
Documenta Math. 1571

The Universal Lie ∞-Algebroid

of a Singular Foliation

Camille Laurent-Gengoux, Sylvain Lavau,

and Thomas Strobl

Received: September 13, 2019

Revised: May 19, 2020

Communicated by Eckhard Meinrenken

Abstract. We consider singular foliations F as locally finitely gen-
erated O-submodules of O-derivations closed under the Lie bracket,
where O is the ring of smooth, holomorphic, or real analytic functions
on a correspondingly chosen manifold. We first collect and/or prove
several results about the existence of resolutions of such an F in terms
of sections of vector bundles. For example, these exist always on a
compact smooth manifold M if F admits real analytic generators.

We show that every complex of vector bundles (E•, d) over M pro-
viding a resolution of a given singular foliation F in the above sense
admits the definition of brackets on its sections such that it extends
these data into a Lie ∞-algebroid. This Lie ∞-algebroid, including
the chosen underlying resolution, is unique up to homotopy and, more-
over, every other Lie ∞-algebroid inducing the given F or any of its
sub-foliations factors through it in an up-to-homotopy unique manner.
We therefore call it the universal Lie ∞-algebroid of F .

It encodes several aspects of the geometry of the leaves of F . In parti-
cular, it permits us to recover the holonomy groupoid of Androulidakis
and Skandalis. Moreover, each leaf carries an isotropy Lie ∞-algebra
structure that is unique up to isomorphism. It extends a minimal
isotropy Lie algebra, that can be associated to each leaf, by higher
brackets, which give rise to additional invariants of the foliation. As
a byproduct, we construct an example of a foliation F generated by r
vector fields for which we show by these techniques that, even locally,
it cannot result from a Lie algebroid of the minimal rank r.
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1 Introduction

Regular foliations, i.e. a partition of a manifold into embedded submanifolds of
a given dimension, are familiar objects of interest in differential geometry, see
e.g. [28]. According to the Frobenius theorem, they are equivalent to involutive
distributions.
Singular foliations, on the other hand, are much less understood while, at the
same time, they appear much more frequently. Typical Lie group actions have
orbits of different dimensions. Similarly, the symplectic leaves of a Poisson
manifold change dimension whenever the rank of the bivector jumps. Both
of these two classes of singular foliations are an example of what one obtains
on the base manifold of a Lie algebroid. It is therefore natural to ask if any
singular foliation arises in this way.
To make this question more precise, we first need to clarify. One way of viewing
a singular foliation would be a partition of the given manifold into immersed
submanifolds of possibly different dimensions. While in the case of regular foli-
ations, the description in terms of generating vector fields is completely equiv-
alent, here the latter characterization contains more information. Consider, for
example, vector fields on a line vanishing at the origin up to order k. While the
corresponding partition of R into leaves consists of R+, R−, and the origin 0,
the generating module of functions is in addition invariantly characterized by
the integer k ∈ N. We will therefore define a singular foliation as an involu-
tive submodule F ⊂ Γ(TM), where as usual, involutivity means [F ,F ] ⊂ F .
Defined like this, it is, however, not even guaranteed that the vector fields F
generate a subdivision ofM into leaves such that, at each point, F evaluated at
this point would agree with the tangent of the leaf containing this point. Also,
if we do not restrict F further, the answer to the question if it is generated by
a Lie algebroid A is definitely negative: The image of A with respect to the
anchor ρ : A → TM gives an involutive module F = ρ

(
Γ(A)

)
, but evidently

this is in addition locally finitely generated. Adding this as a condition on F ,
namely to be locally finitely generated, Hermann’s theorem establishes thatM
is indeed partitioned by immersed submanifolds, called leaves [29].
Thus in this paper, we define a singular foliation of a manifold M to be a
locally finitely generated involutive O-submodule of vector fields on M . This
perspective seems to also become more and more the prevailing one these days
[1, 4]. Here O can be chosen to be the ring of smooth functions C∞(M), or,
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in the case that M is a real analytic or a complex manifold, the ring of real
analytic and holomorphic functions, respectively.

So, now we are in the position to again pose the question about the existence of
a finite rank Lie algebroid over M that would induce a given singular foliation
on this manifold. This question can be split into a global and a local one.
While it is easy to see that the answer to the global problem posed as such
is negative—the minimal number of local generators of F does not need to
be finite1—the local problem is much more intricate and still open—however,
after shifting our focus to other questions below, we will be able to give partial
answers to this question as well.

Is there a Lie ∞-algebroid generating a given singular foliation? And, if so, can
it be used to find invariants of the foliation? Both of these latter two questions
will be answered essentially in the positive in our paper. For example, in the
case of O being real analytic functions, we show that every singular foliation F
is locally generated by a Lie ∞-algebroid. In the case of O being smooth
functions, the same conclusion holds over any relatively compact open subset
of M , if, locally, the foliation can be generated by real analytic vector fields.2

Even more importantly, there is such a Lie ∞-algebroid whose homotopy class
is unique and universal: the one constructed on a geometric resolution of the
singular foliation.

This is in sharp contrast to the Lie algebroid story: not only is a Lie algebroid A
over M for a given singular foliation F far from unique, if it exists at all, also
its homotopy class cannot be unique since homotopies of Lie algebroids do not
change the rank of the underlying vector bundle A.

If we take any other Lie ∞-algebroid whose induced foliation is F , or even
only a submodule of F , and whose underlying complex is now not necessarily
a geometric resolution, there exists a morphism into every Lie ∞-algebroid
whose underlying complex is a geometric resolution. This morphism itself is
unique up to homotopy (see Theorem 2.9). So, considering the category of
Lie ∞-algebroids up to homotopy, i.e. the category where objects are Lie ∞-
algebroids over M inducing a sub-singular foliation of F and where arrows are
homotopy classes of Lie ∞-algebroid morphisms, Lie ∞-algebroids constructed
on geometric resolutions are a terminal object. This justifies to call them
universal Lie ∞-algebroids of a singular foliation F .

The universal Lie ∞-algebroid of a singular foliation F turns out to be an
efficient tool for the construction of invariants associated to a singular foliation,
such as different types of cohomology classes associated to a Lie ∞-algebroid
representing its universal class. Let us explain the construction a bit further,
starting first with the case that O is real analytic or holomorphic. Then by

1Take M = R2 and look at the module of vector fields vanishing to order k at (0, k) for
all k ∈ N. The number of generators is unbounded in this case. [4]

2For the general case of O = C∞(M), we need to assume the existence of a geometric
resolution of F to arrive at the conclusion, something one can always infer locally in the real
analytic or holomorphic case, cf. below. By a geometric resolution of F we mean a finitely
generated, projective resolution of O-modules.
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Syzygy theorems in a neighborhood U of any point m ∈ M the O-module F
admits a projective resolution of finite length by free modules, which we can
reinterpret as sections of trivial vector bundles Ei over U giving rise to the
following exact sequence

0 −→ Γ(E−n−1) −→ . . . −→ Γ(E−1) −→ F −→ 0 (1.1)

where n is the dimension of M . The Lie ∞-algebroid is then constructed
over the corresponding complex of vector bundles E−n−1 → . . . → E−1 by
showing the existence of s-brackets for s = 2, . . . , n + 1 so that together with
the differential of the complex they satisfy the required higher Jacobi identities.
Thus, in this case we even obtain a Lie k-algebroid with k = n+ 1. Certainly,
the above geometric resolution is not unique; in particular, the ranks of the
bundles are far from being fixed. These individual ranks can now be changed
by homotopies in the category of Lie ∞-algebroids, only their total index

Ind(E•) :=
∑

i≥1

(−1)i+1rk(E−i) (1.2)

remains invariant. This index, on the other hand, is nothing but the highest
possible dimension of the leaves in the neighborhood of m. There are certainly
much more subtle invariants associated to the foliation that result from our
construction. For instance, restricting the universal Lie ∞-algebroids of a sin-
gular foliation F to a point and taking its cohomology, we get a Lie ∞-algebra,
that we call the isotropy Lie ∞-algebra of F at the point m ∈ M . This Lie
∞-algebra has by construction no 1-ary bracket, i.e. no differential. There-
fore, its 3-ary bracket is a class in the Chevalley-Eilenberg cohomology for the
isotropy graded Lie algebra bracket given by the 2-ary bracket. We show, on
the other hand, that there cannot be a generating Lie algebroid of minimal
rank in the neighborhood of a point m where this class does not vanish. An
explicit example of such a foliation will be provided in Example 4.32 below: the
vector fields on C4 ∋ (x, y, z, t) preserving the function x3 + y3+ z3+ t3 form a
singular foliation of rank six, i.e. they need at least six generating vector fields
to be defined by means of generators and relations. Since its above 3-class is
shown to be non-zero, it follows that this particular singular foliation cannot
be defined as the image through the anchor map of a Lie algebroid of rank
six. Notice that, given a singular foliation of rank r, the problem of finding
a Lie algebroid or rank r that induces it has a priori no relation with higher
structures. It is interesting to see that it can be answered through the use of
those.

The structure of the paper is as follows. Section 2 contains the main definitions
and results about the construction of the universal Lie ∞-algebroid of a singu-
lar foliation F as well as its algebraic consequences for F . Proofs, examples,
and some definitions are postponed to the subsequent two sections, Section 3
and Section 4. An ordered list of examples of singular foliations and some use-
ful lemmas are presented in Section 3.1. In Section 3.2 we address the question
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of whether and when a singular foliation F admits a geometric resolution as
O-modules as in (1.1). In general, the answer is no, and a counter-example is
given, but classical results, called syzygy theorems, imply that the answer is
yes in the real analytic, algebraic, and holomorphic cases in a neighborhood
of a point. Moreover, in the real analytic case, the real-analytic geometric
resolution can be proved to be also a smooth geometric resolution by classical
results of Malgrange and Tougeron. In turn, we show that these smooth resolu-
tions can be glued to yield a geometric resolution on a relatively compact open
subset. This part then is followed by examples of such resolutions in Section
3.3. Section 3.4 recalls classical results about Lie ∞-algebroids, in particular
the useful perspective of it as a differential positively graded manifold, equiva-
lently known under the name of an NQ-manifold. We put particular emphasis
on homotopies between Lie ∞-algebroids morphisms, where precision about
boundary conditions is required; we believe that the point of view presented
about homotopies will be of interest also in other contexts. Only then, in Sec-
tions and 3.5 and 3.6, we turn to the proof of the main theorems, Theorem
2.8 about equipping any such a resolution with a Lie ∞-algebroid structure
and Theorem 2.9 about its uniqueness up to homotopy and its universality
property. We prove all these theorems by careful step-by-step constructions of
brackets, morphisms, and homotopies. We conclude this section by providing
examples in Section 3.7.

Section 4 is devoted to the geometrical meaning of the previously found struc-
tures and induced algebraic invariants. Since the universal Lie ∞-algebroid of
a singular foliation is unique up to homotopy, most cohomologies constructed
out of it do not depend on the choices made in the construction and are thus
associated to the initial foliation. In particular, as argued in Section 4.1, the co-
homology of the degree 1 vector field Q describing the universal Lie∞-algebroid
of a singular foliation is canonical, i.e. it depends only on the singular folia-
tion. In Section 4.2.1 we derive even more interesting cohomological spaces by
restricting the universal Lie ∞-algebroid structure to a point m ∈ M . This is
analogous to the familiar situation for Lie algebroids, where the Lie algebroid
bracket induces a Lie algebra bracket on the kernel of the anchor map at a
given point, called the isotropy Lie algebra of the point or its leaf (since for
different points on a given leaf these Lie algebras are isomorphic). Essentially
the same construction applies here and allows us to induce a Lie ∞-algebra on
a graded vector space which coincides with the fiber over m of the resolution
of the foliation in degree −2,−3, . . . and to the kernel of the anchor map in
degree −1. If the geometric resolution is chosen to be minimal atm—the ranks
of the vector bundles that define the geometric resolution are as small as they
can be—we obtain a Lie ∞-algebra that we call the isotropy Lie ∞-algebra
of F at the point m ∈ M . It has several interesting features: First, its dif-
ferential or 1-ary bracket vanishes, so that its 2-ary bracket defines an honest
graded Lie algebra. But it may still have k-ary brackets for k ≥ 3. Second,
this structure is unique up to isomorphism, its 2-ary bracket being unique even
on the nose, cf. Proposition 4.12 below. In Section 4.3 we then prove that, like
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for isotropy Lie algebras of Lie algebroids, the isotropy Lie ∞-algebras of Lie
∞-algebroids only change by isomorphisms along any leaf of F . Section 4.4
contains examples of these isotropy algebras.

In Section 4.5.1 we return to the issue of Lie ∞-algebroid versus Lie algebroid.
Evidently, we can always add a non-acting Lie algebra to every Lie algebroid,
which increases its isotropy Lie algebras at each point accordingly while not
changing the induced foliation. This is in sharp contrast to the isotropy Lie
∞-algebras of a singular foliation and its graded Lie algebra introduced in this
paper. Moreover, as we will prove, a Lie algebroid inducing a given singular fo-
liation, even if it exists, may in some cases need more generators than the initial
singular foliation does. More precisely, we will show that the 3-ary bracket of
the isotropy Lie ∞-algebra of F at every point m ∈M is a Chevalley-Eilenberg
cocycle with respect to the 2-ary bracket and that this cocycle is exact if there
exists a Lie algebroid of rank r defining the singular foliation (with r being
the rank of the foliation). Example 4.32 then presents a singular foliation for
which this Chevalley-Eilenberg class does not vanish. Section 4.5.2 concludes
this discussion with a side remark that every singular foliation admitting a
geometric resolution of finite length is the image through the anchor map of a
Leibniz algebroid.

In Section 4.6 we show that our structure induces the holonomy algebroid and
groupoid of Androulidakis and Skandalis [1] by an appropriate truncation (and
integration), cf. , in particular, Proposition 4.19 below.

The existence of Lie ∞-algebroids seems therefore actually more interesting
than an answer to the initially posed question about a Lie algebroid generating
the same foliation. Among others, the universal Lie ∞-algebroid provides a
whole bunch of cohomological invariants associated to a singular foliation that
are directly suggested by the data of this construction, which would supposedly
not be so easy to construct by other means, and in particular not by methods
adapted to ordinary Lie algebroids.

Relation to other work:

Tom Lada and Jim Stasheff present in [6] a construction of a Lie ∞-algebra
on a resolution of a Lie algebra: our construction follows the same pattern
and is inspired by theirs. We were told that results more or less equivalent
to Theorem 2.8 were discussed by Ralph Mayer and Chenchang Zhu as well
as by Ted Voronov and his collaborators. Moreover, Johannes Huebschmann
suggests such a result also in his introduction to [30], without giving further
details though. We claim, however, that we are the first ones to have clearly
stated and published a proof for Theorem 2.8 and, more importantly, to have
found, formulated, and proven unicity, cf. Theorem 2.9. Also, we are not aware
of any predecessor for Section 4, where we derive some geometric implications
of the construction. In November 2018, Yaël Frégier and Rigel A. Juarez-Ojeda
presented in [23] a construction based on model theory, which is different in
nature from ours but allows them to prove a result similar to Theorems 2.8
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and 2.9.
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jamin Hennion, Rigel A. Juarez-Ojeda, Yvette Kosmann-Schwarzbach, Alexei
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Université de Lorraine for according a CRCT of six months. T.S. is grateful to
the CNRS for according a delegation and an attachment to beautiful IMPA for
one semester and equally to IMPA and its staff including in particular Henrique
Bursztyn for their hospitality during his stay.

2 Main results

We provide the definition and examples of singular foliations in the subsequent
section, see in particular Section 3.1. Definitions and basic facts about Lie ∞-
algebroids are given in Section 3.4. We assume for the moment that the reader
is familiar with those and we state the main results of the article. Proofs and
further examples are provided later on as well.
We intend to state results that are true in the smooth, algebraic, real analytic,
and holomorphic settings all together, sometimes with adaptations. We let O
be the sheaf of (smooth, polynomial, real analytic or holomorphic—depending
on the context) functions on M and, for every vector bundle E → M , Γ(E)
the sheaf of sections of E.

Definition 2.1. Let F ⊂ X(M) be a singular foliation on a manifold M . A
geometric resolution (E, d, ρ) of the singular foliation F is a triple consisting
of:
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1. a collection of vector bundles E =
⊕

i≥1E−i over M ,

2. a collection d = (d(i))i≥2 of vector bundle morphisms d(i) : E−i → E−i+1

over the identity of M ,

3. a vector bundle morphism ρ : E−1 → TM over the identity of M called
the anchor of the geometric resolution,

such that the following sequence of O-modules is an exact sequence of sheaves:

. . . Γ(E−2) Γ(E−1) F 0d(3) d(2) ρ

A geometric resolution is said to be of length n if E−i = 0 for i ≥ n+ 1.

We shall speak of a resolution by trivial bundles when all the vector bundles
(E−i)i≥1 are trivial vector bundles.

We shall say that a geometric resolution is minimal at a point m ∈ M if, for

all i ≥ 2, the linear maps d
(i)
m : E−i|m → E−i+1|m vanish.

. . . E−2 E−1 TMd(3) d(2) ρ

when restricted to a point m ∈ M is, in general, not exact. Its cohomol-
ogy H•(F ,m) does not depend on the chosen resolution, see Lemma 4.8
below. A geometric resolution is minimal at m ∈ M , if, by definition,
E−i|m = H−i(F ,m) for all i > 1. In such a case, the geometric resolution
is a minimal model around this point.

Since sections of vector bundles over M are projective O-modules, geometric
resolutions of singular foliations are projective resolutions of F in the category
of O-modules. It is a classical result that such resolutions always exist. But
the projective modules of a projective resolution may not correspond to vec-
tor bundles—they may not be locally finitely generated. By the Serre-Swan
theorem [50], however:

Lemma 2.2. For smooth manifolds, geometric resolutions of a singular folia-
tion F are in one-to-one correspondence with resolutions of F by locally finitely
generated projective O-modules.

In the smooth, holomorphic, algebraic, or real analytic cases, geometric resolu-
tions by trivial vector bundles are in one-to-one correspondence with geometric
resolutions by free finitely generated O-modules.

There are several contexts in which such geometric resolutions exist, at least
locally, and are of finite length. We collect such statements in the following
two propositions, which we are going to prove in Section 3.2.

Proposition 2.3. The following items hold:
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1. In the neighborhood of every point, a holomorphic singular foliation on a
complex manifold M of (complex) dimension n admits a geometric res-
olution by trivial vector bundles whose length is less or equal to n + 1,
i.e. E−i = 0 for all i ≥ n+ 2. The same statement holds true for a real
analytic singular foliation F on a real analytic manifold of dimension n.

2. A real analytic geometric resolution of a real analytic singular foliation
F is also a smooth geometric resolution of F when regarded as a smooth
singular foliation.

3. Every algebraic singular foliation on a Zarisky open subset of Cn admits
a geometric resolution by trivial vector bundles whose length is less or
equal to n+ 1.

4. There exist smooth singular foliations on R that do not admit geometric
resolutions (cf., e.g., Example 3.38 below).

5. If a geometric resolution of finite length exists, then for every point m ∈
M there is a geometric resolution of finite length in a neighborhood of
this point which is minimal at m.

In Definition 3.2 below, we consider locally real analytic singular foliations,
which are smooth foliations with the property to admit local charts such that
the generators are real analytic, while these charts are patched together by
smooth transition functions only. In this setting one can show:

Theorem 2.4. A locally real analytic singular foliation admits a geometric
resolution of length at most dimM +1 over any relatively compact open subset
of M .

In particular, every locally real analytic singular foliation on a compact mani-
fold M has a geometric resolution of finite length.

Proposition 2.5. If a singular foliation F on a connected manifold M admits
geometric resolutions of finite length in a neighborhood of all points in M , then
all its regular leaves have the same dimension r. Moreover, for every geometric
resolution of finite length (E, d, ρ) of F over an open subset of M :

r =
∑

i≥1

(−1)i−1rk(E−i).

Here rk stands for the rank of a vector bundle.

Remark 2.6. As pointed out to us by the anonymous referee, for every point
in a singular leaf in a neighborhood of which the singular foliation has p gener-
ators linked by q independent relations, Proposition 2.5 imposes the non-trivial
constraint that p− q = r.
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Here we assume that the reader is familiar with Lie ∞-algebroids, which we
denote for short by (E,Q) in this paper, and with the notion of linear part of
those: all these notions are explained in detail in Section 3.4.

Definition 2.7. Let F be a singular foliation on a manifold M . We call a
Lie ∞-algebroid (E,Q) over M a universal Lie ∞-algebroid of F , if the linear
part of (E,Q) is a geometric resolution of F .3 If E−k = 0 for all k ≥ n + 1,
we speak of a universal Lie n-algebroid of F .

Theorem 2.8. Let F be a singular foliation on a smooth manifold M which
permits a geometric resolution (E, d, ρ). Then there is a universal Lie ∞-
algebroid of F the linear part of which is the given geometric resolution.
n is the real and complex dimension of M , respectively. For a locally real ana-
lytic singular foliation4, there is a universal Lie k-algebroid over every relatively
compact open subset with k ≤ n+ 1, where n is the real dimension of M .

since in the corresponding construction one uses a partition of unity, which
is not available in those cases. The use of the word ”universal’ is justified
retrospectively by the following result:

Theorem 2.9. Let (E,Q) be a universal Lie ∞-algebroid of a singular foli-
ation F on a smooth manifold. For every Lie ∞-algebroid (E′, Q′) defining
a sub-singular foliation of F (i.e. such that ρ′

(
Γ(E′

−1)
)
⊂ F), there is a Lie

∞-algebroid morphism from (E′, Q′) to (E,Q) over the identity of M and any
two such Lie ∞-algebroid morphisms are homotopic.

This implies in particular that in the category where objects are Lie ∞-
algebroids whose induced singular foliation is included in F and where arrows
are homotopy classes of morphisms, every universal Lie ∞-algebroid over F is
a terminal object. Terminal objects always satisfy what is called a ”univer-
sality property”. An immediate consequence of the theorem is the following
uniqueness result:

Corollary 2.10. Two universal Lie ∞-algebroids of the singular foliation F
are homotopy equivalent and two such homotopy equivalences are homotopic.

It is a general fact that two terminal objects are related by a unique invertible
arrow (which is the case in the category just defined). Of course, in most well-
known cases, e.g., the universal enveloping algebra, this invertible unique arrow
is bijective, while here it is only a homotopy class of invertible-up-to-homotopy
morphisms.
Another consequence of Theorem 2.9 is the following one: suppose there is an
(ordinary) Lie algebroid A which defines a singular foliation F and that this
foliations admits a geometric resolution. Then there exists a Lie ∞-algebroid
morphism from A to any universal Lie ∞-algebroid (E,Q) of F and any two

3In particular, F is the foliation associated to (E,Q), i.e. ρ
(

Γ(E−1)
)

= F , with ρ the
anchor map of (E,Q).

4see Definition 3.2
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such morphisms are homotopic. This illustrates once more why the univer-
sal Lie ∞-algebroid (E,Q) of F is more important than a Lie algebroid that
possibly can be used to define the same foliation F ; even if it exists, it is in
particular far from unique.
Let us say a few words about the proofs of the previous results. A crucial result
is Proposition 3.64, which states that vertical vector fields on a geometric res-
olution E, seen as a graded manifold, have cohomology concentrated in a low
number of degrees only. The proofs are mainly based on step-by-step construc-
tions using this Lemma. For clarity, we have dedicated different subsections to
the proofs of different results: Theorem 2.8 is proven in Section 3.5, Theorem
2.9 is proven in Section 3.6.
As mentioned in the Introduction, several invariants and geometric properties
of the singular foliation can be derived from these two theorems: this is the
subject of Section 4. In a generalization of the known isotropy Lie algebras of
a given point m on the base M of a Lie algebroid, every Lie ∞-algebroid gives
rise to a canonical isotropy Lie ∞-algebra at m. Applying this functor, defined
in more detail in Section 3.4.5, to a universal Lie ∞-algebroid of a singular
foliation, we prove the following result.

Theorem 2.11. Let F be a singular foliation onM admitting a geometric reso-
lution in the neighborhood of m ∈M . The above construction equips H•(F ,m)
with a canonical Lie ∞-algebra structure. Its 1-bracket vanishes and its 2-
bracket, restricted to degree minus one, reproduces the isotropy Lie algebra of
[1, 4]. For two points in the same leaf, the Lie ∞-algebras are isomorphic.

We refer to this Lie ∞-algebra structure as the isotropy Lie ∞-algebra of F at
m. In Proposition 4.27 below we show that the restriction of the 3-ary bracket
to g = H−1(F ,m),

{·, ·, ·}3 : Λ
3H−1(F ,m) −→ H−2(F ,m),

is a 3-cocycle for the Chevalley-Eilenberg complex of the isotropy Lie algebra
g valued in the g-module H−2(F ,m). Its class does not depend on the choices
made within this construction and thus is an invariant associated directly to
the foliation F and the (singular) point m ∈ M . This is of relevance also
because according to Proposition 4.29 below there cannot be a Lie algebroid of
minimal rank r defining F in a neighborhood of m if this Chevalley-Eilenberg
cohomology 3-class is non-vanishing (r is the rank of F as an O-module). We
also provide an example where this class is in fact non-vanishing: for the origin
of the singular foliation F of vector fields on C4 tangent to the level sets of the
function (z1)

3 + (z2)
3 + (z3)

3 + (z4)
3, see Example 4.32.

Proposition 4.37 below, finally, states that the (appropriately defined) fun-
damental groupoid of the universal Lie ∞-algebroid of a singular foliation is
the universal cover of the holonomy groupoid described by Androulidakis and
Skandalis in [1]

Remark 2.12. Although presented here for singular foliations only, most re-
sults of this paper, in particular Theorems 2.8 and 2.9, can be adapted to
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every locally finitely generated sheaf of Lie-Rinehart algebras over the ring of
functions on a manifold M .

3 The universal Lie ∞-algebroid of a singular foliation:

existence and uniqueness

3.1 Singular foliations: definitions and examples

Let M be a manifold that may be smooth, real analytic, or complex. It may
also be a Zarisky open subset U ⊂ Cn. Generalizing to affine or projective
varieties would be an interesting topic by itself (see also [3]).
Let U be an open subset of M . Denote by O(U) the algebra of polynomi-
als, smooth, real analytic, or holomorphic functions over U , depending on the
respective context, and by X(U) the O(U)-module of vector fields. The as-
signment X : U 7→ X(U) is a sheaf of Lie-Rinehart algebras, i.e. a sheaf of Lie
algebras and a sheaf of O-modules, and both are compatible [30].
We say that a sheaf Γ: U 7→ Γ(U) is locally finitely generated, if for every
m ∈ M there exists an open neighborhood Um of m and a finite number
of sections X1, . . . , Xp ∈ Γ(Um) such that for every open subset V ⊂ Um
the vector fields X1|V , . . . , Xp|V span Γ(V ). The minimal number of local
generators of a finitely generated sheaf at a given point m ∈ M is called its
rank at m.
We define singular foliations in the smooth, complex, real analytic, and alge-
braic context as follows:

Definition 3.1. A singular foliation is a subsheaf F : U 7→ F(U) of the sheaf
of vector fields X, which is locally finitely generated as an O-submodule and
closed with respect to the Lie bracket of vector fields.

Definition 3.2. A locally real analytic singular foliation is a smooth singular
foliation over a smooth manifold M which admits, around each point, genera-
tors which are real analytic in some local chart.5

Several authors [1, 5, 17] prefer to consider compactly supported vector fields.
As pointed out by Alfonso Garmendia in [25], or in Remark 2.1.3 in [58], this
makes no difference: For a smooth manifoldM , subsheaves of the sheaf of vector
fields which are locally finitely generated are in one-to-one correspondence with
sub-modules of the module of compactly supported vector fields on M whose
restriction to an open subset is locally generated.
A singular sub-foliation F ′ of a singular foliation F is a singular foliation such
that F ′(U) ⊂ F(U) for all open subsets U ⊂ M . A singular foliation on a
manifold M will be said to be finitely generated if there exist k vector fields
X1, . . . , Xk ∈ X(M) such that for every open subset U ⊂ M the restriction of
X1, . . . , Xk to U generates F(U) over O(U).

5We do not require these local charts to be compatible and to turn M into a real analytic
manifold.
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An anchored bundle is a (smooth, real analytic, or holomorphic) vector bundle
A over M together with a vector bundle morphism ρ : A → TM over the
identity of M . We say that it covers a singular foliation F , if every point
m ∈M admits a neighborhood U such that F(U) = ρ

(
ΓU (A)

)
.6

We call leaves of a singular foliation F the connected submanifolds N of M
whose tangent space is, at every point m ∈ N , obtained by evaluating at
m all the local sections of the sheaf F , and which is maximal among such
submanifolds. The following result, now classical, is due to R. Hermann:

Proposition 3.3. [29] A singular foliation F on a manifold M induces a
partition of M into leaves.

Let rm be the dimension of the subspace of TmM obtained by evaluating all the
vector fields of a singular foliation F at m ∈ M . We say that a point m ∈ M
is regular if rm is constant in a neighborhood of m and singular otherwise.
Since the function x → rx is lower-semi-continuous, regular points form an
open dense subset of M . On a connected complex or real analytic manifold,
regular points are those for which the function m 7→ rm reaches its maximum.
This may not be true on non-connected manifolds or on smooth connected
manifolds: For instance, let us choose a function χ : R → R which vanishes on
R− and which is strictly positive on R+, then for the singular foliation on R

generated by χ(x) d
dx
, all points x ∈ R are regular except for {0}, but rx = 0

for x < 0 and rx = 1 for x > 1.
A non-trivial statement is that a leaf contains a singular point if and only if all
its points are singular, so that it makes sense to define singular leaves as being
those made of singular points and likewise regular leaves as being those made
of regular points.7

Remark 3.4. Unlike the case of regular foliations, singular foliations are not
characterized by their leaves, and two different singular foliations may have the
same leaves but differ as sheaves of vector fields. For instance, as noticed in
[5], for M a real or complex vector space, consider Fk to be the module of all
smooth, real analytic, and holomorphic vector fields, respectively, vanishing to
some fixed order k ≥ 1 at the origin. This is clearly a singular foliation for
all k, and all such singular foliations have exactly the same two leaves: the
origin and the complement of the origin. They are not, however, identical as
sub-modules of the module of vector fields.

Here is a first class of singular foliations:

6In terms of sheaves, this condition means that the sheaf F is obtained by sheafifying the
presheaf ρ

(

Γ(A)
)

.
7Of course, alternative definitions of singular or regular leaves could be given. Consider the

singular foliation on C3 of all vector fields X such that X[ϕ] = 0, with ϕ(x, y, z) = x2−y2−z2.
In algebraic geometry, it would be natural to say that the subset {ϕ(x, y, z) = 0} is a singular
leaf. With our definition, however, it is the union of the regular leaf {x2 − y2 − z2 =
0} ∩ {(x, y, z) 6= (0, 0, 0)} with the singular leaf {(0, 0, 0)}.
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Example 3.5. For A a (smooth or holomorphic [38]) Lie algebroid over M
with anchor ρ : A→ TM , the O-module ρ

(
Γ(A)

)
is a singular foliation. It is a

finitely generated foliation, because there always exists a vector bundle B such
that the direct sum A⊕B is trivial.

This class of examples includes regular foliations, orbits of a connected Lie
group action, orbits of a Lie algebra or a Lie algebroid action, symplectic
leaves of a Poisson manifold, and foliations induced by Dirac structures. It
also includes the examples (a)-(f) in [3].
Singular foliations as close as possible to regular ones deserve their own name:8

Definition 3.6. [17] A singular foliation F is said to be a Debord foliation if
it is the image of a Lie algebroid (A, [·, ·], ρ) through an anchor map which is
injective on a dense open subset.

In the smooth case, a singular foliation F is Debord if and only if it is projective
as an O-module.
Example 3.5 can be enlarged by a notion more general than the one of a Lie
algebroid:

Definition 3.7. [30] An almost-Lie algebroid over M is a vector bundle A→
M , equipped with a vector bundle morphism ρ : A → TM called the anchor
map, and a skew-symmetric bracket [ . , . ]A on Γ(A), satisfying the Leibniz
identity,

∀ x, y ∈ Γ(A), f ∈ C∞(M) [x, fy]A = f [x, y]A + ρ(x)[f ] y, (3.1)

together with the algebra homomorphism condition:

∀ x, y ∈ Γ(A) ρ
(
[x, y]A

)
=
[
ρ(x), ρ(y)

]
. (3.2)

We do not require the bracket [·, ·]A to be a Lie bracket: It may not satisfy the
Jacobi identity. However, the Jacobi identity being satisfied for vector fields,
Condition (3.2) imposes that the Jacobiator takes values in the kernel of the
anchor map at all points. The following result appeared in Proposition 2.1.4
of [40] and in Proposition 3.17 in [9]. We include a proof.

Proposition 3.8. Let M be a smooth, real analytic, or complex manifold and
(A, ρ) an anchored vector bundle.

1. For every almost-Lie algebroid structure on A → M , the image of the
anchor map ρ : Γ(A) → X(M) is a singular foliation.

2. Every finitely generated foliation on M is the image under the anchor
map of an almost-Lie algebroid, defined on a trivial bundle.

3. In the smooth case, every anchored vector bundle (A, ρ) over M that
covers a singular foliation F can be equipped with an almost-Lie algebroid
structure with anchor ρ.

8 In the literature they are sometimes also called “almost regular foliations”, see, e.g., [1].
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4. In the smooth case, a singular foliation is the image under the anchor
map of an almost-Lie algebroid if and only if it is finitely generated.

Proof. The first item follows directly from (3.1) and (3.2). Let us prove the
second item. Let X1, . . . , Xr be generators of a singular foliation F . Since F is
closed under the Lie bracket of vector fields, there exist functions ckij ∈ O(M)
satisfying:

[Xi, Xj ] =

r∑

k=1

ckij Xk, (3.3)

for all indices i, j ∈ {1, . . . , r}. Upon replacing ckij by
1
2 (c

k
ij−c

k
ji) if necessary, we

can assume that the functions ckij ∈ O(M) satisfy the skew-symmetry relations

ckij = −ckji for all possible indices. Define A to be the trivial bundle A =
Rr ×M →M . Denote its canonical global sections by e1, . . . , er and define:

1. an anchor map by ρ(ei) = Xi for all i = 1, . . . , r,

2. a skew-symmetric bracket by [ei, ej]A =
∑r

k=1 c
k
ijek for all i, j = 1, . . . , r.

One then extends these definitions to all sections by O-linearity and the Leibniz
property, respectively. By construction, this defines an almost-Lie algebroid
structure on A such that ρ(Γ(A)) = F .
Let us now prove the third item. Unlike Lie algebroid brackets, almost-Lie
algebroid brackets can be glued using partitions of unity. More precisely, let
(ϕi)i∈I be a partition of unity subordinate to an open cover (Ui)i∈I by open
sets trivializing the vector bundle A. By the proof of item 2, we can define an
almost-Lie algebroid structure with anchor ρ on the restriction of A to Ui, that
is, a bracket [·, ·]Ui that satisfies Equations (3.1) and (3.2) for all sections in
ΓUi(A). The bracket

[·, ·]A =
∑

i∈I

ϕi [·, ·]Ui (3.4)

still satisfies Equations (3.1) and (3.2) and hence defines an almost-Lie alge-
broid structure on A with anchor ρ. The last item follows from the third
one.

It has been conjectured [4] that not every smooth singular foliation is of the
type described in Example 3.5, not even only in a neighborhood of a given
point. As far as we know, the question remains open to this day.9 There are
quite a few singular foliations for which the underlying Lie algebroid structure,
if it exists at all, is at least not easy to find, for instance those described in
Examples 3.9, 3.11, 3.12, and 3.13 below.

9Not all singular foliations are, globally, the image through the anchor map of a Lie
algebroid. Here is a counter-example, given in [4]: the singular foliation of all vector fields
on R2 vanishing to order k at the point of coordinates (0, k) is locally finitely generated by
Example 3.11, but its rank is not bounded. Hence it can not be the image through the anchor
map of a Lie algebroid.
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Example 3.9. Let K = R or C:

1. Let P := (P1, . . . , Pk) be a k-tuple of polynomial functions in d variables
over K. The symmetries of P , i.e. all polynomial vector fields X ∈ X(Kd)
that satisfy X [Pi] = 0 for all i ∈ {1, . . . , k} form a singular foliation. The
special case of k = 1 appears in toy models for the Batalin-Vilkovisky for-
malism, where one may consider the symmetries of a polynomial function
S representing the classical action [21].

2. Symmetries of some affine variety W ⊂ K
d, i.e. all polynomial vector

fields X such that X [IW ] ∈ IW , where IW is the ideal of polynomial
functions vanishing on W .

3. Vector fields on C
d vanishing at all points of an affine variety W ⊂ C

d.

All the previous spaces of polynomial vector fields are closed under the Lie
bracket and form a sub-module of the module of algebraic vector fields over
the ring of polynomial functions on Kd. Since the latter is finitely generated
and since the ring of polynomial functions is Noetherian, each of these spaces is
a finitely generated module over the polynomial functions. The O(Kd)-module
generated by these polynomial vector fields is therefore also a singular foliation;
here O stands again for smooth, real analytic, or holomorphic functions.

Example 3.10. Vector fields on a manifold M which are tangent to a subman-
ifold L form an involutive module over functions. In every coordinate chart
(x1, . . . , xk, y1, . . . , yl) in which L is characterized locally by x1 = · · · = xk = 0,
this module is generated by the vector fields

(
xa

∂
∂xb

)
a,b=1,...,k

,
(

∂
∂yc

)
c=1,...,l

.

It is therefore a singular foliation. Of course, L is the only singular leaf of
this singular foliation, while the connected components ofM\L are the regular
ones.

Example 3.11. For every k, n ∈ N, vector fields vanishing to order k at the
origin of Rn form a singular foliation. For k = 1, it is the singular foliation
associated to the action of the group GL(n). In particular, it is the image
through the anchor map of a Lie algebroid. For k ≥ 2 and n ≥ 2, however, it is
not known if it can be realized as the image through the anchor map of a Lie
algebroid.

Example 3.12. A bivector field π ∈ Γ(∧2TM) on a manifold M is said to
be foliated [53], if π#(Ω1(M)) is closed under the Lie bracket. In that case,
π#(Ω1(M)) is a singular foliation. When π is Poisson bivector or twisted
Poisson [33,44,49]), it is known that T ∗M comes equipped with a Lie algebroid
structure [15] with anchor π# : T ∗M → TM , but for ‘generic’ foliated bivector
fields no such formula exists, cf. [53].
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Example 3.13. For a Leibniz algebroid, cf. Section 4.5.2 below or [35] for a
definition, the image of the anchor map is a singular foliation as well. Courant
algebroids [42] and vector bundle twisted Courant algebroids [11,13,26,41] are
particular examples of those. Another example of a Leibniz algebroid, now
defined on ∧2TM , arises from any function S on M in the following way: the
anchor is defined by means of P 7→ PS := P#(dS) and the bracket between
two bivector fields P and Q by means of

(P,Q) 7→ LPSQ.

Note that for M a vector space and S a polynomial function, the associated
singular foliation is a sub-foliation of the foliation of symmetries of S described
in Example 3.9 (or also 3.36 below).

Now we give examples of a sub-sheaf of the sheaf of vector fields which is closed
under the Lie bracket, but which is not a singular foliation.

Example 3.14. On M = R, smooth vector fields vanishing on R− are closed
under the Lie bracket but are not locally finitely generated [19], hence they do
not form a singular foliation in our sense—while they still generate leaves in
the obvious way.
χ(x) ∂

∂x
for some fixed chosen smooth function χ vanishing for not strictly

positive values of x ∈ R and being non-zero otherwise, this module is generated
by only one vector field and thus defines a singular foliation, the leaves of which
coincide precisely with those from above.

Example 3.15. ConsiderM = R2 with variables (x, y) and the C∞(M)-module
generated by the vector field ∂

∂x
and vector fields of the form ϕ ∂

∂y
where,

similarly to the function χ above, ϕ a smooth function vanishing on the half-
plane x ≤ 0 and being non-zero for x > 0. This module is closed under the
Lie bracket, but it is not locally finitely generated. This counter-example is
interesting also due to the non-existence of a good notion of leaves: evidently
the flow of these vector fields allows to connect any two points of M = R

2,
whereas the evaluation of the module gives all of T(x,y)M for x > 0, but only
a one-dimensional sub-bundle for x ≤ 0.

3.2 Existence of geometric resolutions of a singular foliation

This section is devoted to the proof of several results of Section 2 related to
the existence and the properties of geometric resolutions of singular foliations.
We start with some standard material needed henceforth.

Definition 3.16. A complex of vector bundles (E, d, ρ) over a singular folia-
tion F is a collection E of vector bundles (E−i)i≥1 over M , a collection d of
vector bundle morphisms d(i) : E−i → E−i+1, and a vector bundle morphism
ρ : E−1 → TM such that d(i−1) ◦ d(i) = 0 for all i ≥ 3, ρ ◦ d(2) = 0 and
ρ(Γ(E−1)) ⊂ F .
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A geometric resolution (E, d, ρ) of a singular foliation F , cf. Definition 2.1, is
an example of such a complex of vector bundles over F . In fact, every complex
of vector bundles over F is a geometric resolution of this foliation, if and only
if it is exact on the level of sections and satisfies ρ(Γ(E−1)) = F .

Definition 3.17. • A morphism φ between two complexes of vector bun-
dles (E, d, ρ) and (E′, d′, ρ′) over F is a collection of vector bundle mor-
phisms φi : E−i → E′

−i over the identity of M making the following dia-
gram commutative

. . . E−3 E−2 E−1 TM

. . . E′
−3 E′

−2 E′
−1 TM.

d(4)

φ3

d(3)

φ2

d(2)

φ1

ρ

id

d′(4) d′(3) d′(2) ρ′

• Two morphisms φ, ψ : (E, d, ρ) → (E′, d′, ρ′) are said to be homotopic,
if there exists a collection hi : E−i → E′

−i−1 of vector bundle morphisms

such that φi = ψi + d′(i+1) ◦ hi + hi−1 ◦ d(i) for all i ≥ 2 and φ1 =
ψ1 + d′(2) ◦ h1.

. . . E−3 E−2 E−1 TM

. . . E′
−3 E′

−2 E′
−1 TM.

d(4)

h3

φ3ψ3

d(3)

h2

φ2ψ2

d(2)

h1

φ1ψ1

ρ

id

d′(4) d′(3) d′(2) ρ′

• Two complexes of vector bundles (E, d, ρ) and (E′, d′, ρ′) over F are
said to be homotopy equivalent, if there exist chain maps φ : (E, d, ρ) →
(E′, d′, ρ′) and ψ : (E′, d′, ρ′) → (E, d, ρ) such that both φ ◦ ψ and ψ ◦ φ
are homotopic to the identity.

ψi ◦ φi = (id + h ◦ d + d ◦ h) |E−i (3.5)

for all i ≥ 2 together with

ψ1 ◦ φ1 = (id + d ◦ h) |E−1 (3.6)

and likewise conditions for φ ◦ ψ.

Lemma 3.18. For any two homotopy equivalent complexes of vector bundles of
finite length, the alternate sum of their ranks are equal.

Proof. By restricting the sequence to a point m ∈ M , one obtains a finite
length complex of vector spaces of finite dimension. Here it is known that the
alternate sum of the dimensions is preserved under homotopy equivalence. This
proves the lemma.
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Here is a second result of importance:

Lemma 3.19. Let (E, d, ρ) be a geometric resolution of a singular foliation F .
For every complex of vector bundles (E′, d′, ρ′) over F , there exists a morphism
of complexes of vector bundles over F from (E′, d′, ρ′) to (E, d, ρ) and any two
such chain morphisms are homotopy equivalent.

Proof. This is a standard result of algebraic topology, see Porism 2.2.7 (and
the discussion before) in [59].

Lemma 3.19 admits the following immediate consequence:

Lemma 3.20. Any two geometric resolutions (E, d, ρ) and (E′, d′, ρ′) of a sin-
gular foliation F are homotopy equivalent.

3.2.1 Proof of Proposition 2.3

We express our gratitude to François Petit, whose knowledge of the matter was
of crucial help.

Proof (of Proposition 2.3). The first and the third item are simply Hilbert’s
syzygy theorem, which is valid for finitely generated O-modules, with O being
the ring of holomorphic functions in a neighborhood of a point in Cn or the
ring of polynomial functions on Cn, as proven in Theorem 4 page 137 in [27]
for the holomorphic case and [20] for the algebraic case. Recall that these
theorems state that every finitely generated O-module, with O the algebra of
holomorphic or polynomial functions on an open subset V ∈ Cn, admits a
resolution of length less or equal to n+1 by finitely generated free O-modules.
It implies that for any other resolution by free modules, the kernel of d(n+1) is
a free module.
Let us deduce the real analytic case from the holomorphic one. Every real an-
alytic manifold M admits a complexification MC such that the original man-
ifold is the fixed point set of an anti-holomorphic involution σ : MC → MC.
A real-analytic singular foliation F on a real analytic manifold M induces a
holomorphic singular foliation FC on the complexificationMC. such that ρ and
(d(i))i≥2 are real, that is to say such that they are invariant under the natural
involution of the algebra O given by τ(F ) = F ◦ σ. This resolution may not be
of finite length. But the holomorphic syzygy theorem implies that the kernel
of d(n+1) is a free module, with n the dimension of M . As a consequence,
this resolution can be truncated in degree n + 1 to yield a resolution of finite
length whose anchor and differential are real. Real analytic functions on V be-
ing fixed points of the natural involution τ , this resolution can be restricted to
fixed points of τ to induce a geometric resolution of the real analytic foliation
F . This completes the proof of the first item in the real analytic case.
Now, we turn to the second item. According to Theorem 4 in [52], germs
of smooth functions at a point m are a flat module over germs of real ana-
lytic functions at m. By definition of flatness, it means that given a complex
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E−k−1 → E−k → E−k+1 of vector bundles on the base manifold such that
germs of real analytic sections have no cohomology at degree −k, the sheaf
of germs of smooth sections has no cohomology at degree −k. Let us choose
e ∈ ΓU (E−k) a local smooth section of E−k, defined on an open subset U ,
which is in the kernel of d(k) : E−k → E−k+1 at every point of U . According
to the previous discussion, for every point m ∈ U , and for every neighbor-
hood Um ⊂ U of m, there exists a smooth section fm ∈ ΓUm(E−k−1) such that
d(k+1)(fm) = e. From the family (Um)m∈U , we can extract a locally finite open
cover (Umi)i∈I indexed by I and choose a partition of unity (χi)i∈I subordinate
to it. Since d(k+1) is O-linear, f :=

∑
i∈I χifi is a section of E−k−1 over U ,

which, by construction, satisfies d(k+1)(f) = e. This proves the second item.

The fourth item is proved in Example 3.38.

For item five, one can proceed as follows. Let (E, d, ρ) be a geometric resolution
of F and m ∈ M . Let e1, . . . , ek ∈ E−1|m be a basis of d(2)(E−2|m). Denote
by ẽ1, . . . , ẽk local sections of E−2 whose images by d(2), when evaluated at m,
coincide with e1, . . . , ek, respectively. In a neighborhood U1 of m, the sections
ẽ1, . . . , ẽk, as well as their images d(2)ẽ1, . . . , d

(2)ẽk, are independent at every
point, and therefore define sub-vector bundles F−2 ⊂ E−2 and F−1 ⊂ E−1,
respectively. It is easy to check that (E′, d′, ρ′) is again a geometric resolution
of F , where E′

−i := E−i for i 6= 1, 2 and E′
−i := E−i/F−i for i = 1, 2 and where

d′ and ρ′ are the uniquely induced maps on these quotient spaces. For this new
geometric resolution, the map (d′)(2) : E′

−2 → E′
−1 is zero at the point m by

construction. The operation can then be repeated for the index i = 2 to find
a new geometric resolution such that d(3) is zero at the point m and can be
continued by recursion. Each step may require to shrink the neighborhood ofm
on which the geometric resolution is defined, but since the geometric resolution
is of finite length, only finitely many such operations are required, and the
procedure gives a geometric resolution defined in a neighborhood of m. It is
minimal at m by construction.

3.2.2 Proof of Theorem 2.4

The proof of Theorem 2.4 requires some preparation. Let (E, d) be a complex
of vector bundles over the manifold M . Consider the bicomplex (Γ(E∗

−i ⊗
E−j), d

∗ ⊗ id, id⊗ d):

...
...

...

· · · // Γ(E∗
−2 ⊗ E−3)

id⊗d
//

d∗⊗id

OO

Γ(E∗
−2 ⊗ E−2)

d∗⊗id

OO

id⊗d
// Γ(E∗

−2 ⊗ E−1)

d∗⊗id

OO

· · · // Γ(E∗
−1 ⊗ E−3)

id⊗d
//

d∗⊗id

OO

Γ(E∗
−1 ⊗ E−2)

d∗⊗id

OO

id⊗d
// Γ(E∗

−1 ⊗ E−1)

d∗⊗id

OO

(3.7)
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A graded vector bundle morphism Ξ: E• → E•+k over the identity of M can
be seen as an element of degree k in this bicomplex that we denote by Ξ.

Lemma 3.21. Let (E, d) be a complex of vector bundles over the manifold M
and D = d∗ ⊗ id− id⊗ d the total differential of the bi-complex (3.7). Then:

1. A degree 0 graded vector bundle morphism Ξ : E• → E• is a chain map,
if and only if D(Ξ) = 0.

2. Two chain maps Ξ,Ξ′ : E• → E• are homotopic with homotopy h : E• →
E•−1, if and only if Ξ− Ξ′ = D(h).

3. Let k ∈ N and (E, d, ρ) be a geometric resolution of finite length. Two
chain maps Ξ,Ξ′ : E• → E• over F that coincide upon restriction to E−i

for i ≥ k are homotopic with respect to a homotopy whose restriction to
E−i is zero for all i ≥ k if k ≥ 2 and for all i ≥ 2 if k = 1.

Proof. The first two items are straightforward to prove and we recommend it
to a reader who is not yet familiar with it. For the third item, Lemma 3.19
implies that Ξ,Ξ′ are homotopy equivalent. Since they agree in degree i > k,
their difference Ξ−Ξ′ belongs to

⊕k
i=1 Γ(E

∗
−i⊗E−i) and is exact by item two,

Ξ−Ξ′ = D(h). Because all vertical lines (Γ((E∗
−i)i≥1⊗E−j , d

∗⊗ id) for a fixed

j in (3.7) are exact except at i = 1, we may choose this h to be an element in⊕k−1
i=1 Γ(E∗

−i+1 ⊗ E−i) if k ≥ 2 and in E∗
−1 ⊗ E−2, if k = 1, 2.

The following lemma about geometric resolutions is interesting by itself.

Lemma 3.22. Assume that a singular foliation F admits a geometric resolution
(E, d, ρ) of finite length d, then it can be replaced by another one of the same
length d, (E′, d′, ρ′), such that for all i ≥ 2 the vector bundle E′

−i is trivial.

Remark 3.23. We remark in parenthesis that we cannot also make, e.g., E−1

trivial: For example, letM be the two-dimensional Moebius strip, viewed upon
as a non-trivial line bundle over S1, and let F ⊂ TM be the regular vertical
foliation. Now there is an isomorphism of line bundles ρ : Λ2TM → F , which
we can view as a length one resolution 0 → E−1 → TM . Evidently, E−1 is
non-trivial since M is not orientable. By the above procedure, we can make
this resolution longer, but only shifting the non-trivial factor to the left.

Proof (of Lemma 3.22). Let (E, d, ρ) be a geometric resolution of F . Replacing
d(i) : E−i → E−i+1 by d(i) ⊕ idV : E−i ⊕ V → E−i+1 ⊕ V for some vector
bundle V , we do not spoil the property of being a geometric resolution of F .
If we choose a vector bundle V which turns E−i ⊕ V into a trivial one, we
have obtained a new geometric resolution for which the component of degree
−i is trivial, and the only modified components are those of degrees −i and
−i+1. The geometric resolution satisfying the requirements of Lemma 3.22 can
be obtained by applying this procedure recursively: We start by turning the
component of degree −d into a trivial vector bundle, by modifying omponents
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of degree −d and −d + 1 as above. Then we turn the component of degree
−d + 1 of the obtained geometric resolution into a trivial vector bundle, and
so on. The last component that can be made trivial by this procedure is the
component of degree minus two.

Proposition 3.24. For two geometric resolutions (E, d, ρ) and (F, d′, ρ′) of F
of finite length over U and V , respectively, which satisfy items α and β below
for some k ≥ 2, we can modify them into two such resolutions satisfying these
conditions for k lowered by one.

α. There are two degree −1 maps h : E• → E•−1 and h′ : F• → F•−1 which
vanish upon restriction to E−i and F−i for all i ≥ k if k ≥ 2 and for all
i ≥ 2 if k = 1, and two chain maps φ : E → F and ψ : F → E and such
that the following diagram constitutes a homotopy equivalence over U ∩V

· · · E−k−1 E−k E−k+1 . . . E−1

TM|U∩V

· · · F−k−1 F−k F−k+1 . . . F−1

d d

φk+1 φk

d

h

φk−1

d

h

d

h

φ1

ρ

d d

ψk+1 ψk

d′

h′

ψk−1

d′

h′

d′

h′

ψ1

ρ′

(3.8)

In particular φi and ψi are (strictly) inverse to one another for i ≥ k+1.

β. For i ≥ 2, each one of the vector bundles E−i and F−i is trivial.

The proof of Proposition 3.24 requires two lemmas.

Lemma 3.25. Let φ, ψ, h be a homotopy equivalence as in (3.8). The following
vector bundle automorphisms of E−k ⊕ F−k over U ∩ V ,

Φk =

(
h ◦ d −ψk
φk −id

)
and Ψk =

(
−id ψk
−φk h′ ◦ d′

)
,

written in an obvious matrix notation, are inverse to one another.

Proof. A direct calculation yields:

Ψk ◦ Φk =

(
id 0(

h′ ◦ φk−1 − φk ◦ h
)
◦ d id

)

and

Φk ◦Ψk =

(
id

(
h ◦ ψk−1 − ψk ◦ h

′
)
◦ d′

0 id

)
.

By item α in the recursion relation, we have φk ◦ψk = id+h′ ◦d′ and ψk ◦φk =
id + h ◦ d. Applying φk on the right to the first of these relations and to the
left of the second one, we obtain

φk ◦ ψk ◦ φk = φk + h′ ◦ φk−1 ◦ d = φk + φk ◦ h ◦ d.
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This implies that the lower left block of Ψk ◦ Φk is zero. The same procedure
applied to the upper right block of Φk ◦Ψk concludes the proof.

The proof of the next lemma follows from a direct computation, left to the
reader.

Lemma 3.26. Let φ, ψ, h be a homotopy equivalence as in (3.8) and Φk,Ψk as
in Lemma 3.25. Let us consider the following vector bundle automorphisms
Φk−1 and Ψk−1 of E−k+1 ⊕ F−k+1 over U ∩ V :

Φk−1 =

(
h −ψk

φk−1 −d′

)
and Ψk−1 =

(
−d ψk−1

−φk h′

)
.

They make the following diagrams commutative,

· · ·E−k−1 E−k ⊕ F−k E−k+1 ⊕ F−k E−k+2 · · ·

· · ·F−k−1 E−k ⊕ F−k E−k ⊕ F−k+1 F−k+2 · · ·

φk+1

D

Φk

D

Φk−1

D̃

φk−2

D
′

D′ D̃′

(3.9)
and

· · ·E−k−1 E−k ⊕ F−k E−k+1 ⊕ F−k E−k+2 · · ·

· · ·F−k−1 E−k ⊕ F−k E−k ⊕ F−k+1 F−k+2 · · ·

D D D̃

ψk+1

D
′

Ψk

D′

Ψk−1

D̃′

ψk−2

(3.10)
if D and D are defined as follows:




D =

(
d
0

)
, D =

(
d 0
0 id

)
, and D̃ =

(
d 0

)
,

D
′
=

(
0
d′

)
, D′ =

(
id 0
0 d′

)
, and D̃′ =

(
0 d′

)
.

(3.11)

Proof (of Proposition 3.24). By item β, we know that there exist isomorphisms
τk : E−k

∼−→ U × W and τ ′k : F−k
∼−→ V × W′ for some vector spaces W and

W′, respectively. Now we replace the resolutions in the induction assumption
by two new ones, which coincide with the previous ones except for in degrees
−k and −k + 1, where:

· · ·E−k−1 E−k ⊕ U ×W′ E−k+1 ⊕ U ×W′ E−k+2 · · ·

· · ·F−k−1 V ×W⊕ F−k V ×W⊕ F−k+1 F−k+2 · · ·

D D D̃

D
′

D′ D̃′

(3.12)
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with D,D, D̃,D
′
, D′, D̃′ as in (3.11).

Over the restriction to U ∩ V , we define a degree 0 map Φ̃ = (Φi)i≥1 of the
upper geometric resolution in (3.12) to the lower one:





Φ̃i = φi for i 6= k, k − 1,

Φ̃k−1 =

(
τk 0
0 id

)
◦ Φk−1 ◦

(
id 0
0 τ ′k

)−1

,

Φ̃k =

(
τk 0
0 id

)
◦ Φk ◦

(
id 0
0 τ ′k

)−1

,

where Φk is the map defined in Lemma 3.26. Similarly, using the map Ψk,
we define a degree 0 map Ψ̃ = (Ψi)i≥1 from the lower geometric resolution in

(3.12) to the upper one. By Lemma 3.26, both Φ̃ and Ψ̃ are chain maps. By the
inductive assumption, Φ̃i is the inverse of Ψ̃i for all i ≥ k+1 and Lemma 3.25
implies that Φ̃k is the inverse of Ψ̃k. As a consequence, Ψ̃ ◦ Φ̃ and the identity
map coincide upon restriction to E−i|U∩V for i ≥ k and likewise so for Φ̃ ◦ Ψ̃)
upon restriction to F−i|U∩V . The third item of Lemma 3.21, finally, yields
homotopies, where the exceptional case k = 1 is treated separately. These,
together with Ψ̃ and Φ̃, show that the modified geometric resolutions (3.12)
indeed satisfy the conditions of Proposition 3.24 for k lowered by one.

Lemma 3.27. Two geometric resolutions of F of finite length over U and V ,
respectively, which satisfy items α and β in Proposition 3.24 for k = 1 have
restrictions to U ∩ V which are isomorphic.

Proof. Let us spell out items α and β in Proposition 3.24 for k = 1: There exist
two degree minus one maps h : E• → E•−1 and h′ : F• → F•−1 which vanish
upon restriction to E−i and F−i, respectively, for i ≥ 2. In addition, there are
two chain maps φ : E → F and ψ : F → E such that, for all i ≥ 2, the linear
maps φi and ψi are inverse to one another. Together they make the following
diagram a homotopy equivalence over U ∩ V :

. . . E−3 E−2 E−1

TM |U∩V

. . . F−3 F−2 F−1

d d

φ3

d

φ2 φ1

ρ
h

d′

ψ3

d′

ψ2

d′

ψ1

ρ′

h′

.

Let us show that (E, d, ρ) and (F, d′, ρ′) are isomorphic upon restriction to
U ∩ V . A direct computation shows that ψ1 − d ◦ ψ2 ◦ h

′ is a right inverse of
φ1:

φ1◦(ψ1−d◦ψ2◦h
′) = id+d′◦h′−φ1◦d◦ψ2◦h

′ = id+d′◦h′−d′◦φ2◦ψ2◦h
′ = id.
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Since, for any two resolutions, the alternate sum of the ranks are equal by
Lemma 3.18, the ranks of E−1 and F−1 have to be equal, and thus the right-
invertible morphism φ1 is invertible.

Proof (of Theorem 2.4). According to items one and two of Proposition 2.3,
locally real analytic singular foliations admit geometric resolutions in some
neighborhood of each point. We therefore have to show that geometric resolu-
tions can be ”glued”. More precisely, we want to show that given U, V ⊂ M
open sets over F which admit geometric resolutions (E, d, ρ) and (F, d′, ρ′) of
finite length n + 1, respectively, one can construct a smooth geometric reso-
lution (G, d′′, ρ′′) of F on U ∪ V , which is equally of length n + 1. Then the
statement about relatively compact subsets of M follows immediately.
We use Lemma 3.22 to replace both (E, d, ρ) and (F, d′, ρ′) with two new ones
for which each of the vector bundles E−i and F−i is trivial for i ≥ 2. By
Lemma 3.20, the two requirements α and β of Proposition 3.24 are satisfied for
k = n+ 1.
Applying recursively Proposition 3.24 from n+ 1 down to 2, we construct two
geometric resolutions over U and V which satisfy items α and β for k = 1.
Lemma 3.27, finally, shows that the obtained geometric resolutions over U and
V have restrictions to U ∩ V which are isomorphic. By taking their disjoint
union quotiented by the isomorphism, we obtain a geometric resolution of F
on U ∪ V . This concludes the proof of the theorem.

Remark 3.28. Theorem 2.4 does not make use of the Lie bracket of vector fields
of a singular smooth foliation F , but only uses the local O-module structure
of F . Thus, in fact, what we have proven is: If a sheaf of locally finitely
generated C∞(M)-modules admits a finitely generated projective resolution of
finite length at most k around each point m ∈ M , it also admits a finitely
generated projective resolution of length at most k over any relatively compact
open subset of M .

3.2.3 Proof of Proposition 2.5

Proof (of Proposition 2.5). Let m ∈ M be a point and let (E, d, ρ) be a geo-
metric resolution of F of finite length, defined on a neighborhood U ofm. Since
the geometric resolution (E, d, ρ) is of finite length, we can assume without any
loss of generality that the complex

. . . ΓV (E−2) ΓV (E−1) FV 0d(3) d(2) ρ

is exact for all open subsets V ⊂ U [22].
Let m′ be a regular point of F contained in U and V ⊂ U a neighborhood of
m′ on which the foliation is generated by r vector fields X1, . . . , Xr. Under
this assumption, the restriction to V of the foliation F admits a geometric
resolution (E′, d′, ρ′) of length one: It is given by the vector bundles E′

−i = 0
for i 6= 2, E′

−1 := Rr × V and the anchor map ρ′ : (λ1, . . . , λr) 7→
∑r

i=1 λiXi
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(with the understanding that sections of E′
−1 are seen as r-tuples of functions

(λ1, . . . , λr) on V .)
Hence, the restriction to V of the singular foliation F admits two different
geometric resolutions: the restriction to V of (E, d, ρ) and the geometric reso-
lution (E′, d′, ρ′). By Lemma 3.20, these geometric resolutions are homotopy
equivalent. In particular, the alternate sum of the ranks is equal to r, Lemma
3.18 implies that r =

∑
i≥1(−1)i−1rk(E−i). It particular, all the regular leaves

contained in U have the same dimension. The manifold M being connected,
the argument above being valid for some neighborhood U of an arbitrary point
in M , the dimensions of all the regular leaves of F have to be equal to r. This
completes the proof.

3.3 Examples of geometric resolutions of singular foliations

We give several examples of geometric resolutions of singular foliations:

Example 3.29. For a regular foliation F , a geometric resolution is given by
E−1 = TF and E−i = 0 otherwise. The anchor map is the inclusion TF →֒
TM .

Example 3.30. Debord foliations (Definition 3.6) are precisely singular folia-
tions that admit a geometric resolution of length one.

The following four examples are set up in the algebraic context, but can be con-
sidered also within the holomorphic, real analytic setting, and smooth setting,
in part with the obvious adaptations. Recall in this context that real ana-
lytic geometric resolutions are also smooth geometric resolutions, see Proposi-
tion 2.3.

Example 3.31. The Lie algebra sl2 has three canonical generators h, e, f that
satisfy [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. It acts on R2 through the vector
fields:

h = x
∂

∂x
− y

∂

∂y
, e = x

∂

∂y
, f = y

∂

∂x
. (3.13)

Here, we denote by x, y the coordinates of R2. The O(R2)-module generated by
h, e, f is a singular foliation, that can be seen as smooth or real-analytic. The

vector fields given in (3.13) are not independent over O(R2), but every relation
between them is a multiple of the relation:

xyh+ y2e− x2f = 0. (3.14)

Let us describe a geometric resolution. We define E−1 to be the trivial vector
bundle of rank 3 generated by 3 sections that we denote by ẽ, f̃ , h̃. Then we
define an anchor by

ρ(ẽ) = e, ρ(f̃) = f, ρ(h̃) = h. (3.15)
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We define E−2 to be the trivial vector bundle of rank 1, generated by a section
that we call 1. We define a vector bundle morphism from E−2 to E−1 by:

d(2)(1) = xyh̃+ y2ẽ− x2f̃ . (3.16)

We then impose E−i = 0 and d(i) = 0 for i ≥ 3. The triple (E, d, ρ) is a
geometric resolution of the singular foliation given by the action of sl2 on R2.

Example 3.32. We owe this example to discussions with Rupert Yu and Alexei
Bolsinov. The adjoint action of a complex Lie algebra g on itself defines a
holomorphic singular foliation Fad on the manifold M := g.
functions on g invariant under the adjoint action. According to Chevalley’s
theorem [14], these generators can be chosen to be independent as polynomials,
and l coincides with the rank of g. More precisely, it follows from Theorem
6.5 and Corollary 6.6 in [55] that the differentials of P1, . . . , Pl are independent
covectors at every point in a regular orbit. Since the set of singular points forms
a subvariety of codimension three by Theorem 4.12 in [55], the differentials of
these functions are independent at every point outside of it. Let us call regular
points the points in this Zarisky open subset of g.
Let E−1 be the trivial bundle over M = g with typical fiber g, and E−2 be the
trivial bundle over M with typical fiber Rl. Let ρ : E−1 → TM be, at a point
m ∈M = g, the vector bundle morphism obtained by mapping a ∈ (E−1)m ≃ g

to [a,m] ∈ TmM ≃ g. Let d(2) be the vector bundle morphism mapping, for all

m ∈M , an l-tuple (λ1, . . . , λl) ∈ (E−2)m to
∑l

i=1 λi gradm(Pi) ∈ (E−1)m ≃ g,
where grad stands for the gradient computed with the help of the Killing form.
with the kernel of ρ at all regular points. Alexei Bolsinov gave us the following
argument which shows that the previous complex is a geometric resolution of
Fad: Let a be a holomorphic section of E−1 which is in the kernel of ρ at
every point. Then, at every regular point m ∈ g, there exist unique numbers
λ1(m), . . . , λl(m) such that:

a(m) =

l∑

i=1

λi(m) gradm(Pi).

The functionsm 7→ λi(m) are meromorphic on g and are holomorphic at regular
points. Since singular points form a subvariety of codimension three by the
discussion above, these functions extend to holomorphic functions on g, by,
e.g., Theorem III.6.12 in [24]. This implies that the section a lies in the image
of d(2). Hence the complex is exact.
Notice that in this example the rank of E−1 is equal to the dimension of the Lie
algebra g and the rank of E−2 to the one of its Cartan algebra. Their difference
is the dimension of the regular leaves, in agreement with Proposition 2.5.

Example 3.33. Let ϕ be a polynomial function on V := Cn. The contraction
by dϕ defines a complex of trivial vector bundles over V :

. . . ∧3TV ∧2TV TV C,
ιdϕ ιdϕ ιdϕ ιdϕ
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whereW stands for the trivial bundle V ×W with fiberW . Let Xi := Γ(ΛiTV )
stand for the sheaf of i-multivector fields on V . Taking sections of the previous
complex of vector bundles, we obtain the a complex of O-modules called a
Koszul complex associated to ϕ:

. . . X3 X2 X1 O,
ιdϕ ιdϕ ιdϕ ιdϕ

The image of the map X1(V ) → O(V ) is the ideal generated by the functions
∂ϕ
∂x1

, . . . , ∂ϕ
∂xn

. According to a classical theorem of Koszul [20], the previous

complex is exact, if the sequence ∂ϕ
∂x1

, . . . , ∂ϕ
∂xn

is a regular sequence. This
happens in particular when ϕ is weight-homogeneous and admits an isolated
singularity at the origin.
In that case, the following complex of vector bundles over M

. . . ∧3TV ⊗ V ∧2TV ⊗ V TV ⊗ V C⊗ V ≃ V ,
ιdϕ⊗id ιdϕ⊗id ιdϕ⊗id ιdϕ⊗id

is again trivial at the level of sections, since it is just n copies of the above com-
plex. It is therefore a geometric resolution of the singular foliation generated
by the vector fields

{
∂ϕ

∂xi

∂

∂xj
, with i, j = 1, . . . , n

}
.

This singular foliation is what we will call singular foliation of vector fields
vanishing on the singular locus of ϕ. When the ideal generated by ∂ϕ

∂x1
, . . . , ∂ϕ

∂xn
is nilradical, it is exactly the singular foliation of vector fields vanishing on the
subset ∂ϕ

∂x1
= · · · = ∂ϕ

∂xn
= 0.

Example 3.34. Let F be the singular foliation of all vector fields vanishing at
the origin 0 of a vector space V = Cn (or V = Rn). Applying Example 3.33
to the function ϕ = 1

2

∑n
i=1 x

2
i , we obtain a geometric resolution of F . Let us

describe it in a precise manner, where, in the first factor and to simplify the
notation, we identify V and V ∗ using the canonical inner product:

1. For all i ∈ Z, E−i is the trivial bundle over V with fiber ∧iV ∗ ⊗ V .

2. At a given point e ∈ V , the anchor map V ∗ ⊗ V → TeV ≃ V is given by
ρ(α⊗ v) = ιeαv.

3. At a given point e ∈ V , the differential d(i+1) : E−i−1 → E−i is given by:

d(i+1)(α⊗ u) := (ieα)⊗ u, (3.17)

for all α ∈ ∧i+1V ∗, u ∈ V.

Example 3.35. Let F be the singular foliation of all vector fields vanishing
to order k at the origin 0 of a vector space V of dimension n over K = R or
K = C. By Hilbert’s syzygy theorem, there exist a projective resolution of
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length n + 1 of the ideal Ik0 of functions on V vanishing to order k at 0 ∈ V .
This projective resolution has to be of the form:

. . .
δ
// Γ(I−2)

δ
// Γ(I−1)

ρ0
// Ik0

for some family of vector bundle (I−i)i≥1 over V (which are in fact trivial vector
bundles). A resolution of F is then given by

. . .
δ⊗id

// Γ(I−2 ⊗K V )
δ⊗id

// Γ(I−1 ⊗K V )
ρ0⊗id

// Ik0 ⊗K V = F

(with the understanding that, e.g., an element f ⊗ v ∈ Ik0 ⊗K V is the vector
field fv on V where v is the constant vector field associated to v ∈ V ).

0 → O2 δ
→ O3 ρ0

→ I2
0

with δ(F,G) = (yF,−xF − yG, xG) and ρ0(F,G,H) = x2F + xyG + y2H .
Here (x, y) are the canonical coordinates on V . In this example, I−1 is easily
identified with the trivial bundle with fiber S2(V ∗). Under this identification,
the anchor maps α⊗v (with α ∈ S2(V ∗), v ∈ V ) to α∗ v, with the understanding
that α∗ stands for the homogeneous polynomial function of degree 2 on V
associated to α ∈ S2(V ∗).

Example 3.36. Let ϕ be a function on V := Cn such that
(
∂ϕ
∂x1

, . . . , ∂ϕ
∂xn

)
is

a regular sequence. Consider the singular foliation Fϕ made of all vector fields
X on V such that X [ϕ] = 0. Since the Koszul complex defined in Example
3.33 has no cohomology in degree −1, the singular foliation Fϕ is generated by
the vector fields:

{
∂ϕ

∂xi

∂

∂xj
−
∂ϕ

∂xj

∂

∂xi
, with 1 ≤ i < j ≤ n

}
. (3.18)

Since the Koszul complex defined in Example 3.33 has no cohomology in degree
−i for i ≥ 2, a geometric resolution of that foliation is given by E−i := ∧i+1V
and d := ιdϕ. In that case, Γ(E−i) = Xi+1 with Xi being the projective
O(M)-module of i-vector fields on M ≡ Cn.

Example 3.37. In the case of items 2 and 3 of Example 3.9, the Hilbert Syzygy
theorem implies that a geometric resolution by trivial vector bundles of length
n+ 1 exists [20].
Since O is Noetherian, X (W ) admits a geometric resolution by trivial vector
bundles. The Syzygy theorem implies that it can be chosen to be of finite
length again.

Example 3.38. The following example, that we owe to Jean-Louis Tu, provides
a smooth singular foliation that does not admit smooth geometric resolutions.
Let χ be a smooth real-valued function onM := R vanishing identically on R−
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and strictly positive on R∗
+. Consider the singular foliation F generated by the

vector field v on R defined by:

v := χ(t)
d

dt
. (3.19)

All points in R∗
− and all points in R∗

+ are regular points. There are, therefore, an
uncountable family of regular leaves of dimensions 0 and there is one regular
leaf of dimension 1. Proposition 2.5 implies that no geometric resolution of
finite length exists.
Assume there is one. By an obvious adaptation of the last item in Proposi-
tion 2.3, we can replace it on a neighborhood of 0 by a geometric resolution
(E, d, ρ) such that the vector bundle morphism d(2) is zero at the point t = 0.
Without any loss of generality, we can assume there exists a nowhere vanishing
section e such that ρ(e) = v. Since an open interval of R is a contractible mani-
fold, the vector bundle E−1 must be trivial. Denote by n1 the rank of E−1. The
module Γ(E−1) is generated by n1 generators e1, . . . , en1 . Without any loss of
generality, we can assume that e1 = e. We then have for every 1 ≤ k ≤ n1:
ρ(ek) = gkv = gkρ(e1) for some function gk ∈ C∞(U). It implies that
ρ(ek − gke1) = 0. Since Im

(
d(2)

)
= Ker(ρ), there exist f2, . . . , fn1 ∈ Γ(E−2)

such that d(2)(fk) = ek − gke1 for all k = 2, . . . , n1. This contradicts the as-
sumption that d(2) vanishes at t = 0, unless n1 = 1. Now, if n1 = 1, then the
kernel of ρ : ΓU (E−1) → X(U) is made of all real-valued functions vanishing on
R+ ∩ U . This is not a finitely generated module. As a conclusion, F does not
admit smooth geometric resolutions.

3.4 Lie ∞-algebroids, their morphisms, and homotopies of those

In this section we recall and/or provide the needed facts about Lie ∞-
algebroids, morphisms between Lie ∞-algebroids, and a good notion of homo-
topies between such morphisms. It will be defined in the smooth, real analytic,
and holomorphic settings all together. We will also define the functor to the
isotropy Lie ∞-algebra associated to each point m ∈M .

3.4.1 Lie ∞-algebras, Lie ∞-algebroids, and NQ-manifolds

Let us explain how we deal with the notion of Lie ∞-algebroids and its dual
notion of NQ manifolds. In this article, we think and prove results with the
NQ-manifold point of view, because this is the point of view that makes mor-
phisms easier to deal with. But we state theorems using the Lie ∞-algebroids
point of view, since it is a notion which seems easier to grasp for mathemati-
cians who work on singular foliations, but are not used to the language of
graded geometry.

Definition 3.39. A Lie ∞-algebra is a graded vector space E =
⊕

i≥1E−i

together with a family of graded-symmetric n-multilinear maps
(
{. . .}n

)
n≥1

of
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degree +1, called n-ary brackets, which satisfy a set of compatibility conditions
that are called higher Jacobi identities. For all n ≥ 2 and for every n-tuple of
homogeneous elements x1, . . . , xn ∈ E, they are defined by:

n∑

i=1

∑

σ∈Un(i,n−i)

ǫ(σ)
{
{xσ(1), . . . , xσ(i)}i, xσ(i+1), . . . , xσ(n)

}
n−i+1

= 0, (3.20)

where ǫ(σ) is the Koszul sign induced by the permutation of the elements
x1, . . . , xn:

xσ(1) ⊙ . . .⊙ xσ(n) = ǫ(σ)x1 ⊙ . . .⊙ xn, (3.21)

where ⊙ is the symmetric product on Γ
(
Sn(E)

)
. Un(i, n − i) denotes the set

of un-shuffles. A Lie ∞-algebra structure is said to be a Lie n-algebra when
E−i = 0 for all i ≥ n+ 1.

We now provide a possible definition of Lie ∞-algebroids [37]:

Definition 3.40. Let M be a smooth/real analytic/complex manifold whose
sheaf of functions we denote by O. Let E be a sequence E = (E−i)1≤i<∞ of
vector bundles over M . A Lie ∞-algebroid (resp. Lie n-algebroid) structure on
E consists of a Lie ∞-algebra (resp. Lie n-algebra) structure on the sheaf of
sections of E together with a vector bundle morphism ρ : E−1 → TM , called the
anchor, such that the brackets {. . .}n are O-linear in each of their n arguments
except if n = 2 and at least one of its two entries has degree minus one. Then,
the 2-ary bracket satisfies the following Leibniz identity:

{x, fy}2 = f{x, y}2 + ρ(x)[f ] y. (3.22)

for all x ∈ Γ(E−1), y ∈ Γ(E) and f ∈ C∞.

Remark 3.41. Its follows from these axioms that ρ is a morphism of brack-
ets (for all x, y ∈ Γ(E−1) one has ρ({x, y}2) = [ρ(x), ρ(y)]), and that
ρ ◦ {·}1

∣∣
E−2

= 0. The above definition relies on the symmetric convention

of the Lie ∞-algebras found e.g. in [32]. The original definition of Lie ∞-
algebras involves graded skew-symmetric brackets [36]; however, they are in
one-to-one correspondence with the above ones, cf. [43, 45].

We observe that for Lie n-algebroids all k-ary brackets with k ≥ n + 2 are
trivial for degree reasons. Moreover, for every Lie ∞-algebroid, the following
sequence:

. . . E−3 E−2 E−1 TM,d(4) d(3) d(2) ρ
(3.23)

is a complex of vector bundles that we call its linear part.
Also, for every Lie ∞-algebroid E over M , the 2-ary bracket restricts to a
skew-symmetric bilinear bracket on Γ(E−1). Together with the anchor map, it
defines an almost-Lie algebroid structure on E−1. Therefore, by using the first
item of Proposition 3.8, we obtain:
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Proposition 3.42. For every Lie ∞-algebroid E over M with anchor ρ, the
sheafification of the pre-sheaf ρ

(
Γ(E−1)

)
is a singular foliation.

We call this singular foliation the singular foliation of the Lie ∞-algebroid
structure on E.
The definition of Lie ∞-algebroids above, although elementary, is quite cum-
bersome and often hard to use—especially when dealing with morphisms later
on. Q-manifolds with purely non-negative degrees, called NQ-manifolds, are
much more efficient objects and in one-to-one correspondence with the Lie
∞-algebroids. Let us define them.
We call a sequence E := (E−i)i≥1 of finite rank vector bundles overM indexed
by negative numbers an N -manifold E → M .10 An element x ∈ Γ(E−i) is
said to be of degree −i, written as |x| = −i. The sheaf of graded commutative
O-algebras of smooth, real analytic, or holomorphic sections of the graded-
symmetric algebra S(E∗) will be denoted by E and called the functions on the
N -manifold E →M . Here, it is understood that E∗ =

⊕
i≥1 E

∗
−i and sections

of E∗
−i are considered to be of degree +i.

By construction, E is a sheaf of graded commutative O-algebras. For every
positive k and n, sections of

⊕

i1+···+ik=n

E∗
−i1 ⊙ . . .⊙ E∗

−ik
,

where ⊙ denotes the graded-symmetric tensor product, will be said to be of

degree n and of arity k and will be denoted by E
(k)
n .

Graded derivations of E will be called vector fields on the N -manifold E →M .
A vector field Q is said to be of arity k if, for all function F ∈ E of arity l, the
arity of Q[F ] is l + k. Every vector field Q can be decomposed as an infinite
sum:

Q =
∑

k≥−1

Q(k)

with Q(k) being a vector field of arity k. The degree of a vector field is defined
in in a similar manner. A vector field Q of odd degree commuting with itself11,
i.e. satisfying Q2 := 1

2 [Q,Q] = 0, is said to be homological.

Definition 3.43. An NQ-manifold is a pair (E,Q) where E → M is an N -
manifold over some base M and where Q is a homological vector field of degree
+1.

By construction, for every NQ-manifold (E,Q) with sheaf of functions E , we
have an isomorphism of sheaves E0 ≃ O, while E1 ≃ Γ(E∗

−1), so that the

10Strictly speaking, this is only an example of an N-manifold, but after the choice of what
is called splittings, every N-manifold takes this form. We will henceforth always talk about
these split graded manifolds without further mention.

11 The graded commutator [P,Q] of two graded derivations P and Q of degrees p and q,
respectively, is by definition the graded derivation P ◦Q− (−1)pqQ ◦ P .
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derivation Q maps O to Γ(E∗
−1). By the derivation property, there exists a

unique morphism of graded vector bundles ρ : E−1 → TM such that
〈
Qf, x

〉
= ρ(x) f for all f ∈ O, x ∈ Γ(E−1). (3.24)

Here 〈 . , . 〉 stands for the duality pairing between sections of a vector bundle
and sections of its dual and the application of a vector field to a function is
understood when the former one precedes the latter one. We call the vector
bundle morphism ρ the anchor map of the NQ-manifold (E,Q).

Q =
∑

k≥0

Q(k) (3.25)

The next result is classical by now [57] and describes the duality between Lie
∞-algebroids and NQ-manifolds.

Theorem 3.44. Let E = (E−i)i≥1 be a sequence of vector bundles over a mani-
fold M . There is a one-to-one correspondence between (split) NQ-manifolds
and Lie ∞-algebroid structures on E. The anchor ρ of both is identified by
means of Equation (3.24) above. In addition, under this correspondence:

1. The differential d of the linear part of the Lie ∞-algebroid structure is
obtained by dualizing the arity zero component Q(0) of Q, i.e. for all
α ∈ Γ(E∗) and x ∈ Γ(E):

〈
Q(0) α, x

〉
= (−1)|α|

〈
α, d(x)

〉
. (3.26)

2. The 2-ary bracket {. , .}2 and the arity one component Q(1) are related
by:

〈
Q(1) α, x⊙ y

〉
= ρ(x) 〈α, y〉 − ρ(y) 〈α, x〉 − 〈α, {x, y}2〉, (3.27)

for all homogeneous elements x, y ∈ Γ(E) and α ∈ Γ(E∗), with the un-
derstanding that ρ vanishes on E−i for i 6= 1.

3. For every n ≥ 3, the n-ary brackets {. . .}n : Γ
(
Sn(E)

)
→ Γ(E) and the

component Q(n−1) : Γ(E∗) → Γ(SnE∗) of arity n − 1 of Q are dual one
to the other.

Convention. We shall denote Lie ∞-algebroids as pairs (E,Q), with Q the
homological vector field of the corresponding NQ-manifold E. As before, E =
Γ
(
S(E∗)

)
is its sheaf of functions. Its linear part shall be denoted by (E, d, ρ),

with ρ being the anchor map.

3.4.2 Morphisms of Lie ∞-algebroids

Definition 3.45. A Lie ∞-algebroid morphism from a Lie ∞-algebroid
(E′, Q′) to a Lie ∞-algebroid (E,Q), with sheaves of functions E ′ and E, respec-
tively, is a graded commutative algebra morphism Φ: E → E ′ which intertwines
Q and Q′:

Φ ◦Q = Q′ ◦ Φ. (3.28)
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Every Lie ∞-algebroid morphism Φ induces a smooth map φ : M ′ → M that
we call the base morphism. We say that a Lie ∞-algebroid morphism Φ is over
the identity of M , if the base morphism φ is the identity map. It also induces
a graded vector bundle morphism φ0 : E

′
• → E• over φ that we call the linear

part of Φ.

Remark 3.46. Equation (3.28), restricted to terms of arity 0, implies that the
linear part φ0 of a Lie ∞-algebroid morphism Φ from (E′, Q′) to (E,Q) is a
chain map between their respective linear parts:

. . . E′
−3 E′

−2 E′
−1 TM ′.

. . . E−3 E−2 E−1 TM

d′ d′

φ0 φ0

d′

φ0

ρ′

φ∗

d d d ρ

An O-linear map from E := Γ
(
S(E∗)

)
to E ′ := Γ

(
S(E′∗)

)
, which is not neces-

sarily a Lie ∞-algebroid morphism, is said to be of arity/degree k if it maps
functions of arity/degree l in E to functions of arity/degree l + k in E ′. By
construction, the component Φ(k) is such that the arity of Φ(k)(F ) is k + l for
every function F of arity l. In particular, Φ can be decomposed into compo-
nents according to arity, which allows us to consider Φ as a formal sum:

Φ =
∑

k∈Z

Φ(k) . (3.29)

The component Φ(k) of arity k ≥ 0 maps Γ(E∗) to Γ
(
Sk+1(E′∗)

)
. By O-

linearity, it gives rise to a section of Sk+1(E′∗)⊗ E that we denote by φk and
call the k-th Taylor coefficient of Φ. For all α ∈ Γ(E∗) one has, by definition,

Φ(k)(α) = 〈φk, α〉. (3.30)

It deserves to be noticed that Φ: E → E ′ is a graded morphism of algebras if
and only if Φ(i) = 0 for all i < 0 and for all k, n ∈ N and all α1, . . . , αk ∈ Γ(E∗)
one has:

Φ(n)(α1 ⊙ · · · ⊙ αk) =
∑

i1+···+ik=n

Φ(i1)(α1)⊙ · · · ⊙ Φ(ik)(αk). (3.31)

Φ is a morphism of N -manifolds if, in addition, it has degree zero. Evidently,
every algebra morphism is determined uniquely by its Taylor coefficients.
Let (E,Q) and (E′, Q′) be two Lie ∞-algebroids over M with sheaves of func-
tions E and E ′, respectively. We define a degree one operator on the space of
linear maps Lin(E , E ′) from E to E ′ by

QE,E′ : Lin(E , E ′) → Lin(E , E ′),

Ψ 7→ Q′ ◦Ψ− (−1)|Ψ|Ψ ◦Q
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for every map of graded manifolds Ψ: E → E ′ of homogeneous degree |Ψ| ∈ Z.
This operator squares to zero because both vector fields are homological. It
generalizes the BV-operator in the AKSZ-construction. One evidently has the
following statement:

Lemma 3.47. Let (E,Q)and (E′, Q′) be Lie ∞-algebroids. A graded algebra
morphism Φ: E → E ′ is a Lie ∞-algebroid morphism iff it is a degree zero
QE,E′-cocycle, i.e. iff QE,E′(Φ) = 0.

Definition 3.48. For every graded algebra morphism Φ: E → E ′, a homoge-
neous map W : E → E ′ of degree k which satisfies

W (F ⊙G) =W (F )⊙ Φ(G) + (−1)k|F |Φ(F )⊙W (G) (3.32)

for all homogeneous functions F,G ∈ E is called a Φ-derivation of degree k. We

denote the space of Φ-derivations by X(E
Φ
→ E ′) and its restriction to O-linear

ones by Xvert(E
Φ
→ E ′).

Lemma 3.49. For every graded algebra morphism Φ: E → E ′ of degree k:

1. QE,E′(Φ) is a Φ-derivation of degree k + 1.

2. QE,E′(Φ) is O-linear if Φ is O-linear and ρ′ = ρ ◦ φ0.

Proof. The first item follows from a straightforward computation:

QE,E′(Φ)(F ⊙G) = Q′ (Φ(F )⊙ Φ(G))

−Φ
(
Q(F )⊙G+ (−1)|F |F ⊙Q(G)

)

= Q′ ◦ Φ(F )⊙ Φ(G)− Φ ◦Q(F )⊙ Φ(G) (3.33)

+(−1)|F |Φ(F )⊙ (Q′ ◦ Φ(G)− Φ ◦Q(G))

= QE,E′(Φ)(F )⊙ Φ(G)− (−1)|F |Φ(F )⊙QE,E′(Φ)(G),

for all degree-homogeneous F,G ∈ E . The second item follows from

QE,E′(Φ)(f) = Q′(f)− Φ ◦Q(f) (since Φ(f) = f)

= (ρ′)∗(df)− Φ(0) ◦ ρ∗(df) (Φ,Φ(0) coincide on Γ(E∗
−1))

= (ρ′ − ρ ◦ φ0)
∗(df) (by duality)

= 0.

W (n)(α1⊙· · ·⊙αk) =

k∑

j=1

∑

i1+···+ik=n

ǫj Φ
(i1)(α1)⊙· · ·⊙〈wij , αj〉⊙· · ·⊙Φ(ik)(αk)

(3.34)
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with ǫj = (−1)|W |(|α1|+···+|αj−1|); again, for every α ∈ Γ(E∗), 〈wk, α〉 :=
W (k)(α). Conversely, given an arbitrary graded algebra morphism Φ: E → E ′

and any section w ∈ Γ (S•(E′∗)⊗ E), there is a unique Φ-derivation W =: wΦ

whose arity n component satisfies Equation (3.34) where wk is the restriction
of w to Γ

(
Sk+1(E′∗)⊗ E

)
.

Now let Φ be a Lie ∞-algebroid morphism from (E′, Q′) to (E,Q). By a
straightforward computation one shows that for every Φ-derivationW of degree
k, the linear map QE,E′(W ) is a Φ-derivation of degree k + 1. This implies in
particular:

Lemma 3.50. For every Lie ∞-algebroid morphism Φ from (E′, Q′) to (E,Q),

the graded space X(E
Φ
→ E ′) of Φ-derivations is a complex when equipped with

the differential QE,E′. (Xvert(E
Φ
→ E ′), QE,E′) is a subcomplex.

3.4.3 Homotopies between morphisms of Lie ∞-algebroids

Let us define what we mean by a piecewise-C∞ path valued in Lie ∞-algebroid
morphisms from (E′, Q′) to (E,Q). A piecewise-C∞path valued in Γ(B), with
B a vector bundle over M , is a map ψ : M × I → B to the manifold B such
that for all fixed t ∈ I ≡ [0, 1], the map m 7→ ψ(m, t) is a section of B and
there exists a subdivision a = t0 < · · · < tk = b of I = [a, b] such that the map
ψ : M×]ti, ti+1[→ B is of class C∞.

Definition 3.51. Let (E,Q) and (E′, Q′) be Lie ∞-algebroids over M . A
path t 7→ Φt valued in Lie ∞-algebroid morphisms from E′ to E is said to be
continuous piecewise-C∞ when for all k ∈ N, its Taylor coefficients t 7→ φk(t)
of arity k is a piecewise-C∞ path valued in Γ

(
Sk+1

(
E′∗
)
⊗ E

)
, which is also

continuous—even at the junction points..
Given a piecewise-C∞ path t 7→ Φt valued in Lie ∞-algebroid morphisms from
(E′, Q′) to (E,Q), we say that a path t 7→ Ht, with Ht a Φt-derivation, is
piecewise smooth if its Taylor coefficients t 7→ hk(t) of arity k is a piecewise-
smooth path valued in Γ

(
Sk+1

(
E′∗
)
⊗ E

)
.

Remark 3.52. A subtle point in this definition is that the subdivision of I
with respect to which φk(t) is piecewise-C

∞ may depend on k. The derivative
d
dt
Φt is well-defined for all t ∈ I which are not in the countable set of points

delimiting all these subdivisions. For Lie n-algebroids, since the components
of arity k of

(
S(E′∗)⊗E

)
0
vanish for k large enough, this subdivision of I can

be chosen to be the same for all values of k ≥ 0.

It is routine to check that d
dtΦt is a Φt-derivation of degree 0 for each value

of t for which it is defined: it satisfies QE,E′

(
d
dtΦt

)
= 0, i.e. it is a cocy-

cle for the complex of Lemma 3.50 for Φ replaced by Φt. This justifies the
following definition, whose rough idea is that homotopies are curves of Lie ∞-
algebroid morphisms whose derivatives are coboundaries for the complex of
Φ-derivations(and gives back usual homotopies, see Proposition 3.57 below):
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Definition 3.53. Let Φ and Ψ be two Lie ∞-algebroid morphisms from (E′, Q′)
to (E,Q) covering the identity morphism. A homotopy between Φ and Ψ is a
pair (Φt, Ht) consisting of:

1. a continuous piecewise-C∞ path t 7→ Φt valued in Lie ∞-algebroid mor-
phisms between E′ and E such that:

Φ0 = Φ and Φ1 = Ψ,

2. a piecewise smooth path t 7→ Ht valued in Φt-derivations of degree −1,
such that the following equation:

dΦt
dt

= QE,E′ (Ht) ≡ Q′ ◦Ht +Ht ◦Q (3.35)

holds for every t ∈ [0, 1] where it is defined.

Remark 3.54. Let us be more precise about the meaning of Equation (3.35):
It should be understood as meaning that the equality

dΦ
(k)
t

dt
= (QE,E′ (Ht))

(k)
=

k∑

i=0

(
(Q′)(i) ◦H

(k−i)
t +H

(k−i)
t ◦Q(i)

)

holds for every k ∈ N and every t ∈ [0, 1] where it is defined, i.e. which are not

junction points of the partition of I with respect to which Φ
(k)
t is piecewise-C∞.

The following fact is obvious:

Proposition 3.55. Homotopy of Lie ∞-algebroid morphisms is an equivalence
relation, denoted by ∼, which is compatible with composition.

Proof. Let us show that homotopy defines an equivalence relation ∼ between
Lie ∞-algebroid morphisms:

• reflexivity: Φ ∼ Φ, as can be seen by choosing Φt = Φ and Ht = 0 for
every t ∈ [0, 1].

• symmetry: Φ ∼ Ψ implies that Ψ ∼ Φ by reversing the flow of time,
i.e. by considering the homotopy (Φ1−t,−H1−t).

• transitivity: if Φ ∼ Ψ and Ψ ∼ Ξ then there exists a homotopy (Θ1 t, H1 t)
between Φ and Ψ and a homotopy (Θ2 t, H2 t) joining Ψ and Ξ. It is
then sufficient to glue Θ1 and Θ2 and rescale the time variables, so that
the new time variable takes values in the closed interval [0, 1]. (Notice
that the resulting function will be continuous at the junction, but not
differentiable in general at that point.)
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Now assume that Φ,Ψ: E → E ′ are homotopic Lie ∞-algebroid morphisms
between (E′, Q′) and (E,Q), and that Φ′,Ψ′ : E ′ → E ′′ are homotopic Lie ∞-
algebroid morphisms between (E′′, Q′′) and (E′, Q′). Let us denote by (Φt, Ht)
the homotopy between Φ and Ψ, and (Φ′

t, H
′
t) the homotopy between Φ′ and

Ψ′. Then Φ′ ◦Φ and Ψ′ ◦Ψ are homotopic via
(
Φ′
t ◦Φt, H

′
t ◦Φt +Φ′

t ◦Ht

)
.

We now give an important example, that shall be used in the sequel:

Example 3.56. Let (E,Q) and (E′, Q′) be Lie ∞-algebroids overM and let w
be a section of degree −1 of Γ

(
Si+1(E′∗) ⊗ E

)
for some i ≥ 0. For every

Lie ∞-algebroid morphism Φ: E → E ′ from (E′, Q′) to (E,Q), we denote the
O-linear Φ-derivation with Taylor coefficient w by wΦ.
The following differential equation has a unique solution for Φt for all t ∈ R:

dΦt
dt

= QE,E′

(
wΦt

)
and Φ0 = Φ. (3.36)

Therefore, the pair (Φt, w
Φt) is a homotopy between the Lie ∞-algebroid mor-

phism Φ and the Lie ∞-algebroid morphism Φ1.
Let us check this point. The differential equation above decomposes into a
sequence of coupled differential equations: For all α ∈ Γ(E∗) one has

dΦ
(k)
t (α)
dt =

∑k
j=0

(
Q′(k−j) ◦

(
wΦt

)(j)
(α)−

(
wΦt

)(j)
◦Q(k−j)(α)

)

= Q′(k−i) ◦ w (α) −
∑k−1
j=0

(
wΦt

)(j)
◦Q(k−j)(α)

−δki w ◦Q(0)(α)

(3.37)

where δki is the Kronecker symbol.

Equation (3.34) shows that (wΦt)(j) is a fixed expression involving w and Φ
(k′)
t

for k′ = 0, . . . , j − i. This implies that the r.h.s. of the differential Equation

(3.37) does not depend on Φ
(k)
t but only on Φ

(k′)
t for k′ ≤ k−1. (In fact, a closer

look shows that it only depends on Φ
(k′)
t for k′ ≤ k− 1− i). Therefore Φ

(k)
t (α)

is obtained by integration of the r.h.s. of (3.37), which itself depends only on

Φ
(k′)
t for k′ ≤ k−1. Equation (3.36) can therefore be solved by recursion. Since

for i ≥ 1 we have that
dΦ

(0)
t

dt vanishes identically and for i = 0 it satisfies

dΦ
(0)
t (α)

dt
= Q′(0) ◦ w(α) + w ◦Q(0)(α) ∀α ∈ Γ(E∗),

one finds that Φ
(k)
t (α) is a polynomial in t for all k ≥ 0 and α ∈ Γ(E∗).

Equation (3.36) therefore has solutions defined on all of R.

The importance of Definition 3.53 relies on the following result, which states
that two homotopic Lie ∞-algebroid morphisms are related by a QE,E′-exact
term:
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Proposition 3.57. Let (E,Q) and (E′, Q′) be Lie ∞-algebroids over M . For
every two homotopic Lie ∞-morphisms Φ and Ψ from (E′, Q′) to (E,Q), there
exists an O-linear map H : E → E ′ of degree −1 such that:

Ψ− Φ = QE,E′ (H) ≡ Q′ ◦H +H ◦Q. (3.38)

Proof. We shall use the following property: the variation of a continuous
piecewise-C∞ function is equal to the integral of its derivative. From the rela-
tion d

dtΦt = QE,E′ (Ht) and from the fact that the path t 7→ φk(t) is continuous
piecewise-C∞ for all k ∈ N, we therefore obtain:

Ψ− Φ =

∫ 1

0

d

dt
Φt dt =

∫ 1

0

QE,E′ (Ht) dt

=

∫ 1

0

(
Q′ ◦Ht +Ht ◦Q

)
dt

= Q′ ◦

(∫ 1

0

Ht dt

)
+

(∫ 1

0

Ht dt

)
◦Q

Hence H =
∫ 1

0
Ht dt satisfies Condition (3.38). Also, H is O-linear because so

is Ht for all t ∈ [0, 1].

It deserves to be noticed that the map H introduced in the Proposition 3.57
is, in general, neither an algebra morphism nor a derivation of any sort.

Remark 3.58. Taking the arity 0 part of Equation (3.38), one finds a homotopy
of the two underlying chain maps:

. . . E′
−3 E′

−2 E′
−1

. . . E−3 E−2 E−1.

d d

φ0ψ0
h

φ0ψ0

d

h
φ0ψ0

d′ d′ d′

Above, φ0 and ψ0 are the linear parts of Φ and Ψ, respectively, and h is the
dual to the component of arity 0 of H .

We now define what we mean by a homotopy equivalence of Lie ∞-algebroids:

Definition 3.59. Let (E,Q) and (E′, Q′) be two Lie ∞-algebroids over M
and Φ: E ′ → E a Lie ∞-algebroid morphism between them. We say that Φ is a
homotopy equivalence if there exists a Lie ∞-algebroid morphism Ψ: E → E ′

such that
Φ ◦Ψ ∼ idE and Ψ ◦ Φ ∼ idE′ .

In such a case, the Lie ∞-algebroids (E,Q) and (E′, Q′) are said to be homo-
topy equivalent.
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3.4.4 Comparison with cylinder homotopies

Although it may seem quite different at first look, Definition 3.53 is in fact
very similar to a more classical and natural definition of homotopy given
by [7, 54], that we shall refer as the cylinder homotopy. The only difference
with our definition lies in an important relaxation of the regularity conditions.
It consists of defining homotopies between two morphisms as being Lie ∞-
algebroid morphisms of differential graded algebras from E to the tensor pro-
duct E ′ ⊗ Ω•

(
[0, 1]

)
, where Ω•

(
[0, 1]

)
stands for forms on [0, 1], equipped with

de Rham differential, whose restrictions to {0} and {1} are the two given Lie
∞-algebroid morphisms. Equivalently, a cylinder homotopy between two Lie
∞-algebroid morphisms Φ and Ψ from (E,Q) to (E′, Q′) is a Lie ∞-algebroid
morphism (TI, ddR)× (E,Q) 7→ (E′, Q′) whose restrictions to {0}× (E,Q) and
{1} × (E,Q) are Φ and Ψ, respectively.

Proposition 3.60. Cylinder homotopies are homotopies (Φt, Ht) as in Defi-
nition 3.53 that depend smoothly on the parameter t.

There is, however, a technical issue in the proof of Theorem 2.9 that imposes
the need to use of continuous piecewise C∞-paths.

Proof. Let us explain the correspondence between both definitions. Let (E,Q),
(E′, Q′), and (Φt, Ht) be as in Definition 3.53.

Let us equip the tensor product E ′⊗Ω•
(
[0, 1]

)
with the differential D given for

all F ∈ E ′
i and ω ∈ Ω•

(
[0, 1]

)
by

D : F ⊗ ω 7→ Q′(F )⊗ ω − (−1)|F |F ⊗ ddRω.

The graded commutative algebra E ′ ⊗ Ω•
(
[0, 1]

)
can be identified with the

algebra made of sums Ft+Gt ǫ with Ft, Gt families of elements in E ′ depending
smoothly on the parameter t ∈ [0, 1] and ǫ some free parameter of degree +1
that squares to 0 (that we invite the reader to think of it as being ”dt”). The
product in E ′ ⊗ Ω•

(
[0, 1]

)
is then given by (Ft + Gt ǫ)(F̃t + G̃t ǫ) = FtF̃t +(

FtG̃t + F̃tGt
)
ǫ. Also, the operator D is given for all Ft +Gtǫ of degree i, by:

D
(
Ft +Gtǫ

)
=
(
Q′(Ft)

)
+

(
−(−1)i

dFt
dt

+
(
Q′(Gt)

))
ǫ. (3.39)

Consider the map of degree 0 given by:

Φ̃ := E → E ′ ⊗ Ω•
(
[0, 1]

)

F 7→ t 7→ Φt(F ) + (−1)|F |Ht(F )ǫ.

This map is a graded algebra morphism. This follows from the fact that Φt is
an algebra morphism and Ht is a Φt-derivation for all t, as can be seen by a

Documenta Mathematica 25 (2020) 1571–1652



1612 C. Laurent-Gengoux, S. Lavau, T. Strobl

direct computation, valid for all F ∈ Ei, G ∈ Ej:

Φ̃(FG) = Φt(FG) + (−1)i+jHt(FG) ǫ

= Φt(F )Φt(G) +
(
(−1)i+jHt(F )Φt(G) + (−1)jΦt(F )Ht(G)

)
ǫ

=
(
Φt(F ) + (−1)iHt(F ) ǫ

)
·
(
Φt(G) + (−1)jHt(G) ǫ

)

= Φ̃(F ) · Φ̃(G).

Equation (3.35) holds, as can be seen by the following computation:

{
Φ̃ ◦Q(F ) = Φt ◦Q(F ) + (−1)iHt ◦Q(F ) ǫ

D ◦ Φ̃(F ) = Q ◦ Φt(F )− (−1)|i| dΦt(F )
dt ǫ+ (−1)iQ ◦Ht(F ) ǫ.

As a consequence, Φ̃ is a chain map. Since Φ̃ is a graded algebra morphism
and a chain map, this implies that the data of Definition 3.53 induces, when it
is smooth, a cylinder homotopy. The converse goes by going backward in the
previous computations and proves the equivalence of the cylinder homotopy
with homotopies as in Definition 3.53 given by smooth data.

For a more enhanced discussion about this more restricted notion of homotopy
of Lie ∞-algebroid morphisms, we refer to [8] or [54].

Proposition 3.61. The equivalence relation given by cylinder homotopies and
the equivalence relation given by homotopies as in Definition 3.53 coincide on
morphisms of Lie ∞-algebroids constructed on complexes of finite length.

Proof. Let (Φt, Ht) be a homotopy as in Definition 3.53 relating two morphisms
Φ0,Φ1, defined on complexes of finite length. Then only finitely many of the
Taylor coefficients of Φt and Ht are different from zero. The set S of points in
I = [0, 1] at which Φt or Ht are non-smooth is therefore finite. Let f : I → I be
a smooth function such that f(0) = 0 and f(1) = 1 and such that f (k)(t) = 0
for all k ≥ 1 and t ∈ S. The pair (Φf(t), f

′(t)Hf(t)) is then a homotopy given by
smooth data relating Φ0 and Φ1. The result then follows from Proposition 3.60.

3.4.5 The homotopy and the isotropy functors

Let M be a manifold. For every k ∈ N ∪∞, Lie k-algebroids over M together
with Lie ∞-algebroid morphisms of M form a category that we denote by Lie-

k-algoid. In this article, we rather consider the quotient category hLie-k-
algoidM where objects are Lie k-algebroids overM and arrows are homotopy
classes of morphisms.

Remark 3.62. In this language, Theorem 2.9 translates into: Universal Lie ∞-
algebroids of F are terminal objects in the sub-category of hLie-∞-algoidM
of Lie ∞-algebroids for which the image of the anchor map is contained in F .
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When the manifold is a point, we recover the usual categories of Lie ∞-algebras
defined over negatively graded vector spaces. We denote by Lie-k-alg and
hLie-k-alg the counterpart of the above-defined categories in this case.

Every point m ∈ M induces a functor Im : Lie-k-algoidM 7→ Lie-k-alg,
called the isotropy functor, that we now describe.

1. Let (F,QF ) be a Lie k-algebroid over M with anchor ρ. According to
the axioms of Lie k-algebroids, the k-ary bracket restricts to the graded
vector space

K•(F,m) := Ker(ρ|m)⊕
⊕

i≥2

F−i|m (3.40)

for every k ∈ N, see Definition 3.40, Equation (3.22), and Remark 3.41.
This implies that (3.40) is equipped with a Lie k-algebra structure. This
defines Im on objects.

2. Let Φ: Γ(S(F ∗)) 7→ Γ(S(E∗)) be an arbitrary Lie k-algebroid morphism
from (E,QE) to (F,QF ). Since it is O-linear, it induces a graded Lie
algebra morphism Φ|m : S(F |∗m) 7→ S(E|∗m). The linear part of Φ being
a chain map by Remark 3.46, it restricts to a graded algebra morphism
Im(Φ): S(K(F,m)∗) 7→ S(K(E,m)∗), which is easily checked to be a Lie
∞-algebra morphism. This defines Im on arrows.

Homotopies between morphisms being given by O-linear data (Φt, Ht), the
following lemma is easily verified:

Lemma 3.63. Let Φ,Ψ: (E,Q) 7→ (E′, Q′) be two homotopic Lie-∞ algebroid
morphisms over M . For every point m ∈ M , Im(Φ), Im(Ψ): Im(E,Q) 7→
Im(E′, Q′) are homotopic Lie-∞ algebra morphisms.

This Lemma implies that the isotropy functor passes to the quotient to yield a
functor

hIm : hLie-k-algoidM 7→ hLie-k-alg, (3.41)

that we call the isotropy functor.

Let us finish this discussion with a few words on invertible arrows in these
categories. Homotopy equivalences, see Definition 3.59, are invertible arrows
in the category hLie-k-algoidM . An invertible arrow in the category hLie-k-
alg relating two objects (V,QV ) and (W,QW ) is a differential graded algebra
isomorphism of the corresponding symmetric algebras, S(V ∗) ≃ S(W ∗).

3.5 Proof of Theorem 2.8 about existence

Throughout this subsection we assume that we are working in the smooth
setting but the arguments below also work in the real analytic or holomorphic
case in a neighborhood of a point.
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3.5.1 Arity-deformation of complexes of vector bundles

A complex of vector bundles

. . . E−3 E−2 E−1
d d d (3.42)

is in one-to-one correspondence with an NQ-manifold where Q is of arity zero,
Q = Q(0), see in particular Equation (3.26). In this subsection, we discuss
deformations of such a complex inside the category of NQ-manifolds following
the general expansion (3.25): Theorem 2.8 will then follow from this discussion.
The homological condition [Q,Q] = 0 is equivalent to the following set of
equations:

[Q(0), Q(0)] = 0 (3.43)

[Q(0), Q(1)] = 0 (3.44)

∀ n ≥ 2 [Q(0), Q(n)] = −
1

2

∑

1≤i,j≤n−1
i+j=n

[Q(i), Q(j)]. (3.45)

The first one is valid by assumption, the second of these equations determines
the tangent vector of the deformation. It has to be a Q(0)-closed, arity one, and
degree one vector field. Such a vector field Q(1) corresponds to the following
data: An anchor map ρ : E−1 → TM and a family of binary brackets on
the sections of E such that the Leibniz identity (3.22) holds true and d is a
derivation of the bracket.
Now we assume that E, Q(0), and such a Q(1) are given. Then there is a
standard theory of obstruction classes entailed by Equations (3.45) (see, for
example, Chapter 13.3.3 in [39]): The deformation problem is governed by the
differential graded Lie algebra (DGLA)

(X(E), [·, ·], [Q(0), ·]).

While the right hand side of Equation (3.45) is always Q(0)-closed by the Ja-
cobi identity of the graded Lie bracket of vector fields, according to this equa-
tion it has to be exact so as to extend the procedure one step further. Thus
the obstruction for finding Q(n) lives in H2(X(E), adQ(0)), the cohomology of

adQ(0) ≡ [Q(0), ·] at degree two.
What we said so far is valid for every DGLA. In the particular context of
NQ-manifolds, it turns out to be useful to relate this problem to the following
differential graded Lie subalgebra

(Xvert(E), [·, ·], [Q(0), ·])

of vertical vector fields. By definition, vertical vector fields are O-linear deriva-
tions of E . Now it is an important observation that within the expansion (3.25)
only the term within Q(1) which specifies the anchor is non-vertical; all the other
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parts of Q are vertical vector fields. Moreover, the Lie bracket of Q(1) with Q(n)

is vertical whenever n ≥ 2. Thus all the obstruction classes for n strictly bigger
than two actually live inside H2(Xvert(E), adQ(0)). In fact, noting that the Lie
bracket preserves arity and the arity of the right hand side of Equation (3.45)
is n, for every n > 2 the cohomological obstruction lives in

H2(X
(n)
vert(E), adQ(0)) . (3.46)

Here X
(n)
vert(E) denotes vertical vector fields of arity n.

The case n = 2 needs special care. The condition [Q(0), Q(2)] = 1
2 [Q

(1), Q(1)]
can be split into two parts: Since the left hand side of this equation is vertical,
one needs

[Q(1), Q(1)] ∈ Xvert(E) . (3.47)

If this is satisfied, then its class inside (3.46) is defined and needs to vanish.

3.5.2 Cohomology of vertical vector fields for geometric

resolutions

We denote the space of vertical vector fields on E of arity n and degree k by

X
(n)
vert(E)k. There is a natural isomorphism

X
(n)
vert(E)• ≃ Γ(Sn+1(E∗)⊗ E)•. (3.48)

Consider the following map, which we call the root map:

rt : X
(n)
vert(E)• → Γ(Sn+1(E∗))• ⊗O F [−1]

which is obtained by applying id ⊗ ρ to the component of a vertical vector
field in S(n+1)(E∗)• ⊗ E−1. The shift in degree is needed if we want rt to be
of degree zero. Later, it will be useful to characterize this map also in the
following way: Let f denote a function on M , ddRf ∈ Γ(T ∗M) its differential,
and ρ∗ : Γ(T ∗M) → Γ(E∗

−1) the dual of the anchor map. Then for every vertical
vector field W on E, one has:

W (ρ∗ddRf) = rt(W )[f ] , (3.49)

since for every x ∈ Γ(E−1), 〈x, ρ∗ddRf〉 = ρ(x)[f ]. We will call the image
rt(W ) of a vertical vector field W with respect to this map the root of this
vector field.

Proposition 3.64. If (E, d, ρ) is a geometric resolution of F , then

rt : (X
(n)
vert(E)•, adQ(0)) → (Γ(Sn+1(E∗))• ⊗O F [−1], Q(0) ⊗ id)

is a quasi-isomorphism.
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The proof of this proposition requires some preparation. The following lemma
is straightforward to show: We leave the details to the reader, some of which,
however, can be found also in the proof of Lemma 3.66 below.

Lemma 3.65. Under the isomorphism (3.48), the differential adQ(0) becomes
the total differential of the following bicomplex:

...
...

...

· · · // Γ(Sn+1(E∗)n+3 ⊗ E−3)
id⊗d

//

OO

Γ(Sn+1(E∗)n+3 ⊗ E−2)

OO

id⊗d
// Γ(Sn+1(E∗)n+3 ⊗ E−1)

OO

// 0

· · · // Γ(Sn+1(E∗)n+2 ⊗ E−3)
id⊗d

//

Q(0)⊗id

OO

Γ(Sn+1(E∗)n+2 ⊗ E−2)

Q(0)⊗id

OO

id⊗d
// Γ(Sn+1(E∗)n+2 ⊗ E−1)

Q(0)⊗id

OO

// 0

· · · // Γ(Sn+1(E∗)n+1 ⊗ E−3)
id⊗d

//

Q(0)⊗id

OO

Γ(Sn+1(E∗)n+1 ⊗ E−2)

Q(0)⊗id

OO

id⊗d
// Γ(Sn+1(E∗)n+1 ⊗ E−1)

Q(0)⊗id

OO

// 0

0

OO

0

OO

0

OO

(3.50)

For degree reasons Sk(E∗)l = 0 for l < k—the first non-zero row starts at
height n+ 1.

−d+ 1−d

depth

n+1

height

[Q(0), Y ]

Y

Figure 1: A vertical vector field Y of arity n and degree n + 1 − d and its image

under the differential adQ(0)
∼= Q(0)

⊗ id + id⊗ d

.

Proof of Proposition 3.64. By definition of a geometric resolution, the following
is an exact complex of O-modules:

· · · // Γ(E−2)
d

// Γ(E−1)
ρ

// F // 0.
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Sections of Sn+1(E∗)k form a projective O-module for all k ≥ 0, thus tensoring
over O with Γ(Sn+1(E∗)k) preserves exactness:

· · · // Γ(Sn+1(E∗)k ⊗ E−2)
id⊗d

// Γ(Sn+1(E∗)k ⊗ E−1)
id⊗ρ

// Γ(Sn+1(E∗)k)⊗O F // 0. (3.51)

Therefore, all lines in the bicomplex below are exact complexes:

...
...

...

· · · // Γ(Sn+1(E∗)n+3 ⊗ E−2)
id⊗d

//

OO

Γ(Sn+1(E∗)n+3 ⊗ E−1)

OO

id⊗ρ
// Γ(Sn+1(E∗)n+3)⊗O F

OO

// 0

· · · // Γ(Sn+1(E∗)n+2 ⊗ E−2)
id⊗d

//

Q(0)⊗id

OO

Γ(Sn+1(E∗)n+2 ⊗ E−1)

Q(0)⊗id

OO

id⊗ρ
// Γ(Sn+1(E∗)n+2)⊗O F

Q(0)⊗id

OO

// 0

· · · // Γ(Sn+1(E∗)n+1 ⊗ E−2)
id⊗d

//

Q(0)⊗id

OO

Γ(Sn+1(E∗)n+1 ⊗ E−1)

Q(0)⊗id

OO

id⊗ρ
// Γ(Sn+1(E∗)n+1)⊗O F

Q(0)⊗id

OO

// 0

0

OO

0

OO

0

OO

(3.52)

so that the cohomology of the total differential of this bicomplex is zero. By
diagram chasing, this implies that the sub-bicomplex obtained by removing the
last column on the right is quasi-isomorphic to the complex formed by the last
column. The quasi-isomorphism is simply given by the collection of arrows
from the penultimate column to the last one, which, up to the shift in degree,
is precisely the map rt.
Alternatively, this quasi-isomorphism can be seen as follows. There is a short
exact sequence of complexes:

0 → Γ(Sn+1(E∗)•)⊗O F → B•
π
→ X

(n)
vert(E)• → 0,

where B• is the complex associated to the bicomplex (3.52) and π is the projec-
tion of the bicomplex (3.52) onto (3.50) composed with the isomorphism (3.48).
Since the lines of the bi-complex B• have trivial cohomology, the total differ-
ential of B• has trivial cohomology. Taking the associated long exact sequence
in cohomology, we obtain an isomorphism at the level of the connecting map:

Hk(X
(n)
vert(E), adQ(0)) ≃ Hk+1(Γ(Sn+1(E∗))⊗O F , Q(0) ⊗ id)

for all k ∈ Z. This connecting map is easily seen to be induced by rt.

Lemma 3.66. Let (E, d, ρ) be a geometric resolution of F and R a vertical
vector field of degree i and arity n which is Q(0)-closed and whose root is
strictly zero. Then R = [Q(0),W ] for some vertical vector field W of arity n
which has no component in Γ(Sn+1(E∗)i ⊗ E−1).

Proof. Decompose R as a sum R =
∑

j≥1 Rj with Rj ∈ Γ(S(n+1)(E∗)j+i ⊗
E−j). We need to find W of the form W =

∑
j≥2Wj with Wj ∈
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Γ(S(n+1)(E∗)j+i−1 ⊗E−j). The relation R = [Q(0),W ] amounts to a sequence
(Hk)k≥2 of conditions:

{
(H2) (id⊗ d)W2 = R1,

(Hk) (id⊗ d)Wk = Rk−1 − (Q(0) ⊗ id)Wk−1 for all k ≥ 3.

Since rt(R) = (id⊗ ρ)(R1) = 0, exactness of the ith line in (3.51) implies that
there is some W2 ∈ Γ(S(n+1)(E∗)i+1 ⊗ E−2) satisfying (H2). The remaining
components are then constructed by recursion: Assume that we have con-
structed W2, . . . ,Wk satisfying (H2), . . . , (Hk) for some k ≥ 2. The condition
[Q(0), R] = 0 translates into the following set of equations

(Q(0) ⊗ id)Rj−1 = −(id⊗ d)Rj for all j ≥ 2 .

Applying (Q(0) ⊗ id) to the recursion assumption (Hk), the above equation for
j = k, together with anticommutativity of the two differentials, shows that
Rk − (Q(0) ⊗ id)Wk is (id⊗ d)-closed. Then exactness of the ith line in (3.51)
grants the existence of someWk+1 ∈ Γ(S(n+1)(E∗)i+k⊗E−k−1) which satisfies
(Hk+1).

Corollary 3.67. In the case of a geometric resolution (E, d, ρ) one has:

1. Hk(X
(n)
vert(E), adQ(0)) ∼= Hk+1(Γ(Sn+1(E∗))⊗O F , Q(0) ⊗ id)

2. H2(X
(n)
vert(E), adQ(0)) = 0 if n ≥ 3.

Proof. The first item is a trivial consequence of Proposition 3.64 after dropping
the shift in degree of F . The second item follows from the first one for k = 2 and
the fact that every element of degree three in Γ(Sn+1(E∗)) is zero if n > 2.

3.5.3 Extension of an almost Lie algebroid to a graded almost

Lie algebroid on a geometric resolution

Now we return to our initial problem: We are given a geometric resolution
(E, d, ρ). This specifies in particular E and Q(0) in the deformation problem
outlined in section 3.5.1. To take care of the given anchor map, we now search
for a Q(0)-closed Q(1) inducing ρ.
In fact, according to Proposition 3.8, we know that we can equip E−1 with an
almost Lie algebroid bracket for the given anchor. More precisely, an anchor
and a binary bracket on E−1 satisfying the Leibniz identity correspond precisely

to a degree one vector field Q
(1)
E−1

of arity one. These data define an almost

Lie algebroid structure if in addition Equation (3.2) is satisfied. It is an easy
exercise to verify that this last identity is satisfied iff

[Q
(1)
E−1

, Q
(1)
E−1

] ∈ Xvert(E−1) . (3.53)

Thus, to initiate our deformation problem, we need to extend Q
(1)
E−1

on E−1 to

a vector field Q(1) defined on all of E which is adQ(0) -closed. We now first lift
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Q
(1)
E−1

to a vector field Q
(1)
E by means of a connection.12 Given an arbitrary

choice for the lift, we search for

Q(1) := Q
(1)
E + V (3.54)

where V is a vertical vector field in ⊕i≥2Γ(S
2(E∗)i+1 ⊗ E−i), i.e. with no

component in Γ(∧2E∗
−1 ⊗ E−1).

Note that V now also parametrizes different choices for the initial lift Q
(1)
E .

One can convince oneself that for every choice of lift and of V , the property
(3.53) ensures that the obtained Q(1) satisfies Equation (3.47). We now want
to show that there always exists a choice for V such that Q(1) in (3.54) becomes
adQ(0) -closed. The resulting structure on E given by Q(0) + Q(1) then defines
what we call a graded almost Lie algebroid defined over the initial resolution:

Definition 3.68. A graded almost Lie algebroid is a complex of vector bundles
(3.42) equipped with a bracket

[·, ·] : Γ(E−i)× Γ(E−j) → Γ(E−i−j+1)

which satisfies the following three axioms

[x, fy] = f [x, y] + ρ(x)[f ] y, (3.55)

d[x, y] = [d(x), y] + (−1)i[x, d(y)], (3.56)

ρ([x, y]) = [ρ(x), ρ(y)] (3.57)

for all x ∈ Γ(E−i), y ∈ Γ(E−j), and f ∈ C∞(M). Above, it is understood that
ρ(x) = 0 if x ∈ Γ(E−i) for all i ≥ 2.

Proposition 3.69. Every geometric resolution (E, d, ρ) and every almost Lie
algebroid structure on E−1 ⊂ E can be extended to a graded almost Lie
algebroid structure on E.

Lemma 3.70. A graded almost Lie algebroid structure is in one-to-one corre-
spondence with a graded manifold E equipped with a degree one vector field
Q = Q(0) + Q(1) of arity at most one such that Equations (3.43), (3.44), and
(3.47) are satisfied.

Lemma 3.71. The vector field [Q(0), Q(1)] with Q(1) as in (3.54) defines, up to

different choices of V , an element in H2(X
(1)
vert(E), adQ(0)).

Proof. We first observe that Q(1)f = ρ∗(ddRf). This yields

[Q(0), Q(1)](f) = (d(2))∗ ◦ ρ∗(ddRf)

and this vanishes due to property ρ ◦ d(2) = 0 of the resolution. Thus
[Q(0), Q(1)] ∈ Xvert. The rest is obvious then.

12The graded manifolds we discuss here are split and thus we also have an embedding of
E(−1) into E. We can choose any extension of the vector field outside the given graded
submanifold, provided only of the given degree and arity. For degree reasons, these two
notions of a lift and such an extension are equivalent here.
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Lemma 3.72. For every choice of V in (3.54), rt([Q(0), Q(1)]) = 0.

Proof. We already established above that the self-commutator of Q(1) is verti-
cal, Equation (3.47). Thus so is

[
Q(0), [Q(1), Q(1)]

]
. For every function f ∈ O,

we then compute:

0 =
1

2

[
Q(0), [Q(1), Q(1)]

]
(f) =

[
[Q(0), Q(1)], Q(1)

]
(f) = [Q(0), Q(1)] (ρ∗(ddRf)) . (3.58)

Comparison with Equation (3.49) then establishes the equation to prove.

Remark 3.73. The relation rt([Q(0), Q(1)]) = 0 translates into ρ
(
{d(x), y}2

)
=

0 for every x ∈ Γ(E−2), y ∈ Γ(E−1). The latter equation can be proven also
by using first that, in an almost Lie algebroid E−1, ρ is a morphism of the
brackets and then that d ◦ ρ = 0 by the resolution property.

Proof of Proposition 3.69. For every choice of V in (3.54), Lemma 3.71 implies
that [Q(0), Q(1)] is a vertical vector field. Lemmata 3.72 and 3.66 imply that
there exists a vertical vector field W with [Q(0), Q(1)] = [Q(0),W ] whose com-
ponent in ∧2E∗

−1⊗E−1 is zero. ThisW can now be used to redefine the initially

given V above, V 7→ V −W , such that the resulting Q(0) and Q(1) satisfy the
required relations of a graded almost Lie algebroid, see Lemma 3.70.

Proposition 3.69 together with Proposition 3.8 imply:

Corollary 3.74. Every geometric resolution (E, d, ρ) of a singular foliation F
admits a graded almost Lie algebroid structure over it, i.e. the complex (E,Q(0))
permits the definition of a degree and arity one vector field Q(1) such that
Equations (3.43), (3.44), and (3.47) are satisfied.

Remark 3.75. In contrast to Proposition 3.69, Corollary 3.74 permits us to

deform an initially specified almost Lie algebroid structure (E−1, Q
(1)
E−1

). For
the proof of this weaker statement, it is sufficient to show that, for every lift

Q
(1)
E of some Q

(1)
E−1

, the bracket [Q(0), Q
(1)
E ] defines a vanishing cohomology

class in (3.46) for n = 1. It is interesting to see that while the deformation
problem leads to cohomology classes in (3.46) for n ≥ 2, setting its initial data
leads to a likewise one for n = 1.

3.5.4 Extension of an almost Lie algebroid to a Lie

∞-algebroid on a geometric resolution

In this section we extend Proposition 3.69 to the following statement:

Proposition 3.76. Every graded almost Lie algebroid (E,Q(0) +Q(1)) over a
geometric resolution (E, d, ρ) can be extended to a Lie ∞-algebroid structure
on E.
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Proof. We are thus given Q(0) and Q(1) satisfying Equations (3.43), (3.44),
and (3.47) for the deformation problem described in section 3.5.1. For the
extension problem, Equations (3.45), to have a solution, vanishing of the coho-
mology classes in (3.46) for all n ≥ 2 is necessary and sufficient. According to
Corollary 3.67, all cohomology spaces for n > 2 are trivial,

H2(X
(n)
vert(E), adQ(0)) = 0 ∀n ≥ 3.

We are thus left with considering only the case n = 2. By Proposition 3.69,

[Q(1), Q(1)] is vertical and adQ(0) -closed. In this case H2(X
(2)
vert(E), adQ(0)) may

be nontrivial, but the following lemma shows that the 2-class of [Q(1), Q(1)]
vanishes.

Lemma 3.77. For the arity one part Q(1) of the odd vector field characterizing
a graded almost Lie algebroid, one has

rt
(
[Q(1), Q(1)]

)
= 0. (3.59)

Proof. The Jacobi identity implies
[
[Q(1), Q(1)], Q(1)

]
= 0. Application to a

function f ∈ O and the verticality of [Q(1), Q(1)] implies

0 =
[
[Q(1), Q(1)], Q(1)

]
(f) = [Q(1), Q(1)](Q(1)(f)) = [Q(1), Q(1)](ρ∗(ddRf)).

Thus, by Equation (3.49), rt([Q(1), Q(1)])[f ] = 0 for all functions f ∈ O. com-
pletes the proof of the proposition.

Remark 3.78. Equation (3.59) is equivalent to the following relation

∀ x, y, z ∈ Γ(E−1) ρ
(
Jac(x, y, z)

)
= 0, (3.60)

where Jac is the Jacobiator of the almost Lie algebroid bracket on E−1. The
validity of Equation (3.60) now follows immediately from the fact that ρ is a
morphism of brackets and the brackets of vector fields form a Lie algebra. This
then provides an alternative proof of Lemma 3.77.

Corollary 3.79. Every geometric resolution (E, d, ρ) and every almost Lie
algebroid structure on E−1 ⊂ E can be extended to a Lie ∞-algebroid structure
on E.

Corollary 3.80. Every geometric resolution (E, d, ρ) of a singular foliation F
admits a Lie ∞-algebroid structure over it.

3.6 Proof of Theorem 2.9 about universality

Throughout this section:

• (E,Q) and (E′, Q′) are Lie ∞-algebroids over the same base manifold
M . Their sheaves of functions are denoted by, respectively, E and E ′, and
their linear parts are, respectively, the complexes (E, d, ρ) and (E′, d′, ρ′).
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• The anchor of E′ defines a sub-singular foliation F ′ of the singular folia-
tion F defined by ρ, i.e.

F ′ ⊂ F ,

where F ≡ ρ(Γ(E−1)) and F ′ ≡ ρ′(Γ(E′
−1)).

Within this section, we work simultaneously in the smooth, real analytic, and
holomorphic settings. The proof of Theorem 2.9 is related to two deformation
problems, which we will first introduce one after the other.

3.6.1 Lie ∞-algebroid morphisms up to arity n

Definition 3.81. Let n ∈ N0 ∪ {+∞}. A Lie ∞-algebroid morphism up to
order n is a O-linear graded algebra morphism Φ: E → E ′ such that components
of arity i ≤ n of Q′ ◦ Φ− Φ ◦Q vanish, i.e.

QE,E′(Φ)(i) = 0 ∀ 0 ≤ i ≤ n. (3.61)

For n = +∞, we simply recover a standard Lie ∞-algebroid morphism.
Throughout this subsection, we are given a chain map

. . . E′
−3 E′

−2 E′
−1 TM

. . . E−3 E−2 E−1 TM

d′

φ0

d′

φ0

d′

φ0

ρ′

id

d d d ρ

. (3.62)

The dual chain map φ∗0 : Γ(E
∗
•) → Γ(E′∗

• ) admits a unique extension to an O-
linear graded algebra morphism Φ(0) : E → E ′. Since, by duality, the arity zero
components Q(0) of Q and Q′(0) of Q′ correspond to the differentials d and d′,
respectively, this map is in fact also a morphism of graded differential algebras
Φ(0) : (E , Q(0)) → (E ′, Q′(0)). It is therefore a Lie ∞-algebroid morphism up to
arity 0. Note that for being a Lie ∞-algebroid morphism up to arity 0, one
only needs the commutativity of the squares in (3.62) except for the one to the
utmost right. Using Equation (3.31), we can also rewrite the conditions (3.61)
in terms of the Taylor coefficients of Φ:

Lemma 3.82. The i-th condition (3.61) restricted to Γ(E∗) is equivalent to

Q′(0) ◦ φ∗i − φ∗i ◦ d
∗ =

∑
1≤a,b≤i−1
a+b=i

Q′(a) ◦ φ∗b − Φ(b) ◦Q(a) , (3.63)

where the Taylor coefficients are viewed upon as maps φk : S
k+1(E′)• → E•.

The whole set of equations (3.61) as it stands is equivalent to the set of equations
(3.63) for all 0 ≤ i ≤ n.

Q
(0)
E,E′(W ) := Q′(0) ◦W − (−1)|W |W ◦Q(0) ∀W ∈ Xvert(E

Φ(0)
// E ′).
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For every n ∈ N, the space X
(n)
vert(E

Φ(0)
// E ′) ofO-linear Φ(0)-derivations of arity n

is a sub-complex of this complex. Consider a Lie ∞-algebroid morphism Φ up
to order n whose component of arity 0 is Φ(0) : E → E ′ or, equivalently, whose
zeroeth Taylor coefficient is φ0. We say that a Lie ∞-algebroid morphism
Φ̃: E → E ′ up to order n + 1 is an extension of Φ if Φ̃(i) = Φ(i) for all i ≤ n
or, equivalently, if Φ̃ and Φ have the same Taylor coefficients up to order n.

Such as H2(X
(n+1)
vert (E), adQ(0)) governs the deformation problem in the context

of Equations (3.45), the following proposition shows that this role is played by

H1

(
X

(n+1)
vert (E

Φ(0)
// E ′), Q

(0)
E,E′

)

for the Equations (3.63) in the search of φn+1. Note that for each i, the l.h.s.

of Equation (3.63) can be rewritten as Q
(0)
E,E′(φ∗i ) := Q′(0) ◦φ∗i −φ

∗
i ◦Q

(0), while
the r.h.s. contains Taylor coefficients of Φ up to order i− 1 only.

Proposition 3.83. For every Lie ∞-algebroid morphism Φ: E → E ′ up to
order n one has:

1. cn+1(Φ) := (QE,E′(Φ))(n+1) is an O-linear, Q
(0)
E,E′-closed Φ(0)-derivation.

2. If the class [cn+1(Φ)] is zero in H1(X
(n+1)
vert (E

Φ(0)
// E ′), Q

(0)
E,E′), then Φ per-

mits an extension to a Lie ∞-algebroid morphism up to order n+ 1.

Proof. Considering the component of arity n + 1 + i + j in (3.33), for all ho-
mogeneous functions F and G of arities i and j, respectively, yields:

QE,E′(Φ)
(n+1)

(F ⊙G) =

QE,E′(Φ)(n+1)(F )⊙ Φ(0)(G) (3.64)

−(−1)|F |Φ(0)(F )⊙QE,E′(Φ)
(n+1)

(G).

Since cn+1(Φ) = QE,E′(Φ)
(n+1)

, this proves that cn+1(Φ) is an O-linear Φ(0)-
derivation.

Q′(0) ◦QE,E′(Φ)
(n+1)

+QE,E′(Φ)
(n+1)

◦Q(0) = 0. (3.65)

In other words, cn+1(Φ) = QE,E′(Φ)(n+1) is Q
(0)
E,E′-closed. This concludes the

proof of the first item.
Let Φ̃ be as in the following lemma, which is shown easily by use of Equations
(3.31) and (3.34):

Lemma 3.84. Let Φ: E → E ′ be an O-linear graded algebra morphism and W a
Φ(0)-derivation of arity n+ 1. Consider an O-linear graded algebra morphism
Φ̃ : E → E ′ whose Taylor coefficients coincide with those of Φ up to order n,
φ̃i = φi for all 0 ≤ i ≤ n and whose n plus first Taylor coefficient agrees with
W , φ̃n+1 =W . Then Φ̃(i) = Φ(i) for 0 ≤ i ≤ n and Φ̃(n+1) = Φ(n+1) +W .
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the components of arity 0, . . . , n of QE,E′(Φ̃) coincide with those of QE,E′ (Φ)
and therefore vanish as well. In addition,

(QE,E′(Φ̃))(n+1) = (QE,E′(Φ))(n+1)+Q′(0)◦W−W ◦Q(0) = cn+1(Φ)+Q
(0)
E,E′(W ).

The right hand side of this equation is equal to zero by definition of W . This
proves the second item.

3.6.2 Homotopy deformations up to arity n.

Definition 3.85. Let n ∈ N0∪{+∞} and Φ,Ψ two Lie ∞-algebroid morphisms
from (E′, Q′) to (E,Q). A homotopy deformation of Ψ into Φ up to arity n is
a sequence (Ψi)−1≤i≤n of Lie ∞-algebroid morphisms from (E′, Q′) to (E,Q)
such that:

(i) Ψ−1 = Ψ,

(ii) Ψi and Φ agree up to arity i for all 0 ≤ i ≤ n,

(iii) Ψi and Ψi+1 are homotopic through a homotopy (Ψτ , Hτ )τ∈[i,i+1] where,
for all τ ∈]i, i+1[, Hτ is a Ψτ -derivation whose components of arity less
or equal to i vanish.

The following statement explains the importance of homotopy deformations:

Proposition 3.86. If a homotopy deformation up to arity +∞ of Ψ into Φ
exists, they Φ and Ψ are homotopic Lie ∞-algebroid morphisms.

Lemma 3.87. Let f : [0, 1[→ [−1,+∞[ be a strictly increasing surjective smooth
function. Then the pair

(
Ψf(t), f

′(t)Hf(t)

)
together with Ψf(1) := Φ is a ho-

motopy between Φ and Ψ.

Proof. Assumptions (ii) and (iii) imply that, for all τ ≥ n, Ψ
(n)
τ is equal to

Φ(n). Hence, for each fixed n, there exists a neighborhood Un ⊂ [0, 1] of 1 such

that for all t ∈ Un we have Ψ
(n)
f(t) = Φ(n). In particular, t 7→ Ψ

(n)
f(t) is continuous

and piece-wise-C∞. Likewise, f ′(t)H
(n)
f(t) is piece-wise smooth and vanishes for

all t ∈ Un.
By construction, the pair (Ψf(t), f

′(t)Hf(t)) satisfies the following equation

dΨf(t)

dt
= QE,E′

(
f ′(t)Hf(t)

)
.

Comparison with Equation (3.35) shows that this pair provides a homotopy
between Ψf(0) = Ψ−1 = Ψ and Ψf(1) = Φ.

Given a homotopy deformation up to arity n, we wish to extend it up to arity
n+1. As the following proposition shows in parallel to Proposition 3.83, there
is again an obstruction which is cohomological in nature, now living in

H0

(
X

(n+1)
vert (E

Φ(0)
// E ′), Q

(0)
E,E′

)
.
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Proposition 3.88. Consider a homotopy deformation (Ψi)i=−1,...,n of Ψ into
Φ up to arity n ≥ 0. Then:

1. cn+1(Φ,Ψn) := (Φ−Ψn)
(n+1) is an O-linear Q

(0)
E,E′-closed Φ(0)-derivation.

2. If the class of cn+1(Φ,Ψn) in H0(Xvert(E
Φ(0)

// E ′), Q
(0)
E,E′) vanishes, then

there exists a Lie ∞-algebroid morphism Ψn+1 such that (Ψi)i=−1,...,n+1

provides a homotopy deformation of Ψ into Φ up to order n+ 1.

Proof. For all F,G ∈ E , one has:

(Φ−Ψn)(F ⊙G) = (Φ−Ψn)(F )⊙ Φ(G) + Ψn(F )⊙ (Φ− Ψn)(G). (3.66)

Since, by assumption, (Φ − Ψn)
(i) = 0 for all 0 ≤ i ≤ n, taking F and G

of arity i and j in the above equation and considering its component of arity
n+ 1 + i + j, we obtain:

(Φ−Ψn)
(n+1)(F ⊙G) =

(Φ−Ψn)
(n+1)(F )⊙ Φ(0)(G) + Φ(0)(F )⊙ (Φ−Ψn)

(n+1)(G). (3.67)

This implies that (Φ− Ψn)
(n+1) : E → E ′ is a Φ(0)-derivation. Moreover, since

both Φ and Ψn are Lie ∞-algebroid morphisms, one has:

(Φ−Ψn) ◦Q = Q′ ◦ (Φ−Ψn). (3.68)

Restricting this equation to the component of arity n+ 1 yields, for the same
reason, (Φ − Ψn)

(n+1) ◦ Q(0) = Q′(0) ◦ (Φ − Ψn)
(n+1). Thus (Φ − Ψn)

(n+1) is

Q
(0)
E,E′-closed, which proves the first item.

Assume now that (Φ − Ψn)
(n+1) is Q

(0)
E,E′-exact, so that there exists a Φ(0)-

derivation W of arity n+ 1 and degree minus one such that:

(Φ−Ψn)
(n+1) = Q

(0)
E,E′(W ). (3.69)

In view of Example 3.56, the following differential equation admits a solution
on the interval [n, n+ 1] with initial condition at t = n:

dΨt
dt

= QE,E′

(
wΨt

)
, (3.70)

where w is the Taylor coefficients of W and, as before, wΨt denotes the Ψt-
derivation with this coefficient.
For notational simplicity, let Ht := wΨt . Since w is a section of Γ(Sn+2(E′∗)⊗
E), Equation (3.34) implies:

H
(k)
t = 0 and (QE,E′(wΨt))(k) ≡ QE,E′(Ht)

(k) = 0 ∀ k ≤ n. (3.71)
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Thus according to Equation (3.70) and by an appropriate choice of initial con-
ditions satisfying our assumptions, one has

Ψ
(k)
t = Ψ(k)

n = Φ(k) ∀t ∈ [n, n+ 1], ∀k ≤ n,

and thus also

Ψ
(k)
n+1 = Φ(k) ∀k ≤ n. (3.72)

Since, according to Equation (3.34), for the critical arity n+1, the morphism Ψt
does not enter the expression for Ht ≡ wΨt , it also coincides with the Φ(0)-
derivation having the same Taylor coefficient w:

H
(n+1)
t =W. (3.73)

By Equations (3.70), (3.71), and (3.73) therefore:

dΨ
(n+1)
t

dt
= QE,E′ (Ht)

(n+1)

= Q′(0) ◦H
(n+1)
t +H

(n+1)
t ◦Q(0)

= Q′(0) ◦W +W ◦Q(0) ≡ Q
(0)
E,E′(W ) = (Φ−Ψn)

(n+1).

This implies Ψ
(n+1)
t = Ψ

(n+1)
n + (t− n)(Φ−Ψn)

(n+1), so that

Ψ
(n+1)
n+1 = Φ(n+1),

which, together with Equation (3.72), completes the proof of the second item.

3.6.3 The cohomology of O-linear Φ(0)-derivations

Let φ0 be as in (3.62) and Φ(0) : E → E ′ its extension as in Section 3.6.1. We

now study the complex (X
(n)
vert(E

Φ(0)
// E ′)•, Q

(0)
E,E′), the cohomology of which hosts

the obstruction classes of both previous subsections.

Assigning to an O-linear Φ(0)-derivation of arity n its Taylor coefficients yields
a graded O-module isomorphism:

X
(n)
vert(E

Φ(0)
// E ′)• ≃ Γ(Sn+1(E′∗)⊗ E)•. (3.74)

For E′ = E and Φ(0) = id, this reproduces (3.48). Under this isomorphism, the
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differential Q
(0)
E,E′ becomes the total differential of the following bicomplex:

...
...

...

· · · // Γ(Sn+1(E′∗)n+3 ⊗ E−3)
id⊗d

//

OO

Γ(Sn+1(E′∗)n+3 ⊗ E−2)

OO

id⊗d
// Γ(Sn+1(E′∗)n+3 ⊗ E−1)

OO

// 0

· · · // Γ(Sn+1(E′∗)n+2 ⊗ E−3)
id⊗d

//

Q′(0)⊗id

OO

Γ(Sn+1(E′∗)n+2 ⊗ E−2)

Q′(0)⊗id

OO

id⊗d
// Γ(Sn+1(E′∗)n+2 ⊗ E−1)

Q′(0)⊗id

OO

// 0

· · · // Γ(Sn+1(E′∗)n+1 ⊗ E−3)
id⊗d

//

Q′(0)⊗id

OO

Γ(Sn+1(E′∗)n+1 ⊗ E−2)

Q′(0)⊗id

OO

id⊗d
// Γ(Sn+1(E′∗)n+1 ⊗ E−1)

Q′(0)⊗id

OO

// 0

0

OO

0

OO

0

OO

(3.75)
Again, we can consider the root map:

rt : X
(n)
vert(E

Φ(0)
// E ′)• −→ Γ(Sn+1(E′∗))• ⊗O F [−1]

which is obtained by applying id⊗ρ to the component Sn+1(E′∗)•⊗E−1 of an

O-linear Φ(0)-derivation W . Thus, if P : X
(n)
vert(E

Φ(0)
// E ′)• −→ Γ(Sn+1(E′∗)• ⊗

E−1) denotes the corresponding projector, simply

rt ≡ (id⊗ ρ) ◦ P . (3.76)

The proof of the following proposition and corollary follows the same line of
reasoning as the proof of Proposition 3.64 and its Corollary 3.67 and is left to
the reader.

Proposition 3.89. If (E, d, ρ) is a geometric resolution of F , then

rt : (X
(n)
vert(E

Φ(0)
// E ′)•, Q

(0)
E,E′) −→ (Γ(Sn+1(E′∗))• ⊗O F [−1], Q′(0) ⊗ id)

is a quasi-isomorphism.

Corollary 3.90. In the case of a geometric resolution (E, d, ρ), one has:

1. H1

(
X

(n)
vert(E

Φ(0)
// E ′), Q

(0)
E,E′

)
= 0 if n ≥ 2,

2. H0

(
X

(n)
vert(E

Φ(0)
// E ′), Q

(0)
E,E′

)
= 0 if n ≥ 1.

Remark 3.91. If (E′, d′, ρ′) = (E, d, ρ) and φ0 = id, then O-linear Φ(0)-
derivations are vertical vector fields on E and Proposition 3.89 and Corol-
lary 3.90 reduce to Proposition 3.64 and Corollary 3.67, respectively.
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3.6.4 First part of Theorem 2.9: Construction of a morphism

as a unobstructed deformation problem

Proposition 3.92. Let (E,Q) be a universal Lie ∞-algebroid of a singular fo-
liation F , i.e. (E, d, ρ) is a geometric resolution and let (E′, Q′) be an arbitrary
Lie ∞-algebroid over the same base M . Every Lie ∞-algebroid morphism up
to order n ∈ N, Φ: (E′, Q′) → (E,Q), can be extended to a (strict) Lie ∞-
algebroid morphism. For n = 0, this statement is true as well if we add the
condition ρ′ = ρ ◦ φ0 on E′

−1.

Proof. It is sufficient to show that all the obstruction classes [ck+1] in Proposi-
tion 3.83 for all k ≥ n are zero. For n ∈ N and all k > 0, this is automatic due
to first item in Corollary 3.90. We are thus left with the case k = 0, where we
still need to consider the class of

c1(Φ
(0)) :=

(
Φ(0) ◦Q′ −Q ◦ Φ(0)

)(1)
= Φ(0) ◦Q′(1) −Q(1) ◦ Φ(0) .

Its component in S2(E′∗
−1)⊗ E−1 contracted with x, y ∈ Γ(E′

−1) is given by

{
φ0(x), φ0(y)

}
− φ0

(
{x, y}′

)
, (3.77)

where { . , . } and { . , . }′ denote the almost Lie algebroid brackets on E−1

and E′
−1 dualizing Q(1) and Q′(1), respectively. According to Equation (3.76),

rt(c1(Φ
(0))) is obtained by applying ρ to Equation (3.77)

〈rt(c1(Φ
(0))), x⊙ y〉 =

{
ρ(φ0(x)), ρ(φ0(y))

}
− ρ(φ0

(
{x, y}′

)
), (3.78)

where we used the morphism property of the almost-Lie algebroid E−1. The
assumption ρ′ = ρ ◦ φ0 (which follows automatically for n > 0 and is added by
hand for n = 0) and the morphism property of the almost-Lie algebroid E′

−1

then imply rt(c1(Φ
(0))) = 0. Together with Proposition 3.89, this shows

[c1(Φ
(0))] = 0.

2.9. Given the assumptions specified at the beginning of this subsection, Section
3.6, together with (E, d, ρ) being a geometric resolution, there always exists a
chain map φ0 as in (3.62)—globally in the smooth setting (this is a classical
result of abelian categories and was cited already as Lemma 3.19 above) and
locally in the real analytic and holomorphic cases. The corresponding graded
algebra morphism from E to E ′ is also a Lie ∞-algebroid morphism up to order
zero from (E , Q) to (E ′, Q′): QE,E′(Φ)(0) ≡ Q′(0) ◦ Φ(0) − Φ(0) ◦ Q(0) vanishes
due to the commutativity of (3.62). In addition, by the same diagram, also
the additional condition for n = 0 is satisfied in the above proposition. This
completes the proof for the first part of the theorem.
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3.6.5 Second part of Theorem 2.9: Construction of a

homotopy as a unobstructed homotopy deformation

problem

Proposition 3.93. Let Φ and Ψ be Lie ∞-algebroid morphisms over the iden-
tity of M from an arbitrary Lie ∞-algebroid (E′, Q′) to a universal one (E,Q)
of a singular foliation F . Every homotopy deformation (Ψi)i=−1,...,n of Ψ into
Φ up to arity n ≥ 0 can be extended up to arity infinity.

Proof. For a homotopy deformation up to arity n+1 to exist, vanishing of the
cohomology class

[cn+1(Φ,Ψn)] ∈ H0

(
X

(n+1)
vert (E

Φ(0)
// E ′), Q

(0)
E,E′

)

is necessary and sufficient, see Proposition 3.88. However, according to the
second item in Corollary 3.90, for (E,Q) universal, these cohomology spaces
are already trivial. Therefore, the extension of a homotopy deformation of Ψ
into Φ from up to an arity n ≥ 0 to arity infinity is unobstructed and exists.

By Proposition 3.86, if a homotopy deformation (Ψi)
+∞
i=−1 of Ψ into Φ up to

arity infinity exists, then Φ and Ψ are homotopic Lie ∞-algebroid morphisms.
In view of the above proposition, Proposition 3.93, to complete the proof of
the second part of Theorem 2.9, it suffices therefore to construct a homotopy
deformation of Ψ into Φ up to arity zero—on the manifold M in the smooth
case and in a neighborhood of a point in the real analytic or holomorphic cases.
In the smooth case, Lemma 3.19 implies that the linear parts φ0 and ψ0 of Φ
and Ψ are homotopic through a homotopy h : E′

• → E•−1:

. . . E′
−3 E′

−2 E′
−1

TM

. . . E−3 E−2 E−1

d d

φ0ψ0
h

φ0ψ0

d

h
φ0ψ0

ρ′

d′ d′ d′

ρ

(3.79)

In the real analytic or holomorphic cases, such a homotopy h may exist in
a neighborhood of a point only. Theorem 2.9 now follows from the above
discussion and the following lemma.

Lemma 3.94. Assume a homotopy as in (3.79) is given. Then the Lie ∞-
algebroid morphism Ψ is homotopic to a Lie ∞-algebroid morphism whose lin-
ear part is the linear part of Φ, i.e. there exists a homotopy deformation of Ψ
into Φ up to arity 0.

Proof. Consider the differential equation:

dΨt
dt

= QE,E′

(
hΨt
)
,
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where hΨt is the unique Ψt-derivation whose unique non-vanishing Taylor co-
efficient is h, i.e. whose restriction to Γ(E∗) is the dual h∗ of h. According to
Example 3.56, this differential equation admits a solution (Ψt, h

Ψt)t∈[0,1] which
is a homotopy between Ψ0 := Ψ and Ψ1. Moreover, since the linear part of hΨt

is h∗ for all t, the following differential equation is satisfied for all α ∈ Γ(E∗):

dΨ
(0)
t

dt
(α) = (Q′(0) ◦ h∗)(α) + (h∗ ◦Q(0))(α)

= Φ(0)(α)−Ψ(0)(α),

(3.80)

where in the second line we used the homotopy property expressed by diagram

(3.79). In view of the initial condition Ψ
(0)
0 = Ψ(0), we thus have Ψ

(0)
t =

Ψ(0) + t(Φ(0) − Ψ(0)). As a consequence, the component of arity zero of Ψ1 is
equal to Φ(0). This proves the claim.

3.7 Examples of universal Lie ∞-algebroid structures of a sin-

gular

foliation

In this section, we give examples of universal Lie ∞-algebroid structures of a
given singular foliation.

Example 3.95. For a regular foliation F on a manifold M , the Lie algebroid
TF ⊂ TM , whose sections form F , is a universal Lie ∞-algebroid of F .

Example 3.96. A singular foliation is a Debord foliation if and only if one of
its universal Lie ∞-algebroids is a Lie algebroid (see Example 3.30).

Example 3.97. In Example 3.31, we gave a geometric resolution of length two
of the singular foliation coming from the action of sl2 on R2. Let us compute
now the Lie ∞-algebroid structure on that geometric resolution. We define the
bracket between two constant sections of E−1 ≃ sl2 as being their bracket in
sl2. Then we extend this bracket to every section of E−1 by the Leibniz identity
(3.22). To define the bracket between sections of E−1 and E−2, we notice that:

{ẽ, dr} = xy{ẽ, h̃}+ ρ(ẽ)(xy)h̃+ ρ(ẽ)(y2)ẽ− x2{ẽ, f̃} = 0. (3.81)

Since d is injective on a dense open subset, this imposes {ẽ, r} = 0. The

same argument also gives [f̃ , r] = [h̃, r] = 0. We then extend these brackets
to a bracket between sections of E−1 and E−2 by the Leibniz property (3.22).
There is no k-ary bracket for k ≥ 3.

There is an evident Lie algebroid inducing the same foliation, namely the action
Lie algebroid A = M × sl2. According to Theorem 2.9, there must exist a Lie
∞-algebroid morphism φ : (A,QA) → (E,Q), which here can be realized by
the obvious inclusion id⊕ 0 of A into E = E−1 ⊕ E−2.
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Example 3.98. The result is similar for the geometric resolution of the foliation
Fad given by the adjoint action of a semi-simple complex Lie algebra on itself,
as in Example 3.32. In that case, E−1 is the trivial bundle over M = g with
typical fiber g, and the bracket of constant sections can be chosen to be the
bracket of the Lie algebra g. In fact, E−1 by itself is the corresponding action
Lie algebroid. The bracket of a constant section of E−1 with a constant section
of E−2 has to be zero and there is no 3-ary bracket.

Example 3.99. Let F be the singular foliation of all vector fields vanishing at
the origin 0 ∈ V , V a vector space. Let us consider the geometric resolution
given in Example 3.34.
A Lie ∞-algebroid structure on that geometric resolution can be described
explicitly. Let all k-ary brackets vanish for k ≥ 3. The 1-ary bracket is already
given by the resolution. It now suffices to define the 2-ary bracket on constant
sections, since they can be extended to all sections by means of the Leibniz
property, using the anchor map (3.22). For all α ∈ ∧iV ∗, β ∈ ∧jV ∗, and
u, v ∈ V , it is defined as follows:

{
α⊗ u, β ⊗ v

}
2
= α ∧ iuβ ⊗ v + (−1)ijβ ∧ ivα⊗ u. (3.82)

This bracket is graded symmetric by construction. The Jacobi identity can be
checked by a direct calculation, which one is permitted to perform on constant
sections, since the above bracket preserves constant sections. The compatibility
with the differential is shown as follows, where first we assume i, j ≥ 2:

d(i+j−1)
{
α⊗ u, β ⊗ v

}
2

= ie
(
α ∧ iuβ ⊗ v + (−1)ijβ ∧ ivα⊗ u

)

= (ieα) ∧ iuβ ⊗ v + (−1)ij+j+1β ∧ iv(ieα)⊗ u

+(−1)i+1α ∧ iuieβ ⊗ v + (−1)ij(ie)β ∧ ivα⊗ u

=
{
d(i) (α⊗ u) , β ⊗ v

}
2

−(−1)i
{
α⊗ u, d(j) (β ⊗ v)

}
2

For i = 1 or j = 1, one replaces d(1) by the anchor ρ in the above.
Again, in this example, there is an action Lie algebroid giving rise to the same
foliation, which can be obtained by restriction to E−1. In fact, this Lie algebroid
is just V × gl(V ).

Example 3.100. We consider the foliation F of vector fields vanishing to or-
der 2 at 0 on V = K2 and its resolution

0 → E−2 → E−1 → TM

constructed in Example 3.35. The vector bundle E−1 is the trivial bundle with
fiber S2(V ∗)⊗V . Denote by α∗, β∗ the quadratic functions on V associated to
α, β ∈ S2V ∗ and by u, v the constant vector fields on V associated to elements
u, v ∈ V . Then the anchor map can be defined by means of ρ(α ⊗ v) = α∗ v
and the 2-ary brackets between constant sections by:

{α⊗ u, β ⊗ v}2 = (u [β∗]) (α⊗ v)− (v [α∗]) (β ⊗ u) . (3.83)
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The Jacobiator of this bracket is non-zero and thus, in this example, the com-
pletion of which we leave to the reader, the 3-ary bracket is necessarily non-zero
as well. In this case, we do not know of a Lie algebroid that generates the same
foliation.

Example 3.101. We return to Example 3.36 with its geometric resolution
(E, d, ρ) where Γ(E−i) is the sheaf of (i + 1)-multivector fields on C

n. This
can be equipped with the structure of a Lie ∞-algebroid by postulating the
following k-ary brackets:

{∂I1 , . . . , ∂Ik}k :=
∑

i1∈I1,...,ik∈Ik

ǫ(i1, . . . , ik)
∂kϕ

∂xi1 ...∂xik
∂
I
i1
1 •I

i2
2 •...•I

ik
k

. (3.84)

Here for every multi-index I = (i1, . . . , ij) of length j of elements in {1, . . . , n},
∂I is a shorthand notation for ∂

∂xi1
∧ · · · ∧ ∂

∂xij
. Given a collection of k multi-

indices I1, I2, . . . , Ik, we can form a new multi-index I := I1 • I2 • . . . • Ik by
concatenation. For every i1 ∈ I1, . . . , ik ∈ Ik, ǫ(i1, . . . , ik) is the signature of
the permutation needed inside I to bring them to the first k slots in the given
order. For every is ∈ I, Iis denotes the list which results from dropping is
from the list I = (i1, . . . , ij).
The anchor is defined by

ρ
(

∂
∂xi

∧ ∂
∂xj

)
:= ∂ϕ

∂xi

∂
∂xj

− ∂ϕ
∂xi

∂
∂xi

(3.85)

and the brackets, defined in (3.84) on constant sections only, extended appro-
priately. One may verify, e.g. by an adaptation of the techniques in [56, 57],
that indeed these data define a Lie ∞-algebroid.
In this example, in general, the k-ary brackets for k = 3, 4, . . . are not zero and
there is no obvious Lie algebroid inducing the same singular foliation.

Example 3.102. Our construction can be used also to associate three poten-
tially different homotopy classes of Lie ∞-algebroids to a given affine variety
W ⊂ Cn. These result from application of the main theorem to the three
different O-modules described in Example 3.37.

4 The geometry of a singular foliation through its

universal Lie ∞-algebroid

In this section we relate the geometry of a singular foliation to its universal
Lie ∞-algebroid. More precisely, since any two universal Lie ∞-algebroids
of a singular foliation F are homotopy equivalent by Corollary 2.10, every
homotopy invariant mathematical notion deduced from it is in fact associated
to the singular foliation F itself.
For example, Lemma 3.18 shows that the alternate sums of the ranks of the vec-
tor bundles underlying a Lie ∞-algebroid is preserved under homotopy equiv-
alence. Therefore it must have a geometrical meaning associated directly to
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the singular foliation. And indeed, this was provided in Proposition 2.5: it
coincides with the dimension of regular leaves.

Typical examples of such notions are various cohomologies that Lie ∞-
algebroids are equipped with. In what follows, we shall first study some global
cohomologies and then turn to those attached canonically to every given leaf.

to the holonomy groupoid of a given singular foliation and conclude with some
remarks about an eventual Lie or Leibniz algebroid over it.

Throughout this section, we work in the smooth context. Except for the discus-
sion about the holonomy groupoid, the results remain valid in the holomorphic
and in the real analytic context in a neighborhood of a point.

Unless otherwise specified, throughout Sections 4.1, 4.2, and 4.3, F is a singular
foliation on a manifold M , (E, d, ρ) is a geometric resolution of finite length,
(E,Q) is a universal Lie ∞-algebroid of F , and E its sheaf of functions.

4.1 Universal foliated cohomology

Here is a first example of cohomology associated to a singular foliation with
the help of the universal Lie ∞-algebroid.

Lemma 4.1. Let F be a singular foliation on M . Let (E,Q) and (E′, Q′)
be two universal Lie ∞-algebroids of F with sheaves of functions E and E ′.
The cohomologies of (E , Q) and (E ′, Q′) are canonically isomorphic as graded
commutative algebras.

Proof. By Corollary 2.10, there exist Lie ∞-algebroid morphisms ϕ : E ′ → E
and ψ : E → E ′ whose compositions are homotopic to the identity. Proposition
3.57 implies that Φ := ϕ ◦ ψ and Ψ := id are inverse to one another at the
level of cohomology. Two morphisms ϕ, ϕ′ : E ′ → E are homotopic to one
another, moreover, so that, again at the level of cohomology, they define the
same isomorphism.

Definition 4.2. Let F be a singular foliation on M that admits a geometric
resolution. We call the cohomology of (E , Q), where E is the sheaf of functions
of any universal Lie ∞-algebroid (E,Q) of the given F , the universal foliated
cohomology of F and denote it by HU(F).

Remark 4.3. By construction, H0
U
(F) is the algebra of functions on M con-

stant along the leaves of F .

There is another cohomology of interest. Let us call

Ω(F) := HomO

(
∧O F ,O

)
=
⊕

k≥0

HomO

(
∧kO F ,O

)
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the space of longitudinal forms. It is equipped with the differential:

dL(α)(X0, . . . , Xk) =
k∑

i=0

(−1)iXi

[
α(X0, . . . , X̂i, . . . , Xk)

]
(4.1)

+
∑

0≤i<j≤k

(−1)i+jα
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j, . . . , Xk

)
.

Here α ∈ Ωk(F), X0, . . . , Xk ∈ F , and X̂i means that the term Xi is omitted.
We call the cohomology of this operator the longitudinal cohomology of F and
denote it by H•(F).

Remark 4.4. A k-form α ∈ Ωk(F) induces a k-form on each regular leaf L:
for every regular point m, it is the unique k-form αLm on the leaf Lm through
m such that

α(X1, . . . , Xk)|m = αLm(X1(m), . . . , Xk(m)) (4.2)

for all X1, . . . , Xk ∈ F . In contrast, a k-form satisfying (4.2) may not exist on
singular leaves. For instance, consider the singular foliation on R generated by
the vector field x ∂

∂x
and the longitudinal 1-form α : Fx ∂

∂x
7→ F for all F ∈ O.

The leaf {0} being of dimension 0, it does not permit a 1-form satisfying (4.2).

There is a natural map ρ∗ from Ω(F) to E which associates to each α ∈ Ωk(F)
the element ρ∗α ∈ Γ

(
Sk(E∗

−1)
)
⊂ Ek defined for all x1, . . . , xk ∈ Γ(E−1) by:

ρ∗α(x1, . . . , xk) = α
(
ρ(x1), . . . , ρ(xk)

)
. (4.3)

Lemma 4.5. Let F be a singular foliation on M that admits a universal Lie
∞-algebroid. There is a canonical algebra morphism ρ∗ : H•(F) → H•

U
(F).

Proof. It is routine to check that α 7→ ρ∗(α) is a chain map and a graded
commutative algebra morphism. It therefore induces a map in cohomology.
Now, let (E,Q) and (E′, Q′) be two universal Lie ∞-algebroids of F , with
sheaves of functions E and E ′ respectively. Let ΦE,E′ : E ′ → E be a Lie ∞-
algebroid morphism from (E,Q) and (E′, Q′) as in Corollary 2.10. The relation
ΦE,E′ ◦ (ρ′)∗ = ρ∗ holds and proves the commutativity of the following diagram

H•(F)

H•(E , Q) H•(E ′, Q′)

ρ∗ ρ′∗

≃

where the horizontal map is the canonical isomorphism given in Corollary 4.1.
This proves the claim.
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Example 4.6. For Debord foliations, the universal foliated cohomology is the
Lie algebroid Chevalley-Eilenberg cohomology of (A, [·, ·], ρ) and ρ∗ : H•(F) →
H•

U
(F) is an isomorphism.

Remark 4.7. Let W be an affine variety and X (W ) be as in Example 3.37.
The longitudinal cohomology of X (W ) is the usual de Rham cohomology of an
affine variety. It would be interesting to relate its universal foliated cohomology
to derived de Rham cohomology [51].

4.2 The isotropy Lie ∞-algebra

Androulidakis and Skandalis were able to define [1, 4] a Lie algebra associated
canonically to each point m ∈ M , if M is equipped a singular foliation. They
call it the isotropy Lie algebra of F at m. It is defined as the quotient of the
Lie algebra F(m) of local sections in F vanishing at m ∈ M by the Lie ideal
ImF , where Im ⊂ O are the functions vanishing at m.

4.2.1 The graded space of the Lie ∞-algebra.

Choose an arbitrary point m ∈M . Denote by imV the fiber of a vector bundle
V →M at m, and by imφ the restriction to imV of a vector bundle morphism
φ : V 7→ V ′.

Recall that although (E, d, ρ) is a geometric resolution, the complex
(imE, imd, imρ)

. . .
imd(4)

// imE−3
imd(3)

// imE−2
imd(2)

// Ker(imρ) // 0 (4.4)

may have cohomology: Exactness at the level of sections does not imply that
the complex (4.4) is exact at all points. For instance, the geometric resolutions
constructed in Examples 3.31,3.34, and 3.36 have a non-zero cohomology when
m is the origin.

We define the graded vector space:

H•(F ,m) =
⊕

i≥1

H−i(F ,m) (4.5)

to be the cohomology of the complex (4.4). Notice that the chosen notation
does not make reference to any particular geometric resolution. This is justified
by the first assertion of the following lemma:

Lemma 4.8. Let F be a singular foliation that admits geometric resolutions on
the neighborhood of some m ∈M .

1. The cohomology of the complex (4.4) does not depend on the choice of a
geometric resolution of F .
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2. For every geometric resolution (E, d, ρ) of F which is minimal at m and
every i ≥ 2, the vector space H−i(F ,m) is canonically isomorphic to
imE−i. In addition, H−1(F ,m) is canonically isomorphic to the kernel
of imρ : imE−1 → TmM .

Proof. According to Lemma 3.20, between two geometric resolutions (E, d, ρ)
of (E′, d′, ρ′) of the same O-module F there is a distinguished homotopy class
of homotopy equivalences relating them. By O-linearity, it restricts to a ho-
motopy class of homotopy equivalences between the complexes (imE, imd, imρ)
and (imE

′, imd′, imρ
′). This proves the first assertion of the lemma.

The second statement follows from the obvious fact that for a minimal reso-
lution at m, one has imd = 0 and thus the complex (4.4) coincides with its
cohomology.

Remark 4.9. In terms of abelian categories, H•(F ,m) is Tor•O(F ,K). Here,
the field K is equipped with the O-module structure defined by F ·λ = F (m)λ
for all F ∈ O, λ ∈ K.

Proposition 4.10. Let F be a singular foliation that admits geometric res-
olutions on the neighborhood of some m ∈ M . Then the following items are
equivalent:

(i) There is a neighborhood of m ∈M on which F is a Debord foliation.

(ii) H−i(F , x) = 0 for all i ≥ 2 and for all x in a neighborhood of m.

(iii) H−2(F ,m) = 0.

Proof. If a foliation is Debord, it admits a resolution of length one, see Exam-
ple 3.30. This implies that the cohomologies H−i(F , y) are all trivial for all
i ≥ 2 and every point y in that neighborhood. Hence (i) implies (ii). It is
obvious that (ii) implies (iii). Let us assume that (iii) holds, so that for every
geometric resolution (E, d, ρ) of F , the image of imd(3) is the kernel of imd(2).
Since there exists a neighborhood of m such that

1. the dimension of the image of d(3) at every x ∈ U has to be greater than
or equal to its dimension at m ∈M and

2. the dimension of the kernel of d(2) : E−2 → E−1 at every x ∈ U has to be
lower than or equal to its dimension at m ∈M ,

but always im ixd
(3) ⊂ ker ixd

(2), these dimensions have to coincide inside
U . Therefore, H−2(F , x) = 0 for all x ∈ U . This implies that E′

−1 :=(
E−1

/
d(2)(E−2)

)∣∣∣
U

is a vector bundle. The anchor descends to the quo-

tient defining a morphism of O-modules ρ : Γ(E′
−1) → F . By construction, it

is an isomorphism of O-modules and hence (iii) implies (i).
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4.2.2 The brackets of the Lie ∞-algebra.

Applying the isotropy functor Im for a chosen point m ∈ M to a universal
Lie ∞-algebroid (E,Q) of a given singular foliation F , we induce a Lie infinity
algebra structure on the complex (4.4). Since this functor maps homotopy
equivalences of Lie ∞-algebroids to homotopy equivalences of Lie ∞-algebras,
we prefer to look at the homotopy isotropy functor (3.41). By Corollary 2.10,
different choices of the universal Lie ∞-algebroid yield homotopy equivalent
Lie ∞-algebras, i.e. isomorphic Lie ∞-algebras inside hLie-∞-alg.

We now may choose the universal Lie ∞-algebroid appropriately, so as to
directly induce a Lie ∞-algebra structure on (4.5), namely, according to
Lemma 4.8, by letting it be minimal at m. Every other one is isomorphic
to this one and, since (4.5) is a trivial complex, it provides a minimal model of
the isotropy Lie ∞-algebra.

Definition 4.11. Let (E,Q) be a universal Lie ∞-algebroid of F which is
minimal at m. Then hIm(E,Q) is a Lie ∞-algebra structure on H•(F ,m),
which we denote by (H•(F ,m), Qm) and call the isotropy Lie ∞-algebra of the
singular foliation F at m.

Proposition 4.12. Any two isotropy Lie ∞-algebras at m of F , constructed
out of two universal Lie ∞-algebroid of F minimal at m, are isomorphic,
through an isomorphism whose linear part is the identity of H•(F ,m).

In particular, the 2-ary bracket is a graded Lie algebra bracket on H•(F ,m),
which does not depend on any choice made in the construction.

Lemma 4.13. Let (V,Q) be a Lie ∞-algebra whose 1-ary bracket is equal to
zero:

1. Its 2-ary bracket is a graded Lie algebra bracket.

Let (V ′, Q′) be a second Lie ∞-algebra whose 1-ary bracket is equal to zero.

2. The linear part of any Lie ∞-algebra morphism from (V,Q) to (V ′, Q′)
is a graded Lie algebra morphism of the 2-ary brackets.

3. The Lie ∞-algebras (V,Q) and (V ′, Q′) are isomorphic to one another if
and only if they are homotopy equivalent.

Proof. The first item is an easy consequence of the higher Jacobi identity (3.20)
for n = 3. The second item is easily derived from the axioms of Lie ∞-algebra
morphisms.

A graded commutative algebra morphism Φ: S((V ′)∗) → S(V ∗) is invertible if
and only if its linear part φ : V → V ’ is invertible. Evidently, if Φ: (V,Q) →
(V ′, Q′) is part of a homotopy equivalence, so is its linear part φ : V → V ′. But
a homotopy equivalence between complexes whose differential is zero has to be
invertible.

Documenta Mathematica 25 (2020) 1571–1652



1638 C. Laurent-Gengoux, S. Lavau, T. Strobl

Proof (of Proposition 4.12). By the functorial properties of hIm, two isotropy
Lie ∞-algebras at m ∈M of F which are constructed out of two universal Lie
∞-algebroid of F minimal at m are homotopy equivalent. The first assertion
from the proposition then follows from item three of Lemma 4.13, the second
one from items one and two.

If we restrict the graded Lie algebra structure on H•(F ,m), see item one in
Lemma 4.13, its restriction to H−1(F ,m) yields an ordinary Lie algebra.

Proposition 4.14. The isotropy Lie algebra of the singular foliation F at a
point m ∈M , as defined by Androulidakis and Skandalis, is isomorphic to the
degree minus one component H−1(F ,m) of the isotropy Lie ∞-algebra of F
at m.

Proof. The isotropy Lie algebra at m of I. Androulidakis and G. Skandalis [1]
is the quotient gm := F(m)/ImF(m) where F(m) denotes vector fields in F
which vanish at m and Im functions vanishing at that point.

Let (E,Q) be a universal Lie ∞-algebroid of F which is minimal at m. Choose
e ∈ imE−1 in the kernel of ρm. Let ẽ be a local section through e. Then ρ(ẽ)
belongs to F(m). Its class τ(e) ∈ F(m)/ImF is well-defined, since another
choice for ẽ differs from the first one by a section in ImΓ(E−1). This defines
a linear map τ : H−1(F ,m) → gm which is easily checked to be a Lie algebra
morphism.

It is clear that τ is surjective, since every local section of F vanishing atm ∈M
is of the form ρ(ẽ) with ẽ a local section of E−1 whose value at m is in the
kernel of ρ.

Now, let us prove injectivity. Let e ∈ imE−1. Choose a local section ẽ of E−1

through e. If τ(e) = 0, then ρ(ẽ) is in the ideal ImF . As a consequence, it
is a finite sum of the form

∑r
i=1 fiXi, with Xi ∈ F and fi ∈ Im for all i =

1, . . . , r. This implies ρ(ẽ −
∑r

i=1 fiẽi) = 0, where ẽi is, for every i = 1, . . . , n,
a local section of E−1 mapped to Xi through ρ. Since (E, d, ρ) is a geometric
resolution, there exists a local section h̃ ∈ Γ(E−2) such that:

ẽ−
r∑

i=1

fiẽi = d(2)h̃. (4.6)

Evaluated at m ∈M , this last relation gives that e = 0.

4.3 Leaves and isotropy Lie ∞-algebras

The isotropy Lie ∞-algebra structure is attached to a leaf rather than to a
point. More precisely, let us consider a leaf L of F . The following proposition
is a simple consequence of the fact that for every two points m,m′ in the same
leaf L of a singular foliation F , there exist neighborhoods Um, Um′ of these
points on which the singular foliations are isomorphic [1].
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Proposition 4.15. Let F be a singular foliation that admits a universal Lie
∞-algebroid in the neighborhood of every point. For any two points in the
same leaf of a singular foliation F , the isotropy Lie ∞-algebra structures at
these points are isomorphic.

Remark 4.16. It deserves to be noticed that the isomorphism in Proposition
4.15 is not, in general, canonical: It may depend on the choice of an identifi-
cation between Um and Um′ . An explicit Lie ∞-algebra isomorphism can be
associated to a path staying inside the leaf L which relates m and m′. Homo-
topy equivalent paths yield homotopy equivalent isomorphisms.

The isotropy Lie ∞-algebra of a singular foliation is of interest for singular
leaves only:

Lemma 4.17. The isotropy Lie ∞-algebra of a regular leaf is identically zero.

Proof. Around every regular point m ∈ M , a minimal resolution, is given by
E−1 = T [1]F ⊂ T [1]M , where F = Γ(TF ) and E−i = 0 for all i > 1. In
particular H•(F ,m) = 0, since the anchor map is an inclusion map.

The codimension of the leaf gives an obvious restriction about the length of
the graded space H(F ,m) on which the isotropy Lie ∞-algebra is defined.

Proposition 4.18. Let L be a leaf of a holomorphic, real analytic or smooth
locally real analytic singular foliation F . The isotropy graded Lie algebra at a
point m ∈ L is concentrated in degrees −1, . . . ,−codim(L)− 1.

Proof. According to Proposition 1.12 in [1], every singular foliation is, in a
neighborhood of a point m in a leaf L, the trivial product of a singular folia-
tion on a neighborhood of 0 in Rn−dim(L) (called the transverse foliation) with
the regular foliation TB, with B an open ball of dimension dim(L). A geometric
resolution of F is therefore obtained by adding TB (in degree minus one ) to
a geometric resolution of the transverse foliation. In the real analytic or holo-
morphic cases, the transverse foliation admits geometric resolutions of length
less or equal to codim(L) + 1 by Proposition 2.3. This concludes the proof
in the holomorphic or real analytic cases. The second item in Proposition 2.3
concludes the proof in the smooth locally real analytic case.

Proposition 4.15 implies that for all i ≥ 2, the image of the vector bundle
morphism d(i+1) : iLE−i−1 → iLE−i has the same dimension at all points
of the leaf L. Here iL stands for the restriction of a vector bundle to the
submanifold L ⊂M . This allows us to truncate the Lie ∞-algebroid restricted
to a leaf L at a certain order i in two different ways. Both

iLE−i
/
im d(i+1) −→ iLE−i+1 −→ · · · −→ iLE−1 −→ TL (4.7)

and
iLE−i

/
ker d(i) −→ iLE−i+1 −→ · · · −→ iLE−1 −→ TL (4.8)
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define a transitive Lie i-algebroid structure over L, the second one being a
quotient of the former one. Here for i = 1, we need to replace d(1) by ρ in
(4.8). The lowest possible truncations lead to known Lie algebroids over L:
while (4.8) gives simply TL, (4.7) yields a transitive action Lie algebroid with
fiber the isotropy Lie algebra of the leaf.

Proposition 4.19. Let F be a singular foliation equipped with a universal Lie
∞-algebroid (E,Q), and let L be a leaf of F . The 1-truncation of the restriction
(4.7) of (E,Q) to L coincides with the holonomy Lie algebroid of L defined by
Androulidakis and Skandalis in [1].

Proof. We recall the definition of the holonomy Lie algebroid in [1]. Consider
the vector bundle AL → L whose fiber over x ∈ L is F/IxF . Its sections
are isomorphic to F/ILF , where IL ⊂ O is the ideal of functions vanishing
along L. The Lie algebra bracket on F/ILF equips AL with a Lie algebroid
bracket. The proof is then similar to the proof of Proposition 4.14 and is left
to the reader.

4.4 Examples of isotropy Lie ∞-algebras

Example 4.20. For regular foliations, the isotropy Lie ∞-algebra is trivial at
all points m ∈M because H•(F ,m) = 0 (see Lemma 4.17).

Example 4.21. For a Debord foliation, Proposition 4.10 implies that the
isotropy Lie ∞-algebra at a point m is concentrated in degree minus one, i.e. it
is a Lie algebra.

Example 4.22. Consider the singular foliation given by the action of sl2 on R2.
Using the universal Lie ∞-algebroid structure of Example 3.97, we see that one
obtains an isotropy Lie 2-algebra on H•(F , 0) ≃ R[2] ⊕ sl2[1]. The restriction
of the 2-ary bracket to H−1(F , 0) ≃ sl2 is the usual Lie algebra bracket and
the 2-ary bracket of an element of degree minus one with an element of degree
minus two vanishes. There are no k-ary brackets for k ≥ 3.
The appearance of the apparently unnecessary abelian factor R[2] in the pre-
vious example can be seen also as a consequence of the third item in Proposi-
tion 4.10.

Example 4.23. Consider the singular foliation given by all vector fields on a
vector space V vanishing at the origin. Using the universal Lie ∞-algebroid
structure of Example 3.99, we see that the isotropy Lie ∞-algebra at the origin
reduces to the graded Lie algebra

⊕n
i≥1 ∧

iV ∗ ⊗ V equipped with the (graded
symmetric) Lie bracket defined as in (3.82). There is no k-ary bracket for k 6= 2.

Example 4.24. Consider the singular foliation Fad for the adjoint action of
a semi-simple complex Lie algebra g on itself, studied in Examples 3.32 and
3.98. The isotropy Lie ∞-algebra at 0 is defined on the graded vector space
H•(Fad,m) = Cl[2] ⊕ g[1], where l is the rank of g. The only non-vanishing
bracket is the 2-ary bracket between two elements of degree minus one; it
coincides with the Lie bracket on g.
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Example 4.25. Consider the foliation F of vector fields vanishing to order 2
at 0 ∈ K2, studied in Example 3.100. The isotropy Lie ∞-algebra at the
origin is a Lie 2-algebra whose n-ary brackets are equal to zero for all n, with
underlying graded vector space K2[2]⊕K6[1]. More precisely, the 2-ary bracket
is zero by Equation (3.83). This equation also implies that the Jacobiator
Jac(X,Y, Z) of three elements belongs to I20 Γ(E−1). Since the 3-ary bracket
satisfies d(2) ◦ {·, ·, ·}3 = Jac (·, ·, ·) and since d(2) is injective except at the
origin, the 3-ary bracket has to be valued in I0Γ(E−2).

Example 4.26. Consider the singular foliation Fϕ of all vector fields X on
M = C

n such that X [ϕ] = 0, with ϕ a weight homogeneous function with
isolated singularities. Example 3.101 describes a universal Lie ∞-algebroid for
this singular foliation.
The origin 0 of Cn is a leaf. Since all partial derivatives of ϕ vanish at the
origin 0, the Koszul resolution, see Example 3.36, is a geometric resolution
which is minimal at 0. Hence H−k(Fϕ, 0) ≃ ∧k+1Cn. For all k ≥ 2, the k-ary
brackets of the universal Lie ∞-algebroid given by Equation (3.84) restrict as
follows:

{∂I1 , . . . , ∂Ik}k :=
∑

i1∈I1,...,ik∈Ik

ǫ(i1, . . . , ik)
∂kϕ

∂xi1 ...∂xik
(0) ∂

I
i1
1 •I

i2
2 •...•I

ik
k

(4.9)
where notations are as in Example 3.101.

4.5 On the existence of a Lie algebroid defining a singular foli-

ation

4.5.1 Lie algebroids of minimal rank

In this section we exploit the cohomologies of the isotropy Lie ∞-algebra at
a point and define a class in the third Chevalley-Eilenberg cohomology of the
Androulidalis-Skandalis isotropy Lie algebra. This class was later on general-
ized for an arbitrary Lie ∞-algebroid by Ricardo Campos in [10].

Proposition 4.27. Let F be a singular foliation that admits a geometric res-
olution of finite length in a neighborhood of m ∈ M . Equip H•(F ,m) =⊕

i≥1H
−i(F ,m) with the isotropy Lie ∞-algebra brackets ({· · · }k)k≥2 con-

structed out of some universal Lie ∞-algebroid (E,Q) minimal at m.

1. The restriction of the 2-ary bracket

{·, ·}2 : H
−1(F ,m)⊗H−2(F ,m) −→ H−2(F ,m)

makes H−2(F ,m) a module over the isotropy Lie algebra H−1(F ,m),
which does not depend on the choice of (E,Q).

2. The restriction of the 3-ary bracket

{·, ·, ·}3 : Λ
3H−1(F ,m) −→ H−2(F ,m)

Documenta Mathematica 25 (2020) 1571–1652



1642 C. Laurent-Gengoux, S. Lavau, T. Strobl

is a 3-cocycle for the Chevalley-Eilenberg complex of H−1(F ,m) valued
in H−2(F ,m).

3. The cohomology class of this cocycle does not depend on the choice of
(E,Q).

Proof. The first item follows from Proposition 4.12. The second item is an
easy consequence of the higher Jacobi identity (3.20) applied to four elements
of degree minus one. The third item can be obtained as follows: Two dif-
ferent choices made in the construction of the universal Lie ∞-algebroid give
isotropy Lie ∞-algebra structures which are strictly isomorphic by Proposi-
tion 4.12, through isomorphisms whose linear parts are the identity. The sec-
ond Taylor coefficient of this isomorphism has a component which is a map
θ̃ : Λ2

(
H−1(F ,m)

)
→ H−2(F ,m). Writing explicitly the definition of Lie ∞-

algebra morphisms, applied to three elements in H−1(F ,m), one obtains that
the 3-ary bracket is a multiple of the Chevalley-Eilenberg differential of θ̃.

Definition 4.28. We call the 3-cohomology class of Proposition 4.27 the No-
Minimal-Rank-Lie-Algebroid class or the NMRLA class for short.

Recall that the rank of F at m ∈M is the minimal number of generators of F
in a neighborhood of that point.

Proposition 4.29. Let F be a singular foliation on a manifold M that admits
a geometric resolution of finite length. Let r be the rank of F at the point m.
defined in a neighborhood Um of m which satisfies the two following conditions:

1. the rank of the vector bundle A is r and

2. ρ
(
Γ(A)

)
= F|Um .

Lemma 4.30. For every geometric resolution (E, d, ρ) of F which is minimal
at m, the rank of the vector bundle E−1 is equal to the rank r of F at m.

Proof. Let rE and rm be the respective ranks of the vector bundle E−1 and of
the singular foliation F at m. Let e1, . . . , erE be a local trivialization of E−1.
Since ρ(Γ(E−1)) = F , the family (ρ(ei))i=1,...,rE generates F as an O-module.
Hence r ≤ rE . If r < rE , then one of these generators is a linear combination of
the others. Without loss of generality, we can assume that it is e1. Therefore,
there exist functions f2, . . . , frE ∈ O such that

ρ(e1) =

rE∑

i=2

fi ρ(ei).

This implies that e1 =
∑rE

i=2 fiei + d(2)g for some g ∈ Γ(E−2). Since (E, d =
(d(i))i≥2, ρ) is minimal atm, this relation implies upon evaluation at this point:
e1(m) =

∑rE
i=2 fi(m) ei(m). This contradicts the assumption that e1, . . . , erE

is a local trivialization. Hence rE = r.
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Proof of Proposition 4.29. Assume that a Lie algebroid (A, [·, ·], ρA) satisfying
ρA
(
Γ(A)

)
= F exists. Let (E,Q) be a universal Lie ∞-algebroid of F in a

neighborhood of m, built on a geometric resolution (E, d, ρ) minimal at m. By
Theorem 2.9, a Lie ∞-algebroid morphism Φ over the identity of M from A to
(E,Q) exists. We need a first step:

Lemma 4.31. Upon restriction tom, the vector bundle morphism Φ1 : A→ E−1

becomes a surjective linear map.

Proof of Lemma 4.31. Let ẽ ∈ Γ(E−1) be a section through a given e ∈ imE−1.
Then, by the assumption on A, there exists a local section a ∈ Γ(A) such
that ρA(a) = ρ(ẽ). By the morphism property, this yields ρ(ẽ − Φ1(a)) = 0.
Because (E, d, ρ) is a geometric resolution of F , this implies that there exists
some g ∈ Γ(E−2) such that ẽ−Φ1(a) = d(2)g. Since (E, d, ρ) is minimal at m,
when evaluated at this point, the last relation gives e = imΦ1(a(m)). Hence
imΦ1 : imA→ imE−1 is surjective.

We complete the proof of Proposition 4.29. Assume now that the rank of the
vector bundle A is r, so that A and E−1 are vector bundles of the same rank
by Lemma 4.30. By Lemma 4.31, upon restriction at m, the vector bundle
morphism Φ1 : A → E−1 becomes a bijective linear map. By definition of a
Lie ∞-algebroid morphism, the linear, quadratic and cubic terms in the Taylor
coefficients of Φ satisfy for all a, b, c ∈ Γ(A):

{
Φ1(a),Φ2(b, c)

}
2
− Φ2

(
{a, b}2, c

)
+ abc =

{
Φ1(a),Φ1(b),Φ1(c)

}
3
− d(2) Φ3(a, b, c). (4.10)

If we now evaluate this equation at the point m, the last term on the r.h.s.
vanishes by minimality. By the above bijectivity, moreover, we can assume
that imA = imE−1 and that, in particular, the first order Taylor coefficient
imΦ1 : imA→ imE−1 of the Taylor coefficient of Φ at m is the identity map. If
we choose the sections ima, imb, imc in the kernel of imρ, the equation resulting
from Equation (4.10) in this way shows that {. , . , .}3 is a Chevalley-Eilenberg
coboundary.

Example 4.32. Let n ≥ 4 and ϕ : Cn → C, (x1, . . . , xn) 7→
∑n

i=1 x
3
i . Consider

the singular foliation Fϕ of all vector fields X on Cn satisfyingX [ϕ] = 0, which,
according to (3.18), has rank n(n − 1)/2. The function ϕ has an isolated
singularity at the origin and therefore satisfies the requirements of Example
4.26. It follows from Equation (4.9) that, at the origin 0, one has:

1. The 2-ary bracket of the isotropy Lie ∞-algebra vanishes. Thus the
isotropy Lie algebra is abelian and its action on H−2(F , 0) is trivial.

2. The 3-ary bracket is non-zero since (see the conventions of Example 4.26):

{∂12, ∂13, ∂14}3 := ∂234.
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This implies that the NMRLA 3-class of Fϕ at the origin is non-zero. Therefore,
the foliation Fϕ cannot be induced by a Lie algebroid of rank n(n−1)/2, around
the origin even not locally.

Example 4.32 and Proposition 4.29 imply the following result.

Proposition 4.33. There exist singular foliations of rank r that, even locally,
can not be induced by a Lie algebroid of rank r.

Let us give an even more explicit interpretation of Proposition 4.33. Let F
be a singular foliation generated by vector fields X1, . . . , Xr. There may be
relations between these vector fields, i.e. r-tuples f1, . . . , fr ∈ O such that∑r

i=1 fiXi = 0. In fact, this always happens except if, and only if, F is Debord,
see Example 3.30. If there are such relations, the functions ckij ≡ −ckji ∈ O in

[Xi, Xj] =
r∑

k=1

ckijXk (4.11)

are not unique. On the other hand, an easy computation gives

[[Xi, Xj ], Xk] + ijk =

r∑

l=1

J lijkXl , (4.12)

where we defined the symbols J lijk ∈ O by

J lijk :=

(
r∑

m=1

cmij c
l
mk −Xk[c

l
ij ]

)
+ ijk .

Since vector fields on a manifold satisfy the Jacobi identity, the left hand side of
Equation (4.12) is identically zero. This implies that the family J1

ijk, . . . , J
r
ijk

constitutes a relation between the vector fields X1, . . . , Xr, but, in general,
these functions may be different from zero. A natural question is:

”Given a fixed singular foliation F on a manifold M generated by X1, . . . , Xr,
can we choose functions ckij ≡ −ckji subject to Equation (4.11) such that

J lijk ≡ 0?”

Consider the bundle A := M × Rr and denote its constant standard basis of
sections by e1, . . . , er. Define an anchor by means of the map ρ : A→ TM, ei 7→
Xi and use it to extend the 2-bracket [ei, ej] :=

∑r
k=1 c

k
ijek to a bracket between

arbitrary sections of A. It is now easy to verify that this turns A into a Lie
algebroid. Thus, by Proposition 4.33, the answer to the above question is
negative in general.

4.5.2 The Leibniz algebroid of a singular foliation

As already mentioned in the introduction, it is not easy to know if a singular
foliation is, locally, the image of a Lie algebroid under the anchor map. It is
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known not to be the case globally, cf. [4], while in a neighborhood of a point
the question is open. We are not able to give a positive or negative answer
to decide this question, but it is an easy consequence of Theorem 2.8 that a
Leibniz algebroid exists. Had Theorem 2.8 not be proven, this would be a far
from obvious result.

Definition 4.34. [35] Let L be a vector bundle over M . A Leibniz algebroid
structure on L is a bilinear assignment [ . , . ]L : Γ(L) ⊗ Γ(L) → Γ(L) and a
vector bundle morphism ρ : L→ TM , satisfying the Loday-Jacobi condition:

[
x, [y, z]L

]
L
=
[
[x, y]L, z

]
L
+
[
y, [x, z]L

]
L

(4.13)

for all x, y, z ∈ Γ(L), and the Leibniz identity:

[x, fy]L = f [x, y]L + ρ(x)[f ] y (4.14)

for every x, y ∈ L and f ∈ O.

Note that the skew-symmetrization of a Leibniz algebroid bracket does not
turn a Leibniz Lie algebroid into an almost Lie algebroid in general. Adapting
Proposition 5.4 item 1 and Lemma 5.5 in [26] to our case, we easily derive the
following result.

Proposition 4.35. Let F be a singular foliation that admits a universal Lie ∞-
algebroid (E,Q) with anchor ρ. Assume that its associated geometric resolution
is of finite length. Then L =

(
S(E∗)⊗ E

)∣∣
−1

is a vector bundle of finite rank
and comes with a Leibniz algebroid structure, when equipped with:

1. the Leibniz bracket defined by:

[X,Y ]L :=
[
[Q,X ], Y

]

for all X,Y ∈ Γ(L) (identified with vertical vector fields ∂X and ∂Y of
degree minus one on the graded manifold E),

2. the anchor given by the composition:

E−1 ⊕
(⊕

k≥1 S
k(E∗)⊗ E

)∣∣
−1

E−1 TM.
ρ

Proof. For every graded Lie algebra, g :=
⊕

i∈Z
gi and every homological ele-

ment Q ∈ g of degree +1, g−1 is a graded Leibniz algebra when equipped with
the bracket (X,Y ) 7→

[
[Q,X ], Y

]
, cf. [34]. Applied to the graded Lie algebra of

derivations of functions E on the Lie ∞-algebroid (E,Q) (that is, vector fields
on the N -manifold E) and to the vector field Q, the bracket given as above
induces a Leibniz algebra bracket on vector fields of degree minus one. Now,
every vertical vector field of degree minus one is O-linear derivations of E . Ver-
tical vector field of degree minus one can therefore be identified with sections
of the vector bundle L =

(
S(E∗)⊗E

)
|−1, i.e. the degree minus one component
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of S(E∗)⊗E. Also, since sections of Sk(E∗)⊗E are of non-negative degree for
k ≥ n, L is a vector bundle of finite rank overM . One checks directly that the
anchor η is given as in item 2. By construction, η

(
Γ(L)

)
= ρ

(
Γ(E−1)

)
= F .

This proves the proposition.

The following proposition is an immediate consequence of Proposition 4.35 and
Theorem 2.8.

Proposition 4.36. Let F be a singular foliation that admits a geometric res-
olution of finite length. Then there exists a Leibniz algebroid structure whose
induced singular foliation is F .

Indeed, one could imitate even further the construction in [26] and obtain a
Vinogradov algebroid, by adding vector fields of degree −2 into the picture.

4.6 The holonomy Lie groupoid as the fundamental groupoid of

the universal Lie ∞-algebroid

Let us define the fundamental or Ševera groupoid of a Lie ∞-algebroid (E,Q)
over a manifold M . It is a suitable generalization of the fundamental groupoid
of a manifold to the world of Q-manifolds: essentially everywhere the interval
I := [0, 1] is replaced by its tangent Lie algebroid (T [1]I, ddR). To our knowl-
edge this construction was first proposed by Ševera (cf. letter 8 of [48] and [47]).
It reproduces the previously found symplectic groupoid of Cattaneo and Felder
[12] when applied to the Lie algebroid T ∗M associated to a Poisson manifold
(M,π), where it was found in terms of the reduced phase space of the Hamil-
tonian formulation of the Poisson sigma model [31, 46]. Most famously, it was
studied for its smoothness properties by Cranic and Fernandes [16], under the
name of the Weinstein groupoid, where the necessary and sufficient conditions
for a (smooth) integration of a Lie algebroid were found.13

1. We call E-path a morphism of Lie ∞-algebroids from (TI, ddR) to (E,Q).
Since I is just one-dimensional, the morphism property only captures
information about the anchor. In particular, E-paths are in one-to-one
correspondence with paths a : I → E−1 covering a path γ : I → M such
that:

dγ(t)

dt
= ρ
(
a (t)

)
. (4.15)

An E-path is said to be trivial if, for all t ∈ I, γ(t) is a constant path,
γ(t) = x for some x ∈M , and in addition a(t) = 0x.

2. A homotopy between two E-paths a0 and a1 is a Lie ∞-algebroid mor-
phism from (TI2, ddR) to (E,Q) whose restrictions to {0}×I and {1}×I

13In [47, 48] a generalization of this to Lie n-algebroids was proposed so as to yield a (not
necessarily smooth) integration to n-groupoids. Here, however, we will apply the fundamental
groupoid construction also to Lie ∞-algebroids: It is clear that the fundamental groupoid
depends only on the components of degree minus one and minus two of a Lie ∞-algebroid.
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are a0 and a1 respectively, while the restrictions to I × {0} and I × {1}
are trivial E-paths.

Homotopy defines an equivalence relation on E-paths. Concatenation of
paths14 is compatible with this equivalence relation and turns the quotient
set into a groupoid over M that we call the fundamental groupoid or Ševera
groupoid of (E,Q). The definition is justified because homotopy equivalent Lie
∞-algebroids obviously have isomorphic fundamental groupoids. Here is the
main result of this section.

Proposition 4.37. Let (E,Q) be a universal Lie ∞-algebroid of a singular
foliation F . The fundamental groupoid of (E,Q) is the universal cover of the
holonomy groupoid described by Androulidakis and Skandalis in [1].

The proof of this proposition uses the following lemma.

Lemma 4.38. The restriction of the fundamental groupoid of any universal Lie
∞-algebroid (E,Q) of F to a leaf L coincides with the fundamental groupoid
of the holonomy Lie algebroid of L.

Proof. Let L be a leaf, AL its holonomy Lie algebroid, and (EL, Q) the restric-
tion of the Lie ∞-algebroid (E,Q) to L.
It follows from Proposition 4.19 that the following sequence of vector bundles
is exact:

0 → d(2)
(
iLE2

)
→ iLE−1

π
→ AL → 0. (4.16)

Here the map π : iLE−1 → AL is a morphism of almost Lie algebroids, thus
preserving the anchor and the 2-brackets. Therefore the projection iLE−1 →
AL maps an EL-path to an AL-path and maps homotopies of EL-paths to
homotopies of AL-paths. Hence, the fundamental groupoid of (E,Q) maps to
the fundamental groupoid of AL.
Let us check that this map is bijective. Surjectivity is obvious: every section
σ : AL → iLE−1 of π in (4.16) lifts an AL path to an EL-path.
Let us check injectivity. Let α : TI2 → AL be an algebroid morphism whose
restriction to the boundaries satisfies the usual requirements of homotopies re-
lating two AL-paths a1 and a2. It is easy to check that there exists a vector
bundle morphism α̃ : TI2 → iLE−1 that satisfies the requirements of a homo-
topy of EL-paths when restricted to boundaries, that relates arbitrary lifts of
a1 and a2, and that satisfies π ◦ α̃ = α.
The vector bundle morphism α̃ may not be a Lie ∞-algebroid morphism,
i.e. Ψ := α̃∗ ◦Q− ddR ◦ α̃∗ may not be zero.
However, since α is a Lie algebroid morphism, Ψ: Γ

(
iLE

∗
−1

)
→ Ω2(I2) is linear

over functions and vanishes on the image of π∗ : Γ(A∗
L) → Γ

(
iLE

∗
−1

)
. By the

linearity, it is the dual of a vector bundle morphism κ : Λ2TI → iLE−1 and,

14The concatenation of E-paths may not be smooth, but every E-path is homotopy equiv-
alent to an E-path which is trivial in neighborhoods of 0 and 1, and the concatenation of
such E-paths is smooth.
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by the second property, κ is valued in the kernel of π. By exactness of the
complex (4.16), there exists a vector bundle morphism κ̃ : Λ2TI → iLE−2 such
that d(2) ◦ κ̃ = κ. The pair (α̃∗, κ̃∗) defines a graded algebra morphism from E
to Ω(I2) which is easily checked to be a Lie ∞-algberoid morphism.

Remark 4.39. A close look at its proof may convince the reader that Lemma
4.38 is valid for any Lie ∞-algebroid, universal or not, inducing F upon re-
placing the holonomy Lie algebroid of L with the 1-truncation Lie algebroid
iLE−1

/
d(2)(iLE−2 ) as in (4.7).

Proof of Proposition 4.37. Given a singular foliation F , the holonomy groupoid
of F described in [1] is a topological groupoid, whose leaves are the leaves
of F . Moreover, according to [1], its restriction to every leaf L of F is a
smooth groupoid integrating the holonomy Lie algebroid AL of that leaf. Since
the fundamental groupoid of AL is simply connected, it is the universal cover
of every source-connected Lie groupoid integrating AL, and the Proposition
follows from Lemma 4.38
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Université de Lorraine
3 rue Augustin Fresnel
57000 Metz-Technopôle
France
camille.laurent-gengoux@univ-
lorraine.fr

Sylvain Lavau
Université Paris Diderot
Bâtiment Sophie Germain
8 Place Aurélie Nemours
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