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Abstract. We present an obstruction theoretic inductive construc-
tion of intersection space pairs, which generalizes Banagl’s construc-
tion of intersection spaces for arbitraty depth stratifications. We con-
struct intersection space pairs for pseudomanifolds with compatible
trivial structures at the link fibrations; this includes the case of toric
varieties. We define intersection space complexes in an axiomatic way,
similar to Goresky-McPherson axioms for intersection cohomology.
We prove that if the intersection space pair exists, then the pseudo-
manifold has an intersection space complex whose hypercohomology
recovers the cohomology of the intersection space pair. We character-
ize existence and uniqueness of intersection space complexes in terms
of the derived category of constructible complexes. In the case of
algebraic varieties we show that a parallel obstruction theory in the
derived category of Mixed Hodge Modules endowes intersection space
cohomology with a Mixed Hodge Structure if the obstruction van-
ishes. We find classes of examples admitting intersection space com-
plex, and counterexamples not admitting them which illustrate the
use of the previously developed obstruction theory (counterexamples
were known previously by various specialists). We prove that the
(shifted) Verdier dual of an intersection space complex is an intersec-
tion space complex. We prove a generic Poincaré duality theorem for
intersection space complexes.
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1 Introduction

Intersection spaces have been recently introduced by Banagl as a Poincaré du-
ality homology theory for topological pseudomanifolds which is an alternative
to Goresky and MacPherson intersection homology. When they are available
they present the advantages of being spatial modifications of the given topolog-
ical pseudomanifold, to which one can later apply algebraic topology functors
in order to obtain invariants. In this sense, if one applies (reduced) singular
cohomology one obtains a homology theory with internal cup products and
a Poincaré duality is satisfied between the homology theories corresponding
to complementary perversities. Moreover, one can apply many other functors
leading to richer invariants. The idea of intersection spaces was sketched for the
first time in [2], and was fully developed for spaces with isolated singularities
in [3].

In [3] Banagl carefully analyzed the case of quintic 3-folds with ordinary double
points appearing in the conifold transition and noticed that, in the same way
that intersection cohomology gives the cohomology of a small resolution, coho-
mology of intersection spaces gives the cohomology of a smoothing in this case.
This fitted with predictions motivated by string theory (see Banagl papers for
full explanations). This motivated further work by Banagl, Maxim and Budur
([9], [10], [6], [19]) in which the relation between the cohomology of intersection
spaces for the middle perversity and the Milnor fibre of a hypersurface X with
isolated singularities is analyzed. The latest evolution of the results of these
papers, contained in [6], is the construction of a perverse sheaf in X whose
hypercohomology computes the cohomology of the intersection space of X in
all degrees except for the top degree. Such a perverse sheaf is a modification
of the nearby cycle complex and, in fact, when the monodromy is semi-simple
in the eigenvalue 1, the middle perversity intersection space perverse sheaf is a
direct summand of the nearby cycle complex.

The results described up to now are valid for only isolated singularities (some-
times even assuming that they are hypersurface singularities). In [3] Banagl
generalizes the construction for the case of topological pseudomanifolds with
two strata and trivial link fibration and sketches a method for more general
class of non-isolated singularities. In [7] intersection spaces are constructed for
the case of two strata assuming non-trivial conditions on the fibration by links.
The first case in which intersection spaces are constructed for a topological
pseudomanifold with more than two strata is in [4]. There, the depth 1 strata
are circles or intervals, and the depth 2 strata are isolated singularities; in this
case, it is the topology of the strata which is very restrictive. Finally, in [12],
intersection spaces are constructed for a class of 3-strata spaces with flatness
assumptions for the link bundles.

In [9] the following open questions are proposed: Is there a sheaf theoretic
approach to intersection spaces, similar to the one of Goresky and MacPherson
[15] for intersection cohomology? Up to which kind of singularities can the
intersection space constructions be extended? Is intersection space cohomology
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of algebraic varieties endowed with a Hodge structure?
The papers [10], [6] are contributions to the first and third question for the
case of isolated singularities. The paper [8] is also a contribution towards the
third question.
In a recent paper [13], Geske takes a new viewpoint: instead of only giving up
the topological construction and focusing on producing a complex of sheaves
at the original space, he constructs a complex of vector spaces which is related
with the complex computing the (co)homology of the original spaceX , but that
satisfies Poincaŕe duality. The construction is valid for any analytic variety
(Poincaré duality is satisfied in the compact case). His construction is a bit
further from Banagl’s original ideas than ours, since his procedure is to make
a modification which is global in a neighbourhood of the singular set, instead
of stratifying it conveniently and making a fibrewise construction.
Finally, in order to finish our review of existing results, let us mention the
rational Poincaré spaces approach developed in [16].
The present paper is a contribution to the three questions formulated above
for the general singularity case. Before explaining our results in detail in the
next Section, let us enumerate them in a very condensed way:
We realize that, for constructing Banagl’s intersection spaces in a general pseu-
domanifold X , one needs to adopt the viewpoint of pairs of spaces and asso-
ciate an intersection space pair, which is a spatial modification of the pair
(X,Sing(X)). We find a procedure which runs inductively on the codimen-
sion of the strata and, if it is not obstructed, produces the intersection space
pair. We show that, if the link fibrations of the pseudomanifold are trivial and
the trivializations of these fibrations verify some compatibility conditions, the
intersection space pair exists. This includes the case of toric varieties.
We prove that, if an intersection space pair exists for a topological pseudo-
manifold and a given perversity, then there exists a constructible complex of
sheaves in our original space X that satisfies a set of properties of the same
kind as those that characterize intersection cohomology complexes in [15]; we
call this complex an intersection space complex for the given perversity. Its
hypercohomology recovers the reduced cohomology of the intersection space in
the case of isolated singularities. In the case of a depth 1 topological pseudo-
manifold, it recovers the cohomology of the intersection space relative to the
singular stratum (like in [3]), which is the one that satisfies Poincaré duality
for complementary perversities. For depth 2 and higher, if the dimension of the
strata is sufficiently high, the intersection space construction is intrinsically a
construction of pairs of spaces, as we will see below; the hypercohomology of
our intersection space complex computes the rational cohomology of the pair
of spaces.
Next, we leave the realm of topology and shift to a sheaf theoretic viewpoint,
studying under which conditions intersection space complexes exist. We find
obstructions for existence and uniqueness of intersection space complexes and
give spaces parametrizing the possible intersection space complexes in case that
the obstruction for existence vanish. Both of these obstructions vanish in the
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case of isolated singularities and the obstruction for existence also vanish in the
case considered in [4], as one should expect. If one assumes that the topological
pseudomanifold is an algebraic variety, we notice that our constructions can be
carried in the category of mixed Hodge modules, yielding a polarizable mixed
Hodge structure in the hypercohomology of the intersection space complex,
and hence in the cohomology of intersection spaces when the corresponding
obstructions vanish.
We turn to analyze classes of topological pseudomanifolds in which we can
prove the existence of intersection space complexes. We show that they exist
for any perversity when the successive link fibrations are trivial (without the
compatibility conditions needed to construct the intersection space pair). We
also prove the existence if the homological dimension of the strata with re-
spect to local systems is at most 1. This includes the case treated in [4]. On
the other hand, building on the obstructions for existence, we produce exam-
ples of topological pseudomanifolds such that intersection space complexes do
not exist for given perversities. As a consequence, Banagl intersection spaces
can not exist either. We thought that this were the first examples, but the
referee informed us that several specialists knew examples before, see for ex-
ample Banagl-Chriestenson [7] (p. 180, Example 10.3, and p. 170, Example
6.13). One of the examples is a normal algebraic variety whose stratification
has depth 1 and whose transversal singularity is an ordinary double point of di-
mension 3 (those appearing in the conifold transition examples); the perversity
used is the middle one.
Finally, we turn to duality questions. We show that the Verdier dual of an inter-
section space complex with a given perversity is an intersection space complex
with the complementary perversity. The proof resembles the one given in [15]
for intersection cohomology complexes. However, since (unlike intersection co-
homology complexes) intersection space complexes are not unique, this does
not yield self dual sheaves for the middle perversity on algebraic varieties. In
the case of depth 1 stratifications, we prove that generic choices of the intersec-
tion space complex yield the same Betti numbers in hypercohomology and we
obtain Poincaré duality at the level of generic Betti numbers for complementary
perversities.
Some open questions and further directions are hinted at the end of the next
section.
We would like to thank the referee for his criticism and for many suggestions
that have corrected some mistakes and improved the text a lot.
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2 Main results

This section is the guide to the paper. Here we describe in detail the content
of the paper section by section, with cross-references to the main results. The
reader may jump to the corresponding sections for a full exposition.

2.1 Topological constructions

The paper starts with a topological construction of pairs of intersection spaces
in Section 3.
Banagl’s construction of the intersection space [3] for a d-dimensional topologi-
cal pseudomanifold X with isolated singularities for a given perversity p̄ runs as
follows. Let Σ = {p1, ..., pr} be the singular set. Around pi consider a conical
neighbourhood Bi. Let Li denote the link ∂Bi. Let q̄ be the complementary
perversity of p̄. Consider a homological truncation

(Li)≤q̄(d) → Li.

This is a mapping of spaces inducing isomorphisms in homology in degrees up
to q̄(d) and such that Hj((Li)≤q̄(m)) vanish for j > q̄(d). Assume for simplicity
that the truncation map is an inclusion. Construct the intersection space re-
placing each of the Bi’s by the cone over (Li)≤q̄(d), call the resulting space Z.
The vertices of the cones are called Σ = {p1, ..., pr} as well. The intersection
space is the result of attaching the cone over Σ to Z. If the truncation map is
not an inclusion, one may force this using an appropriate homotopy model for
it. The intersection space homology is the reduced homology of the intersection
space.
The construction for the case of topological pseudomanifolds X = Xd ⊃ Xd−m

of dimension d with a single singular stratum of codimension m contained in [3]
and [7] is the following generalization. Let T be a tubular neighbourhood of the
singular set Xd−m. Consider the locally trivial fibration T → Xd−m, and let
∂T → Xd−m be the associated fibration of links. Consider a fibrewise homology
truncation

∂T≤q̄(m) → ∂T.

This is a morphism of locally trivial fibrations which is a q̄(m)-homology trun-
cation at each fibre. Remove T from X and replace it by the fibrewise cone
over ∂T≤q̄(m) (see Definition 3.3); call the resulting space Z. As before Σ is a
subspace of Z. The intersection space is the result of attaching the cone over
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Σ to Z and the intersection space homology is the reduced homology of the
intersection space.
Notice that the intersection space homology coincides with the relative ho-
mology H∗(Z,Σ). This observation is the starting point of our construction for
more than two strata and of our constructible complex approach to intersection
space homology. Consider a topological pseudomanifold with stratification

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

and a suitable system of tubular neighbourhoods of the strata (the conical
structure of Definition 3.5). A great variety of topological pseudomanifolds
can be endowed with this structure (see Remark 3.14).
Our topological construction of intersection spaces consists in modifying the
spaceX inductively, going each step deeper in the codimension of the strata, by
taking successive fibrewise homology truncations. In doing so, one necessarily
modifies the singular set Xd−2 and, as a result, the singular set is not going to
be contained in the modified space Z. Instead, one obtains a modification Y of
Xd−2 contained in Z. One obtains a pair (Z, Y ), and it is the homology of this
pair that defines our intersection space homology. An important feature of the
construction is that one needs to adopt the viewpoint of pairs of spaces right
from the beginning if one wants to have a chance of proving duality results; this
incarnates in the need of taking homology truncations of pairs of spaces. This
new feature appears from the depth 2 strata and hence it did not appear in
Banagl constructions explained above. It also may happen that, if the singular
stratum, is of small dimension in comparison with the perversity, the situation
does not appear at all.
As in the Banagl’s construction, the homology truncations need not be inclu-
sions. This forces us to work with an adequate homotopy model for X .
It is important to record for future reference that, at the k-th inductive step of
the construction, one obtains a pair of spaces (I p̄kX, I

p̄
k (Xd−2)) which contains

Xd−k−1 and verifies

1. the pair (I p̄kX \Xd−k−1, I
p̄
k (Xd−2) \Xd−k−1) is an intersection space pair

of X \Xd−k−1.

2. there is a system of tubular neighbourhoods Tk−1 of Xd−k−1 \Xd−k−2 in
I p̄kX \Xd−k−2 such that we have locally trivial fibrations of pairs

Tk−1 ∩ (I p̄kX \Xd−k−2, I
p̄
k (Xd−2) \Xd−k−2)→ Xd−k−1 \Xd−k−2,

∂Tk−1 ∩ (I p̄kX \Xd−k−2, I
p̄
k (Xd−2) \Xd−k−2)→ Xd−k−1 \Xd−k−2,

the first being the fibrewise cone over the second (see Definition 3.3).

The second locally trivial fibration is called the fibration of link pairs at the
k-th step of the construction.
The construction follows the scheme of obstruction theory: it is inductive and,
at each step, choices are made. The next step may be obstructed and this may
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depend on the previous choices. The obstruction consists in the impossibility
of constructing a fibrewise homology truncation of the fibration of link pairs at
the k-th step of the construction.

When there is a set of choices so that the process terminates, we say that an
intersection space pair exists. It needs not be unique.

In the case where the conical structure is trivial, that is, if the link fibrations
are trivial and the trivializations are compatible with each other (see Definition
3.13), the intersection space pair exists (see Theorem 3.31). This includes the
case of arbitrary toric varieties.

2.2 From topology to constructible complexes

In the rest of the paper, we investigate the existence and uniqueness of inter-
section space pairs and their duality properties by sheaf theoretic methods. For
this, we associate to each intersection space pair an element in the derived cate-
gory of constructible complexes whose hypercohomology computes the rational
cohomology of the intersection space pair.

To get this, we need to construct a sequence of intersection space pairs which
modify the pair (Xd, Xd−2) in increasingly smaller neighbourhoods of the strata
of X . This is done in Section 4.

In Section 5, we exploit the sequence of intersection spaces to derive a con-
structible complex IS (see Definition 5.15) and prove, in Theorem 5.16, that
the hypercohomology of IS recovers the cohomology of the intersection space
pair. Finally, in Theorem 5.18, we prove that IS satisfies a set of properties in
the same spirit as those that characterize intersection cohomology complexes
in [15]. This is the basis for the axiomatic treatment of the next section.

2.3 A derived category approach to intersection space
(co)homology

In Section 6, we take an axiomatic approach to intersection space complexes
in the same way as Goresky-MacPherson approach to intersection cohomology
in [15, section 3.3]. We define two sets of properties in the derived category
of cohomologically constructible sheaves on X . The first set are the properties
of the intersection cohomology sheaf composed with a shift. The second set of
properties are inspired by Theorem 5.18.

We will call a complex of sheaves verifying the second set of properties in-
tersection space complex of X (Definition 6.2). Theorem 5.18 implies that if
there exists an intersection space pair of X (see Definition 3.27), then there
exists an intersection space complex of X whose hypercohomology coincides
with the cohomology of the intersection space pair. Moreover, we compare the
support and cosupport properties of intersection cohomology complexes and
intersection space complexes. From the comparison, one sees that intersection
space complexes, except possibly in the case of isolated singularities, can not
be perverse sheaves.
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At this point, we investigate in a purely sheaf theoretical way under which
conditions an intersection space complex may exist. For k = 2, ..., d, we define
Uk := X \Xd−k and we denote the canonical inclusions by ik : Uk → Uk+1 and
jk : Xd−k \Xd−(k+1) → Uk+1.
In Theorem 7.3, we give necessary and sufficient conditions for the existence
of intersection space complexes. As in the topological setting, the construc-
tion proceeds inductively on each time deeper strata. At the (k + 1)-th step,
we have constructed an intersection space complex ISk on X \ Xd−k−1 such
that the complex j∗k+1ik+1∗ISk on Xd−k−1 \Xd−k−2 is cohomologically locally
constant. Comparing with the topological construction these local systems are
the cohomology local systems of the fibration of link pairs at the (k + 1)-th
step of the construction. One can consider the natural triangle in the derived
category:

τ≤q̄(k+1)j
∗
k+1ik+1∗ISk → j∗k+1ik+1∗ISk → τ>q(k+1)j

∗
k+1ik+1∗ISk

[1]
−→ .

The obstruction to perform the next step in the construction is the obstruction
to split the triangle in the derived category. This is the constructible sheaf
counterpart of the possibility to construct fibrewise homology truncations in
the topological world. In Theorem 7.3, we study the parameter spaces classi-
fying the possible intersection space complexes in step k + 1 having fixed the
step k (they are not unique in general). In the same theorem, for the sake of
comparison we provide a proof of the existence and uniqueness of intersection
cohomology complexes using the same kind of techniques.
There are extension groups controlling the obstructions for existence and
uniqueness at each step. They are recorded in Corollary 7.6.
If X is an algebraic variety, we produce an analogue construction of intersection
space complexes to the category of mixed Hodge modules over X . This is
Theorem 8.1 and, as a corollary, one obtains a mixed Hodge structure in the
cohomology of intersection spaces if the corresponding obstructions vanish. The
obstructions for existence and uniqueness are the same kind of extension groups,
but taken in the category of mixed Hodge modules (see Corollary 8.2). Using
the same techniques, we show that, for an arbitrary perversity, the intersection
cohomology complexes are mixed Hodge modules (Theorem 8.3). This puts a
mixed Hodge structure on intersection cohomology with arbitrary perversity.
We believe that this should be well known, but we provide a proof since it is a
simple consequence of our ideas.

2.4 Classes of spaces admitting intersection space complexes and
counterexamples

From the previous section, it is clear that the spaces admitting intersection
space complexes need to be special. In this Section 9, we find two sufficient
conditions for this, yielding an ample class of (yet special) examples.
By the results explained previously it is clear that pseudomanifolds admitting
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a trivial conical structure (see Definition 3.13), the intersection space complex
exists by the combination of Theorems 3.31 and 5.18.

The point is that if one only needs the existence of intersection space complexes
one can relax the triviality properties. In Theorem 9.8 we prove that if the
link fibrations are trivial in the sense of Definition 3.10, then the intersection
space complex exists. This leaves out the hypothesis on the compatibility of
trivializations.

The next class of examples admitting intersection space complexes are pseu-
domanifolds whose strata are of “cohomological dimension at most 1 for local
systems” in the sense of Definition 9.10. This is proved in Theorem 9.11. This
includes the case studied by Banagl in [4] and the case of complex analytic
varieties with critical set of dimension 1 which are sufficiently singular, in the
sense that there are no positive dimensional compact strata (Corollary 9.12).

From our previous results, it is clear that a necessary condition for the existence
of an intersection space is the existence of an intersection space complex. We
find a few examples (see Example 9.16, Example 9.17 and Example 9.18) not
admitting an intersection space complex. The last example is an algebraic
variety with two strata and the perversity is the middle one. So, one should
not expect that algebraicity helps in the existence of intersection spaces. The
idea to produce the examples is to observe that, if an space admits intersection
space complexes, certain differentials in the Leray spectral sequence of the
fibrations of links (which in our sheaf theoretic treatment is a local to global
spectral sequence) have to vanish (Proposition 9.14 and Corollary 9.15). The
referee informed us that the fact that nonvanishing differentials in the spectral
sequence of the link bundle can obstruct fiberwise homology truncation has
already been observed in [5, Theorem 5.2 and remarks on page 296], and that
previous counterexamples to the existence of intersection spaces were found by
several specialist (Banagl-Chriestenson [7] p. 180, Example 10.3, and p. 170,
Example 6.13).

2.5 Duality

In Section 10, we prove that, if p̄ and q̄ are complementary perversities and
ISp̄ is an intersection space complex for perversity p̄, then its Verdier dual is
an intersection space complex for perversity q̄ (Theorem 10.1). So, the Verdier
duality functor exchanges the sets of intersection space complexes for comple-
mentary perversities. The proof follows the axiomatic treatment of [15] for
intersection cohomology complexes.

A surprising consequence is that the existence of intersection space complexes
is equivalent for complementary perversities (Corollary 10.2). Then, we move
to the case of depth 1 stratifications and prove, in Proposition 10.3, that,
for generic choices of the intersection space complexes, the Betti numbers are
always the same (they are minimal). Then, in Theorem 10.6, we show that
the Betti numbers symmetry predicted by Poincaré duality for complementary
perversities is satisfied for generic intersection space Betti numbers.
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2.6 Open questions

Here is a list of natural questions for further study:

1. We conjecture that the intersection space complexes associated via Defini-
tion 5.15 to the intersection space pairs constructed for pseudomanifolds
with trivial conical structure in Theorem 3.31 are self Verdier dual when
the strata are of even codimension and the perversity is the middle one.

2. Assume that the intersection space complex exists. Does there exist an
associated rational homotopy intersection space? Are there further re-
strictions than the existence of the intersection space complex?

3. If the intersection space complex exists, can one define on its hypercoho-
mology a natural internal cup product? Can one find a product turning
its space of sections into a differential graded algebra inducing a cup
product? This would lead to a definition of “intersection space rational
homotopy type”.

4. Toric varieties have intersection space pairs. Compute their Betti num-
bers in terms of the combinatorics of the fan.

5. Generalize the generic Poincaré duality Theorem 10.6 to the case of ar-
bitrary depth stratifications.

6. This is a suggestion of Banagl: relate our sheaf theoretical methods with
the characteristic class obstructing Poincaré duality discussed in [7]. If
the characteristic class vanishes, is the intersection space complex self-
dual in the case of pseudomanifolds with trivial conical structure, even
codimensional strata and middle perversity?

3 A topological construction of intersection spaces

3.1 Topological preliminaries

First, we give some basic definitions about t-uples of spaces in order to fix
notation.

Definition 3.1. 1. A t-uple of spaces is an ordered set of topological spaces
(Z1, ..., Zt).

2. A morphism from a t-uple of spaces into a space (Z1, ..., Zt)→ Z is a set
of morphisms ϕi : Zi → Z.

3. A morphism between t-uples of spaces (Z1, ..., Zt) → (Z ′
1, ..., Z

′
t) is a set

of morphisms ϕi : Zi → Z ′
i.

4. The mapping cylinder of a morphism ϕ = (ϕ1, ..., ϕt) : (Z1, ..., Zt) →
Z, cyl(ϕ), is the union of the t-uple (Z1, ..., Zt) × [0, 1] with
(Z, Im(ϕ2), ..., Im(ϕt)) with the equivalence relation ∼ such that for
i = 1, ..., t and for every x ∈ Zi, we have (x, 1) ∼ ϕi(x).
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Remark 3.2. Remember that the mapping cylinder of a morphism of spaces
f : X → Y is cyl(f) := (X × [0, 1]⊔ Y )/ ∼ where ∼ is the equivalence relation
such that for every x ∈ X, (x, 1) ∼ f(x).

Definition 3.3. Let σ : (Z1, ..., Zt)→ B be a locally trivial fibration of t-uples
of spaces. The fibrewise cone of σ over the base B is the locally trivial fibration

π : cyl(σ)→ B,

where cyl(σ) is the mapping cylinder of σ, π(x, t) := σ(x) for (x, t) ∈
(Z1, ..., Zt) × [0, 1] and π(b) := b for b ∈ B(the definition of π is compatible
with the identifications made to construct cyl(σ)). The fibrewise cone over a
fibration has a canonical vertex section

s : B → cyl(σ)

sending any b ∈ B to the vertex of the cone (cyl(σ))b.

The following figure shows schematicatically cyl(σ) when the fiber of σ is the
pair (T,Σ) where T is a torus and Σ is isomorphic to S1, and the base B is a
circle. The fibre Σ is depicted into the torus T as a dotted circle.

Figure 1

We use a definition of topological pseudomanifold similar to [1, Definition 4.1.1].
In the literature it is often assumed that the singular set has codimension at
least 2. This is not necessary in our work, and some definitions fit better with
each other not assuming it. So, we do not adopt this convention.

Definition 3.4. A topological pseudomanifold is a paracompact Hausdorff
topological space with a filtration by closed subspaces
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X = Xd ⊃ Xd−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅.

such that

• Each pair (Xi, Xi−1) is a locally finite relative CW -complex.

• Every non-empty Xd−k \Xd−k−1 is a topological manifold of dimension
d− k called pure stratum of X.

• X \Xd−2 is dense in X.

• Local normal triviality. For each point x ∈ Xd−k \Xd−k−1, there
exists an open neighborhood U of x in X, a compact topological pseudo-
manifold L of dimension k − 1 with stratification

L = Lk−1 ⊃ Lk−3 ⊃ ... ⊃ L0 ⊃ L−1 = ∅

and a homeomorphism

ϕ : U
∼=
−→ Rd−k × c◦(L),

where c◦(L) is the open cone of L, such that it preserves the strata, that
is, ϕ(U ∩Xd−r) = Rd−k × c◦(Lk−r−1).

L is called the link of X over the point x.

The following new notion is important in our constructions.

Definition 3.5. Let (X,Y ) be a pair of topological spaces and let

Xd−k ⊃ Xd−k−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

be a topological pseudomanifold such that Xd−k is a subspace of Y . We say that
the pair (X,Y ) has a conical structure with respect to the stratified subspace if
for every r ≥ k there exists an open neighbourhood TXd−r of Xd−r \Xd−r−1

in X \Xd−r−1, with the following properties:

1. Let TXd−r be the closure of TXd−r in X. There is a locally trivial fibra-
tion of 2(r − k + 1)-uples of spaces

(TXd−r \Xd−r−1) ∩ (X,Y, TXd−k, Xd−k, TXd−k−1, Xd−k−1, ..., TXd−r+1, Xd−r+1)yσd−r
Xd−r \Xd−r−1

such that its restriction to the boundary

(∂TXd−r \Xd−r−1) ∩ (X,Y, TXd−k, Xd−k, TXd−k−1, Xd−k−1, ..., TXd−r+1, Xd−r+1)yσ∂d−r
Xd−r \Xd−r−1

is a locally trivial fibration.
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2. The fibration σd−r is the fibrewise cone of σ∂d−r over the base Xd−r \
Xd−r−1.

3. Let k ≤ r1 < r2 ≤ d and consider the isomorphism induced by property
(2)

TXd−r1 ∩ (TXd−r2 \Xd−r2−1) ∼=

∼= (TXd−r1 ∩ (∂TXd−r2 \Xd−r2−1))× [0, 1]/ ∼

where ∼ is the equivalence relation of the mapping cylinder.

If we remove Xd−r1−1 in both parts of this isomorphism, we obtain an
isomorphism

φr1,r2 : (TXd−r1 \Xd−r1−1) ∩ TXd−r2
∼=

∼= ((TXd−r1 \Xd−r1−1) ∩ ∂TXd−r2)× [0, 1).

Note that since Xd−r2 is contained in Xd−r1−1, the vertex section of the
fibrewise cone is not included in the previous spaces.

With this notation, we have the equality

(σd−r1)|(TXd−r1
\Xd−r1−1)∩TXd−r2

=

= φ−1
r1,r2

◦ ((σd−r1)|(TXd−r1
\Xd−r1−1)∩∂TXd−r2

, Id[0,1)) ◦ φr1,r2 ,

that is, the fibration σd−r1 in the intersection (TXd−r1 \ Xd−r1−1) ∩
TXd−r2 is determined by its restriction to (TXd−r1\Xd−r1−1)∩∂TXd−r2.

Figure 3 illustrates this property.

4. Let k ≤ r1 < r2 ≤ d. If ∂TXd−r2 ∩ (Xd−r1 \Xd−r1−1) 6= ∅, then we have
the following equality of 2(r1 − k + 1)-uples

(TXd−r1 \Xd−r1−1) ∩ (X,Y, TXd−k, Xd−k, TXd−k−1, Xd−k−1, ...

TXd−r1+1, Xd−r1+1) ∩ ∂TXd−r2 = σ−1
d−r1

(∂TXd−r2 ∩ (Xd−r1 \Xd−r1−1))

and, in this space, we have

σ∂d−r2 ◦ σd−r1 = σ∂d−r2 .

Figure 4 illustrates this property.

Notation 3.6. Consider a tuple (Y1, ..., Yl) of subspaces whose components are
a subset of the components of the tuple (X,Y, TXd−k, Xd−k, TXd−k−1, Xd−k−1,
..., TXd−r+1, Xd−r+1) considered in the previous definition. The fibre of the
fibration σ∂d−r restricted to the tuple (Y1, ..., Yl) is called the fibre of the link
bundle of (Y1, ..., Yl) over Xd−r.
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Remark 3.7. The fibration σ∂d−r is the fibration of links of Xd−r \Xd−r−1 and
the fibration σd−r is the fibration associated to a tubular neighborhood.

The fact that these fibrations of 2(r− k+1)-uples are locally trivial yields that
the intersection of the link Lx over the point x ∈ Xd−r \Xd−r−1 with the open
neighbourhoods TXd−k, TXd−k−1, ..., TXd−r+1 only depends on the connected
component of Xd−r \Xd−r−1 containing x.

Let k ≤ r1 < r2 ≤ d. The following figure shows how the open neighbourhoods
TXd−r intersect each other.

Figure 2

The following figures show how the morphisms σd−r1 and σ∂d−r2 behave in

(TXd−r1 \Xd−r1−1) ∩ TXd−r2 because of Properties (3) and (4) of Definition
3.5.
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Figure 3: Property (3)

Figure 4: Property (4)

Remark 3.8. Using properties (3) and (4) of Definition 3.5, we can also deduce
that

(TXd−r1 \Xd−r1−1) ∩ (X,Y, TXd−k, Xd−k, TXd−k−1, Xd−k−1, ...

..., TXd−r1+1, Xd−r1+1) ∩ TXd−r2 = σ−1
d−r1

(TXd−r2 ∩ (Xd−r1 \Xd−r1−1))

and, in this space, we have

σd−r2 ◦ σd−r1 = σd−r2 .
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Notation 3.9. Along this chapter, we will use the superindex ∂ to denote the
fibrations of boundaries of suitable tubular neighborhoods.

Definition 3.10. We say that a conical structure verifies the r-th triviality
property (Tr) if the locally trivial fibration σ∂d−r is trivial, that is, the following
two properties hold for every connected component Sd−r of Xd−r \Xd−r−1.

1. There exists an isomorphism

(σ∂d−r)
−1(Sd−r) ∼= L× Sd−r,

where L denotes the 2(r − k + 1)-uple of the links of Sd−r in

(X,Y, TXd−k, Xd−k, TXd−k−1, Xd−k−1, ..., TXd−r+1, Xd−r+1).

2. Under the identification given by property (1), σ∂d−r restricted to L×Sd−r
is the canonical projection over Sd−r.

Definition 3.11. Let (X,Y ) be a pair of spaces with a conical structure as in
Definition 3.5 which verifies the r-th triviality property (Tr) for any r. Fix a
trivialization

(σ∂d−r)
−1(Sd−r) ∼= L× Sd−r

over each connected componet of each stratum. The set of all trivializations is
called a system of trivializations for the conical structure.

Let (X,Y ) be a pair of spaces with a conical structure as in Definition 3.5. Fix
a system of trivializations for the conical structure, assuming that there is one.
Let k ≤ r1 < r2 ≤ d verifying that there exist connected components Sd−r1
and Sd−r2 of Xd−r1 \ Xd−r1−1 and Xd−r2 \ Xd−r2−1, respectively, such that
(σ∂d−r2)

−1(Sd−r2) ∩ Sd−r1 6= ∅, or what is the same, that the closure Sd−r1
contains Sd−r2 .
By definition, (σ∂d−r2)

−1(Sd−r2) ∩ σ
−1
d−r1

(Sd−r1) and σ
−1
d−r1

((σ∂d−r2)
−1(Sd−r2) ∩

Sd−r1) are 2(k − r + 1)-uples. To simplify the notation, along the
following reasoning we denote by (σ∂d−r2)

−1(Sd−r2) ∩ σ−1
d−r1

(Sd−r1) and

σ−1
d−r1

((σ∂d−r2)
−1(Sd−r2) ∩ Sd−r1) the first components of these 2(k − r + 1)-

uples. Consider also the space (σ∂d−r2)
−1(Sd−r2) ∩ Sd−r1.

Since we have fixed a system of trivializations, we have isomorphisms

L
Sd−r1

d−r2
× Sd−r2 ∼= (σ∂d−r2)

−1(Sd−r2) ∩ Sd−r1

and

L
σ−1
d−r1

(Sd−r1
)

d−r2
× Sd−r2 ∼= (σ∂d−r2)

−1(Sd−r2) ∩ σ
−1
d−r1

(Sd−r1)

where L
Sd−r1

d−r2
denotes the fibre of the link bundle of Sd−r1 over Sd−r2 and

L
σ−1
d−r1

(Sd−r1
)

d−r2
denotes the fibre of the link bundle of σ−1

d−r1
(Sd−r1) over Sd−r2 .

Moreover, by the property (4) of Definition 3.5, we have an equality

σ−1
d−r1

(Sd−r1) ∩ (σ∂d−r2)
−1(Sd−r2) = σ−1

d−r1
((σ∂d−r2)

−1(Sd−r2) ∩ Sd−r1)
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and, again using the fixed system of trivializations, we obtain an isomorphism

σ−1
d−r1

((σ∂d−r2)
−1(Sd−r2) ∩ Sd−r1) ∼= c(LXd−r1)× ((σ∂d−r2)

−1(Sd−r2) ∩ Sd−r1)

where LXd−r1 is the fibre of the link bundle of X over Sd−r1 .
Combining the previous isomorphisms, we have

L
σ−1
d−r1

(Sd−r1
)

d−r2
× Sd−r2

∼= c(LXd−r1)× ((σ∂d−r2)
−1(Sd−r2) ∩ Sd−r1)

∼=

∼= c(LXd−r1)× L
Sd−r1

d−r2
× Sd−r2

Let us denote by γ the isomorphism

γ : c(LXd−r1)× L
Sd−r1

d−r2
× Sd−r2 → L

σ−1
d−r1

(Sd−r1
)

d−r2
× Sd−r2 . (1)

Since under the equivalences given by the trivializations the morphisms σd−r1
and σ∂d−r2 are the canonical projections, using the property (4) of Definition
3.5, the diagram

c(LXd−r1)× L
Sd−r1

d−r2
× Sd−r2 //

γ
��

L
Sd−r1

d−r2
× Sd−r2

��
L
σ−1
d−r1

(Sd−r1
)

d−r2
× Sd−r2 // Sd−r2

where all the morphisms except γ are the canonical projections, is commutative.
So γ verifies the following condition:

γ : c(LXd−r1)× L
Sd−r1

d−r2
× Sd−r2 // L

σ−1
d−r1

(Sd−r1
)

d−r2
× Sd−r2

(x, y, z) // (γ1(x, y, z), z)

Definition 3.12. We say that the system of trivializations is compatible if for
any two connected components Sd−r1 and Sd−r2 as above, the map if γ1 does

not depend on z, that is, if there exists an isomorphism β : c(LXd−r1)×L
Sd−r1

d−r2
→

L
σ−1
d−r1

(Sd−r1
)

d−r2
such that γ = (β, IdSd−r2

).

Definition 3.13. We say that the conical structure is trivial if it verifies the
r-th triviality property (Tr) for any r and there exists a compatible system of
trivializations.

Remark 3.14. For a great variety of topological pseudomanifolds

X = Xd ⊃ Xd−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅,
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the pair (X,Xd−1) has a conical structure with respect to the stratification

Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅.

Whitney stratifications, for instance, verify this property (see [14]). We as-
sume that every topological pseudomanifold which appear in sections 3, 4 and 5
satisfies this. Moreover, we fix such a conical structure and denote the relevant
neighbourhoods TXd−r for r varying.
From Section 6, it is not necessary to adopt this assumption.

Remark 3.15. Toric varieties with their canonical stratification are topologi-
cal pseudomanifolds which have a trivial conical structure with respect to the
stratification. Details will appear in a forthcoming paper of T. Essig and the
second author.

3.2 An inductive construction of intersection spaces

Given a topological pseudomanifold we define an inductive procedure on the
depth of the strata. The procedure depends on choices made at each inductive
step, and may be obstructed for a given set of choices or carried until the
deepest stratum. If for a given set of choices it can be carried until the end, it
produces a pair of spaces which generalizes Banagl intersection spaces.

Definition 3.16. A perversity is a map p̄ : Z≥2 → Z≥0 such that p̄(2) = 0
and p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1.

Some special perversities are

• The zero perversity, 0̄(k) = 0.

• The total perversity, t̄(k) = k − 2.

• The lower middle perversity, m̄(k) = ⌊k2⌋ − 1.

• The upper middle perversity, n̄(k) = ⌈k2 ⌉ − 1.

• Given a perversity p̄, the complementary perversity is t̄− p̄. It is usually
denoted by q̄.

The lower and the upper middle perversities are complementary.
For our construction we need the notion of fibrewise homology truncation of
fibrations of pairs of locally finite CW -complexes:

Definition 3.17. Let σ : (X,Y )→ B be a locally trivial fibration. We say that
σ admits a fibrewise rational q-homology truncation if there exists a morphism
of pairs of spaces

φ : (X≤q, Y≤q)→ (X,Y )

such that σ ◦ φ is a locally trivial fibration and, for any b ∈ B,
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1. the homomorphism in homology of fibres

Hi((X≤q)b, (Y≤q)b;Q)→ Hi(Xb, Yb;Q)

is an isomorphism if i ≤ q.

2. the homology group Hi((X≤q)b, (Y≤q)b;Q) vanishes if i > q.

Notation 3.18. Given a pair of spaces (X,Y ) we denote by (X,Y )≤q the pair
(X≤q, Y≤q) appearing in the definition above. Note that the spaces X≤q and
Y≤q are not homology truncations of X and Y .

The following figure shows a fibrewise rational 1-homology truncation of the
fibration σ in Figure 1. The fiber of the resulting fibration becomes a pointed
circle.

Figure 5

Definition 3.19. Given a pair of spaces (X,Y ) with a conical structure as in
Definition 3.5, a fibrewise rational q-homology truncation of σ∂d−r

(∂TXd−r \Xd−r−1 ∩ (X,Y ))≤q

(σ∂
d−r)≤q **❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯

φ∂
d−r

��

Xd−r \Xd−r−1

∂TXd−r \Xd−r−1 ∩ (X,Y )

σ∂
d−r

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

is compatible with the conical structure if, for every r′ > r,

σd−r′ ◦ (σ
∂
d−r)≤q : (σ

∂
d−r)

−1
≤q(TXd−r′ ∩ (Xd−r \Xd−r−1))→ Xd−r′ \Xd−r′−1
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is the fibrewise cone of

σ∂d−r′ ◦ (σ
∂
d−r)≤q : (σ

∂
d−r)

−1
≤q(∂TXd−r′ ∩ (Xd−r \Xd−r−1))→ Xd−r′ \Xd−r′−1

Proposition 3.20. Given a pair of spaces (X,Y ) with a conical structure as in
Definition 3.5, if there exists a fibrewise rational q-homology truncation of σ∂d−r,

then there exists a fibrewise rational q-homology truncation of σ∂d−r compatible
with the conical structure.

Proof. Let us consider a fibrewise rational q-homology truncation of σ∂d−r,

(σ∂d−r)≤q.

Then, the restriction of (σ∂d−r)≤q to

(σ∂d−r)
−1
≤q((Xd−r \Xd−r−1) \

⋃

r′>r

TXd−r′)

is a fibrewise rational q-homology truncation of the restriction of σ∂d−r to

(σ∂d−r)
−1((Xd−r \Xd−r−1) \

⋃

r′>r

TXd−r′)

Using the property (2) of Definition 3.5, we can extend the previous restriction
to a fibrewise rational q-homology truncation over

(Xd−r \Xd−r−1) \
⋃

r′′>r′

TXd−r′′

for any r′ > r inductively. Moreover, using the property (3) of Definition 3.5,
we can check that these extensions are compatible with the conical structure.
So, when r′ = d, we obtain a fibrewise rational q-homology truncation of σ∂d−r
compatible with the conical structure.

Definition 3.21. Given a pair of spaces (X,Y ) with a conical structure verify-
ing the triviality property (Tr) for any r (see Definition 3.10), choose a system
of trivializations as in Definition 3.11. A fibrewise rational q-homology trun-
cation of σ∂d−r

(∂TXd−r \Xd−r−1 ∩ (X,Y ))≤q

(σ∂
d−r)≤q **❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯

φ∂
d−r

��

Xd−r \Xd−r−1

∂TXd−r \Xd−r−1 ∩ (X,Y )

σ∂
d−r

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

is compatible with the trivialization if the following conditions hold.
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1. Given a connected component Sd−r of Xd−r \ Xd−r−1, if Ld−r =
(LXd−r, L

Y
d−r) denotes the fibre of the link bundle of (X,Y ) over Sd−r

and

(σ∂d−r)
−1(Sd−r) ∼= Ld−r × Sd−r

is the isomorphism induced by the system of trivializations, then there
exists a pair of spaces (Ld−r)≤q := ((LXd−r)≤q, (L

Y
d−r)≤q) such that the

group Hi((L
X
d−r)≤q, (L

Y
d−r)≤q;Q) vanishes if i > q, we have an isomor-

phism

(σ∂d−r)
−1
≤q(Sd−r)

∼= (Ld−r)≤q × Sd−r

and, under these identifications, ((σ∂d−r)≤q)|(Ld−r)≤q×Sd−r
is the canon-

ical projection and (φ∂d−r)|(Ld−r)≤q×Sd−r
= (φ1, IdSd−r

) where φ1 :
(Ld−r)≤q → Ld−r is a morphism such that

Hi(φ1) : Hi((L
X
d−r)≤q, (L

Y
d−r)≤q;Q)→ Hi(L

X
d−r, L

Y
d−r;Q)

is an isomorphism if i ≤ q.

2. Given r′ > r and a connected component Sd−r′ of Xd−r′ \Xd−r′−1 such
that

(σ∂d−r′)
−1(Sd−r′) ∩ Sd−r 6= ∅,

let L
Sd−r

d−r′ and L
σ−1
d−r

(Sd−r)

d−r′ denote the fibres of the link bundles of Sd−r
and σ−1

d−r(Sd−r) over Sd−r′ respectively. Moreover, let

γ : c(LXd−r)× L
Sd−r

d−r′ × Sd−r′
∼= L

σ−1
d−r

(Sd−r)

d−r′ × Sd−r′

be the isomorphism defined in Equation (1), in the discussion preceeding
Definition 3.11. Then, the image of the composition

c((LXd−r)≤q)× L
Sd−r

d−r′ × Sd−r′
(c(φ1),Id) // c(LXd−r)× L

Sd−r

d−r′ × Sd−r′

γ

��

L
σ−1
d−r

(Sd−r)

d−r′ × Sd−r′

is equal to A× Sd−r′ for some subset A ⊂ L
σ−1
d−r

(Sd−r)

d−r′ .

Remark 3.22. If the conical structure is trivial (see Definition 3.13), the con-
dition (1) of the previous definition implies the condition (2).

Remark 3.23. If a fibrewise rational q-homology truncation of σ∂d−r is compat-
ible with the trivialization, then it is also compatible with the conical structure.
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The initial step of the induction.
Let X be a topological pseudomanifold such that the pair (X,Xd−2) has a
conical structure with respect to the stratification, we consider the open neigh-
bourhoods TXd−r fixed in Remark 3.14.
Let m ≥ 2 be the minimum such that Xd−m \Xd−m−1 6= ∅. If the fibration

σ∂d−m : ∂TXd−m \Xd−m−1 → Xd−m \Xd−m−1

predicted in Definition 3.5 does not admit a fibrewise rational q̄(m)-homology
truncation, then the intersection space does not exist. Otherwise we choose a
fibrewise rational q̄(m)-homology truncation compatible with the conical struc-
ture (see Proposition 3.20)

(∂TXd−m \Xd−m−1)≤q̄(m)

(σ∂
d−m)≤q̄(m) **❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚

φ∂
d−m

��

Xd−m \Xd−m−1

∂TXd−m \Xd−m−1

σ∂
d−m

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(2)

We construct a new space X ′
m, a homotopy equivalence πm : X ′

m → X with
contractible fibres and a subspace I p̄mX →֒ X ′

m as follows.
Define the map

(σd−m)≤q̄(m) : cyl((σ
∂
d−m)≤q̄(m))→ Xd−m \Xd−m−1

to be the fibrewise cone of the fibration (σ∂d−m)≤q̄(m) over Xd−m \Xd−m−1. By
property (2) of Definition 3.5 there exists a fibre bundle morphism

φd−m : cyl((σ∂d−m)≤q̄(m))→ TXd−m \Xd−m−1

over the base Xd−m \Xd−m−1 which preserves the vertex sections. Let

θd−m : cyl((σ∂d−m)≤q̄(m))→ X \Xd−m−1

be the composition of the fibre bundle morphism φd−m with the natural
inclusion of the closed subset TXd−m \ Xd−m−1 into X \ Xd−m−1. Let
cyl(θd−m) be the mapping cylinder of θd−m. It is by definition the union
cyl((σ∂d−m)≤q̄(m))× [0, 1]

∐
(X \Xd−m−1) under the usual equivalence relation.

Denote by
sd−m : Xd−m \Xd−m−1 → cyl((σ∂d−m)≤q̄(m))

the vertex section. We define Zm to be the result of quotienting cyl(θd−m)
by the equivalence relation which identifies, for any x ∈ Xd−m \Xd−m−1, the
subspace sd−m(x) × [0, 1] to a point.
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In order to follow in an easier way our further constructions, observe at this
point that the mapping cylinder cyl(φ∂d−m) of the vertical map φ∂d−m of dia-
gram (2) above is a subspace both of cyl(θd−m) and of Zm.

The following figures show cyl(θd−m) and Zm.

Figure 6: cyl(θd−m)
Figure 7: Zm

The equivalence relation collapses the vertical line over the origin of the hori-
zontal plane in Figure 6, therefore the yellow line in Figure 7 becomes diagonal.

We have a natural projection map πm : Zm → X\Xd−m−1 which is a homotopy
equivalence whose fibres are contractible and has a natural section denoted by
αm. αm is a closed inclusion of X \Xd−m−1 into Zm. In the previous figure,
πm is the projection onto the horizontal plane and αm is the inclusion of the
horizontal plane in the rest of the picture.

DefineX ′
m as the set Zm∪Xd−m−1. The projection map extends to a projection

πm : X ′
m → X

Consider in X ′
m the topology spanned by all the open subsets of Zm and the

collection of subsets of the form π−1
m (U) for any open subset U of X .

This projection is also a homotopy equivalence whose fibres are contractible
and such that the natural section αm extends to it giving a closed inclusion
of X into X ′

m.

Define the step m intersection space I p̄mX to be the subspace of X ′
m given by

I p̄mX := cyl((σ∂d−m)≤q̄(m))× {0} ∪ cyl(φ
∂
d−m) ∪ (X \ TXd−m),

with the restricted topology.

The following figure shows I p̄mX .
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Figure 8

Remark 3.24. Note that we have the equality cyl(φ∂d−m) = π−1
m (∂TXd−m \

Xd−m−1).

With the above definitions we have the following chains of inclusions

X ′
m ⊃ X ⊃ Xd−m ⊃ ... ⊃ X0,

X ′
m ⊃ I

p̄
mX ⊃ Xd−m ⊃ ... ⊃ X0,

where X is embedded in X ′
m via the section αm.

An immediate consequence of our construction is

Lemma 3.25. The pairs (X ′
m, Xd−m) and (I p̄mX,Xd−m) have a conical struc-

ture with respect to the stratified subspace Xd−m−1 ⊃ ... ⊃ X0, given by the fol-
lowing open neighbourhoods of Xd−r \Xd−r−1: π

−1
m (TXd−r) is a neighbourhood

in X ′
m \Xd−r−1 and π−1

m (TXd−r)∩ I p̄mX is a neighbourhood in I p̄mX \Xd−r−1.

The inductive step.
At this point we are ready to set up the inductive step of the construction of
intersection spaces. The inductive step is different in nature to the initial step
in the following sense. The necessary condition to be able to carry out the initial
step is that a link fibration admits a fibrewise rational q-homology truncation.
In the inductive step, this condition is replaced by the condition that a fibration
of link pairs admits a fibrewise rational q-homology truncation. The smaller
space in the pair is constructed by iterated modifications of Xd−2 = Xd−m.
Define

I p̄m(Xd−2) := Xd−2.

We assume by induction that, for k ≥ m, we have constructed

(i) a space X ′
k and a projection

πk : X ′
k → X

which is a homotopy equivalence with contractible fibres, together with
a section αk providing a closed inclusion of X into X ′

k.
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(ii) subspaces I p̄k (Xd−2) ⊂ I p̄kX ⊂ X ′
k such that, embedding X into X ′

k via
αk, we have the topological pseudomanifold

X0 ⊂ X1 ⊂ ... ⊂ Xd−k−1

embedded into I p̄k (Xd−2),

(iii) the pairs (X ′
k, I

p̄
kX), (I p̄kX, I

p̄
k (Xd−2)) have respective conical structures

with respect to the stratified subspace described in the previous point.
The open neighbourhoods of Xd−r\Xd−r−1 appearing in these structures
are π−1

k (TXd−r) in X
′
k \Xd−k−1 and π

−1
k (TXd−r)∩I

p̄
kX in I p̄kX \Xd−k−1

respectively.

If Xd−k−1 \Xd−k−2 is empty we define X ′
k+1 := X ′

k, πk+1 := π′
k, αk+1 := αk,

I p̄k+1X := I p̄kX , and I p̄k+1(Xd−2) := I p̄k (Xd−2). It is clear that the required
conditions are satisfied.
If Xd−k−1 \Xd−k−2 is not empty, since the pair (I p̄kX, I

p̄
k (Xd−2)) has a conical

structure with respect to the stratified subspace

X0 ⊂ X1 ⊂ ... ⊂ Xd−k−1,

we have a locally trivial fibration of pairs

σ∂d−k−1 : (∂π−1
k (TXd−k−1) \Xd−k−2) ∩ (I p̄kX, I

p̄
k (Xd−2))→ Xd−k−1 \Xd−k−2.

If the fibration does not admit a fibrewise rational q̄(k+1)-homology truncation,
then the intersection space construction cannot be completed with the previous
choices.
Otherwise we choose a fibrewise rational q̄(k + 1)-homology truncation com-
patible with the conical structure (see Proposition 3.20)

((∂π−1
k (TXd−k−1) \Xd−k−2) ∩ (I p̄kX, I

p̄
k (Xd−2))≤q̄(k+1)

(σ∂
d−k−1)≤q̄(k+1) ++❳❳❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳

φ∂
d−k−1

��

Xd−k−1 \Xd−k−2

(∂π−1
k (TXd−k−1) \Xd−k−2) ∩ (I p̄kX, I

p̄
k (Xd−2))

σ∂
d−k−1

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

We construct now a homotopy equivalence πk+1 : X ′
k+1 → X with contractible

fibres and a pair of subspaces (I p̄k+1X, I
p̄
k+1(Xd−2)) →֒ X ′

k+1 as follows.
Let

(σd−k−2)≤q̄(k+1) : cyl((σ
∂
d−k−1)≤q̄(k+1))→ Xd−k−1 \Xd−k−2

be the fibrewise cone of the fibration of pairs (σ∂d−k−1)≤q̄(k+1) over Xd−k−1 \

Xd−k−2. Recall that, according with Definition 3.3, cyl((σ∂d−k−1)≤q̄(k+1)) is a
pair of spaces.
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By property (2) of Definition 3.5 there exists a morphism of pairs of fibre
bundles of pairs

φd−k−1 : cyl((σ∂d−k−1)≤q̄(k+1))→ (π−1
k (TXd−k−1)\Xd−k−2)∩ (I

p̄
kX, I

p̄
k(Xd−2))

over the base Xd−k−1 \Xd−k−2 which preserves the vertex sections.
Let

θd−k−1 : cyl((σ∂d−k−1)≤q̄(k+1))→ X ′
k \Xd−k−2

be the composition of the fibre bundle morphism φd−k−1 with the natural
inclusion

(π−1
k (TXd−k−1) \Xd−k−2) ∩ (I p̄kX, I

p̄
k (Xd−2)) →֒ X ′

k \Xd−k−2.

Let cyl(θd−k−1) be the mapping cylinder of θd−k−1. It is by definition
the union of the pair cyl((σ∂d−k−1)≤q̄(k+1)) × [0, 1] with the pair (X ′

k \
Xd−k−2, Im(φd−k−1)2) with the usual equivalence relation (where (φd−k−1)2
denotes the second component of the fibre bundle of pairs φd−k−1).
Denote by

sd−k−1 : Xd−k−1 \Xd−k−2 → cyl((σ∂d−k−1)≤q̄(k+1))

the vertex section. We define Zk+1 to be the pair of spaces which results of
quotienting cyl(θd−k−1) by the equivalence relation which identifies, for any
x ∈ Xd−k−1 \Xd−k−2, the subspace sd−k−1(x) × [0, 1] to a point.
We denote the spaces forming the pair Zk+1 by Zk+1 = (Z1

k+1, Z
2
k+1). We have

a natural projection map ρk+1 : Z1
k+1 → X ′

k \ Xd−k−2 which is a homotopy
equivalence whose fibres are contractible, and has a natural section denoted by
βk+1. The composition

πk+1 := πk|X′
k
\Xd−k−2

◦ ρk+1 : Z1
k+1 → X \Xd−k−2

is a homotopy equivalence with contractible fibres, and has a section αk+1 :=
βk+1 ◦ αk|X\Xd−k−2

providing a closed inclusion of X \Xd−k−2 into Z1
k+1.

Define X ′
k+1 as the set Z1

k+1 ∪ Xd−k−2. The projection maps ρk+1 and πk+1

extends to projections
ρk+1 : X ′

k+1 → X ′
k (3)

πk+1 : X ′
k+1 → X. (4)

Consider the topology in X ′
k+1 spanned by the all the open subsets of Zk+1

and the collection of subsets of the form π−1
k+1(U) for any open subset U of X .

With this topology the projections are also homotopy equivalences whose fibres
are contractible, and such that the natural sections βk+1 and αk+1 extend to
them as closed inclusions.
Define the step k+1 intersection space pair to be the pair of subspaces of X ′

k+1

given by

(I p̄k+1X, I
p̄
k+1(Xd−2)) := cyl((σ∂d−k−1)≤q̄(k+1))× {0}∪
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∪cyl(φ∂d−k−1) ∪ (I p̄kX, I
p̄
k (Xd−2)) \ π

−1
k (TXd−k−1),

with the restricted topology.

Remark 3.26. Note that we have the equality cyl(φ∂d−k−1) = π−1
k+1(∂TXd−k−1\

Xd−k−2).

With the definitions above, and using that the homology truncation is compat-
ible with the conical structure, it is easy to check that conditions (i)-(iii) are
satisfied replacing k by k + 1 and the induction step is complete.

Definition 3.27. Given a topological pseudomanifold Xd ⊃ ... ⊃ X0 such that
the pair (Xd, Xd−2) has a conical structure with respect to the stratification (see
Definition 3.21 and Remark 3.14), we say that it has an intersection space pair
if there exist successive choices of suitable fibrewise homology truncations so
that the construction above can be carried up to k = d. In that case the pair

(I p̄X, I p̄(Xd−2)) = (I p̄dX, I
p̄
d(Xd−2))

is called an intersection space pair associated with the stratification.

Remark 3.28. Note that I p̄X and I p̄(Xd−2) are not the intersection spaces of
X and Xd−2 respectively. Moreover, the absolute cohomology of these spaces is
never to be considered, only the relative homology of the pair is relevant for the
paper.

Definition 3.29. We denote X ′ := X ′
d. The homotopy model of X is the

homotopy equivalence πd which we denote π : X ′ → X. The section αd is
denoted by α : X → X ′ and provides a closed inclusion of X into X ′.

Remark 3.30. If the intersection space pair exists it does not have to be unique
up to homotopy. The different choices of fibrewise homology truncations may
yield different choices of intersection spaces. The construction of intersection
spaces follows the scheme of obstruction theory in algebraic topology: previous
choices of fibrewise homology truncation may affect the possibility of finishing
the construction in the subsequent steps.

3.3 Intersection space pairs for pseudomanifolds having trivial
conical structures

Let X be a topological pseudomanifold with a trivial conical structure (see
Definition 3.13). Fix a compatible system of trivializations (see Definitions 3.11
and 3.12). We carry out the inductive construction of the intersection space
pair as above, but we add the following property to the properties (i)-(iii) which
are checked along the induction:

(iv) the conical structures of the pairs (X ′
k, I

p̄
kX), (I p̄kX, I

p̄
k (Xd−2)) with re-

spect to
X0 ⊂ X1 ⊂ ... ⊂ Xd−k−1

are trivial, and a compatible system of trivializations is inherited from
the inductive construction.
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At the initial step of the construction we have a topological pseudomanifold

X ⊃ Xd−m ⊃ ... ⊃ X0

with a trivial conical structure and a compatible set of trivializations (as before
the codimension of the first non-open stratum is m).
The compatible system of trivializations gives us a fixed trivialization of the
fibration

σ∂d−m : ∂TXd−m \Xd−m−1 → Xd−m \Xd−m−1.

Choose a rational q̄(m)-homology truncation of the fibre. This is always possi-
ble and elementary. Now, using the trivialization, the rational q̄(m)-homology
truncation of the fibre propagates to a fibrewise q̄(m)-homology truncation of
the fibration above. This is the truncation chosen at the initial step.
Now, using the compatibility of our system of trivializations, it is easy to show
that the pairs (X ′

k, I
p̄
mX), (I p̄mX, I

p̄
m(Xd−2)) satisfy the required properties (i)-

(iv). The compatible systems of trivializations required in property (iv) are
inherited, by construction, by the compatible system of trivializations used at
the beginning.
The inductive step of the construction is carried out in the same way: the fixed
trivializations propagate to rational homology truncations of the corresponding
fibrations of pairs of links.
We have proven:

Theorem 3.31. If X is a topological pseudomanifold with a trivial conical
structure (see Definition 3.13,) then there exists an intersection space pair as-
sociated with it for every perversity.

Corollary 3.32. Let X be a toric variety, endowed with an stratification such
that each stratum is an orbit by the torus action. Then, X has an intersection
space pair for every perversity.

Proof. The proof can be derived easily using the torus action to construct a
compatible system of trivializations. A fully detailed proof is lengthy, and
will appear in a forthcoming paper of T. Essig and the second author, where
Poincaré Duality for intersection spaces associated with toric varieties is proved.

4 A sequence of Intersection Space pairs

Our aim is to associate with any choice of intersection space pair, a constructible
complex on the original topological pseudomanifoldX , whose hypercohomology
coincides with the hypercohomology of the intersection space I p̄X . In order to
do so, we define an increasing sequence of modified intersection space pairs, all
of them included in the homotopy model X ′. We provide precise definitions of
the sequence, but leave much of the straightforward checking to the reader.
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4.1 Systems of neighborhoods

Given a topological pseudomanifold

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅,

such that the pair (X,Xd−2) has a conical structure with respect to the strat-
ification

Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

(see Remark 3.14), we denote the relevant neighbourhoods by TXd−r for r
varying.
Property (2) of Definition 3.5 states that the fibration σd−r is the fibrewise
cone of the fibration σ∂d−r over the base Xd−r \Xd−r−1. This means precisely

that TXd−r \Xd−r−1 is equal to the product

∂TXd−r \Xd−r−1 × [0, 1],

modulo the equivalence relation which identifies (x, 1) and (y, 1) if σ∂d−r(x)

equals σ∂d−r(y).
For any r ∈ 2, ..., d and any n ∈ N we define the open neighborhood T nXd−r

to be the quotient of

∂TXd−r \Xd−r−1 × (1− 1/(n+ 1), 1]

under the same equivalence relation.
The open subsets T nXd−r for n varying, form a system of tubular neighbor-
hoods of Xd−r \ Xd−r−1 in X \ Xd−r−1, whose intersection is the stratum
Xd−r \ Xd−r−1. Moreover, for any fixed n the collection of neighborhoods
T nXd−r, for r varying, give a conical structure to (X,Xd−2) with respect to
the topological pseudomanifold Xd−2 ⊃ ... ⊃ X0.

4.2 The sequence of intersection space pairs

Suppose that there exists successive choices of suitable fibrewise homology trun-
cations so that the construction of intersection space pairs described in the
previous section can be carried up to k = d. Fix such a choice.
Fix n ∈ N. Following the inductive construction of the previous section we
produce a sequence of pairs

(I p̄,nk X, I p̄,nk (Xd−2))

for k = 2, ..., r as follows.
Let m be the minimum such that Xd−m \Xd−m−1 6= ∅. Define

Kn
m(X) := π−1

m (TXd−m \ T
nXd−m) ⊂ X

′
m,

I p̄,nm (X) := I p̄m(X) ∪Kn
m(X),

Cnm(Xd−2) := ∅,

I p̄,nm (Xd−2) := I p̄m(Xd−2) = Xd−2.
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Remark 4.1. Note that π−1
m ((TXd−m \ T nXd−m) \Xd−m−1) ∼= cyl(φ∂d−m) ×

[0, 1− 1/(n+ 1)] (see Remark 3.24).

The following figure shows the previous modification in Figure 8. Kn
m(X) is

the union of blue set and brown set.

Figure 9

The following figure shows TXd−m \ T nXd−m in more dimensions than in the
previous figure. Kn

m(X) is the preimage of the blue set by the morphism πm.

Figure 10

Assume that Kn
k (X), Cnk (Xd−2), I

p̄,n
k (X) and I p̄,nk (Xd−2) have been defined.

Recall that ρk+1 is the projection defined in Equation (3). Define

Kn
k+1(X) := ρ−1

k+1

(
((I p̄kX ∩ π

−1
k (TXd−(k+1))) \ π

−1
k (T nXd−(k+1)))∪

∪(Kn
k (X) \ π−1

k (T nXd−(k+1)))
)
,

I p̄,nk+1X := I p̄k+1X ∪K
n
k+1(X),

Cnk+1(Xd−2) := ρ−1
k+1

(
((I p̄k (Xd−2) ∩ π

−1
k (TXd−(k+1))) \ π

−1
k (T nXd−(k+1)))∪
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∪(Cnk (Xd−2) \ π
−1
k (T nXd−(k+1)))

)
,

I p̄,nk+1(Xd−2) := I p̄k+1(Xd−2) ∪ C
n
k+1(Xd−2).

The following figure illustrates the second induction step. Recall that the codi-
mension of the biggest non-open stratum is m. The figure shows (TXd−m \
T nXd−m) \ T nXd−m−1 in blue and green and (TXd−m−1 \ T nXd−m−1) \
(TXd−m \ T nXd−m) in yellow. Kn

m+1(X) is the union of

• the preimage of the blue and green set by πm+1

• the preimage of the yellow set by πm+1 intersected with the preimage of
I p̄mX by ρm+1

Cnm+1(Xd−2) is the union of

• the preimage of the blue and green set by πm+1

• the preimage of the yellow set by πm+1 intersected with the preimage of
I p̄m(Xd−2) by ρm+1

Figure 11

Iterate the construction until k = d and define

(I p̄,nX, I p̄,n(Xd−2)) := (I p̄,nd X, I p̄,nd (Xd−2)),

which is a pair of subsets of X ′.
Since the closed subsets Kn

k (X), Cnk (Xd−2) are increasingly larger when n in-
creases we have constructed a sequence of pairs of closed subsets

(I p̄X, I p̄(Xd−2)) ⊂ ... ⊂ (I p̄,nX, I p̄,n(Xd−2)) ⊂ (I p̄,n+1X, I p̄,n+1(Xd−2)) ⊂ ...

An easy inspection on the construction shows:

Proposition 4.2. The previous construction has the following properties.
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1. The inclusions I p̄,nX ⊂ I p̄,n+1X and I p̄,n(Xd−2) ⊂ I p̄,n+1(Xd−2) are
strong deformation retracts for any n ∈ N. If we denote the inclusions
by νnXd−2

: I p̄,n(Xd−2) → I p̄,nX, inX : I p̄,nX → I p̄,n+1X and inXd−2
:

I p̄,n(Xd−2) → I p̄,n+1(Xd−2) and the retractions by rnX : I p̄,n+1X →
I p̄,nX and rnXd−2

: I p̄,n+1(Xd−2) → I p̄,n(Xd−2), we have commutative
diagrams

I p̄,n(Xd−2)
νn

//

inXd−2

��

I p̄,nX

inX
��

I p̄,n+1(Xd−2)
νn+1

//

rnXd−2

II

I p̄,n+1X.

rnX

VV (5)

2. We have the equality I p̄,n(Xd−2) = I p̄,n+1(Xd−2) ∩ I p̄,n(X).

3. For any x ∈ X \Xd−2, there exists a small contractible neighbourhood Ux
of x in X and a natural number n0 such that, for every n > n0, π

−1(Ux)
is contained in I p̄,nX and π−1(Ux) ∩ I p̄,n(Xd−2) = ∅, where π is the
homotopy equivalence from the homotopy model (see 3.29).

4. For any x ∈ Xd−r \Xd−r−1, there exists a small contractible neighbour-
hood Ux of x in X and a natural number n0 such that, for any n > n0,
the diagram (5) restricts to the diagram

I p̄,n(Xd−2) ∩ π−1(Ux)
νn

//

inXd−2

��

I p̄,nX ∩ π−1(Ux)

inX
��

I p̄,n+1(Xd−2) ∩ π−1(Ux)
νn+1

//

rnXd−2

II

I p̄,n+1X ∩ π−1(Ux)

rnX

UU
(6)

and we have the equalities rnXd−2
(I p̄,n+1(Xd−2)∩π−1(Ux)) = I p̄,n(Xd−2)∩

π−1(Ux) and r
n
X(I p̄,n+1(X) ∩ π−1(Ux)) = I p̄,n(X) ∩ π−1(Ux).

Then, the inclusions

π−1(Ux) ∩ I
p̄,nX →֒ π−1(Ux) ∩ I

p̄,n+1X,

π−1(Ux) ∩ I
p̄,n(Xn−2) →֒ π−1(Ux) ∩ I

p̄,n+1(Xn−2)

are strong deformation retracts.

Proof. (Sketch) For any r, we have an equality

(TXd−r \ T
nXd−r) \Xd−r−1 = ∂TXd−r \Xd−r−1 × [0, 1− 1/(n+ 1)].

So, there are canonical retractions TXd−r \ T n+1Xd−r → TXd−r \ T nXd−r.
These retractions induce retractions Kn+1

r (X) → Kn
r (X) and Cn+1

r (Xd−2) →
Cnr (Xd−2) which produce the morphisms rnX and rnXd−2

respectively.
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Let x ∈ X \ Xd−2. A small ball Ux around of x verifies property (3) if there
exists a natural number n0 such that Ux does not intersect T n0Xd−r for any
r. Moreover, this number n0 exists if and only if Ux ∩Xd−2 is empty.
Let x ∈ Xd−r \Xd−r−1. A small neighbourhood of x, Ux, verifying property
(4) can be constructed as follows: let Vx be a ball around x in the stratum
Xd−r \Xd−r−1. Take Vx small enough so that there exists a natural number n0

such that Vx does not intersect T n0Xd−k for any k > r. Consider the retraction
σd−r appearing in Definition 3.5, (1). Define

Ux := σ−1
d−r(Vx) ∩ T

n0−1Xd−r.

The following figure shows Ux where x ∈ Xd−m \Xd−m−1 in Figure 11.

Figure 12

Definition 4.3. Let x be any point of X. If x ∈ X \ Xd−2, a principal
neighbourhood of x is a small neighbourhood which verifies Property (3) of
Proposition 4.2. If x ∈ Xd−2, a principal neighbourhood of x is a small
neighbourhood which verifies Property (4) of Proposition 4.2.

Definition 4.4. Let x ∈ Xd−r \Xd−r−1. A carved principal neighbourhood of
x is an open subset U∗

x equal to Ux\Xd−r where Ux is a principal neighbourhood
of x.

Analogously to Property (4) of Proposition 4.2, we have

Proposition 4.5. If U∗
x is a carved principal neighbourhood of x ∈ Xd−r \

Xd−r−1, there exists n0 ∈ N such that, for every n > n0, the diagram (5)
restricts to the diagram

I p̄,n(Xd−2) ∩ π−1(U∗
x)

νn

//

inXd−2

��

I p̄,nX ∩ π−1(U∗
x)

inX

��
I p̄,n+1(Xd−2) ∩ π−1(U∗

x)
νn+1

//

rnXd−2

II

I p̄,n+1X ∩ π−1(U∗
x)

rnX

UU
. (7)
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For the next propositions recall that σ∂d−r is the fibration of Definition 3.5, (2).

Proposition 4.6. If Ux is a principal neighbourhood of x ∈ Xd−r \ Xd−r−1

for any r > 0 and n ∈ N big enough, the cohomology group

Hi(I p̄,nX ∩ π−1(Ux), I
p̄,nXd−2 ∩ π

−1(Ux);Q)

is 0 if i ≤ q̄(r) and isomorphic to the i-th cohomology group of the pair
(σ∂d−r)

−1(x) ⊂ (I p̄r−1X, I
p̄
r−1(Xd−2)) if i > q̄(r).

Proof. Sketch of the proof. The pair (I p̄,nX ∩ π−1(Ux), I
p̄,nXd−2 ∩ π−1(Ux)) is

homotopy equivalent to the pair (I p̄X ∩ σ−1
d−r(Vx), I

p̄Xd−2 ∩ σ
−1
d−r(Vx)) where

Vx is a small ball around x in the stratum Xd−r \Xd−r−1. With the notation
of section 3, this space is equal to

cyl(((σ∂d−r)≤q̄(r))|(σ∂
d−r

)−1(Vx))× {0} ∪ cyl((φ
∂
d−r)|(σ∂

d−r
)−1(Vx))∪

∪(π−1((σ∂d−r)
−1(Vx)) ∩ (I p̄r−1X, I

p̄
r−1(Xd−2))),

which has the cohomology type of π−1((σ∂d−r)
−1(Vx))∩ (I

p̄
r−1X, I

p̄
r−1(Xd−2)) ∼=

π−1((σ∂d−r)
−1(x)) ∩ (I p̄r−1X, I

p̄
r−1(Xd−2)) except for the first q(r) cohomol-

ogy groups which vanish by putting in cyl(((σ∂d−r)≤q̄(r))|(σ∂
d−r

)−1(Vx)) × {0} ∪

cyl((φ∂d−r)|(σ∂
d−r

)−1(Vx)).

Proposition 4.7. If U∗
x is a carved principal neighbourhood of x ∈ Xd−r \

Xd−r−1 for any r > 0 and n ∈ N big enough, the cohomology group

Hi(I p̄,nX ∩ π−1(U∗
x), I

p̄,nXd−2 ∩ π
−1(U∗

x);Q)

is isomorphic to the i-th cohomology group of the pair (σ∂d−r)
−1(x) ⊂

(I p̄r−1X, I
p̄
r−1(Xd−2)) for every i ∈ Z.

5 Sheafification

5.1 Sheaf of cubical singular cochains

In this section, every topological space is hereditaly paracompact and locally
contractible. In particular, the topological pseudomanifold and the intersection
spaces of the previous section verify these properties.
In order to produce constructible complexes whose hypercohomology computes
the cohomology of intersection space pairs we use sheaves of singular cohomol-
ogy cochains. For technical reasons cubical cochains, as developed by Massey
in [17, Chapters 7 and 12], adapt best to our construction. Here we sketch
very briefly the main points we need; the reader should check [17] for complete
definitions and proofs.
We denote by (C•(X,Q), ∂) the complex of cubical chains of a space X . The
group Ci(X,Q) is defined to be the quotient

Ci(X,Q) := Qi(X,Q)/Di(X,Q),
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where Qi(X,Q) is the vector space spanned by maps from the i-cube to X
and Di(X,Q) is the subspace of degenerate maps (maps which are constant in
one direction of the cube). The differential ∂ is defined in the usual way. The
functor given by the homology of the complex (C•(�,Q), ∂) defines a homology
theory with coefficients in Q.
Let (C•(X,Q), δ) be the complex of cubical cochains ofX . It is by definition the
dual of (C•(X,Q), ∂), and hence Ci(X,Q) is the subspace ofHom(Qi(X,Q),Q)
formed by elements vanishing at Di(X,Q). The functor given by the cohomol-
ogy of the complex (C•(�,Q), ∂) defines a cohomology theory with coefficients
in Q.
Let f : X → Y be a continuous map. We denote by

f# i : Ci(X,Q)→ Ci(Y,Q),

f# i : Ci(Y,Q)→ Ci(X,Q)

the associated transformations of complexes of cubical chains and cochains.
They form morphisms of complexes

f# : (C•(X,Q), ∂)→ (C•(Y,Q), ∂),

f# : (C•(Y,Q), δ)→ (C•(X,Q), δ).

Let f, g : X → X two continuous maps. If f and g are homotopic, then f#
and g# are homotopic morphisms of complexes, and the same happens for f#

and g#. We need for later use an explicit form of a homotopy of complexes
between f# and g#. Let

ρ : Ci(X,Q)→ Ci+1(I ×X,Q)

be the morphism such that, if σi is a singular i-cube in X , ρ(σi) = IdI × σi
(the homomorphism ρ takes degenerate cubical chains to degenerate cubical
chains). Let H : I ×X → Y be a homotopy between f and g, that is, H0 = f
and H1 = g. A homotopy between the morphism of complexes f# and g# is
given by H# ◦ ρ. The dual morphism of H# ◦ ρ is an homotopy between f#

and g#.

Lemma 5.1. Let h : Z → X be a continuous map. If (Ht)|Im(h) is independent
of t ∈ I, then for every σi ∈ Qi(Z,Q), H# ◦ ρ ◦ h#(σi) is degenerate.

Now we produce a sheafification of cubical cochains. This is an adaptation of
the sheafification of singular chains appearing in [20].

Definition 5.2. For every i ∈ Z≥0, let C
i be the presheaf of vector spaces

U ///o/o/o Ci(U,Q)

where the restriction morphisms are the obvious ones.
The sheaf of cubical singular i-cochains CiX is defined to be the sheafification
of Ci.
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For every i ∈ Z≥0, let C
i
◦(X) be the vector subspace of Ci(X) given by the set

of cochains ξi ∈ Ci(X) such that there exists an open covering {Uj}j∈J of X
such that ξi|Uj

= 0 for every j ∈ J . As in [20] one shows that the sheafification

is defined by
CiX(U) = Ci(U)/Ci◦(U).

At the level of sheaves we have functoriality as well. Let f : X → Y be a
continuous map. Then, f induces a morphism of complexes of sheaves on Y

f# : C•Y → f∗C
•
X .

As one expects, if X is contractible then

Hi(C•X(X)) ∼=

{
Q if i = 0
0 if i 6= 0

This implies that the complex of sheaves C•X is a resolution of the constant
sheaf QX .
Moreover, for every i ∈ Z≥0, the sheaf Ci is flabby. Indeed, it is enough to prove
the restriction morphisms of the presheaf, Ci(X,Q)→ Ci(U,Q), are surjective
for every open subset U ⊂ X . Given ξ ∈ Ci(U,Q), let ξX ∈ Ci(X,Q) be the
linear morphism Ci(X,Q)→ Q such that, for every singular i-cube σ in X , we
have

ξX(σ) =

{
ξ(σ) if Im(σ) ⊂ U
0 if Im(σ) 6⊂ U

Then, (ξX)|U = ξ.

Corollary 5.3. For every i ∈ Z≥0, the i-th cohomology group Hi(X,Q) is
isomorphic to i-th group of cohomology of the complex C•X(X).

5.2 The intersection space constructible complex

Let X be a topological pseudomanifold with stratification:

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

and a conical structure given by the stratification such that there exists a set
of choices so that the inductive construction of the intersection space of X is
not obstructed. Let X ′ be the homotopy model of X and π : X ′ → X the
homotopy equivalence. Let (I p̄, nX, I p̄, n(Xd−2)) with n ∈ N be the associated
sequence of intersection space pairs and

jn : I p̄, nX → X ′

µn : I p̄, n(Xd−2)→ X ′

the canonical inclusions.
In order to lighten the formulas appearing in this section we denote by Cn, •X

and Cn, •Xd−2
the complex of sheaves of cubical singular cochains in I p̄, nX and

I p̄, n(Xd−2) respectively.
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Proposition 5.4. For every n ∈ N, there exists a commutative diagram

jn+1
∗ Cn+1, •

X

νn+1#
//

i
n#
X

��

µn+1
∗ Cn+1, •

Xd−2

i
n#
Xd−2

��
jn∗ C

n, •
X

νn#
// µn∗C

n, •
Xd−2

(8)

where all the morphisms are surjective.

Proof. For every open subset U ⊂ X ′, the inclusions of Diagram (5) restrict to
a diagram

I p̄,n(Xd−2) ∩ U
νn

//

inXd−2

��

I p̄,nX ∩ U

inX
��

I p̄,n+1(Xd−2) ∩ U
νn+1

// I p̄,n+1X ∩ U

So, we have the following diagram between the cubical cochain groups:

Ci(I p̄,n+1X ∩ U,Q)
νn+1#

//

i
n#
X

��

Ci(I p̄,n+1(Xd−2) ∩ U,Q)

i
n#
Xd−2

��
Ci(I p̄,nX ∩ U,Q)

νn#
// Ci(I p̄,n(Xd−2) ∩ U,Q)

The morphisms of this diagram induce the morphisms of the proposition.
Moreover, these morphisms are surjective since every inclusion of topological
spaces induces a surjection between the corresponding cubical cochain groups.

Denote by Kn,• the kernel of νn#. There is a canonical morphism

in# : Kn+1,• → Kn,•.

Remark 5.5. For every i ∈ Z≥0 and every n ∈ N, the i-th rational cohomology
group of the pair (I p̄, nX, I p̄, n(Xd−2)) is isomorphic to i-th cohomology group
of the complex Kn,•.

Definition 5.6. Given a pair of natural numbers n1 < n2, we will define

in1,n2 := in1# ◦ ... ◦ in2−1# : Kn2,• → Kn1,•

Then, the complexes of sheaves {Kn, •}n∈N and the morphisms in1,n2 form an
inverse system and we can consider the inverse limit

lim
←−
n∈N

Kn, •,

which is a complex of sheaves.
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Lemma 5.7. (π∗ lim←−n∈N
Kn,•)X\Xd−2

is quasi-isomorphic to QX\Xd−2
.

Proof. Let x ∈ X \Xd−2. We have the following equalities:

(π∗ lim←−
n∈N

Kn, •)x = lim
−→

x∈Uopen

π∗(lim←−
n∈N

Kn, •)(U) = lim
−→

x∈Uopen

(lim
←−
n∈N

Kn, •)(π−1(U)) =

= lim−→
x∈Uopen

lim←−
n∈N

(Kn, •(π−1(U))).

Let Ux be a principal neighbourhood of x (see definition 4.3). There exists
n0 ∈ N such that, for every open subset U ⊂ Ux and for every n > n0, we have

π−1(U) ∩ I p̄,nX = π−1(U)

and
π−1(U) ∩ I p̄,n(Xd−2) = ∅

Consequently, Kn, •(π−1(U)) = jn∗ C
n, •
X (π−1(U)) = C•X′(π−1(U)) where CX′ is

the sheaf of singular i-cochains in X ′.
Moreover, for every n > n0, in# = in#X = IdC•

X′ (π
−1(U)). So,

lim
←−n∈N

(Kn, •(π−1(U))) = C•X′(π−1(U)).

Thus, we have shown that (π∗ lim←−n∈N
Kn, •)X\Xd−2

is quasi-isomorphic to

π∗Qπ−1(X\Xd−2), and the later sheaf is quasi-isomorphic to QX\Xd−2
since

π|π−1(X\Xd−2) is a homotopy equivalence.

We study now the cohomology of the complex π∗ lim←−n∈N
Kn, • over each of the

deeper strata of X and over the global sections. With this purpose, we study
the cohomology of π∗ lim←−n∈N

Kn, • in the principal and the carved principal

neighbourhoods (see definitions 4.3 and 4.4) and in the total space.

Proposition 5.8. Let U be equal to X or a principal neighbourhood or a carved
principal neighbourhood of some x ∈ Xd−k \Xd−(k+1). Then,

Hi(lim
←−
n∈N

(Kn, •(π−1(U)))) ∼= lim
←−
n∈N

Hi(Kn, •(π−1(U))).

Now, we need some preliminary work in order to prove Proposition 5.8.

Lemma 5.9. Let U be equal to X or a principal neighbourhood or a carved
principal neighbourhood of some x ∈ Xd−k \ Xd−(k+1). Then, there exists
n0 ∈ N such that if n > n0, there exists a morphism

rn#U : Kn, •(π−1(U))→ Kn+1, •(π−1(U))

such that in#(π−1(U))◦ rn#U = IdKn, •(π−1(U)) and r
n#
U ◦ i

n#(π−1(U)) is homo-
topic to the identity.
Moreover, there exists a homotopy hnU between rn#U ◦ in#(π−1(U)) and
IdKn+1, •(π−1(U)) such that in#(π−1(U)) ◦ hnU = 0.
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Proof. Let U be a principal neighbourhood and let n0 be the natural number
of Proposition 4.2 (4). For every n > n0, the diagram (6) induces a diagram

jn+1
∗ Cn+1, •

X (π−1(U))
νn+1#

//

i
n#
X

��

µn+1
∗ Cn+1, •

Xd−2
(π−1(U))

i
n#
Xd−2

��
jn∗ C

n, •
X (π−1(U))

νn#
//

r
n#
X

JJ

µn∗C
n, •
Xd−2

(π−1(U))

r
n#
Xd−2

TT

where in#Xd−2
◦ rn#Xd−2

= Idµn
∗C

n, •
Xd−2

(π−1(U)), i
n#
X ◦ rn#X = Idjn∗ Cn,•

X
(π−1(U)) and

rn#Xd−2
◦ in#Xd−2

and rn#X ◦ in#X are homotopic to the identity.
Then, we obtain a canonical morphism

rn#U : Kn, •(π−1(U))→ Kn+1, •(π−1(U))

such that in#(π−1(U))◦ rn#U = IdKn, •(π−1(U)) and r
n#
U ◦ i

n#(π−1(U)) is homo-
topic to the identity.
Consider the diagram (6) of Proposition 4.2 (4). There exist homotopies

Hn
X : π−1(U) ∩ I p̄,n+1X × I → π−1(U) ∩ I p̄,n+1X

between inX ◦ r
n
X and Idπ−1(U)∩Ip̄,n+1X and

Hn
Xd−2

: π−1(U) ∩ I p̄,n+1(Xd−2)× I → π−1(U) ∩ I p̄,n+1(Xd−2)

between inXd−2
◦ rnXd−2

and Idπ−1(U)∩Ip̄,n+1(Xd−2). Moreover, we can suppose

that, for every t ∈ I, the restrictions of Hn
Xt and Hn

Xd−2t
to π−1(U) ∩ I p̄,nX

and π−1(U) ∩ I p̄,n(Xd−2) are the identity respectively.
Following the procedure explained in Section 5.1 the mapping Hn

X induces a

homotopy between in#X ◦ rn#X and Idjn+1
∗ Cn+1, •

X (π−1(U)). Moreover, applying

Lemma 5.1 we have that in#X ◦ hnX is equal to 0.

Similarly the mapping Hn
Xd−2

induce a homotopy hnXd−2
between in#Xd−2

◦ rn#Xd−2

and
Idµn+1

∗ Cn+1, •
Xd−2

(π−1(U)) such that in#Xd−2
◦ hnXd−2

is equal to 0.

So, there exists a homotopy hnU between in#(π−1(U))◦rn#U and IdKn+1,•(π−1(U))

such that in#(π−1(U)) ◦ hnU = 0.
If U is equal to X or a carved principal neighbourhood we can apply the same
method using the diagram (5) of Proposition 4.2 or the diagram of Proposi-
tion 4.5, respectively.

Remark 5.10. The diagram (5) of Proposition 4.2 is valid for every n ∈ N.
So, in the previous lemma, we can take n0 = 0 if U is the total space.

Remark 5.11. Note that the morphisms rn#U do not induce a morphism of
complexes of sheaves since they are not defined for every open subset.
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Definition 5.12. Given a pair of natural numbers n1 < n2 such that n0 < n1,
we define

rn1,n2

U := rn2−1#
U ◦ ... ◦ rn1#

U : Kn1, •(π−1(U))→ Kn2, •(π−1(U))

Remark 5.13. For every n > n0, the inclusions π−1(U) ∩ I p̄,nX →֒ π−1(U) ∩
I p̄,n+1X and π−1(U)∩ I p̄,nXd−2 →֒ π−1(U)∩ I p̄,n+1Xd−2 are homotopy equiv-

alences. So, in#X (π−1(U)) and in#Xd−2
(π−1(U)) are quasi-isomorphisms.

Then,

in#(π−1(U)) : Kn+1, •(π−1(U)))→ Kn, •(π−1(U)))

is also a quasi-isomorphism and we have an isomorphism

lim
←−n∈N

Hi(Kn, •(π−1(U))) // Hi(Kn0+1, •((π−1(U))))

{[ξin]}n∈N
// [ξin0+1]

Notation 5.14. For every open subset V ⊂ X ′, the elements of
Hi(lim
←−n∈N

Kn, •(V )) are equivalence classes of elements

{ξin}n∈N ∈ Ker(lim
←−
n∈N

∂i+1
n (V )) ⊂ lim

←−
n∈N

Kn, i(V )

which we are going to denote with [{ξin}n∈N].
In addition, given n ∈ N and an element ξin ∈ Ker(∂i+1

n (V )) ⊂ Kn, i(V ), we
are going to denote its equivalence class in Hi(Kn, •(V )) with [ξin].

Proof of Proposition 5.8. It is enough to prove that, if U is equal to X or a
principal neighbourhood or a carved principal neighbourhood of x, then the
morphism

Ker(lim
←−n∈N

∂i+1
n (π−1(U)))

α // lim
←−n∈N

Hi(Kn,•(π−1(U)))

{ξin}n∈N
// {[ξin]}n∈N

factorizes into a morphism

Hi(lim
←−n∈N

Kn,•(π−1(U)))
β // lim
←−n∈N

Hi(Kn,•(π−1(U)))

which is an isomorphism.
First, we prove α factorices. Let us consider an element {ξin}n∈N ∈
Im(lim←−n∈N

∂in(π
−1(U))). Then, there exists an element {δi−1

n }n∈N ∈

lim
←−n∈N

Kn,i−1(π−1(U)) such that

lim←−
n∈N

∂in(π
−1(U))({δi−1

n }n∈N) = {ξ
i
n}n∈N.
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So, for every n ∈ N, ∂in(π
−1(U))(δi−1

n ) = ξin. Consequently, α({ξin}n∈N) =
{[ξin]}n∈N = 0 and we conclude that the morphism factorizes.
Now, we prove that α and, consequently, β are surjective.
Because of Remark 5.13, it is enough to prove that, for every ele-
ment ξ ∈ Ker(∂i+1

n0+1((π
−1(U)))), there exists an element {ξin}n∈N ∈

Ker(lim
←−n∈N

∂i+1
n (π−1(U))) such that ξin0+1 = ξ.

Let us consider

ξin =






(in,n0+1(π−1(U)))(ξ) if n < n0 + 1
ξ if n = n0 + 1

rn0+1,n
U (ξ) if n > n0 + 1

Then, for every pair of natural numbers n1 < n2, we have the equality

((in1,n2)(π−1(U)))(ξin2
) = ξin1

.

Hence {ξin}n∈N belongs to lim
←−n∈N

Kn,i(π−1(U)).

Moreover

• we have the vanishing (∂i+1
n0+1(π

−1(U)))(ξ) = 0,

• for every pair of natural numbers n1 < n2 we have the equality

∂in1
◦ in1,n2 = in1,n2 ◦ ∂in2

and,

• if n1 > n0, we have the equality

∂in2
(π−1(U)) ◦ rn1,n2

U = rn1,n2

U ◦ ∂in1
(π−1(U)).

Consequently (∂i+1
n (π−1(U)))(ξin) = 0 for every n ∈ N, {ξin}n∈N belongs to

Ker(lim
←−n∈N

∂i+1
n (π−1(U))) and α and β are surjective.

Finally, we prove β is injective, that is, Ker(α) = Im(lim
←−n∈N

∂in(π
−1(U))).

Let {ξin}n∈N ∈ Ker(lim
←−n∈N

∂i+1
n )(π−1(U)) such that α({ξin}n∈N) = {[ξin]}n∈N =

0. Then, ξin0+1 ∈ Im(∂in0+1(π
−1(U))). So, there exists δ ∈ Kn0+1, i−1(π−1(U))

such that (∂in0+1(π
−1(U)))(δ) = ξin0+1.

For every n ∈ N, we define

δi−1
n =





(in,n0+1(π−1(U)))(δ) if n < n0 + 1
δ if n = n0 + 1

rn0+1,n
U (δ) if n > n0 + 1

Then, {δi−1
n }n∈N ∈ lim

←−n∈N
Kn, i−1(π−1(U)).

Let us denote ξ̃in := (∂in(π
−1(U)))(δi−1

n ) for every n ∈ N. Then we have

the equality (lim←−n∈N
∂in(π

−1(U)))({δi−1
n }n∈N) = {ξ̃in}n∈N and [{ξ̃in}n∈N] = 0 in

Hi(lim←−n∈N
Kn, •(π−1(U))).
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So, to prove β is injective, it is enough to prove the equality [{ξ̃in}n∈N] =
[{ξin}n∈N] in H

i(lim
←−n∈N

Kn, •(π−1(U))).

If n < n0 + 1, we have

ξ̃in = ∂in(π
−1(U))(δi−1

n ) = ∂in(π
−1(U))(in,n0+1(π−1(U)))(δ)) =

= in,n0+1(π−1(U))(∂in0+1(π
−1(U))(δ)) = in,n0+1(π−1(U))(ξin0+1) = ξin.

If n = n0 + 1, we have

ξ̃in0+1 = ∂in0+1(π
−1(U))(δ) = ξin0+1.

If n > n0 + 1, we have

ξ̃in = ∂in(π
−1(U))(δi−1

n ) = ∂in(π
−1(U))(rn0+1,n

U (δ)) =

= rn0+1,n
U (∂in0+1(π

−1(U))(δ)) = rn0+1,n
U (ξin0+1) =

= rn0+1,n
U (in0+1,n(π−1(U))(ξin)).

For every n > n0 +1, let hnU be the homotopy defined in Lemma 5.9. A simple
computation shows that, for every n > n0 + 1, we have the equality:

ξ̃in − ξ
i
n = ∂in(

n−1∑

k=n0+1

(rk,nU ◦ hk−1
U )(ξik) + hn−1

U (ξin)).

Let

ǫi−1
n =

{
0 if n ≤ n0 + 1∑n−1

k=n0+2(r
k,n
U ◦ hk−1

U )(ξik) + hn−1
U (ξin) if n > n0 + 1

Let us prove {ǫi−1
n }n∈N ∈ lim

←−n∈N
(Kn, i−1(π−1(U))).

Since, for every n > n0 + 1, in#(π−1(U)) ◦ hnU = 0 and in#(π−1(U)) ◦ rn#U =
IdKn, •(π−1(U)), if n1 > n0 + 1, we have the equality

in1,n2(π−1(U))(

n2−1∑

k=n0+2

(rk,n2

U ◦ hk−1)(ξik) + hn2−1
U (ξin2

)) =

=

n1−1∑

k=n0+2

(rk,n1

U ◦ hk−1
U )(ξik) + hn1−1

U (ξin1
),

and if n1 ≤ n0 + 1, we have

in1,n2(π−1(U))(

n2−1∑

k=n0+2

(rk,n2

U ◦ hk−1
U )(ξik) + hn2−1

U (ξin2
)) = 0.
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Then, {ǫi−1
n }n∈N belongs to lim

←−n∈N
(Kn, i−1(π−1(U))) and we have the equality

lim
←−
n∈N

∂i(π−1(U))({ǫi−1
n }n∈N) = {ξ̃in}n∈N − {ξ

i
n}n∈N.

Therefore, [{ξ̃in}n∈N] equals [{ξin}n∈N] in Hi(lim
←−n∈N

(Kn, i(π−1(U)))) and we

conclude.

Definition 5.15. Let us define IS := π∗ lim←−n∈N
Kn, •.

Theorem 5.16. The hypercohomology of IS is isomorphic to the cohomology
of the intersection space pair.

Proof. The sheaves Kn, i are flabby. Let U be any open subset in X ′. Every
section in Kn, i(U), ξ, is also a section of jn∗ C

n, i(U). Then, ξ is the equivalence
class of a singular cubical i-cochain ξ′ ∈ Ci(U ∩I p̄,nX,Q). We can extend ξ′ by
0 to get a singular cubical i-cochain ξ′Ip̄,nX ∈ C

i(I p̄,nX,Q), that is, for every
singular i-cube σ in I p̄,nX, we have

ξ′Ip̄,nX(σ) =

{
ξ′(σ) if Im(σ) ⊂ U
0 if Im(σ) 6⊂ U

The equivalence class of ξ′Ip̄,nX in the sheaf of singular cubical i-cochains is a
section ξX′ in jn∗ C

n, i(X ′). It is easy to check that ξX′ is contained in Kn, i(X ′)
since it is a extension by 0 of ξ.
Now, we prove lim

←−n∈N
Kn, i is also flabby. Let {ξn}n∈N be a section of

(lim
←−n∈N

Kn, i)(U) = lim
←−n∈N

(Kn, i(U)). Since Kn, i(U) is flabby for every natural

n, the sections ξn extend by 0 to sections ξX
′

n in Kn, i(X ′). It is easy to check
that in1,n2(X ′)(ξX

′

n2
) is equal to ξX

′

n1
for every pair of natural numbers n1 < n2.

So, {ξX
′

n }n∈N is a global section of lim←−n∈N
Kn, i.

Then, all the sheaves of the complex IS are flabby and, consequently, the
hypercohomology of IS is equal to the cohomology of the global sections of IS.
By Proposition 5.8, there is an isomorphism

Hi(Γ(X, IS)) ∼= lim
←−
n∈N

Hi(Γ(X ′,Kn •)).

Since the cohomology Hi(Γ(X ′,Kn •)) is the cohomology of the intersection
space pair for every n ∈ N, we conclude.

Now we prove a set of properties of the complex IS, in a similar vein as those
satisfied by intersection cohomology sheaves.

Definition 5.17. For k = 2, ..., d, we define Uk := X \Xd−k and we denote the
canonical inclusions with ik : Uk → Uk+1 and jk : Xd−k \Xd−(k+1) → Uk+1.

Theorem 5.18. The complex of sheaves IS satisfies the following properties.
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1. IS|U2
is quasi-isomorphic to QU2 .

2. The cohomology sheaves Hi(IS) are 0 if i /∈ {0, 1, ..., d}

3. For k = 2, ..., d, the cohomology sheaves Hi(j∗kIS|Uk+1
) are 0 if i ≤ q̄(k).

4. For k = 2, ..., d, the usual morphisms between the cohomology sheaves
Hi(j∗kIS|Uk+1

)→ Hi(j∗kik ∗IS|Uk
) are isomorphisms if i > q̄(k).

Proof. (1) is shown in lemma 5.7
Let x ∈ Xd−k \Xd−(k+1) for some k ∈ {2, 3, ..., d}. Given a complex of sheaves
we denote by Hi and Hi its i-th cohomology presheaf and sheaf respectively.
We have the obvious chain of equalities:

Hi(π∗ lim←−
n∈N

Kn, •)x = Hi(π∗ lim←−
n∈N

Kn, •)x = lim
−→

x∈Uopen

Hi((lim
←−
n∈N

Kn, •)(π−1(U))) =

= lim
−→

x∈Uopen

Hi(lim
←−
n∈N

(Kn, •(π−1(U)))).

Since the principal neighbourhoods form a system of neighborhoods for any
point, we can suppose every open subset U appearing in the previous formula
is a principal neighbourhood of x. Then, applying Proposition 5.8 we have

Hi(π∗ lim←−
n∈N

Kn, •)x = lim
−→

U principal
neighbourhood of x

lim
←−
n∈N

Hi((Kn, •(π−1(U)))).

So, applying proposition 4.6, Hi(π∗ lim←−n∈N
Kn, •)x is 0 if i ≤ q̄(k) and equal to

Hi((σ∂d−r)
−1(x);Q)

if i > q̄(k).
Hence, we have proven (2) and (3) of the theorem.
Moreover, applying again Proposition 5.8

Hi(j∗kik ∗IS|Uk
)x = lim

−→
U principal

neighbourhood of x

Hi(lim
←−
n∈N

π∗K
n, •(U \Xd−k)) =

= lim
−→

U principal
neighbourhood of x

lim
←−
n∈N

Hi(π∗K
n, •(U \Xd−k))

and, because of Proposition 4.7,

Hi(j∗kik ∗IS|Uk
)x = Hi((σ∂d−r)

−1(x);Q)

for every i ∈ Z, which concludes the proof.
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6 Axioms of intersection space complexes

From now on, we do not need to assume that our topological pseudomanifold
has a conical structure with respect to the stratification, like in Remark 3.14.
Let X be a topological pseudomanifold with the following stratification:

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅ (9)

Let Uk := X \Xd−k and let ik : Uk → Uk+1 and jk : Xd−k \Xd−k−1 → Uk+1

be the usual inclusions.
Let us denote by Db

cc(X) the bounded derived category of cohomologically
constructible sheaves of rational vector spaces on X with the previous strati-
fication. Fix a perversity p̄ and let us consider the following sets of properties
in this category:

1. We say that B• ∈ Db
cc(X) verifies [AX1]k for perversity p̄ if:

(a) B•
|U2

is quasi-isomorphic to QU2 ,

(b) the cohomology sheaf Hi(B•) is 0 if i /∈ {0, 1, ..., d},

(ck) Hi(j∗kB
•
|Uk+1

) is equal to 0 if i > p̄(k),

(dk) the natural morphism Hi(j∗kB
•
|Uk+1

)→ Hi(j∗k ik∗B
•
|Uk

) is an isomor-

phism if i ≤ p̄(k).

2. Let q̄ be the complementary perversity of p̄. We say that B• ∈ Db
cc(X)

verifies [AXS1]k for perversity p̄ if:

(a) B•
|U2

is quasi-isomorphic to QU2 ,

(b) the cohomology sheaf Hi(B•) is 0 if i /∈ {0, 1, ..., d},

(ck) Hi(j∗kB
•
|Uk+1

) is equal to 0 if i ≤ q̄(k),

(dk) the natural morphism Hi(j∗kB
•
|Uk+1

)→ Hi(j∗k ik∗B
•
|Uk

) is an isomor-

phism if i > q̄(k).

Remark 6.1. B• verifies [AX1]k for k = 2, ..., d if and only if B•[d] verifies the
axioms [AX1] of [15, section 3.3], that is, if B•[d] is the intersection cohomology
sheaf of X. So, we will denote an object of Db

cc(X) verifying [AX1]k for k =
2, ..., d by ICp̄[−d].

Definition 6.2. An intersection space complex of X with perversity p̄ and
stratification (9) is a complex of sheaves verifying [AXS1]k for k = 2, ..., d.
We denote by ISp̄ a complex of sheaves in X with these properties.

Remark 6.3. If the stratification of X induces a conical structure (see Defi-
nition 3.5) and there exists an intersection space pair of X with perversity p̄
in the sense of Definition 3.27, then there exists an intersection space complex
of X (see Theorem 5.18).
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In the sequel, we will need equivalent axioms to [AXS1]k. In the following
remark, we review the method of [15, section 3.4] to get equivalent axioms to
[AX1]k and [AXS1]k.

Remark 6.4. Using the long exact sequence of cohomology associated to the
distinguished triangle

j!kB
•
|Uk+1

→ j∗kB
•
|Uk+1

→ j∗kik∗B
•
|Uk

[1]
−→ ,

(ck) and (dk) of [AX1]k are equivalent to (ck) and(d′k) where (d′k) is the fol-
lowing property:

Hi(j!kB
•
|Uk+1

) = 0 if i ≤ p̄(k) + 1.

Given x ∈ Xd−k \Xd−k−1, let ux : {x} → Xd−k \Xd−k−1 and jx : {x} → X
be the canonical inclusions. Then, following [15] 3.4, page 103, we have

j!xB
• = u!xj

!
kB

•
|Uk+1

= u∗xj
!
kB

•
|Uk+1

[k − d].

So, (d′k) is equivalent to the following property (d′′k):
For every x ∈ Xd−k \ Xd−k−1, Hi(j!xB

•
|Uk+1

) = 0 if i ≤ p̄(k) + 1 + d − k =

d− q̄(k)− 1.
Now, we apply the same method to properties [AXS1]k. Using again the long
exact sequence of cohomology associated to

j!kB
•
|Uk+1

→ j∗kB
•
|Uk+1

→ j∗kik∗B
•
|Uk

[1]
−→,

we deduce (dk) of [AXS1]k is equivalent to (d1k) and(d2k) where (d1k)
and(d2k) are the following properties.

(d1k) H
i(j!kB

•
|Uk+1

) = 0 if i > q̄(k) + 1.

(d2k) The canonical morphism Hq̄(k)+1(j!kB
•
|Uk+1

) → Hq̄(k)+1(j∗kB
•
|Uk+1

) is

the morphism 0.

Moreover, using the property 1.13(15) of [15], these properties are equivalent
to:

(d1′k) For every x ∈ Xd−k\Xd−k−1, Hi(j!xB
•
|Uk+1

) = 0 if i > q̄(k)+1+d−k =

d− p̄(k)− 1.

(d2′k) For every x ∈ Xd−k \Xd−k−1, the canonical morphism

Hd−p̄(k)−1(j!xB
•
|Uk+1

)→ Hq̄(k)+1(j∗xB
•
|Uk+1

)

(given by property 1.13(15) of [15]) is the morphism 0.

Now, we recall useful definitions to compare the axioms [AX1]k with [AXS1]k.
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Definition 6.5. Let B• be a complex of sheaves in a topological space X and,
for every x ∈ X, let jx : {x} → X be the canonical inclusion. Then,

• The local support of B• in degree m is

{x ∈ X |Hm(j∗xB
•) 6= 0}

• The local cosupport of B• in degree m is

{x ∈ X |Hm(j!xB
•) 6= 0}

The properties (ck) of [AX1]k, (ck) of [AXS1]k and (d′k), (d1
′
k), (d2

′
k) of Re-

mark 6.4 can be defined in terms of support and cosupport.

Let us consider a complex stratified variety X . Then, the upper middle per-
versity and the lower middle perversity (see Definition 3.16) are equal over the
codimension of the strata of X .

Let m̄ be the middle perversity. The following table, taken from [11], illustrates
the conditions of support and cosupport for a complex of sheaves ICm̄[−d]
verifying [AX1]k with perversity m̄ for k = 2, ..., d.

degree

8 c c c c c
7 c c c
6 c c
5 c
4
3 ×
2 × ×
1 × × ×
0 × × × × ×

0 1 2 3 4

complex codimension
of the strata

The symbol c means the complex can have local cosupport at that place, while
the symbol × means the complex can have local support at that place.

The following tables illustrate the conditions of support and cosupport for an
intersection space complex ISm̄ with perversity m̄.
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degree

8 × × × ×
7 × × × ×
6 × × × ×
5 × × × ×
4 × × × ×∗

3 × × ×∗

2 × ×∗

1 ×∗

0 ×
0 1 2 3 4

complex codimension
of the strata

degree

8 c
7 c∗

6 c c∗

5 c c c∗

4 c c c c∗

3 c c c c
2 c c c c
1 c c c c
0 c c c c

0 1 2 3 4

complex codimension
of the strata

The symbol c means the complex can have local cosupport at that place, while
the symbol × means the complex can have local support at that place. More-
over, the symbol ∗ means the support and the cosupport must verify a special
condition given by (d2′k).
Note that in U2, (ISm̄)|U2

∼= (ICm̄[−d])|U2
∼= QU2 . However, in Xd−2, the

place at which ISm̄ can have support is exactly the place at which ICm̄[−d]
cannot have support and the place at which ISm̄ can have cosupport is exactly
the place at which ICm̄[−d] cannot have cosupport.

7 A derived category approach to intersection space complexes

In this section, we study necessary and sufficient conditions for the existence
of an intersection space complex of X with a perversity p̄. Unlike intersection
cohomology sheaves, intersection space complexes are not unique. We study
the space parametrizing the different choices of intersection space complexes
for a fixed perversity.

7.1 Homological algebra review

We need the following lemma, that should be well known, but we give a proof
for convenience of the reader.

Lemma 7.1. Let

A• f // B• g // C•

[1]

φ

ff

be a distinguished triangle in the category Db
cc(X).

The following four conditions are equivalent:

1. f admits a retract

2. g admits a section
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3. There is an isomorphism in the derived category γ : B• ∼= A• ⊕ C• such
that f = γ−1 ◦ iA and g = pC ◦ γ where iA : A• → A• ⊕C• is the natural
inclusion and pC : A• ⊕ C• → C• is the natural projection.

4. φ is the morphism 0.

Proof. First we prove that (1) implies (3). Let r be a retract of f . Then,
r ◦ f = IdA• . So, the morphism induced by f between the cohomology sheaves
Hi(f) : Hi(A•) → Hi(B•) is injective for every i ∈ Z. Hence, using the long
exact sequence of cohomology

...→ Hi−1(C•)
Hi−1(φ)
−−−−−→ Hi(A•)

Hi(f)
−−−−→ Hi(B•)

Hi(g)
−−−−→ Hi(C•)

Hi(φ)
−−−−→ Hi+1(A•)→ ...,

we deduce Hi(φ) = 0 for every i ∈ Z. Consequently, we have short exact
sequences

0→ Hi(A•)
Hi(f)
−−−−→ Hi(B•)

Hi(g)
−−−−→ Hi(C•)→ 0 (10)

Now, let us consider the morphism

γ =

(
r
g

)
: B• → A• ⊕ C•

The morphism induced by γ between the cohomology sheaves is

Hi(γ) =

(
Hi(r)
Hi(g)

)
: Hi(B•)→ Hi(A•)⊕Hi(C•),

which is an isomorphism, since Hi(r) is a retract of Hi(f) and (10) is exact.

Moreover, since f ◦ g = 0, we have γ ◦ f = iA and it is clear that pC ◦ γ = g.
So, we have proven (1) implies (3).

Now, we prove (2) implies (3). Let s be a section of g and let us consider the
morphism

γ′ = (f, s) : A• ⊕ C• → B•

In the same way as in the previous implication, we can show that γ′ is a quasi-
isomorphism, and that we have f = γ′ ◦ iA and g ◦ γ′ = pC . So, γ = (γ′)−1 is
the isomorphism which appears in condition (3).

Moreover, if condition (3) is true, pA : A• ⊕ C• → A• denotes the natural
projection and iC : C• → A•⊕C• denotes the natural inclusion, then pA ◦ γ is
a retract of f and γ−1 ◦ iC is a section of g. So, (3) implies (1) and (2).

Now, it is enough to prove (3) ⇔ (4). (3) implies that we have the following
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isomorphism between distinguished triangles:

A• f //

IdA•

��

B• g //

γ

��

C•

IdC•

��

[1]

φ

xx

A• iA // A• ⊕ C• pC // C•

[1]

0

ff

So, φ is the morphism 0.
Now, suppose φ = 0 and let us prove condition (3). By properties of the
triangulated categories, we know

C•[−1]
−φ[−1] // A• f // B•

[1]

g
gg

is a distinguished triangle. So, if φ = 0, there is an isomorphism γ : B• ∼=
A• ⊕ C• which completes the following isomorphism of triangles

C•[−1]

IdC• [−1]

��

0 // A• f //

IdA•

��

B•

g

[1]

xx

γ

��
C•[−1]

0 // A• iA // A• ⊕ C•

[1]

pC

ff

γ is the isomorphism which appears in condition (3).

Definition 7.2. The triangle

A• f // B• g // C•

[1]

φ

ff

is said to be split if it verifies the conditions of Lemma 7.1.

7.2 Characterization of existence and study of uniqueness

Now, we can state the main theorem in this section.
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Theorem 7.3. The following holds:

1. [Goresky-MacPherson] There exists one object in Db
cc(X) verifying

[AX1]k for k = 2, ..., d. This object is unique up to isomorphism.

2. Suppose there exists an intersection space complex in Ur, ISr−1, that is,
ISr−1 is an object in Db

cc(Ur) and it verifies [AXS1]k for k = 2, ..., r− 1.
Then, there exists an intersection space complex in Ur+1, ISr, such that
(ISr)|Ur

∼= ISr−1 if and only if the distinguished triangle:

τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

f
−→ jr∗j

∗
r ir∗ISr−1 → τ>q̄(r)jr∗j

∗
r ir∗ISr−1

[1]
−→ (11)

is split. Moreover, there is a bijection




intersection space complexes
ISr ∈ Db

cc(Ur+1) such
that (ISr)|Ur

∼= ISr−1



 / {isomorphism} ←→ {retracts of f} / ∼

(12)
where ∼ is the equivalence relation such that λ1 ∼ λ2 if and only if there
exist isomorphisms α : τ≤q̄(r)jr∗j

∗
r ir∗ISr−1 → τ≤q̄(r)jr∗j

∗
r ir∗ISr−1 and

β : ir∗ISr−1 → ir∗ISr−1 such that λ2 = α ◦ λ1 ◦ jr∗j∗rβ.

Proof. 1. is proved in [15, section 3], but we give a proof adapted to our needs.
There exists a unique object (up to isomorphism), QU2 , in D

b
cc(U2) verifying (a)

and (b) of [AX1]k. Suppose there exists a unique object (up to isomorphism),
ICp̄ r−1[−d], in Db

cc(Ur) verifying [AX1]k for k = 2, ..., r − 1, and consider the
following composition of natural morphisms:

ir∗ICp̄ r−1[−d] //

φr

--
jr∗j

∗
r ir∗ICp̄ r−1[−d] // τ>p̄(r)jr∗j

∗
r ir∗ICp̄ r−1[−d]

Let us define ICp̄ r[−d] := cone(φr)[−1]. Then, there is a distinguished triangle:

ICp̄ r[−d]→ ir∗ICp̄ r−1[−d]
φr
−→ τ>p̄(r)jr∗j

∗
r ir∗ICp̄ r−1[−d]

[1]
−→ (13)

Using the long exact sequence of cohomology associated to this triangle we can
prove that ICr[−d] verifies [AX1]k for k = 2, ..., r.
Now, suppose there exists another object B• in Db

cc(Ur+1) verifying [AX1]k
for k = 2, ..., r. Then, B•

|Ur
verifies [AX1]k for k = 2, ..., r − 1. So, there exists

an isomorphism B•
|Ur

∼= ICp̄ r−1[−d].

Let ϕ : B• → ir∗ICp̄ r−1[−d] be the composition of the canonical morphism
B• → ir∗B

•
Ur

and an isomorphism ir∗B
•
|Ur

∼= ir∗ICp̄ r−1[−d] and let C• :=

cone(ϕ). Since i∗ϕ is an isomorphism, we have the isomorphism i∗rC
• ∼= 0 in

the derived category.
Then, the distinguished triangle

ir!i
∗
rC

• → C• → jr∗j
∗
rC

• [1]
−→
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implies there exists an isomorphism C• ∼= jr∗j
∗
rC

•.
So, we have a distinguished triangle

B• ϕ
−→ jr∗j

∗
r ir∗ICp̄ r−1[−n]

ψ
−→ C• ∼= jr∗j

∗
rC

•

where ψ is the morphism following φ. Applying the functor jr∗j
∗
r we obtain

the triangle

jr∗j
∗
rB

• jr∗j
∗
rϕ−−−−→ jr∗j

∗
r ir∗ICp̄ r−1[−n]

jr∗j
∗
rψ−−−−→ jr∗j

∗
rC

•

Using the long exact sequence of cohomology associated to this triangle we
prove Hi(jr∗j∗rC

•) = 0 if i ≤ p̄(r) and Hi(jr∗j∗rψ) : H
i(jr∗j

∗
r ir∗ICp̄ r−1[−d])→

Hi(jr∗j∗rC
•) is an isomorphism if i > p̄(r). Then, we obtain isomorphisms

C• ∼= τ>p̄(r)jr∗j
∗
r ir∗ICp̄ r−1[−d] and B• ∼= ICp̄ r[−d].

Repeating this process finitely we obtain ICp̄[−d] ∈ Db
cc(X) verifying [AX1]k

for k = 2, ..., d and it is unique up to isomorphism.
Now, we prove 2. Let ISr−1 be an intersection space complex in Ur. We have
to prove that there is a bijective map






intersection space complexes
ISr ∈ Db

cc(Ur+1) such
that (ISr)|Ur

∼= ISr−1




 / {isomorphism} ←→ {retracts of f} / ∼

Let λ be a retract of f and consider the following composition of morphisms:

ir∗ISr−1
a //

ϕλ

**
jr∗j

∗
r ir∗ISr−1

λ // τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

where a is the canonical morphism.
Let us define ISr := cone(ϕλ)[−1]. Then, there is a distinguished triangle:

ISr → ir∗ISr−1
ϕλ−−→ τ≤q̄(r)jr∗j

∗
r ir∗ISr−1

[1]
−→ (14)

Since (jr∗j
∗
r ir∗ISr−1)|Ur

equals 0, (ISr)|Ur
is isomorphic to ISr and, using

the long exact sequence associated to the triangle, one proves that ISr verifies
[AXS1]k for k = 2, ..., r.
Let λ′ be a different retract of f such that λ ∼ λ′. We have to prove cone(ϕλ) ∼=
cone(ϕλ′).
Let α : τ≤q̄(r)jr∗j

∗
r ir∗ISr−1 → τ≤q̄(r)jr∗j

∗
r ir∗ISr−1 and β : ir∗ISr−1 →

ir∗ISr−1 be isomorphisms such that λ′ = α ◦ λ ◦ jr∗j∗rβ.
Since we know the equalities ϕλ = λ ◦ a and ϕλ′ = λ′ ◦ a, we have to prove
the isomorphism cone(λ ◦ a) ∼= cone(α ◦ λ ◦ jr∗j

∗
rβ ◦ a). Moreover, since α is

an isomorphism, cone(α ◦ λ ◦ jr∗j∗rβ ◦ a) is isomorphic to cone(λ ◦ jr∗j∗rβ ◦ a).
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Now, consider the following diagrams associated to the octahedral axiom of
distinguished triangles.

ir∗ISr−1

λ◦a

++
a // jr∗j∗r ir∗ISr−1

λ //

zz✉✉
✉✉
✉✉
✉✉
✉

τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

xxqqq
qq
qq
qq
q

ss

cone(a)

[1]
aa❉❉❉❉❉❉❉❉

$$■
■■

■■
■■

■■
cone(λ)

[1]

dd■■■■■■■■■

[1]
oo

cone(λ ◦ a)

::✉✉✉✉✉✉✉✉✉[1]

UU
(15)

ir∗ISr−1

λ◦jr∗j
∗
rβ◦a

,,
a // jr∗j∗r ir∗ISr−1

λ◦jr∗j
∗
rβ //

xxqqq
qq
qq
qq
q

τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

pp

cone(a)

[1]
aa❉❉❉❉❉❉❉❉

&&▼▼
▼▼

▼▼
▼▼

▼▼
cone(λ ◦ jr∗j∗rβ)

[1]

hh◗◗◗◗◗◗◗◗◗◗◗◗

[1]
oo

cone(λ ◦ jr∗j∗rβ ◦ a)

66♠♠♠♠♠♠♠♠♠♠♠♠[1]

TT

(16)
Let φ : cone(λ◦jr∗j∗rβ)→ cone(λ) be an isomorphism completing the following
isomorphism between triangles

jr∗j
∗
r ir∗ISr−1

λ◦jr∗j
∗
rβ //

jr∗j
∗
rβ

��

τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

//

Id

��

cone(λ ◦ jr∗j∗rβ)

φ

��
jr∗j

∗
r ir∗ISr−1

λ // τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

// cone(λ)

Then, if ρ : cone(a) → cone(a) is an isomorphism completing the triangles
isomorphism

ir∗ISr−1
a //

β

��

jr∗j
∗
r ir∗ISr−1

//

jr∗j
∗
rβ

��

cone(a)

ρ

��
ir∗ISr−1

a // jr∗j∗r ir∗ISr−1
// cone(a)

the diagram

cone(λ ◦ jr∗j∗rβ)
[1] //

φ

��

cone(a)

ρ

��
cone(λ)

[1] // cone(a)
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is commutative.
Therefore, there exists an isomorphism cone(λ ◦ jr∗j∗rβ ◦ a)

∼= cone(λ ◦ a),
completing the following morphism between triangles

cone(λ ◦ jr∗j∗rβ)
[1] //

φ

��

cone(a)

ρ

��

// cone(λ ◦ jr∗j∗rβ ◦ a)

��
one(λ)

[1] // cone(a) // cone(λ ◦ a)

Now, suppose there exists an intersection space complex in Ur+1, ISr such that
(ISr)|Ur

∼= ISr−1. We have to prove that the triangle (11) is split.
Let h : ISr → ir∗ISr−1 be the composition of the canonical morphism ISr →
ir∗(ISr)|Ur

and an isomorphism ir∗(ISr)|Ur
∼= ir∗ISr−1 and let C• := cone(h).

Then, there is a distinguished triangle:

ISr
h
−→ ir∗ISr−1

g
−→ C• [1]

−→

Note that i∗rh : i∗rISr → ISr−1 is an isomorphism. So, i∗rC
• is isomorphic to 0

in the derived category. Then, the canonical triangle

ir!i
∗
rC

• → C• → jr∗j
∗
rC

• [1]
−→

implies the isomorphism C• ∼= jr∗j
∗
rC

•.
Moreover, the long exact sequence of cohomology associated to the triangle

jr∗j
∗
r ISr

jr∗j
∗
rh−−−−→ jr∗j

∗
r ir∗ISr−1

jr∗j
∗
r g−−−−→ jr∗j

∗
rC

• [1]
−→

implies that

Hi(jr∗j
∗
rC

•) ∼=

{
0 if i > q̄(r)

Hi(jr∗j∗r ir∗ISr−1) if i ≤ q̄(r)

Applying the functor τ≤q̄(r) to jr∗j
∗
r g, we obtain the following commutative

diagram:

τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

a //

f

��

τ≤q̄(r)jr∗j
∗
rC

•

c

��
jr∗j

∗
r ir∗ISr−1

b // jr∗j∗rC
•

(17)

where f and c are the canonical morphisms, a = τ≤q̄(r)jr∗j
∗
r g and b = jr∗j

∗
r g.

Moreover, a and c are isomorphisms and the composition λ = a−1 ◦ c−1 ◦ b is
a retract of f . So, the triangle (11) is split by Lemma 7.1.
Let IS′

r ∈ Db
cc(Ur+1) be isomorphic to ISr. Then, we have an isomorphism

(IS′
r)|Ur

∼= ISr−1 and IS′
r is an intersection space complex in Ur+1.
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Let h′ : IS′
r → ir∗ISr−1 be the composition of the canonical restriction mor-

phism and an isomorphism ir∗(IS
′
r)|Ur

∼= ir∗ISr−1, let K
• := cone(h′) and

consider the triangle

IS′
r
h′

−→ ir∗ISr
g′

−→ K• [1]
−→

Applying the functor τ≤q̄(r) to jr∗j
∗
r g

′, we obtain the following commutative
diagram:

τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

a′ //

h

��

τ≤q̄(r)jr∗j
∗
rK

•

c′

��
jr∗j

∗
r ir∗ISr−1

b′ // jr∗j∗rK
•

(18)

where h and c′ are the canonical morphisms, a′ = τ≤q̄(r)jr∗j
∗
r g

′ and b′ = jr∗j
∗
r g

′.
Moreover, a′ and c′ are isomorphisms and λ′ := a′−1 ◦ c′−1 ◦ b′ is a retract of f .

Let α : ISr → IS′
r be an isomorphism; let h be the composition of the canonical

morphism ISr → ir∗(ISr)|Ur
and an isomorphism γ : ir∗(ISr)|Ur

→ ir∗ISr−1;
let h′ be the composition of the canonical morphism IS′

r → ir∗(IS
′
r)|Uk

and an
isomorphism γ′ : ir∗(IS

′
r)|Uk

→ ir∗IS
′
r−1. Finally define β := γ′ ◦ ir∗i∗rα ◦ γ

−1.
Then, there is an isomorphism between triangles:

jr∗j
∗
r ISr

jr∗j
∗
rh//

jr∗j
∗
rα

��

jr∗j
∗
r ir∗ISr−1

jr∗j
∗
r g //

jr∗j
∗
rβ

��

jr∗j
∗
rC

•

δ

��
jr∗j

∗
r IS

′
r

jr∗j
∗
rh

′

// jr∗j∗r ir∗ISr−1

jr∗j
∗
r g

′

// jr∗j∗rK
•

where α, β and δ are isomorphisms.
Then, the morphisms of diagrams (17) and (18) have the following relations:

a′ = τ≤q̄(r)δ ◦ a ◦ (τ≤q̄(r)jr∗j
∗
rβ)

−1

b′ = δ ◦ a ◦ (jr∗j
∗
rβ)

−1

c′ = δ ◦ c ◦ (τ≤q̄(r)δ)
−1

and, we obtain λ = (τ≤q̄(r)jr∗j
∗
rβ)

−1 ◦ λ′ ◦ jr∗j
∗
rβ. So, λ is equivalent to λ′ by

the equivalence relation ∼.
Summarizing, up to now we have defined an injective mappings α from left
hand side to the right hand side of (12), and β in the opposite direction. In
order to conclude it is enough to show that α ◦ β equals the identity. This is
a (lengthy) straightforward check which consists in running consecutively the
constructions of both mappings given above.

Remark 7.4. There is a unique object in Db
cc(U2) up to isomorphism verifying

(a) and (b) from [AXS1]k, QU2 .
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7.3 The space of obstructions to existence and uniqueness

Now we are going to study the equivalence relation ∼, which appears in The-
orem 7.3.

Remember that two retracts λ1 and λ2 of τ≤q̄(r)jr∗j
∗
r ir∗ISr−1

f
−→ jr∗j

∗
r ir∗ISr−1

are equivalent by ∼ if and only if there exist isomorphisms

α : τ≤q̄(r)jr∗j
∗
r ir∗ISr−1 → τ≤q̄(r)jr∗j

∗
r ir∗ISr−1

β : ir∗ISr−1 → ir∗ISr−1

such that λ2 = α ◦ λ1 ◦ jr∗j∗rβ.
Let β : ir∗ISr−1 → ir∗ISr−1 be an isomorphism and let λ be a retract of f .
Then

τ≤q̄(r)jr∗j
∗
rβ

−1 : τ≤q̄(r)jr∗j
∗
r ir∗ISr−1 → τ≤q̄(r)jr∗j

∗
r ir∗ISr−1

is an isomorphism and τ≤q̄(r)jr∗j
∗
rβ

−1 ◦ λ ◦ jr∗j∗rβ is a retract of f . Moreover,
given another isomorphism α : τ≤q̄(r)jr∗j

∗
r ir∗ISr−1 → τ≤q̄(r)jr∗j

∗
r ir∗ISr−1, the

composition α ◦λ ◦ jr∗j
∗
rβ is a retract of f if and only if α ◦λ ◦ jr∗j

∗
rβ ◦ f = Id.

This happens if and only if

(α− τ≤q̄(r)jr∗j
∗
rβ

−1) ◦ λ ◦ jr∗j
∗
rβ ◦ f = 0.

Since λ◦ jr∗j∗rβ ◦ f is an isomorphism in the derived category we conclude that
α = τ≤q̄(r)jr∗j

∗
rβ

−1. So α is determined by β.
In particular, if r is the dimension of the largest non-trivial stratum, we
have Ur = U2. Then Aut(ir∗ISr−1) is isomorphic to Aut(ir∗QU2). By
adjunction Hom(ir∗QU2 , ir∗QU2) is isomorphic to Hom(i∗rir∗QU2 ,QU2) =
Hom(QU2 ,QU2)

∼= Q. Then the automorphism group Aut(ir∗QU2) can be
identified with Q∗ acting by multiplication, that is the group of homothetic
transformations.
Moreover, if β ∈ Aut(ir∗ISr−1) is a homothetic transformation then α =
(λ ◦ jr∗j∗rβ ◦ f)

−1 is the inverse homothetic transformation. So, if r is the
dimension of the largest non-trivial stratum, the equivalence relation ∼ is triv-
ial. Consequently, there is a bijective map

{
intersection space complexes

ISr ∈ Db
cc(Ur+1)

}
/ {isomorphism} ←→ {retracts of f}

Remark 7.5. For any r, the triangle (11) induces a exact sequence

...→ [τ≤q̄(r)jr∗j
∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1[−1]]→

→ [τ>q̄(r)jr∗j
∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1]

g̃
−→ [jr∗j

∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1]

f̃
−→

f̃
−→ [τ≤q̄(r)jr∗j

∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1]→ ...
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Moreover, the retracts of f are the elements λ contained in
[jr∗j

∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1] such that f̃(λ) is the identity. So, the

space {retracts of f} is modulated by the vector space

[τ>q̄(r)jr∗j
∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1]

The following is an immediate consequence of the previous construction.

Corollary 7.6. Suppose there exists an intersection space complex ISr−1 in
Ur, that is, ISr−1 is an object in Db

cc(Ur) and it verifies [AXS1]k for k =
2, ..., r − 1.

• The obstruction to existence of intersection space in the next stratum lives
in

Ext1(τ>q̄(r)jr∗j
∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1) =

= [τ>q̄(r)jr∗j
∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1[1]].

• The space parametrizing isomorphism classes of intersection space com-
plexes on Ur+1 that extend a given ISr−1 on Ur is a quotient of the space

Hom(τ>q̄(r)jr∗j
∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1) =

= [τ>q̄(r)jr∗j
∗
r ir∗ISr−1, τ≤q̄(r)jr∗j

∗
r ir∗ISr−1],

by the equivalence relation described above. The equivalence relation is
trivial for the first stratum of positive codimension.

8 A mixed Hodge module structure in intersection space com-
plexes of algebraic varieties

Theorem 8.1. Let X be a complex algebraic variety. Consider a stratification

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

by algebraic subvarieties, which makes X a topological pseudomanifold. An
intersection space complex on X associated with the stratification above admits
a lifting to the derived category DbMHM(X) of mixed Hodge modules on X
if and only if the choices of the retractions can be chosen as morphisms of
mixed Hodge modules. In that case, its hypercohomology groups carry a rational
polarizable mixed Hodge structure.

Proof. The proof follows the inductive construction of the intersection space
complex considered in the proof of Theorem 7.3. To start with, we notice that
there is a mixed Hodge module QHU2

on U2 such that rat(QHU2
) = QU2 . In order

to construct ISr as an element in the derived category of mixed Hodge modules
we proceed by induction. Assume, by induction, that there is an element ISHr−1

in the derived category of mixed Hodge modules in Ur, which is transformed
to an intersection space complex ISr−1 by rat.
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In order to construct ISHr we proceed as follows. Consider the triangle

τ≤q̄(r)jr∗j
∗
r ir∗IS

H
r−1 → jr∗j

∗
r ir∗IS

H
r−1 → τ>q̄(r)jr∗j

∗
r ir∗IS

H
r−1

[1]
−→

in the derived category of mixed Hodge modules in Ur+1 with respect to Saito’s
anomalous t-structure (see [21] Remark 4.6 (2)). Applying the functor rat we
obtain the distinguished triangle

τ≤q̄(r)jr∗j
∗
r ir∗ISr−1 → jr∗j

∗
r ir∗ISr−1 → τ>q̄(r)jr∗j

∗
r ir∗ISr−1

[1]
−→ .

By Lemma 7.1, the triangle splits if and only if the connecting morphism
in the first triangle equals. If this happens we consider a retraction λ :
jr∗j

∗
r ir∗IS

H
r−1 → τ≤q̄(r)jr∗j

∗
r ir∗IS

H
r−1, which is a morphism inDbMHM(Ur+1).

Define ISHr to be the shifted cone cone(ϕλ)[−1], where ϕλ is the composition
of λ with the canonical morphism a : ir∗IS

H
r−1 → jr∗j

∗
r ir∗IS

H
r−1 we have that

ISHr belongs to DbMHM(Ur+1), and its image under rat coincides with the
intersection space complex ISr obtained from the retraction rat(λ).

The obstructions to existence and uniqueness can be lifted to mixed Hodge
modules:

Corollary 8.2. Let X be a complex algebraic variety. Consider an stratifica-
tion

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

by algebraic subvarieties, which makes X a topological pseudomanifold. Sup-
pose there exists an intersection space complex ISHr−1 in Ur which belongs to
Db(MHM(Ur+1)).

• The obstruction to existence of intersection space in the category of Mixed
Hodge modules in the next stratum is an element of

Ext1DbMHM(Ur+1)
(τ>q̄(r)jr∗j

∗
r ir∗IS

H
r−1, τ≤q̄(r)jr∗j

∗
r ir∗IS

H
r−1).

• If the obstruction vanishes, the different isomorphism classes of intersec-
tion space complexes in the category of mixed Hodge modules on Ur+1

that extend a given ISHr−1 on Ur are in bijection with the quotient of the
space

HomDbMHM(Ur+1)(τ>q̄(r)jr∗j
∗
r ir∗IS

H
r−1, τ≤q̄(r)jr∗j

∗
r ir∗IS

H
r−1),

modulo the equivalence relation similar to the one appearing in Corol-
lary 7.6.

A simplification of the proof of Theorem 8.1 yields:

Theorem 8.3. Let X be a complex algebraic variety. Let p̄ be any perversity.
The intersection cohomology complex associated to it belongs to the derived
category of mixed Hodge modules of X. Consequently the intersection homology
complexes IHk

p̄ (X,Q) carry a canonical polarizable mixed Hodge structure.
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9 Classes of spaces admitting intersection space complexes and
counterexamples

In this section we provide some examples and counterexamples to illustrate
our theory. First, we introduce two classes of varieties which admit an in-
tersection space complex for every perversity. The first class depends on the
tubular neighbourhoods of the strata: if every stratum admits a trivial tubu-
lar neighbourhood, then there exists the intersection space complex for every
perversity. The second class depends on the dimension of the strata: if ev-
ery singular stratum has homological dimension for locally constant sheaves
bounded above by 1, then there exists the intersection space complex for every
perversity. Then, we find concrete examples of pseudomanifolds (including an
algebraic variety) not admitting intersection space complexes and, hence, not
admitting intersection space pairs.

9.1 Pseudomanifolds satisfying triviality properties

Let X be a topological pseudomanifold with the following stratification:

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅.

For k = 2, ..., d+1, let Uk := X \Xd−k. We will also denote by ik : Uk → Uk+1,
jk : Xd−k \Xd−k−1 → Uk+1 and ik1,k2 : Uk1 → Uk2 the canonical inclusions.
If X has a trivial conical structure then, by Theorem 3.31, there exists an
intersection space pair. Hence, by Theorem 5.18, X has an intersection space
complex. We have shown:

Corollary 9.1. If X has a trivial conical structure, then it has an intersection
space complex.

Example 9.2. Toric varieties admit an intersection space pair and intersection
space complex for every perversity.

However, as we prove below, in order to ensure the existence of the intersection
space complex we can relax the triviality hypothesis on the stratification: one
only needs that the triviality property (Tr) (see 3.10) is satisfied for any stra-
tum. Having a trivial conical structure requires further compatibilities between
the trivializations predicted by properties (Tr) (see Definition 3.12).

Definition 9.3. A complex of sheaves is formal and constant if it is quasi-
isomorphic to the direct sum of its cohomology sheaves with zero differentials
and these cohomology sheaves are constant.

A constructible complex of sheaves is formal and constant, for example, when
the stratum is contractible (see [18] p. 410, Lemma 2.4.).

Definition 9.4. If B•
k−1 is a complex of sheaves in Uk, we say B•

k−1 verifies
the property (Pr), where r ≥ k, if j∗r ik,r+1∗B

•
k−1 is formal and constant.
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Remark 9.5. If B• is a formal and constant complex of sheaves in Uk and
(X,Xd−2) has a conical structure which verifies the property (Tr) of Definition
3.10 for some r ≥ k, then B• verifies the property (Pr).

Proposition 9.6. Given k ∈ {2, ..., d}, if there exists an intersection space
complex ISk−1 with perversity p̄ in Uk, which verifies (Pk), then there exists
an intersection space complex ISk with perversity p̄ in Uk+1, such that (ISk)|Uk

is quasi-isomorphic to ISk−1.

Proof. j∗kik∗ISk−1 is (up to isomorphism in the derived category) a complex of
constant sheaves with zero differentials. So, the triangle

τ≤qjk∗j
∗
kik∗ISk−1 → jk∗j

∗
kik∗ISk−1 → τ>qjk∗j

∗
kik∗ISk−1

[1]
−→

is split for every q ∈ Z and, applying Theorem 7.3, we conclude.

Lemma 9.7. Let us suppose that there exists an intersection space complex
ISk−1 with perversity p̄ in Uk. If (ISk−1)|Uk−1

verifies the properties (Pk−1)
and (Pr) for a certain r ≥ k and (X,Xd−2) has a conical structure which
verifies the property (Tr) of Definition 3.10, then ISk−1 verifies the property
(Pr).

Proof. By Theorem 7.3, j∗r ik,r+1∗ISk−1[1] is quasi-isomorphic to the cone of a
morphism

j∗r ik−1,r+1∗(ISk−1)|Uk−1
→ j∗r ik,r+1∗τ≤q̄(k−1)jk−1∗j

∗
k−1ik−1∗(ISk−1)|Uk−1

Since (ISk−1)|Uk−1
verifies the properties (Pk−1) and (Pr), the com-

plexes j∗r ik−1,r+1∗(ISk−1)|Uk−1
and τ≤q̄(k−1)j

∗
k−1ik−1∗(ISk−1)|Uk−1

are for-
mal and constant. Then, using that (X,Xd−2) has a conical structure
verifying the property (Tr), we deduce that the constructible complex
j∗r ik,r+1∗τ≤q̄(k−1)jk−1∗j

∗
k−1ik−1∗(ISk−1)|Uk−1

is also formal and constant.
So, j∗r ik,r+1∗ISk−1 is formal and constant as well and we conclude.

Theorem 9.8. If the pair (X,Xd−2) has a conical structure which verifies the
property (Tr) of Definition 3.10 for any r, then there exists the intersection
space complex of X for every perversity.

Proof. The constant sheaf QU2 verifies (Pr) for every r ≥ 2 such that the pair
(X,Xd−2) has a conical structure with the property (Tr). So, if (X,Xd−2) has
a conical structure which verifies the property (Tr) for any r, using Lemma 9.7
and Proposition 9.6, we can construct inductively for every k an intersection
space complex with perversity p̄ in Uk which verifies (Pr) for every r ≥ k.

Corollary 9.9. If every stratum of X is contractible, then there exists the
intersection space complex of X for every perversity.
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9.2 Pseudomanifolds with strata of small homological dimension

Definition 9.10. A space Y has homological dimension for locally constant
sheaves bounded by m if any locally constant sheaf in Y has no cohomology in
degree higher than m.

Theorem 9.11. Let X be a topological pseudomanifold with the following strat-
ification:

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

such that Xd−r\Xd−r−1 has homological dimension for locally constant sheaves
bounded above by 1 for any r.
Then, there exists the intersection space complex of X for every perversity p̄.
Moreover, if Xd−r \ Xd−r−1 has homological dimension for locally constant
sheaves bounded by 0 for any r, the intersection space complex is unique.

Proof. To prove the existence it is enough to prove that for any topological
space Y which has homological dimension for locally constant sheaves bounded
by 1, any cohomologically locally constant complex of sheaves B• in Db(Y ) and
any integer m, the triangle

τ≤mB
• → B• → τ>mB

• φ
−→ τ≤mB

•[1]→ ...

is split.
This triangle is split if and only if the morphism

φ ∈ Ext1(τ>mB
•, τ≤mB

•)

is 0. We prove the vanishing of Ext1(τ>mB
•, τ≤mB

•) by induction on the
number N of integers k for which Hk(B•) is non-zero.
If m is greater or equal than the maximal k such that Hk(B•) is non-zero
then τ>mB

• is equivalent to 0 in Db(Y ), and the assertion is obvious. If m is
strictly smaller than the minimal k such that Hk(B•) is non-zero then τ≤mB

•

is equivalent to 0 in Db(Y ), and the assertion is also obvious.
If N = 0, 1 we are in one of the situations described above. Assume that N > 1
and that we are not in the situation described above. Then the number of
different non-zero cohomology sheaves of τ≤mB

• and τ>mB
• is strictly smaller

than N . Applying the induction hypothesis several times we conclude that
τ≤mB

• and τ>mB
• are equivalent in the derived category to the direct sum

of their cohomology sheaves. This reduces the statement to the case in which
both τ≤mB

• and τ>mB
• are equivalent in the derived category to F [−k1] and

and G[−k2], where F [−k1] is the locally constant sheaf F shifted to degree k1,
and G[−k2] is analogous.
Assuming the reduction proved above we compute Ext1(G[−k2],F [−k1]) using
the local to global spectral sequence of Hom•(G[−k2],F [−k1]). Then,

Ep,q2 = Hp(Y, Extq(G[−k2],F [−k1])) = Hp+k2−k1+q(Y,Hom(G,F)).
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If p+ q = 1 then p+ k2 − k1 + q > 1. So, since Y has homological dimension
for locally constant sheaves bounded by 1, we have Ep,q2 = 0 if p+ q = 1. We
conclude that Ext1(τ>mB

•, τ≤mB
•) vanishes, as desired.

Corollary 9.12. If the strata Xd−r \ Xd−r−1 have the homotopy type of a
1-dimensional CW -complex of dimension bounded by 1 for any r, then here
exists the intersection space complex of X for every perversity p̄.

Example 9.13. Any complex algebraic variety with 1 dimensional critical set
with a Whitney stratification satisfy the hypothesis of the previous corollary if
no compact connected component of the critical set is equal a stratum. Hence
it admits an intersection space complex.

9.3 Counterexamples

Now, we illustrate the limits of our theory with a class of varieties which does
not admit an intersection space complex for some perversities. With this pur-
pose, the following proposition gives a necessary condition for the splitting of
a triangle

τ≤mB
• → B• → τ>mB

• [1]
−→ .

Proposition 9.14. Let X be a topological space, let B• be a bounded complex
of sheaves on X and let Ep,qr be the local to global spectral sequence of B•.
Then, if the canonical triangle

τ≤mB
• → B• → τ>mB

• [1]
−→

is split, the morphisms dp,qr : Ep,qr → Ep+r,q−r+1
r are 0 for every r ≥ 2, p ∈ Z

and m < q ≤ m+ r − 1.

Proof. The proof follows essentially Banagl’s argument in [5, Theorem 5.2 and
remarks on page 296]. Let us suppose the triangle is split and let λ : B• →
τ≤mB

• be a retract of the canonical morphism.
Let Ep, qr be the local to global spectral sequence of B•, E′p, q

r the local to global
spectral sequence of τ≤mB

• and λp, qr : Ep, qr → E′p, q
r the morphism induced by

λ.
For r = 2,

λp,q2 : Hp(X,Hq(B))→ Hp(X,Hq(τ≤mB))

is an isomorphism if q ≤ m and Hp(X,Hq(τ≤mB)) = 0 if q > m.
Given r ≥ 2, suppose λp, qr : Ep, qr → E′p, q

r is an isomorphism for every q ≤ m
and E′p, q

r = 0 for every q > m. Then, E′p, q
r+1 = 0 for every q > m.

Moreover, let us consider the commutative diagram:

Ep, qr

λp, q
r //

dp, qr

��

E′p, q
r

d′p, qr

��
Ep+r, q−r+1
r

λp+r, q−r+1
r // E′p+r, q−r+1

r
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If q ≤ m, λp, qr induces an isomorphism between Ker(dp, qr ) and Ker(d′p, qr ) and
λp+r, q−r+1
r induces an isomorphism between Im(dp, qr ) and Im(d′p, qr ).

If q > m and q − r + 1 ≤ m, E′p, q
r = 0 and, since the diagram is commutative,

dp, qr = d′p, qr = 0. So, we deduce dp,qr is 0 for every m < q ≤ m+ r − 1.
Moreover, Im(dp, qr ) = Im(d′p, qr ) = 0. Therefore, for every q ≤ m, λp, qr+1 is an
isomorphism and we can finish the proof by induction.

Corollary 9.15. Let X be a topological pseudomanifold with stratification

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

and let k be the codimension of Xd−2, that is, Xd−2 = Xd−k.
Let p̄ a perversity and q̄ its complementary perversity. If the local to global
spectral sequence of j∗kik∗QU2 has any differential dp,qr : Ep,qr → Ep+r,q−r+1

r

different from 0 for some r ≥ 2, p ∈ Z and q̄(k) < q ≤ q̄(k) + r − 1, then there
does not exist any intersection space complex of X with perversity p̄.

The following example, based on Hopf’s fibration, and also considered in
Banagl-Chriestenson [7] (p. 180, Example 10.3, and p. 170, Example 6.13),
verifies the conditions above.

Example 9.16. Let ρ∂ : S3 → S2 be the Hopf fibration and let ρ : cyl(ρ∂)→ S2

be the fibrewise cone of the fibration (see definition 3.3). If s : S2 → cyl(ρ∂) is
the vertex section, we consider the space X := cyl(ρ∂) with the stratification

X ⊃ s(S2)

Let U := X \ s(S2) and let i : U → X and j : s(S2) → X be the canonical
inclusions. Then, since the fiber of ρ∂ is S1

Hi(j∗j
∗i∗QU )

{
QS2 if i = 0, 1
0 otherwise

So, if Ep,qr is the hypercohomology spectral sequence of j∗j
∗i∗QU , E

p,q
2 is

1 Q 0 Q
q ↑ 0 Q 0 Q

0 1 2

−→p

where the differential d0,12 is different from 0.
Moreover, given any perversity p̄, p̄(2) = 0. So, applying Corollary 9.15, there
does not exist an intersection space complex of X with stratification X ⊃ s(S2)
with any perversity.
Hence, applying Remark 6.3, there does not exist any intersection space pair
of X with the previous stratification.
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The stratification of X given in the previous example is not natural. Since X is
smooth, the natural stratification of X has no stratum different from X and ∅.
The following example is more natural in the sense that the nontrivial stratum
is the singular part of the variety.

Example 9.17. Let ρ∂ : S3 → S2 be the Hopf fibration and let us consider the
locally trivial fibration

σ∂ : S3 ×S2 S3 → S2

Moreover, let σ : cyl(σ∂) → S2 be the fibrewise cone of σ∂ and s : S2 →
cyl(σ∂) the vertex section. Then, we define X := cyl(σ∂) and we consider the
stratification

X ⊃ s(S2)

Let U := X \ s(S2) and let i : U → X and j : s(S2) → X be the canonical
inclusions. Then, since the fiber of σ∂ is S1 × S1

Hi(j∗j
∗i∗QU )






QS2 if i = 0, 2
Q2
S2 if i = 1
0 otherwise

So, if Ep,qr is the hypercohomology spectral sequence of j∗j
∗i∗QU , E

p,q
2 is

2 Q 0 Q
q ↑ 1 Q2 0 Q2

0 Q 0 Q
0 1 2

−→p

where the differentials d0,12 and d0,22 are different from 0.
Moreover, given any perversity p̄, either p̄(3) = 0 or p̄(3) = 1. So, applying
Corollary 9.15, there does not exist an intersection space complex of X with
stratification X ⊃ s(S2) with any perversity.
Hence, applying Remark 6.3, there does not exist any intersection space pair
of X with the previous stratification.

A great number of examples can be constructed with this technique. For exam-
ple, if one wishes to have simply connected link and strata one, can use instead
of Hopf fibration the fibration φ : S7 → S4 with fibre S3. In [7, Example 6.13
and Example 10.3] this technique is used to find spaces which does not admit
an intersection space.
Now, we give an example of algebraic variety for which the intersection space
does not exist for the middle perversity.

Example 9.18. Let Fr(2, 3) be the frame bundle over the Grassmannian
Gr(2, 3), that is, Fr(2, 3) := {M ∈Mat(2×3,C)|rk(M) = 2} and the canonical
bundle

π : Fr(2, 3)→ Gr(2, 3) ∼= P2
C
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is a GL(2,C)-pincipal bundle with the action

GL(2,C)× Fr(2, 3) // Fr(2, 3)

(A,M) // A ·M

Let R2
1 := {M ∈ Mat(2× 2,C)|rk(M) ≤ 1} and let us consider the action

GL(2,C)× R2
1

// R2
1

(A,M) // A ·M

Let X := Fr(2, 3)×GL(2,C) R
2
1. Since Sing(R2

1) = {0}, we have the equality

Sing(X) = Fr(2, 3)×GL(2,C) {0} ∼= Gr(2, 3) ∼= P2
C

and the induced fiber bundle

Fr(2, n)×GL(2,C) R
2
1 \ {0} // P2

C

(M1,M2) // π(M1)

is fiber homotopy equivalent to the fibration of links over the singularity. The
fiber of this morphism is R2

1 \ {0}.
Now, let us consider the action

GL(2,C)× C2 // C2

(A, (a, b)) // A ·

(
a
b

)

and let Y := Fr(2, 3)×GL(2,C) C
2.

The morphism

C2 f // R2
1

(a, b) //
(
a a
b b

)

is compatible with the actions. So, it induces a morphism g : Y → X.
Moreover, g−1(Sing(X)) = Fr(2, 3)×GL(2,C) {0} ∼= Gr(2, 3) ∼= P2

C
and the fiber

bundle

Fr(2, 3)×GL(2,C) C
2 \ {0} // P2

C

(M1,M2) // π(M1)

is fiber homotopy equivalent to the fibration of links. The fiber of this morphism
is C2 \ {0}.
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In addition,

Fr(2, 3)×GL(2,C) C
2 \ {0}

g //

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
Fr(2, n)×GL(2,C) R

2
1 \ {0}

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

P2
C

is a morphism of fibrations which induces in the fiber the morphism f : C2 \
{0} → R2

1 \ {0}.
Let us denote UX := Fr(2, n) ×GL(2,C) R

2
1 \ {0} and UY := Fr(2, n) ×GL(2,C)

C2 \ {0}. Moreover, let jX : P2
C → X, iX : UX → X, jY : P2

C → Y and
iY : UY → Y be the canonical inclusions.

The morphism between fibrations g produces a morphism of complexes

jY ∗j
∗
Y iY ∗QUY

γ
−→ jX∗j

∗
X iX∗QUX

.

Moreover, C2 \ {0} is homotopically equivalent to S3, R2
1 \ {0} is homotopically

equivalent to S3 × S2 and f : C2 \ {0} → R2
1 \ {0} induces an isomorphism

between the 0-th and the third cohomology groups. Then γ induces an isomor-
phism between the cohomology sheaves

H0(jY ∗j
∗
Y iY ∗QUY

) ∼= H0(jX∗j
∗
X iX∗QUX

)

and

H3(jY ∗j
∗
Y iY ∗QUY

) ∼= H3(jX∗j
∗
X iX∗QUX

).

Let Ep,qr be the local to global spectral sequence of jX∗j
∗
X iX∗QUX

, let E′p,q
r be

the local to global spectral sequence of hypercohomology of jY ∗j
∗
Y iY ∗QUY

, and
γp,qr : E′p,q

r → Ep,qr the morphism induced by γ. Then,

γp,q2 : Hp(P2
C ,H

q(jY ∗j
∗
Y iY ∗QUY

))→ Hp(P2
C ,H

q(jX∗j
∗
X iX∗QUX

))

is an isomorphism if q = 0, 3.

E′p,q
2 is

3 Q 0 Q 0 Q
2 0 0 0 0 0

q ↑ 1 0 0 0 0 0
0 Q 0 Q 0 Q

0 1 2 3 4

−→p

and it does not degenerate in r = 2. So, d′0,34 is different from 0 since it is the
unique differential different from 0 which can appear.
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Moreover,Ep,q2 is
6 Q 0 Q 0 Q
5 0 0 0 0 0
4 0 0 0 0 0

q ↑ 3 Q 0 Q 0 Q
2 Q 0 Q 0 Q
1 0 0 0 0 0
0 Q 0 Q 0 Q

0 1 2 3 4

−→p

We prove now d0,3r : E0,3
r → Er,3−r+1

r is different from 0 for some r ≥ 0. If
d0,32 = 0, we have the following isomorphisms

E0,3
4
∼= E0,3

3
∼= E0,3

2
∼= E′0,3

2
∼= E′0,3

4 .

Moreover,
E4,0

4
∼= E4,0

2
∼= E′4,0

2
∼= E′4,0

4

and the diagram

E0,3
4

d
0,3
4

��

γ
0,3
4 // E′0,3

4

d
′0,3
4

��
E4,0

4

γ
4,0
4 // E′4,0

4

is commutative.
Then, since d′0,34 is not 0, d0,34 is also different from 0.
If p̄ is a perversity such that p̄(6) = 2 and q̄ is the complementary perversity,
then we have q̄(6) = 2. This happens for the middle perversity. Consequently,
applying Corollary 9.15, there does not exist an intersection space complex of
X = Fr(2, 3) ×GL(2,C) R

2
1 with perversity p̄ and stratification X ⊃ Sing(X) ∼=

P2
C .

Hence, applying Remark 6.3, there does not exist any intersection space pair
of X with perversity p̄.

10 Duality

In this section, we establish the duality properties of the intersection space
complexes. First, we study the Verdier dual of the intersection space complex.
Next, we give a version of Poincaré duality for these complexes.
Let X be a topological pseudomanifold with the following stratification:

X = Xd ⊃ Xd−2 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

Let Uk := X \Xd−k and let ik : Uk → Uk+1 and jk : Xd−k \Xd−k−1 → Uk+1

be the natural inclusions.
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10.1 Verdier duality

Given a vector space E we we denote its by Ev its linear dual.

Theorem 10.1. Let ISp̄ be an intersection space complex of X with perversity
p̄ and let q̄ be the complementary perversity of p̄. Then, DISp̄[−d], where D
denotes the Verdier dual, is an intersection space complex of X with perversity
q̄.

Proof. We have to prove DISp̄[−d] verifies [AXS1]k for perversity q̄ for k =
2, ..., d.

(a) We have a chain of isomorphisms

(DISp̄[−d])|U2
∼= DQU2 [−d] ∼= QU2 .

(b) Let x ∈ X , the group Hi(j∗xDISp̄[−d]) is isomorphic to Hd−i(j!xISp̄)
v,

which is 0 if i /∈ {0, 1, ..., d}.

(ck) Let x ∈ Xd−k \ Xd−k−1, the group Hi(j∗xDISp̄[−d]) is isomorphic to
Hd−i(j!xISp̄)

v, which (by property (d1′k)) is 0 if d− i > d− p̄(k)− 1, that
is, if i ≤ p̄(k).

(d1′k) Let x ∈ Xd−k \ Xd−k−1, the group Hi(j!xDISp̄[−d]) is isomorphic to
Hd−i(j∗xISp̄)

v, which (by property (ck)) is 0 if d − i ≤ q̄(k), that is, if
i > d− q̄(k)− 1.

(d2′k) Let x ∈ Xd−k \ Xd−k−1, the group Hd−q̄(k)−1(j!xDISp̄[−d]) is isomor-
phic to Hq̄(k)+1(j∗xISp̄)

v, the group Hp̄(k)+1(j∗xDISp̄[−d]) is isomorphic
to Hd−p̄(k)−1(j!xISp̄)

v and the canonical morphism

Hd−q̄(k)−1(j!xDISp̄[−d])→ H
p̄(k)+1(j∗xDISp̄[−d])

is the dual morphism of Hd−p̄(k)−1(j!xISp̄) → H
q̄(k)+1(j∗xISp̄), which is

the morphism 0 (by property (d2′k)).

In Corollary 7.6 the space of obstructions for existence and uniqueness of inter-
section spaces are described. Verdier duality D interchanges intersection space
complexes with complementary perversities. We deduce

Corollary 10.2. Let X be a topological pseudomanifold as above. Let p̄ and q̄
complementary perversities. An intersection space complex for perversity p̄ ex-
ists if and only if an intersection space complex for perversity q̄ exists. Verdier
duality induces a bijection between the set of intersection space complexes for
perversity p̄ and the set of intersection space complexes for perversity q̄.
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10.2 Poincaré duality in the case of 2 strata

Now, suppose X has a unique non-trivial stratum. So, the stratification of X
is

X ⊃ Xd−k ⊃ ∅

where k is the codimension of Xd−k.
According with Corollary 7.6, the obstruction for existence of intersection space
for perversity p̄ lives in Ext1(τ>q̄(k)jk∗j

∗
kik∗Q|Uk

, τ≤q̄(k)jk∗j
∗
kik∗Q|Uk

). Assume
that the obstruction vanishes so that intersection space complexes exist. In this
case the space of intersection space complexes for perversity p̄ is parametrized
by a quotient of the vector space

Ep̄ := Hom(τ>q̄(k)jk∗j
∗
kik∗Q|Uk

, τ≤q̄(k)jk∗j
∗
kik∗Q|Uk

).

Corollary 10.2 implies that the obstruction for existence of intersection space
for perversity q̄ vanishes and that the space

Eq̄ := Hom(τ>p̄(k)jk∗j
∗
k ik∗Q|Uk

, τ≤p̄(k)jk∗j
∗
k ik∗Q|Uk

)

of intersection space complexes for perversity q̄ is isomorphic to Ep̄.

Proposition 10.3. Let Ep̄ be the space of all intersection space complexes of X
with perversity p̄ up to isomorphisms.
The dimensions of the vector spaces Hi(X, ISp̄) with ISp̄ ∈ Ep̄ have a minimum
and the subset

{ISp̄ ∈ Ep̄| dim(Hi(X, ISp̄)) is minimum} ⊂ Ep̄

is Zariski open for every i.

Proof. For every intersection space complex ISp̄ ∈ Ep̄, we have a triangle

ISp̄ → ik∗QU2 → τ≤q̄(k)jk∗j
∗
k ik∗QU2

This triangle induces the long exact sequence of hypercohomology

...→ Hi(X, ISp̄)→ Hi(X, ik∗QU2)
αi(ISp̄)
−−−−−→ Hi(X, τ≤q̄(k)jk∗j

∗
kQU2)→ ...

So, for every i ∈ Z, there is an isomorphism

Hi(X, ISp̄) ∼= Ker(αi(ISp̄))⊕ CoKer(αi−1(ISp̄)).

Moreover,

dim(CoKer(αi(ISp̄))) = dim(Hi(X, τ≤q̄(k)jk∗j
∗
kQU2))− dim(Hi(X, ik∗QU2))+

+dim(Ker(αi(ISp̄)))
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So, dim(Hi(X, ISp̄)) is minimum if and only if dim(Ker(αi(ISp̄))) and
dim(Ker(αi−1(ISp̄))) are minimum.
The morphism αi(ISp̄) is the morphisms induced in hypercohomology by the
composition

ik∗QU2

a
−→ jk∗j

∗
kik∗QU2

λ(ISp̄)
−−−−→ τ≤q̄(k)jk∗j

∗
kik∗QU2

where a is the canonical morphisms and λ(ISp̄) is a retraction of the natural
truncation morphism f : τ≤q̄(k)jk∗j

∗
kik∗QU2 → jk∗j

∗
kik∗QU2 .

Let us denote by

ai : Hi(X, ik∗QU2)→ Hi(X, jk∗j
∗
kik∗QU2),

λi(ISp̄) : H
i(X, jk∗j

∗
kik∗QU2)→ Hi(X, τ≤q̄(k)jk∗j

∗
k ik∗QU2),

f i : Hi(X, τ≤q̄(k)jk∗j
∗
kik∗QU2)→ Hi(X, jk∗j

∗
kik∗QU2)

the morphisms induced in hypercohomology. Then, we have

dim(Ker(αi(ISp̄))) = dim((ai)−1(Ker(λi(ISp̄)))) =

= dim(Ker(ai)) + dim(Im(ai) ∩Ker(λi(ISp̄)))

Hence, dim(Ker(αi(ISp̄))) is minimum if and only if dim(Im(ai)∩Ker(λi(ISp̄)))
is minimum.
Since λi(ISp̄) ◦ f i is the identity, the homomorphism λi(ISp̄) is surjective and
we have the equality

dim(Ker(λi(ISp̄))) = dim(Hi(X, jk∗j∗kik∗QU2))− dim(Hi(X, τ≤q̄(k)jk∗j
∗
kik∗QU2)).

So, dim(Ker(λi(ISp̄))) is independent of ISp̄. Then, for every ISp̄ ∈ Ep̄, there
is an isomorphism

Hi(X, jk∗j
∗
kik∗QU2))/Ker(λi(ISp̄)) ∼= Qd

i

where di := dim(Hi(X, τ≤q̄(k)jk∗j
∗
kik∗QU2)).

Now, consider the composition of morphisms

Hi(X, ik∗QU2)
ai //

φ(ISp̄)

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

Hi(X, jk∗j∗kik∗QU2)

π(ISp̄)

��

Hi(X, jk∗j∗k ik∗QU2))/Ker(λi(ISp̄)) ∼= Qd
i

where π(ISp̄) is the canonical projection.
Then, Im(ai)∩Ker(λi(ISp̄)) gets the minimum dimension when the morphism
φ(ISp̄) gets the maximum rank, which happens in an open subset.
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Definition 10.4. The general i-th Betti number of the intersection space com-
plexes of X with perversity p̄ is the minimum of the dimensions of the vector
spaces Hi(X, ISp̄) with ISp̄ ∈ Ep̄.

Definition 10.5. A general intersection space complex of X with perversity
p̄ is an intersection space complex ISp̄ ∈ Ep̄ such that dim(Hi(X, ISp̄)) is the
general i-th Betti number for i = 0, 1, ..., d.

Theorem 10.6. Let p̄ be a perversity and let q̄ be its complementary perversity.
If ISp̄ is a general intersection space complex of X with perversity p̄ and ISq̄
is a general intersection space complex of X with perversity q̄, then, for i =
0, 1, ..., d, there is an isomorphism of Q-vector spaces

Hi(X, ISp̄) ∼= Hd−i(X, ISq̄)
v

Proof. Given any intersection space complex ISp̄ of X with perversity p̄, we
have

Hi(X,DISp̄[−d])
v ∼= Hi−d(X,DISp̄)

v ∼= Hd−i(X, ISp̄).

Applying Theorem 10.1, the complex DISp̄[−d] is an intersection space complex
of X with perversity q̄. We denote ISq̄ := DISp̄[−d].
Suppose ISq̄ is not a general intersection space complex of X . Then, there
exists another intersection space complex of X with perversity q̄, IS′

q̄, such
that we have the strict inequality

d∑

i=0

dim(Hi(X, IS′
q̄)) <

d∑

i=0

dim(Hi(X, ISq̄)).

Consequently we have,

d∑

i=0

dim(Hi(X,DIS′
q̄[−d])) =

d∑

i=0

dim(Hi(X, IS′
q̄)
v) <

d∑

i=0

dim(Hi(X, ISq̄)
v) =

=
d∑

i=0

dim(Hi(X,DISq̄[−d])) =
d∑

i=0

dim(Hi(X, ISp̄)).

So, ISp̄ is not a general intersection space complex of X .
We deduce that if ISp̄ is a general intersection space complex, then ISq̄ is also
a general intersection space complex. So, there are isomorphisms

Hi(X, ISp̄) ∼= Hd−i(X, ISq̄)
v

for some general intersection space complexes ISp̄ and ISq̄.
Since the hypercohomology groups of general intersection space complexes with
the same perversity are isomorphic, we conclude.

Remark 10.7. We do not know of examples of intersection space complexes
for the same perversity with different hypercohomology. It is an open question
whether they exist.
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