..= π−1c(∆/∆̂)1/6b as before and noticing h ∼ 1 yields (7.3)
in the missing regime. This completes the proof of Proposition 7.5. As we have
already explained, Theorem 7.1 follows immediately.

The core of the proof of Lemma 7.14 is an effective monotonicity estimate on
v, see (7.51) below, which is the analogue of (9.20) in Lemma 9.2 of [3]. Owing
to the weaker assumptions on the coefficients of the cubic equation, we need to
present an upgraded proof here.

Proof of Lemma 7.14. In the whole proof, we will use the notation of Definition
7.4. We will show below that there are ρ∗ ∼ 1 and Π∗ ∼ 1 such that

(sign κ1σ(τ))∂τ v(τ) & ρ(τ)−1 (7.51)

for all τ ∈ R which satisfy ρ(τ) ∈ (0, ρ∗] and |σ(τ)| ≥ Π∗ρ(τ)2 and are admis-
sible points for the shape analysis.
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Now, we first conclude the statement of the lemma from (7.51) through a proof
by contradiction. If τ0 satisfies the conditions of Lemma 7.14 then ∂τρ(τ0) = 0
as τ0 is a local minimum of ρ. Assuming |σ(τ0)| ≥ Π∗ρ(τ0)2 and applying 〈 · 〉
to (7.51) yield the contradiction ∂τρ(τ0) > 0.
For the proof of (7.51) we start by proving a relation for ∂τv(τ). We divide
(6.1) by ω, use Θ(0) = 0 and r(0) = 0 as well as take the limit ω → 0 to
obtain ∂τm(τ) = b∂ωΘ(0) + ∂ωr(0). Taking the imaginary part of the previous
relation yields

π∂τv(τ) = Im [b∂ωΘ(0)] + Im ∂ωr(0). (7.52)

We divide (6.7b) by ω, employ the first bound in (6.7a) and obtain

∥∥∥r(ω)

ω

∥∥∥ . 1 +
∣∣∣Θ(ω)

ω

∣∣∣
2

. 1 +
|ω|
ρ4
.

By sending ω → 0 and using r(0) = 0, we conclude

‖Im ∂ωr(0)‖ . 1. (7.53)

We divide (6.3) by µ1ω, take the limit ω → 0 and use limω→0 Θ(ω) = Θ(0) = 0
to obtain

∂ωΘ(0) = −Ξ(0)µ̄1

|µ1|2 =
(κ+ O(ρ))(iκ1ρσ + 2ρ2ψ + O(ρ3 + ρ2|σ|))

4ρ4|ψ + O(ρ+ |σ|)|2 + ρ2|κ1σ + O(ρ2 + ρ|σ|)|2

=
κ

ρ

iκ1σ + 2ρψ + O(ρ2 + ρ|σ|)
4ρ2|ψ + O(ρ+ |σ|)|2 + |κ1σ + O(ρ2 + ρ|σ|)|2 ,

(7.54)

where we employed |µ1|2 = 4ρ4|ψ + O(ρ + |σ|)|2 + ρ2|κ1σ + O(ρ2 + ρ|σ|)|2 as
ρ, ψ, κ1, σ ∈ R. Thus, we obtain

ρ|Re ∂ωΘ(0)| . ρ+ ρ|σ|
ρ2|ψ + O(ρ+ |σ|)|2 + |κ1σ + O(ρ2 + ρ|σ|)|2 . (7.55)

Therefore, using b = b∗ + O(ρ), b+ b∗ ∼ 1, κ ∼ 1 and |κ1| ∼ 1 yields

(signκ1σ)Im [b∂ωΘ(0)] &
ρ−1|σ| + O(ρ+ |σ|) + O(ρ+ ρ|σ|)

|σ + O(ρ2 + ρ|σ|)|2 + ρ2|ψ + O(ρ+ |σ|)|2

&
|σ|

|σ|2 + ρ2

1

ρ
.

Here, in the first step, the error term O(ρ + ρ|σ|) in the numerator originates
from the second term in

(signκ1σ)Im [b∂ωΘ(0)] = (sign κ1σ)
(
Re bIm ∂ωΘ(0) + Im bRe ∂ωΘ(0)

)

& (sign κ1σ)Im ∂ωΘ(0) − ρ|Re ∂ωΘ(0)|
(7.56)

and applying (7.55) to it. We applied (7.54) to the first term on the right-
hand side of (7.56). In the last estimate, we used ψ, |σ|, ρ . 1 and |σ| ≥ Π∗ρ2
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for some large Π∗ ∼ 1 as well as ρ ≤ ρ∗ for some small ρ∗ ∼ 1. Employing
|σ| ≥ Π∗ρ2 once more, the factor |σ|/(|σ|2 + ρ2) on the right-hand side scales
like (1 + |σ|)−1 & 1. Hence, we conclude from (7.52) and (7.53) that

(signκ1σ)∂τv(τ) &
1

ρ
+ O(1).

By choosing ρ∗ ∼ 1 sufficiently small, we obtain (7.51). This completes the
proof of Lemma 7.14.

Proof of Lemma 7.15. We prove both cases, ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0]
or for all τ ∈ [τ0, τ0 + ε], in parallel. We can assume that |σ| ≤ σ̃ for any
σ̃ ∼ 1 as the statement trivially holds true otherwise. We choose (δ, ̺, γ∗) as

in Proposition 7.10 (iv), ∆̂ as in (7.18), normal coordinates (λ,Ω(λ)) as in

(7.47) as well as γ̂ = ∆̂1/3 and s = signσ. We set λ3
..= 2 + ̺∆̂1/3 (cf. (7.34))

and ω3
..= ∆̂λ3/2. There is σ̃ ∼ 1 such that ∆̂ ≤ γ3

∗ for |σ| ≤ σ̃ due to

∆̂ ∼ |σ|3 by (6.6) and the definition of ∆̂ in (7.18). Hence, ω3 ≤ C|σ|3 and,
by possibly shrinking σ̃ ∼ 1, we obtain −ω3 signσ ∈ J for |σ| ≤ σ̃ due to
the assumption on J (|inf J | & 1 or supJ & 1). From (7.32), we obtain
Im Ω(−λ3 signσ) > 0. Hence, Im Θ(−ω3 signσ) > 0. From the third bound in
(6.8), the second bound in (6.7a) and ω3 . |σ|3, we conclude v(−ω3 signσ) > 0
for |σ| ≤ σ̃ and sufficiently small σ̃ ∼ 1. Thus, ρ(−ω3 signσ) > 0 which
implies ω3 > ε. Therefore, |σ|3 & ω3 > ε ∼ 1 which completes the proof of
Lemma 7.15.

We finish this section by proving Lemma 7.16. It is similarly proven as Lemma
9.17 in [3]. We present the proof due to the weaker assumptions of Lemma
7.16. The main difference is the proof of (7.58) below (cf. (9.138) in [3]). In
[3], Θ could be explicitly represented in terms of m, i.e,

Θ(ω) = 〈f ,m(τ0 + ω) −m(τ0)〉

(cf. (9.8) and (8.10c) in [3] with α = 0). In our setup, b and r do not necessarily
define an orthogonal decomposition (cf. (6.1)).

Proof of Lemma 7.16. Let (δ, ̺, γ∗) be chosen as in Proposition 7.10 (iv). We

choose ∆̂ as in (7.18) and normal coordinates as in (7.47) as well as γ̂ = ∆̂1/3

and s = signσ. We assume ∆̂ ≤ γ3
∗ in the following and define λ3 as in (7.34).

By using |inf J0| & 1 as in the proof of Lemma 7.15, we find σ̃ ∼ 1 such that

−ω3 ∈ J0 for ω3
..= λ3∆̂/2 and |σ| ≤ σ̃. Thus, −∆ = τ1 − τ0 ∈ J0. We set

λ0
..= inf{λ > 0: Im Ω(λ) > 0}

and remark that λ0 = 2∆/∆̂ due to the definition of ∆ and the third bound

in (6.8). From (7.32), we conclude λ0 ≤ λ3. Thus, ∆ ≤ ∆̂(1 + O(γ̂)) =
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∆̂(1 + O(|σ|)) as ̺ ∼ 1 and γ̂ ∼ |σ|. Therefore, it suffices to show the opposite
bound,

∆ ≥ ∆̂(1 + O(|σ|)). (7.57)

If λ0 ≥ λ2
..= 2 − ̺∆̂1/3 (cf. (7.34)) then we have (7.57) as ∆̂1/3 ∼ |σ| and

̺ ∼ 1. If λ0 < λ2 then we will prove below that

Im Ω(λ0 + ξ) & ξ1/2 (7.58)

for ξ ∈ [0, 1]. From (7.31), we then conclude

c0(λ2 − λ0)1/2 ≤ Im Ω(λ2) ≤ C1|σ|1/2

as γ̂ ∼ |σ|. Hence,

λ0 ≥ λ2 − (C1/c0)2|σ| ≥ 2 − C|σ|,

where we used λ2 = 2 − ̺γ̂ and ̺ ∼ 1 in the last step. This shows (7.57) also
in the case λ0 < λ2. Therefore, the proof of the lemma will be completed once
(7.58) is proven.
In order to prove (7.58), we translate it into the coordinates ω relative to τ0

and v. From λ0 < λ2, we obtain

∆ < (1 − ̺∆̂1/3)∆̂ . |σ|3. (7.59)

Since
πv(τ0 − ∆ − ω̃) = bIm Θ(−∆ − ω̃) + Im r(−∆ − ω̃),

the bound (7.58) would follow from

v(τ0 − ∆ − ω̃) & ∆̂(τ0)−1/6|ω̃|1/2 (7.60)

for sufficiently small ∆ . |σ|3 ≤ σ̃3 and ω̃ ≤ δ̃ due to the third bound in (6.8).
Since v(τ1) = 0 and τ1 = τ0 − ∆ is a shape regular point, we conclude from
(7.50) that

v(τ1 − ω̃) & ∆̂(τ1)−1/6|ω̃|1/2

for |ω̃| ≤ δ. Therefore, it suffices to show that

∆̂(τ1) . ∆̂(τ0) (7.61)

in order to verify (7.60). Owing to |σ(τ0) − σ(τ1)| . ∆1/3 and (7.59), we have

|σ(τ1)| . |σ(τ0)| + ∆1/3 . |σ(τ0)|.

We allow for a smaller choice of σ̃ ∼ 1 and assume ψ(τ1) ∼ ψ(τ0) ∼ 1 by (6.6).

Assuming without loss of generality ∆̂(τ0) < 1 and ∆̂(τ1) < 1, we obtain (7.61)

by the definition of ∆̂ in (7.18). We thus get (7.61) and hence (7.60). This
proves (7.58) and completes the proof of Lemma 7.16.
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7.5 Proofs of Theorem 7.2 and Proposition 7.6

Proof of Proposition 7.6. We start with the proof of part (i). We apply 〈 · 〉 to
(7.3), use ρ = 〈v〉 and obtain 〈h〉 from the definitions of h in the four cases
given in the proof of Proposition 7.5. Indeed, by using the relations

〈b〉 = π + O(ρ), c3 = 4Γ, (7.62)

which are proven below, as well as Lemma 7.16 in the cases (a) and (b) and the
stronger error estimate (7.49) in case (d), we conclude part (i) of Proposition 7.6
up to the proof of (7.62).

The first relation in (7.62) follows from applying 〈 · 〉 to (5.15a) and using
(5.14a), Corollary D.2 with τ0 ∈ supp ρ, the cyclicity of 〈 · 〉 and (5.19). The
second relation in (7.62) is a consequence of the definition of c in (7.18) and
the definition of Γ in Theorem 7.7 (i). This completes the proof of part (i).

We now turn to the proof of part (ii) of Proposition 7.6 and assume that all
points of (∂ supp ρ) ∩ I are shape regular for m and all estimates in Definition
7.4 hold true uniformly on this set. As in the proof of Proposition 7.5, we
conclude σ(τ0) 6= 0 for all τ0 ∈ (∂ supp ρ)∩I. Owing to dist(0, ∂J) & 1 and the
Hölder-continuity of σ on (∂ supp ρ) ∩ I, Proposition 7.5 is applicable to every
τ0 ∈ (∂ supp ρ) ∩ I. Hence, (7.4a) and dist(0, ∂J) & 1 imply the existence of
δ1, c1 ∼ 1 such that

ρ(τ0 + ω) ≥ c1|ω|1/2 (7.63)

for all ω ∈ − signσ(τ0)[0, δ1] and τ0 ∈ (∂ supp ρ) ∩ I. In particular, τ0 −
signσ(τ0)[0, δ1] ⊂ supp ρ for all τ0 ∈ (∂ supp ρ) ∩ I. Since |I| . 1, this implies
that supp ρ∩ I consists of finitely many intervals [αi, βi] with lengths & 1, and,
thus, their number K satisfies K ∼ 1 as δ1 ∼ 1 and βi − αi ≥ δ1 if βi 6= sup I
and αi 6= inf I.

Additionally, we now assume that the elements of Mρ∗
are shape regular points

for m on J and all estimates in Definition 7.4 hold true uniformly on Mρ∗
.

By possibly shrinking ρ∗ ∼ 1, we conclude from (7.63) that |αi − γ| ∼ 1 and
|βi − γ| ∼ 1 for any i = 1, . . . ,K and γ ∈ Mρ∗

.

Suppose now that τ0 ∈ Mρ∗
with ρ(τ0) = 0. Then part (i) and dist(0, ∂J) & 1

yield the existence of δ2, c2 ∼ 1 such that

ρ(τ0 + ω) ≥ c2|ω|1/3

for all |ω| ≤ δ2. By possibly further shrinking ρ∗ ∼ 1, we thus obtain |τ0−γ| ∼ 1
for all γ ∈ Mρ∗

\ {τ0}. We thus conclude (7.10) in this case.

Finally, let γ1, γ2 ∈ Mρ∗
with ρ(γ1), ρ(γ2) > 0. Then applying (i) with τ0 = γ1

and τ0 = γ2 yields

Ψ1(ω) + Ψ2(ω) . |ω|1/3
(
ρ(γ1)1(|ω| . ρ(γ1)3) + ρ(γ2)1(|ω| . ρ(γ2)3)

)

+ Ψ1(ω)2 + Ψ2(ω)2,
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where we defined ω = γ2 − γ1 and

Ψ1(ω) ..= ρ̃1Ψmin

( |ω|
ρ̃3

1

)
, Ψ2(ω) ..= ρ̃2Ψmin

( |ω|
ρ̃3

2

)

with ρ̃1 ∼ ρ(γ1) and ρ̃2 ∼ ρ(γ2) (cf. Corollary 9.4 in [3]). Thus, we obtain
either |ω| ∼ 1 or |ω| . min{ρ(γ1), ρ(γ2)}4. This completes the proof of (7.10)
and hence the one of Proposition 7.6.

Finally, we use Proposition 7.6 and a Taylor expansion of ρ around a nonzero
local minimum τ0 to obtain the stronger conclusions of Theorem 7.2.

Proof of Theorem 7.2. We start with the proof of part (i). Let τ0 ∈ supp ρ ∩
Iθ satisfy the conditions of Theorem 7.2 (i). Then, by Proposition 6.1, the
conditions of Proposition 7.6 (i) are fulfilled and all conclusions in Theorem 7.2
(i) apart from the case |ω| . ρ(τ0)7/2 in (7.5c) follow from Proposition 7.6 (i)
and (7.4b).
For the proof of the missing case, we fix a local minimum τ0 ∈ supp ρ ∩ Iθ of ρ
such that ρ(τ0) ≤ ρ∗. We set ρ ..= ρ(τ0). Owing to the 1/3-Hölder continuity
of ρ by Proposition 4.7, there is ε ∼ 1 such that ρ(τ0 + ω) ∼ ρ if |ω| ≤ ερ3. In
particular, ρ(τ0 + ω) > 0 and using Lemma 5.7 with k = 2, 3 to compute the
second order Taylor expansion of ρ around τ0 yields

fτ0
(ω) ..= ρ(τ0 + ω) − ρ(τ0) =

c

ρ5
ω2 + O

( |ω|3
ρ8

)
(7.64)

for all ω ∈ R satisfying |ω| ≤ ερ3, where c = c(τ0) satisfies 0 ≤ c . 1.
On the other hand, τ0 is a shape regular point by Proposition 6.1 and a nonzero
local minimum of ρ. Hence, Proposition 7.6 (i) (d) implies

fτ0
(ω) = ρΨmin

(
Γ
ω

ρ3

)
+ O

( |ω|
ρ

)
=

Γ2

18ρ5
ω2 + O

( |ω|3
ρ8

+
|ω|
ρ

)
(7.65)

for |ω| ≤ ερ3, where Γ = Γ(τ0). Here, we also used the second order Taylor
expansion of Ψmin defined in (7.1b) in the second step. Note that Γ ∼ 1 since
ψ + σ2 ∼ 1 by (5.35) and |σ| . ρ2 by Lemma 7.14.
We compare (7.64) and (7.65) and conclude

c

ρ5
ω2 =

Γ2

18ρ5
ω2 + O

( |ω|3
ρ8

+
|ω|
ρ

)

for |ω| ≤ ερ3. Choosing ω = ρ7/2 and solving for c yield

c =
Γ2

18
+ O(ρ1/2). (7.66)

By starting from the expansion of fτ0
in (7.64), using the Taylor expansion of

Ψmin and (7.4b), we obtain (7.5c) in the last missing regime |ω| . ρ7/2.
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We now turn to the proof of (ii) of Theorem 7.2. By Proposition 6.1, the
conditions of Proposition 7.6 (ii) are satisfied on I ′ ..= I ∩ [−3κ, 3κ], where
κ ..= ‖a‖+2‖S‖1/2. Since ‖a‖ . 1 and ‖S‖ ≤ ‖S‖2→‖·‖ . 1 by Assumptions 4.5,
we have |I ′| . 1. Moreover, supp ρ ⊂ I ′ by (2.5a). Hence, by Proposition 7.6,
it suffices to estimate the distance |γ1 −γ2|, where γ1, γ2 ∈ Mρ∗

satisfy γ1 6= γ2.
Let γ1, γ2 ∈ Mρ∗

. By (7.10) in Proposition 7.6 (ii), we know a dichotomy:
either |γ1 − γ2| & 1 or |γ1 − γ2| . min{ρ(γ1), ρ(γ2)}4. For γ1 6= γ2, we now
exclude the second case by using the expansions obtained in the proof of (i).
If ρ∗ ∼ 1 is chosen sufficiently small then c(γ1) ∼ 1 and c(γ2) ∼ 1 by (7.66).
Hence, by assuming |γ1 − γ2| . min{ρ(γ1), ρ(γ2)}4, we obtain ρ(γ2) > ρ(γ1)
from the expansion of fτ0

(ω) in (7.64) with τ0 = γ1 and ω = γ2 − γ1. Similarly,
as c(γ2) ∼ 1, the expansion of fτ0

(ω) in (7.64) with τ0 = γ2 and ω = γ1 − γ2

implies ρ(γ1) > ρ(γ2). This is a contradiction. Therefore, the distance of
two small local minima of ρ is much bigger than min{ρ(γ1), ρ(γ2)}4 and the
dichotomy above completes the proof of (ii).

7.6 Characterisations of a regular edge

In this subsection, we introduce the concept of regular edges of the self-
consistent support and give several equivalent characterisations relying on the
cubic analysis of the previous sections. We assume that S is flat and a is
bounded, i.e., that (3.10) is satisfied. In particular, owing to Proposition 2.3,
there is a Hölder continuous probability density ρ : R → [0,∞) such that

〈m(z)〉 =

∫

R

ρ(τ)

τ − z
dτ,

where m is the solution to the Dyson equation, (2.3).
We now define regular edges of ρ as in [8].

Definition 7.17 (Regular edge). We call τ0 ∈ ∂ supp ρ a regular edge if the
limit

lim
supp ρ∋τ→τ0

ρ(τ)√
|τ − τ0|

=
γ

3/2
edge

π

exists for some γedge that satisfies 0 < c∗ ≤ γedge ≤ c∗ < ∞ for some constants
c∗ and c∗.

The following proposition provides several equivalent characterisations of a reg-
ular edge.

Proposition 7.18 (Characterisations of a regular edge). Let a and S satisfy
(3.10) and m be the solution of the corresponding Dyson equation, (2.3). Sup-
pose for some τ0 ∈ ∂ supp ρ, there are m∗ > 0 and δ > 0 such that

‖m(τ + iη)‖ ≤ m∗ (7.67)

for all τ ∈ [τ0 − δ, τ0 + δ] and η ∈ (0, δ]. We set σ .

.= σ(τ0). Then the following
statements are equivalent:
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(i) The point τ0 is a regular edge of ρ.

(ii) There are 0 < c∗ < c∗ < ∞ such that

c∗ ≤ lim inf
supp ρ∋τ→τ0

ρ(τ)√
|τ − τ0|

≤ lim sup
supp ρ∋τ→τ0

ρ(τ)√
|τ − τ0|

≤ c∗

(iii) There are positive constants σ∗ and σ∗ such that

σ∗ ≤ |σ| ≤ σ∗.

(iv) There is δ∗ > 0 such that

ρ(τ0 + ω) =





π1/2

|σ|1/2
|ω|1/2 + O(|ω|), if signω = signσ,

0, if signω = − signσ,

for all ω ∈ [−δ∗, δ∗]. In particular, we have γedge = π/|σ|1/3.

(v) There is δgap > 0 such that
ρ(τ) = 0

for all τ ∈ [τ0, τ0 + δgap] or for all τ ∈ [τ0 − δgap, τ0].

All constants in (i) – (v) depend effectively on each other as well as possibly c1,
c2, c3 from (3.10) as well as δ and m∗ from (7.67).

In our recent work [8] on the universality of the local eigenvalue statistics at
regular edges parts of Proposition 7.18 have already been proven. In fact, in
Theorem 4.1 of [8], we showed that (i) implies (iii) and (iv). The new impli-
cations in Proposition 7.18, however, require the cubic shape analysis of the
previous subsections which was not available in [8]. Using our preceding anal-
ysis, the proof of Proposition 7.18 is quite short. In the proof, the comparison
relation ∼ is understood with respect to c1, c2, c3 from (3.10) as well as δ and
m∗ from (7.67).

Proof. For the entire proof, we remark that, by Lemma 4.8 (ii), the conditions
of Proposition 6.1 are satisfied. Moreover, ρ(τ0) = 0 due to the continuity of
ρ and τ0 ∈ ∂ supp ρ. Before establishing the equivalence of (i) – (v), we show
that σ 6= 0 and there is c ∼ 1, depending only on the constants in (3.10) as
well as δ and m∗, such that

ρ(τ0 + ω) =





π1/2

|σ|1/2
|ω|1/2 + O

( |ω|
|σ|2

)
, if signω = signσ,

0, if signω = − signσ,

(7.68)

for all ω ∈ [−c|σ|3, c|σ|3].
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By Proposition 6.1, we find δ0 ∼ 1, depending only on the constants in (3.10)
as well as δ and m∗, such that taking the imaginary part of (6.1) and applying
〈 · 〉 to the result yield

ρ(τ0 + ω) = Im
(
Θ(ω)π−1〈b〉

)
+ π−1〈Im r(ω)〉

= Im Θ(ω) + O
(
(|Θ(ω)| + |ω|)Im Θ(ω)

) (7.69)

for |ω| ≤ δ0. Here, we used 〈b〉 = π by (7.62) in the proof of Proposition 7.6 as
well as the third bound in (6.8) in the second step.
By Proposition 6.1 the assumptions of Theorem 7.7 (ii) are satisfied with κ = π.
Hence, from Theorem 7.7 (ii) (a), (7.69) and |Θ(ω)| . |ω|1/3 by (6.7a), we
conclude that σ 6= 0 as τ0 ∈ ∂ supp ρ. From (7.69) and Lemma 7.13, we,
thus, conclude (7.68) as |σ| . 1, |Θ(ω)| . |ω/σ|1/2 by Lemma 7.13 and, hence,
|ν(ω)| . |Θ(ω)| + |ω| . |ω/σ|1/2 by the first bound in (6.5). This completes
the proof of (7.68).
We now show that the statements (i) – (v) are equivalent. Trivially, (i) implies
(ii). Moreover, if (ii) holds true then (7.68) yields (iii). Clearly, (iv) is implied
by (iii) due to (7.68). Furthermore, (v) is trivially satisfied if (iv) holds true.
We now prove that (v) implies (iii). By Proposition 6.1, τ0 is a shape regular
point. Thus, (iii) is a consequence of (v) by Lemma 7.15. Finally, (iii) implies
(i) due to (7.68). This completes the proof of Proposition 7.18.

8 Band mass formula – Proof of Proposition 2.6

Before proving Proposition 2.6, we state an auxiliary lemma which will be
proven at the end of this section.

Lemma 8.1. Let (a, S) be a data pair, m the solution of the associated Dyson
equation (2.3) and ρ the corresponding self-consistent density of states from
Definition 2.2. We assume ‖a‖ ≤ k0 and S[x] ≤ k1〈x〉1 for all x ∈ A+ and for
some k0, k1 > 0. Then we have

(i) If τ ∈ R \ supp ρ then there is m(τ) = m(τ)∗ ∈ A such that

lim
η↓0

‖m(τ + iη) −m(τ)‖ = 0.

Moreover, m(τ) is invertible and satisfies the Dyson equation, (2.3), at
z = τ . There is C > 0, depending only on k0, k1 and dist(τ, supp ρ), such
that ‖m(τ)‖ ≤ C and ‖(Id − (1 − t)Cm(τ)S)−1‖ ≤ C all t ∈ [0, 1].

(ii) Fix τ ∈ R \ supp ρ. Let mt be the solution of (2.3) associated to the data
pair

(at, St) .

.= (a− tS[m(τ)], (1 − t)S)

for t ∈ [0, 1] and ρt the corresponding self-consistent density of states.
Then, for any t ∈ [0, 1], we have

lim
η↓0

‖mt(τ + iη) −m(τ)‖ = 0. (8.1)
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Moreover, there is c > 0, depending only on k0, k1 and dist(τ, supp ρ),
such that dist(τ, supp ρt) ≥ c for all t ∈ [0, 1].

Proof of Proposition 2.6. We start with the proof of (i) and notice that the
existence of m(τ) has been proven in Lemma 8.1 (i). In order to verify (2.10),
we consider the continuous flow of data pairs (at, St) from Lemma 8.1 (ii) and
the corresponding solutions mt of the Dyson equation, (2.3), and prove

ρt((−∞, τ)) = 〈1(−∞,0)(mt(τ))〉 (8.2)

for all t ∈ [0, 1]. Note that dist(τ, supp ρt) ≥ c for all t ∈ [0, 1] by Lemma 8.1
(ii).
In particular, by Lemma 8.1 (ii), mt(τ) = m(τ) is constant along the flow, and
with it the right-hand side of (8.2). The identity (8.2) obviously holds for t = 1,
because m1(z) = (a − Sm(τ) − z)−1 is the resolvent of a self-adjoint element
and m(τ) satisfies (2.3) at z = τ by Lemma 8.1 (i). Thus it remains to verify
that the left-hand side of (8.2) stays constant along the flow as well. This will
show (8.2) for t = 0 which is (2.10).
First we conclude from the Stieltjes transform representation (2.4) of mt that

ρt((−∞, τ)) = − 1

2πi

∮
〈mt(z)〉 dz , (8.3)

where the contour encircles [min supp ρt, τ) counterclockwise, passing through
the real line only at τ and to the left of min supp ρt, and we extended mt(z)
analytically to a neighbourhood of the contour (set mt(z̄) ..= mt(z)∗ for z ∈ H

and use Lemma D.1 (iv) close to the real axis to conclude analyticity in a
neighbourhood of the contour).
We now show that the left-hand side of (8.3) does not change along the flow.
Indeed, differentiating the right-hand side of (8.3) with respect to t and writing
mt = mt(z) yield

d

dt

∮
〈mt(z)〉dz =

∮
〈∂tmt(z)〉dz

=

∮
〈(C−1

m∗

t
− St)

−1[1] , S[m(τ)] − S[mt]〉dz

=

∮
〈(∂zmt)(S[m(τ)] − S[mt])〉dz

=

∮
∂z

(
〈mtS[m(τ)]〉 − 1

2
〈mtS[mt]〉

)
dz = 0.

Here, in the second step, we used ∂tmt(z) = (C−1
mt

− St)
−1[−S[mt] − S[m(τ)]]

obtained by differentiating the Dyson equation, (2.3), for the data pair (at, St)
defined in Lemma 8.1 (ii) and the definition of the scalar product, (2.1). In
the third step, we employed (C−1

m∗

t
− St)

−1[1] = (∂zmt(z))∗ which follows from

differentiating the Dyson equation, (2.3), for the data pair (at, St) with respect
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to z. Finally, we used that mt is holomorphic in a neighbourhood of the contour.
This completes the proof of (i) of Proposition 2.6.
For the proof of (ii), we fix a connected component J of supp ρ. Let τ1, τ2 ∈
R \ supp ρ satisfy τ1 < τ2 and [τ1, τ2] ∩ supp ρ = J . By (2.10), we have

nρ(J) = n
(
ρ((−∞, τ2)) − ρ((−∞, τ1))

)
= Tr(P2) − Tr(P1) = rankP2 − rankP1,

where Pi
..= π(1(−∞,0)(m(τi))) are orthogonal projections in Cn×n for i =

1, 2. Hence, nρ(J) ∈ Z. Since 0 < nρ(J) ≤ n by definition of supp ρ, we
conclude nρ(J) ∈ {1, . . . , n}, which immediately implies that supp ρ has at
most n connected components. This completes the proof of Proposition 2.6.

Proof of Lemma 8.1. In part (i), the existence of the limit m(τ) ∈ A follows
immediately from the implication (v) ⇒ (iii) of Lemma D.1. The invertibility
of m(τ) can be seen by multiplying (2.3) at z = τ + iη by m(τ + iη) and taking
the limit η ↓ 0. This also implies that m(τ) satisfies (2.3) at z = τ . In order to
bound ‖(Id − (1 − t)Cm(τ)S)−1‖, we recall the definitions of q, u and F from
(3.1) and (3.4), respectively, and compute

Id − (1 − t)CmS = Cq∗,q(Id − (1 − t)CuF )C−1
q∗,q

for m = m(z) with z ∈ H. Hence, by (D.1), Lemma 4.8 (i) and Lemma B.2,
we obtain ‖(Id − (1 − t)CmS)−1‖ . (1 − (1 − t)‖F‖2)−1 ≤ (1 − ‖F‖2)−1 ≤ C
for all z ∈ τ + iN , where the set N ⊂ (0, 1] with an accumulation point at 0
is given in Lemma D.1 (ii). Taking the limit η ↓ 0 under the constraint η ∈ N
and possibly increasing C yield the desired uniform bound. This completes the
proof of (i).
We start the proof of (ii) with an auxiliary result. Similarly as in the proof of
(i), we see that Id − (1 − t)Cm∗,mS is invertible for m = m(z), z ∈ τ + iN with
N as before. Since ‖F (z)‖2 ≤ 1 − C−1 for z ∈ τ + iN as in the proof of (i),
Lemma B.3 implies that (Id−(1−t)Cu∗,uF )−1, F = F (z), and, thus, (Id−(1−
t)Cm∗,mS)−1 = Cq∗,q(Id − (1 − t)Cu∗,uF )−1C−1

q∗,q are positivity-preserving for
z ∈ τ+iN . Taking the limit η = Im z ↓ 0 in N shows that (Id−(1−t)Cm(τ)S)−1

is positivity-preserving for any t ∈ [0, 1]. Moreover, (B.12) with x = 1 yields

(Id − (1 − t)Cm∗,mS)−1[1] = Cq∗,q(Id − (1 − t)Cu∗,uF )−1C−1
q∗,q[1] ≥ 1. (8.4)

Since (8.4) holds true uniformly for z ∈ τ + iN and t ∈ [0, 1], taking the limit
η = Im z ↓ 0 in N , we obtain

(Id − (1 − t)Cm(τ)S)−1[1] ≥ 1 (8.5)

for all t ∈ [0, 1].
We fix t ∈ [0, 1]. We write m = m(τ) and define Φt : A × R → A through

Φt(∆, η) ..= (Id − (1 − t)CmS)[∆] − iη

2
(m∆ + ∆m) − iηm2

− 1

2
(1 − t)(∆S[∆]m+mS[∆]∆)
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In order to show (8.1), we apply the implicit function theorem (see e.g. Lemma
D.4 below) to Φt(∆, η) = 0. It is applicable as Φt(0, 0) = 0 and ∂1Φt(0, 0) =
Id − (1 − t)CmS which is invertible by (i). Hence, we obtain an ε > 0 and a
continuously differentiable function ∆t : (−ε, ε) → A such that Φt(∆t(η), η) =
0 for all η ∈ (−ε, ε) and ∆t(0) = 0. We now show that ∆t(η) + m(τ) =
mt(τ + iη) for all sufficiently small η > 0 by appealing to the uniqueness of the
solution to the Dyson equation, (2.3), with the choice z = τ + iη, a = at and
S = St = (1 − t)S. In fact, m = m(τ) and mt = mt(τ + iη) with η > 0 satisfy
the Dyson equations

−m−1 = τ − a+ S[m], −m−1
t = τ + iη − a+ tS[m] + (1 − t)S[mt] (8.6)

and mt is the unique solution of the second equation under the constraint
Immt > 0 (compare the remarks around (2.3)). A straightforward computation
using the first relation in (8.6) and Φt(∆t(η), η) = 0 reveals that ∆t(η) +
m(τ) solves the second equation in (8.6) for mt. Moreover, differentiating
Φt(∆t(η), η) = 0 with respect to η at η = 0 yields

∂ηIm ∆t(η = 0) = (Id − (1 − t)CmS)−1[m2]

≥ ‖m−1‖−2(Id − (1 − t)CmS)−1[1] ≥ ‖m−1‖−2
1.

Here, we used that (Id − (1 − t)CmS)−1 is compatible with the involution
∗ and m = m∗ in the first step. Then we employed the invertibility of m,
m2 ≥ ‖m−1‖−2

1 and the positivity-preserving property of (Id− (1 − t)CmS)−1

in the second step and, finally, (8.5) in the last step. Hence, Im (∆t(η)+m(τ)) =
Im ∆t(η) > 0 for all sufficiently small η > 0. The uniqueness of the solution to
the Dyson equation for mt, the second relation in (8.6), implies ∆t(η)+m(τ) =
mt(τ + iη) for all sufficiently small η > 0 and all t ∈ [0, 1]. Therefore, the
continuity of ∆t as a function of η, ∆t(η) → ∆t(0) = 0, yields (8.1).
We now conclude from the implication (iii) ⇒ (v) of Lemma D.1 that
dist(τ, supp ρt) ≥ ε for some ε > 0. Lemma D.1 is applicable since ‖at‖ ≤
k0 + k1C (cf. Lemma B.2 (i) and Lemma 8.1 (i)) and St[x] ≤ S[x] ≤ k1〈x〉1
for all x ∈ A+. For any t ∈ [0, 1], statement (iii) in Lemma D.1 holds true
with the same m = m(τ) by (8.1) and S replaced by St = (1 − t)S. By (i),
‖m‖ ≤ C and ‖(Id − (1 − t)CmS)−1‖ ≤ C for all t ∈ [0, 1]. Hence, owing to
Lemma D.1 (v), there is ε > 0, depending only on k0, k1 and dist(τ, supp ρ),
such that dist(τ, supp ρt) ≥ ε for all t ∈ [0, 1]. Here, ε depends only on k0, k1

and dist(τ, supp ρ) due to the exclusive dependence of C from (i) on the quanti-
ties and the effective dependence of the constants in Lemma D.1 on each other
(see final remark in Lemma D.1). The uniformity of ε in t is a consequence of
the uniformity of C from (i) in t. This completes the proof of Lemma 8.1.

9 Dyson equation for Kronecker random matrices

In this section we present an application of the theory developed in this work
to Kronecker random matrices, i.e., block correlated random matrices with
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variance profiles within the blocks, and their limits. Kronecker matrices were
introduced in [7], where several applications of them were outlined. In Lemma
9.1 and Lemma 9.3 below, we will provide some sufficient checkable conditions
that ensure the flatness of S and the boundedness of ‖m(z)‖, the main assump-
tions of Proposition 2.4, Theorem 2.5 and Theorem 7.1, for the self-consistent
density of states of Kronecker random matrices.

9.1 The Kronecker setup

We fix K ∈ N and a probability space (X, π) that we view as a possibly infinite
set of indices. We consider the von Neumann algebra

A = C
K×K ⊗ L∞(X) , (9.1)

with the tracial state

〈κ⊗ f〉 =
Trκ

K

∫

X

fdπ .

For K = 1 the algebra A is commutative and this setup was previously
considered in [3, 1]. Now let (αµ)ℓ1

µ=1, (βν)ℓ2

ν=1 be families of matrices in

CK×K with αµ = α∗
µ self-adjoint and let (sµ)ℓ1

µ=1, (t
ν)ℓ2

ν=1 be families of non-

negative bounded functions in L∞(X2) and suppose that all sµ are symmetric,
sµ(x, y) = sµ(y, x). Then we define the self-energy operator S : A → A as

S(κ⊗ f) ..=

ℓ1∑

µ=1

αµκαµ ⊗ Sµf +

ℓ2∑

ν=1

(βνκβ
∗
ν ⊗ Tνf + β∗

νκβν ⊗ T ∗
ν f) , (9.2)

where the bounded operators Sµ, Tν , T
∗
ν : L∞(X) → L∞(X) act as

(Sµf)(x) =

∫

X

sµ(x, y)f(y)π(dy) , (Tνf)(x) =

∫

X

tν(x, y)f(y)π(dy) ,

(T ∗
ν f)(x) =

∫

X

tν(y, x)f(y)π(dy) .

Furthermore we fix a self-adjoint a = a∗ ∈ A. With these data we will consider
the Dyson equation, (2.3).
The following lemma provides sufficient conditions that ensure flatness of S
and boundedness of ‖m(z)‖ uniformly in z up to the real line. We begin with
some preparations. We use the notation x 7→ vx for x ∈ X and an element
v ∈ CK×K ⊗ L∞(X), interpreting it as a function on X with values in CK×K .
We also introduce the functions γ ∈ L∞(X2) via

γ(x, y) ..=
(∫

X

(|sµ(x, u) − sµ(y, u)|2 + |tν(x, u) − tν(y, u)|2

+ |tν(u, x) − tν(u, y)|2)π(du)
)1/2

(9.3)
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and Γ : (0,∞)2 → L∞(X), (Λ, τ) 7→ ΓΛ,·(τ) through

ΓΛ,x(τ) ..=

(∫

X

(1

τ
+ ‖ax − ay‖ + γ(x, y)Λ

)−2

π(dy)

)1/2

. (9.4)

Here, we denoted by ‖ · ‖ the operator norm on CK×K induced by the Euclidean
norm on CK . The two functions γ and Γ will be important to quantify the
modulus of continuity of the data (a, S).

Lemma 9.1. Let m be the solution of the Dyson equation, (2.3), on the von
Neumann algebra A from (9.1) associated to the data (a, S) with S defined as
in (9.2).

(i) Define Γ(τ) .

.= CKr ess infx Γ1,x(τ) with CKr
.

.= (4 + 4K(ℓ1 +
ℓ2) maxµ,ν(‖αµ‖2 + ‖βν‖2))1/2, where ΓΛ,x(τ) was introduced in (9.4)
and assume that for some z ∈ H the L2-upper bound ‖m(z)‖2 ≤ Λ for
some Λ ≥ 1 is satisfied. Then we have the uniform upper bound

‖m(z)‖ ≤ Γ−1(Λ2)

Λ
, (9.5)

where we interpret the right-hand side as ∞ if Λ is not in the range of
the strictly monotonously increasing function Γ.

(ii) Suppose that the kernels of the operators Sµ and T ν, used to define
S in (9.2), are bounded from below, i.e., ess infx,y s

µ(x, y) > 0 and
ess infx,y t

ν(x, y) > 0. Suppose further that

inf
κ

1

Trκ

( ℓ1∑

µ=1

αµκαµ +

ℓ2∑

ν=1

(βνκβ
∗
ν + β∗

νκβν)

)
> 0 , (9.6)

where the infimum is taken over all positive definite κ ∈ CK×K . Then S
is flat, i.e., S ∈ Σflat (cf. (2.2b)).

(iii) Let S be flat, hence, Λ .

.= 1 + supz∈H
‖m(z)‖2 < ∞. Then (9.5) holds

true with this Λ.

(iv) If a = 0 then, for each ε > 0, (9.5) holds true on |z| ≥ ε with Λ .

.=
1 + 2ε−1.

Proof of Lemma 9.1. We adapt the proof of Proposition 6.6 in [3] to our non-
commutative setting in order to prove (i). Recall the definition of γ(x, y) in
(9.3). Estimating the norm ‖m‖2 from below, we find

‖m‖2
2 =

1

K
Tr

∫
π(dy)

m−1
y (m∗

y)−1

≥ Tr

∫

X

C2
Krπ(dy)

m−1
x (m∗

x)−1 + ‖ax − ay‖2 + γ(x, y)2‖m‖2
2

≥ C2
Kr

(
Γ‖m‖2,x(‖mx‖)

)2
,

(9.7)
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for π-almost all x ∈ X, where we used

1

4
m−1

y (m∗
y)−1 ≤ m−1

x (m∗
x)−1 + (ay − ax)(ay − ax)∗

+ ((Sm)x − (Sm)y)((Sm)x − (Sm)y)∗

≤ m−1
x (m∗

x)−1 + ‖ax − ay‖2

+K(ℓ1 + ℓ2) max
µ,ν

(‖αµ‖2 + ‖βν‖2)γ(x, y)2‖m‖2
2 .

(9.8)

We conclude Λ ≥ Λ−1Γ(Λ‖mx‖) for any upper bound Λ ≥ 1 on ‖m‖2. In
particular, (9.5) follows.
We turn to the proof of (ii). We view a positive element r ∈ A+ as a function
r : [0, 1] → CK×K with values in positive semidefinite matrices. Then we find

(Sr)x ≥ c

∫

X

( ℓ1∑

µ=1

αµryαµ +

ℓ2∑

ν=1

(βνryβ
∗
ν + β∗

νryβν)

)
π(dy) ,

as quadratic forms on CK×K for almost every x ∈ X. The claim follows now
immediately from (9.6). Part (iii) is a direct consequence of (i) and (ii) as well
as (3.11). For the proof of part (iv), we use part (i) and (2.6) if a = 0.

9.2 N × N-Kronecker random matrices

As an application of the general Kronecker setup introduced above, we con-
sider the matrix Dyson equation associated to Kronecker random matrices.
Let Xµ, Yν ∈ CN×N be independent centered random matrices such that
Yν = (yν

ij) has independent entries and Xµ = (xµ
ij) has independent entries up

to the Hermitian symmetry constraint Xµ = X∗
µ. Suppose that the entries of√

NXµ,
√
NYν have uniformly bounded moments, E(|xµ

ij |p + |yµ
ij |p) ≤ N−p/2Cp

and define their variance profiles through

sµ(i, j) ..= NE|xµ
ij |2 , tν(i, j) ..= NE|yν

ij |2 .

Then we are interested in the asymptotic spectral properties of the Hermitian
Kronecker random matrix

H ..= A+

ℓ1∑

µ=1

αµ ⊗Xµ +

ℓ2∑

ν=1

(βν ⊗ Yν + β∗
ν ⊗ Y ∗

ν ) ∈ C
K×K ⊗ C

N×N , (9.9)

asN → ∞. Here the expectation matrix A is assumed to be bounded, ‖A‖ ≤ C,
and block diagonal, i.e.

A =

N∑

i=1

ai ⊗ Eii , (9.10)

with Eii = (δilδik)N
l,k=1 ∈ C

N×N and ai ∈ C
K×K . In [7] it was shown that the

resolvent G(z) = (H − z)−1 of the Kronecker matrix H is well approximated
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by the solution M(z) of a Dyson equation of Kronecker type, i.e., on the von
Neumann algebra A in (9.1) with self-energy S from (9.2) and a = A ∈ A,
when we choose X = {1, . . . , N} and π the uniform probability distribution. In
other words, L∞(X) = CN with entrywise multiplication.

9.3 Limits of Kronecker random matrices

Now we consider limits of Kronecker random matrices H ∈ CN×N with piece-
wise Hölder-continuous variance profiles as N → ∞. In this situation we can
make sense of the continuum limit for the solution M(z) of the associated ma-
trix Dyson equation. The natural setup here is (X, π) = ([0, 1], dx). We fix
a partition (Il)

L
l=1 of [0, 1] into intervals of positive length, i.e., [0, 1] = ∪̇lIl

and consider non-negative profile functions sµ, tν : [0, 1]2 → R that are Hölder-
continuous with Hölder exponent 1/2 on each rectangle Il × Ik. We also fix
a function a : [0, 1] → CK×K that is 1/2-Hölder continuous on each Il. In
this piecewise Hölder-continuous setup the Dyson equation on A with data
pair (a, S) describes the asymptotic spectral properties of Kronecker random
matrices with fixed variance profiles sµ and tν , i.e., the random matrices H
introduced in Subsection 9.2 if their variances are given by

E|xµ
ij |2 =

1

N
sµ
( i
N
,
j

N

)
, E|yν

ij |2 =
1

N
tν
( i
N
,
j

N

)
,

and the matrices ai in (9.10) by ai = a( i
N ).

Lemma 9.2. Suppose that a, sµ and tν are piecewise Hölder-continuous with
Hölder exponent 1/2 as described above. The empirical spectral distribution of
the Kronecker random matrix H, defined in (9.9), with eigenvalues (λi)

KN
i=1 con-

verges weakly in probability to the self-consistent density of states ρ associated
to the Dyson equation with data pair (a, S) as defined in (9.2), i.e., for any
ε > 0 and ϕ ∈ C(R) we have

P

(∣∣∣∣
1

KN

KN∑

i=1

ϕ(λi) −
∫

R

ϕdρ

∣∣∣∣ > ε

)
→ 0 , N → ∞ .

Proof of Lemma 9.2. It suffices to prove convergence of the Stieltjes transforms,
i.e., in probability 1

NK TrKN G(z) → 〈m(z)〉 for every fixed z ∈ H, where
G(z) = (H − z)−1 is the resolvent of the Kronecker matrix H and m(z) is the
solution to the Dyson equation with data (a, S).
First we use the Theorem 2.7 from [7] to show that 1

KN TrKN G(z) −
1
N

∑N
i=1 TrK mi(z) → 0 in probability, where MN = (m1, . . . ,mN ) ∈

(CK×K)N denotes the solution to a Dyson equation formulated on the von
Neumann algebra CK×K ⊗CN with entrywise multiplication on vectors in CN

as explained in Subsection 9.2. We recall that in this setup the discrete ker-
nels for Sµ and Tν from the definition of S in (9.2) are given by NE|xµ

ij |2 and

NE|yν
ij |2, respectively, and a =

∑N
i=1 a( i

N ) ⊗ ei. To distinguish this discrete
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data pair from the continuum limit over CK×K ⊗ L∞[0, 1], we denote it by
(aN , SN). Note that in Theorem 2.7 of [7] the test functions were compactly
supported in contrast to the function τ 7→ 1/(τ − z) that we used here. How-
ever, by Theorem 2.4 of [7] and since the self-consistent density of states is
compactly supported (cf. (2.5a) and ‖S‖ . 1) no eigenvalues can be found be-
yond a certain bounded interval, ensuring that non compactly supported test
function are allowed as well.
Now it remains to show that 〈MN〉 → 〈m〉 as N → ∞ for all z ∈ H. For this

purpose we embed CN into L∞[0, 1] via Pv ..=
∑N

i=1 vi1[(i−1)/N,i/N). With this
identification MN and m satisfy Dyson equations on the same space C

K×K ⊗
L∞[0, 1]. Evaluating these two equations at z + iη, for a fixed z ∈ H and any
η ≥ 0, and subtracting them from each other yield

B[∆] = m(SN − S)[m]∆ + Cm(SN − S)[∆] +mSN [∆]∆

+ Cm(SN − S)[m] −m(aN − a)∆ − Cm[aN − a],

where m = m(z + iη), MN = MN (z + iη), B = Id − CmS and ∆ = MN − m.
Using the imaginary part of z we have dist(z + iη, supp ρ) ≥ Im z > 0. By
(3.22), (3.23), (3.11a) and (3.11c) of [7] we infer ‖m‖+‖B−1‖2 ≤ C for all η ≥ 0
with a constant C depending on Im z. Note that although the proofs in [7] were
performed on CN×N all estimates were uniform in N and all algebraic relations
in these proof translate to the current setting on a finite von Neumann algebra.
Using ‖SN − S‖2 ≤ ‖SN − S‖ as well as ‖SN‖ ≤ C and possibly increasing C,
we thus obtain

‖∆‖2 ≤ C(ΨN + ‖∆‖2
2), ΨN

..= ‖aN − a‖ + ‖SN − S‖,

where ∆ = ∆(z + iη), for all η ≥ 0. We choose N0 sufficiently large such that
2ΨNC

2 ≤ 1/4 for all N ≥ N0 and define η∗ ..= sup{η ≥ 0: ‖∆(z + iη)‖2 ≥
2CΨN}. Since ‖MN‖ + ‖m‖ → 0 for η → ∞, we conclude η∗ < ∞.
We now prove η∗ = 0. For a proof by contradiction, we suppose η∗ > 0.
Then, by continuity, ‖∆(τ + iη∗)‖2 = 2CΨN . Since 2ΨNC

2 ≤ 1/4, we have
‖∆(z + iη∗)‖2 ≤ 4CΨN/3 < 2CΨN = ‖∆(z + iη∗)‖2. From this contradiction,
we conclude η∗ = 0. Therefore, for N ≥ N0, we have

|MN(z) −m(z)| ≤ ‖∆(z)‖2 ≤ 2CΨN = 2C(‖SN − S‖ + ‖aN − a‖) .

Since the right-hand side converges to zero as N → ∞, due to the piecewise
Hölder-continuity of the profile functions, and since z was arbitrary, we obtain
〈MN 〉 → 〈m〉 as N → ∞ for all z ∈ H. This completes the proof of Lemma 9.2.

The boundedness of the solution to the Dyson equation in L2-norm already
implies uniform boundedness in the piecewise Hölder-continuous setup.

Lemma 9.3. Suppose that a, sµ and tν are piecewise 1/2-Hölder continuous and
that supz∈D

‖m(z)‖2 < ∞ for some domain D ⊆ H. Then we have the uniform
bound supz∈D

‖m(z)‖ < ∞.
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In particular, if the random matrix H is centered, i.e., a = 0, then m(z) is
uniformly bounded as long as z is bounded away from zero; and if H is flat in
the limit, i.e., S is flat, then supz∈H

‖m(z)‖ < ∞.

Proof. By (i) of Lemma 9.1 the proof reduces to checking that limτ→∞ Γ(τ) =
∞ for piecewise 1/2-Hölder continuous data in the special case (X, π) =
([0, 1], dx). But this is clear since in that case ‖ax − ay‖2 + γ(x, y)2 ≤ C|x− y|
implies that the integral in (9.4) is at least logarithmically divergent as
τ → ∞.

Corollary 9.4 (Band mass quantization). Let ρ be the self-consistent density
of states for the Dyson equation with data pair (a, S) and τ ∈ R \ suppρ. Then

ρ((−∞, τ)) ∈
{

1

K

L∑

l=1

kl|Il| : kl = 1, . . .K

}
.

In particular, in the L = 1 case when sµ, tµ and a are 1/2-Hölder continu-
ous on all of [0, 1]2 and [0, 1], respectively, then ρ(J) is an integer multiple of
1/K for every connected component J of supp ρ and there are at most K such
components.

Proof. Fix τ ∈ R \ supp ρ. We denote by x 7→ mx(τ) the self-adjoint solution
m(τ) viewed as a function of x ∈ [0, 1] with values in C

K×K . As is clear from
the Dyson equation this function inherits the regularity of the data, i.e., it is
continuous on each interval Il. By the band mass formula (2.10) we have

ρ((−∞, τ)) =
1

K

L∑

l=1

∫

Il

Tr 1(−∞,0)(mx(τ))dx =
1

K

L∑

l=1

kl|Il| ,

where kl = Tr 1(−∞,0)(mx(τ)) ∈ {0, . . . ,K} is continuous in x ∈ Il with discrete
values and therefore does not depend on x.

Remark 9.5. We extend the conjecture from Remark 2.9 of [1] to the Kronecker
setting. We expect that in the piecewise 1/2-Hölder continuous setting of the
current section, the number of connected components of the self-consistent
spectrum supp ρ is at most K(2L− 1).

10 Perturbations of the data pair

In this section, as an application of our results in Sections 4 to 7, we show that
the Dyson equation, (2.3), is stable against small general perturbations of the
data pair (a, S) consisting of the bare matrix a and the self-energy operator
S. To that end, let T ⊂ R contain 0, St : A → A, t ∈ T , be a family of
positivity-preserving operators and at = a∗

t ∈ A, t ∈ T , be a family of self-
adjoint elements. We set S ..= St=0 and a ..= at=0 and will always assume that
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there are c1, . . . , c5 > 0 such that

c1〈x〉1 ≤ S[x] ≤ c2〈x〉1, ‖a‖ ≤ c3, ‖S − St‖ ≤ c4t, ‖a− at‖ ≤ c5t
(10.1)

for all x ∈ A+ and for all t ∈ T . For any t ∈ T , let mt be the solution to the
Dyson equation associated to the data pair (at, St), i.e.,

−mt(z)−1 = z1 − at + St[mt(z)] (10.2)

for z ∈ H (cf. (2.3)). We also set m ..= mt=0.
The main result of this section, Proposition 10.1 below, states that ‖mt(z) −
m(z)‖ is small for sufficiently small t and all z away from points, where m(z)
blows up. Depending on the location of z, there are three cases for the estimate:
we obtain the best estimate of order |t| on ‖mt(z) − m(z)‖ in the bulk, the
estimate is weaker, of order |t|1/2, if z is close to a regular edge and the weakest,
of order |t|1/3, if z is close to an (almost) cusp point.
We now introduce these concepts precisely. For a given m∗ > 0, we define the
set Pm

..= Pm∗

m ⊂ H, where ‖m(z)‖ is larger than m∗, i.e.,

Pm∗

m
..= {τ ∈ R : sup

η>0
‖m(τ + iη)‖ > m∗}.

For any fixed m∗ > 0 and δ > 0, we introduce the set Dbdd of points of distance
at least δ from Pm, i.e.,

Dbdd
..= D

m∗,δ
bdd

..= {z ∈ H : dist(z, Pm) ≥ δ}. (10.3)

Note that ‖m(z)‖ ≤ max{m∗, δ−1} for all z ∈ Dbdd as ‖m(z)‖ ≤
(dist(z, suppρ))−1 by (3.7).
We now introduce the concept of the bulk. Since S ∈ Σflat, the self-consistent
density of states ofm (cf. Definition 2.2) has a continuous density ρ : R → [0,∞)
with respect to the Lebesgue measure (cf. Proposition 2.3). We also write ρ
for the harmonic extension of ρ to H which satisfies ρ(z) = 〈Imm(z)〉/π for
z ∈ H. For ρ∗ > 0 and δs > 0, we denote those points, where ρ is bigger than
ρ∗ or which are at least δs away from supp ρ, by

Dbulk
..= D

ρ∗

bulk
..= {z ∈ H : ρ(z) ≥ ρ∗},

Dout
..= D

δs
out

..= {z ∈ H : dist(z, suppρ) ≥ δs},

respectively. We remark that, for fixed ρ∗ and δs, we have the inclusion Dbulk ∪
Dout ⊂ Dbdd for all sufficiently large m∗ and sufficiently small δ by (3.12).
For τ ∈ R\ supp ρ, let ∆(τ) denote the size of the largest interval that contains
τ and is contained in R \ supp ρ. For ρ∗ > 0 and ∆∗ > 0, we define the set
Pcusp = P ρ∗,∆∗

cusp ⊂ R of almost cusp points through

P ρ∗,∆∗

cusp
..= {τ ∈ supp ρ \ ∂ supp ρ : τ is a local minimum of ρ, ρ(τ) ≤ ρ∗}

∪ {τ ∈ R \ supp ρ : ∆(τ) ≤ ∆∗}.
(10.4)
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For some δc > 0, we denote those points which are at least δc away from almost
cusp points by

Dnocusp
..= {z ∈ H : dist(z, Pcusp) ≥ δc}.

We remark that D = Dbdd ∩Dcusp, where D denotes the set of points which are
away from Pm and Pcusp. More precisely, for some δ > 0, we define

D ..= {z ∈ H : dist(z, Pm) ≥ δ, dist(z, Pcusp) ≥ δ}.

In this section, the model parameters are given by c1, . . . , c5 from (10.1) as well
as the fixed parametersm∗, δ, ρ∗, δs, ∆∗ and δc from the definitions of Pm, Dbdd,
Dbulk, Dout, Pcusp, and Dnocusp, respectively. Thus, the comparison relation
∼ (compare Convention 3.4) is understood with respect to these parameters
throughout this section.

Proposition 10.1. If the self-adjoint element a = at=0, at in A and the
positivity-preserving operators S = St=0, St on A satisfy (10.1) for each t ∈ T
then there is t∗ ∼ 1 such that

(a) Uniformly for all z ∈ Dbdd and for all t ∈ [−t∗, t∗] ∩ T , we have

‖mt(z) −m(z)‖ . |t|1/3.

In particular, ‖mt(z)‖ . 1 uniformly for all z ∈ Dbdd and for all t ∈
[−t∗, t∗] ∩ T .

(b) (Bulk and away from support of ρ) Uniformly for all z ∈ Dbulk ∪Dout and
for all t ∈ [−t∗, t∗] ∩ T , we have

‖mt(z) −m(z)‖ . |t|.

(c) (Away from almost cusps) Uniformly for all z ∈ Dnocusp ∩ Dbdd and for
all t ∈ [−t∗, t∗] ∩ T , we have

‖mt(z) −m(z)‖ . |t|1/2.

In order to simplify the notation, we set ∆mt = ∆mt(z) = mt(z) −m(z). The
behaviour of ∆mt will be governed by a scalar-valued cubic equation (see (10.6)
below). This is the origin of the cubic root |t|1/3 in the general estimate on
‖mt(z) −m(z)‖ in Proposition 10.1. In the special cases, z ∈ Dbulk ∪ Dout and
z ∈ Dnocusp, the cubic equation simplifies to a linear or quadratic equation,
respectively, which yield the improved estimates |t| and |t|1/2, respectively.

We now define two positive auxiliary functions ξ̃1(z) and ξ̃2(z) for z ∈ Dbdd

which will control the coefficients in the cubic equation mentioned above. For
their definitions, we distinguish several subdomains of Dbdd. The slight ambi-
guity of the definitions due to overlaps between these domains does, however,
not affect the validity of the following statements as the different versions of ξ̃1

as well as ξ̃2 are comparable with each other with respect to the comparison
relation ∼ and ξ̃1 as well as ξ̃2 are only used in bounds with respect to this
comparison relation. For ρ∗ ∼ 1 and δ∗ ∼ 1, we define

Documenta Mathematica 25 (2020) 1421–1539



The Dyson Equation with Linear Self-Energy 1513

• Bulk: If z ∈ Dbulk ∪ Dout then we set

ξ̃1(z) ..= ξ̃2(z) ..= 1. (10.5a)

• Around a regular edge: If z = τ0 + ω + iη ∈ Dnocusp ∩ Dbdd with
some τ0 ∈ ∂ supp ρ, ω ∈ [−δ∗, δ∗] and η ∈ (0, δ∗] then we set

ξ̃1(z) ..= (|ω| + η)1/2, ξ̃2(z) ..= 1. (10.5b)

• Close to an internal edge with a small gap: Let α, β ∈
(∂ supp ρ) \Pm satisfy β < α and (β, α) ∩ supp ρ = ∅. We set ∆ ..= α−β.
If z ∈ Dbdd satisfies z = α−ω+iη or z = β+ω+iη for some ω ∈ [−δ∗,∆/2]
and η ∈ (0, δ∗] then we define

ξ̃1(z) ..= (|ω| + η)1/2(|ω| + η + ∆)1/6, ξ̃2(z) ..= (|ω| + η + ∆)1/3

(10.5c)

• Around a small internal minimum: If z = τ0 + ω + iη ∈ Dbdd,
where τ0 ∈ supp ρ \ ∂ supp ρ is a local minimum of ρ with ρ(τ0) ≤ ρ∗,
ω ∈ [−δ∗, δ∗] and η ∈ (0, δ∗] then we define

ξ̃1(z) ..= (ρ(τ0) + (|ω| + η)1/3)2, ξ̃2(z) ..= ρ(τ0) + (|ω| + η)1/3.
(10.5d)

We remark that τ0 ∈ ∂ supp ρ is a regular edge if ρ(τ) = 0 for all τ ∈ [τ0 − ε, τ0]
or τ ∈ [τ0, τ0 + ε] for some ε ∼ 1. In fact, Dnocusp ∩ Dbdd ∩ ∂ supp ρ consists
only of regular edges.
In the proof of Proposition 10.1, we will use the following two lemmas, whose
proofs we postpone until the end of this section.

Lemma 10.2. Let Dbdd be defined as in (10.3). Let a, S and (at)t∈T and
(St)t∈T satisfy (10.1). Then there is ε1 ∼ 1 such that if ‖∆mt(z)‖ ≤ ε1 for
some z ∈ Dbdd, t ∈ T , then there are l, b ∈ A depending on z such that
Θt

.

.= 〈l ,∆mt〉/〈l , b〉 satisfies a cubic inequality

|Θ3
t + ξ2Θ2

t + ξ1Θt| . |t| (10.6)

with complex coefficients ξ1 and ξ2 depending on z and t. The function Θt

depends continuously on Im z and we also have |Θt| . ‖∆mt‖ as well as
‖∆mt‖ . |Θt| + |t| for all t ∈ T .
The coefficients, ξ1 and ξ2, behave as follows: There are δ∗ ∼ 1, ρ∗ ∼ 1 and
c∗ ∼ 1 such that, with the appropriate definitions of ξ̃1 and ξ̃2 from (10.5), we
have

• If z ∈ Dbdd satisfies the conditions for (10.5a) or (10.5c) with ω ∈
[c∗∆,∆/2] then we have

|ξ1(z)| ∼ ξ̃1(z), |ξ2(z)| . ξ̃2(z). (10.7a)
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• If z ∈ Dbdd satisfies the conditions for (10.5c) with ω ∈ [−δ∗, c∗∆] or
(10.5b) or (10.5d) then we have

|ξ1(z)| ∼ ξ̃1(z), |ξ2(z)| ∼ ξ̃2(z). (10.7b)

All implicit constants in this lemma are uniform for any t ∈ T .

Lemma 10.3. For 0 < η∗ < η∗ < ∞, let ξ1, ξ2 : [η∗, η∗] → C be complex-valued

functions and ξ̃1, ξ̃2, d : [η∗, η∗] → R+ be continuous.
Suppose that some continuous function Θ: [η∗, η∗] → C satisfies the cubic in-
equality

|Θ3 + ξ2Θ2 + ξ1Θ| . d (10.8)

on [η∗, η∗] as well as

|Θ| . min
{
d1/3,

d1/2

ξ̃
1/2
2

,
d

ξ̃1

}
(10.9)

at η∗. If one of the following two sets of relations holds true:

1) (i) ξ̃3
2/d, ξ̃3

1/d
2, ξ̃2

1/(dξ̃2) are monotonically increasing functions,

(ii) |ξ1| ∼ ξ̃1, |ξ2| ∼ ξ̃2,

(iii) d2/ξ̃3
1 + dξ̃2/ξ̃

2
1 at η∗ is sufficiently small depending on the implicit

constants in 1) (ii) as well as (10.8) and (10.9).

2) (i) ξ̃3
1/d

2 is a monotonically increasing function,

(ii) |ξ1| ∼ ξ̃1, |ξ2| . ξ̃
1/2
1 .

then, on [η∗, η∗], we have the bound

|Θ| . min
{
d1/3,

d1/2

ξ̃
1/2
2

,
d

ξ̃1

}
. (10.10)

Proof of Proposition 10.1. We start the proof by introducing the control pa-
rameter M(t). Let ξ̃1 and ξ̃2 be defined as in (10.5). For t ∈ R, we set

M(t) ..= min{|t|1/3, ξ̃
−1/2
2 |t|1/2, ξ̃−1

1 |t|}. (10.11)

We remark that M also depends on z as ξ̃1 and ξ̃2 depend on z.
We will prove below that there are t∗ ∼ 1 and C ∼ 1 such that, for any fixed
t ∈ [−t∗, t∗] ∩ T \ {0} (if this set is nonempty) and z ∈ Dbdd, we have the
implication

‖∆mt(Re z + iη)‖ ≤ ε1 for all η ≥ Im z ⇒ ‖∆mt(z)‖ ≤ CM(t),
(10.12)

where ε1 ∼ 1 is from Lemma 10.2.
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Armed with (10.12), by possibly shrinking t∗ ∼ 1, we can assume that 2Ct
1/3
∗ ≤

ε1. We fix τ ∈ R and t ∈ [−t∗, t∗] ∩ T \ {0} and set

η∗ ..= sup{η > 0 : ‖∆mt(τ + iη)‖ ≥ 2CM(t)}.

Here, we use the convention η∗ = −∞ if the set is empty. Note that ‖∆mt(τ +
iη)‖ ≤ 2η−1 since m and mt are Stieltjes transforms. Hence, η∗ < ∞ as t 6= 0.

We prove now that η∗ ≤ inf{Im z : z ∈ Dbdd, Re z = τ}. For a proof by
contradiction, we suppose that there is z∗ ∈ Dbdd such that Re z∗ = τ and
Im z∗ = η∗ (note that if τ + iη ∈ Dbdd then τ + iη′ ∈ Dbdd for any η′ ≥
η). Since ∆mt is continuous in z, we have ‖∆mt(z∗)‖ = 2CM(t). Thus,

‖∆mt(τ + iη)‖ ≤ 2Ct
1/3
∗ ≤ ε1 for all η ≥ η∗ by the choice of t∗. From (10.12),

we conclude ‖∆mt(z∗)‖ ≤ CM(t), which contradicts ‖∆mt(z∗)‖ = 2CM(t).
Thus, η∗ ≤ inf{Im z : z ∈ Dbdd, Re z = τ}.

As τ was arbitrary, this yields ‖∆mt(z)‖ ≤ 2CM(t) for all z ∈ Dbdd, which

proves part (a) of Proposition 10.1 up to (10.12). Since ξ̃1(z) ∼ 1 for z ∈
Dbulk ∪ Dout and ξ̃2(z) ∼ 1 for z ∈ Dnocusp ∩ Dbdd, we also obtain part (b) and
(c) from the definition of M in (10.11).

Hence, it suffices to show (10.12) to complete the proof of Proposition 10.1.
In order to prove (10.12), we use Lemma 10.3 with Θ(η) = Θt(Re z + iη),

η ≥ η∗ ..= Im z, d = |t|, and ξ1, ξ2 and ξ̃1, ξ̃2 are chosen as in (10.6) of
Lemma 10.2 and (10.5), respectively. As ‖∆mt(Re z+iη)‖ ≤ ε1 for all η ≥ Im z,
we conclude that (10.8) is satisfied with d = |t| due to (10.6).

We first consider z ∈ Dbulk∪Dout. If z ∈ Dbulk∪Dout then Re z+iη ∈ Dbulk∪Dout

and ξ1(Re z + iη) = ξ2(Re z + iη) = 1 for all η ≥ η∗ and assumption 2) of
Lemma 10.3 is always fulfilled. Since ‖∆mt(Re z + iη)‖ ≤ 2η−1 as remarked
above and t 6= 0, the condition in (10.9) is met for some sufficiently large η > 0.
Hence, by Lemma 10.3, there is C ∼ 1 such that |Θt(z)| ≤ CM(t). Possibly
increasing C ∼ 1 and using |t| ≤ t∗ ∼ 1 yield ‖∆mt(z)‖ ≤ CM(t) due to
‖∆mt‖ . |Θt| + |t| from Lemma 10.2.

For each z ∈ Dbdd\Dbulk∪Dout, due to (10.7), we have ξ1(zδ) ∼ 1 and ξ2(zδ) ∼ 1
for zδ

..= Re z + iδ∗, where δ∗ ∼ 1 is as in Lemma 10.2. Hence, we conclude
|Θt(zδ)| ≤ CM(t) as for z ∈ Dbulk ∪Dout. For each z ∈ Dbdd \Dbulk ∪Dout, the
validity of assumption 1) or assumption 2) of Lemma 10.3 can be read off from
(10.7). Lemma 10.3, thus, implies |Θt(z)| ≤ CM(t). As before, we conclude
‖∆mt(z)‖ ≤ CM(t) from Lemma 10.2. This completes the proof of (10.12)
and, hence, the one of Proposition 10.1.

Proof of Lemma 10.2. We remark that a straightforward computation starting
from (2.3) and (10.2) yields

B[∆mt] = A[∆mt,∆mt] +K[∆S ,∆a,∆mt] + T [∆S ,∆a], (10.13)

where B ..= Id −CmS, A[x, y] ..= (mS[x]y+ yS[x]m)/2 are defined as in (6.23),

Documenta Mathematica 25 (2020) 1421–1539



1516 J. Alt, L. Erdős, T. Krüger

∆S ..= St − S, ∆a ..= at − a and

K[∆S ,∆a,∆mt] =
1

2
(m∆S [∆mt]∆mt + ∆mt∆

S [∆mt]m+m∆S [m]∆mt

+ ∆mt∆
S [m]m) − 1

2
(m∆a∆mt + ∆mt∆

am),

T [∆S ,∆a] = m∆S [m]m−m∆am.

In the following, we will split Dbdd into two regimes and choose l and b according
to the regime. In both cases, we use the definitions

Θ ..= Θt =
〈l ,∆mt〉

〈l , b〉 , r = rt
..= Q[∆mt], Q ..= Id − 〈l , · 〉

〈l , b〉 b. (10.14)

In particular, ∆mt = Θb+ r. We denote by ρ(z) the harmonic extension of ρ,
i.e., ρ(z) = 〈Imm(z)〉/π.
If z is close to a regular edge or close to an almost cusp point then ∆mt(z) is
governed by a quadratic or cubic equation for Θt, respectively, where l and b
are a left and a right eigenvector of B, respectively. If z is in the bulk or away
from supp ρ then ∆mt(z) can be controlled by Θt with l = b = 1 and Θt is the
solution of a scalar-valued linear equation. Note that in the bulk and away from
supp ρ the choice l = b = 1 is arbitrary, in fact the splitting ∆mt = Θtb + r
is artificial since the stability operator does not have a distinguished “bad”
direction that needs to be treated separately. We still use this formalism in
order to treat all three cases uniformly for the sake of brevity. For a similar
reason we will always write the equation for Θt as a cubic equation, sometimes
by adding and subtracting apparently superfluous (and negligible) terms.
Case 1: We first assume that z ∈ Dbdd satisfies ρ(z) ≥ ρ∗ for some ρ∗ ∼ 1 or
dist(z, supp ρ) ≥ δ for some δ ∼ 1, i.e., z ∈ D

ρ∗

bulk ∪ Dδ
out. This implies that

B is invertible and ‖B−1‖ . 1 due to (4.1), ‖S‖2→‖·‖ . 1, ‖m(z)‖ . 1 and
Lemma B.2 (ii). In this case, we choose l = b = 1 and apply QB−1 to (10.13)
to obtain

r = QB−1(A[∆mt,∆mt] +K[∆S ,∆a,∆mt] + T [∆S,∆a])

= O(|Θ|2 + ‖r‖‖∆mt‖ + |t|),

where we used that ‖m‖ . 1 on Dbdd as well as ‖∆S‖ + ‖∆a‖ . |t|. Shrinking
ε1 ∼ 1, using ‖∆mt‖ ≤ ε1 and absorbing ‖r‖‖∆mt‖ into the left-hand side
yield ‖r‖ . |Θ|2 + |t|. Thus, ‖∆mt‖ . |Θ| + |t|. Hence, applying B−1 and 〈 · 〉
to (10.13) and using 〈r〉 = 0 as well as ‖∆mt‖ . |Θ| + |t|, we find ξ2 ∈ C such

that |ξ2| . 1 = ξ̃2 and

Θ = −ξ2Θ2 + O(|t||Θ| + |t|) = −ξ2Θ2 + O(|t|).

Adding and subtracting Θ3 on the left-hand side as well as setting ξ1
..= 1 − Θ2

show (10.6) in Case 1 for sufficiently small ε1 ∼ 1 as |Θ| . ‖∆mt‖ ≤ ε1 implies

|ξ1| ∼ 1 = ξ̃1. This completes the proof of (10.7a) for z ∈ Dbulk ∪ Dout.
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Case 2: We now prove (10.6) for z ∈ Dbdd satisfying ρ(z) ≤ ρ∗ and
dist(z, supp ρ) ≤ δ with sufficiently small ρ∗ ∼ 1 and δ ∼ 1. For any ε∗ ∼ 1, we
find δ ∼ 1 such that ρ(z)−1Im z ≤ ε∗ for all z ∈ H satisfying dist(z, supp ρ) ≤ δ
due to (5.26) and the 1/3-Hölder continuity of z 7→ ρ(z)−1Im z by Lemma 5.4
(ii). Therefore, using ρ(z) ≤ ρ∗, we see that Lemma 5.1 and Corollary 5.2 are
applicable for sufficiently small ρ∗ ∼ 1 and δ ∼ 1. They yield l, b ∈ A which we
use to define Θ and r as in (10.14), i.e., ∆mt = Θb+ r and Θ = 〈l ,∆mt〉/〈l , b〉.
In order to derive (10.6), we now follow the proof of Lemma 6.2 applied to
(10.13) instead of (6.10). Here, ∆a and ∆S play the role of e. In fact, by
Lemma 5.1 and Corollary 5.2, the first two bounds in (6.12) are fulfilled. Owing
to ‖m‖ . 1, the third bound in (6.12) is trivially satisfied. Instead of the last
two bounds in (6.12), we use

‖T [∆S,∆a]‖ . ‖∆S‖+‖∆a‖, ‖K[∆S,∆a,∆mt]‖ . (‖∆S‖+‖∆a‖)‖∆mt‖,

due to ‖m‖ . 1 and ‖∆mt‖ . 1. In fact, the last bound in (6.12) will not hold
true for a general y ∈ A but in the proof of Lemma 6.2 it is only used with the
special choice y = ∆mt. We choose ε1 ≤ ε for ε from Lemma 6.2 and obtain
the cubic equation (6.14) from Lemma 6.2 with µ0 = 〈l , T [∆S ,∆a]〉 and ‖e‖
replaced by |t| as ‖∆S‖ + ‖∆a‖ . |t|. In particular, |µ0| . |t|. We decompose
the error term ẽ = O(|Θ|4 + |t||Θ| + |t|2) from (6.14) into ẽ = ẽ1Θ3 + ẽ2 with
ẽ1, ẽ2 ∈ C satisfying ẽ1 = O(|Θ|) and ẽ2 = O(|t||Θ| + |t|2). With the notation
of Lemma 6.2, the cubic equation (6.14) can be written as

(µ3 − ẽ1)Θ3 + µ2Θ2 + µ1Θ = −µ0 + ẽ2 = O(|t|).

Since A and B introduced above have the same definitions as in (6.23) and µ3,
µ2 and µ1 in (6.15) depend only on A and B, Lemma 6.3 yields the expansions
of µ3, µ2 and µ1 in (6.24) for sufficiently small ρ∗ ∼ 1 and δ ∼ 1. By possibly
shrinking ε1 ∼ 1, we find c ∼ 1 such that |µ3 − ẽ1| + |µ2| ≥ 2c as |ẽ1| . |Θ| .
‖∆mt‖ ≤ ε1. Here, we also used |µ3|+ |µ2| & ψ+ |σ| by (6.24) as well as (5.35).
Consequently, we obtain (10.6), where we introduced

ξ2
..=
(
µ2 + (µ3 − ẽ1 − 1)Θ

)
1(|µ2| ≥ c) +

µ2

µ3 − ẽ1
1(|µ2| < c),

ξ1
..= µ11(|µ2| ≥ c) +

µ1

µ3 − ẽ1
1(|µ2| < c).

Hence, we have |ξ2| ∼ |µ2| and |ξ1| ∼ |µ1| for sufficiently small ε1 ∼ 1 as
|ẽ1| . |Θ| and |Θ| . ‖∆mt‖ ≤ ε1. This completes the proof of (10.6) in Case
2.
It remains to show the scaling relations in (10.7) for z ∈ Dbdd satisfying
ρ(z) ≤ ρ∗ and dist(z, suppρ) ≤ δ in order to complete the proof of Lemma 10.2.
Starting from |ξ1| ∼ |µ1| and |ξ2| ∼ |µ2| proven in Case 2, we conclude as in
the proof of (10.6) in [3] that

|ξ1| ∼ ρ(z)2 + |σ(z)|ρ(z) + ρ(z)−1Im z, |ξ2| ∼ ρ(z) + |σ(z)|,
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where σ is defined as in (5.12). Here, ξ1 and ξ2 play the role of π1 and π2,
respectively, in [3]. Their definitions differ slightly but this does not affect the
straightforward estimates. Note that the proof in [3] relies on the expansions
of µ1, µ2 and µ3 from (8.33) in [3]. These are the exact analogues of (6.24),
where ρ plays the role of α from [3].
Note that according to Remark 7.3 the harmonic extension ρ(z) for z ∈ H in the
vicinity of the singularities has the same scaling behavior as in Corollary A.1
of [3]. Similarly, the proof of (10.7) in [3] yields

|σ(β)| ∼ |σ(α)| ∼ (α− β)1/3, |σ(τ0)| . ρ(τ0)2, (10.15)

where α, β ∈ (∂ supp ρ) \ Pm satisfy β < α and (β, α) ∩ supp ρ = ∅ and
τ0 ∈ supp ρ \ ∂ supp ρ is a local minimum of ρ and ρ(τ0) ≤ ρ∗. Here, we

use Lemma 7.16 above and |σ| ∼ ∆̂1/3 by Theorem 7.7 (ii) (b) instead of
Lemma 9.17 in [3] and Lemma 7.14 above instead of Lemma 9.2 in [3]. We then
follow the proof of Proposition 4.3 in [2] and use the 1/3-Hölder continuity of
σ proven in Lemma 5.5 (i). This yields the missing scaling relations in (10.7).
We remark that Θt constructed above is not continuous in Im z due to the
separation into two cases. However, there is only one transition between Case
1 and Case 2 for z ∈ Dbdd when Im z is varied while Re z is kept fixed. Therefore,
we obtain a continuous version of Θt by a simple interpolation between these
two cases in the vicinity of this transition point. We leave the details of this
interpolation argument to the reader. This completes the proof of Lemma 10.2.

Remark 10.4 (Scaling of coefficients). The proof of Lemma 10.2 can equally
well be carried out under Assumption 4.5 instead of the flatness condition in
(10.1). In particular, it shows that in the setting of Theorem 7.2, there are
δ∗ ∼ 1, ρ∗ ∼ 1 and c∗ ∼ 1 such that the following comparison relations hold for
z ∈ Iθ + i[0, η∗]:

• If z satisfies the conditions for (10.5a) or (10.5c) with ω ∈ [c∗∆,∆/2],
then we have

ρ(z)2 + |σ(z)|ρ(z) + ρ(z)−1Im z ∼ ξ̃1(z), ρ(z) + |σ(z)| . ξ̃2(z).

• If z satisfies the conditions for (10.5c) with ω ∈ [−δ∗, c∗∆] or (10.5b) or
(10.5d) with ρ(τ0) ≤ ρ∗, then we have

ρ(z)2 + |σ(z)|ρ(z) + ρ(z)−1Im z ∼ ξ̃1(z), ρ(z) + |σ(z)| ∼ ξ̃2(z).

Proof of Lemma 10.3. By dividing the cubic inequality through d and consid-
ering Θ

d1/3 instead of Θ, we may assume that d = 1. We fix ε ∈ (0, 1) sufficiently
small. First we prove the lemma under assumption 1). Owing to the smallness

of 1

ξ̃3
1

+ ξ̃2

ξ̃2
1

at η∗ as well as the monotonicity of ξ̃1 and
ξ̃2

1

ξ̃2

there are 0 < η1, η2 < η∗

Documenta Mathematica 25 (2020) 1421–1539



The Dyson Equation with Linear Self-Energy 1519

with the following properties: (i) ξ̃2 ≥ ε4ξ̃2
1 on [η∗, η1]; (ii) ξ̃2 ≤ ε4ξ̃2

1 on [η1, η
∗];

(iii) εξ̃1 ≤ 1 on [η∗, η2]; (iv) εξ̃1 ≥ 1 on [η2, η
∗]. Here the intervals [η∗, η2] and

[η∗, η1] may be empty. We will now assume the bound |Θ| . min{1, 1

ξ̃
1/2

2

, 1

ξ̃1

}
at the initial value η∗ and bootstrap it down to η∗. Now we distinguish two
cases:

Case 1 (η1 ≥ η2): On [η1, η
∗] we have εξ̃1 ≥ 1 and ξ̃2 ≤ ε4ξ̃2

1 . Thus, by the
cubic inequality

|Θ| . min
{

1,
1

ξ̃
1/2
2

}
implies |Θ| .

1

ξ̃1

. min
{
ε,

ε2

ξ̃
1/2
2

}
.

In particular, there is a gap in the values of |Θ| and by continuity all values lie
below the gap on [η1, η

∗].
The interval [η∗, η1] is split again, [η∗, η1] = [η∗, η3]∪ [η3, η1], where η3 is chosen

such that (i) ξ̃2ε
2 ≥ 1 on [η3, η1]; (ii) ξ̃2ε

2 ≤ 1 on [η∗, η3]. Here one or both

of these intervals may be empty. Using ξ̃2 ≥ ε4ξ̃2
1 we see that on [η3, η1] the

bound

|Θ| . min
{1

ε
,

1

ε3ξ̃1

}
implies |Θ| .

1

ε3/2ξ̃
1/2
2

. min
{ 1

ε1/2
,

1

ε7/2ξ̃1

}
.

Again the gap in the values of |Θ| allows us to infer from the bound |Θ| .
min{1, 1

ξ̃
1/2

2

, 1

ξ̃1

} at η1 that |Θ| satisfies the same bound on [η3, η1] up to an

ε-dependent multiplicative constant.
Finally, on [η∗, η3] we have ξ̃2 ≤ ε−2 and ξ̃2

1 ≤ ε−4ξ̃2 ≤ ε−6. Using the cubic
inequality this immediately implies |Θ|.ε1.ε min{1, 1

ξ̃
1/2

2

, 1

ξ̃1

}. Here and in the

following, the notation .ε indicates that the implicit constant in the bound is
allowed to depend on ε.

Case 2 (η1 ≤ η2): On [η2, η
∗] we have εξ̃1 ≥ 1 and ξ̃2 ≤ ε4ξ̃2

1 . So this regime

is treated exactly as in the beginning of Case 1. On [η∗, η2] we have εξ̃1 ≤ 1

and ξ̃2 ≤ ξ̃2(η2) ≤ ε4ξ̃1(η2)2 = ε2, which implies |Θ|.ε1.ε min{1, 1

ξ̃
1/2

2

, 1

ξ̃1

}.

Now we prove the lemma under assumption 2). In this case we choose 0 < η1 <

η∗ such that (i) εξ̃1 ≥ 1 on [η1, η
∗]; (ii) εξ̃1 ≤ 1 on [η∗, η1]. Here the interval

[η∗, η1] may be empty.
On [η1, η

∗] the bound

|Θ| . 1 implies ξ̃1|Θ| . 1 + ξ̃
1/2
1 |Θ|2 . ε−1/2 + ε1/2ξ̃1|Θ|

implies |Θ| .
1

√
ε ξ̃1

≤
√
ε .

From the gap in the values of |Θ| and its continuity we infer |Θ| .

min{√
ε, 1√

εξ̃1

}. On [η∗, η1] we use ξ̃1 ≤ ε−1 and |ξ2| . ξ̃
1/2
1 ≤ ε−1/2 to conclude

|Θ|.ε1.ε min{1, 1

ξ̃1

}. This finishes the proof of the lemma.

Documenta Mathematica 25 (2020) 1421–1539



1520 J. Alt, L. Erdős, T. Krüger

Lemma 10.5 (Hölder continuity of σ and ψ with respect to a and S). Let T ⊂ R

contain 0. For each t ∈ T , we assume that the linear operator St : A → A
satisfies

c1〈x〉1 ≤ St[x] ≤ c2〈x〉1 (10.16)

for all x ∈ A+ and some c2 > c1 > 0. Moreover, let at = a∗
t ∈ A be self-adjoint

such that St and at satisfy (10.1) with a .

.= at=0 and S .

.= St=0. Let mt be the
solution to (10.2) and ρ(z) .

.= 〈Imm0(z)〉/π for z ∈ H.
If σt and ψt are defined according to (5.12), where m is replaced by mt, then
there are ρ∗ ∼ 1 and t∗ ∼ 1 such that

|σt(z1) − σ0(z1)| . |t|1/3, |ψt(z2) − ψ0(z2)| . |t|1/3

for all t ∈ [−t∗, t∗] ∩ T and all z1, z2 ∈ Dbdd ∩ {z ∈ H : |z| ≤ c6} satisfying
ρ(z1) ≤ ρ∗ and ρ(z2) + ρ(z2)−1Im z2 ≤ ρ∗. Here, c6 > 0 is also considered a
model parameter.

Proof. We choose t∗ as in Proposition 10.1 and conclude from this result that
‖mt(z)‖ ≤ k3 for all t ∈ [−t∗, t∗] ∩ T , all z ∈ Dbdd and some k3 ∼ 1. Hence,
owing to (10.1), (10.16) and Lemma 4.8 (ii), the conditions of Assumptions 4.5
are met on Dbdd ∩ {z ∈ H : |z| ≤ c6}. Hence, from the proof of Lemma 5.4, it
can be read off that, after reducing ρ∗ ∼ 1 and t∗ ∼ 1 if necessary, M(2) ..=
{mt(z1) : t ∈ [−t∗, t∗] ∩ T } and M(3) ..= {mt(z2) : t ∈ [−t∗, t∗] ∩ T } satisfy the
conditions of Remark 5.6 (ii) and (iii), respectively, uniformly for any z1, z2 ∈
Dbdd ∩ {z ∈ H : |z| ≤ c6} such that ρ(z1) ≤ ρ∗ and ρ(z2) + ρ(z2)−1Im z2 ≤ ρ∗.
Therefore, the lemma is a consequence of Remark 5.6 (ii) and (iii) as well as
Proposition 10.1 (a).

Remark 10.6. Combining Lemma 5.5 and Lemma 10.5, we obtain that m,
σ and ψ are jointly Hölder continuous in all three variables (z, a, S) in the
following sense. Suppose that m solves the MDE for some data pair (a, S)
satisfying Assumptions 4.5 on some I for some η∗ ∈ (0, 1] and consider a one-
parameter family of data pairs (at, St), t ∈ T , as described in Lemma 10.5.
Then m = mt(z), as well as of σt(z1) and ψt(z2) are uniformly 1/3-Hölder
continuous functions of t ∈ [−t∗, t∗] ∩ T as well as z ∈ HIθ,η∗

, z1 ∈ {ζ ∈
HIθ,η∗

: ρ(ζ) ≤ ρ∗} and z2 ∈ {ζ ∈ HIθ,η∗
: ρ(ζ)+ρ(ζ)−1 Im ζ ≤ ρ∗}, respectively,

for sufficiently small t∗ ∼ 1 and ρ∗ ∼ 1.

Remark 10.7 (Scaling of σ). Let Assumptions 4.5 hold true for some interval
I and η∗ ∈ (0, 1]. Let θ ∈ (0, 1].

(i) As in the proof of (10.15) in the proof of Lemma 10.2, we obtain that

|σ(τ0)| ∼ |σ(τ1)| ∼ (τ1 − τ0)1/3,

if τ0, τ1 ∈ supp ρ ∩ Iθ satisfy τ0 < τ1 and (τ0, τ1) ∩ supp ρ = ∅. Further-
more, there is ρ∗ ∼ 1 such that

|σ(τ0)| . ρ(τ0)2,

if τ0 ∈ supp ρ ∩ Iθ is a local minimum of ρ satisfying ρ(τ0) ≤ ρ∗.
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(ii) Owing to the 1/3-Hölder continuity of σ from Lemma 5.5 (i), we conclude
that there is ε ∼ 1 such that |σ(τ)| ∼ (τ1 − τ0)1/3 for all τ ∈ supp ρ ∩ Iθ

satisfying min{|τ − τ0|, |τ − τ1|} ≤ ε(τ1 − τ0) for some τ0, τ1 ∈ supp ρ∩ Iθ

such that τ0 < τ1 and (τ0, τ1) ∩ suppρ = ∅.

(iii) If τ ∈ Iθ satisfies the assumptions of (ii) as well as ρ(τ) > 0 then we write
∆ ..= τ1 − τ0 and conclude from (ii) and Lemma 5.7 that

‖∂τm(τ)‖ .
1

ρ(τ)(ρ(τ) + ∆1/3)
.

A Stieltjes transforms of positive operator-valued
measures

In this appendix, we will show some results about the Stieltjes transform of a
positive operator-valued measure on A.
We first prove Lemma 3.1 by generalizing existing proofs in the matrix algebra
setup. Since we have not found the general version in the literature, we provide
a proof here for the convenience of the reader. In the proof of Lemma 3.1, we
will use that a von Neumann algebra is always isometrically isomorphic as a
Banach space to the dual space of a Banach space. In our setup, this Banach
space and the identification are simple to introduce which we will explain now.
Analogously to L2 defined in Section 4, we define L1 to be the completion of A
when equipped with the norm ‖x‖1

..= 〈(x∗x)1/2〉 = 〈|x|〉 for x ∈ A. Moreover,
we extend 〈 · 〉 to L1 and remark that xy ∈ L1 for x ∈ A and y ∈ L1. It is
well-known (e.g. [42, Theorem 2.18]) that the dual space (L1)′ of L1 can be
identified with A via the isometric isomorphism

A → (L1)′, x 7→ ψx, ψx : L1 → C, y 7→ 〈xy〉. (A.1)

We stress that the existence of this isomorphism requires the state 〈 · 〉 to be
normal.

Proof of Lemma 3.1. From (3.5), we conclude that

lim
η→∞

iη〈x, h(iη)x〉 = −〈x, x〉

for all x ∈ A. Hence, z 7→ 〈x, h(z)x〉 is the Stieltjes transform of a unique finite
positive measure vx on R with vx(R) = ‖x∗x‖1 (see e.g. Theorem 3.5 in [23]).
For any x ∈ A, we can find x1, . . . x4 ∈ A+ such that x = x1 − x2 + ix3 − ix4.
We define

ϕB(x) ..= v√
x1

(B) − v√
x2

(B) + iv√
x3

(B) − iv√
x4

(B) (A.2)

for B ∈ B. This definition is independent of the representation of x. Indeed,
for fixed x ∈ A, any representation x = x1 −x2 +ix3 − ix4 with x1, . . . , x4 ∈ A+

defines a complex measure ϕ·(x) through B 7→ ϕB(x) on R via (A.2). However,
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extending h to the lower half-plane by setting h(z) ..= h(z̄)∗ for z ∈ C with
Im z < 0, the Stieltjes transform of ϕ·(x) is given by

∫

R

ϕdτ (x)

τ − z
= 〈√x1 , h(z)

√
x1〉 − 〈√x2 , h(z)

√
x2〉

+ i〈√x3 , h(z)
√
x3〉 − i〈√x4 , h(z)

√
x4〉 = 〈h(z)x〉

for all z ∈ C \ R. This formula shows that the Stieltjes transform of ϕ·(x) is
independent of the decomposition x = x1 − x2 + ix3 − ix4. Hence, ϕB(x) is
independent of this representation for all B ∈ B since the Stieltjes transform
uniquely determines even a complex measure. A similar argument also implies
that, for fixed B ∈ B, ϕB defines a linear functional on A.
Since v√

y(R) = 〈y〉 for y ∈ A+, we obtain for x = (Rex)+−(Rex)−+i(Imx)+−
i(Im x)− ∈ A

|ϕB(x)| ≤ v√
(Re x)+

(R) + v√
(Re x)−

(R) + v√
(Im x)+

(R) + v√
(Im x)−

(R)

≤ 〈(Re x)+ + (Rex)− + (Im x)+ + (Im x)−〉 ≤ 2‖x‖1,

where we used that (Rex)+ + (Rex)− = |Rex| and (Im x)+ + (Imx)− = |Imx|.
Therefore, ϕB extends to a bounded linear functional on L1 as A is a dense
linear subspace of L1. Using the isomorphism in (A.1), for each B ∈ B, there
exists a unique v(B) ∈ A such that

ϕB(x) = 〈v(B)x〉

for all x ∈ A. For y ∈ A, we conclude vy(B) = v√
yy∗(B) = ϕB(yy∗) =

〈y , v(B)y〉 ≥ 0, where we used that vy = v√
yy∗ since their Stieltjes transforms

coincide by 〈y , h(z)y〉 = 〈√yy∗ , h(z)
√
yy∗〉 due to the trace property of 〈 · 〉.

Since 〈v(B)y〉 ≥ 0 for all y ∈ A+, we have v(B) ∈ A+ for all B ∈ B. Moreover,
vx = 〈x, v(·)x〉, in particular, 〈x, v(R)x〉 = vx(R) = 〈x, x〉, for all x ∈ A. The
polarization identity yields that v is an A+-valued measure on B satisfying (3.6)
and v(R) = 1. This completes the proof of Lemma 3.1.

Lemma A.1 (Stieltjes transform inherits Hölder regularity). Let v be an A+-
valued measure on R and h : H → A be its Stieltjes transform, i.e., h satisfies
(3.6) for all z ∈ H. Let f : I → A+ be a γ-Hölder continuous function on an
interval I ⊂ R with γ ∈ (0, 1) and f be a density of v on I with respect to the
Lebesgue measure, i.e.,

‖f(τ1) − f(τ2)‖ ≤ C0|τ1 − τ2|γ , v(A) =

∫

A

f(τ)dτ

for all τ1, τ2 ∈ I, some C > 0 and for all Borel sets A ⊂ I. Moreover, we
assume that ‖f(τ)‖ ≤ C1 for all τ ∈ I. Let θ ∈ (0, 1].
Then, for z1, z2 ∈ H satisfying Re z1,Re z2 ∈ I and dist(Re zk, ∂I) ≥ θ, k = 1, 2,
we have

‖h(z1) − h(z2)‖ ≤
( 21C0

γ(1 − γ)
+

4‖v(R)‖
θ1+γ

+
14C1

γθγ

)
|z1 − z2|γ . (A.3)
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Furthermore, for z1, z2 ∈ H satisfying dist(zk, supp v) ≥ θ, k = 1, 2, we have

‖h(z1) − h(z2)‖ ≤ 2‖v(R)‖
θ2

|z1 − z2|γ . (A.4)

We omit the proof of Lemma A.1 since it is very similar to the one of Lemma
A.7 in [3].

B Positivity-preserving, symmetric operators on A

Lemma B.1. Let T : A → A be a positivity-preserving, symmetric operator.

(i) If T [a] ≤ C〈a〉1 for some C > 0 and all a ∈ A+ then ‖T ‖2 ≤ C. More-
over, ‖T ‖2 is an eigenvalue of T and there is x ∈ A+ \ {0} such that
T [x] = ‖T ‖2x.

(ii) We assume ‖T ‖2 = 1 and that there are c, C > 0 such that

c〈a〉1 ≤ T [a] ≤ C〈a〉1 (B.1)

for all a ∈ A+. Then 1 is an eigenvalue of T with a one-dimensional
eigenspace. There is a unique x ∈ A+ satisfying T [x] = x and ‖x‖2 = 1.
Moreover, x is positive definite,

cC−1/2
1 ≤ x ≤ C1. (B.2)

Furthermore, the spectrum of T has a gap of size θ .

.= c6/(2(c3+2C2)C2)),
i.e.,

Spec(T ) ⊂ [−1 + θ, 1 − θ] ∪ {1}. (B.3)

Lemma B.1 is the analogue of Lemma 4.8 in [4]. Here, we explain how to
generalize it to the context of von Neumann algebras. In the proof of Lemma
B.1, we will use the following lemma.

Lemma B.2. Let T : A → A be a linear map.

(i) If T is positivity-preserving such that T [a] ≤ C〈a〉1 for all a ∈ A+ and
some C > 0 then ‖T ‖ ≤ ‖T ‖2→‖·‖ ≤ 2C.

(ii) If T−ωId is invertible on A for some ω ∈ C\{0} and ‖(T−ωId)−1‖2 < ∞,
‖T ‖2→‖·‖ < ∞ then we have

‖(T − ωId)−1‖ ≤ |ω|−1
(
1 + ‖T ‖2→‖·‖‖(T − ωId)−1‖2

)
.

We include the short proof of Lemma B.2 for the reader’s convenience. In fact,
the first part is obtained as in (4.2) of [4] and the second part as in (5.28) of
[3].
Throughout the following arguments, we will use that |〈a〉| ≤ 〈|a|〉 ≤ ‖a‖2 for
all a ∈ A.
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Proof of Lemma B.2. Let a ∈ A be self-adjoint, i.e., a = a∗. Thus, a = a+−a−
is the sum of its positive and negative part, a+, a− ∈ A+. We conclude

T [a] ≤ T [a+] + T [a−] ≤ C〈a+ + a−〉 ≤ C‖a‖2

since a+ + a− = |a|. Hence, ‖T [a]‖ ≤ C‖a‖2 as T [a] ≥ −C‖a‖2 is shown
similarly. For a general a ∈ A, we obtain ‖T [a]‖ ≤ 2C‖a‖2. As ‖a‖2 ≤ ‖a‖
this completes the proof of part (i).
For the proof of (ii), we take an arbitrary x ∈ A. We set y ..= (T − ωId)−1[x].
From the definition of the resolvent, we conclude ωy = T [y] − x. This yields

‖y‖ ≤ |ω|−1(‖T ‖2→‖·‖‖y‖2 + ‖x‖) ≤ |ω|−1(1 + ‖T ‖2→‖·‖‖(T − ωId)−1‖2)‖x‖,

where we used ‖x‖2 ≤ ‖x‖ in the last step. Since x was arbitrary, we have
completed the proof of (ii).

Proof of Lemma B.1. For the proof of (i), we remark that Lemma B.2 (i)
implies ‖T ‖2 ≤ ‖T ‖2→‖·‖ ≤ 2C. Since T is positivity-preserving, we have
T [b] ∈ Asa for all b ∈ Asa. For a = x+ iy ∈ A with x, y ∈ Asa, we have that

‖T [a]‖2
2 = ‖T [x]‖2

2 + ‖T [y]‖2
2 ≤ ‖T |Asa

‖2
2(‖x‖2

2 + ‖y‖2
2) = ‖T |Asa

‖2
2‖a‖2

2.

Hence, ‖T |Asa
‖2 = ‖T ‖2. If a = a∗ is self-adjoint then decomposing a = a+−a−

in its positive and negative part yields

T [a] ≤ T [a+] + T [a−] ≤ C〈a+ + a−〉 ≤ C‖a‖2,

where we used a+ + a− = |a|. Similarly, T [a] ≥ −C‖a‖2 and, thus, ‖T ‖2 =
‖T |Asa

‖2 ≤ C.
Without loss of generality, we assume ‖T ‖2 = 1 in the remainder of the proof.
Since ‖T |Asa

‖2 = ‖T ‖2, we conclude that 1 is contained in the spectrum of

T : L2
sa → L2

sa, where L2
sa

..= Asa
‖ · ‖2

, due to the variational principle for the
spectrum of self-adjoint operators and |〈b , T [b]〉| ≤ 〈|b| , T [|b|]〉 for all b ∈ Asa.
This last inequality can be checked easily by decomposing b = b+ − b− into
positive and negative part.
Hence, due to the symmetry of T , there is a sequence (yn)n of approximating
eigenvectors in Asa, i.e., yn ∈ Asa, ‖yn‖2 = 1 and T [yn] − yn converges to 0
in L2 for n → ∞. We set xn

..= |yn|. By using ‖T |L2
sa

‖2 = 1 and 〈b , T [b]〉 ≤
〈|b| , T [|b|]〉 for all b ∈ Asa, we obtain ‖T [xn]−xn‖2

2 ≤ 2‖yn‖2‖T [yn]−yn‖2 and,
thus,

lim
n→∞

‖T [xn] − xn‖2 = 0. (B.4)

Since the unit ball in the Hilbert space L2 is relatively sequentially compact in
the weak topology, we can assume by possibly replacing (xn)n by a subsequence
that there is x ∈ L2 such that xn ⇀ x weakly in L2. From T [xn] ≤ C〈xn〉1,
we conclude

xn ≤ (Id − T )[xn] + C〈xn〉1.
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Multiplying this by
√
xn from the left and the right, applying 〈 · 〉 and using

‖xn‖2 = 1 yield

1 ≤ 〈xn , (Id − T )[xn]〉 + C〈xn〉2. (B.5)

Taking the limit n → ∞ in (B.5), we obtain

〈x〉 ≥ C−1/2 (B.6)

due to (B.4). Hence, x 6= 0 and we can replace x by x/‖x‖2 and xn by xn/‖x‖2.
For any b ∈ L2, we have

〈b , (Id − T )[x]〉 = lim
n→∞

〈b , (Id − T )[xn]〉 = 0

due to xn ⇀ x and (B.4). Hence, T [x] = x. Since ‖T ‖2→‖·‖ ≤ 2C, we have

T [b] ∈ A for all b ∈ L2 and thus x = T [x] ∈ A. Owing to xn ⇀ x and xn ∈ A+,
we obtain x ∈ A+. This completes the proof of (i).

We start the proof of (ii) by using (B.1) with a = x which immediately yields
the upper bound in (B.2) since 〈x〉 ≤ ‖x‖2 = 1. As 〈x〉 ≥ C−1/2 by (B.6), the
first inequality in (B.1) then yields the lower bound in (B.2).

In order to prove the spectral gap, (B.3), we remark that ‖T ‖2→‖·‖ ≤ 2C due
to the upper bound in (B.1) and Lemma B.2 (i). Hence, by Lemma B.2 (ii),
the spectrum of T as an operator on A is contained in the union of {0} and
the spectrum of T as an operator on L2. Therefore, we will consider T as
an operator on L2 in the following and exclusively study its spectrum as an
operator on L2. Hence, to prove the spectral gap, it suffices to establish a
lower bound on 〈y , (Id ± T )[y]〉 for all self-adjoint y ∈ A satisfying ‖y‖2 = 1
and 〈x, y〉 = 0. Fix such y ∈ A. Since y is self-adjoint we have

y = lim
N→∞

yN , yN ..=

N∑

k=1

λN
k p

N
k (B.7)

for some λN
n ∈ R and pN

k ∈ A orthogonal projections such that pN
k p

N
l = pN

k δk,l.
Here, the convergence yN → y is with respect to ‖·‖. We can assume that
‖yN‖2 = 1 for all N as well as 〈pN

k 〉 > 0 for all k and 〈pN
1 + . . .+ pN

N 〉 = 1 for
all N .

We will now reduce estimating 〈y , (Id ± T )[y]〉 to estimating a scalar product on
CN . On CN , we consider the scalar product 〈 · , · 〉N induced by the probability
measure π(A) =

∑
k∈A〈pN

k 〉 on [N ], i.e.,

〈λ, µ〉N =

N∑

k=1

λkµk〈pN
k 〉

for λ = (λk)N
k=1, µ = (µk)N

k=1 ∈ C
N . The norm on C

N and the operator
norm on CN×N induced by 〈 · , · 〉N are denoted by ‖ · ‖N and ‖ · ‖, respectively.
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Moreover, IdN is the identity map on CN . With this notation, we obtain from
(B.7) that

〈y , (Id ± T )[y]〉 = lim
N→∞

N∑

k,l=1

λN
k λ

N
l 〈pN

k , (Id ± T )[pN
l ]〉

= lim
N→∞

〈λN , (IdN ± SN )[λN ]〉N ,

where we introduced λN = (λN
k )N

k=1 ∈ CN and the N × N symmetric matrix
SN viewed as an integral operator on ([N ], π) with the kernel sN

kl given by

sN
kl =

〈pN
k , T [pN

l ]〉
〈pN

k 〉〈pN
l 〉 .

Since ‖yN‖2 = 1, we have ‖λN ‖N = 1. By the flatness of T , we have

c ≤ sN
kl ≤ C. (B.8)

In the following, we will omit the N -dependence of λk, skl and pk from our
notation. By the definition of 〈· , ·〉N , we have

〈λ, Sλ〉N =

N∑

k,l=1

λk〈pk〉skl〈pl〉λl = 〈yN , T [yN ]〉.

Let s ∈ CN be the Perron-Frobenius eigenvector of S satisfying Ss = ‖S‖s,
‖s‖N = 1. From (B.8), we conclude

c ≤ 〈e , Se〉N ≤ ‖S‖ = 〈s, Ss〉N ≤ ‖T ‖2 = 1, (B.9)

where e = (1, . . . , 1) ∈ CN . Since ‖s‖N = 1 and c ≤ ‖S‖, we have

max
i
si =

(Ss)i

‖S‖ ≤ C

c

N∑

k=1

sk〈pk〉 ≤ C

c

(
N∑

k=1

〈pk〉
)1/2( N∑

k=1

s2
k〈pk〉

)1/2

=
C

c
.

Therefore, applying Lemma 5.7 in [3] with X = {1, . . . , N} equipped with the
normalized counting measure, T = S, h = s yields

Spec(S) ⊂
[

− ‖S‖ +
c3

C2
, ‖S‖ − c3

C2

]
∪ {‖S‖},

where we used that infk,l sk,l ≥ c by (B.8) and Gap(S) is the difference between
the largest and second largest of eigenvalue of the matrix |S|. We decompose
λ = (1 − ‖w‖2

N)1/2s+ w with w ⊥ s and obtain

|〈λ, Sλ〉N | ≤ ‖S‖(1 − ‖w‖2
N ) +

(
‖S‖ − c3

C2

)
‖w‖2

N ≤ 1 − c3

C2
‖w‖2

N , (B.10)
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where we used ‖S‖ ≤ 1 in the last step. Hence, it remains to estimate ‖w‖N .
Recalling T [x] = x, we set x̃ = (〈xpk〉/〈pk〉)N

k=1 and compute

〈x, yN 〉 =

N∑

k=1

λk〈xpk〉 = 〈x̃ , λ〉N .

Since the left-hand side goes to 〈x, y〉 = 0 for N → ∞, we can assume that
|〈x̃ , λ〉N | ≤

√
ε/2 for any fixed ε ∼ 1 and all sufficiently largeN . As x̃k ≥ c/

√
C

by (B.2), we obtain

(1 − ‖w‖2
N)
c2

C

(
N∑

k=1

sk〈pk〉
)2

≤ (1 − ‖w‖2
N)〈x̃ , s〉2

N

= (〈x̃ , λ〉N − 〈x̃ , w〉N )2

≤ 2‖x̃‖2
N‖w‖2

N + ε.

(B.11)

Now, we use c ≤ 〈s, Ss〉N from (B.9) to get

c ≤ 〈s, Ss〉N =

N∑

k,l=1

sksklsl〈pk〉〈pl〉 ≤ C

(
N∑

k=1

sk〈pk〉
)2

.

By plugging this and ‖x̃‖2
N ≤ ‖x‖2

∑N
k=1〈pk〉 = 1 into (B.11), solving the

resulting estimate for ‖w‖2
N and choosing ε = c3/(2C2), we obtain

‖w‖2
N ≥ c3

2(c3 + 2C2)
.

Therefore, from (B.10), we conclude

|〈λ, Sλ〉N | ≤ 1 − c6

2(c3 + 2C2)C2

uniformly for all sufficiently large N ∈ N. We thus obtain that

〈y , (Id ± T )[y]〉 ≥ c6

2(c3 + 2C2)C2

if y ⊥ x and ‖y‖2 = 1. We conclude (B.3), which completes the proof of the
lemma.

Lemma B.3. If T : A → A is a positivity-preserving operator such that ‖T ‖2 < 1
and ‖T ‖2→‖·‖ < ∞ then Id − T is invertible as a bounded operator on A and
(Id − T )−1 is positivity-preserving with

(Id − T )−1[x∗x] ≥ x∗x (B.12)

for all x ∈ A.
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Proof. Since ‖T ‖2 < 1, Id − T is invertible on L2 and we conclude the invert-
ibility of Id − T on A from Lemma B.2 (ii).
Moreover, for y ∈ A with ‖y∗y‖2 < 1, we expand the inverse as a Neumann
series using ‖T ‖2 < 1 and obtain

(Id − T )−1[y∗y] = y∗y +
( ∞∑

k=1

T k[y∗y]
)

≥ y∗y.

The series converges with respect to ‖ · ‖2. In the last inequality, we used that
T k is a positivity-preserving operator for all k ∈ N. Hence, by rescaling a
general x ∈ A, we see that (Id − T )−1 is a positivity-preserving operator on A
which satisfies (B.12).

C Non-Hermitian perturbation theory

Let B0 : A → A be a bounded operator with ‖B0‖ + ‖B0‖2 ≤ C1. We assume
that B0 has an isolated, single eigenvalue β0 satisfying the following conditions:

• There is ε > 0 such that Spec2(B0) ∩Dε(β0) = {β0} and

sup
ω∈∂Dε(β0)

(‖(B0 − ωId)−1‖2 + ‖(B0 − ωId)−1‖ + ‖(B∗
0 − ωId)−1‖) ≤ C2 .

(C.1)

• Furthermore, the spectral projection

P0
..= − 1

2πi

∮

∂Dε(β0)

(B0 − ωId)−1dω

has rank 1.

Let b0 and l0 be the normalized, ‖b0‖2 = ‖l0‖2 = 1, right and left eigenvectors
of B0 associated to β0, respectively, i.e., B0[b0] = β0b0 and B∗

0 [l0] = β0l0. In
that situation, we have

P0 =
〈l0 , · 〉
〈l0 , b0〉b0. (C.2)

We assume that ‖b0‖, ‖l0‖ ≤ C3.
Moreover, we set Q0

..= Id − P0, i.e., P0 and Q0 are the spectral projections
corresponding to β0 and Spec(B0) \ {β0}. Note that they are not orthogonal
projections in general.
In the following lemma, we established that the perturbation

B = B0 + E

has similar spectral properties than B0 if E : A → A is a bounded operator of
sufficiently small norm.
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Lemma C.1. In the above situation, there is c > 0, depending only on ε, C1,
C2 and C3, such that if ‖E‖2 + ‖E‖ + ‖E∗‖ ≤ c then the following holds true:

(i) We have Spec2(B) ∩ Dε(β0) = {β}, where β is an eigenvalue of B =
B0 + E. The spectral projection P of B corresponding to β, which is
defined through

P .

.= − 1

2πi

∮

∂Dε(β0)

(B − ωId)−1dω,

has rank 1.

(ii) The definitions b .

.= P [b0] and l .

.= P ∗[l0] yield eigenvectors of B and B∗

corresponding to β and β̄, respectively. Moreover, we have

b = b0 + b1 + b2 + O(‖E‖3), l = l0 + l1 + l2 + O(‖E‖3), (C.3)

where we introduced

b1 = −Q0(B0 − β0Id)−1E[b0],

b2 = Q0(B0 − β0Id)−1E(B0 − β0Id)−1Q0E[b0]

−Q0(B0 − β0Id)−2EP0E[b0] − P0EQ0(B0 − β0Id)−2E[b0],

l1 = −Q∗
0(B∗

0 − β̄0Id)−1E∗[l0],

l2 = Q∗
0(B∗

0 − β̄0Id)−1E∗(B∗
0 − β̄0Id)−1Q∗

0E
∗[l0]

−Q∗
0(B∗

0 − β0Id)−2E∗P ∗
0E

∗[l0] − P ∗
0E

∗Q∗
0(B∗

0 − β0Id)−2E∗[l0].

In particular, we have bi, li = O(‖E‖i) for i = 1, 2. Furthermore, we
obtain

β〈l , b〉 = β0〈l0 , b0〉 + 〈l0 , E[b0]〉
− 〈l0 , EB0(B0 − β0Id)−2Q0E[b0]〉 + O(‖E‖3).

(C.4)

The implicit constants in the error terms depend only on ε, C1, C2 and C3.

Proof. In this proof, the difference B−ω with an operator B and a scalar ω is
understood as B − ωId. We first prove that

P = P0 + P1 + P2 + O(‖E‖3), (C.5)

where we defined

P1
..= − Q0

B0 − β0
EP0 − P0E

Q0

B0 − β0
,

P2
..= P0E

Q0

B0 − β0
E

Q0

B0 − β0
+

Q0

B0 − β0
EP0E

Q0

B0 − β0

+
Q0

B0 − β0
E

Q0

B0 − β0
EP0 − Q0

(B0 − β0)2
EP0EP0

− P0E
Q0

(B0 − β0)2
EP0 − P0EP0E

Q0

(B0 − β0)2
.
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The analytic functional calculus yields that

P = − 1

2πi

∮

Γ

dω

B − ω

=
1

2πi

∮

Γ

(
− 1

B0 − ω
+

1

B0 − ω
E

1

B0 − ω

− 1

B0 − ω
E

1

B0 − ω
E

1

B0 − ω

)
dω + O(‖E‖3),

(C.6)

where Γ is a closed path that encloses only β and β0 both with winding number
+1 but no other element of the spectra of B and B0. Integrating the first
summand in the integrand of (C.6) yields P0. In the second and third summand,
we expand Id = P0+Q0 in the numerators. Applying an analogue of the residue
theorem yields P1 and P2 for the second and third summand, respectively. For
example, for the second summand, we obtain

P1 =
1

2πi

∮

Γ

1

B0 − ω
E

1

B0 − ω
dω = − Q0

B0 − β0
EP0 − P0E

Q0

B0 − β0
.

The other two combinations of P0, Q0 vanish. Using a similar expansion for
the third term, we get (C.5).
Starting from (C.5) as well as observing bi = Pi[b0] and li = P ∗

i [l0] for i = 1, 2,
the relations (C.3) are a direct consequence of the definitions b = P [b0] and
l = P ∗[l0] and (C.2).
We will show below that

BP = B0P0 +B1 +B2 + O(‖E‖3), (C.7)

where we defined

B1
..= P0EP0 − β0

( Q0

B0 − β0
EP0 + P0E

Q0

B0 − β0

)
,

B2
..= β0

(
P0E

Q0

B0 − β0
E

Q0

B0 − β0
+

Q0

B0 − β0
EP0E

Q0

B0 − β0

+
Q0

B0 − β0
E

Q0

B0 − β0
EP0

)
− B0Q0

(B0 − β0)2
EP0EP0

− P0E
B0Q0

(B0 − β0)2
EP0 − P0EP0E

B0Q0

(B0 − β0)2
.

Now, we obtain (C.4) by applying (C.3) as well as (C.7) to β〈l , b〉 = 〈l , BPb〉.
In order to prove (C.7), we use the analytic functional calculus with Γ as defined
above to obtain

BP = − 1

2πi

∮

Γ

ωdω

B − ω

=
1

2πi

∮

Γ

ω
(

− 1

B0 − ω
+

1

B0 − ω
E

1

B0 − ω

− 1

B0 − ω
E

1

B0 − ω
E

1

B0 − ω

)
dω + O(‖E‖3).
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Proceeding similarly as in the proof of (C.5) yields (C.7) and thus completes
the proof of Lemma C.1.

D Characterization of supp ρ

The following lemma gives equivalent characterizations of supp ρ in terms of
m. Note supp ρ = supp v due to the faithfulness of 〈 · 〉. We denote the disk of
radius ε > 0 centered at z ∈ C by Dε(z) ..= {w ∈ C : |z − w| < ε}.

Lemma D.1 (Behaviour of m on R\suppρ). Let m be the solution of the Dyson
equation (2.3) for a data pair (a, S) ∈ Asa ×Σ with ‖a‖ ≤ k0 and S[x] ≤ k1〈x〉1
for all x ∈ A+ and some k0, k1 > 0. Then, for any fixed τ ∈ R, the following
statements are equivalent:

(i) There is c > 0 such that

lim sup
η↓0

η‖Imm(τ + iη)‖−1 ≥ c.

(ii) There are C > 1 and N ⊂ (0, 1] with an accumulation point 0 such that

‖m(z)‖ ≤ C, ‖m(z)−1‖ ≤ C,

C−1〈Imm(z)〉1 ≤ Imm(z) ≤ C〈Imm(z)〉1, ‖F (z)‖2 ≤ 1 − C−1

(D.1)
for all z ∈ τ + iN . (The definition of F was given in (3.4).)

(iii) There is m = m∗ ∈ A such that

lim
η↓0

‖m(τ + iη) −m‖ = 0. (D.2)

Moreover, there is C > 0 such that ‖m‖ ≤ C and ‖(Id − CmS)−1‖ ≤ C.

(iv) There are ε > 0 and an analytic function f : Dε(τ) → A such that f(z) =
m(z) for all z ∈ Dε(τ) ∩ H and f(z) = f(z̄)∗ for all z ∈ Dε(τ). In
particular, f(z) = f(z)∗ for z ∈ Dε(τ) ∩ R.

In other words, m can be analytically extended to a neighbourhood of τ .

(v) There is ε > 0 such that dist(τ, supp ρ) = dist(τ, supp v) ≥ ε.

(vi) There is c > 0 such that

lim inf
η↓0

η‖Imm(τ + iη)‖−1 ≥ c.

All constants in (i) – (vi) depend effectively on each other as well as possibly
k0, k1 and an upper bound on |τ |. For example, in the implication (iii) ⇒ (v),
ε in (v) can be chosen to depend only on k1 and C in (iii).
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We remark that m in (iii) above is invertible and satisfies (2.3) at z = τ .
As a direct consequence of the equivalence of (i) and (v), we spell out the
following simple characterization of supp ρ.

Corollary D.2 (Characterization of supp ρ). Under the conditions of Lemma
D.1, we have

lim
η↓0

η‖Imm(τ + iη)‖−1 = 0. (D.3)

if and only if τ ∈ supp ρ(= supp v).

Remark D.3. In the proof of Lemma D.1, the condition S[x] ≤ k1〈x〉1 for all
x ∈ A+ is only used to guarantee the following two weaker consequences: First,
this condition implies ‖S‖2→‖·‖ ≤ 2k1. Moreover, this condition yields, by

Lemma B.1 (i), that F = F (τ + iη) has an eigenvector f ∈ A+ corresponding
to ‖F‖2, Ff = ‖F‖2f , for any fixed τ ∈ R \ supp ρ and any η ∈ (0, 1]. If both
of these consequences are verified, then the condition S[x] ≤ k1〈x〉1 may be
dropped from Lemma D.1 without any changes in the proof.

Lemma D.4 (Quantitative implicit function theorem). Let X,Y, Z be Banach
spaces, U ⊂ X and V ⊂ Y open subsets with 0 ∈ U, V . Let Φ: U × V → Z be
continuously Fréchet-differentiable map such that the derivative ∂1Φ(0, 0) with
respect to the first variable has a bounded inverse in the origin and Φ(0, 0) = 0.
Let δ > 0 such that BX

δ ⊂ U , BY
δ ⊂ V and

sup
(x,y)∈BX

δ
×BY

δ

‖IdX − (∂1Φ(0, 0))−1∂1Φ(x, y)‖ ≤ 1

2
, (D.4)

where BX
δ and BY

δ denote the δ-ball around 0 in X and Y , respectively. We
also assume that

‖(∂1Φ(0, 0))−1‖ ≤ C1, sup
(x,y)∈BX

δ
×BY

δ

‖∂2Φ(x, y)‖ ≤ C2

for some constants C1, C2, where ∂2 denotes the derivative of Φ with respect
to the second variable. Then there is a constant ε > 0, depending only on δ, C1

and C2, and a unique function f : BY
ε → BX

δ such that Φ(f(y), y) = 0 for all
y ∈ BY

ε . Moreover, f is continuously Fréchet-differentiable and if Φ(x, y) = 0
for some (x, y) ∈ BX

δ × BY
ε then x = f(y). If Φ is analytic then f will be

analytic.

Proof. Following the standard proof of the implicit function theorem (see e.g.
Theorem 3.4.10 in [33]) on Banach spaces and using the additional assumptions
of Lemma D.4 yields this quantitative version of the implicit function theorem.
We leave the details to the reader.

For x, y ∈ A and ω ∈ C, we define

Φx(y, ω) ..= (Id − CxS)[y] − ωx2 − ω

2

(
xy + yx

)
− 1

2

(
xS[y]y + yS[y]x

)
. (D.5)
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We remark that Φm(z)(m(z + ω) − m(z), ω) = 0 for all z ∈ H and z + ω ∈ H

(see (6.9)).

Proof of Lemma D.1. Lemma B.2 (i) yields ‖S‖2→‖·‖ . 1 due to S[x] ≤ k1〈x〉1
for all x ∈ A+. Therefore, ‖a‖ . 1 and ‖S‖ ≤ ‖S‖2→‖·‖ . 1 imply that
supp v = supp ρ is bounded, i.e., sup{|τ | : τ ∈ supp ρ} . 1 by (2.5a).
First, we assume that (i) holds true. We set N ..= {η ∈ (0, 1] : η‖Imm(τ +
iη)‖−1 ≥ c/2}. By assumption, N is nonempty and has 0 as an accumulation
point. In particular, we have

‖Imm(z)‖ ≤ 2η

c
, η1 . Imm(z) .

η

c
1 (D.6)

for all z ∈ τ+iN . The first bound is a direct consequence of the definition of N .
The second bound follows from (2.4) and the bounded support of v. Moreover,
the first bound immediately implies the third bound. By averaging the two
last bounds in (D.6) and using Imm(τ +iη) . η for η ∈ N , we obtain the third
and fourth estimates in (D.1). In particular, ρ(z) ∼ ‖Imm(z)‖ for z ∈ τ + iN .
Owing to (2.4), for any z ∈ H and x, y ∈ L2, we have

|〈x,m(z)y〉| ≤ 1

2

∫

R

〈x, v(dτ)x〉 + 〈y , v(dτ)y〉
|τ − z|

.
1

η

(
〈x, Imm(z)x〉 + 〈y , Imm(z)y〉

)

≤ 2

c

(
‖x‖2

2 + ‖y‖2
2

)
.

Here, we used that v has a bounded support and (2.4) in the second step and
the first bound in (D.6) in the last step. This proves the first bound in (D.1).
The second estimate in (D.1) is a consequence of (2.3) as well as ‖a‖ . 1,
‖S‖ ≤ ‖S‖2→‖·‖ . 1 and the first bound in (D.1). We recall the definitions of
q = q(z) and u = u(z) in (3.1). Owing to Lemma 4.8 (i), the bounds in (D.1)
yield

‖q‖ . 1, ‖q−1‖ . 1, Im u ∼ 〈Im u〉1 ∼ ρ1 (D.7)

uniformly for all z ∈ τ + iN . Thus, for all x ∈ A+ and z = τ + iη and η ∈ N ,
F = F (z) satisfies F [x] . 〈x〉1 due to S[x] . 〈x〉1. Hence, Lemma B.1 (i)
yields the existence of an eigenvector f ∈ A+, i.e., Ff = ‖F‖2f . By taking the
imaginary part of (3.3) and then the scalar product with f as well as using the
symmetry of F , we get

1 − ‖F‖2 = η
〈f , qq∗〉
〈f , Imu〉 ∼ η‖Imm(z)‖−1 & c (D.8)

for z = τ + iη and η ∈ N (compare (4.5)). Here, we also used f ∈ A+, (D.7),
ρ(z) ∼ ‖Imm(z)‖ and the definition of N . This completes the proof of (i) ⇒
(ii).
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Next, let (ii) be satisfied. As before, Lemma 4.8 (i) implies (D.7) for all z ∈
τ + iN due to the first four bounds in (D.1). Thus, inspecting the proofs of
Lemma 4.8 (iii) and Proposition 4.1 and using ‖S‖2→‖·‖ . 1 via Lemma B.2
(ii) yield

‖(Id − Cm(z)S)−1‖ . 1 (D.9)

uniformly for all z ∈ τ +iN . Thus, we can apply the implicit function theorem,
Lemma D.4, to Ψη(∆, ω) ..= Φm(τ+iη)(∆, ω) (Φ has been defined in (D.5)) for
each η ∈ N with ω ∈ C. Since Ψη(0, 0) = 0 for all η ∈ N , there are ε > 0
and unique analytic functions ∆η : Dε(0) → BA

δ by Lemma D.4 such that
Ψη(∆η(ω), ω) = 0 for all ω ∈ Dε(0) and all η ∈ N . We now explain why ε can
be chosen uniformly for all η ∈ N . By (D.1) and (D.9), there are bounds on
m(z) and (Id−Cm(z)S)−1 which hold uniformly for z ∈ τ+iN . Hence, it is easy
to find δ > 0 such that (D.4) holds true uniformly for all η ∈ N . These uniform
bounds yield the uniformity of ε. Since 0 is an accumulation point of N , there
is η0 ∈ N such that η0 < ε. We set z ..= τ + iη0. An easy computation using
(2.3) at spectral parameters z and z + ω shows Ψη0

(m(ω + z) − m(z), ω) = 0
for all ω ∈ C such that ω + z ∈ H. Owing to the continuity of m, we find
ε′ ∈ (0, ε) such that m(ω + z) − m(z) ∈ BA

δ for all ω ∈ Dε′(0). Thus, by
the uniqueness of ∆η0

(cf. Lemma D.4), ∆η0
(ω) = m(ω + z) − m(z) for all

ω ∈ Dε′(0). As ∆η0
and m(· + z) are analytic, owing to the identity theorem,

we obtain ∆η0
(ω) + m(z) = m(ω + z) for all ω ∈ Dε(0) satisfying ω + z ∈ H.

Using η0 < ε, we set m ..= ∆η0
(−iη0) + m(z). For this choice of m, the

continuity of ∆η0
(ω) for ω → −iη0 and ∆η0

(ω) +m(z) = m(ω+ z) yield (D.2).
It remains to show that m is self-adjoint. Since (D.7) holds true under (ii) as
we have shown above, we obtain

η‖Imm(z)‖−1 ∼ 1 − ‖F‖2 ≥ C−1

for z = τ + iη and η ∈ N as in (D.8). Thus, lim infη↓0‖Imm(τ + iη)‖ ≤ 0.
Hence, we obtain Imm = 0, i.e., m = m∗. This completes the proof of (ii) ⇒
(iii).
If (iii) holds true then Id−CmS has a bounded linear inverse on A for m. Hence,
we can apply the implicit function theorem, Lemma D.4, to Φm(∆, ω) = 0 (see
(D.5) for the definition of Φ) as Φm(0, 0) = 0 and ∂1Φm(0, 0) = Id −CmS. It is
easy to see that there is δ > 0 such that (D.4) is satisfied. Therefore, there are
ε > 0 and an analytic function ∆: Dε(0) → BA

δ such that Φm(∆(ω), ω) = 0
for all ω ∈ Dε(0). In particular, f : Dε(τ) → A, f(w) ..= ∆(w − τ) + m is
analytic. From (D.2) and (2.3), we see that m is invertible and satisfies (2.3)
at z = τ . Thus, a straightforward computation using (2.3) at z = τ and at
z = τ + iη yields Φm(m(τ + iη) − m, iη) = 0 for all η ∈ (0, ε]. Therefore,
m(τ +iη) = ∆(iη)+m = f(τ +iη) for all η ∈ (0, η∗] and some η∗ ∈ (0, ε] due to
the uniqueness part of Lemma D.4 and (D.2). Since m and f are analytic on
Dε(τ) ∩ H, the identity theorem implies m(z) = f(z) for all z ∈ Dε(τ) ∩ H. A
simple computation shows Φm(∆(ω̄)∗, ω) = Φm(∆(ω̄), ω̄)∗ = 0 for all ω ∈ Dε(0)
as m = m∗. Hence, ∆(ω) = ∆(ω̄)∗ for all ω ∈ Dε(0) by the uniqueness part of
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Lemma D.4. Thus, f(w) = f(w̄)∗ for all w ∈ Dε(τ) and f(w) = f(w)∗ for all
w ∈ Dε(τ) ∩ R. This proves (iii) ⇒ (iv). Clearly, (iv) implies (v) by (2.4).
If the statement in (v) holds true then dist(τ, supp ρ) ≥ ε. In particular, by
(3.7), we have

lim inf
η↓0

η‖Imm(τ + iη)‖−1 ≥ lim inf
η↓0

dist(τ + iη, supp ρ)2 ≥ ε2

for all η > 0. Here, we used (3.7) in the first step. This immediately implies
(vi) with c = ε2. Moreover, (i) is immediate from (vi).
Inspecting the proofs of the implications above shows the additional statement
about the effective dependence of the constants in (i) – (vi). In particular,
the application of the implicit function theorem, Lemma D.4, in the proof of
(iv) shows that ε can be chosen to depend only on k1 and C from (iii). This
completes the proof of Lemma D.1.
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