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1 Introduction

We denote by QPn
k any smooth, simply connected, closed manifold whose ratio-

nal cohomology is isomorphic to the truncated polynomial algebra Q[x]/(xn+1)
where the generator x has degree k. Note that such a manifold is a rational
sphere or point if k is odd by the graded commutativity of the cup product.

Prototypical examples are simply connected, closed manifolds with the rational
cohomology (equivalently, rational homotopy type) of a compact rank one sym-
metric space: a rational sphere is a QP1

k, a rational CPn is a QPn
2 , a rational

HPn is a QPn
4 , and a rational Cayley plane is a QP2

8.

We call the parameters n and k standard if they correspond to a rank one sym-
metric space. The classification of parameters (n, k) for which a QPn

k exists is
reduced by way of the Barge-Sullivan rational realization theorem to a number
theoretic problem (see Su [Su14]), but this problem is hard and there is no
classification (cf. [FS16, KS19]).

This paper is motivated in part by the attempt to find highly symmetric models
for QPn

k with non-standard parameters. It is known that no such manifold
admits a homogeneous or biquotient structure (see Kapovitch–Ziller [KZ04]
and Totaro [Tot02]). Our first theorem is a similar, negative result:
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Theorem A. If a QPn
k admits a cohomogeneity one action, then n and k are

standard. If moreover k is even, then the space is diffeomorphic to a rank
one symmetric space, the Grassmannian SO(2m + 1)/ SO(2) × SO(2m − 1),
or G2 / SO(4), and if the action is almost effective and has no orbit equivalent
proper subaction, then it is equivalent to a linear action or, in the case of
G2 / SO(4), left multiplication by SU(3) ⊆ G2.

The rigidity statement for n = 1 answers a question posed by Amann and the
second author about whether a simply connected cohomogeneity one manifold
with Euler characteristic two must be a sphere (see [AK17, Corollary C]).
Previously Straume classified cohomogeneity one actions on homotopy spheres
and Asoh on mod two homology spheres (see [Aso81, Aso83, Str96]). Theorem
A extends these rigidity results in the even-dimensional case. As for the other
cases with standard parameters, the rigidity statement is not new (see Uchida
[Uch77] and Iwata [Iwa78, Iwa81]).

Our approach also allows us to nearly classify the diffeomorphism type of coho-
mogeneity one manifolds with even dimension and four-periodic rational coho-
mology (see Section 3.3 for a definition). This cohomological condition arises,
for example, by way of Wilking’s connectedness lemma in the context of the
Grove symmetry program, in which Riemannian manifolds with non-negative
sectional curvature and large symmetry are examined (see [Gro17, Zil14] for
surveys). In this context, it is natural to study homogeneous spaces, cohomo-
geneity one manifolds, and quotients thereof, as they have provided numerous
examples of manifolds admitting positive or non-negative curvature (see [Zil07]
for a survey and [Dea11, GVZ11, GKS20] for more examples). Homogeneous
spaces and, more generally, biquotients with four-periodic rational cohomology
were classified by the first author (see [DeV18]). Our second main result is a
step toward an analogous classification for cohomogeneity one manifolds.

Theorem B. A simply connected, closed manifold with the rational cohomology
of S2×HPn admits a cohomogeneity one action if and only if it is diffeomorphic
to S2 × HPn, S2 × (G2 / SO(4)), or the unique linear non-trivial HPn bundle
over S2.

A cohomogeneity one structure implies rational ellipticity (see Grove-Halperin
[GH87]), and it is straightforward to show that an even-dimensional, simply
connected, closed manifold with four-periodic rational cohomology and a co-
homogeneity one action is a QP1

k, QPn
2 , or QPn

4 or a rational S2 × HPn or a
rational S3 × S3 (see Proposition 3.9). Hence Theorems A and B imply the
following:

Corollary C. A simply connected, closed manifold with four-periodic ratio-
nal cohomology and positive Euler characteristic admits a cohomogeneity one
action if and only if it is diffeomorphic to Sn, CPn, HPn, SO(2n+1)/ SO(2)×
SO(2n− 1), G2 / SO(4), S

2 ×HPn, S2 × (G2 / SO(4)), or the non-trivial linear
HPn-bundle over S2.
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Note that, whereas the first seven examples in Corollary C are symmetric
spaces, the last one is not even homogeneous. On the other hand, it does
arise as a biquotient. In fact, the lists of examples in Theorem A and Corollary
C form proper subsets of the corresponding lists in the biquotient case (see
[KZ04] and [DeV18]).

Finally we remark on our methods. While the use of rational homotopy theory
was prevalent in the biquotient classifications cited above, it was not used in
the cohomogeneity one results, nor was it used in the important work of Frank
[Fra13] that we apply here. Grove and Halperin [GH87] developed the Sullivan
model for a cohomogeneity one manifold in terms of the homotopy fiber F
of the inclusion G/H → M , where G/H is a principal orbit. One important
consequence of their work is the rational ellipticity of cohomogeneity one mani-
folds. One of our new tools is a computation of the connecting homomorphisms
of the associated fibration, which hold generally for cohomogeneity one mani-
folds with positive Euler characteristic (cf. [DGK20]). Since F is computed in
[GH87] and since we are assuming we know the rational homotopy of M , these
computations imply strong restrictions on the groups G and H . Combined
with other facts about cohomogeneity one manifolds, we are able to generalize
and significantly shorten the proofs of some results in Uchida and Iwata’s work,
especially in cases where one or both of the singular orbits is non-orientable
(see Propositions 3.10 and 3.11).

After covering some preliminaries on cohomogeneity one manifolds in Section 2,
we describe in Section 3 the Grove-Halperin model and carry out the rational
homotopy computations described in the previous paragraph. In Section 4,
we prove Theorems A and B in the non-primitive case, in which the manifold
naturally fibers over a homogeneous space with a cohomogeneity one fiber. In
Section 5, we describes Frank’s work on primitive cohomogeneity one actions
on manifolds with positive Euler characteristic and elaborate on his work in
preparation for the proofs of the main theorems. We then prove Theorems A
and B in Sections 6 and 7, respectively.
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2 Notation and preliminaries

2.1 Notation and conventions

Let M be a smooth, simply connected, closed manifold with a smooth, almost
effective cohomogeneity one action by a connected Lie groupG. The orbit space
of this action on a compact manifold M is either a circle S1 or the interval [0, 1].
The former case cannot happen if M is simply connected, so we always assume
M/G = [0, 1].

It is well known that such a cohomogeniety one action is characterized up to
equivariant diffeomorphism by its group diagram H ⊆ K± ⊆ G, where G/H is
a principal orbit, and G/K± denote the two singular orbits. Following Frank
[Fra13], we always assume the action is minimal in the sense that no normal
subgroup of G acts orbit equivalently. Note that passing to such a subaction
for a non-minimal action would not change the diffeomorphism type of the
manifold. Moreover, by replacing G by a finite cover, we will always assume
G has the form G = G′ × T

m for a connected, simply connected compact Lie
group G′.

It follows from the general structure theory of cohomogeneity one manifolds
that M has a double disc bundle decomposition, i.e., M is the union of two
disc bundles D(G/K±) over the singular orbits G/K±. The common boundary
of these disc bundles has the topology of the principal orbits G/H . It also
follows that the spaces K±/H are spheres of dimension one smaller than the
codimension k± of the singular orbits G/K± ⊆ M .

2.2 Positive Euler characteristic

Applying the Mayer–Vietoris sequence to the double disc bundle decomposition
of M , we have the following relation:

χ(M) = χ(G/K+) + χ(G/K−)− χ(G/H).

When M has positive Euler characteristic and hence even dimension, G/H has
odd dimension dim(M)−1 and hence vanishing Euler characteristic. Moreover,
χ(G/K±) is non-negative and is positive precisely when K± has rank equal to
rankG. Consequently χ(M) > 0 only if at least one of the K± has rank equal
to rankG. Since each K±/H is a sphere, it follows from the classification of
homogeneous spheres (see Section 2.3) that H ⊆ K± has corank one or zero.
Putting these considerations together, we have the following bounds on the
ranks of groups in the group diagram:

rankG− 1 = rankH ≤ rankK± ≤ rankG. (2.1)

2.3 Transitive actions on spheres

We recall the well known results of Borel, Montgomery, and Samelson.
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Theorem 2.1. Suppose K is a connected, compact Lie group which acts ef-
fectively and transitively on a sphere Sm. If H denotes the isotropy subgroup,
then Table 1 summarizes the possibilities for the pair (K,H).

K H m
SO(n+ 1) SO(n) n
SU(n+ 1) SU(n) 2n+ 1
U(n+ 1) U(n) 2n+ 1
Sp(n+ 1) Sp(n) 4n+ 3

Sp(n+ 1)× S1 Sp(n)× S1 4n+ 3
Sp(n+ 1)× Sp(1) Sp(n)× Sp(1) 4n+ 3

G2 SU(3) 6
Spin(7) G2 7
Spin(9) Spin(7) 15

Table 1: Effective transitive actions on spheres

2.4 Codimensions of singular orbits

Note that k±, the codimension of the singular orbit G/K±, is even if and
only if rankK± = rankG. Indeed, this follows from Equation 2.1 together
with the fact that a Lie group’s rank and dimension have the same parity.
The following lemma follows from the double disc bundle decomposition and
is proven in [Hoe10, GWZ08].

Lemma 2.2. There are no exceptional orbits, i.e., both of the codimensions
k± ≥ 2. Moreover, we have the following:

1. If k± ≥ 3, then G/K∓ is simply connected and K∓ is connected.

2. If both k± ≥ 3, then G/H and G are simply connected and H is connected.

3 Restrictions via rational homotopy theory

The main results of this section provide proofs of Theorems A and B in three
special cases corresponding to singular orbits of small codimension (see Propo-
sitions 3.10, 3.11, and 3.12). Proposition 3.13 is also proved and provides ad-
ditional information about the codimensions k± of the singular orbits G/K±

when M is a QPn
k .

For a connected, nilpotent space X , we use the shorthand πQ
m(X) to denote

the homotopy group of degree m of the rationalization XQ. For m ≥ 2, πQ
m(X)

coincides with πm(X) ⊗ Q. For m = 1, πQ
1 (X) is the Malcev completion of
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π1(X), a nilpotent group, and its rank is the sum of the ranks of the abelian
groups Γi−1/Γi in the central series

π1(X) = Γ0 ⊇ Γ1 · · · ⊇ Γn = 1

where Γi = [Γ,Γi]. For our purposes, it will suffice to deal with the following
two cases:

• π1(X) is finite, in which case πQ
1 (X) = 0, and

• π1(X) is abelian and finitely generated, in which case πQ
1 (X) ∼= π1(X)⊗Q.

We will also use the notation πQ
odd(X) for

⊕∞
m=0 π

Q
2m+1(X) and similarly for

πQ
even(X). Recall that a nilpotent spaceX is rationally elliptic if bothH∗(X ;Q)

and πQ
∗ (X) are finite dimensional vector spaces.

3.1 Grove-Halperin model of cohomogeneity one manifolds

To each nilpotent space X , we may associate a commutative graded differential
algebra, the minimal Sullivan algebra, which characterizes the rational homo-
topy type of X . Grove and Halperin [GH87] proved that, like homogeneous
spaces and biquotients, cohomogeneity one manifolds are also rationally ellip-
tic. They analyze the Sullivan minimal model of a cohomogeneity one manifold
with group diagram H ⊆ K± ⊆ G, and prove the following.

Theorem 3.1 (Grove–Halperin). Let F denote the homotopy fiber of the in-
clusion G/H → M of the principal orbit of a cohomogeneity one manifold of
positive Euler characteristic. There is a finite cover F → F such that

F ≃Q







S3 × S3 × ΩS7 if h = 2
S1 × S2k−−1 × ΩS2k−+1 if h = 1
Sk+−1 × Sk−−1 × ΩSk++k−−1 if h = 0

where h ∈ {0, 1, 2} is the number of non-orientable singular orbits. Moveover,
F = F if h = 0, F → F is two-to-one if h = 1, and F → F is the universal
cover and π1(F) is the quaternion group Q8 if h = 2. Finally, if h = 1, then
k− must be even.

Remark 3.2. Grove and Halperin [GH87, Proposition 3.5] use the terminol-
ogy twisted to describe the case where the bundle Sℓ± → G/H → G/K±

is non-orientable. In our case, G/H , being a codimension 1 submanifold of
the simply connected manifold M , is orientable. It follows that the bundle is
non-orientable iff G/K± is non-orientable.

3.2 Computation of the connecting homomorphism

In this subsection, we record some general computations about the connect-
ing homomorphism in the long exact sequence in rational homotopy associated
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to the fibration G/H → M with homotopy fiber F . As in the previous sec-
tion, M denotes a cohomogeneity one manifold and we keep the notation from
the previous section. The main results are Lemma 3.4 and Proposition 3.7.
The combination of the Grove-Halperin model and these results imply strong
restrictions on the rational homotopy of an even-dimensional cohomogeneity
one manifold with singly generated or four-periodic rational cohomology. Our
main tool is a lemma concerning the quantity d(X) defined as follows:

Definition 3.3. For a connected, nilpotent space X with dimπQ
∗ (X) < ∞, set

d(X) =
∑

deg ai −
∑

(deg bj − 1) =
∑

odd k≥1

k
(

dimπQ
k (X)− dimπQ

k+1(X)
)

,

where the ai and bi are any choice of graded basis of the odd and even degree
rational homotopy groups of X .

Note that d(X) measures the (cohomological) dimension of X when X is
rationally elliptic (see [FHT01, Theorem 32.15]). In particular, since coho-
mogeneity one manifolds are rationally elliptic (see [GH87]), it follows that
d(M) = d(G/H) + 1 for a cohomogeneity one G-manifold M with principal
isotropy H .

Note also that d(ΩSn) = 2 − n, independent of whether n is even or odd. In
particular, d(F) = d(F) = 1 for each of the homotopy fibers F in Theorem 3.1.

In addition to these remarks, we need the following basic lemma.

Lemma 3.4. Suppose F
i
−→ E

p
−→ B is a fibration for which d is defined on

all three spaces. Let ∂k : πQ
k (B) → πQ

k−1(F ) denote the connecting homomor-
phism in the long exact sequence of rational homotopy groups associated to the
fibration. Then

d(E) = d(F ) + d(B) − 2
∑

odd k≥1

dim im ∂k.

Proof. For fixed k, the long exact sequence in rational homotopy groups asso-
ciated to the fibration F → E → B gives isomorphisms πQ

k (F ) ∼= im ∂k+1 ⊕

kerπk(p), π
Q
k (E) ∼= kerπk(p)⊕ ker ∂k, and πQ

k (B) ∼= ker ∂k ⊕ im ∂k. Thus,

dim πQ
k (E) = dimπQ

k (F ) + dim πQ
k (B)− dim im(∂k+1)− dim im(∂k). (3.1)

For odd k ≥ 1, the contribution of Equation (3.1) in degree k and k+1 to d(E)
is

k(dimπQ
k (E)− dimπQ

k+1(E)) =k(dimπQ
k (F )− dimπQ

k+1(F ))

+ k(dim πQ
k (B)− dimπQ

k+1(B))

− k(dim im(∂k)− dim im(∂k+2)).

The result follows by summing both sides over odd k ≥ 1.
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Combining this lemma with the above remarks, we have the following corollar-
ies, the first of which is implied by [Hal78, Theorem 1.4.iii], and the second of
which is closely related to [GH87, Lemma 6.3].

Corollary 3.5. For a fiber bundle F → E → B of rationally elliptic spaces,
the map ∂∗ : πQ

odd(B) → πQ
even(F ) is zero and d(E) = d(B) + d(F ). In par-

ticular, the map πQ
odd(E) → πQ

odd(B) is surjective and the map πQ
even(F ) →

πQ
even(E) is injective.

Corollary 3.6. For the fibration F → G/H → M coming from a cohomo-
geneity one G-manifold M , the map ∂∗ : πQ

odd(M) → πQ
even(F) has rank one.

For our purposes, we need a stronger version of Corollary 3.6:

Proposition 3.7. For a cohomogeneity one manifold as in Theorem 3.1, the
connecting map ∂ : πQ

2m+1(M) → πQ
2m(F) is non-trivial precisely when πQ

2m(−)

of the loop space factor of F is non-trivial.

Proof. We start with some general remarks. Set E = G/H . Let (ΛVM , dM ))
and (ΛVF , dF ) be minimal Sullivan models for M and F , respectively. Since
F → E → M is a fibration with π1(M) = 0, we can form a relative Sullivan
algebra (Λ(VM ⊕ VF ), dE) for E. The differential dE has the property that
dE(x) = dM (x) for x ∈ VM and dE(y)−dF (y) ∈ Λ≥1VM ⊗ΛVF . Moreover, the
composition

V k
F ⊆ ΛVM ⊗ ΛVF

dE−→ ΛVM ⊗ ΛVF → V k+1
M ,

denoted d0, is dual to the connecting homomorphism ∂ : πQ
k+1(M) → πQ

k (F)
(see [FHT01, Proposition 15.13]).

We proceed to the proof. It suffices by Corollary 3.6 to prove that ∂ = 0 in
degree k+1 when k is even and πQ

k (−) of the loop space factor of F is zero. By
the remarks above and the Grove-Halperin structure theorem for the rational
homotopy type of F , it suffices to prove that d0 = 0 on even degrees k for
which there is a spherical factor of F . To do this, suppose yk ∈ V k

F is non-zero
such that y2k = dF (y2k−1) for some y2k−1 ∈ V 2k−1

F . First, note that

dE(y2k−1) = dF (y2k−1) + d0(y2k−1) + g1 = y2k + d0(y2k−1) + g1

for some g1 ∈ Λ≥2(VM ⊕ VF ). Applying dE again and using the properties of
dE when restricted to VM or VF , we have

0 = d2E(y2k−1) = 2yk (0 + d0(yk) + g2) + dM (d0(y2k−1)) + dE(g1)

for some g2 ∈ Λ≥2(VM ⊕ VF ). Extracting the part of this expression in VM ⊗
VF ⊆ ΛVM ⊗ ΛVF , we obtain 0 = 2ykd0(yk) and hence d0(yk) = 0, as claimed.
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3.3 Applications to QPn
k and rationally four-periodic manifolds

Here we apply Proposition 3.7 to analyze cases in Theorems A and B involving
small codimensions k±. We start by recording the minimal Sullivan model
associated to a QPn

k .

Proposition 3.8. A simply connected manifold M is a QPn
k if and only if one

of the following hold:

1. k is odd, n = 1, πQ
k (M) ∼= Q, and all other rational homotopy groups

vanish.

2. k is even, n ≥ 1, πQ
k (M) ∼= πQ

k(n+1)−1(M) ∼= Q, and all other rational

homotopy groups vanish.

Note that χ(M) = 0 in the first case and that χ(M) > 0 in the second. In both
cases, M is rationally elliptic and there is exactly one rational homotopy type
for fixed (k, n).

Similarly it is straightforward to characterize rationally elliptic, simply con-
nected, closed manifolds with four-periodic rational cohomology (see, for ex-
ample, [DeV18, Theorem 1.1], for a proof). Following [Wil03, Ken13], we say
that an orientable closed manifold M has four-periodic rational cohomology
if there exists x ∈ H4(M ;Q) such that the maps Hi(M ;Q) → Hi+4(M ;Q)
induced by multiplication by x are surjections for 0 ≤ i < dimM − 4 and
injections for 0 < i ≤ dimM − 4.

Proposition 3.9. For a simply connected, closed manifold M with four-
periodic rational cohomology and even dimension, the following are equivalent:

1. M is rationally elliptic.

2. M is a QP1
k, QPn

2 , or QPn
4 or a rational S2 ×HPn or S3 × S3.

In both cases, M has positive Euler characteristic unless M ≃Q S3 × S3.

We now apply Proposition 3.7 to prove the main results of this section: Propo-
sitions 3.10–3.13. The first two of these will exclude the possibility of non-
orientable singular orbits in the proofs of the main theorems. The latter two
provide information about the codimensions k± of the singular orbits in the
case where they are both orientable.

Proposition 3.10. Let M be an even-dimensional, simply connected, closed
cohomogeneity one manifold with both singular orbits non-orientable.

1. If M is a QPn
k for some even k, then M is equivariantly diffeomorphic

to S4 with G = SO(3) acting by its unique irreducible 5-dimensional rep-
resentation.

2. If M is a rational S2 ×HPn, then M is diffeomorphic to S2 × S4.
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Note that the first part of the proposition when k = 2, k = 4, or (k, n) = (8, 2)
follows from [Uch77, Section 6], [Iwa78, Section 6], and [Iwa81, Proposition 1],
respectively.

Proof. If both singular orbits are non-orientable, then Theorem 3.1 implies that
the contribution of the loop space factor of F to the rational homotopy in even
degrees occurs in degree six. By Proposition 3.7, it follows that πQ

7 (M) 6= 0.
Restricting to the case of a QPn

k or a rational S2 ×HPn, the models computed
in Propositions 3.8 and 3.9 imply that M has the rational homotopy type of
S4, CP3, or S2 × S4.

The case where M ≃Q CP3 does not arise since a rational CP3 does not ad-
mit a cohomogeneity one action two non-orientable singular orbits (see Uchida
[Uch77]).

If M ≃Q S4 ∼= HP1, then the result follows from the classification of Iwata
[Iwa78] or from Hoelscher [Hoe10, Section 1.7.3].

Finally, suppose M ≃Q S2×S4. Considering the fibration F → G/H → M , we

see that if πQ
4 (M) → πQ

3 (F) is the zero map, then πQ
4 (G/H) is the highest non-

trivial rational homotopy group. Computing a Sullivan model then shows that
G/H has unbounded rational cohomology giving a contradiction. It follows that
πQ
∗ (G/H) ∼= πQ

∗ (S
2 × S3). From, e.g. [DeV17, Theorem 3.1, Case 1], since G

and H share no common normal subgroups, it follows that G ∼= SU(2)× SU(2)
and H0

∼= S1. Since both k± = 2, K±
0 = T2. This situation is studied by

Hoelscher [Hoe10, Section 3.2.1, Case A]. Hoelscher shows that, since G/K±

are non-orientable, both K± are disconnected, the action must be a product
action. Hence, M is diffeomorphic to S2 × S4.

Proposition 3.11. Let M be an even-dimensional, simply connected, closed
cohomogeneity one manifold with exactly one non-orientable orbit. Then M
cannot be a rational S2 × HPn. In addition, if M is a QPn

k , then M is equiv-
ariantly diffeomorphic to CP2n with a linear action by SO(2n+1) ⊆ U(2n+1)
or G2 ⊆ U(7), where 2n = 6 in the latter case.

Note that the case of a QPn
k with k = 2, k = 4, or (k, n) = (8, 2) is proved in

[Uch77, Section 7], [Iwa78, Theorem 2.1.4, Part B], and [Iwa81, Proposition 1],
respectively.

Proof. From Theorem 3.1, we know that, up to interchanging k+ and k−, F
is rationally S1 × S2k−−1 × ΩS2k−+1, where k− is even. By Proposition 3.7,
πQ
2k−+1(M) 6= 0.

We first rule out the possibility that M ≃Q S2 × HPn. There are two non-
trivial rational homotopy groups in odd degrees, so either 2k− + 1 = 3 or
2k− + 1 = 4n+ 3. Both cases imply that k− is odd, a contradiction.

This leaves the case whereM is a QPn
k , which has non-trivial rational homotopy

groups in degrees k and k(n + 1) − 1. Hence 2k− + 1 = k(n + 1) − 1. Now
consider the connecting map πQ

k (M) ∼= Q → πQ
k−1(F). Assume initially this
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connecting map is the zero map. Then from the relative Sullivan model ofG/H ,
we see it has a generators in degree 1, k, and k(n + 1) − 3. If k > 2, then no
differential can kill powers of k and G/H has unbounded rational cohomology,
a contradiction. If instead the connecting map is non-zero, we have k = 2 or
k = 2k−. In the latter case, k(n+ 1)− 2 = k and it again follows that k = 2.
The equivariant diffeomorphism rigidity now follows from Uchida (see [Uch77,
Proposition 7.1.3]).

Proposition 3.12. Let M be an even-dimensional, simply connected, closed
cohomogeneity one manifold with both singular orbits orientable and of codi-
mension k± = 2.

1. If M is a QPk
n, then M is equivariantly diffeomorphic to S2 with SO(2)

acting by rotations.

2. If M ≃Q S2 × HPn, then M is diffeomorphic to S2 × HPn or S2 ×
G2 / SO(4).

Proof. From Theorem 3.1, we know that F has the rational homotopy type of
S1 × S1 × ΩS3. Hence Proposition 3.7 implies that πQ

3 (M) 6= 0.

If M is a QPn
k , this implies that M is a rational S2 and the result follows from

the low dimensional classification of cohomogeneity one manifolds [Hoe10].

Suppose then that M is a rational S2 × HPn. In the fibration F → G/H →
M , we note that the connecting homomorphism πQ

2 (M) → πQ
1 (F) must be

non-trivial, for otherwise, the Sullivan model of G/H shows H∗(G/H ;Q) is
unbounded, giving a contradiction. It follows that G/H has the same rational
homotopy groups as S1 ×HPn. Since G/H is nilpotent [GH87], it now follows
that G/H has the rational homotopy type of S1 ×HPn.

Because πQ
1 (G/H) ∼= Q, G = G′ × S1 where the projection of H into the S1

factor has finite image. Then H0 ⊆ G′, the identity component of H , has
maximal rank and so G′/H0 is a simply connected QPn

4 . So, from, e.g. [KZ04],
G′/H0 is either HPn or G2 / SO(4).

From [Hat02, Example 4L4, pg. 493], every map of HPn to itself has a fixed
point if n > 1. Likewise, every map from G2 / SO(4) to itself has a fixed point,
as follows from the Lefschetz theorem with rational coefficients. By looking at
the deck group action, it follows that HPn for n > 1 and G2 / SO(4) are not
the total space of any non-trivial covering. Thus, it follows in these cases that
the projection π : G → G has π(H) = H , for otherwise G′/H0 → G′/π(H) is
a non-trivial covering. So, H = H0 × Zm with Zm ⊆ S1.

In the case n = 1, HP1 = S4, there are of course fixed point free diffeomor-
phisms. However, such a map must be orientation reversing. It follows in
this case that π(H)/H0, if non-trivial, acts on G′/H0 in an orientation revers-
ing manner. In particular, this implies G/H is non-orientable. Since G/H is
a codimension one submanifold of a simply connected manifold, this cannot
happen. It follows that H = H0 × Zm with Zm ⊆ S1 in this case as well.

Documenta Mathematica 25 (2020) 1835–1863



1846 J. DeVito, L. Kennard

Now, by dividing out the common normal subgroup Zm ⊆ S1 from G and H ,
we may assume H = H0 is connected. And thus, that G/H = S1 × HPn or
S1 × (G2 / SO(4)). Now, in each case, H0 ⊆ G′ is maximal. It follows that
both K± = H0 × S1. Thus, we have the group diagram of a product action on
S2 ×HPn or S2 × (G2 / SO(4)).

The fourth and final application of Proposition 3.7 we prove here applies only
to QPn

k . It provides detailed information about the codimensions k± of the
singular orbits G/K± and about the rational homotopy of the principal orbit
G/H .

Proposition 3.13. Let Mkn be an even-dimensional QPn
k that admits a coho-

mogeneity one action with group diagram H ⊆ K± ⊆ G and orientable singular
orbits of codimensions k± = cod(G/K±). Assume k+ is even.

1. If k− is even, then k+ and k− are divisible by k and sum to k(n + 1).

Moreover, G/K± ≃Q QP
k∓
k

−1 and πQ
∗ (G/H) has dimension three and is

generated in degrees k, k+ − 1, and k− − 1.

2. If k− is odd, then k+ + k− = n+1
2 k + 1 and one of the following occurs:

(a) πQ
∗ (G/H) has dimension five with generators in odd degrees k+ −

1, 2k−−3, and n+1
2 k−1 and in even degrees k−−1 and k. Moreover

n ≥ 2.

(b) πQ
∗ (G/H) has dimension three with generators in degrees in {k+ −

1, 2k−−3, n+1
2 k−1, k−−1}\{k−1} for some k−1 ∈ {k+−1, 2k−−

3, n+1
2 k − 1}.

Note that Case 1 includes the possibility that the action has a fixed point (i.e.,
if one of the k± = kn). In general, a cohomogeneity one manifold with a
fixed point is equivariantly diffeomorphic to a CROSS with linear action (see
Hoelscher [Hoe10]).

Proof. Suppose first that k− is even. Then πQ
i (F) is Q in odd degrees k+ − 1

and k− − 1 and in even degree k+ + k− − 2. By Lemma 3.7, this even degree
equals k(n+ 1)− 2, so k+ + k− = k(n+ 1). Note, in particular, that if k+ ≤ k
(resp. k− ≤ k), then k− (resp. k+) is at least, and hence equals, the dimension
of M . In other words, the action has a fixed point. Since this possibility is
in the conclusion of the lemma, we may assume therefore that both k± > k.
In particular, πQ

k−1(F) = 0 and the map ∂k = 0. It follows that πQ
∗ (G/H) is

generated in degrees k+ − 1, k− − 1, and k. Since G/H has finite dimension,
at least one of the k± is divisible by k. By the equation k+ + k− = k(n + 1),
they are both divisible by k. It follows that G/H has the rational homotopy

type of Sk+−1 × QP
k−
k

−1

k or Sk−−1 × QP
k+

k
−1

k . In either case, an analysis of

the fibrations K±/H → G/H → G/K± imply that G/K± ≃Q QP
k∓
k

−1.
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Next, suppose that k− is odd. Then πQ
∗ (F) is five-dimensional with odd gener-

ators in degrees k+−1, 2k−−3, and k++k−−2 and with even generators in de-
grees k−−1 and 2k++2k−−4. Lemma 3.7 implies that k(n+1) = 2k++2k−−2.
The computation of πQ

∗ (G/H) now follows by applying the long exact sequence
in rational homotopy groups to the fibration G/H → M . Note that Case 2.a
holds if all of the connecting homomorphisms ∂k : πQ

k (M) → πQ
k−1(F) are all

trivial and that otherwise Case 2.b occurs.

Finally, note in Case 2 that if n = 1, then 2 = χ(M) = χ(G/K+). Since
G/K+ is simply connected, it must be a rational sphere. In particular,
dimπQ

∗ (G/K+) = 2. From the bundle Sk+−1 → G/H → G/K+, we see that
dimπQ

∗ (G/H) = 3.

4 The non-primitive case

A cohomogeneity one action of a compact Lie group G on a closed manifold M
is called non-primitive if for a group diagram H ⊆ K± ⊆ G there exists a
subgroup L ( G containing both K±. It is called primitive otherwise. When
the action is non-primitive, there is a bundle ML → M → G/L, where ML

denotes the cohomogeneity one manifold with group diagram H ⊆ K± ⊆ L.
This bundle is associated to the L-principal bundle L → G → G/L, so M is
diffeomorphic to ML×LG/L. Note in particular that, unlike generalizing from
minimal to not necessarily minimal actions, potentially new diffeomorphism
types arise when generalizing from the primitive to the not necessarily primitive
case.

Before proceeding to the proofs of Theorems A and B, we prove two lemmas.
The first will imply that, for our purposes, we may assume L is connected.

Proposition 4.1. Suppose M is a cohomogeneity one manifold with group
diagram H ⊆ K± ⊆ G with at least one of K± connected. If M is not primitive,
then there is a connected L ( G with K± ⊆ L.

Proof. AssumeK+ is connected. BecauseM is not primitive, there is a possibly
disconnected Lie group L ( G with both K± ⊆ L. We will show that both
K± ⊆ L0, the identity component of L.

Since K+ is connected, K+ ⊆ L0. ForK
−, we first note that K−/H is a sphere

of dimension k−−1 ≥ 1 and hence is connected. This implies that any g ∈ K−

is connected by a path in K− ⊆ L to a point in g′ ∈ H . Since H ⊆ K+ ⊆ L0,
there is a path in L0 connecting g′ to the identity. Concatenating, we obtain a
path in L from the identity to g. This proves that K− ⊆ L0, as claimed.

The second lemma provides an obstruction to the existence of non-trivial bun-
dles over the homogeneous space G/L when the topology of the base is simple
and the dimension of the fiber is small.

Lemma 4.2. Suppose L ⊆ G are compact Lie groups and that F is a compact
L-manifold. If G/L = S2l and 2l ≥ max(8, dimF + 2), then the associated
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bundle G ×L F → G/L is trivial. Similarly, if G/L = F4 / Spin(9) = OP2 and
dimF ≤ 7, then the associated bundle G×L F → G/L is trivial.

Proof. We only prove the first statement; the proof of the second is analogous.

Because G/L has positive Euler characteristic, L has full rank in G. Further,
since G acts transitively on a sphere of dimension bigger than 6, it follows from
Theorem 2.1 that, up to cover, G = G′ × Spin(2l + 1) and L = G′ × Spin(2l)
with each factor of L embedded into the corresponding factor of G.

Because L is compact, we may assume the L action on F is isometric. This
action is characterized by a homomorphism L = G′ × Spin(2l) → Isom(ML).
Since F has dimension at most 2l−2, its isometry group Isom(ML) has dimen-
sion less than dim Spin(2l). As Spin(2l) is simple (since 2l > 4), it follows that
the map L → Isom(ML) is trivial on the Spin(2l) factor. Therefore

G×L F = (G′ × Spin(2l+ 1))×G′×Spin(2l) F ∼= S2l × (G′ ×G′ F ) ∼= S2l × F.

We can now prove Theorems A and B in the non-primitive case.

4.1 Non-primitive actions on QPn
k

In this subsection, we prove Theorem A in the non-primitive case. We are given
an even-dimensional, simply connected, closed manifold M with singly gener-
ated cohomology (i.e., an even-dimensional QPn

k ), and we assume it admits
a cohomogeneity one action with diagram H ⊆ K± ⊆ G. If the parameters
n and k are standard (i.e., either k ∈ {2, 4} or k = 8 and n = 2), then the
result follows by Uchida and Iwata’s classifications. Our task is to exclude the
possibility that k ≥ 6 if the action is non-primitive.

We proceed by contradiction. Assume that k ≥ 6. From the remarks at the end
of Section 3, we may assume that both singular orbits are orientable and that
the codimension k− ≥ 3. In particular, G/K+ is simply connected and K+

is connected. Non-primitivity implies the existence of a fibration M → G/L
with fiber ML, which is the cohomogeneity one manifold with group diagram
H ⊆ K± ⊆ L. Moreover, M = G ×L ML. Note that L is connected by
Proposition 4.1 and hence that ML is connected.

Since M is simply connected and ML is connected, G/L is simply connected
and we may apply the Serre spectral sequence. Note that ML and G/L are
rationally elliptic and have positive Euler characteristic by the formula χ(M) =
χ(G/L)χ(ML). Hence their rational cohomology vanishes in odd degrees, and
the spectral sequence degenerates on the E2 page. Furthermore, a consideration
of the edge homomorphisms associated to this spectral sequence shows that ML

has rational cohomology isomorphic to Q[x]/(xm+1) where x has degree k and

that G/L has rational cohomology isomorphic to Q[y]/(y
n−m

m+1 ) where y has

degree k(m + 1). Since G/L is simply connected, it is a QP
n+1

m+1
−1

k(m+1). Also note
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that m ≥ 1 and k ≥ 6, so the generator of H∗(G/L;Q) has degree at least 12.
We now obtain integral (in fact, diffeomorphism) rigidity by the classification
of homogeneous spaces with singly generated rational cohomology (see [KZ04]).
Specifically, we conclude that G/L is a standard, even-dimensional sphere, say
S2l. Hence 2l = k(m+1) and 1 = n+1

m+1 −1. These imply the estimates required
to apply Lemma 4.2. Hence the bundle G ×L ML → G/L is trivial and the
total space M = G ×L ML is diffeomorphic to the product G/L ×ML. Since
M has singly generated rational cohomology, this is a contradiction.

4.2 Non-primitive actions on S2 ×HPn

In this subsection, we prove Theorem B in the non-primitive case. We are given
an even-dimensional, simply connected, closed manifold M with four-periodic
rational cohomology and positive Euler characteristic. By Proposition 3.9, M
is a rational S2 × HPn. We are also given a non-primitive cohomogeneity one
action with diagram H ⊆ K± ⊆ G, and a subgroup L such that K± ⊆ L ( G.

By Propositions 3.10, 3.11, and 3.12, we may assume that both singular orbits
are orientable and that the codimension k− ≥ 3. In particular, G/K+ is
simply connected and K+ is connected. As in the QPn

k case, it follows that L is
connected and that there exists a fibrationM → G/L with connected fiber ML,
which is the cohomogeneity one manifold with group diagram H ⊆ K± ⊆ L,
and that further, M = G×L ML.

Lemma 4.3. Suppose F → M → B is a fiber bundle with connected fiber F
and one-connected base B. If M ≃Q S2 × HPn, then either (F,B) ≃Q (S2 ×

HPk,QP
n−k

k+1

4(k+1)) or (F,B) ≃Q (HPk, S2 ×QP
n−k

k+1

4(k+1)).

Proof. According to [Hal78], F and B must be rationally elliptic. From Corol-
lary 3.5, the map πQ

odd(M) → πQ
odd(B) is surjective. Thus, the non-trivial

odd dimensional rational homotopy groups of B are in dimensions a subset of
{3, 4n + 3}. The subset must be non-empty because F is rationally elliptic.
Assume initially that π3(B) 6= 0. Since B is rationally elliptic with positive
Euler characteristic, this implies π2(B) 6= 0. Because F has positive Euler
characteristic, πQ

1 (F ) = 0, so πQ
2 (M) → πQ

2 (B) is an isomorphism.

Now, since πQ
even(F ) injects into πeven(M), πQ

4 (F ) is the only non-trivial even
degree rational homotopy group. Since F has positive Euler characteristic,
πQ
4k+3(F ) 6= 0 for precisely one k ≥ 1. It then follows in this case that F is a

rational HPk, from which is easily follows that B is a rational S2 ×QP
n−k

k+1

4(k+1).

Next, assume πQ
3 (B) = 0. This implies π3(F ) = Q, so πQ

2 (F ) = Q as well.
If π4(F ) = 0, then F is rationally S2 so B is rationally HPn. Thus, assume
π4(F ) 6= 0. Since we know πQ

4n+3(B) = Q and that, apart from a single even
dimension group, all other rational homotopy groups of B vanish, it easily
follows that

(F,B) ≃Q (S2 ×HPk,QP
n−k

k+1

4(k+1)).

Documenta Mathematica 25 (2020) 1835–1863



1850 J. DeVito, L. Kennard

Now, if the base B = G/L is rationally QP
n−k

k+1

4(k+1), then dimB = 4(n− k) > 6

for otherwise, k + 1 = n, which contradicts the fact that k + 1|n − k. From
Kapovitch-Ziller [KZ04], it follows that G/L is a standard even dimensional
sphere or G/L = OP2. Note also that if G/L is a sphere, then dimB ≥
dimF +2 = 4(k+1) because k+1|n−k. Similarly, if G/L ∼= OP2, then k = 1,
so dimF = 6. Thus, by Lemma 4.2, M is diffeomorphic to F ×B in this case.
In particular, dim πQ

odd(M) = 3, a contradiction.

When the base is S2 × QP
n−k

k+1

4(k+1) with n > k, then it is still true that (4(k +

1), n−k
k+1 ) is standard. Indeed, G cannot be simple by [DeV18], so G = G1 ×G2

and L = L1 × L2 with Li ⊆ Gi of full rank. Without loss of generality,
we assume πQ

3 (G1/L1) 6= 0. Since χ(G1/L1) > 0, it follows that G1/L1 is
rationally S2. Now, by inspecting the rational homotopy groups of G2/L2, it

follows that G2/L2 is a QP
n−k

k+1

4(k+1), so is standard by Kapovitch-Ziller. In other

words, G2/L2 is either a sphere S2n+2, HPn, G2 / SO(4), or OP2. Then the
dimension of the fiber is 2n, 2, 2, 6 respectively.

For the first case, G2/L2 = S2n+2 with k + 1 = n − k, implying n is odd. If
n = 1, then M is a linear S2-bundle over S4. Non-trivial bundles over this
form are rationally CP 3, so this bundle must be trivial: M is diffeomorphic
to S2 × S4 in this case. Thus, we may assume n ≥ 3 is odd, so Lemma 4.2
applies, giving the contradiction dimπQ

odd(M) ≥ 3. Similarly, we achieve the
same contradiction in the last case where G2/L2

∼= OP2.

For the middle two cases, since G2/L2 is a rational HPm, it follows that the
fiber is S2. Now, L2 splits as SU(2) × L′

2 with L′
2 simple, so the L2 action on

the fiber S2 must be trivial because the only cohomogeneity one action on S2 is
the standard circle action. In particular, dimπQ

odd(M) ≥ 3 in this case as well,
again giving a contradiction.

For the last case, we have n = k, so F = ML is a rational HPn and B = S2.
From Iwata [Iwa78], we know that the L action on ML is isometric with respect
to the usual metric. By clutching function arguments, such bundles over S2

are classified by π1(Isom(ML)), the fundamental group of the isometry group
of ML. When ML = G2 / SO(4), π1(Isom(ML)) = {1}, so M is diffeomorphic
to S2 × (G2 / SO(4)). When ML = HPm, π1(Isom(ML)) = Z/2Z, so there
precisely two such M up to bundle equivalence. In fact, as shown in [DeV18],
the total spaces of the two HPm bundles over S2 have different Stiefel-Whitney
classes, so are not even homotopy equivalent.

This concludes the proof of Theorem B in the non-primitive case. We finish
this section by noting that the three examples in the conclusion of the theo-
rem admit non-primitive cohomogeneity one actions. Indeed, S2 × HPn and
S2 × (G2 / SO(4)) admit obvious non-primitive cohomogeneity one actions via
a cohomogeneity one action on one factor and a transitive action on the other.

Proposition 4.4. The unique non-trivial HPn-bundle over S2 admits a non-
primitive cohomogeneity one action.
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Proof. As shown by Iwata [Iwa78], the natural action of SU(n+ 1) on HPn is
cohomogeneity one. We identify HPn with the quotient of S4n+3 obtained by
identifying v ∈ Hn+1 with vp for any unit quaternion p. Consider the action
of L = SU(n + 1) × S1 on HPn given by (A, eiθ) ∗ [v] =

[

eiθ/2Av
]

. Since this
action extends a cohomogeneity one action, it has cohomogeneity at most one.
On the other hand, it is easy to see that this action cannot move the point
[1 : i : 0 : ... : 0] to [1 : j : 0 : ... : 0], so is not transitive.

Consider the natural inclusion L ⊆ SU(n+ 1)× SU(2) and the cohomogeneity
oneG-manifoldML×LG = ML×SU(n+1)×S1 (SU(n+1)×SU(2)) ∼= ML×S1SU(2).
This quotient of HPn × S3 by S1 appears in [DeV18, Proposition 4.4] and is
shown there to be the total space of the non-trivial HPn bundle over S2.

5 Generalities on primitive actions

In this section, we collect some results on primitive cohomogeneity one actions
that will be used in the proofs of Theorems A and B. The proofs rest on a
much wider classification due to Frank [Fra13] in the case where the G-action
is primitive.

Theorem 5.1 (Frank). Suppose M is a minimal and primitive cohomogeneity
one manifold with group diagram H ⊆ K± ⊆ G. If M has positive Euler char-
acteristic and the codimensions k± of the singular orbits satisfy k+ ≡ 0 mod 2
and k− ≥ 3, then at least one of the following applies.

1. M is diffeomorphic to a compact rank one symmetric space, a Grassman-
nian, Sp(n)/(Sp(n − k + 1)U(k)), or SO(n + 1)/(SO(n − 2k + 1)U(k)).
Moreover, the action is linear, up to equivalence.

2. G = G1 × SU(2) some some simple group G1.

3. G is an exceptional Lie group.

4. M has a diagram with G and H listed in Table 2.

If Case 1 occurs in Theorem 5.1, then Theorems A and B follow immediately
from previous classifications (see Sections 6.1 and 7.1). In the remaining cases
of Frank’s theorem, G is simple or a product of a simple group and SU(2). Since
subgroups of compact Lie groups can have at most finitely many components,
we have the following.

Lemma 5.2. Suppose M is a simply connected manifold with χ(M) > 0 and
that M does not arise in Case 1 of Theorem 5.1. For any primitive cohomo-
geneity one action by a compact Lie group G, the regular orbit G/H has finite
fundamental group.

The following further constrains what can occur in Case 2.

Lemma 5.3. If M is as in Case 2 of Frank’s classification, then k− = 3 and
all of the following hold:
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G H dimM χ(M) dim(M)
χ(M)−1

SU(3) S1 8 3 4

SU(3) S1 or Z3 SO(2) 8 6 8
5

SU(4) S1 SU(2) 12 10 4
3

SU(n), n ≥ 4 S1 SU(n− 2) 4n− 4 2n 4n−4
2n−1

SO(7) or Spin(7) SU(3) 14 8 2

Spin(7) S1 SU(2) 18 14 18
13

Spin(7) SU(3) 14 2 14

SO(9) S1 SU(3) 28 16 28
15

Spin(9) S1 SU(2)2 30 48 30
47

SO(2n+ 1), n ≥ 3 S1 SO(2n− 3) 8n− 6 2n(n+ 1) 8n−6
2n2+2n−1

SO(2n+ 1), n ≥ 3 T2 SU(n− 2) n2 + 5n− 4 n2n n2+5n−4
n2n−1

Sp(2) Z2 Sp(1) 8 8 8
7

Sp(n), n ≥ 2 Sp(n− 2)Sp(1) 8n− 8 n(2n− 1) 8n−8
2n2−n−1

Sp(n), n ≥ 2 S1 Sp(n− 2) 8n− 6 2n2 8n−6
2n2−1

Sp(n), n ≥ 2 S1 Sp(n− 2) 8n− 6 2n 8n−6
2n−1

Sp(n), n ≥ 2 T2 Sp(n− 3) 12n− 6 4n(n− 1) 12n−6
4n2−4n−1

SO(8) SU(4) 14 8 2

SO(10) S1 SU(4) 30 16 2

SO(2n), n ≥ 4 S1 SU(n− 1) n2 + n 2n+1 n2+n
2n+1−1

SO(2n), n ≥ 4 T2 SU(n− 2) n2 + 3n− 4 n2n−1 n2+3n−1
n2n−1−1

Table 2: Primitive cohomogeneity one manifolds with positive Euler character-
istic
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1. Up to cover, K− = K−
1 ×∆ SU(2) where K−

1 ⊆ G1, K
−
1 has corank 1 in

G1, and the ∆ SU(2) factor of K− is diagonally embedded in G1×SU(2).

2. The group K+ has the form K+
1 × S1 with K+

1 ⊆ G1 and S1 ⊆ SU(2).

3. The group H = K−
1 ×∆ S1 for the natural ∆ S1 ⊆ ∆ SU(2).

4. In the bundle S2 → G/H → G/K−, the map π∗(S
2) → π∗(G/H) is

injective.

Proof. The claim that k− = 3 and the first and third statements follow imme-
diately from Frank [Fra13, Section 2].

For the second assertion, we begin by noting that since K+ has full rank in
G = G1 × SU(2), it follows that K+ = K+

1 ×K+
2 where K+

1 ⊆ G1 and K+
2 ⊆

SU(2) both have full rank. Since k− > 2, K+ is connected, so K+
2 = S1 or

K+
2 = SU(2). On the other hand, by first taking the quotient by the K−

1 action,
Sk+−1 = K+/H = (K+

1 × K+
2 )/(K−

1 × ∆ S1) fits into a bundle K+/H →
K+

1 /K−
1 with fiber K+

2 / S1. If K+
2 = SU(2), this is a bundle of the form

S2 → Sk+−1 → K+
1 /K−

1 . Since k+ − 1 is odd, there is no such bundle. Thus,
K+ = K+

1 × S1, giving the first assertion.

For the fourth claim, since K− = K−
1 × ∆ SU(2), G/K− is canonically dif-

feomorphic to G1/K
−. The bundle S2 = K−/H → G/H → G1/K

−
1 has

a section obtained by mapping gK−
1 to [g] ∈ G/H , so the induced map

π∗(S
2) → π∗(G/H) is injective.

The last two lemmas in this section will be applied in the proof of Theorem A.

6 Proof of Theorem A

In this section, we classify even-dimensional QPn
k with cohomogeneity one

structures. That is, we are given a simply connected, closed manifold M of
even dimension such that H∗(M ;Q) ∼= Q[x]/(xn+1) where x has even degree k.
We are also given an almost effective cohomogeneity one action on M by a
connected group G with group diagram H ⊆ K± ⊆ G. Moreover, as explained
in Section 2, we may assume the G-action is minimal in the sense that no
proper normal subgroup acts orbit equivalently. The aim is to prove that M is
equivariantly diffeomorphic to a compact rank one symmetric space (CROSS)
equipped with a linear action.

Part of this involves the classification when n = 1 (the even-dimensional ratio-
nal sphere case). The other part requires showing that the parameters n and k
are standard, i.e., that k ∈ {2, 4} or that (k, n) = (8, 2). The classification of
Uchida and Iwata on cohomogeneity one rational cohomology CROSSes then
implies the claimed equivariant diffeomorphism rigidity.

By what has been shown so far, after possibly swapping K+ and K−, we may
assume all of the following:
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1. rankG− 1 = rankH ≤ rankK− ≤ rankK+ = rankG (see Section 2).

2. G/K+ and G/K− are orientable (see Propositions 3.10 and 3.11).

3. k+ is even and k− ≥ 3 (see Proposition 3.12).

4. The action is primitive (see Section 4.1).

5. If n ≥ 2 and k ≥ 6, then k± ≥ 3, both G/K± and G/H are simply
connected, and both K± and H are connected (see Lemmas 3.13 and 5.2
and Section 2).

In particular, we may apply the classification of Frank (Theorem 5.1, cf. Lemma
5.3). The rest of the proof of Theorem A is carried out by stepping through
the four cases in Frank’s conclusion. Recall that our task is to classify the
equivariant diffeomorphism type if n = 1 and to prove that n ≥ 2 and k > 4
only if (k, n) = (8, 2).

6.1 Proof of Theorem A, Case 1

The theorem follows unless M is diffeomorphic to Sp(n)/(Sp(n−m+1)U(m))
or SO(n+ 1)/(SO(n− 2m+ 1)U(m)), and these latter two spaces do have not
have singly generated rational cohomology (see, e.g., Kapovitch-Ziller [KZ04]).

6.2 Proof of Theorem A, Case 2

In this subsection, we classify the case whereM is a QPn
k as in Case 2 of Frank’s

theorem. We do this in two steps, according to whether n = 1 (rational sphere
case) or n ≥ 2.

Lemma 6.1. If Case 2 occurs in Theorem 5.1 and Mk is an even-dimensional
rational sphere, then one of the following happens:

1. M is equivariantly diffeomorphic to S4 with the action of G = SU(2) ×
SU(2) = Spin(4) via the suspension of the natural transitive G action on
S3

2. M it is equivariantly diffeomorphic to S4m+2 ⊆ Hm⊕im(H) equipped with
the action of G = Sp(m)×Sp(1) given by (A, p)∗(v, w) = (Avp−1, pwp−1).

Proof. From the low dimensional classification of cohomogeneity one actions
[Hoe10], we see that when k = 2, there is no primitive cohomogeneity one
action of a semisimple group G on S2. Likewise, when k = 4 and G is a
product of two simple groups, G = SU(2)× SU(2) acting as claimed. Thus, we
assume k ≥ 6.

Recall k− = 3. We first claim that G/K+ = S2. To see this, notice first
that we have 2 = χ(M) = χ(G/K+). Since G/K+ is simply connected, this
implies G/K+ is rationally a sphere. Now, consider the orientable bundle
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S2 → G/H → G/K−. The rational Euler class vanishes automatically, so we
conclude that H∗(G/H ;Q) ∼= H∗(S2 ×G/K−;Q) as groups. Now, considering
the Mayer-Vietoris sequence in rational cohomology associated to the double
disc bundle decomposition of M , we see that H2(G/K+;Q) 6= 0, otherwise
H3(M ;Q) 6= 0, contradicting the fact that M is a QP1

k with k > 3. Since
G/K+ is a rational sphere, it must be diffeomorphic to S2. From the form
K+ = K+

1 ×S1 ⊆ G1×SU(2), we now see K+
1 = G1. Also, note that k+ = k−2

because dimG/K+ = 2.

Since k > 4, the bundle Sk−3 → G/H → G/K+ = S2 has trivial Euler class,
so G/H has the integral cohomology ring of S2 × Sk−3. It now follows from
the bundle S2 → G/H → G/K− that G/K− ∼= G1/K

−
1 is rationally Sk−3. We

note that the embedding of K−
1 in G1 extends to an embedding (up to cover)

of K−
1 × SU(2), which gives a bundle SU(2) → G1/K

−
1 → G2/K

−
1 × SU(2),

from which it follows that 4|k − 2.

Further, the Euler class of the bundle S2 → G/H → G/K− must be 2-torsion.
So, G/K− is an integral cohomology sphere unless H3(G/K−) ∼= Z2. From
Kapovitch-Ziller, there are no such rational spheres for which the dimension
is congruent to 3 mod 4. It follows that G1/K

−
1 is diffeomorphic to Sk−3, so

G1/K
−
1 × SU(2) is diffeomorphic to HP(k−6)/4. This implies that G1 = Sp(m)

and K−
1 = Sp(m− 1) for m = (k− 2)/4 (see [Oni97, Table 10, Theorem 2. pg.

265-266]).

Thus, writing SU(2) = Sp(1), we have the following group diagram: Sp(m −
1) × ∆ S1 ⊆ Sp(m − 1) × Sp(1), Sp(m) × S1 ⊆ Sp(m) × Sp(1). Since k ∼= 2
(mod 4), this group diagram is as claimed in the lemma.

With the case n = 1, complete, we proceed to the case n ≥ 2. In this case, we
show no QPn

k with k ≥ 6 occurs. We begin with a proposition which will be
useful later.

Proposition 6.2. If M is an even-dimensional QPn
k as in Case 2 of Theorem

5.1, then n = 1 or k ∈ {2, 4}.

Proof. Since k− = 3, we have that either Case 2.a or 2.b of Proposition 3.13
applies.

If Case 2.b applies, then k+ +3 = n+1
2 k+ 1 and k− 1 ∈ {k+ − 1, 3, n+1

2 k− 1}.
It follows in each of the three cases for k − 1 that k ∈ {2, 4} or that n = 1.

If instead Case 2.a applies,then πQ
∗ (G/H) has a graded basis with elements of

odd degrees k+ − 1, 2k− − 3 = 3, and k+ + 1 = k
2 (n + 1)− 1 and elements of

even degree k and 2. Applying Lemma 5.3 to the bundle S2 → G/H → G/K−,
we see the map π∗(S

2) → π∗(G/H) is injective, so πQ
∗ (G/K−) has a graded

basis consisting of elements of degrees k+ − 1, k
2 (n+ 1)− 1, and k.

We assume k ≥ 6 and derive a contradiction. The fact that πQ
2 (S

k+−1 ×

QPn
k ) = πQ

4 (S
k+−1 × QPn

k ) = 0 implies that K− must be simple with no
torus factors (see, for example, [DeV17, Proposition 3.3]). Further note that
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dimπQ
odd(G/K−) = 2. Such pairs (G,K−) are cataloged in [Oni97, Table 11,

pg. 270], and one can easily see that the only such pair for which K− acts
transitively on an even dimensional sphere and for which K− has corank 1 in
G is (G,K−) = (F4, Spin(7)). Since K−/H is an even dimensional sphere, we
see H = Spin(6) = SU(4). Since H is the isotropy group of the action of K+

on an odd sphere, K+ = SU(5). This is a contradiction since the Borel - de
Siebenthal classification of maximal maximum rank subgroups of simple groups
implies that there is no SU(5) ⊆ F4, even up to cover.

6.3 Proof of Theorem A, Case 3

In this subsection, we show there is no primitive cohomogeneity one action of
an exceptional Lie group G on an even-dimensional QPn

k with k ≥ 6. The proof
is in two parts, according to whether n = 1 or n ≥ 2.

Proposition 6.3. There is no primitive cohomogeneity one action of an ex-
ceptional Lie group G on an even-dimensional QP1

k, i.e., on a rational sphere
of even dimension.

Proof. By the remarks at the beginning of this section, we have k− ≥ 3 and
that G/K+ is simply connected. Since 2 = χ(M) = χ(G/K+) + χ(G/K−), it
follows that G/K+ is a rational sphere and χ(G/K−) = 0. This implies that
G = G2 andK+ ∼= SU(3). SinceK+/H is a sphere, H ∼= SU(2). However SU(2)
is not the isotropy group of any transitive action on an even dimensional sphere.
Hence K−/H must be an odd dimensional sphere, which implies rankK− =
rankG2. This contradicts the fact that χ(G/K−) = 0.

Proposition 6.4. There is no primitive cohomogeneity one action of an ex-
ceptional Lie group G on an even-dimensional QPn

k with n ≥ 2 and k ≥ 6.

Proof. First suppose that k− is even. By the remarks at the beginning of
Section 6, we may assume that both k± ≥ 3 and hence that both G/K± are
simply connected. From Proposition 3.13, each G/K± is a QP

m±

k for some
integers m± and πQ

∗ (G/H) is three dimensional. Since k ≥ 6, it follows from
Kapovitch-Ziller [KZ04] that G/K+ = Sm (with m even) or G/K+ = OP2,
and similarly for G/K−. Hence either G = G2 with K± ∼= SU(3) or G = F4

with K± ∼= Spin(9). Since K+/H is an odd dimensional sphere, H ∼= SU(2) in
the first case and H = Spin(7) in the second case. We prove that both of these
cases lead to a contradiction.

Indeed, in the first, G/H ∼= G2 / SU(2) is diffeomorphic to the total space of the
unit tangent bundle over S6. HenceG/H is a rational S11, contradicting the fact
that πQ

∗ (G/H) has three generators. In the second case, G/H ∼= F4 / Spin(7),
which is diffeomorphic to the total space of the unit tangent bundle over OP2.
Hence G/H is a rational S8 × S23 with H16(G/H ;Q) = 0. The induced map
Q = H16(G/K±;Q) → H16(G/H ;Q) must have non-trivial kernel and hence
dimH16(M ;Q) ≥ 2 by the Mayer-Vietoris sequence associated to the double
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disc bundle decomposition. This is again a contradiction, so the proposition
holds when k− is even.

Next assume that k− is odd and k− ≥ 7. By Proposition 3.13, πQ
2 (G/H) =

πQ
4 (G/H) = 0. Hence H is simple. The only simple groups which are the

isotropy groups of transitive actions on an even and odd dimensional sphere
are H = Spin(6) = SU(4) and H = SU(3). Because rankH = rankG − 1 and
there are no exceptional groups of rank 3, we must be in the case where G = F4

and H = SU(4). In particular, dimπQ
odd(G/H) = 5, so we must be in case 2a

of Proposition 3.13. Further, πQ
9 (G/H) = 0 since πQ

9 (F4) = 0. On the other
hand, the fact that H = SU(4) implies that K+ = SU(5) by Table 2.3. Hence
k+ = 10, and so by Proposition 3.13, πQ

9 (G/H) 6= 0, a contradiction.

Next assume that k− = 5. Then πQ
4 (G/H) ∼= Q and πQ

2 (G/H) = 0, so H is
semisimple with precisely two simple factors. Since K−/H ∼= S4, H is, up to
cover, SU(2) × SU(2). Thus, rankG = rankH + 1 = 3, contradicting the fact
that G is exceptional.

Finally assume k− = 3. Since k − 1 > 3, πQ
3 (G/H) 6= 0 which implies H is

a torus. Further, πQ
2 (G/H) ∼= Q, so H = S1 and G = G2. But then nk =

dimM = dimG/H + 1 = 14, so we have a contradiction to the assumptions
that n ≥ 2, k ≥ 6, and k ≡ 0 mod 2.

6.4 Proof of Theorem A, Case 4

In this subsection, we conclude the proof of Theorem A by dealing with the
last possibility in Theorem 5.1.

Proposition 6.5. If M is an even-dimensional QPn
k and arises in Case 4 of

Theorem 5.1, then either k ∈ {2, 4} or M is given by the G = Spin(7) action
on S14 ⊆ R8 ⊕ R7 ∼= R15 with G acting as the sum of the spin representation
and the standard representation.

We may assume k ≥ 6. We examine Table 2 and compute the quantity dimM
χ(M)−1 .

For a QPn
k , this quantity is equal to k, so it must be integral and at least six. By

inspection, this only occurs in the case where G = Spin(7), H = SU(3). In this
case, according to Frank [Fra13], we have K− = G2 and K+ = Spin(6). This
is the diagram corresponding to the G = Spin(7) action on S14 ⊆ R8 ⊕ R7 ∼=
R15 with G acting as the sum of the spin representation and the standard
representation, so is a linear action on a standard sphere.

7 Proof of Theorem B

In this section, we show that there are no primitive cohomogeneity one ac-
tions on any simply connected closed rational S2 × HPn. This will complete
the classification of even-dimensional, simply connected, closed cohomogeneity
one manifolds M with four-periodic rational cohomology and positive Euler
characteristic.
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As in the proof of Theorem A, we assume the cohomogeneity one action is
minimal, almost effective, and by a connected group G. Let H ⊆ K± ⊆ G be
a group diagram for this action. Since again we are dealing with positive Euler
characteristic, we again may assume all of the following:

1. rankG− 1 = rankH ≤ rankK− ≤ rankK+ = rankG (see Section 2).

2. G/K+ and G/K− are orientable (see Propositions 3.10 and 3.11).

3. k+ is even and k− ≥ 3 (see Proposition 3.12).

4. The action is primitive (see Section 4.1).

We again apply the classification of Frank, and we again conclude the proof by
stepping through the four cases in the conclusion of Frank’s theorem.

7.1 Proof of Theorem B, Case 1

None of the homogeneous spaces in Case 1 have the same rational cohomology
as S2 ×HPn (see, for example, [DeV18]), so this case cannot occur.

7.2 Proof of Theorem B, Case 2

In this subsection, we prove that there is no primitive cohomogeneity one ra-
tional S2 × HPn in Case 2 of Theorem 5.1. We start with some preliminary
observations.

By Lemma 5.3, k− = 3, so we have that k− is odd and k+ is even. By Theorem
3.1, we know that πQ

∗ (F) has dimension five and is generated by elements in
even degrees 2 and 2(k+ + 1) and odd degrees 3, k+ − 1, and k+ + 1. Recall
that πQ

∗ (M) has dimension four with generators in degrees 2, 3, 4, and 4n+ 3.
Also by Lemma 5.3, G/K− is diffeomorphic to a homogeneous space G′/K ′

where G′ is simple, K ′ has corank 1 in G′, and the K ′ action on G′ extends to
K ′ × SU(2) homogeneous action.

By Proposition 3.7 and the fact that k+ ≥ 2, the connecting homomor-
phism ∂ : πQ

3 (M) → πQ
2 (F) is zero and the connecting homomorphism

∂ : π(M)2(k++1)+1Q → πQ

2(k++1)(F) is non-trivial. The latter statement implies

2(k+ + 1) + 1 = 4n+ 3 and hence k+ = 2n.

Next, the connecting homomorphism ∂ : πQ
2 (M) → πQ

1 (F) is automatically
trivial if k+ > 2 and is non-trivial if k+ = 2. Indeed, if it is trivial in the latter
case, then πQ

1 (G/K−) ∼= π1(G/H) ∼= Q, contradicting the fact that G/K− is
diffeomorphic to a homogeneous space of a simple group.

Finally, the connecting homomorphism πQ
4 (M) → πQ

3 (F) is non-trivial. Indeed,

if it is trivial, then πQ
4 (G/H) is non-trivial and dim πQ

3 (G/H) ≥ 2. From the

bundle S2 → G/H → G/K−, we see that πQ
3 (G/K−) and πQ

4 (G/K−) ∼= Q

are both non-trivial. On the other hand, G/K− is diffeomorphic to the
homogeneous space G1/K

−
1 where G1 is simple. In particular, the map
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πQ
3 (K

−
1 ) → πQ

3 (G1) is surjective (see [Oni97, Section 10, p. 58, and Theo-

rem 2, p. 257]), which implies that πQ
3 (G1/K

−
1 ) and πQ

4 (G1/K
−
1 ) cannot both

be non-trivial. This is a contradiction.

With the connecting homomorphism computed, we can compute πQ
∗ (G/H)

using the long exact homotopy sequence for the fibration F → G/H → M .
This naturally splits into two cases, so we conclude the proof by proving the
following two lemmas.

Lemma 7.1. There is no primitive cohomogeneity one rational S2 × HPn in
Case 2 of Theorem 5.1 such that k+ = 2.

Proof. By the comments above, we have that πQ
∗ (G/H) has dimension three

with generators in degrees 2, 3, and 3. By inspection of the Sullivan minimal
model, it is straightforward to see that G/H ≃Q S2 × S3. Using [DeV17,
Theorem 3.1, Case 1], it follows from 5.3 that up to cover, G = SU(2)× SU(2),
K−

0 = ∆ SU(2), andH0 = ∆ S1. Finally, from the bundle S1 → G/H → G/K+,
we see that up to cover, G/K+ is a rational S2 × S2. Since K+ is connected,
we must have K+ = S1 × S1 ⊆ SU(2)× SU(2).

This setup is studied in Hoelscher [Hoe10, Example Q6
A]. In particular, there

are precisely two simply connected cohomogeneity one manifolds of this form,
having group diagrams H = Z/lZ ·∆S1, K+ = S1 × S1, K− = Z/lZ ·∆ SU(2),
and G = SU(2) × SU(2) with l ∈ {1, 2}. According to Uchida [Uch77], the
l = 1 case corresponds to the natural SO(4) action on the Grassmannian
SO(7)/ SO(2)× SO(5), a rational CP 3. Likewise the case l = 2 corresponds to
the natural action of SO(4) on CP3. In both cases, we have a contradiction to
the fact that M ≃Q S2 ×HP1, so the case k+ = 2 does not occur.

Lemma 7.2. There is no primitive cohomogeneity one rational S2 × HPn in
Case 2 of Theorem 5.1 such that k+ ≥ 4.

Proof. Note in this case that both K± and H are connected by Section 2. As
in the previous case, we can compute πQ

∗ (G/H). It has dimension five and
is generated by elements in degrees 2, 2, 3, k+ − 1, and k+ + 1. Applying
Proposition 5.3 to the fibration S2 → G/H → G/K−, we see that πQ

∗ (G/K−)
has dimension three with generators in degrees 2, k+ − 1, and k+ + 1.

Now we consider the fiber bundle Sk+−1 → G/H → G/K+. We first claim
that πk+

(G/K+) = 0. Indeed, the long exact homotopy sequence implies that

highest odd degree for which πQ
i (G/K+) 6= 0 is k++1. Since k+ ≥ 4 and since

G/K+ has bounded cohomology, we see by inspection of the Sullivan minimal
model for G/K+ that πQ

k+
(G/K+) 6= 0 would imply that no differential can kill

powers of the generator in degree k+, a contradiction. Hence πk+
(G/K+) = 0

and the long exact homotopy sequence implies that πQ
∗ (G/K+) has dimension

four and is generated in degrees 2, 2, 3, and k+ + 1.

We now compute G = G1×SU(2). On on hand, the fact that G/K− = G1/K
−
1

has consecutive non-trivial odd rational homotopy groups implies G1 does as
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well. Since G1 is simple, we have G1 ∈ {SU(m), SO(4m + 2),E6}. On the
other hand, Lemma 5.3 implies that G/K+ is diffeomorphic to S2 × G1/K

+
1 .

Hence G1/K
+
1 is a rational CP

k+

2
+1, which means that G1 ∈ {SO(2m +

1), SU(m), Sp(m),G2} for some m (see [Oni97, Table 10, pg. 265]). Putting

these together, we have G1 = SU(m) with m = k+

2 + 2 = n+ 2.

Next it follows thatK+
1 = U(m−1) sinceG1/K

+
1 is a rationalCPm. In addition,

K−
1 = U(m−2) by Theorem 2.1 since Sk+−1 = K+/H = (K+

1 ×S1)/(K−
1 ×∆ S1)

and since K−
1 acts almost effectively on K+/H by [Fra13, Lemma 1.3]. It

follows that up to conjugacy, this is the form of [Uch77, Example 3.3, pg
157]. In particular, M is rationally CP2n+1, contradicting the fact that M ≃Q

S2 ×HPn.

7.3 Proof of Theorem B, Case 3

In this subsection, we prove that no simply connected, closed manifold M with
M ≃Q S2×HPm admits a primitive cohomogeneity one action by an exceptional
Lie group G.

Since πQ
3 (M) ∼= πQ

4n+3(M) ∼= Q, Proposition 3.7 implies that πQ
2 (−) or

π4n+2(−) of the loop space factor must be non-trivial. If it is πQ
2 (−), then

F ≃Q S1 × S1 ×ΩS3. Since we are assuming k− > 2, this cannot occur. It now

follows that πQ
3 (G/H) is non-trivial.

Since G is simple, this implies H0 is a torus. Since k+ is even, it follows
that πQ

2 (F) has dimension at most 1, so rankH = dimπQ
2 (G/H0) ≤ 2. Since

there are no exceptional Lie groups of rank 3, and H has corank 1 in G, this
implies G = G2 and H0 = S1. Thus, dimG/H = 13, so M ≃Q S2 × HP3. In

particular, πQ
15(M) 6= 0. By Proposition 3.7, we must have k+ + k− − 1 = 15

or k+ + k− − 1 = 8. Now, πQ
11(G2) ∼= πQ

11(G/H) ∼= Q, so it follows from the

long exact sequence associated to F → G/H → M that πQ
11(F) 6= 0. Because

k+ + k− − 1 ∈ {8, 15}, it follows that up to reordering k±, that k+ = 7 or
k+ = 12. But H0 = S1 is not the isotropy group of any transitive action on a
sphere of dimension 6 or 11, so we have a contradiction.

7.4 Proof of Theorem B, Case 4

In this subsection, we conclude the proof of Theorem B by classifying simply
connected rational S2 × HPn that admit primitive cohomogeneity one actions
by simple classical groups. Frank’s classification implies that M is one of the
G-manifolds listed in Table 2. We use the fact that S2 × HPn has the same
dimension and Euler characteristic as CP2n+1. Hence the quantity dimM

χ(M)−1 = 2.

By inspection of the table, this only occurs when (G,H) is one of the pairs in

{(SO(7), SU(3)), (Spin(7), SU(3)), (SO(8), SU(4)), (SO(10), S1 × SU(4))}.
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The first, second, and last cases appear in [Uch77]: they are actions on
SO(11)/ SO(2) × SO(9), CP 7, and CP 15 respectively. All of these spaces are
rational complex projective spaces and hence not rational S2 ×HPn.

In the remaining case, (G,H) = (Spin(8), SU(4)), we have K+ = U(4) and
K− = Spin(7). It follows that k+ = 2, k− = 7, and so πQ

2 (F) = 0. Since

πQ
3 (G/H) = 0 as well, it follows that πQ

3 (M) = 0 as well. This contradicts the
fact that M ≃Q S2 ×HPn.
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