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1 Introduction

Varieties for modular group representations were introduced and studied by
Carlson and others in order to understand modules without having to rely
on complete classifications. Many aspects in this approach are controlled by
elementary abelian p-groups, making use of the fact that their group algebras
are truncated polynomial algebras. In particular, the concept of rank variety
has proved to be extremely powerful. These varieties control projectivity of
finite-dimensional modules, and this is known as “Dade’s Lemma.”
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Modules of constant Jordan type were introduced by Carlson, Friedlander and
Pevtsova in [CFP]. By using the idea of π−points, they obtained versions not
only for finite groups, but more generally for finite group schemes; see the book
[Ben] for extensive discussions. It turns out that a substantial part of the theory
relies on Dade’s Lemma. Around the same time, in [BEH], rank varieties were
introduced for certain q-complete intersections. It was proved that the analog
of Dade’s Lemma holds, namely that rank varieties control projectivity also in
this case. It is therefore natural to study modules of constant Jordan type in
this setting.

The aim of this paper is to start this investigation. We introduce the relevant
algebras, and prove a range of general properties. For example, we show that
constant Jordan type is preserved under taking direct sums and summands, and
taking syzygies and cosyzygies. We prove that certain constant Jordan types
are unachievable by modules. We also address the question of how abundant
are modules of constant Jordan type.

We also show that in our setting, constant Jordan type is preserved under
Auslander-Reiten translation, and moreover that constant Jordan type is an
invariant of Auslander-Reiten components.

For the group algebra setting, it is known that modules with stable constant
Jordan type [1] or [p− 1] are precisely the syzygies of the trivial module. One
expects that this might generalize. In the last section, we prove a result in this
direction. Namely, for the 2-generator case, with certain assumptions, we show
that the modules with stable constant Jordan type [1] or [n− 1] are precisely
the syzygies of the simple module.

For group representations and group schemes in general, the tools which were
used are mostly based on the fact that the rings are Hopf algebras. This is not
the case in our setting, with quantum complete intersections. This means that
a lot of the machinery and techniques from the group scheme setting are not
available, and consequently the proofs are more difficult. Also, it is not clear
whether all the results in the group scheme setting actually generalize.

2 Constant Jordan type

All modules we consider are assumed to be finitely generated left modules.
Let k be a field, n ≥ 2 a positive integer, and define n′ by

n′ =

{

n if char k = 0
n/pr if char k = p > 0 and pr | n but pr+1 ∤ n

Furthermore, let q ∈ k be a primitive n′th root of unity, and fix a positive inte-
ger c ≥ 2. The algebra we shall consider is the quantum complete intersection

Acq = k〈x1, . . . , xc〉/ (x
n
i , xixj − qxjxi(i < j))

which is a finite dimensional selfinjective algebra of dimension nc.
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Quantum complete intersections can be defined more generally, but the essen-
tial thing for us is that any linear form in the variables x1, . . . , xc is n-nilpotent.
Namely, by [BEH, Lemma 2.3], given any nonzero c-tuple λ = (λ1, . . . , λc) ∈ kc,
the element

uλ = λ1x1 + · · ·+ λcxc

in Acq satisfies unλ = 0 (and n is the smallest such power with unλ = 0). Con-
sequently, the subalgebra k[uλ] of A

c
q generated by uλ is isomorphic to the

n-dimensional truncated polynomial ring k[x]/(xn). Note that Acq is free both
as a left and as a right module for this subalgebra.
Up to isomorphism, the truncated polynomial ring k[x]/(xn) admits n finitely
generated indecomposable left modules, namely k[x]/(xi) for 1 ≤ i ≤ n. Since
dimk k[x]/(x

i) = i, these are uniquely determined by their dimensions. Now
let M be an Acq-module. When we restrict the module to the subalgebra k[uλ],
it decomposes into a direct sum of the n indecomposable k[uλ]-modules.

Definition. Fix an Acq-module M .
(1) Let λ be a nonzero c-tuple in kc, and Mi the indecomposable k[uλ]-module
with dimkMi = i. Then the Jordan type of M with respect to λ is

[1]d1 [2]d2 · · · [n]dn

if M as a k[uλ]-module decomposes as a direct sum M ≃Md1
1 ⊕ · · · ⊕Mdn

n . In
this case, the stable Jordan type of M with respect to λ is

[1]d1 · · · [n− 1]dn−1

(2) The module M has constant Jordan type if its Jordan type is the same for
all nonzero λ ∈ kc.

The phrase Jordan type refers to the action of the truncated polynomial ring
k[x]/(xn) on its n indecomposable modulesM1, . . . ,Mn, whereMi = k[x]/(xi).
ForMi has a k-vector space basis w1, . . . , wi, with xwj = wj+1 for 1 ≤ j ≤ i−1,
and so the action of x on Mi can be defined in terms of the transpose of the
Jordan block















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















of size i and with eigenvalue 0. Thus if M has Jordan type [1]d1 · · · [n]dn with
respect to λ = (λ1, . . . , λc), then the action of uλ = λ1x1 + · · · + λcxc on M
is given by the transpose of a Jordan matrix having di such Jordan blocks of
size i for each 1 ≤ i ≤ n.
To simplify the notation, it is convenient to write Jordan types in such a way
that only the Jordan blocks that are actually involved appear. That is, if M is
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a nonzero Acq-module and λ a nonzero c-tuple, then there are integers 1 ≤ a1 <

· · · < at ≤ n such thatM ≃M
da1
a1 ⊕· · ·⊕M

dat
at when restricted to k[uλ] (where

Mi is the indecomposable k[uλ]-module of dimension i and all the exponents
dai are nonzero). We shall then in most cases write the Jordan type ofM with
respect to λ as

[a1]
da1 · · · [at]

dat

instead of having to write
[1]d1 · · · [n]dn

with di = 0 for i /∈ {a1, . . . , at}. Similarly we apply this short-hand notation
also for the stable Jordan type. Furthermore, when di = 1 we just write [i]
instead of [i]di .

Example. Two trivial examples of indecomposable Acq-modules of constant
Jordan type are k and Acq. For k, the Jordan type with respect to any nonzero λ

is clearly [1], whereas for Acq it is [n]
nc−1

since Acq is free of rank n
c−1 over k[uλ].

More generally, denote the radical of Acq by r. The Loewy length of Acq is
(n−1)c+1, and we claim that for every pair of integers 0 ≤ s < t ≤ (n−1)c+1,
the Acq-module rs/rt has constant Jordan type (but may not be indecomposable,
for example when t = s + 1). To see this, note that as a k-vector space, the
module r

s/rt has a basis

{xe11 x
e2
2 · · ·xecc | s ≤ e1 + · · ·+ ec ≤ t}

Now let λ = (λ1, . . . , λc) be a nonzero c-tuple in kc, and let i be the smallest
index such that λi is nonzero. Using now that

xi = λ−1
i



uλ −
∑

j 6=i

λjxj





it is straightforward to check that

{

xe11 · · ·x
ei−1

i−1 u
ei
λ x

ei+1

i+1 · · ·xecc | s ≤ e1 + · · ·+ ec ≤ t
}

is another basis for the module r
s/rt. Consequently, the module structure of

r
s/rt when restricted to k[uλ] is the same as when restricted to k[xi]. Moreover,
it is easy to see that the Jordan type when we restrict to k[xi] is the same as
when we restrict to k[x1]. This shows that r

s/rt has constant Jordan type.
As a specific example, take the indecomposable module Acq/r

3, and assume first
that n ≥ 3 so that x2i 6= 0. The monomials

1

x1 · · · xc

x21 x1x2 · · · x1xc xixj
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form a basis for the module, where 2 ≤ i ≤ j ≤ c. Over the subalgebra k[x1],
the subset {1, x1, x21} is a basis for the indecomposable module of dimension 3,
and the c − 1 subsets {xi, x1xi} for 2 ≤ i ≤ c form bases for indecomposable
modules of dimension 2. Finally, the c(c−1)/2 subsets {xixj} for 2 ≤ i ≤ j ≤ c
form bases for indecomposable modules of dimension 1. Thus the module Acq/r

3

has constant Jordan type

[1]c(c−1)/2[2](c−1)[3]

Note that if n were 2, then there would be no indecomposable k[x1]-module of
dimension 3, but instead one more of dimension 2. Also, there would be c− 1
less indecomposable k[x1]-module of dimension 1. Therefore, in this case, the
constant Jordan type of Acq/r

3 would be

[1](c
2−3c+2)/2[2]c

The following result records some elementary properties on modules of constant
Jordan type

Proposition 2.1. (1) If M is an Acq-module of constant Jordan type

[1]d1 · · · [n]dn , then dimkM =
∑n

i=1 idi. Moreover, the dual Homk(M,k) has
the same constant Jordan type as a right module.
(2) If M and N are Acq-modules of constant Jordan types [1]d1 · · · [n]dn and
[1]e1 · · · [n]en , respectively, then the direct sum M⊕N has constant Jordan type
[1]d1+e1 · · · [n]dn+en .

Proof. For the dual module, note that when dualizing an indecomposable mod-
ule over k[x]/(xn), the result is an isomorphic indecomposable module.

The modules of the form r
s/rt that we looked at in the example are well behaved

and easy to deal with. In general, there does not seem to exist any effective
method for determining whether or not an arbitrary indecomposable module
has constant Jordan type. However, it turns out that such modules can be
described in terms of certain open subsets of the affine space kc, where we use
the Zariski topology. We shall use this to prove the converse of the second part
of Proposition 2.1, namely that the direct summand of a module of constant
Jordan type also has constant Jordan type. An alternative method would be
to adapt the arguments from [Ben, Sections 4.5 and 5.1], which are based on
Carlson, Friedlander and Pevtsova’s original arguments from [CFP].

Definition. For an Acq-module M and integer 1 ≤ i ≤ n− 1, define

U iM =

{

λ ∈ kc \ {0} | rank(M
ui
λ−−→M) ≥ rank(M

ui
σ−−→M) for all σ ∈ kc

}

In other words, the set U iM is the collection of all nonzero λ for which the
linear operator uiλ on M has maximal rank. Note that this is a nonempty set
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by definition. Recall that for a truncated polynomial algebra k[x]/(xn), the
rank of xi as a linear operator on the t-dimensional module Mt = k[x]/(xt)
is max{0, t − i}. Consequently, if the Jordan type of M with respect to λ is
[1]d1 [2]d2 · · · [n]dn , that is, if M as a k[uλ]-module decomposes as Md1

1 ⊕ · · · ⊕
Mdn
n , then the rank of the linear operator uiλ on M is

di+1 + 2di+2 + · · ·+ (n− i)dn

provided i ≤ n − 1. We use this elementary fact in the proof of the following
lemma, which shows that the sets we have just defined describe the modules of
constant Jordan type.

Lemma 2.2. Let M be an Acq-module.

(1) If λ and σ belong to ∩n−1
i=1 U

i
M , then the Jordan types of M with respect to λ

and σ are the same.
(2) The module M has constant Jordan type if and only if ∩n−1

i=1 U
i
M = kc \ {0}.

Proof. To prove (1), suppose thatM decomposes asMd1
1 ⊕· · ·⊕Mdn

n over k[uλ],
and as M e1

1 ⊕ · · ·⊕M en
n over k[uσ]. Since both λ and σ belong to ∩n−1

i=1 U
i
M , we

see that for each i, the rank of the linear operators uiλ and uiσ on M are the
same. It therefore follows from the discussion preceding the lemma that there
are equalities

d2 + 2d3 + · · ·+ (n− 1)dn = e2 + 2e3 + · · ·+ (n− 1)en

d3 + 2d4 + · · ·+ (n− 2)dn = e3 + 2e4 + · · ·+ (n− 2)en
...

dn−1 + 2dn = en−1 + 2en

dn = en

This gives di = ei for 2 ≤ i ≤ n, and in turn also d1 = e1 by considering
dimensions.
For (2), note that if M has constant Jordan type then trivially U iM = kc \ {0}
for all i. The converse is an immediate consequence of (1).

The following lemma shows that the maximal rank sets that we have defined
are open subsets of affine c-space. Moreover, when the ground field is infinite,
then the sets corresponding to a direct sum of modules is the intersection of
the sets corresponding to the summands.

Lemma 2.3. Assume that k is infinite. For every Acq-module M and integer

1 ≤ i ≤ n − 1, the set U iM is open in kc. Moreover, U iM⊕N = U iM ∩ U iN for
every Acq-module N .

Proof. An argument similar to the proof of [Op1, Lemma 9] shows that the
sets U iM are open. Also, the intersection of two nonempty open sets in kc is
always nonempty, in particular U iM ∩ U iN 6= ∅. Since the rank of uiλ on M ⊕N
is the sum of the ranks on M and N , this proves that U iM⊕N = U iM ∩ U iN .
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We can now show that the converse of the second part of Proposition 2.1 also
holds.

Corollary 2.4. If the field k is infinite, then for every pair M,N of Acq-
modules, the direct sum M ⊕N has constant Jordan type if and only if both M
and N have.

Proof. If M ⊕N has constant Jordan type, then from Lemma 2.2 we see that
U iM⊕N = kc \ {0} for all i. By Lemma 2.3, this implies that both U iM and
U iN equal kc \ {0} for all i, and so by Lemma 2.2 again both M and N have
constant Jordan type.

Having seen some examples and elementary properties of modules of constant
Jordan type, it is natural to ask the following basic questions:

Questions. (1) Which indecomposable Acq-modules have constant Jordan
type?
(2) Which sequences (a1, . . . , an) in Zn+ occur as the (exponents of the) Jor-
dan type [1]a1 · · · [n]an for some indecomposable Acq-module of constant Jordan
type?
(3) Which sequences (a1, . . . , an−1) in Zn−1

+ occur as the (exponents of the)
stable Jordan type [1]a1 · · · [n− 1]an−1 for some indecomposable Acq-module of
constant Jordan type?

Regarding the second question, the following result shows that the sequences

(0, 1, 0 . . . , 0), (0, 0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

in Zn+ are not the exponents of the Jordan types of modules of constant Jordan
type.

Proposition 2.5. For 2 ≤ a ≤ n, there does not exist an Acq-module of con-
stant Jordan type [a].

Proof. Suppose such a module M exists, and denote the radical of Acq by r.
For every nonzero λ ∈ kc, the restriction of M to k[uλ] is isomorphic to the
indecomposable module k[uλ]/(u

a
λ) of dimension a. Therefore there are strict

inclusions
M ⊃ uλM ⊃ · · · ⊃ ua−1

λ M ⊃ 0

with one-dimensional quotients. Now consider the radical filtration

M ⊇ rM ⊇ · · · ⊇ r
a−1M ⊇ · · ·

of M as an Acq-module. If riM = r
i+1M , then r

iM = 0 by Nakayama’s lemma.

Moreover, since uλ ∈ r, the inclusion uiλM ⊆ r
iM holds for all i. Combining

all this with the fact that dimkM = a, we see that the radical series of M is

M ⊃ rM ⊃ · · · ⊃ r
a−1M ⊃ 0
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with one-dimensional quotients. Thus M has a k-vector space basis
{m1, . . . ,ma} with mi ∈ r

i−1M \ riM for all i.
From the above, for every nonzero λ ∈ kc there is a nonzero element α ∈ k
such that uλma−1 = αma. In particular, there are nonzero elements α1 and
α2 such that x1ma−1 = α1ma and x2ma−1 = α2ma. But then

(α2x1 − α1x2)ma−1 = 0

which means that uλma−1 = 0 for λ = (α2,−α1, 0, . . . , 0). This is a contradic-
tion.

Next, we look at modules of constant Jordan type from a homological point
of view. For a finite-dimensional algebra A, every module M has a minimal
projective resolution

· · · → P2
∂2−→ P1

∂1−→ P0
∂0−→ M → 0

with Im ∂i ⊆ rAPi−1. The complexity of M is defined as

cxM = inf{m ≥ 0 | there exists b ∈ R with dimk Pt ≤ btm−1 for all t ≥ 1}

The complexity of a module might be infinite, and is at most the maximal
complexity obtained by the simple A-modules. For our quantum complete
intersection Acq, it follows from [BeO, Theorem 5.3] that the complexity of
the simple module k is c, since it equals the rate of growth of Ext∗Ac

q
(k, k).

Consequently, the complexity of every Acq-module is at most c. Moreover, for
every integer 0 ≤ m ≤ c, there exists an Acq-module having complexity m.
Namely, by [BeO, Theorem 5.5], the Hochschild cohomology ring HH∗(Acq) of
Acq is finitely generated, and Ext∗Ac

q
(M,N) is a finitely generated HH∗(Acq)-

module for all Acq-modules M and N . The claim now follows from [EHSST,
Theorem 2.5(c) and Theorem 4.4].
The following result shows that the non-free Acq-modules of constant Jordan
type must have maximal complexity. Moreover, it shows that the property of
having constant Jordan type is preserved under syzygies and cosyzygies.

Theorem 2.6. (1) If M is an Acq-module of constant Jordan type, then either
M is free, or cxM = c.
(2) Given a short exact sequence

0 →M → F → N → 0

of Acq-modules with F a free module, the module N has constant Jordan type

if and only if M does. In fact, if N has constant Jordan type [1]d1 · · · [n]dn,
then M has constant Jordan type [1]dn−1 · · · [n − 1]d1[n]d, where d = rnc−1 −
(d1 + · · ·+ dn) and r is the rank of the free Acq-module F . Conversely, if

M has constant Jordan type [1]d1 · · · [n]dn, then N has constant Jordan type
[1]dn−1 · · · [n− 1]d1 [n]d.
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Proof. (1) Suppose that M is a non-free module of constant Jordan type. By
[BEH, Theorem 2.6], there exists a nonzero c-tuple λ ∈ kc with the property
that M is not free as a k[uλ]-module. As M has constant Jordan type, the
same must hold for every nonzero λ ∈ kc. Thus the rank variety VrAc

q
(M) of

M , as defined in [BEH], must equal kc. By [BE1, Corollary 3.7], the dimension
of the rank variety of a module equals its complexity, hence cxM = c.
(2) As before, let M1, . . . ,Mn be the indecomposable k[x]/(xn)-modules, with
Mi = k[x]/(xi). For 1 ≤ i ≤ n− 1, there are short exact sequences

0 →Mn−i → k[x]/(xn) →Mi → 0

and so Ω1
k[x]/(xn)(Mi) ≃ Mn−i ≃ Ω−1

k[x]/(xn)(Mi). Now suppose that N has

Jordan type [1]d1 · · · [n]dn with respect to λ. Since the module F is free as a
k[uλ]-module, the module M is isomorphic to Ω1

k[x]/(xn)(N) ⊕ Q over k[uλ],

where Q is some free k[uλ]-module. Thus the Jordan type of M with respect
to λ must be

[1]dn−1 · · · [n− 1]d1 [n]d

for some d ≥ 0. Comparing dimensions we obtain

dn−1 + 2dn−2 + · · ·+ (n− 1)d1 + nd = dimkM

= dimk F − dimkN

= rnc − (d1 + 2d2 + · · ·+ ndn)

which in turn gives
d = rnc−1 − (d1 + · · ·+ dn)

The converse is proved exactly the same way.

Corollary 2.7. Let i ∈ Z be any integer. An Acq-module M has constant

Jordan type if and only if ΩiAc
q
(M) does. Moreover, if M has constant stable

Jordan type [1]d1 · · · [n− 1]dn−1, then so does Ω2i
Ac

q
(M), whereas Ω2i+1

Ac
q

(M) has

constant stable Jordan type [1]dn−1 · · · [n− 1]d1.

A reasonable question to ask is how abundant are modules of constant Jordan
type. The following discussion offers an answer to this question.
Let M be a finitely generated Acq-module of dimension d. We fix a k-basis
of M . For λ = (λ1, . . . , λc) ∈ kc and uλ = λ1x1 + · · ·+ λcxc we let [uλ] denote
the matrix representing the linear operator uλ : M → M with respect to the
fixed basis. In particular, [xi] represents the linear operator xi : M → M , for
1 ≤ i ≤ c. The matrices [xi] determine the Acq-moduleM in the following sense.
Let N be another d-dimensional Acq-module. Then M and N are isomorphic
as Acq-modules, with isomorphism α : M → N , if and only if there exists an
invertible d × d matrix E such that E[xi] = [xi]NE for all 1 ≤ i ≤ c, where
[uλ]N is the matrix of the linear operator uλ : N → N with respect to the
fixed basis of M and the corresponding (under α) basis of N . In this case, E
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represents the Acq-linear isomorphism α, as a k-linear map. Note that we also
have E[uλ] = [uλ]NE for all λ,
We want to associate Acq-modules to points in a certain affine space. We will

do this using the matrices [xi]. For 1 ≤ i ≤ c we let (X i
r,s) be a d × d generic

matrix of indeterminates. Consider the polynomial ring

k[X i
r,s | 1 ≤ r, s ≤ d, 1 ≤ i ≤ c]

and let P be the homogeneous ideal generated by the entries of the matrices
(X i

r,s)(X
j
r,s) − q(Xj

r,s)(X
i
r,s), i < j, and (X i

r,s)
n, 1 ≤ i ≤ c. Let V denote the

affine variety of P . Then any point p in V corresponds to a Acq-module Mp of

dimension d, in the sense that the underlying k-vector space of Mp is kd and
the matrix (X i

r,s)(p) (substitute the coordinates of p in for the X i
r,s) represents

the linear operator xi :Mp → Mp, with respect to the standard basis of kd, for
1 ≤ i ≤ c.

Before discussing which Acq- modules have constant Jordan type, we first con-
sider a weaker condition, namely, that the linear operators uλ : M → M have
constant rank for all λ. For a matrix B we let Ig(B) denote the ideal of g × g
minors of B. Consider now the polynomial ring k[Λi, X

i
r,s | 1 ≤ i ≤ c, 1 ≤

r, s ≤ d], in the additional indeterminates Λi, and the d× d matrix

UΛ = Λ1(X
1
r,s) + · · ·+ Λc(X

c
r,s)

For 1 ≤ g ≤ d and p ∈ V , we let UΛ(p) denote the matrix, and Ig(UΛ)(p) the
ideal of k[Λ1, . . . ,Λc], obtained by substituting the coordinates of p in for the
X i
r,s in UΛ, and Ig(UΛ), respectively.

Proposition 2.8. For p ∈ V , the linear operators uλ : Mp → Mp on the
Acq-module Mp of dimension d and corresponding to p, have constant rank g if
and only if the following conditions are satisfied.

1. Ig+1(UΛ)(p) = 0

2.
√

Ig(UΛ)(p) ⊇ (Λ1, . . . ,Λc)

Proof. The first condition guarantees that the (g + 1) × (g + 1) minors of
the matrix UΛ(p) vanish. This implies that the linear operators uλ : Mp →
Mp have rank at most g for all λ. If g = 0, then the linear operators uλ :
Mp →Mp automatically have constant rank 0, and by convention I0(UΛ) = Acq.
Otherwise, the second condition says that the only possible way for uλ :Mp →
Mp to have rank less than g is if λ = 0. Thus for all nonzero λ, the linear
operator uλ :Mp →Mp has rank g.

Proposition 2.8 suggests that the linear operators uλ :M →M on Acq-modules
of large dimension relative to c tend to have constant rank. On the other hand,
we have the following.
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Corollary 2.9. There do not exist linear operators uλ : M → M of positive

constant rank g on Acq-modules of dimension d when
(

d
g

)2
< c. Consequently,

there are no Acq-modules of dimension d and of constant Jordan type of rank

g > 0 when
(

d
g

)2
< c.

Proof. Any Acq-module of dimension d is isomorphic to Mp for some point
p ∈ V , and so it suffices to consider modules Mp.

There are
(

d
g

)2
many g × g minors of the matrix UΛ, and so the ideal Ig(UΛ),

being generated by
(

d
g

)2
elements, cannot possibly have radical (Λ1, . . . ,Λc)

when
(

d
g

)2
< c. Thus there are no Acq-modules of constant rank g > 0 and

dimension d when
(

d
g

)2
< c, and so no such modules of constant Jordan type.

For p ∈ V , let us define the Acq-module Mp to be of generic rank g if
Ig+1(UΛ)(p) = 0, but Ig(UΛ)(p) 6= 0. Then Proposition 2.8 says that among
the p ∈ V for which the Acq-modules Mp have generic rank g, those p cor-
responding to modules Mp of constant rank g constitute a Zariski open set.
Thus the Acq-modules Mp generically have constant rank. We want to have a
similar statement for modules of constant Jordan type. This will involve an
embellishment of the immediate discussion to the sets U iM defined above.
Consider the powers UΛ, U

2
Λ, . . . , U

n−1
Λ of the generic matrix UΛ.

Definition. For p ∈ V , we say that the corresponding Acq-module Mp has

generic rank g = (g1, . . . , gn−1) if Igi+1(U
i
Λ)(p) = 0 and Igi (U

i
Λ)(p) 6= 0 for

1 ≤ i ≤ n− 1.

Theorem 2.10. For p ∈ V , suppose that Mp has generic rank g =
(g1, . . . , gn−1). Then Mp has constant Jordan type if and only if

√

Igi(U
i
Λ)(p) = (Λ1, . . . ,Λc)

for 1 ≤ i ≤ n− 1.

Proof. The condition shows that uiλ : Mp → Mp is of maximal rank for all
nonzero λ, and all 1 ≤ i ≤ n−1. Thus by Lemma 2.2, Mp has constant Jordan
type.

For fixed i, the condition that p ∈ V satisfies
√

Igi (U
i
Λ)(p) = (Λ1, . . . ,Λc)

corresponds to a Zariski open set of V . Thus the condition of Theorem 2.10
corresponds to a finite intersection of Zariski open sets, and thus is open. The
question remains when are these open sets nonempty. The answer is simple:

they are nonempty if and only if
(

d
gi

)2
≥ c. The upshot of Theorem 2.10 is

therefore that the Acq-modules Mp generically have constant Jordan type when
d2 ≥ c.
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Remarks 2.11. (1). The conditions
√

Igi(U
i
Λ)(p) = (Λ1, . . . ,Λc) seem to de-

pend on the point p ∈ V . However, if p′ is another point of V such that the
Acq-modules Mp and Mp′ are isomorphic, then there exists a d × d invertible

matrix E such that UΛ(p
′) = EU iΛ(p)E

−1, and thus Igi (U
i
Λ)(p

′) = Igi(U
i
Λ)(p).

(2). Theorem 2.10 would also hold in the group representation setting. Indeed,
if one assumes that n is prime, k is a field of characteristic n, P is the homo-
geneous ideal of k[X i

r,s | 1 ≤ r, s ≤ d, 1 ≤ i ≤ c] generated by the entries of

the matrices (X i
r,s)(X

j
r,s) − (Xj

r,s)(X
i
r,s), i < j, and (X i

r,s)
n, 1 ≤ i ≤ c, and V

is the affine variety of P , then any point p in V corresponds to a module of
dimension d over the group algebra of an elementary abelian p-group of rank c.
Theorem 2.10 would then give a condition for modules over such algebras to
have constant Jordan type.

3 Auslander-Reiten theory

In this section, we use Corollary 2.7 to show that the property of having con-
stant Jordan type is preserved under Auslander-Reiten translates. We then
show that if one of the modules in a component of the stable Auslander-Reiten
quiver of Acq has constant Jordan type, then so do all the other modules in that
component.

Recall first that if A is any algebra and M an A-module, then from an algebra
automorphism ψ : A → A we obtain a new A-module ψM , called the twist of
M by ψ. The module structure is given by a ·m = ψ(a)m. The twist commutes
with operations such as direct sum and syzygies. We shall be concerned with
the homogeneous automorphisms of Acq, that is, automorphisms which map
each generator xj to a linear combination α1jx1+ · · ·+αcjxc. Not all automor-
phisms are of this form. For example, by mapping x1 to x1+x

n−1
1 xn−1

2 · · ·xn−1
c

and xj to itself for all 2 ≤ j ≤ c, we have constructed a valid automorphism
since all the relations in Acq are preserved. If we twist a module having constant
Jordan type with such an automorphism, the result may be a module which
does not have constant type. However, as the following lemma shows, constant
Jordan type is preserved when we twist with homogeneous automorphisms.

Lemma 3.1. If M is an Acq-module of constant Jordan type, and ψ : Acq → Acq is
a homogeneous automorphism, then the module ψM also has constant Jordan
type. Moreover, the Jordan types of M and ψM are the same.

Proof. For each 1 ≤ j ≤ c there are scalars α1j , . . . , αcj with

xj 7→ α1jx1 + · · ·+ αcjxc

The c × c matrix E = (αij) must have rank c; otherwise, there would exist a
nonzero c-tuple β = (β1, . . . , βc) ∈ kc with EβT = 0. But then the automor-
phism ψ would map the nonzero element β1x1 + · · · + βcxc to zero, which is
impossible.
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Now take a nonzero c-tuple λ ∈ kc. Since ψ(uλ) = u(EλT )T , the matrix for
uλ on ψM is the same as the matrix for u(EλT )T on M . As E has maximal

rank, the c-tuple (EλT )T is nonzero, and so since M has constant Jordan type
the matrix for uλ on ψM is independent of λ. Moreover, it is the same as the
matrix for uλ on M .

Remark 3.2. In most cases, namely when q is not ±1 (thus n ≥ 3), the
homogeneous automorphisms on Acq are actually of a very simple form; they
just map each generator xj to a multiple of itself. To see this, take such
an automorphism ψ : Acq → Acq. Then for each 1 ≤ j ≤ c there are scalars
α1j , . . . , αcj with

xj 7→ α1jx1 + · · ·+ αcjxc

Suppose that αij is nonzero, and consider another generator xs for s 6= j. If
j < s, then the relation xjxs − qxsxj = 0 implies that

(α1jx1 + · · ·+ αcjxc) (α1sx1 + · · ·+ αcsxc)−

q (α1sx1 + · · ·+ αcsxc) (α1jx1 + · · ·+ αcjxc)

must be zero. The term involving x2i is (1−q)αijαisx
2
i , and so since (1−q)αijx2i

is nonzero in Acq, we see that αis must be zero. The same happens if s < j.
This shows that if xi occurs in the linear combination of ψ(xj), then xi does
not occur in the linear combinations of ψ(xs) for s 6= j. Consequently, since ψ
is an automorphism, it must simply permute the generators x1, . . . , xc up to
scalars; there are nonzero scalars α1, . . . , αc and a permutation σ ∈ Sc with
ψ(xi) = αixσ(i) for every 1 ≤ i ≤ c.
So far, we have only used that q 6= 1. Let us now use the fact that q 6= ±1 to
show that the permutation σ must be the identity permutation. If not, there
exist two integers i, j ∈ {1, . . . , c} with i < j and σ(i) > σ(j). Then since
xixj = qxjxi and xσ(j)xσ(i) = qxσ(i)xσ(j), we obtain

αiαjxσ(i)xσ(j) = ψ (xixj) = ψ (qxjxi) = qαiαjxσ(j)xσ(i) = q2αiαjxσ(i)xσ(j)

but this is impossible when q 6= ±1.
To sum up, when q 6= ±1, then a homogeneous automorphism ψ : Acq → Acq
simply maps xi to αixi for some nonzero αi ∈ k. When q2 = 1, however,
then there are in general other kinds of homogeneous automorphisms. For
example, over any ground field k, the quantum complete intersection (and
exterior algebra)

k〈x, y〉/(x2, xy + yx, y2)

admits the homogeneous morphisms (x 7→ y, y 7→ x) and (x 7→ x+y, y 7→ x−y).

We can now show that the property of having constant Jordan type is preserved
under Auslander-Reiten translates. Recall that for a finite dimensional Frobe-
nius algebra A, there is an automorphism ν : A → A, called the Nakayama
automorphism, with the property that the bimodules D(A) and νA1 are iso-
morphic. Here D(A) denotes the vector space dual Homk(A, k) of A, and the
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action on the bimodule νA1 is defined by a1 ·a ·a2 = ν(a1)aa2. The Nakayama
automorphism is unique up to inner automorphisms. It is well known that
for such an algebra A, the Auslander-Reiten translate τM of a module M is
isomorphic to Ω2

A (νM); see, for example, [SkY, Proposition 3.13 and Theorem
8.5]. We can now apply this to our quantum complete intersection Acq, which
is Frobenius.

Theorem 3.3. An Acq-module M has constant Jordan type if and only if its
Auslander-Reiten translate τM does. Moreover, if so, then their stable constant
Jordan types are the same.

Proof. By [Be2, Lemma 3.1], the Nakayama automorphism ν of Acq maps each
generator xi to q

mixi for some (possibly negative) integer mi ∈ Z. Therefore,
by Lemma 3.1, the moduleM has constant Jordan type if and only if νM does,
and with the same Jordan type. It now follows from Corollary 2.7 that M has
constant Jordan type if and only if Ω2

Ac
q
(νM) does, and with the same stable

Jordan type. Since τM ≃ Ω2
Ac

q
(νM), the result follows.

Next, we turn to the stable Auslander-Reiten quiver of Acq. Our aim is to
show that when the ground field k is algebraically closed, then constant Jordan
type is a property of the components of the quiver: if one of the modules has
constant Jordan type, then so do all the others in that component. We also
determine the stable Jordan types of the modules. The key to all this is the
fact, proved in [BE2], that when either n ≥ 3 or c ≥ 3, then every component
of the stable Auslander-Reiten quiver of Acq is of the form ZA∞.

In order to prove this result, we need the following lemma and its corollary.
They show that every Auslander-Reiten sequence over Acq ending in a module
of constant Jordan type splits when we restrict to the subalgebras k[uλ].

Lemma 3.4. Let M be an indecomposable Acq-module of complexity at least 2,
and

0 → τM
f
−→ E

g
−→M → 0

the Auslander-Reiten sequence ending in M . Then this sequence splits over
k[uλ] for all nonzero λ ∈ kc.

Proof. Fix a nonzero λ ∈ kc, and denote the algebra Acq by just A. For every
A-module L, the adjoint isomorphism

HomA

(

A⊗k[uλ] M,L
)

→ Homk[uλ] (M,HomA(A,L))

together with the natural isomorphism HomA(A,L) → L of k[uλ]-modules give
an isomorphism

HomA

(

A⊗k[uλ] M,L
) ϕL
−−→ Homk[uλ] (M,L)
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which is natural in L. From the map g in the Auslander-Reiten sequence we
therefore obtain a commutative diagram

HomA

(

A⊗k[uλ] M,E
) g∗

//

ϕE

��

HomA

(

A⊗k[uλ] M,M
)

ϕM

��

Homk[uλ] (M,E)
g∗

// Homk[uλ] (M,M)

Consider now the multiplication map µ : A⊗k[uλ]M → M given by a⊗m 7→ am.
This is a surjective homomorphism of A-modules, and we claim that it cannot
split. For if it did, then the A-module M would be a direct summand of the
A-module A⊗k[uλ] M . However, the complexity of M as a module over k[uλ]
is at most one, since all the indecomposable non-projective k[uλ]-modules are
periodic. Moreover, if we take any projective resolution of M over k[uλ], and
apply A⊗k[uλ] − to it, then the result is a projective resolution of A⊗k[uλ] M
over A, since A is free as a k[uλ]-module. Therefore the complexity of the
A-module A⊗k[uλ]M is at most one. Then M cannot be a direct summand of
this module, since the complexity of M is at least 2.
Since the multiplication map µ does not split, it factors through the map g, so
that µ = g∗(θ) for some map θ ∈ HomA

(

A⊗k[uλ] M,E
)

. The image of µ under
ϕM is the identity onM , and so the commutativity of the diagram implies that
the map g splits as a homomorphism of k[uλ]-modules: 1M = g ◦ ϕE(θ). This
shows that the Auslander-Reiten sequence splits over k[uλ].

It now follows from Theorem 2.6 that all the Auslander-Reiten sequences ending
in modules of constant Jordan type must split over the subalgebras k[uλ].

Corollary 3.5. Every Auslander-Reiten sequence over Acq ending in a module
of constant Jordan type splits over k[uλ] for all nonzero λ ∈ kc.

Now we can prove the main result in this section: when the field k is alge-
braically closed, then the Acq-modules of constant Jordan type form complete
components of the stable Auslander-Reiten quiver. As mentioned, the key in-
gredient is that in all cases except one, all the components are of the form
ZA∞. In such a component, a module is quasi-simple if it belongs to the τ -
orbit at the end. For an arbitrary module in the component, there is a shortest
sectional path to a quasi-simple module, and the number of modules in such
a path is the quasi-length of the module. Thus the quasi-simple modules are
precisely the ones having quasi-length one.

Theorem 3.6. Suppose that the ground field k is algebraically closed, and let Θ
be a component of the stable Auslander-Reiten quiver of Acq containing a module
of constant Jordan type. Then all the modules in Θ have constant Jordan type.
In fact, the following hold:
(1) If n = c = 2, then Θ is of the form ZÃ12, and its modules are precisely
{ΩiAc

q
(k) | i ∈ Z}. For even i, the stable Jordan type of ΩiAc

q
(k) is [1], and for

odd i it is [n− 1].
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(2) If either n ≥ 3 or c ≥ 3, then Θ is of the form ZA∞. If the stable Jordan
type of one of the quasi-simple modules in Θ is [1]d1 · · · [n− 1]dn−1, then every
module of quasi-length l has stable Jordan type [1]ld1 · · · [n− 1]ldn−1 .

Proof. (1) When n = c = 2, then Acq/(x1x2) is just the commutative truncated
polynomial algebra k[x1, x2]/(x

2
1, x

2
2) modulo its socle, regardless of the char-

acteristic of the field k. It is well known (see, for example, the proof of [Erd,
Lemma II.7.3]) that the only indecomposable nonprojective and nonperiodic
modules over this algebra are the syzygies of the simple module k, and that
they form a component ZÃ12 in the stable Auslander-Reiten quiver. By Corol-
lary 2.7 and the fact that k trivially has constant Jordan type [1], every module
in this component has constant stable Jordan type as given. By Theorem 2.6,
there are no other indecomposable nonprojective modules of constant Jordan
type.

(2) Suppose now that either n ≥ 3 or c ≥ 3. By [BE2, Theorem 3.6], every
component of the stable Auslander-Reiten quiver of Acq is of the form ZA∞. Let
M be a module in Θ of constant Jordan type, and suppose that its quasi-length
is l. Then by Theorem 3.3, all the modules in Θ of quasi-length l, that is, all
the modules in the τ -orbit of M , also have constant Jordan type. Moreover,
their stable Jordan types are all equal to that of M .

Consider the Auslander-Reiten sequence

0 → τM → E → M → 0

ending inM . IfM is quasi-simple, that is, if l = 1, then E is indecomposable of
quasi-length two. Otherwise, the module E is a direct sum E ≃ E1⊕E2 of two
indecomposable modules, with E1 of quasi-length l− 1 and E2 of quasi-length
l + 1. By Corollary 3.5, the sequence splits over k[uλ] for all nonzero λ ∈ kc,
hence since M and τM have constant Jordan type, so does E. It now follows
from Corollary 2.4 and Theorem 3.3 that every module in Θ of quasi-length
l+1, or of quasi-length l−1 if l ≥ 2, must have constant Jordan type. Moreover,
the stable Jordan types of the modules of quasi-length l+1 are all the same, as
are the stable Jordan types of the modules of quasi-length l− 1. By induction,
we see that every module in Θ must have constant Jordan type. Moreover, two
modules having the same quasi-length have the same stable Jordan type.

Suppose now that [1]d1 · · · [n−1]dn−1 is the stable Jordan type of one of (equiv-
alently, all of) the quasi-simple modules. We show by induction on l that every
module E of quasi-length l has stable Jordan type [1]ld1 · · · [n − 1]ldn−1 , the
case l = 1 being the quasi-simple case. If l = 2, then there is an Auslander-
Reiten sequence as above, in which M and τM are quasi-simple. Then since
the sequence splits over k[uλ] for all nonzero λ ∈ kc, and the stable Jordan type
of both M and τM is [1]d1 · · · [n − 1]dn−1, we see that the stable Jordan type
of E must be [1]2d1 · · · [n− 1]2dn−1. If l ≥ 3, then there is an Auslander-Reiten
sequence

0 → τM → E ⊕ E′ →M → 0
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in which the quasi-length of E′ is l − 2, and that of M and τM is l − 1. By
induction, the stable Jordan type of E′ is [1](l−2)d1 · · · [n− 1](l−2)dn−1 , and the
stable Jordan type of both M and τM is [1](l−1)d1 · · · [n − 1](l−1)dn−1. Using
again that the sequence splits over k[uλ] for all nonzero λ ∈ kc, we see that the
direct sum E⊕E′ must have stable Jordan type [1]2(l−1)d1 · · · [n− 1]2(l−1)dn−1,
hence the stable Jordan type of E must be [1]ld1 · · · [n−1]ldn−1 . This completes
the proof.

4 Syzygies of the simple module

In this final section, we focus on the syzygies of the simple Acq-module k. Since
this module trivially has constant stable Jordan type [1], it follows from Corol-
lary 2.7 that for every integer i ∈ Z, the constant stable Jordan type of Ω2i

Ac
q
(k)

is [1], and for Ω2i+1
Ac

q
(k) it is [n − 1]. Our aim now is to show that these are

the only modules having these constant stable Jordan types, in the case when
c = 2, that is, when our algebra has two generators. The arguments we use are
to a large extent adaptions of arguments from [Ca1].
Instead of writing x1 and x2, we shall write x and y for the generators of A2

q ,
and just A for the algebra A2

q itself. Thus the algebra we are dealing with
throughout this section is

A = k〈x, y〉/ (xn, xy − qyx, yn)

with k, q and n as before. Moreover, as in the previous sections we denote
the radical of A by just r. For an A-module M , we denote by topM its top
M/rM , and by socM its socle, that is, the submodule {m ∈ M | rm = 0}.
Note that the latter is the same as the set of all elements m in M with xm = 0
and ym = 0.
For an A-module M without any projective summands, consider its minimal
complete resolution

· · · → P2
d2−→ P1

d1−→ P0
d0−→ P−1

d−1

−−→ P−2 → · · ·

of free A-modules with Im di ⊆ rPi−1 and M = Im d0. It is unique up to
isomorphism, and so we define βi(M) to be the rank of the free module Pi.
This is the same as the k-vector space dimension of topΩiA(M), since ΩiA(M) =
Im di. In Section 2, we defined the complexity of a module over an arbitrary
algebra in terms of the dimensions of the projective modules in its minimal
projective resolution. Since the algebra we are working over is local, we may
just as well use the integers βi(M):

cxM = inf{m ≥ 0 | there exists b ∈ R with βt(M) ≤ btm−1 for all t ≥ 0}

The first result we prove compares β0(M) with β−1(M) when the moduleM has
constant stable Jordan type [1] or [n− 1]. By definition, for all uλ = λ1x+λ2y
with λ 6= 0, such a module decomposes over k[uλ] into a direct sum Mi ⊕ F ,
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where F is free and i is either 1 or n− 1 (with M1 of dimension 1, and Mn−1

of dimension n− 1). We call the module Mi the nonprojective component.

In the results and proofs to come, we write k[x] and k[y] for the subalgebras
of A generated by x and y, respectively. These are not to be confused with
polynomial rings: the are both isomorphic to k[z]/(zn).

Proposition 4.1. Suppose that M is an indecomposable A-module of constant
stable Jordan type [1] or [n− 1]. Then the following conditions are equivalent:

(1) β0(M) > β−1(M);

(2) There exists a generator a for the nonprojective component of M as a k[x]-
module, with the following properties: a /∈ rM , and if M is of stable Jordan
type [1] then ya 6= 0, whereas if M is of type [n− 1] then yxn−2a 6= 0;

(2’) There exists a generator b for the nonprojective component of M as a k[y]-
module, with the following properties: b /∈ rM , and if M is of stable Jordan
type [1] then xb 6= 0, whereas if M is of type [n− 1] then yn−2xb 6= 0;

(3) Any generator for the nonprojective component of M as a k[x]-module
satisfies (2);

(3’) Any generator for the nonprojective component of M as a k[y]-module
satisfies (2’).

Proof. Let a be a generator for the nonprojective component of M as a k[x]-
module, and consider the surjective map M/xM → xn−1M induced by mul-
tiplication by xn−1. Note that both the modules are A-modules, since y q-
commutes with x. If we twist the module xn−1M with the automorphism
ψ : A → A given by x 7→ x and y 7→ qn−1y, then the map above induces
a homomorphism M/xM → ψ(x

n−1M) of A-modules. This gives an exact
sequence

0 → k →M/xM → ψ(x
n−1M) → 0 (†)

over A, where the kernel of the map M/xM → ψ(x
n−1M) is of dimension one

and generated by the coset of a. Now consider the socle ofM as a k[x]-module,
i.e. sock[x]M = {m ∈M | xm = 0}. Again, since y q-commutes with x, this is
an A-module. There is an exact sequence

0 → xn−1M → sock[x]M → k → 0 (††)

over A, where the one-dimensional module is generated by a if the Jordan type
of M is [1], and by xn−2a if the type is [n− 1].

Note that in both of the exact sequences, the element x acts trivially on the
modules. Consequently, we can view the modules involved as just k[y]-modules.
For such an A-module L, the top L/rL is just L/yL, and so dimk topL =
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dimk sock[y] L. From the sequence (†) we therefore obtain

dimk topM = dimk topM/xM

= dimk sock[y]M/xM

≥ dimk sock[y] ψ(x
n−1M)

= dimk sock[y] x
n−1M

= dimk topx
n−1M

with a strict inequality if and only if the sequence splits. This happens if and
only if a /∈ rM , and in this case dimk topM = dimk topx

n−1M + 1. On the
other hand, if

0 →M →֒ P → Ω−1
A (M) → 0

is exact with P projective, then from the sequence (††) we obtain

dimk topΩ
−1
A (M) = dimk socQ

= dimk socM

= dimk sock[y]
(

sock[x]M
)

≥ dimk sock[y] x
n−1M

= dimk topx
n−1M

Again, the inequality is strict if and only if the sequence (††) splits, which
happens if and only if a ∈ socM when the stable Jordan type ofM is [1], and if
and only if xn−2a ∈ socM when the type is [n−1]. In other words, the sequence
splits if and only if ya = 0 when the stable Jordan type is [1], and if and only
if yxn−2a = 0 when the type is [n − 1]. In this case, dimk topΩ

−1
A (M) =

dimk topx
n−1M + 1.

From what we have proved, we see that condition (1) holds if and only if
dimk topM = dimk topx

n−1M + 1 and dimk topΩ
−1
A (M) = dimk topx

n−1M .
This happens if and only if (†) splits but (††) does not, and this is equivalent to
condition (2) and (3), since a was an arbitrary generator for the nonprojective
component of M as a k[x]-module. A completely similar argument shows that
(1), (2’) and (3’) are also equivalent.

Before we proceed, we make the following definition.

Definition. Let M be an indecomposable nonprojective A-module of stable
constant Jordan type either [1] or [n− 1].
(1) The module M satisfies the rank property with respect to x, abbreviated
(RPx), if there exists a generator a for the nonprojective component ofM over
k[x], with the following properties: if the stable Jordan type of M is [1], then
a /∈ rM and yn−1a 6= 0, whereas if the stable Jordan type of M is [n− 1], then
yn−1xn−2a 6= 0.
(2) Likewise,M satisfies the rank property with respect to y, abbreviated (RPy),
if there exists a generator b for the nonprojective component of M over k[y],
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with the following properties: if the stable Jordan type of M is [1], then b /∈
rM and xn−1b 6= 0, whereas if the stable Jordan type of M is [n − 1], then
yn−2xn−1b 6= 0.
(3) If M satisfies both (RPx) and (RPy), then we say that it satisfies the rank
property, abbreviated (RP).

Remark 4.2. If a module M satisfies (RPx), then every generator for the
nonprojective component over k[x] has the defining properties from part (1)
of the definition. To see this, suppose that a is as in the definition, and take
any other generator a′ for the nonprojective component over k[x]. If the stable
Jordan type of M is [1], then a′ = a+ xn−1m for some m ∈ M . Then since a
does not belong to rM , neither can a′. Moreover, since yn−1xn−1M = 0, we
see that yn−1a′ = yn−1(a + xn−1m) = yn−1a 6= 0. If the stable Jordan type
of M is [n− 1], then a′ = a+ xm for some m ∈M . In this case yn−1xn−2a′ =
yn−1xn−2(a + xm) = yn−1xn−2a 6= 0. Thus in both cases the generator a′

also has the defining properties from the rank property definition. Similarly, if
M satisfies (RPy), then every generator for the nonprojective component over
k[y] has the defining properties from part (2) of the definition. In the proofs
to come, we shall be using these facts without further mention.

As the terminology suggests, the rank property should of course have something
to do with ranks. This is the following result.

Proposition 4.3. If an indecomposable nonprojective A-module satisfies either
(RPx) or (RPy), then β0(M) > β−1(M).

Proof. Let M be a module that satisfies (RPx), and let a be any generator
for the nonprojective component of M over k[x]. Note first that M is not
projective, and so yn−1xn−1M = 0. If the stable constant Jordan type of M
is [1], then by definition of the rank property, the element a is not contained
in rM , and yn−1a 6= 0. Therefore ya, must be nonzero. If the stable constant
Jordan type is [n − 1], then by definition yn−1xn−2a 6= 0, and in particular
yxn−2a must be nonzero. In addition, also in this case the element a cannot
belong to rM : if it did, then we could write a = xa1+ya2 for some a1, a2 ∈M ,
giving yn−1xn−2a = 0 since yn = 0 and yn−1xn−1M = 0.
We have shown that both in the case the stable constant Jordan type of M is
[1], and in the case it is [n−1], condition (3) of Proposition 4.1 holds. It follows
that β0(M) > β−1(M). A similar proof applies if M satisfies (RPy).

If the stable constant Jordan type of the module is [n − 1], then the converse
also holds, under some extra conditions. To prove this, we need the first part
of the following lemma.

Lemma 4.4. Let ψ : A → A be the automorphism defined by x 7→ x and y 7→
q−1y, and φ : A → A the automorphism defined by x 7→ qx and y 7→ y. Then
for every A-module M with dimk HomA(M,M) = 1 and ψM ≃M ≃ φM , and
every integer i, the following hold.
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(1) For every surjective homomorphism d : F → ΩiA(M) with F free, there
exist homomorphisms hx : ψΩ

i
A(M) → F and hy : φΩ

i
A(M) → F , such that

the composition d ◦ hx : ψΩiA(M) → ΩiA(M) is multiplication by x, and the
composition d ◦ hy : φΩiA(M) → ΩiA(M) is multiplication by y.
(2) For every injective homomorphism i : ΩiA(M) → F with F free, there ex-
ist homomorphisms hx : F → ψ−1ΩiA(M) and hy : F → φ−1ΩiA(M), such that
the composition hx ◦ i : ΩiA(M) → ψ−1ΩiA(M) is multiplication by x, and the
composition hy ◦ i : ΩiA(M) → φ−1ΩiA(M) is multiplication by y.

Proof. Consider the module ΩiA(M). When we twist a minimal projective
resolution of a module by an automorphism θ, the result is a minimal pro-
jective resolution of the corresponding twisted module, hence θΩ

i
A(M) ≃

ΩiA(θM). Consequently, there are isomorphisms ψΩ
i
A(M) ≃ ΩiA(ψM) ≃

ΩiA(M) and φΩ
i
A(M) ≃ ΩiA(φM) ≃ ΩiA(M), due to the assumptions on

M . Also, since HomA(Ω
i
A(M),ΩiA(M)) ≃ HomA(M,M), the vector space

HomA(Ω
i
A(M),ΩiA(M)) is one-dimensional. This shows that the module

ΩiA(M) satisfies the same assumptions as M , and so it suffices to prove the
lemma for the latter.
For the first part, note that the automorphisms ψ and φ are precisely the
ones we have to twist with in order for multiplication by x to induce an
A-homomorphism µx : ψM → M , and multiplication by y to induce an A-
homomorphism µy : φM →M

µx(y ·m) = µx(q
−1ym) = q−1xym = yxm = y · µx(m)

µy(x ·m) = µy(qxm) = qyxm = xym = x · µy(m)

Since M ≃ ψM , there is an isomorphism HomA(ψM,M) ≃ HomA(M,M), and
these are one-dimensional vector spaces by assumption. In the stable module
category, an isomorphism ψM → M is nonzero, and so µx, which is not an
isomorphism, must be zero in HomA(ψM,M). Thus µx factors through some
free A-module, and therefore also through F . The same argument works for
the map µy.
The second part is proved similarly. Note that since ψM ≃ M ≃ φM , there
are also isomorphisms ψ−1M ≃M ≃ φ−1M .

Proposition 4.5. Let M be an indecomposable A-module of stable constant
Jordan type [n− 1], and suppose that dimk HomA(M,M) = 1 and ψM ≃M ≃

φM , where ψ and φ are the automorphisms from Lemma 4.4. Then M satisfies
(RP) if β0(M) > β−1(M).

Proof. We show that M satisfies (RPx); the proof that M satisfies (RPy) is
similar. Let a be any generator for the nonprojective component ofM over k[x].
To show that M satisfies (RPx), we must show that yn−1xn−2a is nonzero. To
do this, we consider the projective cover

0 → Ω1
A(M) →֒ P

d
−→M → 0
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ofM . Note that Ω1
A(M) is also nonprojective and indecomposable, since M is.

View the short exact sequence as a sequence of k[x]-modules. As such, the
module M is isomorphic to spank{a, xa, . . . , x

n−2a}⊕F1 for some free module
F1, where spank{a, xa, . . . , x

n−2a} is the nonprojective component of dimen-
sion n − 1. The module P is free, and Ω1

A(M) is isomorphic to k ⊕ F2 for
some free module F2. Consequently, there is an element p of P with d(p) = a,
and such that xn−1p generates the one-dimensional nonprojective component
of Ω1

A(M). Note that since a ∈M \ rM by Proposition 4.1, the element p does
not belong to rP , hence yn−1xn−1p is nonzero. Moreover, since a generates the
nonprojective component of M over k[x], the element xn−1a is zero.
Now we use the first part of Lemma 4.4, with the automorphism ψ defined
there. Let h : ψM → P be an A-homomorphism having the property that the
composition d ◦ h : ψM → M equals the multiplication map µx given by x.
Then d (h(a)− xp) = 0, so that h(a) = xp+u for some u ∈ Ω1

A(M). Note that
xn−1u = 0 since xn−1u = xn−1 (h(a)− xp) = h(xn−1a) and xn−1a = 0, hence
u belongs to xP . Now since xn−1p generates the nonprojective component of
Ω1
A(M) over k[x], there is an equality

Ω1
A(M) ∩ xP = spank{x

n−1p}+ xΩ1
A(M)

hence we can write u as u = αxn−1p + xv for some scalar α and element
v ∈ Ω1

A(M). This gives

h
(

yn−1xn−2a
)

= yn−1xn−2h(a)

= yn−1xn−2 (xp+ u)

= yn−1xn−2
(

xp+ αxn−1p+ xv
)

= yn−1xn−1p+ yn−1xn−1v

and so if yn−1xn−2a were zero, then yn−1xn−1p = −yn−1xn−1v. As yn−1xn−1p
is nonzero, this would imply that yn−1xn−1Ω1

A(M) was nonzero, but this is
impossible since Ω1

A(M) is a nonprojective indecomposable A-module. This
shows that yn−1xn−2a must be nonzero.

The idea behind the proof of the main result in this section is to start with a
syzygy having the rank property (RP), and then show that its cosyzygies get
smaller and smaller until we end up with the module k. The first step in this
reduction process is the following result.

Proposition 4.6. Let M be an indecomposable A-module of stable constant
Jordan type [n − 1], and suppose that dimk HomA(M,M) = 1 and ψM ≃
M ≃ φM , where ψ and φ are the automorphisms from Lemma 4.4. Then if
M satisfies (RP), the module Ω−1

A (M) is either isomorphic to k, or satisfies
(RP).

Proof. We show that if M satisfies (RPx), then Ω−1
A (M) is either isomorphic

to k, or satisfies (RPx); the (RPy)-version is similar. As in the previous proof,
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we decompose the moduleM over k[x] as spank{a, xa, . . . , x
n−2a}⊕F for some

free module F , where spank{a, xa, . . . , x
n−2a} is the nonprojective component

of dimension n−1. By definition, asM satisfies (RPx), the element yn−1xn−2a
is nonzero. Now consider the injective envelope

0 →M →֒ P
d
−→ Ω−1

A (M) → 0

of M , viewed as a sequence of k[x]-modules. Since xn−1a = 0, we can write a
as a = xp for some p ∈ P , with yn−1xn−1p nonzero since yn−1xn−2a is. Thus p
does not belong to rP , and so d(p) /∈ rΩ−1

A (M) since d is a projective cover.
The element d(p) generates the one-dimensional nonprojective component of
Ω−1
A (M) over k[x], hence xd(p) = 0. If also yd(p) = 0, then this compo-

nent is actually a direct summand of Ω−1
A (M) as an A-module. Namely,

since d(p) /∈ rΩ−1
A (M), there is a maximal submodule W ⊆ Ω−1

A (M) with
d(p) /∈ W . The submodule generated by d(p) is just spank{d(p)}, and since
this does not intersect W , the A-module Ω−1

A (M) decomposes as a direct sum
W ⊕ spank{d(p)}. But Ω

−1
A (M) is indecomposable over A, since M is, and so

in this case Ω−1
A (M) ≃ k.

This shows that if Ω−1
A (M) is not isomorphic to k, then yd(p) must be nonzero,

that is, the element yp cannot belong to M . We must now show that this
forces Ω−1

A (M) to satisfy (RPx). As the element d(p) is a generator for the
one-dimensional nonprojective component of Ω−1

A (M) over k[x], and we saw
above that d(p) /∈ rΩ−1

A (M), it suffices to show that yn−1d(p) is nonzero.
Suppose, for a contradiction, that yn−1d(p) = 0. Then yn−1p ∈ Ker d =
M . Now we use the second part of Lemma 4.4, with the automorphism φ
defined there. There exists an A-homomorphism h : P → φ−1M such that the
composition h ◦ i : M → φ−1M is multiplication by y, where i is the inclusion
map M →֒ P . Since xp belongs to M , it follows that h(xp) = yxp, and so
when we view φ−1M as a submodule of φ−1P we obtain

x · h(p) = h(xp) = yxp = q−1xyp = x · yp

Then x ·(h(p)− yp) = 0 in φ−1P , so with u = h(p)−yp we obtain h(p) = yp+u
with x · u = 0. From the above, the element yn−1p belongs to M , hence
yn−1h(p) = h(yn−1p) = ynp = 0. The expression h(p) = yp + u then gives
yn−1 · u = 0 in φ−1P .
Since both x · u and yn−1 · u are zero in φ−1P , the element u can be written as
yxn−1v for some element v ∈ P . Now consider the element p′ = p+xn−1v in P .
It does not belong to rP , since p /∈ rP . Moreover, yp′ = yp+ u = h(p), hence
yp′ belongs to M . Finally, xp′ = xp = a. The latter means that we can start
the argument all over again, but this time with p′ instead of p. However, this
time yp′ belongs to M , and this is impossible when Ω−1

A (M) is not isomorphic
to k.

In the proof of the second and final step in the reduction process, we need the
following lemma. Recall that an indecomposable nonprojective A-module M

Documenta Mathematica 25 (2020) 1541–1570



1564 P. A. Bergh, K. Erdmann, D. A. Jorgensen

of stable constant Jordan type [1] satisfies (RPx) if the following hold: there
exists a generator a for the nonprojective component of M over k[x], such
that a /∈ rM and yn−1a 6= 0. By Remark 4.2, every such generator a has these
properties. Similarly, the moduleM satisfies (RPy) if there exists a generator b
for the nonprojective component of M over k[y], with b /∈ rM and xn−1b 6= 0.
The lemma shows that when the assumptions from the last couple of results
hold, then if we take any element m ∈M \ rM , either xn−1m or yn−1m must
be nonzero.

Lemma 4.7. Let M be an indecomposable A-module of stable constant Jor-
dan type [1], satisfying either (RPx) or (RPy). Moreover, suppose that
dimk HomA(M,M) = 1 and ψM ≃ M ≃ φM , where ψ and φ are the au-
tomorphisms from Lemma 4.4. Then for every element m ∈ M \ rM , either
xn−1m or yn−1m is nonzero.

Proof. We prove the (RPx)-version. Take such an element m ∈ M \ rM , and
suppose, for a contradiction, that xn−1m = 0 and yn−1m = 0. Consider a
projective cover

0 → Ω1
A(M) →֒ P

d
−→M → 0

of M , and let p ∈ P be an element with m = d(p). Since m /∈ rM , the
element p does not belong to rP , and so yn−1xn−1p 6= 0. Note that since
0 = yn−1d(p) = d(yn−1p), the element yn−1p belongs to Ker d = Ω1

A(M), and
similarly so does xn−1p.
We shall modify the element p and obtain a new element p′ ∈ P , with the
property that d(p′) ∈M \ rM , and with

yn−1p′ = yn−1p and xd(p′) = 0

It then follows that yn−1xn−1M is nonzero, a contradiction since M is inde-
composable and not projective. To see this, let z ∈ P be an element with the
property that d(z) generates the one-dimensional nonprojective component of
M over k[x]. Then d(p′) = αd(z) + w for some scalar α ∈ k and some element
w in the k[x]-free summand. As xd(p′) = 0 = xd(z), we see that xw = 0, so
w = xn−1w′ for some w′ in the free summand. This implies that w ∈ xn−1M ,
and since d(p′) /∈ rM , the scalar α must be nonzero. Now

0 = yn−1m = yn−1d(p) = d(yn−1p) = d(yn−1p′) = yn−1d(p′)

= αyn−1d(z) + yn−1w

and so since yn−1d(z) is nonzero by (RPx), we see that yn−1xn−1w′ = yn−1w 6=
0. Thus we have produced a nonzero element in yn−1xn−1M .
To construct the element p′ with the desired properties, we apply the second
part of Lemma 4.4 to the module Ω1

A(M): there exists an A-homomorphism
h : P → ψ−1Ω1

A(M) such that the composition h ◦ i : Ω1
A(M) → ψ−1Ω1

A(M) is
multiplication by x, where i is the inclusion map Ω1

A(M) →֒ P . Therefore, in

ψ−1Ω1
A(M), there are equalities

qn−1yn−1h(p) = yn−1 · h(p) = h(yn−1p) = xyn−1p = qn−1yn−1xp
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and this is a nonzero element since yn−1xn−1p 6= 0 and x and y q-commute.
Viewing ψ−1Ω1

A(M) as a submodule of ψ−1P , we see that

qn−1yn−1 (h(p)− xp) = 0

in the latter, and then also in P itself. Therefore, there is an element u ∈ yP
with h(p)− xp = u; say u = yu′ for some u′ ∈ P .
Now we use the fact that xn−1p ∈ Ω1

A(M), and obtain

xn−1u = xn−1 (h(p)− xp) = xn−1h(p) = h(xn−1p) = h ◦ i(xn−1p) = xnp = 0

Thus xn−1yu′ = 0 in P , so we can write u′ = xu1+y
n−1u2 for some u1, u2 ∈ P .

This, in turn, gives

u = yu′ = yxu1 = x(q−1yu1) = xv

where v = q−1yu1 ∈ yP . Now consider the element p + v in P ; call it p′. It
follows from the definition of u and v that

xp′ = xp+ xv = xp+ u = h(p)

and

yn−1p′ = yn−1p+ yn−1v = yn−1p

since v ∈ yP . Moreover, since yn−1p belongs to Ω1
A(M), so does yn−1p′. Note

also that p′ cannot belong to rP , for p /∈ rP whereas v = q−1yu1 ∈ rP .
Therefore, since d is a projective cover, the element d(p′) does not belong to
rM . Moreover, as xp′ equals h(p), and the latter belongs to ψ−1Ω1

A(M) and
therefore also to Ω1

A(M) = Ker d, we see that xd(p′) = d(xp′) = 0. We have
shown that the element p′ has the desired properties.

We can now prove the second and final step in the reduction process.

Proposition 4.8. Suppose that n ≥ 3, and let M be an indecomposable
A-module of stable constant Jordan type [1]. Furthermore, suppose that
dimk HomA(M,M) = 1 and ψM ≃ M ≃ φM , where ψ and φ are the au-
tomorphisms from Lemma 4.4. Then if M satisfies (RP), so does Ω−1

A (M).

Proof. As before, we only show that Ω−1
A (M) satisfies (RPx), since the (RPy)-

version is completely similar. However, this time we need the fact that the
module M satisfies both (RPx) and (RPy).
As a k[x]-module, we can decompose M as spank{a}⊕F for some free module
F , where a generates the one-dimensional nonprojective component. The rank
property (RPx) then gives a /∈ rM and yn−1a 6= 0. As in the previous proof,
consider the injective envelope

0 →M →֒ P
d
−→ Ω−1

A (M) → 0
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of M , viewed as a sequence of k[x]-modules. Since xa = 0, we can write a
as a = xn−1p for some p ∈ P , and then since yn−1xn−1p = yn−1a 6= 0, this
element p does not belong to rP . Then d(p) does not belong to rΩ−1

A (M),
and it generates the nonprojective component of dimension n − 1 over k[x].
By definition of the rank property (RPx), we must show that yn−1xn−2d(p) is
nonzero.
Suppose, for a contradiction, that yn−1xn−2d(p) = 0. Then yn−1xn−2p ∈
Ker d = M ; call this element m. We shall show that m = yn−1m′ for some
other element m′ ∈M . To do this, note first that both ym and x2m are zero.
Now considerM as a module over k[y]; as such, it decomposes as spank{b}⊕F

′

for some free module F ′, where b generates the one-dimensional nonprojective
component. Since ym = 0, we can write m as m = αb+yn−1m′ for some scalar
α and some m′ ∈ F ′. Furthermore, since M satisfies (RPy), the element xn−1b
is nonzero. Therefore, if α is nonzero, then so is xn−1m, since xn−1yn−1m′ = 0
as M is not projective. But this cannot be the case, for we saw above that
x2m = 0, and by assumption n ≥ 3. The scalar α must therefore be zero, and
this shows that m = yn−1m′.
Finally, consider the element xn−2p −m′ in P ; call it p′. Since m′ ∈ M and
xn−1p = a ∈ M , the element xp′ belongs to M ; let us denote it by m′′. This
element does not belong to rM , form′′ = a+xm′, and a /∈ rM sinceM satisfies
(RPx). Therefore, by Lemma 4.7, either yn−1m′′ or xn−1m′′ must be nonzero.
As xa = 0, it must be the case that yn−1m′′ 6= 0, but

yn−1m′′ = yn−1xn−1p− yn−1xm′ = q1−nx
(

yn−1xn−2p− yn−1m′
)

= q1−nx(m−m) = 0

This is a contradiction, and so yn−1xn−2d(p) must be nonzero.

We now prove the main result in this section. It characterizes the syzygies of
the simple A-module k. As mentioned, the idea behind the proof is to start
with a syzygy having the rank property (RP), and then show that its cosyzygies
get smaller and smaller, using Proposition 4.3, Proposition 4.6 and Proposition
4.8. We then end up with the module k itself.

Theorem 4.9. If the ground field k is infinite, then for an indecomposable
nonprojective module M over A = A2

q, the following are equivalent:

(1) M ≃ ΩiA(k) for some i ∈ Z;
(2) M has constant stable Jordan type either [1] or [n − 1]. Moreover,
HomA(M,M) is one-dimensional, and ψM ≃M for every homogeneous auto-
morphism ψ : A→ A;
(3) M has constant stable Jordan type either [1] or [n − 1]. Moreover,
HomA(M,M) is one-dimensional, and ψM ≃ M ≃ φM , where ψ and φ are
the automorphisms from Lemma 4.4.

Proof. Suppose that (1) holds. As we explained in the proof of Lemma 4.7,
whenever we take an A-module X and automorphism ψ : A → A, there is
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an isomorphism ψΩ
1
A(X) ≃ Ω1

A(ψX). Thus for every integer i, the modules

ψΩ
i
A(X) and ΩiA(ψX) are isomorphic. This implies that

ψM ≃ ψΩ
i
A(k) ≃ ΩiA(ψk) ≃ ΩiA(k) ≃M

for every homogeneous automorphism ψ, since ψk ≃ k. Moreover, from the
isomorphisms

HomA(M,M) ≃ HomA(Ω
i
A(k),Ω

i
A(k)) ≃ HomA(k, k)

we see that dimk HomA(M,M) = 1, and from Corollary 2.7 we know that M
has constant stable Jordan type either [1] or [n−1]. This shows that (2) holds,
and since (2) trivially implies (3), we need to show that (3) implies (1).
Suppose therefore that (3) holds, and take any syzygy ΩiA(M) of M . As
above, all the properties from (3) also hold for this module: the vector space
HomA(Ω

i
A(M),ΩiA(M)) is one-dimensional, there are isomorphisms ψΩ

i
A(M) ≃

ΩiA(M) ≃ φΩ
i
A(M), and ΩiA(M) has constant stable Jordan type either [1] or

[n−1]. We shall show that there exists a syzygy of Jordan type [n−1] satisfying
the rank property (RP).
As mentioned before Theorem 2.6, the algebra A has finitely generated coho-
mology. This means that its Hochschild cohomology ring HH∗(A) is Noethe-
rian, and that Ext∗A(X,Y ) is a finitely generated HH∗(A)-module for all A-
modulesX and Y . As explained in [BE1, Section 2], it follows from [Op2, Corol-
lary 3.5] that there exists a polynomial subalgebra H = k[η1, η2] of HH

∗(A),
with both η1 and η2 in degree 2, and such that Ext∗A(X,Y ) is a finitely gen-
erated H-module for all A-modules X and Y . In particular, Ext∗A(M,A/r) is
finitely generated over H .
Since the ground field k is infinite, the first part of the proof of [Be1, Theorem
2.5] shows that there exists a homogeneous element η ∈ H , of degree 2, such
that multiplication

ExtiA(M,A/r)
·η
−→ Exti+2

A (M,A/r)

is injective for i ≫ 0. From [Be1, Proposition 2.2] and its proof, we see that
this element η gives rise to an eventually surjective chain map fη : P → P of
degree −2, where P is the minimal projective resolution

· · · → P2
d2−→ P1

d1−→ P0

of M . For each i ≥ 0, this chain map gives a commutative diagram

Pi+3

di+3
//

fi+3

��

Pi+2
//

fi+2

��

Ωi+2
A (M) // 0

Pi+1

di+1
// Pi // ΩiA(M) // 0
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with exact rows, a diagram that induces a map gi+2 : Ω
i+2
A (M) → ΩiA(M). As

fi is surjective for all i≫ 0, so is gi.
By Theorem 2.6, the complexity of the moduleM is 2. In particular, this means
thatM is not periodic, and so the maps gi cannot be isomorphisms. Namely, if
Ωi+2
A (M) were isomorphic to ΩiA(M), then Ω2

A(M) would be isomorphic to M .
Thus for all i ≫ 0, the map gi+2 is surjective but not injective, and therefore
dimk Ω

i+2
A (M) > dimk Ω

i
A(M). Taking the alternating sum of the dimensions

of the modules in the exact sequence

0 → Ωi+2
A (M) → Pi+1

di+1

−−−→ Pi → ΩiA(M) → 0

we then see that dimk Pi+1 > dimk Pi. This shows that βi+1(M) > βi(M) for
all i ≫ 0. Now since every second syzygy of M is of constant stable Jordan
type [n− 1], we may now apply Proposition 4.5: there exists an integer i such
that ΩiA(M) is of constant stable Jordan type [n− 1] and satisfies (RP).
Let i0 be an integer with the property that Ωi0A (M) is of constant stable Jor-
dan type [n − 1] and satisfies (RP), and such that βi0(M) is minimal; by the
above, such an integer exists. By Proposition 4.6, the module Ωi0−1

A (M) is
either isomorphic to k, or satisfies (RP). We claim that it must be isomor-
phic to k. If not, then by Proposition 4.8, the module Ωi0−2

A (M) also satisfies

(RP), since the stable Jordan type of Ωi0−1
A (M) is [1]. However, when we ap-

ply Proposition 4.3 to both Ωi0A (M) and Ωi0−1
A (M), we see that there are strict

inequalities βi0(M) > βi0−1(M) > βi0−2(M). Since the module Ωi0−2
A (M) is of

constant stable Jordan type [n− 1], this contradicts the minimality of βi0(M).
Consequently, the module Ωi0−1

A (M) must be isomorphic to k.

We suspect that the condition dimHomA(M,M) = 1 on the stable homomor-
phism spaces in the statement of Theorem 4.9 is not needed. For a motivation
for this condition, see [Ca2].
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