The Bredon-Landweber Region in C_{2}-Equivariant Stable Homotopy Groups

Bertrand J. Guillou and Daniel C. Isaksen

Received: July 16, 2019
Revised: September 7, 2020

Communicated by Mike Hill

Abstract

We use the C_{2}-equivariant Adams spectral sequence to compute part of the C_{2}-equivariant stable homotopy groups $\pi_{n, n}^{C_{2}}$. This allows us to recover results of Bredon and Landweber on the image of the geometric fixed-points map $\pi_{n, n}^{C_{2}} \rightarrow \pi_{0}$. We also recover results of Mahowald and Ravenel on the Mahowald root invariants of the elements 2^{k}.

2020 Mathematics Subject Classification: 55Q91, 55T15; Secondary 14F42, 55Q45
Keywords and Phrases: Equivariant stable homotopy group, Mahowald root invariant, Adams spectral sequence

1 Introduction

The goal of this article is to study some phenomena in the C_{2}-equivariant stable homotopy groups. Let $\mathbb{R}^{n, k}$ be the n-dimensional real representation of C_{2} in which the nonidentity element of C_{2} acts as -1 on the last k coordinates (and trivially on the first $n-k$), and let $S^{n, k}$ be its one-point compactification. Then $\pi_{n, k}^{C_{2}}$ is the set of 2 -completed C_{2}-equivariant stable homotopy classes of maps $S^{n, k} \longrightarrow S^{0,0}$. In this article, we are primarily concerned with the groups $\pi_{k, k}^{C_{2}}$. We alert the reader to the fact that another notational convention is sometimes used for C_{2}-equivariant stable homotopy groups. Writing σ for the real sign representation of C_{2}, the representation $\mathbb{R}^{n, k}$ corresponds to $(n-k)+k \sigma$ in $R O\left(C_{2}\right)$. Thus the group which appears here as $\pi_{n, k}^{C_{2}}$ is also denoted $\pi_{n-k+k \sigma}^{C_{2}}$ in the literature. Our choice of notation works well in comparison to motivic homotopy theory, and furthermore it was the notation employed by Bredon $[\mathrm{Br}]$.

The classical Hopf map $\eta_{\mathrm{cl}}: S^{3} \longrightarrow S^{2}$ can be modeled as the defining quotient $\operatorname{map} \mathbb{C}^{2}-\{0\} \longrightarrow \mathbb{C P}^{1}$ for complex projective space. When we remember the action of C_{2} via complex conjugation, this represents a C_{2}-equivariant stable map η in $\pi_{1,1}^{C_{2}}$. Classically, η_{cl} is nilpotent in the stable homotopy ring, as is every element in positive stems [N]. However, the equivariant Hopf map η is not nilpotent because η induces the non-nilpotent element -2 on geometric fixed points. (The distinction between 2 and -2 depends on choices of orientations and is inconsequential to the argument.) We will concern ourselves with phenomena associated to the non-zero elements η^{k} in $\pi_{k, k}^{C_{2}}$.
Because the fixed points of the representation sphere $S^{k, k}$ consist of two points, the geometric fixed point homomorphism takes the form $\phi: \pi_{k, k}^{C_{2}} \longrightarrow \pi_{0} \cong \mathbb{Z}$. Bredon $[\mathrm{Br}]$ and Landweber [L] proved that the image of ϕ is not in general generated by $\phi\left(\eta^{k}\right)$. For instance, $\phi\left(\eta^{5}\right)=(-2)^{5}=-32$, but $\phi\left(\pi_{5,5}^{C_{2}}\right)=16 \mathbb{Z}$. In fact, the higher powers of η are increasingly divisible by 2 in the C_{2}-equivariant stable homotopy groups (Corollary 1.3).
Let $\rho: S^{0,0} \longrightarrow S^{1,1}$ be the inclusion of fixed points. This class is sometimes called a_{σ} in the literature. Our main result describes to what extent the powers of η are divisible by ρ, from which we will deduce several other results.

Theorem 1.1. Let $k=4 j+\varepsilon \geq 1$, where $0 \leq \epsilon \leq 3$. If $\varepsilon=0$, then the C_{2} equivariant stable homotopy class η^{k} is divisible by ρ^{k-1} and no higher power of ρ. Otherwise, the C_{2}-equivariant stable homotopy class η^{k} is divisible by $\rho^{4 j}$ and no higher power of ρ.

Our primary tool for studying C_{2}-equivariant stable homotopy groups is the equivariant Adams spectral sequence [G] [HK]. The Bredon-Landweber REGION refers to the subgroups of $\pi_{k, k}^{C_{2}}$ that are detected in Adams filtration greater than $\frac{1}{2} k-1$. This region is displayed in the top part of Figure 2. We will show that the Bredon-Landweber region is additively generated by the elements $\rho^{i} \eta^{k}$, together with elements α such that $\rho^{i} \alpha=\eta^{k}$ for some i.
We recover the following theorem of Landweber [L, Theorem 2.2], which was originally conjectured by Bredon [Br].

Corollary 1.2. Let $k=8 j+\varepsilon \geq 1$, with $0 \leq \varepsilon \leq 7$. The image of the geometric fixed points homomorphism $\pi_{k, k}^{C_{2}} \xrightarrow{\phi} \pi_{0}$ is generated by

$$
\begin{cases}2^{4 j+1} & \text { if } \varepsilon=0 \\ 2^{4 j+\varepsilon} & \text { if } 1 \leq \varepsilon \leq 4 \\ 2^{4 j+4} & \text { if } 5 \leq \varepsilon \leq 7\end{cases}
$$

Similarly, we have:
Corollary 1.3. Let $k=8 j+\varepsilon \geq 5$, with $0 \leq \varepsilon \leq 7$. The C_{2}-equivariant
stable homotopy class η^{k} is divisible by

$$
\begin{cases}2^{4 j-1} & \text { if } \varepsilon=0 \\ 2^{4 j} & \text { if } 1 \leq \varepsilon \leq 4 \\ 2^{4 j+\varepsilon-4} & \text { if } 5 \leq \varepsilon \leq 7\end{cases}
$$

and no higher power of 2 .
The proofs of Theorem 1.1, Corollary 1.2, and Corollary 1.3 appear in Section 6. First, we must carry out some C_{2}-equivariant Adams spectral sequence calculations.
Our calculations can also be used to compute the classical Mahowald invariants of 2^{k} for all $k \geq 0$ (see Theorem 7.2). We directly apply the Bruner-Greenlees formulation $[\mathrm{BG}]$ of the Mahowald invariant that uses C_{2}-equivariant homotopy groups. These invariants were previously established by Mahowald and Ravenel [MR] using entirely different methods.
The charts were created using Hood Chatham's spectralsequences package.

Acknowledgement

The first author was supported by NSF grant DMS-1710379. The second author was supported by NSF grant DMS-1202213.

2 Notation

We continue with notation from [DI] and [GHIR] as follows.

1. $\mathbb{M}_{2}^{\mathbb{R}}=\mathbb{F}_{2}[\tau, \rho]$ is the motivic cohomology of \mathbb{R} with \mathbb{F}_{2} coefficients, where τ and ρ have bidegrees $(0,1)$ and $(1,1)$, respectively.
2. $\mathbb{M}_{2}^{C_{2}}$ is the bigraded C_{2}-equivariant Bredon cohomology of a point with coefficients in the constant Mackey functor \mathbb{F}_{2}.
3. $\mathcal{A}^{C_{2}}$ is the C_{2}-equivariant mod 2 Steenrod algebra, using coefficients $\underline{\mathbb{F}}_{2}$, and $\mathcal{A}^{C_{2}}(1)$ is the $\mathbb{M}_{2}^{C_{2}}$-subalgebra of $\mathcal{A}^{C_{2}}$ generated by Sq^{1} and Sq^{2}.
4. $\operatorname{Ext}_{\mathrm{cl}}, \operatorname{Ext}_{\mathbb{C}}, \operatorname{Ext}_{\mathbb{R}}$, and $\operatorname{Ext}_{C_{2}}$ are the cohomologies of the classical, \mathbb{C} motivic, \mathbb{R}-motivic, and C_{2}-equivariant mod 2 Steenrod algebras respectively. These objects are the E_{2}-pages of Adams spectral sequences.
5. $\pi_{*, *}^{C_{2}}$ and π_{*} are the stable homotopy rings of the 2 -completed $C_{2^{-}}$ equivariant sphere spectrum and the 2 -completed classical sphere spectrum respectively.

We will use some specific familiar elements of the Adams E_{2}-page. These elements lie near the "Adams edge" at the top of the Adams chart along a line of slope $1 / 2$. Our notation for these elements is standard. They include $P^{k} h_{1}$,
$P^{k} h_{1}^{2}, P^{k} h_{1}^{3}, P^{k} c_{0}, P^{k} h_{1} c_{0}, P^{k} h_{2}$, and $P^{k} h_{0} h_{2}$. In addition, we will consider the elements $P^{k} h_{0} h_{3}, P^{k} h_{0}^{2} h_{3}$, and $P^{k} h_{0}^{3} h_{3}$. These slightly non-standard (but technically correct) names conveniently refer to a well-understood, regular family of elements in the Adams E_{2}-page. They are the top three elements in a tower of h_{0}-multiplications in stems congruent to 7 modulo 8 . For more details, we refer the reader to any Adams chart, such as [I2] or [R, Figure A3.1].
We follow [I] in grading Ext groups according to (s, f, w), where:

1. f is the Adams filtration, i.e., the homological degree.
2. $s+f$ is the internal degree, i.e., corresponds to the first coordinate in the bidegree of the Steenrod algebra.
3. s is the stem, i.e., the internal degree minus the Adams filtration.
4. w is the weight.

Following this grading convention, the elements τ and ρ, as elements of $\operatorname{Ext}_{\mathbb{R}}$, have degrees $(0,0,-1)$ and $(-1,0,-1)$ respectively. Similarly,

$$
h_{0} \in \operatorname{Ext}_{\mathbb{R}}^{0,1,0}, \quad h_{j} \in \operatorname{Ext}_{\mathbb{R}}^{2^{j}-1,1,2^{j-1}} \text { for } j>0, \quad c_{0} \in \operatorname{Ext}_{\mathbb{R}}^{8,3,5},
$$

and the operator P increases degree by $(8,4,4)$.
We will also often refer to the COWEIGHT, which is defined to be $c=s-w$. Since both η and ρ have coweight 0 , the Bredon-Landweber region consists entirely of elements of coweight 0 . The coweight is also called the Milnor-Witt degree in the motivic context ([DI],[GI]).

3 The ρ-Bockstein spectral sequence

As an $\mathbb{M}_{2}^{\mathbb{R}}$-module, the equivariant cofficient ring $\mathbb{M}_{2}^{C_{2}}$ splits as $\mathbb{M}_{2}^{C_{2}} \cong \mathbb{M}_{2}^{\mathbb{R}} \oplus$ $N C$, where $N C$ is the "negative cone". The images of the \mathbb{R}-motivic classes ρ and τ in $\mathbb{M}_{2}^{C_{2}}$ are sometimes called a_{σ} and u_{σ}, respectively, in the equivariant literature. The negative cone has \mathbb{F}_{2}-basis $\left\{\frac{\gamma}{\rho^{j} \tau^{k+1}}\right\}$, where $j, k \geq 0$ and $\frac{\gamma}{\tau}$ lives in degree $(0,0,2)$. See [GHIR, Section 2.1] for more details. This splitting of $\mathbb{M}_{2}^{C_{2}}$ induces a splitting

$$
\operatorname{Ext}_{C_{2}} \cong \operatorname{Ext}_{\mathbb{R}} \oplus \operatorname{Ext}_{N C},
$$

where $\operatorname{Ext}_{N C}=\operatorname{Ext}_{\mathbb{R}}\left(N C, \mathbb{M}_{2}^{\mathbb{R}}\right)$. The splitting of $\mathbb{M}_{2}^{C_{2}}$ also yields a splitting for the Bockstein spectral sequence, and we follow [GHIR, Proposition 3.1] in writing E_{1}^{+}for the summand of the Bockstein E_{1}-term which converges to Ext $\mathbb{R}_{\mathbb{R}}$ and E_{1}^{-}for the summand which converges to $\operatorname{Ext}_{N C}$.
The \mathbb{R}-motivic ρ-Bockstein spectral sequence ($[\mathrm{H}, \mathrm{DI}]$) takes the form

$$
E_{1}^{+}=\operatorname{Ext}_{\mathbb{C}}[\rho] \Rightarrow \operatorname{Ext}_{\mathbb{R}}
$$

The groups Ext $\mathbb{R}_{\mathbb{R}}$ are computed for low coweights in [DI]. In coweight $0, E_{1}^{+}$is $\mathbb{F}_{2}\left[h_{0}, h_{1}, \rho\right] /\left(h_{0} h_{1}\right)$, and the only relevant Bockstein differential is $d_{1}(\tau)=\rho h_{0}$, giving

Lemma 3.1 ([DI]). $\operatorname{Ext}_{\mathbb{R}}$ in coweight 0 is $\mathbb{F}_{2}\left[h_{0}, h_{1}, \rho\right] /\left(h_{0} h_{1}, \rho h_{0}\right)$.
The calculation of $\operatorname{Ext}_{N C}$ in coweight 0 is much more complicated. We have a short exact sequence [GHIR, Prop 3.1]

$$
\begin{equation*}
\bigoplus_{s \geq 0} \frac{\mathbb{F}_{2}[\tau]}{\tau^{\infty}}\left\{\frac{\gamma}{\rho^{s}}\right\} \otimes_{\mathbb{F}_{2}[\tau]} \operatorname{Ext}_{\mathbb{C}} \rightarrow E_{1}^{-} \rightarrow \bigoplus_{s \geq 0} \operatorname{Tor}_{\mathbb{F}_{2}[\tau]}\left(\frac{\mathbb{F}_{2}[\tau]}{\tau^{\infty}}\left\{\frac{\gamma}{\rho^{s}}\right\}, \operatorname{Ext}_{\mathbb{C}}\right) \tag{3.2}
\end{equation*}
$$

which we abbreviate as

$$
\gamma E_{1}^{-} \longrightarrow E_{1}^{-} \longrightarrow Q E_{1}^{-}
$$

As explained in [GHIR, Remark 3.5], for each class x in Ext $\mathbb{C}_{\mathbb{C}}$ such that $\tau x=0$, we get a class $Q x$ in $Q E_{1}^{-}$, and this element is infinitely divisible by ρ. The τ-torsion elements of Ext $\mathbb{C}_{\mathbb{C}}$ in coweight 0 are h_{1}^{k} for $k \geq 4$, so these give rise to infinitely ρ-divisible classes $Q h_{1}^{k}$. This describes $Q E_{1}^{-}$in coweight 0 .
We now describe γE_{1}^{-}in coweight 0 . First note that $\frac{\gamma}{\tau^{i}}$ has coweight $-i-1$. Now let x be a class in $\operatorname{Ext}_{\mathbb{C}}$ that is τ-free and not divisible by τ, and let $c \geq 0$ be the coweight of x. If $c \geq 2$, then $\frac{\gamma}{\tau^{c-1}} x$ is an element of γE_{1}^{-}in coweight 0 that is infinitely divisible by ρ. When $c \leq 1$, there is no corresponding element of γE_{1}^{-}in coweight 0 .
This description of E_{1}^{-}is incomplete in the sense that it depends on the τ-free part of $\mathrm{Ext}_{\mathbb{C}}$, which is only known in a range. The τ-free part of Ext ${ }_{\mathbb{C}}$ corresponds precisely to classical Ext ${ }_{c l}$ [I, Proposition 2.10]. In a range, information about $E^{E x} t_{c l}$ can be obtained from an Ext chart, such as [I2] or [R, Figure A.3.1]. In order to rule out certain Bockstein differentials later, we need some structural results for the Bockstein spectral sequence.

Proposition 3.3. Let x be an element of E_{r}^{-}such that $d_{r}(x)$ is non-zero. Then x and $d_{r}(x)$ are both infinitely divisible by ρ in E_{r}^{-}.

Proof. Let $E_{r}^{-}[k]$ be the part of E_{r}^{-}in Bockstein filtration k. Note that $E_{1}^{-}[k]$ is zero if $k>0$, and that $\rho: E_{1}^{-}[k] \longrightarrow E_{1}^{-}[k+1]$ is an isomorphism if $k<0$. The d_{r} differential takes the form $E_{r}^{-}[k] \longrightarrow E_{r}^{-}[k+r]$.
By induction, diagram chases show that $\rho: E_{r}^{-}[k] \longrightarrow E_{r}^{-}[k+1]$ is injective if $0>k>-r$, and it is an isomorphism if $-r \geq k$. In particular, if $-r \geq k$, then every element of $E_{r}^{-}[k]$ is infinitely divisible by ρ.
Now let x be an element of $E_{r}^{-}[k]$ such that $d_{r}(x)$ is non-zero. This implies that $E_{r}^{-}[k+r]$ is non-zero, so $-r \geq k$, and x is infinitely divisible by ρ. Finally, the multiplicative structure implies that $d_{r}(x)$ must also be infinitely divisible by ρ.

Remark 3.4. Proposition 3.3 is dual to [DI, Lemma 3.4], which shows that if $d_{r}(x)$ is non-zero in E_{r}^{+}, then $\rho^{k} x$ and $\rho^{k} d_{r}(x)$ are non-zero in E_{r}^{+}for all $k \geq 0$. In fact, the proof of Proposition 3.3 dualizes line by line.

Proposition 3.5. The C_{2}-equivariant Bockstein E_{1}-page is zero in degrees (s, f, w) such that the coweight $s-w$ is negative, the stem s is positive, and $f>\frac{1}{2} s+\frac{3}{2}$.
Proof. The summand E_{1}^{+}vanishes when $s-w<0$, i.e., in negative coweights. Similarly, $Q E_{1}^{-}$vanishes in negative coweights.
It only remains to consider γE_{1}^{-}. Consider a non-zero element of γE_{1}^{-}in degree (s, f, w) with $s>0$. This element has the form $\frac{\gamma}{\rho^{j} \tau^{k}} x$, where x is τ-free in Ext ${ }_{C}$. Moreover, the degree of x is $(s-j, f, w-j-k-1)$.
Using a vanishing result for Ext $\mathbb{C}_{\mathbb{C}}$ [GI2, Theorem 1.1], we know that

$$
f \leq \frac{1}{2}(s-k)+\frac{3}{2}
$$

Since k is non-negative, it follows that $f \leq \frac{1}{2} s+\frac{3}{2}$.
Lemma 3.6. In coweight 1 , the localization $E_{1}\left[h_{1}^{-1}\right]$ of the Bockstein E_{1}-page vanishes.
Proof. We know that $\operatorname{Ext}_{\mathbb{C}}\left[h_{1}^{-1}\right]$ vanishes in coweight 1 [GI, Theorem 1.1]. Therefore $E_{1}^{+}\left[h_{1}^{-1}\right]$ and $Q E_{1}^{-}\left[h_{1}^{-1}\right]$ both vanish. Finally, $\gamma E_{1}^{-}\left[h_{1}^{-1}\right]$ also vanishes because there are no τ-free classes in $\operatorname{Ext}_{\mathbb{C}}\left[h_{1}^{-1}\right]$.

4 Some Bockstein differentials

The goal of this section is to compute some explicit Bockstein differentials that we will need for our analysis of the Bredon-Landweber region.
Lemma 4.1. For $k \geq 0$,

$$
\begin{gathered}
d_{1}\left(\frac{\gamma}{\rho \tau^{2 k+1}}\right)=\frac{\gamma}{\tau^{2 k+2}} h_{0} \\
d_{2}\left(\frac{\gamma}{\rho^{2} \tau^{4 k+2}}\right)=\frac{\gamma}{\tau^{4 k+3}} h_{1} \\
d_{3}\left(\frac{\gamma}{\rho^{3} \tau^{4 k+4}}\right)=0
\end{gathered}
$$

Proof. These formulas follow from the Leibniz rule and the \mathbb{R}-motivic Bockstein differentials $d_{1}\left(\tau^{2 k+1}\right)=\rho \tau^{2 k} h_{0}, d_{2}\left(\tau^{4 k+2}\right)=\rho^{2} \tau^{4 k+1} h_{1}$, and $d_{3}\left(\tau^{4 k+4}\right)=0$ [DI, Proposition 3.2].
More specifically, start with the relation $\tau^{2 k+1} \cdot \frac{\gamma}{\rho \tau^{2 k+1}}=0$. Apply the d_{1} differential to obtain

$$
0=\rho \tau^{2 k} h_{0} \cdot \frac{\gamma}{\rho \tau^{2 k+1}}+\tau^{2 k+1} \cdot d_{1}\left(\frac{\gamma}{\rho \tau^{2 k+1}}\right)=\frac{\gamma}{\tau} h_{0}+\tau^{2 k+1} \cdot d_{1}\left(\frac{\gamma}{\rho \tau^{2 k+1}}\right)
$$

Therefore, $d_{1}\left(\frac{\gamma}{\rho \tau^{2 k+1}}\right)$ must equal $\frac{\gamma}{\tau^{2 k+2}} h_{0}$.
The second and third formulas follow from a similar argument, starting with the relations $\tau^{4 k+2} \cdot \frac{\gamma}{\rho^{2} \tau^{4 k+2}}=0$ and $\tau^{4 k+4} \cdot \frac{\gamma}{\rho^{2} \tau^{4 k+4}}=0$.

Lemma 4.2. For $k \geq 0$, the elements $\tau P^{k} h_{1}, P^{k} h_{2}$, and $\tau P^{k} c_{0}$, are permanent cycles in the \mathbb{R}-motivic ρ-Bockstein spectral sequence.

Proof. We can express the classes $\tau P^{k} h_{1}$ recursively as matric Massey products [Q]:

$$
\tau P^{k} h_{1}=\left\langle\left[\begin{array}{ll}
h_{3} & c_{0}
\end{array}\right],\left[\begin{array}{c}
h_{0}^{4} \\
\rho^{3} h_{1}^{2}
\end{array}\right], \tau P^{k-1} h_{1}\right\rangle
$$

The May Convergence Theorem [M, Theorem 4.1] [I, Theorem 2.2.1], applied to the ρ-Bockstein spectral sequence, shows that $\tau P^{k} h_{1}$ is a permanent cycle. Similarly, we have recursive matric Massey products

$$
\begin{aligned}
P^{k} h_{2} & =\left\langle\left[\begin{array}{ll}
h_{3} & c_{0}
\end{array}\right],\left[\begin{array}{c}
h_{0}^{4} \\
\rho^{3} h_{1}^{2}
\end{array}\right], P^{k-1} h_{2}\right\rangle \\
\tau P^{k} c_{0} & =\left\langle\left[\begin{array}{ll}
h_{3} & c_{0}
\end{array}\right],\left[\begin{array}{c}
h_{0}^{4} \\
\rho^{3} h_{1}^{2}
\end{array}\right], \tau P^{k-1} c_{0}\right\rangle .
\end{aligned}
$$

Lemma 4.3. For $k \geq 0$,

$$
\begin{gathered}
d_{3}\left(\tau^{3} P^{k} h_{0}^{3} h_{3}\right)=\rho^{3} \tau P^{k+1} h_{1} \\
d_{3}\left(\tau^{3} P^{k} h_{1} c_{0}\right)=\rho^{3} P^{k+1} h_{2}
\end{gathered}
$$

Proof. By [DI, Theorem 4.1], the only classes in $\operatorname{Ext}_{\mathbb{R}}\left[\rho^{-1}\right]$ that survive the ρ inverted Bockstein spectral sequence are those satifsying $s+f-2 w=0$. Since $\tau P^{k} h_{1}$ does not satisfy this equation, either it supports a Bockstein differential, or $\rho^{r} \tau P^{k} h_{1}$ is hit by a Bockstein differential for some r. But Lemma 4.2 shows that $\tau P^{k} h_{1}$ does not support a differential. Therefore, $\rho^{r} \tau P^{k} h_{1}$ must be hit by some differential. By inspection, there is only one possibility. This establishes the first formula.
The same argument applies to establish the second formula.
Lemma 4.4. For $k \geq 1$,

$$
\begin{gathered}
d_{4 k-1}\left(\frac{Q}{\rho^{4 k-1}} h_{1}^{4 k}\right)=\frac{\gamma}{\tau^{4 k-1}} P^{k-1} h_{0}^{3} h_{3} . \\
d_{4 k}\left(\frac{Q}{\rho^{4 k}} h_{1}^{4 k+1}\right)=\frac{\gamma}{\tau^{4 k}} P^{k} h_{1}
\end{gathered}
$$

Proof. The class $\frac{Q}{\rho^{4 k}} h_{1}^{4 k}$ restricts to a class of the same name in Ext over $\mathcal{A}(1)^{C_{2}}$. There, we have

$$
d_{4 k}\left(\frac{Q}{\rho^{4 k}} h_{1}^{4 k}\right)=\frac{\gamma}{\tau^{4 k}} b^{k}
$$

by [GHIR, Proposition 7.9]. The second formula follows immediately from this, since $P^{k} h_{1}$ restricts to $h_{1} b^{k}$.

On the other hand, the Bockstein class $\frac{\gamma}{\tau^{4 k}} b^{k}$ is not in the image of the restriction from the ρ-Bockstein spectral sequence over $\mathcal{A}^{C_{2}}$, so $\frac{Q}{\rho^{4 k}} h_{1}^{4 k}$ must support a shorter Bockstein differential over $\mathcal{A}^{C_{2}}$. The claimed differential is the only possibility.

Table 1 summarizes the key differential calculations that we will need later.
Table 1: Key Bockstein differentials

c	(s, f, w)	element	r	d_{r}
$-2 k-2$	$(1,0,2 k+3)$	$\frac{\gamma}{\rho \tau^{2 k+1}}$	1	$\frac{\gamma}{\tau^{2 k+2}} h_{0}$
$-4 k-3$	$(2,0,4 k+5)$	$\frac{\gamma}{\rho^{2} \tau^{4 k+2}}$	2	$\frac{\gamma}{\tau^{4 k+3}} h_{1}$
$4 k+6$	$(8 k+7,4 k+4,4 k+1)$	$\tau^{3} P^{k} h_{0}^{3} h_{3}$	3	$\rho^{3} \tau P^{k+1} h_{1}$
$4 k+6$	$(8 k+9,4 k+4,4 k+3)$	$\tau^{3} P^{k} h_{1} c_{0}$	3	$\rho^{3} P^{k+1} h_{2}$
0	$(8 k, 4 k-1,8 k)$	$\frac{Q}{\rho^{4 k-1}} h_{1}^{4 k}$	$4 k-1$	$\frac{\gamma}{\tau^{4 k-1} P^{k-1} h_{0}^{3} h_{3}}$
0	$(8 k+2,4 k, 8 k+2)$	$\frac{Q}{\rho^{4 k+1}} h_{1}^{4 k+1}$	$4 k$	$\frac{\gamma}{\tau^{4 k} P^{k} h_{1}}$

$5 \operatorname{Ext}_{C_{2}}$ IN COWEIGHT 0

Proposition 5.1 explicitly describes a large part of $\operatorname{Ext}_{C_{2}}$ in coweight 0. This result is more easily understood in the Ext chart in Figure 1, where we are considering only elements above the shaded region.

Proposition 5.1. In degrees (s, f, w) satisfying $s-w=0$ and $f>\frac{1}{2} s-1$, $\mathrm{Ext}_{C_{2}}$ consists of the following classes:

1. h_{0}^{k} for $k \geq 0$.
2. $\rho^{j} h_{1}^{k}$ for $j \geq 0$ and $k \geq 0$.
3. $\frac{Q}{\rho^{j}} h_{1}^{4 k+\varepsilon}$, with $k \geq 1,0 \leq \varepsilon \leq 3$ and:
(a) $j \leq 4 k-2$ when $\varepsilon=0$.
(b) $j \leq 4 k-1$ when $1 \leq \varepsilon \leq 3$.

Proof. Lemma 3.1 explains how the classes h_{0}^{k} and $\rho^{j} h_{1}^{k}$ arise in Ext $\mathbb{R}_{\mathbb{R}}$. It remains to study $\operatorname{Ext}_{N C}$.
The desired elements of the form $\frac{Q}{\rho^{0}} h_{1}^{4 k+\varepsilon}$ arise from the differentials in Lemma 4.4. Proposition 3.3 implies that these elements cannot be involved in any further differentials.
There are several additional Adams periodic families of elements in the Bockstein E_{1}-page that lie above the line $f=\frac{1}{2} s-1$ in coweight 0 . All of these elements are the targets of Bockstein differentials, as shown in Table 2, so they
do not appear in $\operatorname{Ext}_{C_{2}}$. Each differential in Table 2 follows from the Leibniz rule and the differentials in Table 1.
However, the last three calculations are not entirely obvious. In these cases, write

$$
\begin{aligned}
\frac{\gamma}{\rho^{2} \tau^{4 k+1}} P^{k} c_{0} & =\frac{\gamma}{\rho^{2} \tau^{4 k+2}} \cdot \tau P^{k} c_{0} \\
\frac{\gamma}{\rho^{3} \tau^{4 k+1}} P^{k} h_{0}^{3} h_{3} & =\frac{\gamma}{\rho^{3} \tau^{4 k+4}} \cdot \tau^{3} P^{k} h_{0}^{3} h_{3} \\
\frac{\gamma}{\rho^{3} \tau^{4 k+1}} P^{k} h_{1} c_{0} & =\frac{\gamma}{\rho^{3} \tau^{4 k+4}} \cdot \tau^{3} P^{k} h_{1} c_{0}
\end{aligned}
$$

and then apply the Leibniz rule to these products.
Table 2: Some Bockstein differentials in coweight 1

c	(s, f, w)	element	r	d_{r}
1	$(8 k+3,4 k+1,8 k+2)$	$\frac{\gamma}{\rho^{2} \tau^{4 k-2}} P^{k} h_{1}$	2	$\frac{\gamma}{\tau^{4 k-1}} P^{k} h_{1}^{2}$
1	$(8 k+4,4 k+1,8 k+3)$	$\frac{\gamma}{\rho \tau^{4 k-1}} P^{k} h_{2}$	1	$\frac{\gamma}{\tau^{4 k}} P^{k} h_{0} h_{2}$
1	$(8 k+4,4 k+2,8 k+3)$	$\frac{\gamma}{\rho \tau^{k+1}} P^{k} h_{0} h_{2}$	1	$\frac{\gamma}{\tau^{4 k-1}} P^{k} h_{1}^{3}$
1	$(8 k+8,4 k+2,8 k+7)$	$\frac{\gamma}{\rho \tau^{4 k+1}} P^{k} h_{0} h_{3}$	1	$\frac{\gamma}{\tau^{4 k+2}} P^{k} h_{0}^{2} h_{3}$
1	$(8 k+8,4 k+3,8 k+7)$	$\frac{\gamma}{\rho \tau^{4 k+1}} P^{k} h_{0}^{2} h_{3}$	1	$\frac{\gamma}{\tau^{4 k+2}} P^{k} h_{0}^{3} h_{3}$
1	$(8 k+10,4 k+3,8 k+9)$	$\frac{\gamma}{\rho^{2} \tau^{4 k+1}} P^{k} c_{0}$	2	$\frac{\gamma}{\tau^{4 k+2}} P^{k} h_{1} c_{0}$
1	$(8 k+10,4 k+4,8 k+9)$	$\frac{\gamma}{\rho^{3} \tau^{4 k+1}} P^{k} h_{0}^{3} h_{3}$	3	$\frac{\gamma}{\tau^{4 k+3}} P^{k+1} h_{1}$
1	$(8 k+12,4 k+4,8 k+11)$	$\frac{\gamma}{\rho^{3} \tau^{4 k+1}} P^{k} h_{1} c_{0}$	3	$\frac{\gamma}{\tau^{4 k+4}} P^{k+1} h_{2}$

Figure 1 also shows some classes that are not part of the Bredon-Landweber region. These classes arise in the shaded part of the chart. The structure there is quite complicated, and it will be analyzed in a range in future work.

6 The Adams spectral sequence

We show in Proposition 6.1 that the entire Bredon-Landweber region described in Proposition 5.1 survives the C_{2}-equivariant Adams spectral sequence.

Proposition 6.1. No element listed in Proposition 5.1 is either the target or the source of an Adams differential.

Proof. Except for the elements h_{0}^{k}, all of the classes in the Bredon-Landweber region are h_{1}-periodic. Therefore, any class supporting an Adams differential into the Bredon-Landweber region would be h_{1}-periodic and of coweight 1. Lemma 3.6 shows that there are no such classes.

On the other hand, the elements h_{0}^{k} are h_{0}-periodic. By inspection in low dimensions, there are no h_{0}-periodic elements that could support differentials whose values are h_{0}^{k}.
Adams differentials on the classes in the Bredon-Landweber region lie in the vanishing region of Proposition 3.5. Therefore, these classes must be permanent cycles.

Figure 2 shows the Bredon-Landweber region in the Adams E_{∞}-page. Similarly to the Adams E_{2}-page in Figure 1, there are additional classes in the shaded part of the chart that we will consider in future work.
We now analyze hidden ρ extensions in the Bredon-Landweber region. The key tool is Proposition 6.2.
Proposition 6.2. The kernel of $U: \pi_{n, k}^{C_{2}} \longrightarrow \pi_{n}$, the underlying homomorphism, is the image of $\rho: \pi_{n-1, k-1}^{C_{2}} \longrightarrow \pi_{n, k}^{C_{2}}$.

Proof. This follows immediately from the cofiber sequence

$$
\left(C_{2}\right)_{+} \longrightarrow S^{0,0} \xrightarrow{\rho} S^{1,1},
$$

using the free-forgetful adjunction between equivariant homotopy classes $\left(C_{2}\right)_{+} \longrightarrow X$ and classical homotopy classes from S^{0} to the underlying spectrum of X.
Lemma 6.3. For $k \geq 4$, there is a hidden ρ extension from $Q h_{1}^{k}$ to h_{1}^{k}.
Proof. The classical Hopf map η_{cl} in π_{1} is the underlying map of the equivariant Hopf map η in $\pi_{1,1}^{C_{2}}$. Let $k \geq 4$. Since $\left(\eta_{\mathrm{cl}}\right)^{k}=0$ in π_{k}, Proposition 6.2 implies that η^{k} must be a multiple of ρ. The only possibility is that there is a hidden ρ extension from $Q h_{1}^{k}$ to h_{1}^{k}.

The hidden extensions of Lemma 6.3 appear in Figure 2 as dashed lines of negative slope.
In principle, it would be possible for there to be additional hidden ρ extensions whose sources lie in the shaded part of Figure 2 and whose targets lie in the Bredon-Landweber region. Lemma 6.4 eliminates this possibility.

Lemma 6.4. There are no hidden ρ-extensions whose targets lie in the BredonLandweber region.

Proof. We use the unit map $S^{0,0} \longrightarrow k o_{C_{2}}$ for the C_{2}-equivariant connective real K-theory spectrum, as studied in [GHIR]. The entire Bredon-Landweber region is detected by the Adams E_{∞}-page for $k o_{C_{2}}$. Therefore, a hidden ρ extension into the Bredon-Landweber region would be detected by a ρ extension in the homotopy of $k o_{C_{2}}$.
There are in fact some elements in the homotopy of $k o_{C_{2}}$ that support ρ extensions into the image of the Bredon-Landweber pattern. These elements are
detected by $\frac{Q}{\rho^{4 k-4}} h_{1}^{4 k-1}$ and $\frac{Q}{\rho^{4 k-1}} h_{1}^{4 k}$ in the Adams E_{∞}-page for $k o_{C_{2}}$. We must show that they do not lie in the image of the unit map.
These elements support infinite towers of h_{0}-multiplications in the Adams $E_{\infty^{-}}$ page for $k o_{C_{2}}$. Therefore, they cannot lie in the image of the unit map, since the Adams E_{∞}-page in Figure 2 does not include elements that support infinite towers of h_{0}-multiplications in the relevant degrees.

We have now collected enough results to prove Theorem 1.1, Corollary 1.2, and Corollary 1.3.

Proof of Theorem 1.1. The C_{2}-equivariant element η^{k} is detected by h_{1}^{k} in the Adams E_{∞}-page. Lemma 6.3 and Proposition 5.1 give a lower bound on the power of ρ that divides η^{k}, and Lemma 6.4 gives an upper bound on this power of ρ.

Proof of Corollary 1.2. The geometric fixed points homomorphism ϕ takes the values $\phi(\rho)=1$ and $\phi(\eta)=-2$. (The minus sign in $\phi(\eta)$ depends on choices of orientations and is inconsequential to the proof.) Consequently, $\phi(\alpha)=0$ if α is not ρ-periodic, i.e., if α is detected below the Bredon-Landweber region. The corollary now follows from Theorem 1.1.

Proof of Corollary 1.3. Recall [DI, Section 8] that h_{0} detects $2+\rho \eta$. Therefore, for homotopy classes detected by h_{0}-torsion classes, multiplication by 2 coincides with multiplication by $-\rho \eta$. Thus η^{k} is divisible by 2^{m} if and only if η^{k-m} is divisible by ρ^{m}. This latter condition can be determined by Theorem 1.1.

7 The Mahowald invariant of 2^{k}

The goal of this section is compute the Mahowald invariant of 2^{k} for all $k \geq 0$. We begin by determining the values of the underlying homomorphism U : $\pi_{s, s}^{C_{2}} \longrightarrow \pi_{s}$ on classes in the Bredon-Landweber region. Proposition 6.2 implies that $U(\alpha)$ is necessarily zero when α is divisible by ρ. On the other hand, $U(\alpha)$ is always non-zero when α is not divisible by ρ.

Theorem 7.1. The underlying homomorphism $U: \pi_{s, s}^{C_{2}} \longrightarrow \pi_{s}$ takes values as described in Table 3.

Proof. The underlying homomorphism U induces a map of Adams spectral sequences $\operatorname{Ext}_{C_{2}} \longrightarrow \operatorname{Ext}_{\mathrm{cl}}$. This map of spectral sequences detects the first four values in Table 3.
The summand $\operatorname{Ext}_{N C}$ lies in the kernel of this map of spectral sequences. Therefore, if α in $\pi_{n, k}^{C_{2}}$ is detected by an element of $\operatorname{Ext}_{N C}$, then $U(\alpha)$ must be detected in strictly higher Adams filtration. For each of the last four entries in Table 3, there is only one possible element in higher Adams filtration.

Table 3: Some values of the underlying homomorphism

s	α detected by	$U(\alpha)$ detected by
0	1	1
1	h_{1}	h_{1}
2	h_{1}^{2}	h_{1}^{2}
3	h_{1}^{3}	h_{1}^{3}
$8 k-1$	$\frac{Q}{\rho^{4 k-2}} h_{1}^{4 k}$	$P^{k-1} h_{0}^{3} h_{3}$
$8 k+1$	$\frac{Q}{\rho^{4 k-1}} h_{1}^{4 k+1}$	$P^{k} h_{1}$
$8 k+2$	$\frac{Q}{\rho^{4 k-1}} h_{1}^{4 k+2}$	$P^{k} h_{1}^{2}$
$8 k+3$	$\frac{Q}{\rho^{4 k-1}} h_{1}^{4 k+3}$	$P^{k} h_{1}^{3}$

The underlying homomorphism U plays a central role in the Mahowald root invariant $[\mathrm{MR}]$. The Bruner-Greenlees formulation of the Mahowald invariant of a homotopy class is given as follows [BG]. First, recall that the geometric fixed points homomorphism $\phi: \pi_{n, k}^{C_{2}} \longrightarrow \pi_{n-k}$ gives rise to an isomorphism [AI, Proposition 7.0]

$$
\pi_{*, *}^{C_{2}}\left[\rho^{-1}\right] \cong \pi_{*}\left[\rho^{ \pm 1}\right]
$$

Then the Mahowald invariant is defined via the diagram

Here the dashed arrow picks out an element from the largest possible stem. More precisely, given a classical stable homotopy class α in π_{k}, one first chooses an equivariant stable homotopy class β in $\pi_{n, n-k}^{C_{2}}$ such that $\phi(\beta)=\alpha$ and such that n is as large as possible. In particular, β is not divisible by ρ, for otherwise n would not be maximal. Then $M(\alpha)$ contains the element $U(\beta)$. Beware that there can be more than one choice for β, so the Mahowald invariant has indeterminacy in general.
Our C_{2}-equivariant calculations allow us to easily recover the Mahowald invariants of 2^{k} ([MR, Theorem 2.17]).

THEOREM 7.2. Let $k=4 j+\varepsilon \geq 4$ with $0 \leq \varepsilon \leq 3$. The Mahowald invariant of 2^{k} contains an element that is detected by

$P^{j-1} h_{0}^{3} h_{3}$	if $\varepsilon=0$.
$P^{j} h_{1}$	if $\varepsilon=1$.
$P^{j} h_{1}^{2}$	if $\varepsilon=2$.
$P^{j} h_{1}^{3}$	if $\varepsilon=3$.

Proof. Theorem 1.1 determines the value of β in the Bruner-Greenlees formulation of the Mahowald invariant. Then Theorem 7.1 gives the value of $U(\beta)$.

Remark 7.3. The indeterminacy in $M\left(2^{k}\right)$ is determined by the values of the underlying map on classes that are detected in the shaded region of Figure 2. It does not seem possible to predict the indeterminacy of $M\left(2^{k}\right)$ in general. However, inspection in low dimensions shows that the indeterminacy of $M\left(2^{5}\right)$ is generated by elements detected by $h_{1}^{2} h_{3}$ and $h_{1} c_{0}$, while $M\left(2^{k}\right)$ has no indeterminacy for all other values of $k \leq 8$. This indeterminacy calculation depends on a detailed analysis of the shaded region of Figure 2 and will be justified in future work.

8 Charts

Here is a key for reading the charts of Figure 1, Figure 2, and Figure 3:

1. Blue dots indicate copies of \mathbb{F}_{2} from Ext $_{\mathbb{R}}$ (or Ext over the \mathbb{R}-motivic version of $\mathcal{A}(1)$ in the case of Figure 3).
2. Gray dots indicate copies of \mathbb{F}_{2} from $\operatorname{Ext}_{N C}$ (or from the negative cone part of Ext over $\mathcal{A}^{C_{2}}(1)$ in the case of Figure 3).
3. Horizontal lines indicate multiplications by ρ.
4. Dashed lines of negative slope indicate ρ extensions that are hidden in the Adams spectral sequence.
5. Vertical lines indicate multiplications by h_{0}.
6. Vertical arrows indicate infinite sequences of multiplications by h_{0}.
7. Lines of slope 1 indicate multiplications by h_{1}.

Figure 1

Figure 2

Documenta Mathematica 25 (2020) 1865-1880

Figure 3

References

[AI] S. Araki and K. Iriye. Equivariant stable homotopy groups of spheres with involutions. I. Osaka J. Math. 19 (1982), no. 1, 1-55.
[Br] G.E. Bredon. Equivariant stable stems. Bull. Amer. Math. Soc. 73 (1967) 269-273.
[BG] B. Bruner and J. Greenlees. The Bredon-Löffler conjecture. Experiment. Math. 4 (1995), no. 4, 289-297.
[DI] D. Dugger and D. C. Isaksen. Low dimensional Milnor-Witt stems over \mathbb{R}. Ann. K-Theory 2 (2017), no. 2, 175-210.
[G] J.P.C. Greenlees. Adams spectral sequences in equivariant topology. Ph.D. Thesis, University of Cambridge, 1985.
[GHIR] B. Guillou, M. A. Hill, D. C. Isaksen, and D. C. Ravenel. The cohomology of C_{2}-equivariant $\mathcal{A}(1)$ and the homotopy of $k o_{C_{2}}$. Tunis. J. Math. 2 (2020), no. 3, 567-632.
[GI] B. Guillou and D. C. Isaksen. The η-local motivic sphere. J. Pure Appl. Algebra 219 (2015) 4728-4756.
[GI2] B. Guillou and D.C. Isaksen. The motivic Adams vanishing line of slope $\frac{1}{2}$. New York J. Math. 21 (2015), 533-545.
[H] M. A. Hill. Ext and the motivic Steenrod algebra over \mathbb{R}. J. Pure Appl. Algebra 215 (2011) 715-727.
[HK] P. Hu and I. Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence. Topology 40 (2001), no. 2, 317-399.
[I] D. C. Isaksen. Stable stems. Mem. Amer. Math. Soc. 262 (2019), no. 1269.
[I2] D. C. Isaksen. Classical and motivic Adams charts. Available as arXiv preprint arXiv:1401.4983.
[L] P. Landweber. On equivariant maps between spheres with involutions. Ann. of Math. 89 (1969) 125-137.
[M] J. P. May. Matric Massey products. J. Algebra 12 (1969) 553-568.
[MR] M. Mahowald and D. Ravenel. The root invariant in homotopy theory. Topology 32 (1993), no. 4, 865-898.
[N$] \quad$ G. Nishida. The nilpotency of elements of the stable homotopy groups of spheres. J. Math. Soc. Japan 25 (1973) 707-732.
[Q] J.D. Quigley. The motivic Mahowald invariant. Algebr. Geom. Topol. 19 (2019), no. 5, 2485-2534.
[R] D. C. Ravenel. Complex cobordism and stable homotopy groups of spheres. Pure and Applied Mathematics 121, Academic Press, 1986.

Bertrand J. Guillou
Department of Mathematics University of Kentucky Lexington, KY 40506 USA
bertguillou@uky.edu

Daniel C. Isaksen
Department of Mathematics Wayne State University
Detroit, MI 48202
USA
isaksen@wayne.edu

