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Abstract. We give a complete answer to the question of
(semi)stability of tangent bundles on any nonsingular complex pro-
jective toric variety with Picard number 2 by using combinatorial
criterion of (semi)stability of an equivariant sheaf. We also give a
complete answer to the question of (semi)stability of tangent bundles
on all toric Fano 4-folds with Picard number ≤ 3 which are classified
by Batyrev [1]. We construct a collection of equivariant indecom-
posable rank 2 vector bundles on Bott towers and pseudo-symmetric
toric Fano varieties. Furthermore, in case of Bott towers, we show the
existence of an equivariant stable rank 2 vector bundle with certain
Chern classes with respect to a suitable polarization.
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1 Introduction

Let X be a toric variety of dimension n, equipped with an action of the n-
dimensional torus T with an associated fan ∆ over an algebraically closed
field k. A quasi-coherent sheaf E on X is said to be T -equivariant or simply an
equivariant sheaf if it admits a lift of the T -action on X , which is linear on the
stalks of E . An equivariant structure on a sheaf E need not be unique. Any
line bundle on a toric variety has an equivariant structure. It is well known
that any locally free sheaf E on X is equivariant if and only if t∗E ∼= E for

Documenta Mathematica 25 (2020) 1787–1833



1788 J. Dasgupta, A. Dey, B. Khan

every t ∈ T (see [26, Proposition 1.2.1]). Equivariant vector bundles over a
nonsingular complete toric variety up to isomorphism were first classified by
Kaneyama [20], [21] by involving both combinatorial and linear algebraic data
modulo an equivalence relation. Later in a foundational paper [26], Klyachko
classified equivariant vector bundles more systematically. In this paper, he
gave a complete classification of equivariant bundles over an arbitrary toric
variety in terms of a family of decreasing filtrations on a fixed finite dimensional
vector space indexed by one dimensional cones satisfying certain compatibility
condition [26, Theorem 2.2.1]. Most of the topological and algebraic invariants
of equivariant vector bundles like Chern classes, global sections, cohomology
spaces; he could decode from this filtration data. As a major application, later
he used classification of equivariant vector bundles over P2 to prove Horn’s
conjecture on eigenvalues of sums of Hermitian matrices [27]. Recently this
classification result has been generalized for equivariant principal G-bundles
on any complex toric variety using two different approaches ([3], [22], [23]),
where G is a complex linear algebraic group. In another work, the authors
give a classification of equivariant principal G-bundles on any toric variety
defined over an algebraically closed field when G is reductive, using a Tannakian
approach [4].

In an unpublished preprint [25], Klyachko gave a generalization of the above
classification theorem for equivariant torsion-free sheaves and gave a sketch
without all details. Thereafter, Perling introduced the notion of ∆-families
{Eσ

m}σ∈∆, m∈M for any quasi-coherent equivariant sheaf E which is constructed
from the T -eigenspace decompositions of the modules of sections, together with
the multiplication maps for regular T -eigenfunctions. He showed that the cat-
egory of ∆-families is equivalent to the category of equivariant quasi-coherent
sheaves [38]. When the sheaf E is torsion-free, corresponding ∆-family induces
a family of multifiltrations of subspaces {Eσ

m}σ∈∆, m∈M on a fixed finite di-
mensional vector space E

0 satisfying certain compatibility condition (see The-
orem 2.2.8). Further, if we restrict ourselves to reflexive sheaves, then the
entire Perling data becomes a family of increasing full finite dimensional fil-
tered vector spaces (E0, {Eρ(i)}ρ∈∆(1), i∈Z) without any compatibility condi-
tion, where Eρ

m = Eρ(〈m, vρ〉). Conversely, any such family of filtered vector
spaces corresponds to an equivariant reflexive sheaf [38, Theorem 5.19]. This
crucial observation of Perling is the starting point of the paper. Further, the
first Chern class of an equivariant coherent sheaf can be computed from its
associated ∆-family (see [30, Corollary 3.18]).

One of the most important and well-explored problems in moduli theory is the
moduli problem of vector bundles of fixed topological type over a nonsingular
projective variety. In general, we cannot expect that the set of all isomorphism
classes of vector bundles over a nonsingular projective variety of a fixed topo-
logical type has an algebraic scheme structure. To overcome this, the notions of
stable and semistable vector bundles were introduced by Mumford. When the
underlying variety is a nonsingular projective curve, Mumford showed that the
set of isomorphism classes of stable vector bundles of fixed rank and degree has
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the structure of a quasiprojective scheme [34]. Later this moduli space was com-
pactified by Seshadri, using S-equivalence classes of semistable vector bundles
[42]. Further, this work has been generalized for higher dimensional varieties
by Gieseker [13], Maruyama [32, 33] and many others. It is natural to consider
the equivariant versions of these notions for equivariant vector bundles over
nonsingular projective toric varieties. Let X be a nonsingular complex projec-
tive toric variety and H be an equivariant very ample line bundle (equivalently,
T -invariant very ample divisor) on X . An equivariant torsion-free sheaf E on X
is said to be equivariantly stable (respectively, semistable) with respect to H
if µ(F) < µ(E) (respectively, µ(F) ≤ µ(E)) for every proper equivariant sub-
sheaf F ⊂ E (see Section 2.3 for definition of µ). From the uniqueness of the
Harder-Narasimhan filtration it follows easily that the notions of semistability
and equivariant semistability of an equivariant torsion-free sheaf on a nonsin-
gular projective toric variety are equivalent. Further, the notions of stability
and equivariant stability also coincide for any equivariant torsion-free sheaf (see
[2, Theorem 2.1]). When E is an equivariant reflexive sheaf, to determine its
(semi)stability, it is enough to consider equivariant reflexive subsheaves of E
(see Remark 2.3.2).

The purpose of this paper is twofold. First, we study (semi)stability of tangent
bundle on a nonsingular projective toric variety with Picard number at most 3
(in Section 4 and 5). Secondly, we construct new examples of rank 2 equiv-
ariant vector bundles which are indecomposable or even stable over a large
collection of nonsingular projective toric varieties of arbitrary dimension (in
Section 6). Both these results rely on the key fact that one can combinatorially
classify equivariant reflexive subsheaves of an equivariant reflexive sheaf (see
Corollary 3.1.2). This turns out to be the central theme of the paper. In fact,
with this technique, theoretically it is possible to check (semi)stability of any
equivariant torsion-free sheaf on a nonsingular projective toric variety. Never-
theless, as the Picard number grows and the fan structure becomes more and
more complicated, the task of computing degree of subsheaves becomes cum-
bersome. We hope one can write a computer program to check (semi)stability
of any equivariant torsion-free sheaf from its given combinatorial data and the
fan structure of the toric variety with respect to any polarization.

Tangent bundles TX are natural examples of equivariant vector bundles on
nonsingular toric varieties. The filtration data

(
T , {T ρ(i)}ρ∈∆(1), i∈Z

)
as-

sociated to TX is relatively simple, it has a two step filtration of flag type
(1, n − 1) for each ρ ∈ ∆(1) (see Corollary 2.2.17). The first main step of
this paper is to show that equivariant reflexive subsheaves of TX are in one-
to-one correspondence with induced subfiltrations

(
F

0, {F ρ(i)}ρ∈∆(1), i∈Z

)
of(

T , {T ρ(i)}ρ∈∆(1), i∈Z

)
. In fact, this holds for all equivariant torsion-free (re-

spectively, reflexive) subsheaves of any equivariant torsion-free (respectively,
reflexive) sheaf (see Proposition 3.1.1, Corollary 3.1.2). This result is a nat-
ural generalization of [24, Proposition 4.1.1], where equivariant subbundles
of an equivariant vector bundle were classified. We first apply this result to
give a very simple proof of stability of tangent bundle on a projective space
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(see Proposition 4.1.1). Next, we study (semi)stability of tangent bundle on
a nonsingular projective toric variety with Picard number 2. A theorem of
Kleinschmidt [9, Theorem 7.3.7] tells us that any such variety X is isomorphic
to P(OPs ⊕ OPs(a1) ⊕ · · · ⊕ OPs(ar)), where s, r ≥ 1, s + r = dim(X) and
0 ≤ a1 ≤ . . . ≤ ar are integers. In this case, tangent bundle will be always un-
stable with respect to any polarization whenever (a1, . . . , ar) 6= (0, 0, . . . , 0, 1)
(see Theorem 4.2.2). When (a1, . . . , ar) = (0, 0, . . . , 0, 1), we give a necessary
and sufficient condition for (semi)stability of tangent bundle with respect to
any polarization (see Theorem 4.2.5). As a corollary we give a complete answer
to (semi)stability of tangent bundle with respect to anticanonical divisor −KX

for any Fano toric variety with Picard number 2 (see Corollary 4.2.7). This
generalizes a very recent result of [2, Theorem 9.3].
By the result of Kobayashi [29] and Lübke [31], stability of tangent bundle
with respect to −KX for a nonsingular Fano variety is considered to be an
algebraic geometric analogue of existence of Kähler-Einstein metric on a smooth
manifold. It is an open question if tangent bundle on a nonsingular Fano
variety with Picard number 1 is stable with respect to −KX . Though the
conjecture is known in many cases (see [40],[39],[19],[44],[11] etc.), this question
is wide open in general. If the Picard number is > 1, tangent bundle is not
necessarily stable due to the geometry of contractions of extremal rays, for 3-
folds this has been studied completely by Steffens [43]. By the result described
in the previous paragraph, we have completely settled this question for any
nonsingular toric Fano variety with Picard number 2. In Section 5, we study
(semi)stability of tangent bundles on nonsingular Fano toric 4-folds with Picard
number 3. In [1], [41], Batyrev and subsequently Sato have given a complete list
of isomorphism classes of all nonsingular Fano toric 4-folds. There are in total
124 non-isomorphic toric Fano 4-folds. Among them there are 28 isomorphism
classes with Picard number 3, out of which 8 are toric blow ups and 19 of them
are projectivizations of split vector bundle over a toric variety and the last
one is neither a blow up nor a projectivization of a splittable vector bundle.
Among them 6 are stable, 3 are strictly semistable and rest have unstable
tangent bundles with respect to the anticanonical polarization (see Table 1,
Section 5).
In Section 6, first we consider a class of nonsingular projective toric varieties,
known as Bott towers. A Bott tower of height n

Mn !Mn−1 ! · · · !M2 ! M1 ! M0 = {point}

is defined inductively as an iterated projective bundle so that each stage Mk of
the tower is of the form P(OMk−1

⊕ L) for an arbitrarily chosen line bundle L
over the previous stage Mk−1. Bott towers were shown to be deformation
equivalent to Bott-Samelson varieties by Grossberg and Karshon in [14]. In this
section, we construct a (finite) collection of indecomposable rank 2 equivariant
vector bundles over Mk (k ≥ 2) (Proposition 6.1.1). Further, we show that
among these collections, there exists a stable rank 2 vector bundle over Mk (k ≥
2), for certain Chern classes with respect to a suitable choice of polarization
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(Proposition 6.1.5). The approach here is to construct a dimension 2 filtration
corresponding to an equivariant vector bundle such that it does not have any
induced subfiltration which violates the stability. In the next subsection, we
consider pseudo-symmetric toric varieties which are very important examples
of toric varieties and appear in classification of projective Fano toric varieties
(see [41] for details). In [8], Cotignoli and Sterian have constructed a collection
of indecomposable rank 2 vector bundles over pseudo-symmetric toric Fano
varieties other than product of P1’s. It is not clear to us if they are equivariant
or not. In this subsection, we construct a collection of rank 2 equivariant
indecomposable vector bundles on any pseudo-symmetric toric Fano variety
(Proposition 6.2.1).
We summarize our results as follows. Here all toric varieties are defined over
complex numbers.

1. Classification of equivariant torsion-free (respectively, reflexive) sub-
sheaves of a given equivariant torsion-free (respectively, reflexive) sheaf.

2. A simple proof for stability of tangent bundle on a projective space.

3. A necessary and sufficient condition for (semi)stability of tangent bun-
dle on a nonsingular projective toric variety with Picard number 2 with
respect to any polarization.

4. A complete answer to the question of (semi)stability of tangent bundles
for Fano toric 4-folds with Picard number 3 from the classification due
to Batyrev [1].

5. Construction of equivariant indecomposable as well as stable rank 2 vector
bundles over a Bott tower.

6. Construction of equivariant indecomposable rank 2 vector bundles on
pseudo-symmetric Fano toric variety.

After this work got complete, we came to know about the work of Hering, Nill
and Süss, where they studied (semi)stability of tangent bundle on nonsingular
toric variety for Picard number 2. Their result [17, Theorem 1.4] matches with
our result in Section 4.
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2 Preliminaries and some basic facts

In this section, we briefly review some basic definitions and results on toric
varieties and torus equivariant sheaves, which will be required later.
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2.1 Toric Varieties

Let T ∼= (k∗)n be an n-dimensional algebraic torus, where k is an algebraically
closed field. A toric variety X of dimension n is a normal variety which con-
tains T as an open dense subset such that the torus multiplication extends to
an action of T on X . Toric varieties have a rich combinatorial structure which
arises due to the action of the dense torus. We recall some basic facts about
toric varieties which will be used in subsequent sections. For more details see
[9], [12] and [35].
Let M = Hom(T, k∗) ∼= Zn be the character lattice of T and N = Hom(M,Z)
be the dual lattice. We denote by 〈, 〉 : M×N ! Z the natural pairing between
M and N . Let ∆ be a fan in N ⊗Z R, which defines a nonsingular projective
toric variety X = X(∆) of dimension n over k under the action of T . Let
Sσ := σ∨ ∩M be the affine semigroup and Uσ := Spec k[Sσ] be the affine toric
variety corresponding to a cone σ ∈ ∆. Let xσ denote the distinguished point
of Uσ (see [12, Section 2.1]). Then Tσ := Stab(xσ) is a subtorus of T with
character lattice Mσ := M/S⊥

σ , where S⊥
σ := σ⊥ ∩M . The T -invariant closed

subvariety corresponding to a cone σ is denoted by V (σ), which is the closure
of the T -orbit through xσ and dim V (σ) = n − dim σ. We denote the set of
all cones of dimension d in ∆ by ∆(d). Elements of ∆(1) are called rays. Each
ray ρ has a unique minimal ray generator, which we denote by vρ. Sometime
we will use the ray ρ and its minimal generator vρ interchangeably. Each ray ρ
corresponds to a T -invariant prime divisor Dρ := V (ρ).
The following proposition on toric intersection theory will be extensively used
in later sections, while computing slope of equivariant sheaves over a toric
variety.

Proposition 2.1.1. ([9, Corollary 6.4.3, Lemma 6.4.4, Lemma 12.5.2]) Let
X(∆) be a nonsingular projective toric variety. To compute the intersection
product Dρ · V (τ), where τ ∈ ∆(n − 1) is a wall, i.e. τ = σ ∩ σ′ for some
σ, σ′ ∈ ∆(n), write σ = Cone(vρ1 , . . . , vρn

), σ′ = Cone(vρ2 , . . . , vρn+1) and τ =
Cone(vρ2 , . . . , vρn

). Then vρ1 , . . . , vρn+1 satisfy the linear relation vρ1 +
n∑

i=2

bivρi
+ vρn+1 = 0, bi ∈ Z, called the wall relation. Then

Dρ · V (τ) =





0 for all ρ /∈ {ρ1, . . . , ρn+1}
1 for ρ ∈ {ρ1, ρn+1}
bi for ρ = ρi, 2 ≤ i ≤ n.

More generally, for distinct rays ρ1, . . . , ρd ∈ ∆(1) we have

Dρ1 ·Dρ2 · · ·Dρd
=

{
[V (σ)] ∈ A•(X) if σ = Cone(ρ1, . . . , ρd) ∈ ∆
0 otherwise.

Here [V (σ)] denotes the rational equivalence class of V (σ) in the Chow ring
A•(X).
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We recall the fan structures of the following two classes of toric varieties which
will be used in Section 5 while studying (semi)stability of tangent bundles on
toric Fano 4-folds.

2.1.1 Projectivization of direct sum of line bundles on toric va-
rieties

Let D0, D1, . . . , Dm be T -invariant Cartier divisors on a nonsingular toric va-
riety X = X(∆). Then the fan ∆′ in Rn ⊕ Rm of X ′ = P(OX(D0) ⊕
OX(D1) ⊕ · · · ⊕ OX(Dm)) is described as follows (see [35, Page 58] for de-
tails). Let h0, h1, . . . , hm be the ∆-linear support functions corresponding
to D0, D1, . . . , Dm respectively (see [35, Section 2.1]). Choose the standard
Z-basis {e1, . . . , em} of Rm and let e0 = −e1 − . . . − em. Consider the R-
linear map Φ : Rn

! Rn ⊕ Rm, given by y 7! (y,−
∑m

j=0 hj(y)ej). Now let
σ̃i = Cone(e0, . . . , êi, . . . , em) for each 0 ≤ i ≤ m (henceforth by êi we mean
that ei is omitted from the relevant collection). Let ∆̃ be the fan in Rm gen-
erated by σ̃i for 0 ≤ i ≤ m. Then ∆′ = {Φ(σ) + σ̃ : σ ∈ ∆, σ̃ ∈ ∆̃}.

2.1.2 Blowup of a toric variety along an invariant subvariety

Let X = X(∆) be a nonsingular toric variety. Let τ be a cone in ∆ and X̃ =
BlV (τ)(X) be the blowup of X along the T -invariant subvariety V (τ). Let ∆̃

be the fan corresponding to X̃ . Then ∆̃ = {σ ∈ ∆ : τ * σ}∪
⋃

τ�σ

∆∗
σ(τ), where

∆∗
σ(τ) = {Cone(A) : A ⊆ {uτ} ∪ σ(1), τ(1) * A} for any cone σ containing τ ,

denoted as σ � τ and uτ =
∑

ρ∈τ(1)

vρ (see [9, Definition 3.3.17]).

2.2 Equivariant sheaves

We briefly recall the combinatorial description of equivariant sheaves on toric
varieties introduced by Perling [38], which will be used later.
Let X = X(∆) be a toric variety corresponding to a fan ∆. For each cone
σ ∈ ∆, define a relation ≤σ onM by setting m ≤σ m

′ if and only if m′−m ∈ Sσ.
We write m <σ m′ if m ≤σ m′ holds but m′ ≤σ m does not hold. A σ-
family, denoted by Êσ, is a family of k-vector spaces {Eσ

m}m∈M together with
linear maps χσ

m,m′ : Eσ
m ! Eσ

m′ , whenever m ≤σ m
′ such that χσ

m,m = 1 and
χσ
m,m′′ = χσ

m′,m′′ ◦ χσ
m,m′ for every triple m ≤σ m

′ ≤σ m
′′.

Let Êσ and F̂ σ be two σ-families with linear maps χσ
m,m′ and ψσ

m,m′ , respec-

tively. Then a morphism φ̂σ of σ-families from Êσ to F̂ σ is a set of linear maps
{φσm : Eσ

m ! F σ
m}m∈M such that φσm′ ◦ χσ

m,m′ = ψσ
m,m′ ◦ φσm for all m,m′ ∈M

with m ≤σ m
′.

Remark 2.2.1. Note that χσ
m,m′ is an isomorphism whenever m′ − m ∈ S⊥

σ

(see [38, Lemma 5.3]). Hence we restrict our attention to σ-families having
χσ
m,m′ = 1 (and hence Eσ

m = Eσ
m′) for all m′ −m ∈ S⊥

σ .
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Let E be an equivariant quasi-coherent sheaf on the toric variety X = X(∆)
(see [38] for detailed definition of equivariant sheaves). The T -action on E

gives rise to an isomorphism Φt : t∗E
∼=
−! E for all t ∈ T . This induces an

action of T on the space of global sections Eσ := Γ(Uσ, E) given by t · f =
Φt(t

∗f), where f ∈ Eσ and t∗f ∈ Γ(Uσ, t
∗E) is its canonically lifted section.

Hence we get the T -isotypical decomposition Eσ =
⊕

m∈M

Eσ
m, which makes

Eσ naturally an M -graded k[Sσ]-module as follows. Recall that the action of
the torus on the affine open variety Uσ induces the T -isotypical decomposition
k[Sσ] =

⊕
m∈Sσ

kχm. Then the M -graded k[Sσ]-module structure on Eσ is given

by χσ
m,m′ : Eσ

m ! Eσ
m′ , e 7! χm′−m · e, where m,m′ ∈ M and m′ −m ∈ Sσ.

Then the following three categories are equivalent (see [38, Proposition 5.5]):

(i) Equivariant quasi-coherent sheaves over Uσ,

(ii) M -graded k[Sσ]-modules with M -graded preserving homomorphisms,

(iii) σ-families.

For each pair τ � σ, we denote by iτσ : Uτ !֒ Uσ the inclusion. Let Êσ

be a σ-family. We denote by Eσ :=
⊕

m∈M Eσ
m the corresponding M -graded

k[Sσ]-module. The pull back i∗τσE
σ = Eσ⊗k[Sσ]k[Sτ ] is naturally an M -graded

k[Sτ ]-module (see [38, Section 5.2]) and hence corresponds to a τ -family (by

the above equivalence of categories), which we denote by i∗τσÊ
σ.

The following notion of a ∆-family was introduced by Perling to go from affine
toric varieties to general toric varieties.

Definition 2.2.2. [38, Definition 5.8] A collection {Êσ}σ∈∆ of σ-families is

called a ∆-family, denoted by Ê∆, if for each pair τ � σ there exists an iso-
morphism of families ητσ : i∗τσ(Êσ) ∼= Êτ such that for each triple ρ � τ � σ
there is an equality ηρσ = ηρτ ◦ i∗ρτητσ.

A morphism of ∆-families is a collection of morphisms {φ̂σ : Êσ
! F̂ σ}σ∈∆

such that for all σ, τ and τ � σ, the following diagram commutes:

i∗τσ(Ê
σ) i∗τσ(F̂

σ)

Êτ F̂ τ .

i∗τσφ̂
σ

φ̂τ

ηEτσ ηFτσ

Theorem 2.2.3. [38, Theorem 5.9] The category of ∆-families is equivalent to
the category of equivariant quasi-coherent sheaves on X.

In order to classify equivariant coherent sheaves, Perling introduced the follow-
ing notion of finite ∆-family.
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Definition 2.2.4. [38, Definition 5.10] A σ-family Êσ is said to be finite if:

(i) Eσ
m’s are finite dimensional for all m ∈M ,

(ii) for each chain . . . <σ mi−1 <σ mi <σ . . . of characters in M there exists
an i0 ∈ Z such that Eσ

mi
= 0 for all i < i0,

(iii) there are only finitely many vector spaces Eσ
m such that the map⊕

m′<σm

Eσ
m′ −! Eσ

m, defined by the summation of the χσ
m′,m, is not sur-

jective.

A ∆-family is said to be finite if all of its σ-families are finite.

Proposition 2.2.5. [38, Proposition 5.11] A quasi-coherent equivariant sheaf
is coherent if and only if its associated ∆-family is finite.

Note that given a σ-family Êσ, the collection {Eσ
m, χ

σ
m,m′} forms a directed

system of vector spaces. Let Eσ := lim
−!
m∈M

Eσ
m. Any element of Eσ can be written

as equivalence classes [e,m], where e ∈ Eσ
m and [e,m] = [e′,m′] if and only if

there exists m′′ ∈M satisfying m,m′ ≤σ m
′′ such that χσ

m,m′′(e) = χσ
m′,m′′(e′).

Let E be an equivariant torsion-free sheaf of rank r on X . Then for all σ ∈
∆ and m ≤σ m′, the maps in the following diagram are injective (see [38,
Proposition 5.13]):

Eσ
m Eσ

m′

E
σ.

χσ
m,m′

(2.1)

Moreover, the restriction map Γ(Uσ, E) ! Γ(Uτ , E) is injective whenever τ � σ.
Now let mτ be an integral element of the interior of σ∨ ∩ τ⊥ such that
Sτ = Sσ + Z≥0(−mτ ). Note that Γ(Uτ , i

∗
τσ(E|Uσ

)) = Γ(Uσ, E) ⊗k[Sσ ] k[Sτ ] =
Γ(Uσ, E) ⊗k[Sσ] k[Sσ][χ−mτ ]. So there exists a natural inclusion of σ-families

ατσ : Êσ
! i∗τσÊ

σ. Hence the following composition

Êσ ατσ

−֒! i∗τσÊ
σ ητσ
−−!
∼=

Êτ (2.2)

is injective (see Definition 2.2.2, [38, Proposition 5.14]), which further induces
a natural injection

η̃τσ : E
σ
−֒! E

τ , [(e,m)] 7! [(ηmτσ ◦ αm
τσ)(e),m)]. (2.3)

The system of vector spaces {Eσ}σ∈∆ together with the homomorphisms η̃τσ
for τ � σ, forms a directed partially ordered family whose direct limit can
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be identified with E
0, here 0 denotes the zero cone. Note that we have the

following isotypical decomposition

Γ(T, E) = k[M ]r =
⊕

m∈M

(kχm ⊕ · · · ⊕ kχm

︸ ︷︷ ︸
r times

)

and the homomorphisms χ0
m,m′ are isomorphisms. Hence we can identify E

0

with kχm⊕ · · ·⊕ kχm (r times) and thus it is a finite dimensional vector space
of dimension r. Also, the natural inclusions E

σ
!֒ E

0 obtained in (2.3) are
isomorphisms Eσ ∼= E

0 (see [38, Corollary 5.16]). Thus all the vector spaces in

the ∆-family Ê∆ can be realized as vector subspaces of E0.
The above technical reformulation of a finite ∆-family leads to the following
definition of family of multifiltrations.

Definition 2.2.6. [38, Definition 5.17] Let ∆ be a fan, V be a finite-
dimensional k-vector space, and let for each σ ∈ ∆ a set of vector subspaces
{Eσ

m}m∈M of V be given. We say that this system is a family of multifiltrations
of V if:

(i) For each σ ∈ ∆ and m ≤σ m
′, Eσ

m is contained in Eσ
m′ .

(ii) V =
⋃

m∈M

Eσ
m for each σ ∈ ∆.

(iii) For each chain . . . <σ mi−1 <σ mi <σ . . .of characters in M , there exists
an i0 ∈ Z such that Eσ

mi
= 0 for i < i0.

(iv) For every σ ∈ ∆, there exist only finitely many vector spaces Eσ
m such

that Eσ
m *

∑
m′<σm

Eσ
m′ .

(v) (Compatibility condition.) For each τ � σ with Sτ = Sσ +Z≥0(−mτ ), we
consider with respect to the preorder ≤σ the ascending chains m+ i ·mτ

for i ≥ 0. By condition (iv) and because V is finite dimensional, the
sequence of subvector spaces Eσ

m+i·mτ
necessarily becomes stationary for

some iτm ∈ Z. We require that Eτ
m = Eσ

m+iτm·mτ
for all m ∈M .

A morphism between families of multifiltrations {Eσ
m}m∈M,σ∈∆ and

{F σ
m}m∈M,σ∈∆ is a homomorphism of the corresponding ambient vector spaces

φ : E0
! F

0 which is compatible with these multifiltratons, i.e. φ(Eσ
m) ⊆ F σ

m.

Remark 2.2.7. Note that in Definition 2.2.6, condition (iv) can be replaced
with the following:
(iv)′ For every σ ∈ ∆, there exist only finitely many vector spaces Eσ

m such
that Eσ

m *
⋃

m′<σm

Eσ
m′ (see [37, Definition 4.19]).

Theorem 2.2.8. [38, Theorem 5.18] The category of equivariant torsion-free
sheaves is equivalent to the category of families of multifiltrations of finite-
dimensional vector spaces.
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A coherent sheaf E on X is said to be reflexive if E is isomorphic to its double
dual E∗∗. Equivalently, a coherent sheaf E on X is reflexive if and only if E is
torsion-free and for each open subset U ⊂ X and each closed subset Y ⊂ U
of codimension ≥ 2, the restriction map Γ(U, E) ! Γ(U \ Y, E) is bijective (see
[15, Proposition 1.6]). Dual of any coherent sheaf is an example of a reflexive
sheaf (see [15, Corollary 1.2]). Note that any rank 1 reflexive sheaf is locally
free. Now let E be an equivariant reflexive sheaf on X = X(∆). Choose
Y =

⋃
dim τ≥2

V (τ), a closed subset of X of codimension at least two. Then

Γ(X, E) = Γ(X \ Y, E) = Γ(X(∆1), E), where ∆1 = ∆(0)∪∆(1). In particular,
for the affine toric variety Uσ, we have

Γ(Uσ, E) = Γ


 ⋃

ρ∈σ(1)

Uρ, E


 =

⋂

ρ∈σ(1)

Γ(Uρ, E).

The above equality holds as vector subspaces of Γ(T, E). Hence for each graded
component of degree m, we have Γ(Uσ, E)m =

⋂
ρ∈σ(1)

Γ(Uρ, E)m. Therefore, as

vector subspaces of E
0, we have Eσ

m =
⋂

ρ∈σ(1)

Eρ
m. It follows that the com-

patibility condition (v) of Definition 2.2.6 is redundant. Thus the associated
family of multifiltrations {Eσ

m}m∈M,σ∈∆ of the equivariant reflexive sheaf E
is completely determined by the family of multifiltrations {Eρ

m}m∈M,ρ∈∆(1).

Note that there is a canonical identification of M/S⊥
ρ with Z via the map

m 7! 〈m, vρ〉. Hence identifying Eρ
m with Eρ(〈m, vρ〉), we get increasing full

filtrations: 0 ⊆ . . . ⊆ Eρ(i) ⊆ Eρ(i + 1) ⊆ . . . ⊆ E
0.

The following theorem shows that any equivariant reflexive sheaf arises from
such filtrations.

Theorem 2.2.9. [38, Theorem 5.19] The category of equivariant reflexive
sheaves on a toric variety X is equivalent to the category of vector spaces with
full filtrations associated to each ray in ∆(1). The morphisms in this category
are linear maps which are compatible with the filtrations in the ∆-family sense.

It is natural to ask for a combinatorial criterion for an equivariant reflexive
sheaf to be locally free. This is given in the following proposition.

Proposition 2.2.10. [37, Proposition 4.24] Let E be an equivariant reflexive
sheaf of rank r over X with corresponding filtrations (E0, {Eρ(i)}ρ∈∆(1)). Then
E is locally free if and only if for each σ ∈ ∆ there is an action of Tσ on E

0

which gives a decomposition of E0 into Tσ-eigenspaces E
0 =

⊕
m∈M/S⊥

σ

E
0
m such

that

Eρ(i) =
⊕

m∈M/S⊥
σ

〈m,vρ〉≤i

E
0
m. (2.4)
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Remark 2.2.11. Recall that a family of linear subspaces {Vλ}λ∈Λ of a finite
dimensional vector space V is said to form a distributive lattice if, there exists
a basis B of V such that B∩Vλ is a basis of Vλ for every λ ∈ Λ. When X is non-
singular, the compatibility condition of locally free sheaves (2.4) in Proposition
2.2.10 is equivalent to the following: for each σ ∈ ∆, the collection of sub-
spaces (E0, {Eρ(i)}ρ∈σ(1)) forms a distributive lattice (cf. [26, Remark 2.2.2],
arguments following Theorem 2.1.1 in [24]).

The following proposition tells us that the first Chern class of an equivariant
coherent sheaf can be expressed using its associated ∆-family.

Proposition 2.2.12. [30, Corollary 3.18] Let X = X(∆) be a nonsingular
projective toric variety. Let E be an equivariant coherent sheaf with associated
∆-family Ê∆. Then we have

c1(E) = −
∑

ρ∈∆(1),i∈Z

i dim E[ρ](i)Dρ,

where E[ρ](i) = Eρ(i)/Eρ(i− 1) and Eρ(i) = Eρ
m such that 〈m, vρ〉 = i.

Example 2.2.13 (Filtrations for line bundles). [37, Section 4.7] Let L =
OX(D) be an equivariant line bundle on X for some T -invariant Cartier
divisor D =

∑
ρ∈∆(1) aρDρ, aρ ∈ Z. Then the associated filtrations

(L, {Lρ(i)}ρ∈∆(1), i∈Z) are given by:

Lρ(i) =

{
0 i < −aρ
L(= k) i ≥ −aρ.

Next, we obtain filtrations for dual of an equivariant torsion-free sheaf following
the proof of [37, Proposition 4.24], which will be useful to obtain filtrations of
the tangent bundle from that of cotangent bundle.

Proposition 2.2.14. Let E be an equivariant torsion-free sheaf with as-
sociated family of multifiltrations {Eσ

m}σ∈∆, m∈M of the vector space E
0.

Then filtrations associated to its dual reflexive sheaf E∗ are given by(
F, {F ρ(i)}ρ∈∆(1), i∈Z

)
, where

F = (E0)∗ and F ρ(i) =

(
E

0

Eρ(−i− 1)

)∗

for all ρ ∈ ∆(1),

where Eρ(i) = Eρ
m for any m ∈M satisfying 〈m, vρ〉 = i.

Proof. Since E is torsion-free, the singularity set S(E) = {x ∈ X :
Ex is not free over OX,x} is of codimension at least two. Now for any ray
ρ ∈ ∆(1), the affine toric variety Uρ = T ∪ O(ρ), where O(ρ) = T · xρ is an
orbit of dimension n−1. Since E is equivariant, it must be locally free over Uρ.
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Then Eρ := Γ(Uρ, E) is an M -graded finitely generated free k[Sρ]-module of
rank r (see [38, Proposition 5.20]). We can write

Eρ =

r⊕

j=1

k[Sρ]ej , (2.5)

where e1, . . . , er are homogeneous elements with deg ej = mj for j = 1, . . . , r.
Equivalently, the T -action on Eρ is given by t · ej = χmj (t)ej for j = 1, . . . , r
(see [37, Proposition 2.31]). Set Lρ

j := k[Sρ]ej for j = 1, . . . , r. Then for every j
we have:

(Lρ
j )m =

{
0 mj �ρ m
kχm−mjej mj ≤ρ m.

We denote by L
ρ
j the direct limit of the directed family {(Lρ

j )m}m∈M . Then we
see that (Lρ

j )m ∼= L
ρ
j for all m ≥ρ mj . In particular, we have the identification

L
ρ
j = kej. Thus for i = 〈m, vρ〉 we have

Lρ
j (i) =

{
0 i < 〈mj , vρ〉

L
ρ
j i ≥ 〈mj , vρ〉.

There is an action of T on the vector space L
ρ
j as follows:

T × L
ρ
j −! L

ρ
j , (t, l) 7−! χmj (t)l.

Since direct limit commutes with direct sum, we have E
ρ =

r⊕
j=1

L
ρ
j and thus

we get a diagonal action of T on E
ρ as follows:

T ×E
ρ
−! E

ρ, (t, e) 7−! diag(χm1(t), . . . , χmr(t))e.

Furthermore, we have

Eρ(i) =
⊕

〈mj ,vρ〉≤i

L
ρ
j . (2.6)

Then using the following commutative diagram, we can transfer the T -action
to E

0 via the isomorphism (2.3)

E
ρ

⊕r
j=1 L

ρ
j

E
0

⊕r
j=1 L

0
j .

∼=

∼=
∼=

∼= (2.7)

From (2.6) we have

Eρ(i) =
⊕

〈mj ,vρ〉≤i

L
0
j . (2.8)
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Now for the dual sheaf E∗ we have F ρ := Γ(Uρ, E∗) = Hom k[Sρ](E
ρ, k[Sρ]).

Define fj ∈ F ρ for j = 1, . . . , r by taking fj(ei) = δij (see (2.5)). Since
the dual action of T on F ρ is compatible with the M -graded k[Sρ]-module
structure of F ρ, it follows that the elements fj are homogeneous of degree

−mj for j = 1, . . . , r. Thus we have F ρ =
r⊕

j=1

L′ρ
j where L′ρ

j := k[Sρ]fj . Then

for every j we have:

(L′ρ
j )m =

{
0 −mj �ρ m
kχm+mjfj −mj ≤ρ m.

As before, we see that (L′ρ
j )m ∼= L

′ρ
j for all m ≥ρ −mj . In particular, we have

the identification L
′ρ
j = kfj = (Lρ

j )∗. Now the action of T on L
′ρ
j is given by

T × L
′ρ
j −! L

′ρ
j , (t, l) 7−! χ−mj (t)l.

Now F
ρ =

r⊕
j=1

L
′ρ
j and hence F

ρ = (Eρ)∗. As before, we get a diagonal action

of T on F
ρ as follows:

T × F
ρ
−! F

ρ, (t, e) 7−! diag(χ−m1(t), . . . , χ−mr(t))e.

Using the dual diagram of (2.7), we transfer the T -action to (E0)∗. Thus we
have

F ρ(i) =
⊕

〈−mj,vρ〉≤i

L
′0
j

=


 ⊕

〈mj ,vρ〉≤−i−1

L
0
j




⊥

= (Eρ(−i− 1))⊥

=

(
E

0

Eρ(−i− 1)

)∗

.

Hence we get the desired filtrations for E∗.

Remark 2.2.15. Let E and F be equivariant reflexive sheaves with associ-
ated filtrations

(
E

0, {Eρ(i)}ρ∈∆(1), i∈Z

)
and

(
F

0, {F ρ(i)}ρ∈∆(1), i∈Z

)
respec-

tively. Then arguing similarly as in the proof of Proposition 2.2.14, filtrations
associated to their sum and tensor product are given as follows:

(
E

0 ⊕ F
0, {(E ⊕ F )ρ(i)}ρ∈∆(1), i∈Z

)
,

where (E ⊕ F )ρ(i) = Eρ(i) ⊕ F ρ(i),

(
E

0 ⊗ F
0, {(E ⊗ F )ρ(i)}ρ∈∆(1), i∈Z

)
,

where (E ⊗ F )ρ(i) =
∑

s+t=i

Eρ(s) ⊗ F ρ(t).
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Proposition 2.2.16. Let X = X(∆) be a nonsingular complete toric variety of
dimension n. Then filtrations

(
Ω, {Ωρ(i)}ρ∈∆(1), i∈Z

)
associated to cotangent

bundle ΩX are given by

Ωρ(i) =





0 i ≤ −1
Span(vρ)⊥ i = 0
M ⊗Z k i ≥ 1.

Proof. Let σ ∈ ∆(n) and write σ = Cone(v1, . . . , vn). Since X is nonsingular,
{v1, . . . , vn} forms a Z-basis of N ∼= Zn. Let u1, . . . , un be the corresponding
dual basis of M . Then we have Uσ = Spec k[χu1 , . . . , χun ]. Set zj = χuj

for j = 1, . . . , n. Then Eσ := Γ(Uσ,ΩX) is a free k[Sσ]-module generated by
dz1, . . . , dzn. The action of T on dzj is given by t · dzj = χuj (t)dzj . Thus
as an M -graded k[Sσ]-module, Eσ is of the form Eσ =

⊕n
j=1 k[Sσ]dzj. Set

Lσ
j = k[Sσ]dzj for j = 1, . . . , n. Then we have

(Lσ
j )m =

{
0 uj �σ m
kχm−ujdzj uj ≤σ m.

Moreover, Lσ
j = (Lσ

j )m for all m ≥σ uj . Hence taking m = uj , we can identify
L
σ
j = k dzj for j = 1, . . . , n. Note that from the proof of [37, Proposition 4.24],

we have
Eρ(i) =

⊕

〈uj ,vρ〉≤i

L
σ
j , for all ρ ∈ σ(1). (2.9)

Now Eρ(−1) = Eρ
m be such that 〈m, vρ〉 = −1. Hence from (2.9), we get

Eρ(−1) = 0, which implies Eρ(i) = 0 for all i ≤ −1. Similarly, Eρ(1) = Eρ
m

such that 〈m, vρ〉 = 1. Thus from (2.9), we get Eρ(1) = k dz1 ⊕ · · · ⊕ k dzn
which can be identified with

M ⊗Z k = ku1 ⊕ · · · ⊕ kun via the identification dzj 7! uj. (2.10)

Thus we get Eρ(i) = M ⊗Z k for all i ≥ 1.
Let ρ = Cone (vj). Now to compute Eρ(0), we consider an m ∈ M satisfying

〈m, vρ〉 = 0. Then from (2.9), we get Eρ(0) = L
σ
1

⊕
· · ·

⊕
L̂
σ
j

⊕
· · ·

⊕
L
σ
n.

Hence, we can identify the space Eρ(0) with Span(vρ)⊥ (see (2.10)). Thus we
get the desired filtrations, which we denote by

(
Ω, {Ωρ(i)}ρ∈∆(1), i∈Z

)
.

The following corollary is immediate from Proposition 2.2.14 and Proposition
2.2.16.

Corollary 2.2.17. Let X = X(∆) be a nonsingular complete toric variety of
dimension n. Then filtrations

(
T , {T ρ(i)}ρ∈∆(1), i∈Z

)
associated to tangent

bundle TX are given by

T
ρ(i) =





0 i ≤ −2
Span(vρ) i = −1
N ⊗Z k i ≥ 0.
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2.3 Stability

Let X be a nonsingular projective variety of dimension n. Fix a polarization
H , i.e., an ample divisor on X . For a torsion-free sheaf E over X , we have
deg E = c1(E) ·Hn−1 and slope µ(E) = deg E

rank(E) .

We consider stability in the sense of Mumford-Takemoto, which is also known
as µ-stability. A subsheaf F of E is called proper if 0 < rank(F) < rank(E).
A torsion-free sheaf E over X is said to be (semi)stable with respect to H if,
for any proper subsheaf F of E , we have µ(F)(≤) < µ(E). We say E is strictly
semistable if it is semistable but not stable. A torsion-free sheaf E is called
unstable if it is not semistable.

Remark 2.3.1. For a T -invariant divisor Dρ on a nonsingular projective toric
variety X = X(∆), we have deg Dρ > 0 for all ρ ∈ ∆(1) by Nakai-Moishezon
criterion [16, Theorem A.5.1].

Remark 2.3.2. Let X be a nonsingular complex toric variety. To check
(semi)stability of a reflexive sheaf E on X, it suffices to consider only proper
saturated subsheaves of E (see [18, Proposition 1.2.6]). Since saturated subsheaf
of a reflexive sheaf is again reflexive (see [36, Lemma 1.1.16]), it is enough to
consider only reflexive subsheaves of E for checking its (semi)stability. Further-
more, if E is equivariant, by [2, Theorem 2.1], it is enough to consider only
equivariant reflexive subsheaves.

3 Characterization of equivariant subsheaves of an equivariant
sheaf

From now onwards, we take the underlying field k to be C. In this section,
we characterize all equivariant subsheaves of an equivariant torsion-free sheaf.
Moreover, we give a combinatorial criterion of (semi)stability of equivariant
torsion-free sheaves.

3.1 Equivariant subsheaves of equivariant torsion-free sheaves

In the following proposition, we give a combinatorial characterization of all
equivariant subsheaves of an equivariant torsion-free sheaf.

Proposition 3.1.1. Let X = X(∆) be a complex toric variety and E be a
torsion-free equivariant sheaf on X corresponding to a family of multifiltra-
tions {Eσ

m}σ∈∆, m∈M of the vector space E
0. There is a one-to-one corre-

spondence between equivariant subsheaves of E and family of submultifiltra-
tions {F σ

m}σ∈∆, m∈M of the vector space F
0, where F

0 is a subspace of E0 and
F σ
m = Eσ

m ∩ F
0.

Proof. Let F be an equivariant subsheaf of E and hence F σ := Γ(Uσ,F) is a T -
stable subspace of Eσ := Γ(Uσ, E) for any σ ∈ ∆. The isotypical decomposition
of both the spaces are given by F σ =

⊕
m∈M

F σ
m and Eσ =

⊕
m∈M

Eσ
m, where

Documenta Mathematica 25 (2020) 1787–1833



Stability of Equivariant Vector Bundles 1803

F σ
m = Eσ

m ∩ F σ since T is reductive (see [5, Theorem 1.23]). Thus we obtain

σ-families F̂ σ and Êσ associated to F and E respectively, together with an
inclusion of σ-families F̂ σ

−֒! Êσ.
The ∆-family associated to E (respectively, F) encodes the data for gluing
the sheaves Eσ := E|Uσ

(respectively, Fσ := F|Uσ
) on the affine open sets Uσ.

Since the gluing data of F is the restriction of the gluing data of E , we get the
following commuting diagram as τ -families, where τ � σ:

i∗τσF̂
σ F̂ τ

i∗τσÊ
σ Êτ .

η′τσ
∼=

ητσ
∼= (3.1)

Here ητσ is as in Definition 2.2.2 of a ∆-family, similarly η′τσ denotes the
corresponding isomorphism. Furthermore, the commutative diagram of C[Sσ]-
modules

Γ(Uσ,F) Γ(Uτ , i
∗
τσF)

Γ(Uσ, E) Γ(Uτ , i
∗
τσE)

induces the following commutative diagram of σ-families (cf. (2.2))

F̂ σ i∗τσF̂
σ

Êσ i∗τσÊ
σ.

α′
τσ

ατσ (3.2)

Combining (2.3) with the diagrams (3.1), (3.2) and [38, Proposition 5.15, Corol-
lary 5.16], we get the following commutative diagram:

F
σ

F
0

E
σ

E
0.

∼=

∼= (3.3)

Hence we can realize all Eσ
m as subspaces of E

0 and all F σ
m as subspaces

of F
0 such that the collection of subspaces {Eσ

m}σ∈∆, m∈M (respectively,
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{F σ
m}σ∈∆, m∈M ) of E

0 (respectively, F
0) forms a family of multifiltrations.

We have F σ
m ⊆ Eσ

m ∩ F
0 for all σ ∈ ∆ and m ∈ M . For the reverse inclusion,

note that we have the following commutative diagram:

F σ
m F

0

Eσ
m E

0.
(3.4)

By the diagrams (3.3) and (3.4), for e ∈ Eσ
m ∩F

0 = Eσ
m ∩F

σ, we have [e,m] =
[e′,m′] ∈ F

σ ⊂ E
σ, where e′ ∈ F σ

m′ . Then there exists m′′ ∈ M such that
m,m′ ≤σ m′′ and χσ

m,m′′(e) = χσ
m′,m′′(e′) ∈ F σ

m′′ . Since F σ is a T -stable
submodule of Eσ, it has a T -stable complement, say W σ in Eσ. Thus Eσ

m =
F σ
m ⊕ W σ

m for all m ∈ M . Let us write e = e1 + e2, where e1 ∈ F σ
m and

e2 ∈ W σ
m. Then we have that χσ

m,m′′(e) = χσ
m,m′′(e1) + χσ

m,m′′(e2), where
χσ
m,m′′(e1) ∈ F σ

m′′ and χσ
m,m′′(e2) ∈ W σ

m′′ . It follows that χσ
m,m′′(e2) = 0 and

since χσ
m,m′′ is injective (E being torsion-free), we have e2 = 0, i.e. e ∈ F σ

m.
This concludes the proof of the forward direction of the proposition.
Conversely, given a subspace F

0 of E0, let us define F σ
m := Eσ

m ∩ F
0 for σ ∈

∆,m ∈M . Then by Definition 2.2.6 and Remark 2.2.7, {F σ
m}σ∈∆, m∈M forms

a family of multifiltrations of the vector space F
0, and hence corresponds to

a torsion-free equivariant sheaf F (see [38, Theorem 5.18]). It remains to
show that F is an equivariant subsheaf of E . This follows from Γ(Uσ,F) =⊕
m∈M

F σ
m ⊆

⊕
m∈M

Eσ
m = Γ(Uσ, E).

Recall that given a filtration (V, {F pV }) on a vector space V and a subspace
W ⊆ V , there is an induced subfiltration on W by setting F p(W ) := W ∩
F p(V ). As an immediate corollary of Proposition 3.1.1 we can characterize
reflexive subsheaves in terms of induced subfiltrations.

Corollary 3.1.2. Let E be an equivariant reflexive sheaf on X with associated
filtrations(
E

0, {Eρ(i)}ρ∈∆(1)

)
. Then equivariant reflexive subsheaves of E are in one-

to-one correspondence with induced subfiltrations
(
F

0, {F ρ(i)}ρ∈∆(1), i∈Z

)
of(

E
0, {Eρ(i)}ρ∈∆(1), i∈Z

)
, where F

0 is a subspace of E0.

3.2 Stability of equivariant torsion-free sheaves

The following proposition provides a combinatorial criterion of (semi)stability
of an equivariant torsion-free sheaf (cf. [28, Equation (19)], [30, Page 1730]).

Proposition 3.2.1. Let E be an equivariant torsion-free sheaf on a nonsingular
projective toric variety. Let {Eσ

m}σ∈∆, m∈M be the family of multifiltrations of
the vector space E

0 corresponding to E. Then E is (semi)stable if and only if
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1

dim F


−

∑

ρ∈∆(1), i∈Z

i dim F [ρ](i) deg Dρ




(≤) <
1

dim E


−

∑

ρ∈∆(1), i∈Z

i dim E[ρ](i) deg Dρ




for every proper subspace F of E, where F ρ(i) = F ∩ Eρ(i) for any ray ρ.

Proof. By Proposition 2.2.12, we have

µ(E) =
1

dim E


−

∑

ρ∈∆(1), i∈Z

i dim E[ρ](i) deg Dρ


 .

Since subsheaf of a torsion-free sheaf is again torsion-free, using Proposition
3.1.1 and Remark 2.3.2, the proposition follows.

The following remark will help determine which subsheaves of tangent bundle
have maximum possible slope.

Remark 3.2.2. Let X = X(∆) be a nonsingular projective toric variety
of dimension n. By Remark 2.3.2, to check (semi)stability of TX , it suf-
fices to consider only proper equivariant reflexive subsheaves of TX . Let F
be a proper equivariant reflexive subsheaf of TX of rank l ≤ n − 1. Let(
F, {F ρ(i)}ρ∈∆(1), i∈Z

)
be the filtrations associated to F , where F is a vec-

tor subspace of N ⊗Z C ∼= Cn of dimension l and F ρ(i) = F ∩ T ρ(i) (see
Corollary 3.1.2). By Proposition 2.2.12, we have

c1(F) =

{ ∑
vρ∈F∩∆(1)

Dρ if F ∩ ∆(1) 6= ∅

0 if F ∩ ∆(1) = ∅.
(3.5)

Since we are interested in subsheaves of TX with maximum possible slope
and degree of Dρ are positive (see Remark 2.3.1), it is enough to con-
sider proper equivariant reflexive subsheaves with associated filtrations(
F, {F ρ(i)}ρ∈∆(1), i∈Z

)
where F = Span(F ∩ ∆(1)).

4 Stability of tangent bundle on a nonsingular projective toric
variety with Picard number ≤ 2

4.1 Picard number 1

The only nonsingular projective toric variety with Picard group Z is the pro-
jective space (see [9, Exercise 7.3.10]). It is well known that the tangent bundle
on projective space is stable (see [36, Theorem 1.3.2], [2, Theorem 7.1]). We
give a simple proof of this fact using Proposition 3.2.1.
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Proposition 4.1.1. The tangent bundle TPn is stable for all n > 0.

Proof. Let us fix some ample divisor H on Pn. Let ∆ denote the fan of Pn

in the lattice N = Zn. Let e1, . . . , en denote the standard basis of Zn and
set e0 = −e1 − · · · − en. Then the fan consists of n + 1 rays e0, e1 . . . , en
and n+ 1 maximal cones Cone(e0, . . . , êi, . . . , en), where i = 0, . . . , n. We can
assume n ≥ 2 since the statement is trivial for n = 1. The divisors D0, . . . , Dn

corresponding to the rays e0, e1 . . . , en are all linearly equivalent and hence we
have deg D0 = . . . = deg Dn. Note that µ(TPn) = (1 + 1

n )deg D0.
By Remark 3.2.2, let F be a proper equivariant reflexive subsheaf of TPn of rank
l < n with associated filtrations

(
F, {F ρ(i)}ρ∈∆(1), i∈Z

)
where F = Span(F ∩

∆(1)). Then we see that µ(F) = p
l deg D0 ≤ deg D0 < µ(TPn), where |F ∩

∆(1)| = p ≤ l. Hence by Proposition 3.2.1, TPn is stable with respect to H .

4.2 Picard number 2

Now we turn to nonsingular projective toric varieties with Picard group Z2,
which were classified by Kleinschmidt (see [9, Theorem 7.3.7]). He showed
that if X is any nonsingular projective toric variety with Pic(X) ∼= Z2, then
there are integers s, r ≥ 1, s + r = dim(X) and 0 ≤ a1 ≤ . . . ≤ ar such that
X ∼= P(OPs ⊕OPs(a1) ⊕ · · · ⊕ OPs(ar)). We recall the fan structure of X from
[9, Example 7.3.5]. Let ∆ be the fan of X in the lattice N = Zs × Zr. Let
{u1, . . . , us} and {e′1, . . . , e

′
r} be standard bases of Zs and Zr respectively. Set

vi = (ui,0) ∈ N for 1 ≤ i ≤ s ; ei = (0, e′i) ∈ N for i = 1, . . . , r,

v0 = −v1 − · · · − vs + a1e1 + · · · + arer and e0 = −e1 − · · · − er.

The rays of ∆ are given by v0, v1 . . . , vs, e0, e1, . . . , er and the maximal cones
are given by

Cone(v0, . . . , v̂j , . . . , vs) + Cone(e0, . . . , êi, . . . , er),

for all j = 0, . . . , s and i = 0, . . . , r.

There are following relations among T -invariant prime divisors:

div(χv∗
1 ) = Dv1 −Dv0 , . . . , div(χv∗

s ) = Dvs −Dv0 ,

div(χe∗i ) = Dei + aiDv0 −De0 for i = 1, . . . , r.
(4.1)

Hence we have

Dv0 ∼lin Dvi , i = 1, . . . , s and Dei ∼lin De0 − aiDv0 , i = 1, . . . , r. (4.2)

By (4.2), it follows that Dv0 and De0 generate Pic(X). Now we show that Dv0

and De0 are not linearly equivalent. Consider the wall

τ = Cone(v0, . . . , v̂i, . . . , vs, e0, . . . , êj , . . . , êk, . . . , er),

where 0 ≤ i ≤ s, 0 ≤ j < k ≤ r.
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We can write τ = Cone(τ, ej) ∩ Cone(τ, ek) and hence the wall relation is given
by e0 + e1 · · · + er = 0. Thus Dv0 · V (τ) = 0 and De0 · V (τ) = 1 (see Propo-
sition 2.1.1). This implies that Dv0 and De0 are not numerically equivalent
and hence not linearly equivalent. This also shows that Dv0 and De0 are Z-
linearly independent and hence we have Pic(X) = ZDv0 ⊕ZDe0 . In particular,
anticanonical divisor is given by

−KX = (s+ 1 − a1 − · · · − ar)Dv0 + (r + 1)De0 . (4.3)

Proposition 4.2.1. Let D = aDv0 + bDe0 , a, b ∈ Z be a T -invariant divisor
on X = P(OPs ⊕OPs(a1)⊕ · · · ⊕OPs(ar)). Then D is ample (respectively, nef)
if and only if a, b > 0 (respectively, a, b ≥ 0). In particular, X is Fano if and
only if a1 + · · · + ar < s+ 1.

Proof. Using toric Nakai criterion (see [35, Theorem 2.18]), we have D is ample
if and only if D · V (τ) > 0 for all wall τ . Thus we need to compute D · V (τ)
for all walls τ ∈ ∆(s+ r− 1). Note that walls are of the following three types:
τ{i,j},0 = Cone(v0, . . . , v̂i, . . . , v̂j , . . . , vs, ê0, e1, . . . , er), 0 ≤ i < j ≤ s,
τ{i,j},k = Cone(v0, . . . , v̂i, . . . , v̂j , . . . , vs, e0, . . . , êk, . . . , er), 0 ≤ i < j ≤ s,
0 < k ≤ r and
τi,{j,k} = Cone(v0, . . . , v̂i, . . . , vs, e0, . . . , êj, . . . , êk, . . . , er), 0 ≤ i ≤ s, 0 ≤ j <
k ≤ r.
The wall relation corresponding to the wall τ{i,j},0 = Cone(τ{i,j},0, vi) ∩
Cone(τ{i,j},0, vj) is given by

v0 + · · · + vs − a1e1 − · · · − arer = 0,

which implies Dv0 · V (τ{i,j},0) = 1 and De0 · V (τ{i,j},0) = 0 (see Proposition
2.1.1). This gives

D · V (τ{i,j},0) = a. (4.4)

Similarly, the wall τ{i,j},k = Cone(τ{i,j},k , vi) ∩ Cone(τ{i,j},k, vj) gives the fol-
lowing relation

v0 + · · · + vs + ake0 + b1e1 + · · · + êk + · · · + brer = 0

for some integers b1, . . . , bk−1, bk+1, . . . , br. Thus Dv0 · V (τ{i,j},k) = 1 and
De0 · V (τ{i,j},k) = ak. Hence we have

D · V (τ{i,j},k) = a+ akb. (4.5)

Finally the wall relation for τi,{j,k} = Cone(τi,{j,k}, ej)∩Cone(τi,{j,k}, ek) is as
follows

e0 + e1 · · · + er = 0.

So we get Dv0 · V (τi,{j,k}) = 0 and De0 · V (τi,{j,k}) = 1. Hence we have

D · V (τi,{j,k}) = b. (4.6)

Now considering the equations (4.4), (4.5) and (4.6), it follows that D is ample
(respectively, nef) if and only if a, b > 0 (respectively, a, b ≥ 0).
The second part of the proposition follows from (4.3).
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We fix a polarization H = aDv0 + bDe0 , a, b > 0. Then from (4.2), we have

deg Dv0 = deg Dvi for i = 1, . . . , s (4.7)

and

deg De0 − deg Dei = aideg Dv0 ≥ 0

for i = 1, . . . , r by Remark 2.3.1. So we have

deg De0 ≥ deg Dei for i = 1, . . . , r. (4.8)

Furthermore, we have deg De0 = deg Der + ardeg Dv0 > ardeg Dv0 . Then if
ar is positive, we get

deg De0 > deg Dv0 . (4.9)

From (4.3), we have

µ(TX) =

(
s+ 1 − a1 − · · · − ar

s+ r

)
deg Dv0 +

(
r + 1

s+ r

)
deg De0 . (4.10)

Denote by α =
s+ 1 − a1 − · · · − ar

s+ r
and β =

r + 1

s+ r
, then α < 1 and 0 < β ≤ 1.

Theorem 4.2.2. Let X = P(OPs ⊕ OPs(a1) ⊕ · · · ⊕ OPs(ar)), where s, r ≥ 1,
0 ≤ a1 ≤ . . . ≤ ar and ar > 0. Then tangent bundle TX is unstable with respect
to any polarization whenever (a1, . . . , ar) 6= (0, 0, . . . , 0, 1).

Proof. Note that µ(TX) < (α+ β)deg De0 from (4.9) and (4.10). Observe that
α+β > 1 if and only if a1+· · ·+ar ≤ 1, i.e. (a1, . . . , ar) = (0, 0, . . . , 0, 1). When
α+β ≤ 1, i.e. (a1, . . . , ar) 6= (0, 0, . . . , 0, 1), then we see that µ(TX) < deg De0 .
From Proposition 3.1.2, it follows that for r = 1 (respectively, r ≥ 2), OX(De0+
De1) (respectively, OX(De0)) is a rank 1 reflexive subsheaf of TX corresponding
to the vector subspace Span(e0) of NC. Hence TX is unstable.

Next let us consider X = P(Or
Ps ⊕OPs(1)), where s, r ≥ 1. Then the relations

in (4.2) simplify to the following form

Dv0 ∼lin Dvi , i = 1, . . . , s;

De0 ∼lin Dei , i = 1, . . . , r − 1 and Der ∼lin De0 −Dv0 .
(4.11)

Lemma 4.2.3. X = P(Or
Ps ⊕OPs(1)), where s, r ≥ 1. Then,

1. deg Dv0 =
r−1+s∑
i=r

(
r−1+s

i

)
ar−1+s−ibi,

2. deg De0 =
r−1+s∑
i=r−1

(
r−1+s

i

)
ar−1+s−ibi.
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Proof. We can write Hs+r−1 as

Hs+r−1 = (aDv0 + bDe0)s+r−1 =
r−1+s∑

i=0

(
r − 1 + s

i

)
ar−1+s−ibi Dr−1+s−i

v0 Di
e0 .

(4.12)
From (4.11), we have

Dr−1+s−i
v0 = 0 for i < r − 1,

Dr+j
e0 = De0 · · ·Der−1(Der +Dv0)j = De0 · · ·Der−1D

j
v0 for j > 0.

(4.13)

Put i = r + j, j > 0, then the i-th term of the binomial expression of Hs+r−1

in (4.12) takes the form

Dr−1+s−i
v0 Di

e0 = Ds−1−j
v0 Dr+j

e0 = De0 · · ·Der−1D
s−1
v0 . (4.14)

From (4.13) and (4.14), we see that

Hs+r−1 =

(
r − 1 + s

r − 1

)
asbr−1 Dr−1

e0 Ds
v0 +

(
r − 1 + s

r

)
as−1brDr

e0D
s−1
v0

+

r−1+s∑

i=r+1

((
r − 1 + s

i

)
ar−1+s−ibi

)
De0 · · ·Der−1D

s−1
v0 .

(4.15)

Now see that

Dr−1
e0 Ds

v0Der = 1, Dr
e0D

s−1
v0 Der = 0, De0 · · ·Der−1D

s−1
v0 Der = 0.

Hence, we have

deg Der =

(
r − 1 + s

r − 1

)
asbr−1. (4.16)

Similarly, we can see that

deg Dv0 =

r−1+s∑

i=r

(
r − 1 + s

i

)
ar−1+s−ibi. (4.17)

Finally, from (4.11), (4.16) and (4.17), we get,

deg De0 =
r−1+s∑

i=r−1

(
r − 1 + s

i

)
ar−1+s−ibi.

The following lemma is crucial in studying stability of tangent bundle on
P(Or

Ps ⊕OPs(1)), where s, r ≥ 1.
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Lemma 4.2.4. Let X = P(Or
Ps ⊕OPs(1)), where s, r ≥ 1. Then

max{µ(F) : F is a proper subsheaf of TX}

= deg De0 +
1

r
(deg De0 − deg Dv0) .

Proof. Without loss of generality, we consider only proper equivariant reflexive
subsheaves of TX (see Remark 2.3.2). Let F be a proper equivariant reflexive
subsheaf of TX with associated filtrations

(
F, {F ρ(i)}ρ∈∆(1), i∈Z

)
. In view of

Remark 3.2.2, to find the maximum of {µ(F) : F is a proper subsheaf of TX}
it is enough to consider the following cases:

(i) rank(F) = r and F ∩ ∆(1) = {e0, . . . , er}. In this case c1(F) = (r +
1)De0 −Dv0 and hence µ(F) = deg De0 + 1

r (deg De0 − deg Dv0).

(ii) rank(F) = j + 1 and F ∩ ∆(1) = {e0, . . . , ej}, where 0 ≤ j ≤ r − 2. In
this case c1(F) = (j + 1)De0 and hence µ(F) = deg De0 .

(iii) rank(F) = j + k + 2 and F ∩ ∆(1) = {v0, . . . , vj , e0, . . . , ek}, where 0 ≤
j < s and −1 ≤ k ≤ r − 2 (here k = −1 should be interpreted as no ek
term belongs to F ∩ ∆(1)). In this case c1(F) = (j + 1)Dv0 + (k + 1)De0

and hence µ(F) = 1
j+k+2 ((j + 1)deg Dv0 + (k + 1)deg De0) < deg De0 .

(iv) rank(F) = s + j + 2 and F ∩ ∆(1) = {v0, . . . , vs, er, e0, . . . , ej}, where
−1 ≤ j ≤ r − 3 (here j = −1 should be interpreted as no ej term
belongs to F ∩ ∆(1)). In this case c1(F) = (j + 2)De0 + sDv0 and hence
µ(F) = 1

s+j+2 ((j + 2)deg De0 + s deg Dv0) < deg De0 .

(v) rank(F) = r + j + 1 and F ∩ ∆(1) = {v0, . . . , vj , e0, . . . , er}, where 0 ≤
j ≤ s − 2. In this case c1(F) = (r + 1)De0 + jDv0 and hence µ(F) =

1
r+j+1 ((r + 1)deg De0 + j deg Dv0) < deg De0 .

Thus the desired maximum is achieved from case (i).

Theorem 4.2.5. Let X = P(Or
Ps ⊕ OPs(1)), where s ≥ 1, r ≥ 1. Consider

the polarization H = aDv0 + bDe0 , a, b > 0. Then tangent bundle TX is H-
(semi)stable if and only if

r−1+s∑

i=r−1

(
r − 1 + s

i

)
ar−1+s−ibi(≤) <

(sr + s+ r)

s(r + 1)

r−1+s∑

i=r

(
r − 1 + s

i

)
ar−1+s−ibi.

Proof. Using Proposition 3.2.1 and Lemma 4.2.4, we obtain that

TX is (semi)stable ⇐⇒ deg De0 +
1

r
(deg De0 − deg Dv0) (≤) < µ(TX)

⇐⇒ deg De0(≤) <
(sr + s+ r)

s(r + 1)
deg Dv0 (see (4.10)).

Now the theorem follows by Lemma 4.2.3.
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The following remark is useful for studying (semi)stability of tangent bundles
on product of nonsingular Fano varieties.

Remark 4.2.6. Let Y1 and Y2 be two nonsingular Fano varieties of dimension
n1 and n2 respectively. Then X = Y1 × Y2 is also a nonsingular Fano variety
whose dimension is n = n1+n2. Also one can see that TX = π∗

1TY1 ⊕π
∗
2TY2 and

µ(TX) = µ(π∗
1TY1) = µ(π∗

2TY2), where πi : X ! Yi, i = 1, 2 is the projection
map. Now, if both TY1 and TY2 are semistable, then TX is strictly semistable
(see [43, Examples 3.2]).

Corollary 4.2.7. Let X = P(OPs ⊕ OPs(a1) ⊕ · · · ⊕ OPs(ar)), s, r ≥ 1, 0 ≤
a1 ≤ . . . ≤ ar, with a1 + · · · + ar < s+ 1, i.e. X is Fano. Then with respect to
the ample anticanonical divisor −KX, we have the following:

1. TX is unstable whenever (a1, . . . , ar) 6= (0, 0, . . . , 0, 1) and ar > 0.

2. If r = 1 and a1 = 1, TX is unstable for s ≥ 2. It is strictly semistable for
s = 1.

3. If r > 1 and (a1, . . . , ar) = (0, 0, . . . , 0, 1), TX is (semi)stable if and only
if

r−1+s∑

i=r−1

(
r − 1 + s

i

)
sr−1+s−i(r + 1)i

(≤) <
(sr + s+ r)

s(r + 1)

r−1+s∑

i=r

(
r − 1 + s

i

)
sr−1+s−i(r + 1)i.

4. If ar = 0, TX is strictly semistable.

Proof. Clearly, (1) follows from Theorem 4.2.2.
For (2), using Theorem 4.2.5, we get that TX is (semi)stable if and only if
(2s+ 1)ss(≤) < (s+ 2)s (see also [2, Theorem 8.1]).
Note that for s = 1, the equality holds, hence in this case, TX is strictly
semistable.
For s ≥ 2, using induction it can be shown that (2s + 1)ss > (s + 2)s holds.
Hence, TX is unstable whenever s ≥ 2.
Furthermore, (3) follows from Theorem 4.2.5, for the particular values a = s,
b = r + 1. Finally, the assertion of (4) is immediate from Remark 4.2.6.

5 Stability of tangent bundles on Fano 4-folds with Picard num-
ber 3

In this section, we are interested in (semi)stability of tangent bundles (with
respect to the anticanonical divisor) on toric Fano 4-folds with Picard number 3
which were classified by Batyrev [1, Section 4].
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5.1 Stability of tangent bundle on a P2-bundle over P1 × P1

Let X = P(OP1×P1 ⊕ OP1×P1(α, 0) ⊕ OP1×P1(β, γ)). Let ∆ be the fan of X
whose rays are given by

u0 = (−1, 0, α, β),u1 = (1, 0, 0, 0),v0 = (0,−1, 0, γ),v1 = (0, 1, 0, 0) and

e0 = (0, 0,−1,−1), e1 = (0, 0, 1, 0), e2 = (0, 0, 0, 1),

and the maximal cones are given by

Cone(e0, . . . , êi, . . . , e2) + Cone(uj ,vk), where 0 ≤ i ≤ 2 and 0 ≤ j, k ≤ 1.

We have the following relations

Du0 ∼lin Du1 , Dv0 ∼lin Dv1 ,

De1 ∼lin De0 − αDu0 , De2 ∼lin De0 − βDu0 − γDv0 .

Hence Pic(X) = ZDu0 ⊕ ZDv0 ⊕ ZDe0 . Let H = aDu0 + bDv0 + cDe0 . Note
that D2

u0
= 0, D2

v0
= 0 and hence we see that

H3 = 3ac2Du0D
2
e0

+ 3bc2Dv0D
2
e0

+ 6abcDu0Dv0De0 + c3D3
e0
.

Using the relations

De0De1De2 = 0, Du0Dv0D
2
e0

= 1, Du0D
3
e0

= γ,

Dv0D
3
e0

= α+ β,D4
e0

= αγ + 2βγ,

we get

deg Du0 = 3bc2 + c3γ, deg Dv0 = 3ac2 + c3(α + β),

deg De0 = 3ac2γ + 3bc2(α+ β) + 6abc+ c3(αγ + 2βγ).
(5.1)

When H = −KX , we have a = 2 − α− β, b = 2 − γ, c = 3.
Following the notation of [1, Section 4], X = D7 when α = 0, β = γ = 1, and
X = D17 when α = 1, β = 0, γ = 1.

Proposition 5.1.1. Let X = P(OP1×P1 ⊕OP1×P1(α, 0) ⊕OP1×P1(β, γ)). Then

1. TX is unstable if α = 0, β = γ = 1.

2. TX is stable if α = 1, β = 0, γ = 1.

Proof. (1) α = 0, β = γ = 1 : Then a = b = 1 and c = 3.
We get deg Du0 = 54, deg Dv0 = 54, deg De0 = 126 and µ(TX) = 121.5. Note
that F = Span(e0) corresponds to the destabilizing subsheaf OX(De0). Hence
TX is unstable.
(2) α = 1, β = 0, γ = 1 : Then a = b = 1 and c = 3.
We have deg Du0 = 54, deg Dv0 = 54, deg De0 = 99, deg De1 = 45, deg De2 =
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45 and µ(TX) = 101.25. By Remark 3.2.2, to check (semi)stability, we only need
to consider the following equivariant reflexive subsheaves F with associated
filtrations

(
F, {F ρ(i)}ρ∈∆(1), i∈Z

)
.

rank(F) = 1

(i)F = Span(u0), then µ(F) = 54. (ii)F = Span(v0), then µ(F) = 54.

(iii)F = Span(e0), then µ(F) = 99. (iv)F = Span(e1), then µ(F) = 45.

(v)F = Span(e2), then µ(F) = 45.

rank(F) = 2

(i) F = Span(e0, e1, e2), then µ(F) = 94.5.

(ii) F = Span(u0,u1, e1), then µ(F) = 76.5.

(iii) F = Span(v0,v1, e2), then µ(F) = 76.5.

rank(F) = 3

(i) F = Span(e0, e1, e2,u0,u1), then µ(F) = 99.

(ii) F = Span(e0, e1, e2,v0,v1), then µ(F) = 99.

Hence we see that TX is stable.

5.2 Stability of tangent bundle on a P1-bundle over P1 × P2

Let X = P(OP1×P2 ⊕ OP1×P2(α, β)) with associated fan ∆. The rays of ∆ are
given by

w0 = (−1, 0, 0, α), w1 = (1, 0, 0, 0), z0 = (0,−1,−1, β), z1 = (0, 1, 0, 0),

z2 = (0, 0, 1, 0), e0 = (0, 0, 0,−1), e1 = (0, 0, 0, 1)

and the maximal cones are given by

Cone(wi, z0, . . . , ẑj, . . . , z2, ek), where i = 0, 1, 0 ≤ j ≤ 2, k = 0, 1.

We have the following relations:

Dw0 ∼lin Dw1 , Dz0 ∼lin Dzj , for j = 1, 2;De1 ∼lin De0 − αDw0 − βDz0 . (5.2)

So we get Pic(X) = ZDw0 ⊕ZDz0 ⊕ZDe0 . Let H = aDw0 + bDz0 + cDe0 . Note
that D2

w0
= 0, D3

z0 = 0 and hence

H3 = 3ab2Dw0D
2
z0 + 3ac2Dw0D

2
e0 + 6abcDw0Dz0De0

+ 3bc2Dz0D
2
e0 + 3b2cD2

z0De0 + c3D3
e0 .

Also we have

De0 ·De1 = 0, Dw0Dz0D
2
e0 = β,

Dw0D
3
e0 = β2, D2

z0D
2
e0 = α,Dz0D

3
e0 = 2αβ,D4

e0 = 3αβ2.
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Now we consider the polarization H = −KX , i.e. a = 2 − α, b =
3 − β, c = 2. Note that X = D1, D6, D18 and D19 when (α, β) =
(1, 2), (1, 1), (−1, 2) and (−1, 1) respectively, following the notations of [1, Sec-
tion 4].

Proposition 5.2.1. Let X = P(OP1×P2 ⊕OP1×P2(α, β)). Then

1. TX is unstable for (α, β) = (1, 1), (1, 2) and (−1, 2).

2. TX is stable for (α, β) = (−1, 1).

Proof. (1) The proof of the assertion follows from the following two tables

(α, β) deg Dw0 deg Dz0 deg De0 µ(TX)

(1, 1) 56 76 144 124
(1, 2) 62 80 225 148

(−1, 2) 62 64 75 100

(α, β) F c1(F) µ(F)

(1, 1) Span(e0) De0 +De1 156
(1, 2) Span(e0) De0 +De1 228

(−1, 2) Span(w0, e0) De0 +De1 +Dw0 +Dw1 104

where F denotes the equivariant reflexive subsheaf of TX corresponding to the
subspace F of C4.
(2) α = −1, β = 1 : Then a = 3, b = 2, c = 2.
We have deg Dw0 = 56, deg Dz0 = 68, deg De0 = 48 and
µ(TX) = 100. Also deg (De0 + De1) = 84. Note that
OX(Dw0), OX(Dw1), OX(Dz0), OX(Dz1), OX(Dz2), OX(De0 +De1) are the
only rank 1 equivariant reflexive subsheaves of TX and all of them has degree
less than µ(TX).
Next, we consider higher rank equivariant reflexive subsheaves of TX . The
maximum possible slope can occur only from the following situations.
rank(F) = 2

(i) F = Span(e0, e1, zj) for j = 0, 1, 2, then µ(F) = 76.

(ii) F = Span(w0, w1, e0, e1), then µ(F) = 98.

rank(F) = 3

(i) F = Span(e0, e1, z0, z1, z2), then µ(F) = 96.

(ii) F = Span(w0, w1, e0, e1, zj) for j = 0, 1, 2, then µ(F) = 88.

Hence in this case TX is stable.
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5.3 Stability of tangent bundle on a P1-bundle over P(OP2 ⊕
OP2(a1)), a1 = 1, 2

Let X = P(OX′ ⊕OX′(α, β)), where X ′ = P(OP2 ⊕OP2(a1)). The rays of the
fan ∆ of X are

v0 = (−1,−1, a1, α),v1 = (1, 0, 0, 0),v2 = (0, 1, 0, 0),

e
′
0 = (0, 0,−1, β), e′1 = (0, 0, 1, 0), e1 = (0, 0, 0, 1), e0 = (0, 0, 0,−1)

and the maximal cones are

Cone(v0, . . . , v̂j , . . . ,v2, e
′
p, eq), where j = 0, 1, 2 and 0 ≤ p, q ≤ 1.

Note that we have the following relations

Dv0 ∼lin Dv1 ∼lin Dv2 , De
′
1
∼lin De

′
0
− a1Dv0 , De1 ∼lin De0 − αDv0 − βD

e
′
0
.

Hence Pic(X) = ZDv0 ⊕ZD
e
′
0
⊕ZDe0 . Using toric Nakai criterion and the fact

that P(OX′ ⊕OX′(D)) ∼= P(OX′ ⊕OX′(−D)) for any divisor D on X ′, we only
need to consider the following cases (comparing with the primitive relations
listed in [1, Proposition 3.1.2] ):

D3 = P(OB2 ⊕OB2(1, 1)), D9 = P(OB2 ⊕OB2(1, 0)),

D8 = P(OB2 ⊕OB2(0, 1)), D16 = P(OB2 ⊕OB2(−1, 1)),

D2 = P(OB1 ⊕OB1(0, 1)), D5 = P1 × B1, D12 = P1 × B2,

where X ′ = B1 for a1 = 2 and X ′ = B2 for a1 = 1 from the notations of [1,
Remark 2.5.10].
Let H = aDv0 + bD

e
′
0

+ cDe0 . We have the following relations

D3
v0

= D3
v1

= D3
v2

= 0, D
e
′
0
D

e
′
1

= 0, De0De1 = 0.

So we have

H3 = 3ab2Dv0D
2
e
′
0

+ 3ac2Dv0D
2
e0

+ 3a2bD2
v0
D

e
′
0

+ 6abcDv0De
′
0
De0

+ 3a2cD2
v0
De0 + b3D3

e
′
0

+ 3bc2D
e
′
0
D2

e0
+ 3b2cD2

e
′
0
De0 + c3D3

e0
.

Furthermore, we have

D2
v0
D2

e
′
0

= 0, D2
v0
D2

e0
= β,Dv0D

3
e
′
0

= 0, Dv0De
′
0
D2

e0
= α+ a1β,

Dv0D
3
e0

= 2αβ + a1β
2, Dv0D

2
e
′
0
De0 = a1, D

2
e
′
0
D2

e0
= a1α+ a21β,D

3
e
′
0
De0 = a21,

D
e
′
0
D3

e0
= (α+ a1β)2, D4

e
′
0

= 0, D4
e0

= 3α2β + 3a1αβ
2 + a21β

3.

Now let us fix the polarization H = −KX , i.e. a = 3−a1−α, b = 2−β, c = 2.

Proposition 5.3.1. The tangent bundles on the following toric Fano 4-folds
are unstable

(i)D12 (ii)D9 (iii)D8 (iv)D3 (v)D16 (vi)D5 (vii)D2.

Proof. The proof of the proposition follows from the following two tables
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a1 (α, β) deg Dv0 deg D
e
′
0

deg De0 µ(TX)

1 (0, 0) 72 96 56 112
1 (1, 0) 72 98 98 116
1 (0, 1) 74 98 117 120
1 (1, 1) 78 104 189 140
1 (−1, 1) 70 96 63 108
2 (0, 0) 72 150 62 124
2 (0, 1) 76 158 171 144

a1 (α, β) F c1(F) µ(F)

1 (0, 0) Span(e0) D
e
′
0

+D
e
′
1

120

1 (1, 0) Span(e′0) D
e
′
0

+D
e
′
1

124

1 (0, 1) Span(e0) De0 +De1 136
1 (1, 1) Span(e0) De0 +De1 196
1 (−1, 1) Span(e′0, e0) D

e
′
0

+D
e
′
1

+De0 +De1 111

2 (0, 0) Span(e′0) D
e
′
0

+D
e
′
1

156

2 (0, 1) Span(e′0) D
e
′
0

158

where F denotes the equivariant reflexive subsheaf of TX corresponding to the
subspace F of C4.

5.4 Stability of tangent bundle on a P2-bundle over the Hirze-
bruch surface H1

Let X = P(OH1 ⊕OH1 ⊕OH1(α, β)). The rays of the fan ∆ of X are given by:

v1 = (1, 0, 0, 0),v2 = (0, 1, 0, 0),v3 = (−1, 1, 0, α),v4 = (0,−1, 0, β),

e0 = (0, 0,−1,−1), e1 = (0, 0, 1, 0), e2 = (0, 0, 0, 1),

and the maximal cones are given by

Cone(e0, . . . , êj, . . . , e2) + Cone(vi,vi+1), where j = 0, 1, 2 and 1 ≤ i ≤ 4.

Now we have the following relations

Dv1 ∼lin Dv3 , Dv2 ∼lin Dv4 −Dv3 ,

De1 ∼lin De0 , De2 ∼lin De0 − αDv3 − βDv4 .

Hence Pic(X) = ZDv3 ⊕ ZDv4 ⊕ ZDe0 . Note that, using toric Nakai criterion,
X = P(OX′ ⊕ OX′ ⊕ OX′(α, β)) is Fano if and only if α = 0, β = 0, 1. We
consider the case for (α, β) = (0, 1), i.e. X = D11 in the notation of [1,
Section 4]).
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Proposition 5.4.1. Let X = P(OH1 ⊕OH1 ⊕OH1(0, 1)). Then TX is unstable.

Proof. Note that −KX = Dv3 +Dv4 + 3De0 . Since D2
v3

= 0, we have

(−KX)3 = 3Dv3D
2
v4

+ 27Dv3D
2
e0

+ 18Dv3Dv4De0 +D3
v4

+ 27Dv4D
2
e0

+ 9D2
v4
De0 + 27D3

e0
.

Now we compute the following intersection products

Dv3D
3
v4

= 0, Dv3Dv4D
2
e0

= 1, Dv3D
2
v4
De0 = 0, Dv3D

3
e0

= 1, D4
v4

= 0,

D2
v4
D2

e0
= 1, D3

v4
De0 = 0, Dv4D

3
e0

= 1, D4
e0

= 1.

Thus, we have deg Dv3 = 54, deg Dv4 = 81, deg De0 = 108 and µ(TX) =
114.75.
Let F = Span(e1, e2, e0). Then it corresponds to a rank 2 destabilizing reflexive
subsheaf F of TX with µ(F) = 121.5. Hence TX is unstable.

5.5 Stability of tangent bundle on a P1-bundle over P(OP1 ⊕OP1 ⊕
OP1(1))

Let X = P(OX′ ⊕OX′(α, β)), where X ′ = P(OP1 ⊕OP1 ⊕OP1(1)). The rays of
the fan ∆ of X are given by

v0 = (−1, 0, 1, α),v1 = (1, 0, 0, 0), e′1 = (0, 1, 0, 0), e′2 = (0, 0, 1, 0),

e
′
0 = (0,−1,−1, β), e1 = (0, 0, 0, 1), e0 = (0, 0, 0,−1),

and the maximal cones are given by

Cone(vi, e
′
0, . . . , ê

′
j , . . . , e

′
2, ek) for i = 0, 1, j = 0, 1, 2 and k = 0, 1.

We have the following relations

Dv1 ∼lin Dv0 , De
′
1
∼lin De

′
0
, D

e
′
2
∼lin De

′
0
−Dv0 ,

De1 ∼lin De0 − α1Dv0 − βD
e
′
0
.

Hence Pic(X) = ZDv0 ⊕ ZD
e
′
0
⊕ ZDe0 . Now using toric Nakai criterion, one

can see that X = P(OX′ ⊕OX′(α, β)) is Fano if and only if α = 0,−2 ≤ β ≤ 2.
It suffices to consider β = 1, 2. Note that X = D10 for (α, β) = (0, 1) and
X = D4 for (α, β) = (0, 2) from the notations of [1, Remark 2.5.10, Section 4].

Proposition 5.5.1. Let X = P(OX′ ⊕OX′(0, β)), where X ′ = P(OP1 ⊕OP1 ⊕
OP1(1)) and β = 1, 2. Then TX is unstable.

Proof. The anticanonical divisor is given by −KX = Dv0 + (3−β)D
e
′
0

+ 2De0 .

Since D2
v0

= 0, D
e
′
0
D

e
′
1
D

e
′
2

= 0, De0De1 = 0, we have

(−KX)3 =3(3 − β)2Dv0D
2
e
′
0

+ 12Dv0D
2
e0

+ 12(3 − β)Dv0De
′
0
De0

+ (3 − β)3D3
e
′
0

+ 12(3 − β)D
e
′
0
D2

e0
+ 6(3 − β)2D2

e
′
0
De0 + 8D3

e0
.
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Furthermore, we have the following relations

Dv0D
3
e
′
0

= 0, Dv0De
′
0
D2

e0
= β,Dv0D

3
e0

= β2, D2
e
′
0
D2

e0
= β,

D3
e
′
0
De0 = 1, D

e
′
0
D3

e0
= β2, D4

e0
= β3, D4

e
′
0

= 0.

Hence, we have

deg Dv0 =

{
56 β = 1
62 β = 2

;

deg D
e
′
0

=

{
92 β = 1
98 β = 2

;

deg De0 =

{
112 β = 1
200 β = 2.

Therefore, we obtain µ(TX) =

{
116 β = 1
140 β = 2.

Note that OX(De0 +De1) is a rank 1 reflexive subsheaf of TX , whose degree is
given by

deg (De0 +De1) = 2deg De0 − βdeg D
e
′
0

=

{
132 β = 1
204 β = 2.

Hence, TX is unstable.

5.6 Stability of tangent bundle on blow up of P2 on P(OP3 ⊕
OP3(a1)), a1 = 0, 1, 2

Let X ′ = P(OP3⊕OP3(a1)). The fan ∆′ associated to X ′ is given as follows. Let
u1, u2, u3 be the standard basis of Z3 and e′1 be that of Z. Set vi = (ui, 0) ∈ Z4

for i = 1, 2, 3, e1 = (0, 0, 0, e′1) ∈ Z4, e0 = −e1 and v0 = −v1 − v2 − v3 + a1e1.
Then ∆′(1) = {v0, v1, v2, v3, e0, e1} and maximal cones are of the form

Cone(v0, . . . , v̂j , . . . , v3, e0) and Cone(v0, . . . , v̂j , . . . , v3, e1) for j = 0, 1, 2, 3.

Note that Pic(X ′) = ZDv0 ⊕ ZDe0 . For τ = Cone(v0, e1) ∈ ∆′, we have
V (τ) = P2. Let X = BlV (τ)(X) with associated fan ∆. Then the rays of ∆ are

v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0), v0 = (−1,−1,−1, a1),

e1 = (0, 0, 0, 1), e0 = (0, 0, 0,−1), uτ = (−1,−1,−1, a1 + 1).

We have the following relations

Dv1 ∼lin Dv2 ∼lin Dv3 ∼lin Dv0 +Duτ
, De1 ∼lin De0 − a1Dv0 − (a1 + 1)Duτ

.
(5.3)

Hence, we have Pic(X) = ZDv0 ⊕ ZDe0 ⊕ ZDuτ
. The anticanonical divisor is

given by −KX = (4 − a1)Dv0 + 2De0 + (3 − a1)Duτ
.

Note that X = E1, E2, E3 for a1 = 2, 1, 0 respectively in the notation of [1,
Section 4].
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Proposition 5.6.1. Let X = BlV (τ)(X
′), where X ′ = P(OP3 ⊕OP3(a1)) and

τ = Cone(v0, e1) ∈ ∆′. Then

(1) TX is unstable for a1 = 1, 2.

(2) TX is stable for a1 = 0.

Proof. Let −KX = aDv0 + 2De0 + bDuτ
, where a = 4 − a1 and b = 3 − a1.

Note that we have De0Duτ
= 0, De0De1 = 0 and Dv0De1 = 0. So we have

(−KX)3 = a3D3
v0 + 12aDv0D

2
e0 + 3ab2Dv0D

2
uτ

+ 6a2D2
v0De0 + 8D3

e0 + 3a2bD2
v0Duτ

+ b3D3
uτ
.

Furthermore, we have

D4
v0 = −a21 − 3a1 − 3, D2

v0D
2
e0 = a1, D

2
v0D

2
uτ

= −a21 − a1,

D3
v0De0 = 1, Dv0D

3
e0 = a21, Dv0D

3
uτ

= a21,

D3
v0Duτ

= (a1 + 1)2, D4
e0 = a31, D

4
uτ

= −a21 + a1 − 1.

(1)a1 = 2: Here a = 2, b = 1. We compute that deg Dv0 = 76, deg De0 =
216, deg Duτ

= 21 and µ(TX) = 151.25.

Note that OX(De0 + De1) is a rank 1 reflexive subsheaf of TX with degree
deg (De0 +De1) = 217. Hence, TX is unstable.

a1 = 1: Here a = 3, b = 2. We have deg Dv0 = 61, deg De0 = 125, deg Duτ
=

28 and µ(TX) = 122.25.

Note that OX(De0 + De1) is a rank 1 reflexive subsheaf of TX with degree
deg (De0 +De1) = 133. Hence, TX is unstable.

(2) a1 = 0: Here a = 4, b = 3. We have deg Dv0 = 48, deg De0 =
64, deg Duτ

= 37 and µ(TX) = 107.75. Also deg (De0 + De1) =
91, deg Dv1 = 85. Note that rank 1 equivariant reflexive subsheaves are
OX(Dv0), OX(Dv1), OX(Dv2), OX(Dv3), OX(De0 +De1) and OX(Duτ

).

Next, we consider reflexive subsheaves of TX of rank 2 and 3. The maximum
possible slope can occur only from the following situations.

rank(F) = 2

(i) F = Span(v1, e0, e1), then µ(F) = 88.

(ii) F = Span(v0, e0, e1, uτ ), then µ(F) = 88.

rank(F) = 3

(i) F = Span(v0, v1, v2, v3), then µ(F) = 101.

(ii) F = Span(v0, v1, e0, e1, uτ ), then µ(F) = 87.

Hence, in this case, TX is stable.
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5.7 Stability of tangent bundles on G1-G6 in the notation of [1,
Section 4]

Let X = G1. We write down the associated fan ∆ using the primitive relations
from [1, Proposition 3.1.2]). The rays of ∆ are

v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (1,−1,−1, 0), v4 = (0, 0, 1, 0),

v5 = (0, 0, 0, 1), v6 = (2, 0,−1,−1), v7 = (−1, 0, 0, 0),

and the maximal cones are given by the following condition

σ = Cone(vi, vj , vk, vl) ∈ ∆ ⇐⇒ Cone(v1, v7),Cone(v2, v3, v4),Cone(v4, v5, v6),

Cone(v5, v6, v7),Cone(v1, v2, v3) * σ.

We have the following relations

Dv2 ∼lin Dv3 , Dv5 ∼lin Dv6 , Dv4 ∼lin Dv3 +Dv6 , Dv1 ∼lin Dv7 −Dv3 − 2Dv6 .

Therefore, we have Pic(X) = ZDv3 ⊕ ZDv6 ⊕ ZDv7 . The anticanonical divisor
is −KX = 2Dv3 +Dv6 + 2Dv7 .

Proposition 5.7.1. The tangent bundle on X = G1 is unstable.

Proof. We have

(−KX)3 = 8D3
v3 + 6Dv3D

2
v6 + 24Dv3D

2
v7 + 12D2

v3Dv6 + 24Dv3Dv6Dv7

+ 24D2
v3Dv7 +D3

v6 + 12Dv6D
2
v7 + 6D2

v6Dv7 + 8D3
v7 .

Using the following relations

D4
v3 = 1, D2

v3D
2
v6 = 1, D2

v3D
2
v7 = 1, D3

v3Dv6 = −1, D2
v3Dv6Dv7 = 1,

D3
v3Dv7 = −1, Dv3Dv6D

2
v7 = 1, Dv3D

2
v6Dv7 = 0, Dv3D

3
v7 = 3,

Dv3D
3
v6 = −1, D2

v6D
2
v7 = 0, D3

v6Dv7 = 0, Dv6D
3
v7 = 1, D4

v6 = 1, D4
v7 = 5,

we have deg Dv3 = 61, deg Dv6 = 55, deg Dv7 = 176 and µ(TX) = 132.25.
Note that OX(Dv1 + Dv7) is a destabilizing subsheaf of TX with degree 181,
hence TX is unstable.

Let X ′ = P(OP2 ⊕ OP2(α) ⊕ OP2(β)). The fan ∆′ associated to X ′ is given
as follows. Let u1, u2 be the standard basis of Z2 and e′1, e

′
2 also denote the

standard basis of Z2. Set vi = (ui, 0, 0) for i = 1, 2 and ej = (0, 0, e′j) for
j = 1, 2, e0 = −e1 − e2 and v0 = −v1 − v2 + αe1 + βe2. Then ∆′(1) =
{v0, v1, v2, e0, e1, e2} and the maximal cones are of the form

Cone(v0, . . . , v̂i, . . . , v2, e0, . . . , êj, . . . , e2) for i, j = 0, 1, 2.

Note that Pic(X ′) = ZDv0 ⊕ ZDe0 .
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Proposition 5.7.2. Let X be the blow up of V (τ) on X ′, where τ =
Cone(v0, e2) ∈ ∆′ and α = 0, β = 1 (note that X = G2 in the notation of
[1, Section 4]). Then TX is unstable.

Proof. Rays of the fan ∆ associated to X are as follows

v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v0 = (−1,−1, 0, 1), e1 = (0, 0, 1, 0),

e2 = (0, 0, 0, 1), e0 = (0, 0,−1,−1), uτ = (−1,−1, 0, 2).

We have the following relations

Dv1 ∼lin Dv2 ∼lin Dv0 +Duτ
, De1 ∼lin De0 , De2 ∼lin De0 −Dv0 − 2Duτ

.

Hence, Pic(X) = ZDv0 ⊕ ZDe0 ⊕ ZDuτ
. Then the anticanonical divisor is

−KX = 2Dv0 + 3De0 +Duτ
. We have

(−KX)3 = 8D3
v0 + 54Dv0D

2
e0 + 6Dv0D

2
uτ

+ 36D2
v0De0 + 36Dv0De0Duτ

+ 12D2
v0Duτ

+ 27D3
e0 + 9De0D

2
uτ

+ 27D2
e0Duτ

+D3
uτ
.

Using the following relations

Dv0De2 = 0, D4
v0 = 5, D3

v0Duτ
= −4, Dv0De0D

2
uτ

= −1, D2
v0De0Duτ

= 2,

D3
v0De0 = −3, D2

v0D
2
uτ

= 3, Dv0D
3
uτ

= −2, D2
v0D

2
e0 = 1, Dv0D

2
e0Duτ

= 0,

Dv0D
3
e0 = 1, De0D

3
uτ

= 0, D2
e0D

2
uτ

= 0, D3
e0Duτ

= 0, D4
e0 = 1, D4

uτ
= 1,

we have deg Dv0 = 44, deg De0 = 111, deg Duτ
= 29 and µ(TX) = 112.5.

Note that deg De1 = 111 and deg De2 = 9. Now consider F = Span(e0, e1, e2),
which corresponds to a rank 2 reflexive subsheaf of TX with slope 115.5. Hence,
TX is unstable.

Proposition 5.7.3. Let X be the blow up of V (τ) on X ′, where τ =
Cone(v1, v2, e0) ∈ ∆′ and α = 1, β = 1 (note that X = G3 in the notation of
[1, Section 4]). Then TX is unstable.

Proof. Rays of the fan ∆ associated to X are as follows

v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v0 = (−1,−1, 1, 1), e1 = (0, 0, 1, 0),

e2 = (0, 0, 0, 1), e0 = (0, 0,−1,−1), uτ = (1, 1,−1,−1).

We have the following relations

Dv1 ∼lin Dv2 ∼lin Dv0 −Duτ
, De1 ∼lin De2 ∼lin De0 −Dv0 +Duτ

.

Hence Pic(X) = ZDv0 ⊕ ZDe0 ⊕ ZDuτ
. The anticanonical divisor is −KX =

Dv0 + 3De0 +Duτ
. Since Dv0Duτ

= 0, we have

(−KX)3 = D3
v0 + 27Dv0D

2
e0 + 9D2

v0De0 + 27D3
e0

+ 9De0D
2
uτ

+ 27D2
e0Duτ

+D3
uτ
.
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Using the following relations

D4
v0 = 0, D2

v0D
2
e0 = 1, D3

v0De0 = 0, Dv0D
3
e0 = 2, D4

e0 = 0,

D2
e0D

2
uτ

= −1, D3
e0Duτ

= 2, De0D
3
uτ

= 0, D4
uτ

= 1,

we have deg Dv0 = 81, deg De0 = 108, deg Duτ
= 28 and µ(TX) = 108.25.

Note that deg De1 = deg De2 = 55. Now consider F = Span(e0, e1, e2), which
corresponds to a rank 2 reflexive subsheaf of TX with slope 109. Hence, TX is
unstable.

Proposition 5.7.4. Let X be the blow up of V (τ) on X ′, where τ =
Cone(v0, e0) ∈ ∆′ and (α, β) = (0, 0), (0, 1) and (1, 1) (note that X =
G6, G4, G5 respectively, in the notation of [1, Section 4]). Then TX is stable.

Proof. Rays of the fan ∆ associated to X are as follows

v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v0 = (−1,−1, α, β), e1 = (0, 0, 1, 0),

e2 = (0, 0, 0, 1), e0 = (0, 0,−1,−1), uτ = (−1,−1, α− 1, β − 1).

We have the following relations

Dv1 ∼lin Dv2 ∼lin Dv0 +Duτ
, De1 ∼lin De0 − αDv0 − (α− 1)Duτ

,

De2 ∼lin De0 − βDv0 − (β − 1)Duτ
.

Hence Pic(X) = ZDv0 ⊕ ZDe0 ⊕ ZDuτ
. The anticanonical divisor is −KX =

(3 − α− β)Dv0 + 3De0 + (5 − α− β)Duτ
. Since Dv0De0 = 0, we have

(−KX)3 = a3D3
v0 + 3ab2Dv0D

2
uτ

+ 3a2bD2
v0Duτ

+ 27D3
e0

+ 9b2De0D
2
uτ

+ 27bD2
e0Duτ

+ b3D3
uτ
.

Now consider the following cases.
(α, β) = (0, 0) : Then a = 3, b = 5. Using the following

D4
v0 = 3, D3

v0Duτ
= −2, D2

v0D
2
uτ

= 1, Dv0D
3
uτ

= 0, D4
e0 = 3,

D3
e0Duτ

= −2, D2
e0D

2
uτ

= 1, De0D
3
uτ

= 0, D4
uτ

= −1,

we have deg Dv0 = deg De0 = 36, deg Duτ
= 37 and µ(TX) = 100.25. Note

also that deg Dv1 = deg Dv2 = deg De1 = deg De2 = 73.
Next, we consider rank 2 equivariant reflexive subsheaves of TX . We list those
having maximum possible slope below.

(i) F = Span(v0, e0, uτ ), then µ(F) = 54.5.

(ii) F = Span(v0, v1, v2) or Span(e0, e1, e2), then µ(F) = 91.

Finally, we list rank 3 equivariant reflexive subsheaves of TX possibly having
maximum slope.
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(i) F = Span(v0, e0, e1, e2, uτ ) or Span(v0, v1, v2, e0, uτ ), then µ(F) = 85.

(ii) F = Span(e0, e1, e2, v1), then µ(F) = 85.

Hence, TX is stable.
(α, β) = (0, 1) : Then a = 2, b = 4. Using the following

D4
v0 = 2, D3

v0Duτ
= −1, D2

v0D
2
uτ

= 0, Dv0D
3
uτ

= 1, D4
e0 = 1,

D3
e0Duτ

= −1, D2
e0D

2
uτ

= 1, De0D
3
uτ

= 0, D4
uτ

= −2,

we have deg Dv0 = 32, deg De0 = 63, deg Duτ
= 41 and µ(TX) = 104.25.

Note also that deg Dv1 = deg Dv2 = 73, deg De1 = 104 and deg De2 = 31.
Next, we list down rank 2 equivariant reflexive subsheaves of TX possibly giving
maximum slope.

(i) F = Span(e0, e1, e2), then µ(F) = 99.

(ii) F = Span(v0, e0, uτ ), then µ(F) = 68.

Finally, consider the following rank 3 equivariant reflexive subsheaves of TX
contributing to maximum slope.

(i) F = Span(v0, e0, e1, e2, uτ ), then µ(F) = 90.33.

(ii) F = Span(v1, v2, e1, uτ ), then µ(F) = 97.

(iii) F = Span(v0, v1, v2, e2), then µ(F) ∼ 66.67.

(iv) F = Span(v1, e0, e1, e2), then µ(F) = 90.33.

Hence, TX is stable.
(α, β) = (1, 1) : Then a = 1, b = 3. Using the following

D4
v0 = 1, D3

v0Duτ
= 0, D2

v0D
2
uτ

= −1, Dv0D
3
uτ

= 2, D4
e0 = 0,

D3
e0Duτ

= 0, D2
e0D

2
uτ

= 1, De0D
3
uτ

= 0, D4
uτ

= −3,

we have deg Dv0 = 28, deg De0 = 81, deg Duτ
= 45 and µ(TX) = 101.5. Note

also that deg Dv1 = deg Dv2 = 73, deg De1 = deg De2 = 53.
Next, we consider rank 2 equivariant reflexive subsheaves of TX . We list those
having maximum possible slope below.

(i) F = Span(v1, v2, uτ ), then µ(F) = 95.5.

(ii) F = Span(v0, e0, uτ ), then µ(F) = 77.

(iii) F = Span(e0, e1, e2), then µ(F) = 93.5.

Finally, we list rank 3 equivariant reflexive subsheaves of TX having maximum
possible slope.
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(i) F = Span(v0, e0, e1, e2, uτ ), then µ(F) ∼ 86.67.

(ii) F = Span(v0, v1, v2, e0, uτ), then µ(F) = 100.

(iii) F = Span(v1, e0, e1, e2), then µ(F) ∼ 86.67.

(iv) F = Span(v0, v1, e0, uτ ), then µ(F) ∼ 75.67.

Hence, TX is stable.

In the following table, we summarize results regarding stability of tangent bun-
dles on toric Fano 4-folds obtained in this paper, following the notations of
Batyrev [1, Section 4].

Table 1: Stability of tangent bundles on toric Fano 4-folds

ρ X
Stability
of TX

Reference

1 P4 Stable Prop 4.1.1

2 B1 = P(OP3 ⊕OP3(3)) Unstable Cor 4.2.7, (1)

2 B2 = P(OP3 ⊕OP3(2)) Unstable Cor 4.2.7, (1)
2 B3 = P(OP3 ⊕OP3(1)) Unstable Cor 4.2.7, (2)

2 B4 = P1 × P3 Strictly
semistable

Remark 4.2.6

2 B5 = P(OP1 ⊕OP1 ⊕OP1 ⊕OP1(1))
Strictly
semistable

Cor 4.2.7, (3)

2 C1 = P(OP2 ⊕OP2 ⊕OP2(2)) Unstable Cor 4.2.7, (1)

2 C2 = P(OP2 ⊕OP2 ⊕OP2(1)) Unstable Cor 4.2.7, (3)

2 C3 = P(OP2 ⊕OP2(1) ⊕OP2(1)) Unstable Cor 4.2.7, (1)

2 C4 = P2 × P2 Strictly
semistable

Remark 4.2.6

3 D1 = P(OP1×P2 ⊕OP1×P2(1, 2)) Unstable Prop 5.2.1 (1)

3 D2 = P(OB1 ⊕OB1(0, 1)) Unstable Prop 5.3.1

3 D3 = P(OB2 ⊕OB2(1, 1)) Unstable Prop 5.3.1

3 D4 = P(OB3 ⊕OB3(0, 2)) Unstable Prop 5.5.1
3 D5 = P1 × P(OP2 ⊕OP2(2)) Unstable Prop 5.3.1

3 D6 = P(OP1×P2 ⊕OP1×P2(1, 1)) Unstable Prop 5.2.1 (1)

3 D7 = P(O
P1×P1

⊕ O
P1×P1

⊕ O
P1×P2

(1, 1)) Unstable Prop 5.1.1 (1)

3 D8 = P(OB2 ⊕OB2(0, 1)) Unstable Prop 5.3.1

3 D9 = P(OB2 ⊕OB2(1, 0)) Unstable Prop 5.3.1

3 D10 = P(OB3 ⊕OB3(0, 1)) Unstable Prop 5.5.1

3 D11 = P(OH1 ⊕OH1 ⊕OH1(0, 1)) Unstable Prop 5.4.1

3 D12 = P1 × P(OP2 ⊕OP2(1)) Unstable Prop 5.3.1

3 D13 = P1 × P1 × P2 Strictly
semistable

Remark 4.2.6
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3 D14 = P1 × P(OP1 ⊕OP1 ⊕OP1(1))
Strictly
semistable

Remark 4.2.6,

Cor 4.2.7, (3)

3 D15 = H1 × P2 Strictly
semistable

Remark 4.2.6

3 D16 = P(OB2 ⊕OB2(−1, 1)) Unstable Prop 5.3.1

3 D17 = P(O
P1×P1

⊕ O
P1×P1

(1, 0) ⊕ O
P1×P1

(0, 1)) Stable Prop 5.1.1 (2)

3 D18 = P(OP1×P2 ⊕OP1×P2(−1, 2)) Unstable Prop 5.2.1 (1)

3 D19 = P(OP1×P2 ⊕OP1×P2(−1, 1)) Stable Prop 5.2.1 (2)

3 E1 = BlP2(B2) Unstable Prop 5.6.1 (1)

3 E2 = BlP2(B3) Unstable Prop 5.6.1 (1)

3 E3 = BlP2(B4) Stable Prop 5.6.1 (2)
3 G1 Unstable Prop 5.7.1

3 G2 = BlP1×P1(C2) Unstable Prop 5.7.2

3 G3 = BlP1(C3) Unstable Prop 5.7.3

3 G4 = BlH1(C2) Stable Prop 5.7.4
3 G5 = BlP1×P1(C3) Stable Prop 5.7.4

3 G6 = BlP1×P1(C4) Stable Prop 5.7.4

(Here ρ denotes the Picard number of X , Prop and Cor abbreviate Proposition
and Corollary respectivey.)

6 Existence of equivariant indecomposable rank 2 vector bun-
dles

In this section, we construct a collection of equivariant indecomposable rank 2
vector bundles over some special class of toric varieties of any dimension,
namely Bott towers and pseudo-symmetric toric Fano varieties. Moreover, we
show that in the case of Bott towers, among the constructed vector bundles,
there is a vector bundle which is stable with respect to a suitable choice of
polarization.

6.1 On Bott tower

A Bott tower is a tower Mn ! Mn−1 ! · · · ! M2 ! M1 ! M0 = {point},
consisting of nonsingular projective toric varieties constructed as an iterated
sequence of P1-bundles. We briefly recall the fan ∆k of the k-th stage Bott
tower Mk (see [7] for more details). Let N = Zk with standard basis e1, . . . , ek.
Rays of ∆k are given by

vi = ei for i = 1, . . . , k; v2k = −ek and

vk+i = −ei + ci,i+1ei+1 + · · · + ci,kek for i = 1, . . . , k − 1,

where ci,j ’s are integers, called Bott numbers. There are 2k maximal cones of
dimension k generated by these rays such that no cone contains vi and vk+i
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simultaneously for i = 1, . . . , k. Let Di := Dvi denote the invariant prime
divisor corresponding to the edge vi for i = 1, . . . , 2k. We have the following
relations among invariant prime divisors:

Dk+1 ∼lin D1, Dk+2 ∼lin D2 + c1,2Dk+1,

Dk+i ∼lin Di + c1,iDk+1 + · · · + ci−1,iDk+i−1 for i = 3, . . . , k,
(6.1)

and the Picard group of the Bott tower is given by Pic(Mk) = ZDk+1 ⊕ · · · ⊕
ZD2k .

Proposition 6.1.1. Let X = Mk with k ≥ 2 and 1 ≤ p ≤ k, 1 ≤ q ≤ 2k, q 6=
p, k + p. Then there exists a collection of rank 2 indecomposable equivariant
vector bundles Ep,q on X with c1(Ep,q) = Dp +Dq +Dk+p.

Proof. Consider the vector space E = C2 and three distinct one di-
mensional subspaces Lp, Lq and Lk+p in E. Now define the filtrations(
E, {E

vj
p,q(i)}j=1,...,2k

)
as follows:

E
vj
p,q(i) =





0 i 6 −2
Lj i = −1
E i ≥ 0

for j = p, k+ p, q and E
vj
p,q(i) =

{
0 i < 0
E i ≥ 0

for all

j 6= p, q, k + p.
Hence, the filtrations

(
E, {E

vj
p,q(i)}j=1,...,2k

)
correspond to a rank 2 equivariant

reflexive sheaf on X , say Ep,q (see Proposition 2.2.9). Fix a maximal dimen-
sional cone σ ∈ ∆k. To prove that Ep,q is also locally free, we need to show that
the collection of subspaces E

σ
p,q = {{E

vj
p,q(i)}vj∈σ(1)} of E forms a distributive

lattice (see Proposition 2.2.10, Remark 2.2.11). This follows because σ(1) con-
tains at most two of the ray generators vp, vq, vk+p, since both vp and vk+p

cannot belong to the same cone. Note that since Lp, Lq and Lk+p are distinct,
the collection of subspaces {E

vj
p,q(i)}j=1,...,2k do not form a distributive lattice.

Hence by [26, Corollary 2.2.3], Ep,q is in fact indecomposable.
Note that for j = p, q, k + p,

dim (E[vj ](i)) =

{
1 i = −1, 0
0 otherwise

and for j 6= p, q, k + p,

dim (E[vj ](i)) =

{
2 i = 0
0 otherwise.

We have c1(E) = Dp +Dq +Dk+p using Proposition 2.2.12.

Remark 6.1.2. The above construction only depends on the choice of p, q. Any
three distinct lines Lp, Lq and Lk+p will give rise to the same equivariant vector
bundle Ep,q, since any two sets of three distinct points in P1 are equivalent by
an automorphism of P1. For (p, q) 6= (p′, q′), the corresponding vector bundles
Ep,q and Ep′,q′ are non-isomorphic by [26, Theorem 1.2.3, Corollary 1.2.4].
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We will show that the vector bundle E1,2 is stable with respect to a suitable
choice of polarization. Henceforth we assume that the Bott numbers are non-
negative. Let H =

∑k
i=1 aiDk+i be a Cartier divisor on Mk. Then H is ample

if and only if ai > 0 for all i = 1, · · · , k (see [24, Theorem 3.1.1, Corollary
3.1.2]).

Lemma 6.1.3. Let H = Dk+1 + bDk+2 +Dk+3 + · · ·+D2k, where b > 0, be an
ample divisor onMk, k ≥ 2. Then Hk−1 is a non-negative integral combination
of V (τ)’s, where τ varies over all walls in ∆k such that τ(1) ⊆ {vk+1, . . . , v2k}.

Proof. Note that Hk−1 is a positive integral combination of monomials of
the form Dα := Dα1

k+1 · · ·D
αk

2k with non-negative integers α1, . . . , αk satisfying
k∑

j=1

αj = k−1. To prove the lemma, it suffices to write such a monomialDα as a

non-negative integral combination of monomials of the formDβ = Dβ1

k+1 · · ·D
βk

2k

with βj ∈ {0, 1} for j = 1, . . . , k (see [9, Lemma 12.5.2]).
Since D2

k+1 = 0, without loss of generality we can assume α1 ≤ 1. Now if
α2 > 1, using relations in (6.1) and observing that v2 and vk+2 do not form a
cone, we can write

Dα = Dα1

k+1D
α2−1
k+2 (D2 + c1,2Dk+1)Dα3

k+3 · · ·D
αk

2k

= c1,2D
α1+1
k+1 Dα2−1

k+2 Dα3

k+3 · · ·D
αk

2k

= c1,2D
β1

k+1D
α2−1
k+2 Dα3

k+3 · · ·D
αk

2k where β1 ≤ 1 if the monomial is non-zero.

Hence we have reduced the exponent of Dk+2 by one and repeating this process
we can write Dα as a non-negative integral combination of monomials of the
form

Dβ = Dβ1

k+1 · · ·D
βk

2k with β1, β2 ∈ {0, 1} and β3 = α3, . . . , βk = αk.

At the i-th stage, we arrive at monomials of the form Dα, where α1, . . . , αi−1 ∈
{0, 1}. Suppose αi > 1. Then again using relations in (6.1) and observing
that vi and vk+i do not form a cone, we can write Dα as a non-negative
integral combination of monomials of the form Dβ ’s with βi < αi and βi+1 =
αi+1, . . . , βk = αk. If βj > 1 for some j = 1, . . . , i− 1, appealing to Stage j, we
will write this monomial as a non-negative integral combination of monomials
of the form Dβ′

’s with β′
1, . . . , β

′
j ∈ {0, 1} and β′

j+1 = βj+1, . . . , β
′
k = βk .

Hence eventually we can write Dα as a non-negative integral combination of
monomials of the form Dγ ’s with γ1, . . . , γi ∈ {0, 1} and γi+1 = αi+1, . . . , γk =
αk. Continuing this process at the k-th stage we can express Dα in the desired
form.

Remark 6.1.4. Using Lemma 6.1.3, we can write Hk−1 =
∑

τ aτV (τ), where
τ varies over all such walls with τ(1) ⊆ {vk+1, . . . , v2k} and aτ ∈ Z≥0[b, ci,j :
1 ≤ i < j ≤ k]. Also observe that aτ involves b only if vk+2 ∈ τ(1).
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Proposition 6.1.5. Let X = Mk (k ≥ 2) be a Bott tower with non-negative
Bott numbers. Consider the polarization H = Dk+1+bDk+2+Dk+3+ · · ·+D2k

on X, where b > 0. Then there exists a rank 2 stable equivariant vector bundle E
on X with c1(E) = 2D1 +D2, which is H-stable for sufficiently large b.

Proof. Consider the equivariant vector bundle vector E1,2 associated to the
filtrations

(
E, {E

vj
1,2(i)}j=1,...,2k

)
from Proposition 6.1.1. Furthermore, deg E =

2deg D1 + deg D2. Hence µ(E) = deg D1 + 1
2deg D2.

The only equivariant reflexive subsheaves of E are OX(D1), OX(D2),
OX(Dk+1) and OX . Both deg D1(= deg Dk+1) and deg (OX) are less than
µ(E). It remains to show that deg D2 < µ(E), i.e.,

deg D2 < 2 deg D1. (6.2)

Now using Lemma 6.1.3 and Remark 6.1.4, we see that deg D2 = P (ci,j : 1 ≤
i < j ≤ k) and deg D1 = b +Q(b, ci,j : 1 ≤ i < j ≤ k), where P (ci,j : 1 ≤ i <
j ≤ k) ∈ Z≥0[ci,j : 1 ≤ i < j ≤ k] and Q(ci,j : 1 ≤ i < j ≤ k) ∈ Z≥0[b, ci,j : 1 ≤
i < j ≤ k].
So (6.2) holds for sufficiently large b and hence we conclude that E is H-
stable.

Remark 6.1.6. It can be shown that for the polarization H = b1Dk+1 + . . .+
bkD2k with bi > 0 for all i = 1, . . . , k, the vector bundle E constructed above is
H-stable whenever b1 < b2 for the cases k = 2, 3.

6.2 On pseudo-symmetric Fano toric varieties

A toric Fano variety is called pseudo-symmetric if its fan contains two centrally
symmetric maximal cones, i.e., there exist maximal cones σ, σ′ ∈ ∆, such that
σ = −σ′. For any pseudo-symmetric toric Fano variety X , there exists s, p, q ∈
Z≥0 and k1, . . . , kp, l1, . . . , lq ∈ Z≥0 such that

X ∼= (P1)s × V 2k1 × . . .× V 2kp × Ṽ 2l1 × . . .× Ṽ 2lq , (6.3)

where V n (respectively, Ṽ n) is an n-dimensional toric Fano variety called the
n-dimensional Del Pezzo variety (respectively, pseudo Del Pezzo variety) (see

[10]). We briefly recall the fan structures of V n and Ṽ n from [6, Section 3]. Let
v1, . . . , vn be a basis of N = Zn, where n is even, say n = 2r. Set v0 = −v1 −
· · · − vn and wi = −vi for i = 0, . . . , n. Then ∆V n(1) = {v0, w0, . . . , vn, wn}
and ∆Ṽ n(1) = {v0, v1, w1, . . . , vn, wn}. Explicitly the fans are given as follows:

∆V n = {Cone(vi, wj :i ∈ Ir, j ∈ Jr)

and their faces | Ir, Jr ⊆ {0, . . . , n} disjoint};

∆Ṽ n = {Cone(v0, vi, wj : i ∈ Ir−1, j ∈ Jr),Cone(vi, wj : i ∈ Ĩr+s, j ∈ J̃r−s)

and their faces| Ir−1, Jr ⊆ {1, . . . , n} disjoint, s ∈ {0, . . . , r}

and Ĩr+s, J̃r−s a partition of {1, . . . , n}}.
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We construct a collection of equivariant indecomposable rank 2 vector bundles
on X . When X is a product of P1’s, we are done by Proposition 6.1.1. Let us
first prove the existence of a collection of equivariant indecomposable rank 2
vector bundles on Del Pezzo variety V n.
Consider the vector space E = C2 and three distinct one dimensional subspaces
La, Lb and L′

a in E where 0 ≤ a, b ≤ n and a 6= b. Define the filtrations(
E, {Eρ

{a,b},a(i)}
)

as follows:

E
vj
{a,b},a(i) =





0 i 6 −2
Lj i = −1
E i ≥ 0,

for j = a, b; Ewa

{a,b},a(i) =





0 i 6 −2
L′
a i = −1
E i ≥ 0

and

Eρ
{a,b},a(i) =

{
0 i < 0
E i ≥ 0,

for any ray except va, vb, wa.

By Proposition 2.2.9, the filtrations
(
E, {Eρ

{a,b},a(i)}
)

correspond to a rank 2

equivariant reflexive sheaf E{a,b},a on V n. Since the rays va, vb, wa do not form
a cone in ∆V n , it follows that the filtrations satisfy the compatibility condition
given in Remark 2.2.11, and hence E{a,b},a is locally free by Proposition
2.2.10. As the one dimensional subspaces La, Lb, L

′
a are distinct, the filtrations(

E, {Eρ
{a,b},a(i)}

)
do not form a distributive lattice which implies that E{a,b},a

does not split and hence is indecomposable.

Consider three distinct one dimensional subspaces La, L
′
a and L′

b in E where
0 ≤ a, b ≤ n, a 6= b. By similar arguments, we have an equivariant indecom-
posable rank 2 locally free sheaf Ea,{a,b} on V n associated to the filtrations(
E, {Eρ

a,{a,b}(i)}
)

given as follows:

Eva
a,{a,b}(i) =





0 i 6 −2
La i = −1
E i ≥ 0,

; E
wj

a,{a,b}(i) =





0 i 6 −2
L′
j i = −1
E i ≥ 0

for j = a, b;

and

Eρ
a,{a,b}(i) =

{
0 i < 0
E i ≥ 0,

for any ray except va, wa, wb.

By similar arguments, we have a collection of equivariant indecomposable rank
2 vector bundles on pseudo Del Pezzo variety Ṽ n, given by F{a,b},a associ-

ated to the filtrations
(
E, {Eρ

{a,b},a(i)}
)

, Fa,{a,b} associated to the filtrations
(
E, {Eρ

a,{a,b}(i)}
)

for 1 ≤ a, b ≤ n, a 6= b and F{0,a},a associated to the filtra-

tions
(
E, {Eρ

{0,a},a(i)}
)

for 0 < a ≤ n.

When X is not a product of P1’s, from (6.3), at least one of kp or lq is positive.
Without loss of generality, let us assume kp is positive. We have an equivariant

rank 2 indecomposable vector bundle on V 2kp , say EV 2kp
. By pulling back

EV 2kp
to X via the projection map, we get an equivariant rank 2 vector bundle

which is still indecomposable by [8, Remark 3.3].
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From the above discussion, we get the following proposition.

Proposition 6.2.1. Let X pseudo-symmetric toric Fano variety. There exists
a collection of equivariant indecomposable rank 2 vector bundles on X.
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