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Abstract. We prove the boundedness of global strong (δ, n)-
complements for generalized ǫ-log canonical pairs of Fano-type. We
also prove some partial results towards boundedness of local strong
(δ, n)-complements for semi-stable morphisms. As applications, we
prove an effective generalized canonical bundle formula for genera-
lized klt pairs and an effective generalized adjunction formula for ex-
ceptional generalized log canonical centers. Moreover, we prove that
the existence of strong (δ, n)-complements implies a conjecture due
to McKernan concerning the singularities of the base of a Mori fiber
space.
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1 Introduction

The theory of complements was introduced by Shokurov in [Sho92] to study
3-fold log flips. This technique applies to the analysis of contractions of normal
varieties X → Z with X of Fano-type over a neighborhood of Z. Given a
point z ∈ Z with X ǫ-log canonical over z, it is predicted that there exist
a positive integer n and a non-negative real number δ, both depending only
on dimX and ǫ, such that the linear system | − nKX | contains an element Γ
with (X,Γ/n) δ-log canonical over z. This conjecture is known as boundedness
of strong (δ, n)-complements in dimension d. It is expected that we can take
δ = ǫ [Bir04, Conjecture 1.1.3]. In the above setting, the case ǫ = δ = 0
(resp. ǫ ≥ δ > 0) corresponds to the study of log canonical complements
(resp. klt complements). If Z is the spectrum of an algebraically closed field of
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characteristic zero, we say that we are in the global setting; otherwise, we say
that we are in the local setting.
In [Sho00], Shokurov introduced more general forms of complements for log
pairs and he proved the existence of bounded (0, n)-complements for surfaces.
Then, Prokhorov proved boundedness of (0, n)-complements for threefold ex-
tremal contractions and threefold conic fibrations [Pro00,Pro01]. In [PS01],
Prokhorov and Shokurov proved that boundedness of (0, n)-complements in
the local setting in dimension d follows from the minimal model program in di-
mension d and the existence of bounded global (0, n)-complements in dimension
d−1. In [Bir04], Birkar proved the existence of bounded (δ, n)-complements for
surfaces. Kudryavtsev used the theory of complements to study log del Pezzo
surfaces with no discrepancy less than − 6

7 [Kud04], and Kudryavtsev and Fe-
dorov classified non-Q-complemented surfaces [KF04]. In [PS09], Prokhorov
and Shokurov proved that boundedness of (0, n)-complements follows from the
conjecture of effective adjunction and the Borisov–Alexeev–Borisov conjecture
(or BAB conjecture for short).
Finally, boundedness of strong (0, n)-complements for log canonical pairs was
solved by Birkar [Bir19, Theorem 1.8]. This is an essential technique in the
proof of the BAB conjecture [Bir16b, Theorem 1.1]. In this paper, we con-
jecture the following version of boundedness of strong (δ, n)-complements for
generalized pairs:

Conjecture 1.1. Let d and p be two natural numbers, ǫ ∈ [0, 1), and Λ ⊂ Q a

set satisfying the descending chain condition with rational accumulation points.

There exist a natural number n and a non-negative real number δ only depending
on d, p, ǫ and Λ satisfying the following. Let X → Z be a contraction between

normal quasi-projective varieties, (X,B +M) be a generalized ǫ-log canonical

pair of dimension d such that

• −(KX +B +M) is nef over Z;

• X is of Fano-type over Z;

• coeff(B) ⊂ Λ; and

• pM ′ is Cartier.

Then, for every point z ∈ Z there exists a strong (δ, n)-complement for (X,B+
M) over z. Moreover, we can pick δ > 0 if ǫ > 0.

In [Bir19, Theorem 1.10], Birkar proved Conjecture 1.1 in the global setting
when ǫ = δ = 0 and Λ is a set of hyperstandard coefficients (see, e.g., [Bir19,
Section 2.2]). Moreover, in [Bir19, Theorem 1.8], Birkar proved Conjecture 1.1
in the local setting for ǫ = δ = 0, M ′ = 0 and Λ a set of hyperstandard
coefficients.
We prove the statement of the conjecture in the local setting for generalized log
canonical pairs. This is a generalization of [Bir19, Theorem 1.8] to the setting
of generalized pairs.
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Theorem 1.2. Conjecture 1.1 holds for δ = ǫ = 0.

Using techniques introduced by Birkar in [Bir19] to prove boundedness of (0, n)-
complements and boundedness of Fano varieties [Bir16b, Theorem 1.1], we
prove the global version of Conjecture 1.1:

Theorem 1.3. Conjecture 1.1 holds if Z = Spec(k), where k is an algebraically

closed field of characteristic zero, in the following cases:

1. ǫ = 0;

2. M ′ is trivial; or

3. Λ is finite.

Moreover, in any case, we can take δ = ǫ.

The third theorem of this paper is a partial result towards boundedness of local
strong (δ, n)-complements. The main techniques involved in the proof of this
statement are the theory of semi-stable families and the theory of local log
canonical complements.

Theorem 1.4. Let m be a positive integer and ǫ a positive real number. Then,

Conjecture 1.1 holds if Λ is finite, M ′ is trivial, mKZ is Cartier and X → Z
is a semi-stable morphism for the pair (X,B). Moreover, we can take δ > 0
depending on m and the setup of Conjecture 1.1.

Now, we turn to discuss some applications of the main theorems. The first
application is related to the canonical bundle formula and adjunction for-
mula for generalized pairs. Generalized divisorial adjunction was introduced
in [BZ16,Bir19] and then generalized to centers of higher codimension in [Fil20].
However, in the latter case, it is not known how to control the coefficients of
the induced generalized pair. Our first result in this direction is an effective
version of the generalized canonical bundle formula:

Theorem 1.5. Let d and p be two natural numbers and Λ ⊂ Q be a set satis-

fying the descending chain condition with rational accumulation points. Then,

there exist a natural number q and a set Ω ⊂ Q satisfying the descending chain

condition with rational accumulation points, only depending on d, p and Λ,
satisfying the following. Let f : X → Z be a contraction between normal quasi-

projective varieties, (X,B +M) be a generalized log canonical pair of dimen-

sion d such that

• KX +B +M ∼Q,Z 0;

• (X,B +M) is generalized klt over the generic point of Z;

• X is of Fano-type over a non-trivial open set U of Z;

• coeff(B) ⊂ Λ; and
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• pM ′ is Cartier.

Then there exists a generalized log canonical pair (Z,BZ +MZ) on Z, so that

• KX+B+M ∼Q f
∗(KZ+BZ+MZ), and this formula is preserved under

base change;

• coeff(BZ) ⊂ Ω; and

• qM ′
Z is Cartier.

Remark 1.6. The generalized pair (Z,BZ+MZ) in Theorem 1.5 is induced by
(X,B+M) via the generalized canonical bundle formula [Fil20, Theorem 1.4].

The second result in this direction is an effective version of generalized adjunc-
tion to exceptional generalized log canonical centers:

Corollary 1.7. Let d and p be two natural numbers and Λ ⊂ Q be a set satis-

fying the descending chain condition with rational accumulation points. Then,

there exist a natural number q and a set Ω ⊂ Q satisfying the descending chain

condition with rational accumulation points, only depending on d, p and Λ, sat-
isfying the following. Let (X,B + M) be a generalized log canonical pair of

dimension d such that

• W ⊂ X is an exceptional generalized log canonical center of (X,B+M);

• coeff(B) ⊂ Λ; and

• pM ′ is Cartier.

Then there exists a generalized pair (W,BW +MW ) on W , so that

• (KX + B +M)|W ∼Q KW + BW +MW , and this formula is preserved

under base change;

• coeff(BW ) ⊂ Ω; and

• qM ′
W is Cartier.

Remark 1.8. The generalized pair (W,BW +MW ) in Corollary 1.7 is induced
by (X,B +M) via generalized adjunction [Fil20, Theorem 1.5].

Finally, we discuss the relation between the existence of klt complements and a
conjecture due to McKernan concerning the singularities of the base of a Mori
fiber space [Bir18, Conjecture 6.2].

Conjecture 1.9. Let d be a natural number and ǫ a positive real number.

Then there exists a positive real number δ depending on d and ǫ such that

the following holds. If X → Z is a Mori fiber space and X is a Q-factorial

projective variety of dimension d with ǫ-log canonical singularities, then Z is

δ-log canonical.
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Regarding this conjecture, we prove the following statement.

Theorem 1.10. Conjecture 1.1 implies Conjecture 1.9. Moreover, Conjec-

ture 1.9 holds if we allow δ to depend on the Cartier index of KX.

The main technique involved in the proof of the above proposition is a known
case of a conjecture of Shokurov [Bir18, Conjecture 6.3] due to Birkar [Bir16a].
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2 Preliminary results

Throughout this paper, we work over an algebraically closed field k of charac-
teristic zero. All varieties considered in this paper are normal unless otherwise
stated. In this section, we will collect some definitions and preliminary results
which will be used in this article.

2.1 Contractions

In this paper a contraction is a projective morphism of quasi-projective varieties
f : X → Z with f∗OX = OZ . Notice that, if X is normal, then so is Z.

2.2 Divisors and linear series

Let X be a normal quasi-projective variety. We say that D is a divisor on X
if it is a Q-Weil divisor, i.e., D is a finite sum of prime divisors on X with
coefficients in Q. Let f : X → Z be a projective morphism of quasi-projective
varieties. Let D1 and D2 be divisors on X . We write D1 ∼Z D2 (respectively
D1 ∼Q,Z D2) if there is a Cartier (respectively Q-Cartier) divisor L on Z such
that D1 − D2 ∼ f∗L (respectively D1 − D2 ∼Q f∗L). Equivalently, we may
also write D1 ∼ D2 over Z. The case of Q-linear equivalence is also denoted
similarly. Let z be a point in Z. We write D1 ∼ D2 over z if D1 ∼Z D2 holds
after possibly shrinking Z around z. We also make use of the analogous notion
for Q-linear equivalence.

Definition 2.1. Let f : X → Z be a projective morphism of quasi-projective
varieties and D an integral Weil divisor on X . Fix a (not necessarily closed)
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point z ∈ Z. We want to define an appropriate notion of general ele-

ment of |OX(D)| over z. Without loss of generality, we may take projec-
tive closures of Z and X , and assume that they are projective varieties.
Let U = Spec(A) ⊂ Z be an affine open subset containing z, and write
XU := f−1(U). Let H be an ample and effective Cartier divisor supported on
Z \ U . In particular, we have H |U ∼ 0.
Now, H0(XU ,OXU

(D|U )) is a finitely generated A-module [Har77, Theorem
II.5.19]. Therefore, for any section s ∈ H0(XU ,OXU

(D|XU
)) there exists n ∈ N

such that s ∈ H0(X,OX(D + nf∗H)). Thus, we have

H0(XU ,OXU
(D|U )) =

⋃

n∈N

H0(X,OX(D + nf∗H)).

Hence, when we refer to a general element of |OX(D)| over z, we mean a general
element of the linear system |OX(D + nf∗H)| for n≫ 0.

2.3 Generalized pairs and singularities

In this subsection, we recall the definition of generalized pairs (see, e.g., [BZ16]),
which is a generalization of the classic setting of log pairs (see, e.g., [KM98]).
We will prove some basic properties regarding the singularities of generalized
pairs.

Definition 2.2. A generalized sub-pair is a triple (X,B +M), where X is a
normal quasi-projective variety, KX +B +M is a Q-Cartier divisor, and M is
the push-forward of a nef divisor on a higher model of X . More precisely, there
exist a projective birational morphism π : X ′ → X and a nef Q-Cartier divisor
M ′ on X ′ so that π∗(M ′) = M . If B is an effective divisor, we will say that
(X,B +M) is a generalized pair.
In the above situation, we usually call B the boundary part, M the moduli

part and B +M a generalized boundary. We may say that (X,B +M) is a
generalized pair with data X ′ and M ′. The divisor M ′ induces a birational
Q-Cartier divisor which descends on X ′ in the sense of [Cor07, Secion 1.7].
Hence, we can always replace X ′ with a higher birational model and M ′ with
its pull-back without changing the generalized pair.
Replacing X ′ with a higher birational model, we may assume that the excep-
tional locus of π is purely of codimension one, and that the sum of the strict
transform of B on X ′ and the reduced exceptional divisor of π is a divisor with
simple normal crossing support. Under these assumptions, we may write

KX′ +B′ +M ′ = π∗(KX +B +M),

where B′ is the sum of the strict transform of B and a divisor with support in
the exceptional locus of π. Given ǫ ≥ 0, we will say that the generalized pair
(X,B+M) has generalized ǫ-log canonical singularities if the coefficients of B′

are less than or equal to 1− ǫ. If ǫ = 0, we omit it from the notation.
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Definition 2.3. Let (X,B + M) be a generalized pair and π : Y → X a
projective birational morphism factoring through X ′. Then, we may write

KY +BY +MY = π∗(KX +B +M),

where MY is the pull-back of M ′ to Y . Given a prime divisor E on Y , we
define the generalized log discrepancy of (X,B +M) with respect to E to be

aE(X,B +M) := 1− coeffE(BY ).

If the generalized discrepancy of (X,B+M) at E is ǫ, we say that E is an ǫ-log
canonical place for the generalized pair, and π(E) ⊂ X is an ǫ-log canonical

center for the generalized pair. If ǫ = 0, we omit it from the notation. If
aE(X,B+M) ≤ 0, we say that E is a generalized non-klt place for (X,B+M),
and π(E) is a generalized non-klt center for (X,B + M). A generalized log
canonical center is said to be exceptional if it admits a unique generalized log
canonical place and is disjoint from the image of any other non-klt place.

Definition 2.4. We say that (X,B+M) is generalized dlt if (X,B) is dlt and
every generalized non-klt center of (X,B +M) is a non-klt center of (X,B).
If, in addition, every connected component of ⌊B⌋ is irreducible, we say that
(X,B +M) is generalized plt.

Definition 2.5. Let (X,B +M) be a generalized pair, P an effective divisor,
and N the push-forward of a nef divisor from a possibly higher birational model
of X . Notice that, up to replacingX ′ with a higher model, we may assume that
M and N are the push-forwards of two nef divisors on X ′. Assume that the
divisor P + N is Q-Cartier. We define the generalized log canonical threshold

of KX +B +M with respect to P +N to be

glct(KX +B +M | P +N) :=

:= sup{t | KX +B +M + t(P +N) is generalized log canonical},

where (X,B+M+ t(P +N)) is considered as a generalized pair with boundary
part B+ tP and moduli partM + tN . If the above set is empty, then we define
the generalized log canonical threshold to be −∞. Observe that glct(KX +
B +M | P +N) is non-negative provided that KX +B +M is generalized log
canonical. Moreover, glct(KX + B +M | P + N) is infinite if and only if N
descends onto X and P is trivial.

Remark 2.6. Given a natural number p, a set Λ of rational numbers satisfying
the descending chain condition and a normal quasi-projective variety X , we de-
note by GB(X)p,Λ the set of generalized boundaries B+M on X so that pM ′ is
Cartier, coeff(B) ⊂ Λ, and B+M is Q-Cartier. In [BZ16, Theorem 1.5], Birkar
and Zhang proved a version of the ascending chain condition for generalized
log canonical thresholds. In particular, [BZ16, Theorem 1.5] implies that the
set

Glctd,p,Λ := {glct(KX +B +M | P +N) | B +M ∈ GB(X)p,Λ,

P +N ∈ GB(X)p,Λ, and dimX = d}
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satisfies the ascending chain condition. This is the ACC for generalized log
canonical thresholds that we will use in this article.

2.4 Bounded families of generalized pairs

In this subsection, we recall the concept of bounded families of pairs and in-
troduce the concept of bounded families of generalized pairs.

Definition 2.7. A couple (X,D) is the datum of a normal projective varietyX
and a divisor D on X whose coefficients are all equal to one. A set of couples Q
is said to be log bounded if there exist finitely many projective morphisms X i →
T i of varieties and reduced divisors Bi on X i so that for every couple (X,D) ∈ Q
there exist an i, a closed point t ∈ T i and an isomorphism φ : X i

t → X so that
(X i

t ,B
i
t) is a couple and φ−1

∗ (D) ≤ Bit. In what follows, we may omit i if it does
not play a role in the argument. We say that X → T is a bounding family for
Q and B ⊂ X is a bounding divisor for the set of divisors {D | (X,D) ∈ Q}.
A set P of generalized pairs is said to be generalized log bounded if there exists
a log bounded set of couples Q so that for each (X,B +M) ∈ P we can write
M ∼Q ∆1 −∆2, where ∆1 and ∆2 are effective Q-divisors, and (X, Supp(B +
∆1 +∆2)) ∈ Q. If a set of generalized pairs P is generalized log bounded and
M ′ = 0 for every (X,B +M) ∈ P , we just say it is log bounded. Moreover, if
B = 0 for every (X,B) ∈ P , we say that P is bounded.

Lemma 2.8. Let d be a natural number and ǫ be a positive real number. Then

the projective varieties X such that

• (X,B+M) is a generalized ǫ-log canonical pair of dimension d for some

B and M ′; and

• −(KX +B +M) is nef and big

form a bounded family.

Proof. Let (X,B+M) be as in the statement, and let π : X ′ → X be a higher
birational model where M ′ descends. Then, we have that (X ′, B′) is an ǫ-log
canonical sub-pair. Fix a rational number 0 < α < 1. Then, the divisor

(1− α)(KX′ +B′ +M ′) = KX′ +B′ + (M ′ − α(KX′ +B′ +M ′))

is anti-nef and anti-big. Since −(KX′ +B′ +M ′) is nef and big and M ′ is nef,
M ′ − α(KX′ + B′ +M ′) is nef and big. Therefore, there exists an effective
Q-divisor E′ such that

M ′ − α(KX′ +B′ +M ′) ∼Q A
′
k + E′

k

for all positive integers k, where A′
k is an ample Q-divisor and E′

k := E′

k [Laz04,
Example 2.2.19]. Thus, we may write

(1− α)(KX′ +B′ +M ′) ∼Q KX′ +B′ +A′
k + E′

k.
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If we choose A′
k generically in its Q-linear equivalence class and k ≫ 1, the

sub-pair (X ′, B′ +A′
k +E′

k) is
ǫ
2 -log canonical. Fix such choices. Define Ak :=

µ∗A′
k and Ek := µ∗E′

k. Then, the sub-pair (X,B + Ak + Ek) is an ǫ
2 -log

canonical pair. Indeed, by construction B +Ak + Ek is effective, and the sub-
pair (X ′, B′ + A′

k + E′
k) is the crepant pull-back of (X,B + Ak + Ek). Then,

we conclude that

(1 − α)(KX +B +M) ∼Q KX +B +Ak + Ek.

Thus, we have that the pair (X,B + Ak + Ek) is weak log Fano and ǫ/2-log
canonical. By [Bir16b, Theorem 1.1], the X as in the statement belongs to a
bounded family.

The following is a consequence of the proof of [HX15, Proposition 2.4]. We
include a proof for the reader’s convenience.

Proposition 2.9. Let {(Xi, Bi)}i≥1 be a sequence of ǫ-log canonical Q-

factorial pairs, where ǫ > 0. Assume that there exist a projective morphism

π : X → T to a variety of finite type, a divisor B on X and a dense sequence of

closed points ti on T so that (Xi, Bi) ∼= (Xi,Bi) as pairs, where Xi := Xti , and
Bi := B|Xti

. Then, there exist a birational morphism f : X ′ → X , a divisor B′

on X ′ and a dense open set U ⊂ T such that:

• (X ′,B′) is a Q-factorial klt pair, with f∗B′ = B; and

• f is small over U .

In particular, we have (X ′
ik
,B′

ik
) ∼= (Xik , Bik) for a dense subsequence tik in T .

Proof. We follow the proof of [HX15, Proposition 2.4]. Fix a rational number
0 < ǫ′ < ǫ. Up to shrinking T , there is a log resolution g : Y → X of (X ,B)
such that (Y, g−1

∗ B + E) is log smooth over T , where E denotes the reduced
exceptional divisor for g. We run a (KY+g−1

∗ B+(1−ǫ′)E)-minimal model pro-
gram over X . By [BCHM10], it terminates with a minimal model f : X ′ → X .
Let h : Y 99K X ′ denote the induced birational map.
Observe that the divisor

KX ′ + h∗(g
−1
∗ B + (1− ǫ′)E))

is nef over X , and so is

(KX ′ + h∗(g
−1
∗ B + (1− ǫ′)E)))|X ′

i

over Xi. Let fi : X ′
i → Xi denote the corresponding birational morphism. Since

(KX ′ + h∗(g
−1
∗ B + (1− ǫ′)E))|X ′

i
− f∗

i (KXi
+ Bi)

is effective, fi-nef and supported on all the fi-exceptional divisors, by the neg-
ativity lemma [KM98, Lemma 3.39] it follows that fi is a small birational
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morphism [KM98, Lemma 3.39]. Since Xi is Q-factorial, then fi is the identity
morphism [KM98, Corollary 2.63].
Since all the restrictions fi are small, no f -exceptional divisor dominates T .
Therefore, up to shrinking T , we may assume that f is small. Thus, we have
that

f−1
∗ B = h∗(g

−1
∗ B + (1 − ǫ′)E)).

Set B′ := f−1
∗ B. Then, by construction (X ′,B′) is a Q-factorial klt pair.

2.5 Theory of complements

In this subsection, we give the basic definitions related to the theory of com-
plements. We will start by defining varieties of relative Fano-type, which is the
class of varieties of interest for this work.

Definition 2.10. Let X → Z be a projective morphism between quasi-
projective varieties. We say that X is of Fano-type over Z if there exists a
boundary B on X such that (X,B) is a klt pair and −(KX +B) is nef and big
over Z. It is known that if X is of Fano-type over Z, then any minimal model
program over Z for a divisor D on X terminates [BCHM10, Corollary 1.3.2].

Definition 2.11. Let (X,B +M) be an ǫ-log canonical generalized pair and
X → Z a contraction of normal quasi-projective varieties. We say that the
divisor B+ is a (δ, n)-complement over z ∈ Z if the following conditions hold
over some neighborhood of z:

• (X,B+ + M) is a δ-log canonical generalized pair with boundary part
B+;

• n(KX +B+ +M) ∼ 0; and

• nB+ ≥ n⌊B⌋+ ⌊(n+ 1) {B}⌋.

If nB+ ≥ nB, then we say that B+ is a strong (δ, n)-complement.

Remark 2.12. Let (X,B +M) be a generalized klt pair and X → Z be a
contraction of normal quasi-projective varieties. LetB+ be a (0, n)-complement
over z ∈ Z. Then, if (X,B+ + M) is generalized klt over a neighborhood
of z ∈ Z, B+ is a

(

1
n , n

)

-complement over z ∈ Z. Indeed, by definition,
n(KX+B++M) is Cartier over a neighborhood of z ∈ Z. Thus, the generalized
log discrepancies of (X,B++M) are integer multiples of 1

n . Since (X,B
++M)

is klt, its generalized log discrepancies are at least 1
n .

Lemma 2.13. Let d and p be natural numbers, ǫ ∈ [0, 1), and Λ ⊂ [0, 1] a finite

set of rational numbers. Then there is a natural number n depending only on

d, p, ǫ and Λ such that the following holds. Assume that (X,B + M) is a

projective generalized ǫ-log canonical pair of dimension d such that:

• X is of Fano-type;
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• coeff(B) ⊂ Λ;

• pM is an integral divisor; and

• −(KX +B +M) is nef.

Then there is a global strong (ǫ, n)-complement for (X,B +M).

Proof. By [Bir19, Theorem 1.10], we may assume that ǫ > 0. Under this
assumption, we claim that the varieties X as in the statement form a bounded
family. Indeed, since X is of Fano-type we can find a boundary divisor Γ on
X so that (X,Γ) is klt and −(KX + Γ) is nef and big. Therefore, we conclude
that the generalized pair

KX +
B + Γ

2
+
M

2

is ǫ
2 -generalized log canonical and

−

(

KX +
B + Γ

2
+
M

2

)

is nef and big. Hence, by Lemma 2.8 we know that the varieties X belong to
a bounded family.
Therefore, for any such X , there is a very ample Cartier divisor A such that
Ad ≤ r and Ad−1 · (−KX) ≤ r for some fixed number r. Since B ≥ 0 and M is
the push-forward of a nef divisor, it follows that Ad−1 · (−KX − B −M) ≤ r.
Since KX + B +M has bounded Weil index c depending just on Λ and p, up
to replacing r by cr, we may also assume that Ad−1 · (−cKX − cB − cM) ≤ r.
By [Bir19, Lemma 2.25],KX+B+M has bounded Cartier index, which we will
denote by a. Thus, we can apply the effective basepoint-free theorem [Kol93,
Theorem 1.1] for the Cartier divisor a(KX + B +M) on the klt pair (X,Γ),
since the Q-Cartier divisor

−a(KX +B +M)− (KX + Γ)

is nef and big. Thus, there is a uniform positive integer n, divisible by a, such
that | −n(KX +B+M)| is basepoint-free. Without loss of generality, we may
assume that n ≥ (1 − ǫ)−1.
Now, let D be a general element of | −n(KX +B+M)|. Define B+ := B+ D

n .
Since |−n(KX+B+M)| is free, (X,B+M) is generalized ǫ-lc and n ≥ (1−ǫ)−1,
it follows that (X,B++M) is generalized ǫ-lc. By construction, KX+B++M
is a global (ǫ, n)-complement for KX +B+M . As B+ ≥ B, it is automatically
a strong complement.

Proposition 2.14. Let Λ ⊂ [0, 1] be a finite set of rational numbers, p and n
a positive integers and ǫ ≥ 0 a rational number. Let P be a set of generalized

pairs (X,B +M) such that

• coeff(B) ⊂ Λ, and pM ′ is Cartier;
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• there is a contraction X → Z, with X of Fano-type over Z; and

• (X,B +M) admits a strong (ǫ, n)-complement over any point z ∈ Z.

Then, for any sufficiently divisible positive integer m, depending on P, in the

above setup any (X,B+M) ∈ P admits a strong (ǫ,mn)-complement B+ with

mn(B+ −B) ∈ | −mn(KX +B +M)|

a general element of the linear system.

Proof. Let m be a positive integer such that mΛ ⊂ N and p|m. Fix (X,B +
M) ∈ P , and let B+ be a strong (ǫ, n)-complement as in the statement. Since
B+ ≥ B, it is automatically a strong (ǫ,mn)-complement. We may assume
that Z is affine. Therefore, we have mn(B+ −B) ∈ | −mn(KX +B +M)|. In
particular, | −mn(KX +B +M)| 6= ∅. Fix E ∈ | −mn(KX +B +M)|. Then,
we have

mn(KX +B+ +M) ∼ mn

(

KX +B +
E

mn
+M

)

. (2.1)

In particular, the right hand side of (2.1) is Cartier. By Definition 2.1, we can
regard the element mn(B+−B) of |−mn(KX +B+M)| over z as an element
of a linear series on a projective closure of X . Thus, by [KM98, Corollary
2.33], for a general choice of E in the same linear series, the singularities of
(X,B + E

mn +M) are not worse than the ones of (X,B+ +M). Hence, the
claim follows.

2.6 Examples of complements

In this subsection, we give some examples of complements. In particular, we
show that the conditions of Conjecture 1.1 are necessary for the existence of
strong complements.

Example 2.15. Let {αi}i≥1 be a strictly increasing sequence of rational

numbers with limi→+∞ αi =
√
2
2 . Similarly, let {βi}i≥1 be a strictly in-

creasing sequence of rational numbers with limi→+∞ βi = 1 −
√
2
2 . Define

Λ := {αi}i≥1 ∪ {βi}i≥1. Then, Λ is a set of rational numbers satisfying the
descending chain condition. Notice that the accumulation points are not ratio-
nal.
Fix four distinct closed points P,Q,R, S ∈ P1. Consider the sequence of bound-
aries ∆i := αiP + αiQ + βiR + βiS. Then, (P1,∆i) is klt and −(KP1 + ∆i)
is ample. We will show that (P1,∆i) does not admit a bounded strong log
canonical complement.

Fix n ∈ N. Then, for i≫ 1 we have ⌈nαi⌉
n >

√
2
2 . Similarly, we have ⌈nβi⌉

n > 1−√
2
2 . Therefore, there exists no Γ ≥ ∆i such that nΓ in integral and deg Γ = 2.
In particular, there exists no strong (0, n)-complement for (P1,∆i).
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Example 2.16. Define Λ := {1 − 1
n |n ∈ N, n ≥ 2} ∪ {

√
2
2 , 1 −

√
2
2 }. Notice

that Λ is a set satisfying the descending chain condition, and that all of the
accumulation points are rational.
Fix three distinct closed points P,Q,R ∈ P1, and define boundaries ∆i :=
i−1
i P +

√
2
2 Q + (1 −

√
2
2 )R. Then, (P1,∆i) is klt and −(KP1 + ∆i) is ample.

We will show that (P1,∆i) does not admit a bounded strong log canonical
complements.

Fix n ∈ N. Then, for i > n we have
⌈n i−1

i
⌉

n = 1. Therefore, any divisor Γ ≥ ∆i

with nΓ integral satisfies Γ > P +
√
2
2 Q + (1 −

√
2
2 )R. In particular, we have

deg Γ > 2. Hence, there exists no strong (0, n)-complement for (P1,∆i).

Example 2.17. Define Λ := { 1
n |n ∈ N, n ≥ 1}. Fix a sequence of distinct closed

points {Pj}j≥1 ⊂ P1. Define boundaries ∆i :=
1
i

∑i−1
j=1 Pj . Then, (P1,∆i) is

klt, and −(KP1 +∆i) is ample.

Fix n ∈ N. Then, for i ≫ 1 we have deg ⌈n∆i⌉
n > 2. Hence, there exists no

strong (0, n)-complement for (P1,∆i).

Example 2.18. Define Λ := {1 −
√
2
2 ,

√
2
2 }. Fix four distinct closed points

P,Q,R, S ∈ P1. Then, set ∆ := (1 −
√
2
2 )(P + R) +

√
2
2 (R + S). The pair

(P1,∆) is log canonical, −(KP1 + ∆) is nef and P1 is Fano. Since deg∆ = 2,
(X,∆) does not admit a strong (0, n)-complement for any n ∈ N.

The above examples show that to develop a theory of bounded strong com-
plements, we need to fix a set of coefficients Λ satisfying the descending chain
condition. Furthermore, if Λ is infinite, we need Λ ⊂ Q.

2.7 Semi-stable families

In this subsection, we recall some properties of semi-stable morphisms for pairs.
We refer to [Kol13, Definition-Lemma 5.10] for the definition of semi-log canon-
ical pair. Let (X,B) be a pair, and let f : X → Z be a flat, projective and
surjective morphism of quasi-projective varieties. We say that f : (X,B) → Z
is a semi-stable family of semi-log canonical pairs if the following conditions
are satisfied:

• Supp(B) avoids the generic and codimension one singular points of every
fiber;

• KX/Z+B isQ-Cartier, whereKX/Z denotes the relative canonical divisor;
and

• Xz is reduced and (Xz , Bz) is a connected semi-log canonical pair for all
z ∈ Z.

Equivalently, we say that f : X → Z is a semi-stable morphism for the pair

(X,B). In case B = 0, we just say that f : X → Z is a semi-stable morphism.
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Proposition 2.19. Let f : X → Z be a semi-stable morphism of normal va-

rieties. Let π : Z ′ → Z be a birational contraction with Z ′ normal. Write

X ′ := X ×Z Z ′. Then, X ′ is a normal variety.

Proof. Write g : X ′ → Z ′ and ψ : X ′ → X for the induced morphisms. Let
I ⊂ OZ be the ideal sheaf corresponding to π [Har77, Theorem II.7.17]. Then,
since f is flat, ψ is induced by the blow-up of the ideal sheaf f−1I ⊂ OX . In
particular, X ′ is an irreducible variety [Har77, Proposition II.7.16].
Since f is semi-stable, it is an S2 morphism [Gro65, Définition 6.8.1]. Then,
by base change, we have that g is an S2 morphism [Gro65, Proposition 6.8.2].
Therefore, since g is S2 and Z ′ is normal, we conclude that X ′ is S2 [Gro65,
Proposition 6.8.3].
We are left with showing that X ′ is R1. Notice that the general fiber of g is nor-
mal. Therefore, there is a closed subsetW := {x ∈ X |Xf(x) not normal at x} ⊂
X that contains no fiber and that does not dominate Z. Write W ′ := ψ−1(W ).
Then, W ′ has the same property, and therefore codimX′ W ′ ≥ 2. Then, by
[Gro65, Proposition 6.8.3], X ′ \W ′ is normal. Since X ′ is S2, we conclude that
it is normal.

2.8 Generalized canonical bundle formula

In this subsection, we recall the construction of the generalized canonical bundle
formula introduced in [Fil20]. Let (X,B +M) be a generalized sub-pair, and
let f : X → Z be a contraction where dimZ > 0. Assume that (X,B +M) is
sub-log canonical over the generic point of Z and that KX + B +M ∼Q,f 0.
Fix a divisor LZ on Z such that KX +B +M ∼Q f

∗LZ . Then, for any prime
divisor D on Z, let tD be the generalized log canonical threshold of f∗D with
respect to (X,B +M) over the generic point of D. Then, set BZ :=

∑

bDD,
where bD := 1− tD. Define MZ := LZ − (KZ +BZ). Hence, we can write

KX +B +M ∼Q f
∗(KZ +BZ +MZ).

Now, let X̃ and Z̃ be higher birational models of X and Z respectively, and
assume we have a commutative diagram of morphisms as follows

X̃ X

Z̃ Z

φ

g f

ψ

We denote by (X̃, B̃ + M̃) the trace of the generalized sub-pair (X,B +M)
on X̃. Furthermore, set LZ̃ := ψ∗LZ . With this piece of data, we can define
divisors BZ̃ and MZ̃ such that

KX̃ + B̃ + M̃ ∼Q g
∗(KZ̃ +BZ̃ +MZ̃),
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BZ = ψ∗BZ̃ andMZ = ψ∗MZ̃ . In this way, b-divisors BZ and MZ are defined.

We write BZ,Z̃ and MZ,Z̃ for the traces of BZ and MZ on any higher model Z̃.

In this setup, we have the following theorem, referred to as the generalized
canonical bundle formula.

Theorem 2.20 (cf.[Fil20, Theorem 1.4]). Let (X ′, B′ +M ′) be a generalized

sub-pair with data X → X ′ andM . Assume that B′, M ′ andM are Q-divisors.

Let f : X ′ → Z ′ be a contraction such that KX′ + B′ +M ′ ∼Q,f 0. Also, let

(X ′, B′ +M ′) be generalized log canonical over the generic point of Z ′. Then,

the b-divisor MZ′ is Q-Cartier and b-nef.

2.9 Generalized adjunction

In this subsection, we recall how to define adjunction for generalized pairs.
Let (X,B +M) be a generalized pair, and let S ⊂ X be a prime divisor in
the support of ⌊B⌋. Denote by Sν the normalization of S. Then, consider
a log resolution π : X ′ → X of (X,B) where M ′ descends. Set S′ := π−1

∗ S.
By adjunction, we can define the sub-pair (S′, BS′). Then, we define MS′ :=
M ′|S′ . Therefore, we can regard (S′, BS′ + MS′) as a generalized sub-pair.
Then, let ρ : S′ → Sν be the induced morphism, and set BSν := ρ∗BS′ and
MSν := ρ∗MS′ . In this way, (Sν , BSν +MSν ) becomes a generalized pair. We
refer to this operation as divisorial generalized adjunction.

More generally, let W ⊂ X be an exceptional generalized log canonical center,
and denote by W ν its normalization. To define a generalized pair on W ν , we
argue as follows. Fix the generalized log canonical place E′ dominating W ,
and let π : X ′ → X be a higher model where E′ appears as a normal prime
divisor. By generalized divisorial adjunction, E′ inherits a generalized sub-pair
structure (E′, BE′ +ME′) from (X ′, B′ +M ′). Then, we consider the induced
fibration ρ : E′ →W ν . Finally, we apply Theorem 2.20 to induce a generalized
pair structure on W ν . From the construction, it follows that W ν =W ′.
In this setup, we have the following statement, referred to as generalized ad-
junction and inversion thereof.

Theorem 2.21 (cf.[Fil20, Theorem 1.6]). Let (X ′, B′+M ′) be a generalized pair

with data X → X ′ and M . Assume that B′, M and M ′ are Q-divisors. Let W ′

be a generalized log canonical center of (X ′, B′ +M ′) with normalization W ν .

Assume that a structure of generalized pair (W ν ,BWν+MWν ) is incuded on the

normalization W ν ofW ′. Then, (W ν ,BWν+MWν) is generalized log canonical

if and only if (X ′, B′+M ′) is generalized log canonical in a neighborhood of W ′.

3 Global strong (δ, n)-complements

In this section, we prove Theorem 1.3. We start by proving Lemma 3.2, which
will allow us to perturb the coefficients of a generalized pair while keeping it
generalized log canonical.
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Notation 3.1. Let Λ ⊂ (0, 1] be a set of rational numbers satisfying the
descending chain condition. Given a natural number m ∈ N, we consider the
partition

Pm :=

{(

0,
1

m

]

,

(

1

m
,
2

m

]

, . . . ,

(

m− 1

m
, 1

]}

of the interval (0, 1]. For each b ∈ Λ, we denote by I(b,m) the interval in the
partition Pm such that b ∈ I(b,m). Then, for each b ∈ Λ, we define

bm := sup {x | x ∈ I(b,m) ∩ Λ} .

Observe that, for any b ∈ Λ and m a positive integer, we have the inequality
b ≤ bm, since b ∈ I(b,m) ∩ Λ. Furthermore, if m is divisible enough, we have
b = max{x | x ∈ I(b,m)}, which implies the equality b = bm. We denote by
Cm = {bm | b ∈ Λ}. Observe that for each m the set Cm is finite, and the set

Λ =
⋃

m∈N

Cm

satisfies the descending chain condition. Given a boundary divisor B ≥ 0 on a
normal quasi-projective variety X , we can write B =

∑

j b
(j)B(j) in a unique

way such that the B(j) are pairwise different prime divisors on X . Whenever
the coefficients of the divisor B belong to Λ, we can define the boundary divisor

Bm :=
∑

j b
(j)
m B(j). By the above discussion, it follows that B ≤ Bm.

The following lemma is a generalization of [Bir19, Proposition 2.50] for Λ having
rational accumulation points.

Lemma 3.2. Let d and p be two natural numbers, and Λ ⊂ Q be a set satisfying

the descending chain condition with rational accumulation points. There exists

a natural number m, only depending on d, p, and Λ satisfying the following. If

X → Z is a contraction between normal quasi-projective varieties, (X,B+M)
is a generalized log canonical pair of dimension d such that

• there exists a divisor Ω ≥ 0 so that (X,B + Ω +M) is generalized log

canonical and we have KX +B +Ω+M ∼Q,Z 0;

• X is Q-factorial of Fano-type over Z;

• coeff(B) ⊂ Λ; and

• pM ′ is Cartier.

Let Bm be as in Notation 3.1. Then, the following conditions hold

• (X,Bm +M) is generalized log canonical;

• we may run a minimal model program for −(KX +Bm+M) over Z that

terminates with a generalized log canonical pair (X ′′, B′′
m +M ′′); and
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• −(KX′′ +B′′
m +M ′′) is nef over Z.

Moreover, if −(KX′′ +B′′
m +M ′′) has a strong (ǫ, n)-complement over z ∈ Z,

then so does −(KX +B +M).

Proof. We will prove each statement independently by contradiction ap-
plying the ascending chain condition for generalized log canonical thresh-
olds [BZ16, Theorem 1.5] and the global ascending chain condition for gen-
eralized log canonical pairs [BZ16, Theorem 1.6].

1. Assume it is not true. Then, there exists a sequence of generalized log
canonical pairs (Xi, Bi+Mi) as in the statement such that (Xi, Bi,i+Mi)
is not generalized log canonical, where Bi,i is obtained from Bi as in
Notation 3.1. We claim that we can find boundaries Bi ≤ Γi ≤ Bi,i and
prime divisors Di such that

coeffDi
(Bi) ≤ coeffDi

(Γi) < coeffDi
(Bi,i), (3.1)

all the remaining coefficients of Γi belong to Λ, and

coeffDi
(Γi) = glct(KXi

+Bi +Mi | Di).

In what follows we will write

Bi =
∑

j

b
(j)
i B

(j)
i ,

where the B
(j)
i are pairwise different prime divisors and b

(j)
i ∈ Λ. We will

produce Γi by successively increasing the coefficients of Bi which differ
from the coefficients of Bi,i. Indeed, if

glct(KXi
+Bi +Mi | B

(1)
i ) ≥ b

(1)
i,i − b

(1)
i ,

then we can increase the coefficient b
(1)
i of B

(1)
i to b

(1)
i,i and the generalized

pair will remain generalized log canonical. By abusing notation, we will
denote the new boundary by Bi. Then, we proceed inductively with the
other coefficients. Since (Xi, Bi,i +Mi) is not generalized log canonical,
we will eventually find ji so that

β
(ji)
i = glct(KXi

+Bi +Mi | B
(ji)
i ) < b

(ji)
i,i − b

(ji)
i ,

so we may increase b
(ji)
i to β

(ji)
i to obtain the desired Γi with Di = B

(ji)
i .

We denote by Γ′
i the divisor obtained from Γi by reducing the coefficient

of Di to zero. Observe that the coefficients of Γ′
i belong to the set Λ,

which satisfies the descending chain condition.

Now, we claim that the generalized log canonical thresholds of (Xi,Γ
′
i +

Mi) with respect to Di form an infinite increasing sequence. This will
provide the required contradiction. Let

c := lim sup
i

(coeffDi
(Bi,i)) ,
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and observe that coeffDi
(Bi,i−Bi) ≤

1
i . Hence, by (3.1), for every δ > 0

we may find i large enough such that

coeffDi
(Γi) ∈ (c− δ, c).

Thus, passing to a subsequence, we obtain an infinite increasing sequence

coeffDi
(Γi) = glct(KXi

+ Γ′
i +Mi | Di),

contradicting [BZ16, Theorem 1.5].

2. Since X is of Fano-type over Z, then the minimal model program for
any divisor on X over Z terminates [BCHM10, Corollary 1.3.2]. Hence,
we may run a minimal model program for −(KX + Bm + M), which
terminates with (X ′′, B′′

m +M ′′). Moreover, since KX + B + Ω +M is
Q-trivial over Z, we conclude that the above minimal model program is
(KX +B +Ω+M)-trivial, therefore (X ′′, B′′ +Ω′′ +M ′′) is generalized
log canonical. Hence (X ′′, B′′ +M ′′) is generalized log canonical as well.
Observe that all the assumptions on (X,B + M) are preserved when
running this minimal model program. Therefore, up to replacing (X,B+
M) with (X ′′, B′′ +M ′′), the same argument as in the first step proves
that (X ′′, B′′

m+M ′′) is generalized log canonical form large enough, since
all the assumptions of the proposition are preserved by running a minimal
model program.

3. Assume this is not true. Then there exists a sequence of generalized log
canonical pairs (Xi, Bi +Mi) as in the statement, such that the minimal
model program for the divisor −(KXi

+Bi,i+Mi) terminates with a Mori
fiber space X ′′

i → Zi for the Q-divisor −(KX′′

i
+ B′′

i,i +M ′′
i ). Observe

that −(KX′′

i
+ B′′

i + M ′′
i ) is a pseudo-effective divisor over Zi, being

−(KXi
+ Bi +Mi) ∼Q,Z Ω effective over Z. Hence, we conclude that

KX′′

i
+ B′′

i + M ′′
i is anti-nef over Zi. On the other hand, the divisor

KX′′

i
+B′′

i,i +M ′′
i is ample over Zi. Hence, perturbing the coefficients of

B′′
i as in the first step, we can produce boundaries B′′

i ≤ Γ′′
i < Bi,i and

prime divisors D′′
i which are ample over Zi such that

coeffD′′

i
(B′′

i ) ≤ coeffD′′

i
(Γ′′
i ) < coeffD′′

i
(B′′

i,i),

all the remaining coefficients of Γ′′
i belong to Λ, and

−(KX′′

i
+ Γ′′

i +M ′′
i ) ≡ 0/Z ′′

i .

Passing to a subsequence, we may assume that coeffD′′

i
(Γ′′
i ) forms an

infinite increasing sequence, so the coefficients of the divisors Γ′′
i belong to

an infinite set satisfying the descending chain condition. By restricting to
a general fiber ofX ′′

i → Zi, we get a contradiction by the global ascending
chain condition for generalized pairs (see [BZ16, Theorem 1.6]).
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Now we turn to prove the last statement. Assume that KX′′ + B+
m +M ′′ is a

strong (ǫ, n)-complement for −(KX′′ +B′′ +M ′′). Let Y be a log resolution of
the minimal model program X 99K X ′′ with birational projective morphisms
ψ : Y → X and φ : Y → X ′′. Then, we can write

ψ∗(KX +Bm +M) + E = φ∗(KX′′ +B′′
m +M ′′),

where E is an effective divisor. Let

B+ = Bm + ψ∗(E + φ∗(B+
m −B′′

m)).

Then, we conclude that KX + B+ +M = ψ∗φ∗(KX′′ + B+
m +M ′′). Hence,

(X,B+ +M) is generalized ǫ-log canonical and n(KX + B+ +M) is Cartier
over a neighborhood of z. Since B+ ≥ Bm ≥ B, we conclude the (X,B+ +M)
is a strong (ǫ, n)-complement of the generalized pair (X,B +M).

Proof of Theorem 1.3. In the case that ǫ = 0 we will reduce the statement
to [Bir19, Theorem 1.10]. When ǫ > 0, we will use a generalized version of the
boundedness of Fano varieties to prove the statement.
First, we reduce to the case when X is a Q-factorial variety. Since X is of
Fano-type, we can find a boundary divisor Γ on X such that the pair (X,Γ) is
klt [Bir19, 2.10]. Then, we can take a small Q-factorialization π : Y → X of X .
Let BY denote the strict transform of B on Y , and let MY be the trace of M
on Y . Then, the push-forward toX of an strong (ǫ, n)-complement for (Y,BY +
MY ) is a strong (ǫ, n)-complement for (X,B +M) (see, e.g. [Bir19, 6.1.(2)]).
Thus, replacing (X,B +M) with (Y,BY +MY ), we may assume that X is a
Q-factorial variety.
Now we turn to prove the statement when ǫ = 0. Assume that ǫ = 0, mean-
ing that the generalized pairs (X,B +M) are generalized log canonical. By
Lemma 3.2, there exists m ∈ N such that for every generalized pair (X,B+M)
as in the statement the following conditions hold:

1. (X,Bm +M) is generalized log canonical;

2. we may run a minimal model program for −(KX + Bm + M) which
terminates with a generalized log canonical pair (X ′′, B′′

m +M ′′); and

3. −(KX′′ +B′′
m +M ′′) is nef.

Observe that the coefficients of B′′
m belong to the finite set of rational numbers

Cm defined in Notation 3.1. Hence, by [Bir19, Theorem 1.10], we can find n
only depending on d, p, and Cm so that KX′′ + B′′

m +M ′′ has a strong (0, n)-
complement. By Lemma 3.2, we conclude that the generalized pair (X,B+M)
has a strong (0, n)-complement. This proves the theorem in the case that ǫ = 0.
Now, we turn to prove the case where ǫ > 0 and Λ is finite. Since pM ′ is
Cartier, then the divisor pM is Weil. By Lemma 2.13, every (X,B +M) as in
the statement admits a strong (ǫ, n)-complement for some n depending on d, ǫ
and Λ.
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Finally, we prove the case in which M ′ is trivial and Λ is possibly infinite, i.e.,
the case of pairs. Let P denote the set of varieties X corresponding to the pairs
(X,B) as in the statement. By the proof of Lemma 2.13, the varieties in P
belong to a bounded family. Let X → T be a bounding family. Thus, there
exists a positive number C = C(P) so that any X as in the statement admits a
very ample line bundle A with Ad ≤ C. We may assume that Ad−1 ·(−KX) ≤ C
for all X in P . Being coeff(B) > δ > 0 for some fixed δ small enough, we get

C ≥ Ad−1 · (−KX) ≥ B · Ad−1 ≥ δ(red(B) · Ad−1),

where red(B) denotes the reduced structure of B. Hence, we deduce that the
log pairs (X,B) belong to a log bounded family. Thus, up to redefining X
and T , we may assume that there exists a reduced divisor B ⊂ X bounding the
boundaries.
Now, we use the boundedness of (X,B) to prove the statement. Recall that
we are assuming that X is Q-factorial. Arguing by contradiction, we assume
that there is a sequence {(Xi, Bi)}i≥1 satisfying the hypotheses of the statement
such that (Xi, Bi) admits no strong (ǫ, j)-complement for j ≤ i. Let B(i) be the

divisor supported on B such that B
(i)
i = Bi. Since we have coeff(Bi) ∈ Λ, up to

passing to a subsequence, we may assume that B(i) ≤ B(i+1) and Supp(B(i)) =
Supp(B(i+1)). Since the coefficients lie in Λ, we can set B(∞) := limB(i).
Let ti ∈ T be the closed point corresponding to (Xi, Bi). Up to passing to
a subsequence and replacing T with the resolution of a subvariety, we may
assume that T is a smooth variety and {ti}i≥1 is a dense sequence on T . Since

(Xi,B
(1)
i ) is ǫ-log canonical for all i, by Proposition 2.9, we may assume that

X is Q-factorial.
Let f : X ′ → X be a log resolution of the pair (X ,B). Up to shrinking T , we
may assume that the composition π ◦ f : (X ′,B′ + E ′) → T is a log smooth
family, where B′ := f−1

∗ B, and E ′ denotes the reduced exceptional divisor of f .
In particular, each fiber (X ′

i ,B
′
i + E ′

i) is a log resolution of (Xi, Bi). Let P(i)

be the divisor supported on B′ + E ′ such that KX ′

i
+ P

(i)
i is the log pull-back

of KXi
+ Bi. By construction, KX ′ + P(i) is the log pull-back of KX + B(i),

and therefore the sequence {P(i)}i≥1 is increasing and admits a limit P(∞). By

construction, each (X ′
i ,P

(i)
i ) is sub-ǫ-log canonical. Thus, coeff(P(i)) ≤ 1 − ǫ.

By continuity, we argue that coeff(P(∞)) ≤ 1 − ǫ. Thus, the construction

guarantees that the pairs (Xi,B
(∞)
i ) are ǫ-log canonical.

Now, as B
(∞)
i ≥ Bi, a strong (ǫ, n)-complement for (X,B

(∞)
i ) is also a strong

(ǫ, n)-complement for (X,Bi). By Lemma 2.13, each pair (X,B
(∞)
i ) admits

a strong (ǫ, n)-complement, where n is independent of i. This provides the
needed contradiction, and the claim follows.

The following statement is a generalization of Lemma 2.8 that allows us to
put the generalized pairs (X,B +M) as in the statement of Lemma 2.8 in a
generalized log bounded family.
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Theorem 3.3. Let d and p be two natural numbers, ǫ a positive real number,

and Λ ⊂ Q be a set satisfying the descending chain condition with rational

accumulation points. Let P be the set of generalized pairs (X,B +M) such

that:

• (X,B +M) is generalized ǫ-log canonical of dimension d;

• −(KX +B +M) is nef and big;

• coeff(B) ⊂ Λ; and

• pM ′ is Cartier.

Then P is generalized log bounded.

Proof of Theorem 3.3. By Theorem 1.3, for any generalized pair (X,B+M) ∈
P there exists a bounded (0, n)-complement (X,B++M). Since B+ ≥ B ≥ 0,
it suffices to show that the generalized pairs (X,B+ +M) are generalized log
bounded.
By Lemma 2.8, the varieties X corresponding to P are bounded. Let X → T
be a bounding family. Thus, there exists a positive number C = C(P) such
that every X as in the statement admits a very ample divisor A with Ad ≤ C.
Furthermore, we may assume that Ad−1 · (−KX) ≤ C for all X in P .
Being B+ effective, M the push-forward of a nef divisor, and A ample, we have
Ad−1 ·B+ ≥ 0 and Ad−1 ·M ≥ 0. Thus, we get the chain of inequalities

C ≥ Ad−1 · (−KX) ≥ Ad−1 · (−KX −B+) ≥ Ad−1 · (−KX −B+ −M) = 0.

We conclude that Ad−1 · B+ ≤ C. Recall that nB+ is integral, hence
coeff(B+) ⊂ { 1

n , . . . ,
n−1
n , 1}. We conclude that Supp(B+) is bounded as well.

Let B be the divisor on X bounding Supp(B+). Since the coefficients of B+ be-
long to a finite set, there are finitely many divisors D1, . . . ,Dk supported on B
such that for any (X,B++M) we have B+ = Di|X for some 1 ≤ i ≤ k. There-
fore, M ∼Q (−KX −Di)|X . Thus, M is bounded up to Q-linear equivalence as
well, and the claim follows.

4 Local strong (δ, n)-complements

In this section, we prove Theorem 1.2 and Theorem 1.4. The former is a
generalization of [Bir19, Theorem 1.8] to the setting of generalized pairs, and
the latter is a partial result towards the existence of klt complements in the
semi-stable setting. The proof of the following proposition is analogous to the
one in [Bir19, Proposition 8.1].

Proposition 4.1. The statement of Conjecture 1.1 holds for ǫ = δ = 0 and Λ
finite, if there exist a boundary divisor Γ ≥ 0 and 0 < β < 1 satisfying the

following

• (X,Γ + βM) is Q-factorial generalized plt;
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• the divisor −(KX + Γ + βM) is ample over Z; and

• S = ⌊Γ⌋ is an irreducible component of ⌊B⌋ which intersects the fiber

over z.

Proof. We proceed by induction on the dimension of X . Recall that βM is the
push-forward of a nef divisor on a higher model, hence its diminished base locus
contains no divisors. In particular, for every λ > 0, we can find D′ ∼Q βM+λA
so that (X,D) is plt, where D = D′ + Γ (similar to Lemma 2.8). Moreover, if
we pick λ > 0 small enough, we achieve that −(KX +D) is ample over Z, and
S = ⌊D⌋. Hence, by the first step of the proof of [Bir19, Proposition 8.1], we
conclude that the morphism S → f(S) is a contraction and S is of Fano-type
over f(S).
We consider a log resolution φ : X ′ → X of (X,B+M) where M ′ descends, S′

is the birational transform of S, and ψ : S′ → S the corresponding morphism.
By generalized adjunction we can write KS + BS +MS = (KX + B +M)|S ,
where the coefficients of BS belong to a set of hyperstandard coefficients Ω
(see, e.g. [Bir19, Lemma 3.3]), and pM ′

S is a Cartier divisor. By Theorem 1.3
in the case that f(S) is a point or by the inductive hypothesis in the case
that dim f(S) ≥ 1, we conclude there exists a n-complement KS + B+

S +MS

of KS + BS +MS over z ∈ f(S), where n only depends on Ω, d − 1, and p.
Replacing n with a bounded multiple, we may assume that nB and nM ′ are
integral divisors. Observe that replacing Γ with ǫΓ + (1 − ǫ)B for some small
positive real number ǫ does not change the assumptions of the proposition.
Hence, we may assume that the coefficients of Γ−B are arbitrarily small.
From now on, we will prove that we can lift the n-complement B+

S to a com-
plement of KX +B +M over a neighborhood of z ∈ Z. In order to do so, we
will apply Kawamata–Viehweg vanishing on the log resolution X ′. We adopt
the following notation

N ′ := −(KX′ +B′ +M ′) = −φ∗(KX +B +M),

and
A′ := −(KX′ + Γ′ + βM ′) = −φ∗(KX + Γ+ βM).

We denote by T ′ the sum of the components of B′ with coefficient one, and
write ∆′ := B′ − T ′ We will also consider the integral divisor

L′ := −nKX′ − nT ′ − ⌊(n+ 1)∆′⌋ − nM ′.

We claim that there exists a unique integral divisor P ′ so that

Σ′ := Γ′ + n∆′ − ⌊(n+ 1)∆′⌋+ P ′

is effective, (X ′,Σ′ + βM ′) is generalized plt, ⌊Σ′⌋ = S′, and P ′ is exceptional
over X . Indeed, we can define the divisor P ′ by declaring

coeffD(P
′) =

{

0 if D = S
−coeffD⌊Γ′ −D′ + {(n+ 1)∆}⌋ otherwise
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for any prime divisor D on X ′. By the definition and the fact that the co-
efficients of Γ − B can be chosen to be arbitrarily small, we deduce that the
coefficients of P ′ are contained in {0, 1}. Finally, it suffices to check that
P ′ is an exceptional divisor over X . If D is a prime divisor whose image
on X is a divisor, we have that nB is integral, coeffD(n∆

′) is integral, hence
coeffDP

′ = −coeffD⌊Γ⌋ =0, finishing the claim.
Observe that

L′ + P ′ − S′ = KX′ +Σ′ − S′ +A′ + nN ′ + βM ′

is the sum of the klt pair KX′+Σ′−S′ and the divisor A′+nN ′+βM ′, which is
nef and big over Z. Up to shrinking Z around z, we may assume that Z is affine,
so we may apply relative Kawamata–Viehweg vanishing [KMM87, Theorem 1-
2-5] to deduce that the restriction homomorphism

H0(L′ + P ′) → H0((L′ + P ′)|S′) (4.1)

is surjective. We denote by RS′ the pull-back to S′ of RS = B+
S − BS and

define
GS′ = nRS′ + n∆S′ − ⌊(n+ 1)∆S′⌋+ PS′ ,

where the subscript S′ means restriction to S′. We claim that GS′ is an effective
integral divisor and GS′ ∼ LS′ + PS′ , up to shrinking Z around z. Indeed,
observe that we have

GS′ ∼ (n∆′ − ⌊(n+ 1)∆′⌋+ nN ′ + P ′)|S′ = (L′ + P ′)|S′ = LS′ + PS′ .

On the other hand, if coeffD(GS′) < 0 for some prime divisor D, we have that
coeffD(n∆S′−⌊(n+1)∆S′⌋) < 0 as well. Hence, there is a prime divisor C ofX ′

such that coeffC(n∆
′ − ⌊(n+ 1)∆′⌋) < 0 and D is a prime component of C|S′ .

However, since n∆′ is integral, we have that coeffC(n∆
′ − ⌊(n+ 1)∆′⌋) > −1,

which implies that coeffD(GS′) > −1. In particular, we have coeffD(GS′) ≥ 0,
being GS′ integral.
Therefore, by the surjectivity of (4.1), there exists G′ ∼ L′ + P ′ on X ′ so that

G′|S′ = GS′ . We denote by G the push-forward of G′ to X . We define R′ := G′

n
and R its push-forward to X . By construction, we have −n(KX + B +M) ∼
G = nR, so B+ := B + R is such that n(KX + B+ +M) is Cartier over a
neighborhood of z.
Finally, we need to check that (X,B++M) is generalized log canonical over z,
meaning that (X,B+ + M) is a strong (0, n)-complement of KX + B + M
over z. First, we claim that (X,B++M) is generalized log canonical around S.
Observe that nR′ ∼ nN ′ ∼Q,X 0, and φ∗nR′ = nR, so φ∗(R) = R′. Moreover,
nRS′ = nR′|S′ implies that RS = R|S . We conclude that

KS +B+
S +MS = (KX +B+ +M)|S ,

so the latter generalized pair is generalized log canonical around S by inversion
of adjunction for generalized pairs (see, Theorem 2.21 or [Bir19, Lemma 3.2]). If
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(X,B++M) is not log canonical over z, then there is a generalized log canonical
centerW which intersects the fiber over z and is disjoint from S. We define Ξ =
ǫΓ+(1−ǫ)B+ andN = ((1−ǫ)+βǫ)M for a small positive real number ǫ. Hence,
(X,Ξ +N) is not generalized log canonical at the generic point of W as well,
and −(KX +Ξ+N) is nef and big over a neighborhood of z. This contradicts
the connectedness principle for generalized pairs [Bir19, Lemma 2.14]. Thus,
we conclude that (X,B++M) is generalized log canonical over a neighborhood
of z.

Proposition 4.2. The statement of Conjecture 1.1 holds for ǫ = δ = 0 and Λ
is finite, if there exist 0 ≤ ∆̃ ≤ ∆ ≤ B and 0 < β < 1 so that

• −(KX +∆+ βM) and −(KX + ∆̃ + βM) are nef and big over Z;

• some component of ⌊∆⌋ intersects the fiber over z; and

• the generalized pair (X, ∆̃ + βM) is generalized klt.

Proof. Taking a Q-factorial generalized dlt modification of (X,B+M), we may
assume that X is Q-factorial and (X,B+M) is generalized dlt (see, [BZ16, §4]
or [Fil20]). Write −(KX +∆ + βM) ∼Q,Z A+G, where A is ample and G is
effective. If Supp(G) does not contain any generalized non-klt center of (X,∆),
then the pair (X,∆+δG+βM) is generalized dlt for δ small enough. Moreover
−(KX +∆+ δG+ βM) is ample. Indeed, we can write

−(KX +∆+ δG+ βM) ∼Q (1− δ)

(

δ

1− δ
A+A+G

)

,

and the right-hand side is the sum of an ample divisor and a nef divisor over Z.
Let S be a prime component of ⌊∆+ δG⌋ which intersects the fiber over z. We
can find a small positive real number ǫ, so that

Γ := ∆ + δG− ǫ⌊∆⌋+ ǫS

is a boundary satisfying the following conditions hold:

• (X,Γ + βM) is Q-factorial generalized plt,

• −(KX + Γ+ βM) is ample over Z;

• and S = ⌊Γ⌋ is an irreducible component of ⌊B⌋ which intersects the fiber
over z.

Then, by Proposition 4.1, we conclude that the statement of the theorem holds
for (X,B +M).
From now on, we may assume that Supp(G) contains some generalized non-klt
center of (X,∆ + βM). Set ∆s := s∆̃ + (1 − s)∆ for any s ∈ [0, 1]. Observe
that (X,∆s + βM) is generalized klt for any s ∈ (0, 1] and −(KX +∆s + βM)
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is nef and big over Z. Indeed, it is the sum of two nef and big divisors. More
precisely, we can write

−(KX+∆s+βM) = −(KX+∆+βM)+∆−∆s ∼R,Z A+G+∆−∆s. (4.2)

Define Ωs := ∆s + ts(G + ∆ −∆s), where ts is the generalized log canonical
threshold of (X,∆s+ βM) with respect to G+∆−∆s over z. We claim that,
for s small enough, the following holds:

• every generalized non-klt place of (X,Ωs + βM) is a generalized non-klt
place of (X,∆+ βM); and

• the divisor −(KX +Ωs + βM) is ample over Z.

Let π : Y → X be a log resolution of the couple (X,∆ + G + βM) where M ′

descends. Write F := ∆− ∆̃ and π∗(F ) =
∑

i fiEi, where the Ei’s are pairwise
distinct prime divisors and the fi’s are positive. We will write π∗(G) =

∑

i giEi,
where the gi’s are positive numbers. We can write

π∗(KX + ∆̃ + βM) = KY +
∑

i

eiEi + βMY ,

where the real numbers ei are at most one. Thus, we can compute

π∗(KX +∆s + t(G+∆−∆s)) = KY +
∑

i

(ei + (1− s+ ts)fi + tgi)Ei +MY

for any s ∈ [0, 1) and t > 0. Hence, we conclude that

ts = min {ti(s) | Ei is a divisor on Y} ,

where

ti(s) =
1− ei − (1− s)fi

gi + sfi
.

Since the functions ti(s) are monotone with respect to s. We conclude that if
ti(s) = ts for s small enough, then ti(0) = t0 = 0. This means that if Ei is a
generalized log canonical place for (X,Ωs + βM) for all s > 0 small enough,
then it is a generalized log canonical place for (X,∆+βM). Moreover, observe
that ts converges to zero when s converges to zero. This proves the first part
of the claim.
Observe that

−(KX +Ωs + βM) = −(KX +∆)−∆s +∆− ts(G+∆−∆s)− βM

= −(KX +∆+ βM) + (1− ts)(∆−∆s)− tsG

∼R A+G+ (1 − ts)(∆−∆s)− tsG

= (1− ts)

(

ts
1− ts

A+A+G+∆−∆s

)

∼R tsA− (1− ts)(KX +∆s + βM),
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where we use the linear equivalence (4.2) in the last step. Hence, −(KX+Ωs+
βM) is ample for s small enough. This proves the second part of the claim.
From now on, we will fix s small enough as in the claim and denote such Ωs
by Ω.
If ⌊Ω⌋ 6= 0, we can perturb the coefficients to guarantee that ⌊Ω⌋ is irreducible
and (X,Ω + βM) is generalized plt. Then, we conclude by Proposition 4.1.
Thus, we may assume ⌊Ω⌋ = 0. Consider (Y,ΩY + βMY ) a Q-factorial dlt
modification of (X,Ω+βM). Observe that KX +βM is a generalized minimal
model of KY + ⌊ΩY ⌋ + βMY over X , since (X, βM) is generalized klt and
⌊Ω⌋ is the reduced exceptional divisor of Y → X . Let X ′′

99K X be the
last step of a (KY + ⌊ΩY ⌋ + βMY )-MMP over X . Observe that in the last
step of this MMP, ⌊ΩY ⌋ has a unique component, and the (Y, ⌊ΩY ⌋ + βMY )
is generalized dlt, hence it is generalized plt. This step is a morphism that
contracts a prime divisor S′′ of X ′′ so that (X ′′, S′′ + βM) is generalized plt
and −(KX′′ + S′′ + βM ′′) is ample over X . We denote by KX′′ + Ω′′ + βM ′′

and KX′′ +∆′′ + βM ′′ the pull-backs of KX +Ω+ βM and KX +∆+ βM to
X ′′. Hence, we have that ⌊Ω′′⌋ = ⌊∆′′⌋ = S′′. It suffices to produce a strong
(0, n)-complement for KX′′ +B′′ + βM ′′ over z ∈ Z. If we denote

Γ′′ := (1− t)Ω′′ + tS′′

for t > 0 small enough, we have that (X ′′,Γ′′ + βM) is a generalized plt pair,
−(KX′′ + Γ′′ + βM) is ample over Z, and ⌊Γ′′⌋ = S′′ is a prime divisor which
is a component of ⌊B′′⌋ that intersects the fiber over z. Since Γ′′ ≤ B′′, we
can apply Proposition 4.1 to conclude that KX′′ + B′′ + M ′′ has a strong
(0, n)-complement.

Proof of Theorem 1.2. In the case that Z is a point, then this is already proved
in Theorem 1.3, so we may assume Z has dimension at least one.
Denote by f : X → Z the contraction morphism. Let N be a prime effective
Cartier divisor on Z passing through z, and let t be the generalized log canonical
threshold of KX +B+M with respect to f∗N over z. Let (X ′′,Ω′′+M ′′) be a
generalized dlt modification of (X,Ω+M), where Ω := B+tf∗N (see, [BZ16, §4]
or [Fil20, §3]). By [Bir19, 2.13(6)], we know that X ′′ is of Fano-type over Z.
There is a boundary 0 ≤ ∆′′ ≤ Ω′′ such that the coefficients of ∆′′ are contained
in Λ, some component of ⌊∆′′⌋ is vertical over Z intersecting the fiber over z,
and B ≤ ∆, where ∆ is the push-forward of ∆′′ to X . We run a minimal model
program for −(KX′′ +∆′′ +M ′′) over Z. Since −(KX′′ +∆′′ +M ′′) is pseudo-
effective over Z, this minimal model program terminates with a nef divisor
−(KY +∆′′

Y +MY ). Observe that −(KX′′ +Ω′′ +M ′′) is semi-ample over Z,
as X ′′ is of Fano type over Z. Hence, we can find an effective divisor D so that
(X ′′,Ω′′+D+M ′′) is generalized log canonical over Z and linearly equivalent to
zero over Z. Thus, the above minimal model program is (KX′′ +Ω′′+D+M ′′)-
trivial, and the generalized pair (Y,ΩY +DY +MY ) is generalized log canonical.
Thus, we conclude that (Y,∆Y +MY ) is generalized log canonical. In particular,
no component of ⌊∆′′⌋ is contracted by this minimal model program. Indeed,

Documenta Mathematica 25 (2020) 1953–1996



Strong (δ, n)-Complements 1979

since we are running a minimal model program for −(KX′′ + ∆′′ + M ′′), if
a component of ⌊∆′′⌋ is contracted, the log discrepancy of the corresponding
divisorial valuation becomes negative. Replacing (X,B +M) with (Y,∆Y +
MY ), we may assume that ⌊B⌋ is non-trivial. Moreover, by Lemma 3.2 we may
assume that the coefficients of B belong to a finite set of rational numbers.
We claim that for every 0 < α < β < 1 the divisor −(KX + αB + βM) is a
big divisor over Z. Indeed, since X is of Fano-type over Z, there exists a big
boundary B1 over Z so that KX + B1 ∼Q,Z 0 and (X,B1) is klt. Moreover,
since −(KX +B +M) is semi-ample over Z, we may find B2 effective so that
KX +B +B2 +M ∼Q,Z 0 and (X,B + B2 +M) is generalized log canonical.
Hence, we have that

β(KX +B +B2 +M) + (1 − β)(KX +B1) ∼Q,Z 0.

It follows that

−(KX + βB + βM) ∼Q,Z βB2 + (1− β)B1

is big over Z. Therefore,

−(KX + αB + βM) ∼Q,Z −(KX + βB + βM) + (β − α)B

is big over Z as well. We define the divisor ∆ := Bver + αBhor, where Bver

and Bhor are the vertical and horizontal components of B over Z. Observe that
∆ = αB over the generic fiber of f , so we have that the divisor−(KX+∆+βM)
is big over Z.
Let X → V be the contraction defined by −(KX + B +M). Run a minimal
model program for −(KX +∆+ βM) over V , which terminates with a model
X ′′ where −(KX′′ + ∆′′ + βM ′′) is nef over V . We claim that the minimal
model program does not contract any component of ⌊∆⌋. Indeed, the above
minimal model program is (KX + B +M)-trivial, hence (KX′′ +∆′′ + βM ′′)
is generalized log canonical. If some component of ⌊∆⌋ is contracted by the
above minimal model program, then its center on X ′′ is a generalized non-log
canonical center of (X ′′,∆′′+βM ′′). This provides the required contradiction.
Since −(KX +B +M) is the pull-back of a divisor on V that is ample over Z,
for a small positive real number ǫ, the generalized pair

(X ′′, ǫ∆′′ + (1− ǫ)B′′ + (1 − ǫ(1− β))M ′′) (4.3)

is generalized log canonical, the divisor ⌊ǫ∆′′ + (1 − ǫ)B′′⌋ has an irreducible
component which intersects the fiber over z, and

−(KX′′ + ǫ∆′′ + (1− ǫ)B′′ + (1− ǫ(1− β))M ′′)

is nef and big over Z. Observe that for ǫ small enough, every curve which
intersects the pair in (4.3) trivially also intersects (KX′′ +B′′ +M ′′) trivially.
Indeed, for ǫ small enough, the only curves which may intersect the pair in (4.3),
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must be contracted by X → V . Hence, we may assume that every curve which
intersect the pair in (4.3) trivially is also a curve contracted by X ′′ → V .
Replacing (X,∆+βM) with the generalized pair in (4.3) and β with (1− ǫ(1−
β)), we may assume that −(KX+∆+βM) is nef and big over Z. Moreover, we
may assume that every (KX +∆+ βM)-trivial curve over Z is also contracted
by X ′′ → V .
Let X → W be the morphism defined by −(KX + ∆ + βM). By the above
assumptions, we know that this morphism is (KX + B +M)-trivial. Define
∆̃ = γ∆ for 0 ≪ γ < 1, and let X 99K X ′′ be a minimal model program for
−(KX + ∆̃ + βM) over W . Replacing X ′′ with the generalized dlt model of
(X ′′,∆′′ + βM), we may assume that ⌊∆′′⌋ has a component that intersects
the fiber over z non-trivially. Observe that −(KX′′ + ∆̃′′ + βM ′′) is nef and
big over W and it is the pull-back of a divisor on W which is ample over Z.
Hence, −(KX′′ + ∆̃′′ + βM ′′) is pseudoo-effective and nef over Z. Hence, for a
small positive real number ǫ the generalized pair

(X ′′, ǫ∆̃′′ + (1 − ǫ)∆′′ + βM ′′) (4.4)

is generalized klt, and

−(KX′′ + ǫ∆̃′′ + (1 − ǫ)∆′′ + βM ′′)

is nef and big over Z, being a positive linear combination of a nef and big
divisor and a nef and pseudo-effective divisor. Replacing (X, ∆̃ + βM) with
the generalized pair in (4.4), we may assume that there exist 0 ≤ ∆̃ ≤ ∆ ≤ B
and 0 < β < 1 so that the assumptions of Proposition 4.2 hold, concluding the
proof.

We turn to prove Theorem 1.4. In order to do so, we will prove Lemma 4.3,
which is the statement of the theorem when dimZ = 1. Then, we will show
Proposition 4.4, which will allow us to take log canonical closures of morphisms.

Lemma 4.3. Let d be a positive integer, ǫ a positive real number and Λ ⊂ [0, 1]
a finite set of rational numbers. Then, there exist a positive integer n and a

positive real number δ only depending on d, ǫ and Λ such that the following

holds. Let π : X → C be a contraction of normal quasi-projective varieties, C
a curve and (X,B) an ǫ-log canonical pair of dimension d such that

• −(KX +B) is nef over C;

• X is of Fano-type over C;

• coeff(B) ⊂ Λ; and

• π : (X,B) → C is a semi-stable family of semi-log canonical pairs.

Then, for every point o ∈ C, there exists a strong (δ, n)-complement for (X,B)
over o.
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Proof. Fix a closed point o ∈ C. Up to shrinking C around o, we may assume
that (Xc, Bc) is ǫ-log canonical for all c 6= o. Since X is of Fano-type over C,
there exists a boundary ∆ ≥ 0 such that (X,∆) is klt and −(KX +∆) is nef
and big over C. Fix a rational number 0 < α≪ 1. Then (X,B + α∆) is ǫ

2 -log
canonical, and −(KX+B+α∆) is nef and big over C. Thus, up to shrinking C,
by Lemma 2.8, the varieties Xc with c 6= o are of Fano-type and belong to a
bounded family P depending just on the data in the statement.
Thus, by [Bir19, Lemma 2.25], there is a positive integer a only depending on
the data in the statement such that a(KXc

+ Bc) is Cartier for c 6= o. Then,
by Nakayama’s lemma, the Weil divisor a(KX + B) is Cartier over C \ {o}.
Since X is of Fano-type over C, by the relative effective basepoint-free theorem
[Fuj09, Theorem 2.2.4], there exists a positive integer b, divisible by a and
depending only on the data in the statement, such that −kb(KX +B) is π-free
over C \ {o} for any positive integer k. In particular, this implies the existence
of bounded klt complements of (X,B) over the generic point of C.
Now, we are left with showing the existence of a suitable complement over the
fixed closed point o ∈ C. By inversion of adjunction [Hac14, Theorem 0.1], the
pair (X,B + Xo) is log canonical. Thus, by [Bir19, Theorem 1.8], it admits
a strong (0, n)-complement over o, where n depends just on the data in the
statement. In particular, we can regard it as a strong (0, nb)-complement. By
Proposition 2.14, we can pick the complement B+ such that

bn(B+ −B) ∈ | − nb(KX +B +Xo)|

is a general element. Notice that, since C is affine, nb(KX + B) ∼ nb(KX +
B+Xo). In particular, as −bn(KX +B) is π-free over C \ {o}, we may assume
that (X,B+) is klt over C \ {o}.
Now, B+ is a strong (0, nb)-complement for (X,B). By construction, B+−B ≥
Xo. As Xo ∼C 0, the boundary B′ := B+ −Xo is a strong (0, nb)-complement
for (X,B). As the only log canonical centers of (X,B+) are contained in Xo,
it follows that (X,B′) is klt. Thus, B′ is a strong ((nb)−1, nb)-complement for
(X,B) over o.

Proposition 4.4. Let f : (XU ,∆U ) → U be a contraction of quasi-projective

varieties, z ∈ U be a closed point and n a positive integer. Assume that

(XU ,∆U ) is log canonical, KXU
+ ∆U ∼Q,U 0 and n∆U is integral. Denote

by (U,BU +MU ) the generalized pair induced on U by the canonical bundle

formula. Then, we may find a normal projective compactification Z of U and

a projective log canonical pair (X,∆) → Z such that (X,∆)×Z U is a minimal

dlt model of (XU ,∆U ), KX+∆ ∼Q,Z 0, n∆ is integral and the generic point of

each non-klt center of (X,∆) maps into U . In particular, (X,∆) and (XU ,∆U )
induce the same generalized pair on U .

Proof. Let Z ′ be a normal projective compactification of U . By [HX13, Corol-
lary 1.2], there exists a log canonical pair (X,∆) mapping to Z ′ such that
(X,∆) ×Z′ U = (XU ,∆U ). Let (X ′,∆′) be a birational model of X obtained
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taking a minimal dlt model of (X,∆) and then removing the components of
the boundary mapping to Z ′ \U . In particular, n∆′ is integral and the generic
point of every log canonical center of (X ′,∆′) maps to U .
By [HX13, Theorem 1.6], we can run a (KX′ + ∆′)-MMP with scaling over
Z ′, and it terminates with a good minimal model (X ′′,∆′′). Let Z denote the
canonical model. In particular, we have KX′′ +∆′′ ∼Q,Z 0. By construction,
this MMP is the identity over U . Thus, since (X ′′,∆′′) is isomorphic to (X ′,∆′)
over U , (X ′′,∆′′)×Z U is a minimal dlt model of (XU ,∆U ). This is the model
claimed.

Proof of Theorem 1.4. We will proceed by induction on the dimension of the
base Z. The base of the induction is given by Lemma 4.3. Thus, we may
assume that dimZ ≥ 2.
First, we reduce to the case when z is a closed point. Let H be a general very
ample divisor on Z, and write XH := π∗H . Since XH is a general element of
a basepoint-free linear series, it follows that (XH , BH) is still ǫ-log canonical,
coeff(BH) ⊂ Λ and XH is of Fano-type over H . Furthermore, mKH is Cartier
[Kol13, Proposition 4.5.(3)]. Thus, the morphism πH : (XH , BH) → H satisfies
the same assumptions in the statement.
Fix z ∈ Z, and assume dimOZ,z ≤ n − 1. Then, {z} ∩H 6= ∅. Let zH be the

generic point of an irreducible component of {z} ∩H . Then, by induction on
the dimension of the base, (XH , BH) admits a strong (δ, n)-complement B+

H

over zH , where δ > 0 and n ∈ N depend just on d, ǫ, m and Λ. Without loss
of generality, we may assume that n · Λ ⊂ N. Notice that, as Λ is a finite set,
by the construction in Proposition 2.14, we may identify n(B+

H −BH) with an
element of | − n(KXH

+BH)| over zH .
Now, we may shrink Z, and assume that it is affine. Therefore, we have
H ∼ 0. This implies that there is a non-canonical isomorphism OX(KX)|XH

∼=
OXH

(KXH
). Thus, by twisting the short exact sequence

0 → OX(−f∗H) → OX → OXH
→ 0,

with OX(−n(KX +B)) we obtain the short exact sequence

0 → OX(−n(KX +B)− f∗H) → OX(−n(KX +B)) →

→ OXH
(−n(KXH

+BH)) → 0.
(4.5)

Notice that the sequence in (4.5) remains exact, since OX(−n(KX+B)−f∗H)
is torsion-free.
By [CU15, Theorem 4.4], we have R1f∗OX(−n(KX + B)) = 0. Therefore,
the morphism f∗OX(−n(KX + B)) → f∗OXH

(−n(KXH
+ BH)) is surjective.

Hence, we may lift local sections of OXH
(−n(KXH

+BH)) to local sections of
OX(−n(KX+B)). In particular, there exists B+ such that n(B+−B) restricts
to n(B+

H − BH). This is equivalent to saying that (KX + B+ + f∗H)|XH
=

KXH
+B+

H . Since (XH , B
+
H) is klt, by inversion of adjunction [KM98, Theorem

5.50], (X,B+ + f∗H) is plt in a neighborhood of f∗H . Notice that, since

Documenta Mathematica 25 (2020) 1953–1996



Strong (δ, n)-Complements 1983

{z}∩H 6= ∅, this holds true over a neighborhood of z. Thus, as f∗H is Cartier,
we conclude that B+ is a strong (n−1, n)-complement for (X,B) over z.

Now, we turn to treat the case when z is a closed point arguing by contradic-
tion. Let B+ be a (0, n)-complement for (X,B) over z, where n depends only
on Λ and d [Bir19, Theorem 1.8]. Up to replacing n by a bounded multiple
depending only on ǫ, by Proposition 2.14, we may assume that (X,B+) is klt
over the generic point of Z. Therefore, there are finitely many closed subvari-
eties Y1, . . . , Yk ⊂ Z such that z ∈ ∩ki=1Yi and (X,B+) is klt over Z \ ∪ki=1Yi.
Fix i. By the first part of the proof, for a general choice of F ∈ |−n(KX+B)|,
(X,B+ F

n ) is klt over the generic point of Yi. Since we are intersecting finitely
many conditions, namely being klt over Z \ ∪ki=1Yi and being klt over ηYi

for
all i, by Proposition 2.14 we may assume that (X,B+) is klt over Z \ {z}.
Thus, there exists an open neighborhood U ⊂ Z of z such that (X,B+) is klt
over U \ {z}.

Notice that the existence of the complement over z is local in nature. Thus, up
to shrinking Z andX accordingly, we may assume that (X,B+) is log canonical,
KX + B+ ∼Q,Z 0 and nB+ is integral. Since (X,B+) is klt over the generic
point of Z, the canonical bundle formula induces a generalized polarized pair
(Z,BZ +MZ) on Z [Bir19, Theorem 3.6]. Then, by Proposition 4.4 and by
[Bir19, Proposition 6.3], we have control over the coefficients of BZ and on the
Cartier index of the moduli part. More precisely, BZ has coefficients in a set
of rational numbers satisfying the descending chain condition, just depending
on Λ and d. Similarly, the Cartier index of the moduli partMZ′ descending on
a higher model is a bounded function of Λ and d. Notice that (Z,BZ +MZ)
is generalized log canonical, generalized klt on U \ {z} and {z} is a generalized
log canonical center [Fil20, Proposition 4.16].

Now, we regard (Z,BZ+MZ) as being relatively of Fano-type over itself. Then,
by Theorem 1.2 [Bir19, cf. Corollary 1.9], l(KZ+BZ+MZ) is Cartier around z,
where l is a positive integer depending just on d and Λ. Up to taking a multiple
depending on the data of the problem, we may assume that m|l. Thus, we have
that l(BZ +MZ) is Cartier around z.

Consider t := glct(X,B|f∗(BZ +MZ)). Since (X,B) is ǫ-log canonical with
ǫ > 0, we have t > 0. We will show that t = 1. Let π : Z ′ → Z be a log
resolution of (Z,BZ) where MZ′ descends. Define X ′ := X ×Z Z ′, and let
g : X ′ → Z ′ and ψ : X ′ → X be the induced morphisms. By Proposition 2.19,
X ′ is a normal variety.

Since Supp(B) contains no fibers, we have ψ∗(KX+B) = ψ∗KX+ψ−1
∗ B. Write

B′ := ψ−1
∗ B. Recall that ψ∗KX/Z = KX′/Z′ . Thus, we have the following chain

of equalities

ψ∗(KX + B + f∗(BZ +MZ)) = ψ∗(KX/Z +B) + ψ∗f∗(KZ +BZ +MZ)

= KX′/Z′ +B′ + g∗(KZ′ +BZ′ +MZ′)

= KX′ +B′ + g∗(BZ′ +MZ′).

(4.6)
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Hence, (X,B + f∗(BZ +MZ)) is generalized log canonical if and only if so is
(X ′, B′ + g∗(BZ′ +MZ′)). Since MZ′ descends on Z ′, it does not contribute
to the singularities of (X ′, B′ + g∗(BZ′ + MZ′)). Also, since (Z,BZ + MZ)
is generalized log canonical, we have BZ′ ≤ Supp(BZ′ ). Since Supp(BZ′) is
simple normal crossing, by repeated inversion of adjunction [Hac14], (X ′, B′ +
g∗ Supp(BZ′)) is log canonical. Thus, we conclude that (X,B+ f∗(BZ +MZ))
is generalized log canonical. In particular, we have t ≥ 1. On the other hand,
since (Z,BZ + MZ) is not generalized klt at z, there exists a prime divisor
P ′ ⊂ Z ′ mapping to z such that multP ′ BZ′ = 1. Therefore, we have t = 1.
By construction, (X,B + f∗(BZ +MZ)) is generalized klt over U \ {z} and
Xz is a generalized log canonical center. Now, up to replacing n by a bounded
multiple depending only on the data in the statement, by Theorem 1.2 (X,B+
f∗(BZ +MZ)) admits a strong (0, n)-complement over z. Call it Γ. Then,
as lf∗(BZ + MZ) is Cartier over a neighborhood of z, Γ is a strong (0, n)-
complement for (X,B) over z. By Proposition 2.14 and the previous discussion,
up to shrinking U , we may assume that (X,Γ) is klt over U \ {z}. Note that
(X,Γ) is log canonical over U and klt over U \ {z}.
Assume that (X,Γ) is klt over U . Then, by Remark 2.12, as n(KX +Γ) ∼Z 0,
it follows that (X,Γ) is a

(

1
n , n

)

-complement over z ∈ Z. In particular, we
may take δ = 1

2n , and (X,Γ) is δ-log canonical. Thus, to conclude, it suffices
to show that (X,Γ) is klt.
We claim that (X,Γ) is klt over U . Let ρ : Z ′′ → Z be a generalized dlt model
for (Z,BZ + MZ) [Fil20, Corollary 3.4]. Define X ′′ := X ×Z Z ′′, which is
normal by Proposition 2.19, and write h : X ′′ → Z ′′ and φ : X ′′ → X for the
induced morphisms. By construction ρ is an isomorphism over U \ {z}. Let
P1, . . . , Pk be the ρ-exceptional divisors mapping to z. Notice that k ≥ 1, as
(Z,BZ +MZ) is not generalized dlt at z. Define Qi := h∗Pi for 1 ≤ i ≤ k. By
construction, multPi

BZ′′ = 1
Now, let (X ′′,Γ′′) be the log pull-back of (X,Γ) to X ′′. Assume by contradic-
tion that (X,Γ) is not klt over z. Then, the sub-pair (X ′′,Γ′′) has a log canon-
ical center V ′′ with h(V ′′) ⊂ Pi for some 1 ≤ i ≤ k. Then, (X ′′,Γ′′ + σQi)
is not log canonical for any σ > 0. On the other hand, by the argument
in equation (4.6), multQi

(B′′ + g∗BZ′′) = 1. Since Γ is a complement for
(X,B + f∗(BZ +MZ)) over z, it follows that (X ′′,Γ′′ + Qi) is log canonical.
This provides the required contradiction.

5 Applications

In this section, we will use the existence of log canonical complements to prove
an effective version of the generalized canonical bundle formula 1.5. Then, we
will prove that the existence of klt complements implies McKernan’s conjecture.

Lemma 5.1. Let (X,B+M) be a generalized log canonical pair and f : X → C
be a contraction onto a smooth curve. Assume that X is of Fano-type over

some non-empty open set U ⊂ C. Moreover, assume that KX+B+M ∼Q,C 0,
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and that the generic point of each generalized non-klt center of (X,B +M) is
mapped into U . Then X is of Fano-type over C.

Proof. Since X is of Fano-type over some non-empty open set U ⊂ C, we can
find a boundary Γ on X so that Γ is big over U and KX + Γ ∼Q,U 0 (see,
e.g. [Bir19, 2.10]). Hence, since Z is a curve, we may find D ≤ 0 so that
KX + Γ ∼Q,C D and D is mapped to C \ U . Since the generic point of each
generalized non-klt center of (X,B +M) is mapped into U , we conclude that
for t small enough the generalized pair

(X, (1− t)B + t(Γ−D) + (1− t)M)

is generalized klt, and

KX + (1− t)B + t(Γ−D)) + (1− t)M ∼Q,C 0.

Now, we reduce to the case when X is Q-factorial. Indeed, as (X, (1 − t)B +
t(Γ − D) + (1 − t)M) is generalized klt, a generalized dlt modification for it
coincides with a Q-factorialization XQ of X (see, [BZ16, §4] or [Fil20, §3]).
Then, by [Bir19, 2.10], X is of Fano-type over C if and only if so is XQ. Thus,
in the rest of the proof we may assume that X is Q-factorial.
Observe that the boundary divisor ∆ = (1−t)B+t(Γ−D) is big over C. Write
∆ ∼Q,C A + E, where E is effective and A is an effective ample divisor over
C. We can find ǫ small enough so that 0 ≤ Ω ∼Q (1− t)M + ǫA is a boundary
such that (X, (1− ǫ)∆ + ǫE +Ω) is a klt pair with big boundary and

KX + (1 − ǫ)∆ + ǫE +Ω ∼Q,C 0. (5.1)

Indeed, by construction, we have

KX + (1− ǫ)∆ + ǫE +Ω ∼Q,C KX + (1− t)B + t(Γ−D)) + (1− t)M,

so (5.1) follows. Since (X, (1 − t)B + t(Γ −D) + (1 − t)M) is generalized klt
and ∆ = (1− t)B+ t(Γ−D), it it follows that (X,∆+(1− t)M) is generalized
klt. Then, as X is Q-factorial, (X, (1 − ǫ)∆) is a klt pair. Since 0 < ǫ ≪ 1,
it follows that (X, (1 − ǫ)∆ + ǫE) is klt. Finally, let π : X ′ → X be a model
where M ′ descends. Let (X ′, (1 − ǫ)∆′) denote the trace of (X, (1 − ǫ)∆) on
X ′. Notice that ∆′ may not be effective. Then, (X ′, (1− ǫ)∆′ + ǫπ∗E) is a klt
sub-pair. Since M ′ is nef and π∗A is nef and big over C, then (1− t)M ′+ ǫπ∗A
is nef and big over C. Therefore, there exists an effective Q-divisor F ′ on X ′

such that
(1− t)M ′ + ǫπ∗A ∼Q,C A

′
k + F ′

k

for all positive integers k, where A′
k is an ample Q-divisor and F ′

k := F ′

k [Laz04,
Example 2.2.19]. Since (X ′, (1 − ǫ)∆′ + ǫπ∗E) is sub-klt, if we choose A′

k

generically in its Q-linear equivalence class and k ≫ 1, the sub-pair (X ′, (1 −
ǫ)∆′ + ǫπ∗E + A′

k + F ′
k) is still sub-klt. Thus, we define Ω := π∗(A′

k + F ′
k).

Then, by construction, the pair (X, (1 − ǫ)∆ + ǫE + Ω) is klt. Therefore,
by [Bir19, Lemma 2.11], we conclude that X is of Fano-type over C.
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Lemma 5.2. Let p be a natural number and Λ ⊂ Q a set satisfying the descend-

ing chain condition with rational accumulation points. Then, there exists a set

Ω ⊂ Q satisfying the descending chain condition with rational accumulation

points, only depending on p and Λ, satisfying the following. Let (X,B+M) be
a generalized dlt pair and S an irreducible component of ⌊B⌋. If coeff(B) ⊂ Λ,
pM ′ is Cartier, and KS+BS+MS = (KX+B+M)|S is defined by generalized

divisorial adjunction, then coeff(BS) ⊂ Ω.

Proof. First, we prove that coeff(BS) belongs to a set of rational numbers
which only depends on p and Λ. By taking hyperplane sections, we may assume
that X is a surface (see, e.g., [BZ16, Remark 4.8]). Since a dlt surface is Q-
factorial, we have that KX+B is Q-Cartier. We define KS+ B̄S = (KX+B)|S
by adjunction. By construction we have B̄S ≤ BS . Let P be a point on S.
We want to find a formula for coeffP (BS). We may assume that coeffP (B̄S) ≤
coeffP (BS) < 1, so (X,B) is plt at P . Shrinking around P , we may assume
that X ′ is smooth and S′ → S is an isomorphism.
Write B =

∑n
i=1 λiBi with Bi pairwise different prime divisors and λi ∈ Λ.

By [Sho92, Corollary 3.10], we can write

coeffP (B̄S) = 1−
1

m
+

n
∑

i=1

αiλi
m

,

where m is any natural number so that mB1, . . . ,mBn are Cartier divisors and
every αi is a non-negative integer. Write f : X ′ → X and f∗(M) = M ′ + E′,
where E′ is an effective divisor. Since pM ′ is Cartier, we conclude that pM
is Weil. Let m′ be any positive integer divisible by the Cartier index of pM .
Hence, we can write

f∗(m′pM) = m′pM ′ +m′pE′,

and m′pE is a Cartier divisor. In particular, m′pE′ is integral. By definition
we have that BS = B̄S+ES , where ES is the push-forward of E′|S′ . We deduce
that we can write

coeffP (BS) = 1−
1

m
+

n
∑

i=1

αiλi
m

+
β

m′p
, (5.2)

where β is a non-negative integer. We conclude that coeffP (BS) belongs to a
set Ω only depending on Λ and p. Since m,m′, αi, β are naturals and λi ∈ Λ ⊂
Q, we have that Ω ⊂ Q.
Now, we turn to prove that Ω satisfies the descending chain condition and has
rational accumulation points. Indeed, let us assume that we have a sequence
(Xi, Bi +Mi) and Si as before so that ci = coeffPi

Si is an infinite sequence of
pair-wise different rational numbers. Furthermore assume that the sequence ci
has a unique accumulation point c∞. If c∞ = 1, then the sequence does not
violate the descending chain condition and the accumulation point is rational.
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We may assume that c∞ < 1. In particular, we can write ci < 1 − ǫ for
some ǫ small enough. By [Sho92, Proposition 3.9], we know that there exists
a constant l only depending on ǫ so that the Cartier index of any Weil divisor
on Xi is bounded by l, up to passing to a subsequence. By the equality (5.2),
we can write

ci = 1−
1

l
+

n
∑

i=1

αiλi
l

+
β

lp

where the αi’s and β are positive integers. From the inequality αi < 1, we
deduce that n, αi and β belong to a finite family of positive integers. Hence,
passing to a subsequence, we may assume that n, the αi’s and β are fixed
positive integers. Therefore, since the λi’s satisfy the descending chain condi-
tion, we conclude that the ci’s satisfy the descending chain condition as well.
Moreover, we can write

c∞ = 1−
1

l
+

n
∑

i=1

αiλ̄i
l

+
β

lp
,

where λ̄i ∈ Λ ⊂ Q. We conclude that Ω ⊂ Q.

Proposition 5.3. Let f : X → Z be a contraction between normal quasi-

projective varieties. Let D1 and D2 be a Cartier divisor and a Q-Cartier divisor

on Z, respectively. Assume that f∗D1 ∼ f∗D2. Then, D2 is a Cartier divisor,

and we have D1 ∼ D2.

Proof. We will subdivide the proof into three small claims.
Claim 1: Let g : U → V be a projective surjective morphism between normal
varieties, and D a Q-Cartier Q-divisor on V . If g∗D = 0, then D = 0.
Recall that the pull-back of a Q-Cartier Q-divisor D is defined as k−1g∗(kD),
where k ∈ Z≥1 and kD is Cartier. Therefore, it suffices to prove the claim in the
case D is Cartier, since g∗(kD) = 0 if and only if k−1g∗(kD) = 0. Assume that
D 6= 0. Then, there exists a prime divisor P ⊂ V such that multP (D) = a 6= 0.
Then, over the generic point ηP of P , we have g∗D = ag∗P . As one can
compute in the case of curves, g∗P is a non-zero effective divisor whose support
over ηP consists of the prime divisors in V dominating P . As a 6= 0, this proves
the claim.
Claim 2: The statement holds if D1 and D2 are effective.

By the projection formula and the fact that f∗OX = OZ , we have a natu-
ral isomorphism of groups HomOX

(OX ,OX(f∗D1)) ≃ HomOZ
(OZ ,OZ(D1))

[Har77, §II.5]. In particular, we have that, for every 0 ≤ R ∼ f∗D1, there
exists 0 ≤ S ∼ D1 such that R = f∗S. Let 0 ≤ Γ be the Cartier divisor on Z
such that f∗Γ = f∗D2. Since f∗(Γ − D2) = 0, it follows from Claim 1 that
Γ = D2. In particular, D2 is Cartier and D2 ∼ D1.

Claim 3: Let D1 and D2 be as in the statement. Then, we may assume that
they are effective.
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Let E be a reduced divisor such that Supp(D1) ⊂ E and Supp(D2) ⊂ E. Then,
as Z is quasi-projective, we may find an effective Cartier divisor F such that
E ≤ F . Then, for k ≪ 0, we have D1+ kF ≥ 0 and D2 + kF ≥ 0. By Claim 2,
we have D1 + kF ∼ D2 + kF . Then, we have D1 ∼ D2, and the statement
follows.

The proof of Lemma 5.4 and Theorem 1.5 are similar to the proof of [Bir19,
Proposition 6.3].

Lemma 5.4. Let d and p be two natural numbers and Λ ⊂ Q be a set satisfying

the descending chain condition with rational accumulation points. Then, there

exist a natural number q and a set Ω ⊂ Q satisfying the descending chain condi-

tion with rational accumulation points, only depending on d, p and Λ, satisfying
the following. Let f : X → Z be a contraction between positive dimensional nor-

mal quasi-projective varieties, (X,B +M) be a generalized log cannical pair of

dimension d such that

• KX +B +M ∼Q,Z 0;

• X is of Fano-type over some non-empty open set of Z;

• coeff(B) ⊂ Λ; and

• pM ′ is Cartier.

Then the generalized pair (Z,BZ +MZ) obtained by the generalized canonical

bundle formula satisfies

• coeff(BZ) ⊂ Ω; and

• qMZ is a Weil divisor.

Proof. We will prove the existence of Ω and q by induction on the dimension
of Z. We will use the existence of log canonical complements and the general-
ized canonical bundle formula to produce q.
Fix a point z ∈ Z over which X is of Fano-type. Then, by Theorem 1.2, we can
find a strong (0, q)-complement KX +B+ +M of KX + B +M over z. Since
KX+B+M ∼Q,Z 0, we have that B+ = B over the generic point of Z. Hence,
we may find L onX and LZ on Z so that q(KX+B+M) ∼ qL and qL = qf∗LZ .
Therefore, by the generalized canonical bundle formula [Fil20, Theorem 1.4]
with respect to LZ , we may write

q(KX +B +M) ∼ qL = qf∗LZ = qf∗(KZ +BZ +MZ).

Now, we turn to prove the existence of Ω. Let H be a general hyperplane
section on Z and G := f∗H . Denote by g : G → H the induced morphism.
Write (KG+BG+MG) = (KX+B+G+M)|G, and let KH+BH+MH be the
generalized pair obtained by the generalized canonical bundle formula for the
morphism g and KG+BG+MG. Observe that KG+BG+MG ∼Q,H 0 and G
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is of Fano-type over an open set of H . Let D be a prime divisor on Z, and let
C be a component of D ∩H . Let t be the generalized log canonical threshold
of f∗D with respect to (X,B+M) over the generic point of D. By generalized
divisorial inversion of adjunction, we have that t is the log canonical threshold
of g∗C with respect to (G,BG +MG) over the generic point of C. Therefore
we conclude that coeff(BZ) = coeff(BH). By Lemma 5.2, we know that pM ′

G

is Cartier and coeff(BG) belongs to a set only depending on d, p, and Λ and
satisfying the descending chain condition with rational accumulation points.
Therefore, by repeated hyperplane cuts, we may reduce to the case when Z is
a smooth curve.
From now on, we assume that dimZ = 1. Thus, by Lemma 5.1, we have that
X is of Fano-type over Z. Let z ∈ Z be a closed point and t the generalized log
canonical threshold of (X,B+M) with respect to f∗z. Denote by (X ′′,Γ′′+M ′′)
a generalized dlt model of (X,B+ tf∗z+M). There exists a boundary divisor
B′′ such that B′′ ≤ Γ′′, coeff(B′′) ⊂ Λ, ⌊B′′⌋ has a component mapping to z
and B̃ ≤ B′′, where B̃ denotes the strict transform of B on X ′′. Since X ′′ is of
Fano-type over Z, we may run a minimal model program for −(KX′′+B′′+M ′′)
over Z, and denote by Y the resulting model. Denote byMY and BY the push-
forward of M ′′ and B′′, respectively. Since B′′ ≤ Γ′′, −(KY + BY +MY ) is
nef over Z. Furthermore, since B′′ ≤ Γ′′ and the MMP is trivial for KX′′ +
Γ′′ +M ′′, (Y,BY +MY ) is generalized log canonical. By Theorem 1.2, there
exists a strong (0, q)-complement B+

Y of KY +BY +MY over z ∈ Z. Therefore,

there exists a strong (0, q)-complement B′′+ of KX′′ + B′′ +M ′′ over z ∈ Z
(see [Bir19, 6.1.(3)]). Since both KX′′ +B′′+ +M ′′ and KX′′ +B′′ +M ′′ are
relatively trivial over the base, we conclude that B′′+ − B′′ = af∗z for some
real number a. Moreover, since KX′′ + B′′+ +M ′′ has a log canonical center
mapping onto z, we deduce that a = t. Let S be a component of f∗Z and
define b := multS B

′′, b+ := multS B
′′+, and m := multS f

∗z. Then, we have
that

multz(BZ) = 1 +
b− b+

m
(with b ≤ b+ ≤ 1) belongs to the set

Ω :=

{

1 +
b− b+

m
| b ∈ Λ, b+ ∈ N

[

1

q

]

,m ∈ N

}

,

which satisfies the descending chain condition and has rational accumulation
points. Observe that Ω only depends on q and Λ. In particular, it only depends
on d, p and Λ.
Finally, we need to prove that qMZ is a Weil divisor. First, we reduce to the
case when Z is a curve. Let H be a general hyperplane section on Z, G it’s
pull-back to X , g : G → H the induced morphism, H ′ ∼ H a general member
of the linear system |H |, D a prime divisor of Z and C a prime component
of D ∩ H . We can write KH := (KZ + H ′)|H , being H a general hyperplane
section. We write

MH := (LZ +H ′)|H − (KH +BH),

Documenta Mathematica 25 (2020) 1953–1996



1990 S. Filipazzi, J. Moraga

so we have

q(KG +BG +MG) ∼ q(L +G)|G ∼ qg∗(LZ +H ′|H) ∼ qg∗(KH +BH +MH).

Hence, MH is the moduli part induced by (G,BG+MG) over H . On the other
hand, we have that

(BH +MH) = (BZ +MZ)|H .

We know that coeffC(BH) = coeffD(BZ), therefore we have that coeff(MZ) =
coeff(MH). So it suffices to prove that qMH is Weil.
From now on, we may assume that dimZ = 1. Thus, by Lemma 5.1, we may
assume that X is of Fano-type over Z. Let V ⊂ Z be an open subset so that
Supp(BZ) ⊂ Z \ V . Thus, we can write

Θ = B +
∑

z∈Z\V
tzf

∗z,

where tz is the generalized log canonical threshold of (X,B +M) with respect
to f∗z. Let ΘZ be the boundary part of generalized adjunction with respect
to (X,Θ+M), then we have that

ΘZ = BZ +
∑

z∈Z\V
tzz.

By definition of BZ , the divisor ΘZ is reduced. Now, fix z ∈ V . Then, (X,Θ+
f∗z + M) is generalized log canonical. By Theorem 1.2, it admits a strong
(0, q)-complement over z. Since (X,Θ+ f∗z+M) is not generalized klt over z,
it follows that q(KX+Θ+f∗z+M) ∼ 0 over some neighborhood of z. Then, as
f∗z is Cartier, we conclude that q(KX +Θ+M) ∼ 0 over some neighborhood
of z. Similarly, we can argue that q(KX+Θ++M) ∼ 0 over some neighborhood
of z, for z ∈ Z \ V . Thus, we have that KX + Θ + M is a strong (0, q)-
complement of KX + B +M over z ∈ Z, for every point z. In particular, we
have that q(KX +Θ+M) ∼Z 0. Therefore, we have that

q(KX +Θ+M) = q(KX +B +M) + q(Θ −B)

∼ qf∗(KZ +BZ +MZ) + qf∗(ΘZ −BZ)

= qf∗(KZ +ΘZ +MZ).

In particular, we have that qf∗(KZ + ΘZ +MZ) is a Cartier divisor. Also,
q(KX+Θ+M) is linearly equivalent to the pull-back of a Cartier divisor on Z.
Therefore, by Proposition 5.3, we conclude that q(KZ +ΘZ +MZ) is a Cartier
divisor. Since q(KZ + ΘZ) is integral, we conclude that qMZ is integral as
well.

Proof of Theorem 1.5. Due to Lemma 5.4, it suffices to prove that qM ′
Z is

Cartier. As in the above proof, we can find L on X and LZ on Z so that
q(KX +B +M) ∼ qL = qf∗(LZ).
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Let Z0 → Z be a high resolution of singularities of Z and X1 a log resolution
of the generalized pair (X,B +M) so that the rational map X1 99K Z0 is a
morphism and M ′ descends on X1. By the assumptions, we may find a non-
empty open set U ⊂ Z such that Z0 → Z is an isomorphism over U , X is of
Fano-type over U , and (X,B +M) is generalized klt over U . Denote by U0 its
inverse image on Z0. Moreover, we denote by X0 the normalization of the main
component of the fiber product Z0 ×Z X . Let ∆1 be the sum of the birational
transform B1 of B and the reduced exceptional divisor of X1 → X with all
the components mapping outside U0 removed. We denote by M1 the trace of
the birational divisor inducing M on X1. Observe that (X1,∆1 + M1) is a
generalized klt pair over U0. By the negativity lemma [KM98, Lemma 3.39]
and the fact that (X,B+M) is generalized klt over U , the relative diminished
base locus over X0 of KX1

+∆1+M1 contains all exceptional divisors over X0

with center in U0. We run a minimal model program for KX1
+∆1 +M1 over

X0 with scaling of an ample divisor A1. After finitely many steps, all these
exceptional divisors with center in U0 are contracted. Indeed, these divisors
are in the relative diminished base locus over X0 of KX1

+∆1 +M1 + λA1 for
0 < λ≪ 1, and KX1

+∆1+M1+λA1 ∼ KX1
+Φ1, where Φ1 ≥ 0 and (X1,Φ1)

is dlt over U0. Hence, after finitely many steps the variety is of Fano-type over
U0 [Bir16b, cf. 2.13.(6)], so the minimal model program terminates over U0

(see, e.g. [Bir19, 2.10]). We call this variety X2. Denote the strict transform of
B1 on X2 by B2, the strict transform of ∆1 on X2 by ∆2, and by M2 the trace
of M on X2. Observe that the generalized pair (X2,∆2 +M2) is a small Q-
factorialization of (X,B+M) over U0 (see [BZ16, Lemma 4.5]). In particular,
we have that

KX2
+∆2 +M2 ∼Q,U0

0,

∆2 +M2 is big over Z0, and (X2,∆2 +M2) is generalized klt. Indeed, all log
canonical centers of (X1,∆1 +M1) are contained in ⌊∆1⌋, and these divisors
are contracted by the minimal model program X1 99K X2. Since ∆2 +M2 is
big over Z0 and (X2,∆2 +M2) is generalized klt, we can write

KX2
+∆2 +M ∼Q,Z0

KX2
+∆′

2,

where (X2,∆
′
2) is a klt pair. By [Bir12, Theorem 1.4] and [HMX14, Theorem

1.1], we can run a minimal model program over Z0 for KX2
+∆′

2 which termi-
nates with a good minimal model KY + ∆′

Y over Z0. Hence, we deduce that
KY + ∆Y +MY is semi-ample over Z0, where ∆Y is the push-forward of ∆2

on Y and MY is the trace of M on Y . Let fZ1
: Y → Z1 the morphism defined

by KY +∆Y +MY over Z0. Since KY +∆Y +MY is Q-linearly trivial over an
open set of Z0, we conclude that Z1 → Z0 is a birational morphism. Observe
that we have

KY +∆Y +MY ∼Q,Z1
0.

By Lemma 5.4, we conclude that the moduli partMZ1
induced by (Y,BY +MY )

on Z1 is such that qMZ1
is Weil. Moreover, the generalized pairs (Y,∆Y +MY )

and (X,B+M) have the same moduli part, and coincide over U0 on a common
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log resolution W of X and Y . Denote by KY + BY + MY (resp. LY ) the
push-forward to Y of the pull-back to W of KX + B + M (resp. L). The
divisor PY := ∆Y −BY is vertical over Z1 and Q-trivial over Z1, hence it is the
pull-back of a divisor PZ1

on Z1. Denote by (Z1,∆Z1
+MZ1

) the generalized
pair obtained by the generalized canonical bundle formula for KY +∆Y +MY

over Z1. Then, we have ∆Z1
= PZ1

+ BZ1
, where BZ1

is the boundary part
obtained by the generalized canonical bundle formula for KY +BY +MY over
Z1. Observe that we have

q(KY +∆Y +MY ) = q(KY +BY + PY +MY )

∼ q(LY + PY )

= qf∗
Z1
(LZ1

+ PZ1
)

= qf∗
Z1
(KZ1

+∆Z1
+MZ1

),

where LZ1
is the pull-back of LZ on Z1. Here, MZ1

= LZ1
− (KZ1

+ BZ1
) is

the moduli part induced on Z1 by both of (Y,∆Y +MY ) and (Y,BY +MY ).
Therefore, we conclude that qMZ0

is Weil, and hence qMZ0
is Cartier, being

Z0 smooth. As we may assume that Z0 is the model where MZ0
descends, it

follows that qM ′
Z is Cartier.

Proof of Corollary 1.7. Let (X,B+M) be a generalized pair and W ⊂ X be a
generalized log canonical center. Let (Y,BY +MY ) be a generalized dlt model
of (X,B +M) and E a generalized log canonical place corresponding to W .
Since W is an exceptional generalized log canonical center, we have that E is
the only generalized log canonical place mapping onto W . Observe that E is
normal. By Lemma 5.2, there exists a set Ω0 ⊂ Q satisfying the descending
chain condition with rational accumulation points and a natural number q0
depending only on d, p and Λ, so we can write

(KY +BY +MY )|E ∼Q KE +BE +ME,

coeff(BE) ⊂ Ω0 and q0M
′
E is Cartier. By the assumption on the exceptionality

of W , we get that the generalized pair (E,BE+ME) is generalized klt over the
generic point of W . Now, we can apply Theorem 1.5 to the generalized pair
(E,BE +ME) with respect to the morphism E →W , and conclude that there
exists a generalized pair (W,BW +MW ) on W , so that

(KY +BY +MY )|W ∼Q KW +BW +MW ,

coeff(BW ) ⊂ Ω, and qM ′
W is Cartier, where Ω ⊂ Q is a set with the descending

chain condition with rational accumulation points and q is a natural number,
both depending only on d− 1, q0 and Ω0, hence only depending on d, p and Λ.

For the reader’s convenience, we will split Theorem 1.10 into two statements.

Theorem 5.5. Conjecture 1.1 implies Conjecture 1.9.
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Proof. The statement of Conjecture 1.9 is local on the base. Fix a point z ∈ Z.
Assuming Conjecture 1.1, there exists a strong (ζ, n)-complement B+ for X
over z, where ζ > 0. Up to shrinking Z and X over it accordingly, we may
assume that (X,B+) is ζ-log canonical. Therefore, the general fiber (Xt, Bt)
of f is a ζ-log canonical pair. Furthermore, by assumption, −KXt

is ample. In
particular, by [Bir16b, Theorem 1.1], Xt belongs to a bounded family. Since
coeff(B+) ⊂ { 1

n , . . .
n−1
n }, by the same argument as in the proof of Theorem

1.3, the pairs (Xt, B
+
t ) belong to a log bounded family depending just on d

and ǫ.
Now, by [Bir16a, Theorem 1.3], there exists boundary ∆ on Z such that (Z,∆)
is δ-log canonical, where δ > 0 depends on ǫ and d. Since Z is Q-factorial
[KM98, Corollary 3.18], it follows that Z is δ-log canonical.

Now we will address the second part of the statement of Theorem 1.10.

Theorem 5.6. Let d and m be positive integers and ǫ a positive real number.

Then, there exists a positive real number δ such that the following holds. If

f : X → Z is a Mori fiber space, X is projective, ǫ-log canonical and Q-factorial

and mKX is Cartier, then Z is δ-log canonical.

Proof. Since mKX is Cartier, by [Fuj09, Theorem 2.2.4], there is a positive
integer a depending just on m and d such that −aKX is f -free. Up to taking
a bounded multiple depending on ǫ, we may assume that a ≥ (1− ǫ)−1.
Since the statement is local in nature, we may fix z ∈ Z and assume that Z is
affine. Then, OX(−aKX) is basepoint-free. For a general choice of 0 ≤ Γ ∼
−aKX , define B

+ := Γ
a . Since X is ǫ-log canonical, a ≥ (1 − ǫ)−1, and Γ is a

general element of a basepoint-free linear series, it follows that (X,B+) is ǫ-log
canonical. Thus, by construction, B+ is a strong (ǫ, a)-complement for (X, 0)
over z. Then, by the same argument in the proof of Theorem 5.5, it follows
that Z is δ-log canonical, where δ depends on d, ǫ and m.
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Études Sci. Publ. Math. 24 (1965), 1–231 (French). MR0199181
↑1966

[Hac14] ChristopherD. Hacon, On the log canonical inversion of adjunc-

tion, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 139–143, DOI
10.1017/S0013091513000837. MR3165017 ↑1981, 1984

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-
Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
MR0463157 ↑1958, 1966, 1987

[HMX14] ChristopherD. Hacon, James McKernan, and Chenyang Xu, ACC
for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2,
523–571, DOI 10.4007/annals.2014.180.2.3. MR3224718 ↑1991

Documenta Mathematica 25 (2020) 1953–1996



Strong (δ, n)-Complements 1995

[HX13] ChristopherD. Hacon and Chenyang Xu, Existence of log canon-

ical closures, Invent. Math. 192 (2013), no. 1, 161–195, DOI
10.1007/s00222-012-0409-0. MR3032329 ↑1981, 1982

[HX15] ChristopherD. Hacon and Chenyang Xu, Boundedness of log

Calabi-Yau pairs of Fano-type, Math. Res. Lett. 22 (2015), no. 6,
1699–1716, DOI 10.4310/MRL.2015.v22.n6.a8. MR3507257 ↑1961

[KF04] S.A. Kudryavtsev and I. Yu. Fedorov, Q-complements on log sur-

faces, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom.
Metody, Svyazi i Prilozh., 181–182 (Russian); English transl., Proc.
Steklov Inst. Math. 3(246) (2004), 169–170. MR2101292 ↑1954

[KMM87] Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Intro-
duction to the minimal model problem, Algebraic geometry, Sendai,
1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam,
1987, pp. 283–360. MR946243 ↑1975

[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic

varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge
University Press, Cambridge, 1998. With the collaboration of C. H.
Clemens and A. Corti; Translated from the 1998 Japanese original.
MR1658959 ↑1958, 1961, 1962, 1964, 1982, 1991, 1993

[Kol93] János Kollár, Effective base point freeness, Math. Ann. 296 (1993),
no. 4, 595–605, DOI 10.1007/BF01445123. MR1233485 ↑1963

[Kol13] János Kollár, Singularities of the minimal model program, Cam-
bridge Tracts in Mathematics, vol. 200, Cambridge University
Press, Cambridge, 2013. With a collaboration of Sándor Kovács.
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