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ABSTRACT. We extend techniques employed by Garibaldi to con-
struct various new injections involving the half-spin group, HSpin,
induced by lifting the Kronecker tensor product to simply connected
groups. We calculate the Rost multipliers of the maps we have con-
structed. Furthermore, we utilize our new map PSp,,, x PSp,,, —
HSpin,,,,, to describe the structure of the normalized degree three
cohomological invariants of HSpin,, .
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1 INTRODUCTION

Degree three cohomological invariants of semisimple linear algebraic groups as
given in [GMS] have been recently studied and computed in [Bal7], [BR13],
[GQO8], [Mel6], [MNZ] and others. Rost multipliers played an important role in
those computations. In this paper, we introduce new maps between split linear
algebraic groups, compute their Rost multipliers, and utilize one of the new
maps to describe the structure of cohomological invariants of the split half-spin
group. In particular, working over a field F of characteristic different from 2,
we use the Steinberg construction of Chevalley groups to explicity describe the
Kronecker tensor product map between split semisimple linear algebraic group
schemes lifted to the simply connected setting (this is done in section 4). We do
so by generalizing the methods of Garibaldi from [Ga09, §7] which are outlined
in section 3. Using this explicit description we are able to compute the kernel
of compositions of these maps into the half-spin group and therefore produce
new injections.
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1998 C. RUETHER

THEOREM A. When at least one of n and m is even there exist commutative
diagrams of split linear algebraic group schemes

Sp,y, X Spsy,, — Spiny,,,, Spin,, x Spin,,, — Spin,,,,

| | | l

PSp,, x PSp,,, —— HSpin,,,,, PSO,, xPSO,,, —— HSpin,,,,, .

Furthermore, for any n and m, there exists a commutative diagram of split
linear algebraic group schemes

Spin4n X Spin2m+1 —— Spin4n(2m+1)

} |

HSping,, x SOz 11 —— HSping,, o, 41)

In all diagrams the top maps are the lifted Kronecker tensor product.

The Rost multipliers, integers describing induced maps between quadratic in-
variants, of these news maps are computed in section 6. Our main result is
in section 7. As an application of the existence of the map Sp,,, X Spsy,, —
HSpiny,,,,, we prove the following structure theorem about the degree three
normalized cohomological invariants of the half-spin group.

THEOREM B. Let n > 2. We can describe the degree three normalized invari-
ants of HSpin,,, as

F* /(F*)?2 n is odd or n =2
Inv® (HSpiny,,, 2)norm = § F¥/(FX*)2 G Z/2Z n=2 (mod4) and n # 2
F*/(F*)? ®Z/AZ n=0 (mod 4).

This generalizes a result of Bermudez and Ruozzi in [BR13]. Finally in section
7.1, we describe an explicit non-trivial non-decomposable normalized degree
three invariant of HSpin,,, arising as a pull back of an invariant of PSQOy,
constructed in [Mel6]. When n = 2 (mod 4) and n # 2, this gives a complete
description of the normalized invariants of HSpin,, (Remark 16). Addition-
ally, the appendices contain concrete descriptions of the groups Sp, Spin and
SO via Chevalley generators and relations which are utilized throughout the

paper.
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2 PRELIMINARIES

Throughout this paper we work over a field F of characteristic different from 2
and deal with linear algebraic groups schemes of types B, C, and D over F. We
do so by mainly focusing on the group of points over F.p,, the separable closure
of F, and obtaining the F-points via Galois descent.

2.1 SpLIT LINEAR ALGEBRAIC GROUP SCHEMES

In the split case, we will consider the orthogonal involution on M,,(F) given by
Tt M, (F) — M, (F) 1
T where Q,, =
A Q,A"Q, 1

and the associated group schemes PSO,,(7,),S0,(7,), and Spin,,(7,). For
brevity, we use the unadorned PSO,,,SO,,, and Spin,, when the orthogonal
involution in question is the above 7,. The Fg,-points of these groups are

SO, (Feep) = {A € My (Foop) | A+ (10 @ 1)(A) = I, det(A) = 1}
PSO,,(Fsep) = SO, (Fsep)/Z (SO, (Feep))
Spin,, (Feep) = (7a(t) | @ € Pspin, ,t € Feep).

Here we are using the language of Chevalley generators as in [St68] to describe
Spin,,. In this language, the Fg, points of a group scheme G are generated
by elements z,(t) where o € ®g is a member of the root system of the group
and t € Fyep. Additional significant elements are named

Wo (1) = o) T_o(—t 1) za(t) and he(t) == we(H)wa(—1) for t € Fiep-

The generators of Spin,, satisfy the relations of appendix 2. To see the rela-
tionship between these groups in the language of Chevalley generators we use
[St68, Lemma 28(d)] to compute the center of Spin,,. The center of Spin,,,
when n is even can also be found in [GQO08, Example 8.6]. Noting that Spin,,,
is type D,, and Spin,,, , , is type B,,, in each case let ® be the root system and
choose the standard simple system of roots A = {a1,...,a,} C ® as in [Bou].
Then

Z(Spin,,,) = {#2 XHz TEVER Z(Spiny,, 1) = pia.
L n odd

The F¢ep-points are

L&, hay, o (=1)ha, (—1), v
Z(Spiny,, (Fuep)) = {}1 ?CQ 83}( )ha, (—1),&} szzn

Z(Sping, 1 (Fsep)) = {1, ha, (=1)}-
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2000 C. RUETHER

where
n—1 n—2
&= 1] rac(=0), ¢=TT han(=1) - ha_ ()ha, (—0)
k=1 k=1

€2 = ha,_y (=1)ha, (=1)&

and i € Fyp is an element such that i> = —1. Note that since the hq(t)
commute with one another and are multiplicative in their arguments, ¢? =
ha,_,(—=1)hq, (—=1). Therefore we have that

SOz (Fsep) = Spiny,, (Fsep) /{1, ha, 1 (—1)ha, (—1)}
PSO2n = SpinQn /Z(Spin2n)
SO2n41 = Spiny,, , /Z(Spiny, ;) = PSSOz, 1 .

Hence these groups can also be described by the Chevalley generators z(t)
subject to the usual relations in Spin,, with the additional relations imposed
by the quotients. The translation between the Chevalley language and the
matrix language within SO,, is given in appendix 2. When n is even, Spin,,,
has additional central subgroups. The half-spin group scheme is defined over
IFsep by

HSpin,, (]Fsep) = Spin,,, (FSEP)/{]-? 1} = Spin,,, (Fsep)/{la 2}

We also consider a symplectic involution on Ms, (F) given by

0 Q,
-Q, 0

QZ}Qn: M2n (F) — M2n (F)

here Wy, =
Ay 7\1127LAT\I/27L wher 2 l:

and the associated group schemes PSp,,, (12,) and Sp,,, (2,,). Again we use
the unadorned PSp,,, and Sp,,, when the symplectic involution in question is
the above 15,. These have Fy.p-points

Sp2n(Fsep) ={A¢€ M2n(Fsep) | A (Yo, ® 1)(A) = I}
PSpy,, (Fsep) = SPay, (Fsep) /{1, —1}

and Z(Spy,) = pe. We will also work with the symplectic groups via the
language of Chevalley generators. The translation between the Chevalley lan-
guage and the matrix language within Sp,,, is given in appendix 1. We note
here that in this language the center of the symplectic group is

Z(Spay, (Fsep)) = {1, H ha,(=1)}.

i=1
i odd

Finally, we will obtain the F-points of all these groups by considering the fixed
points of the I' = Gal(Fge, /F) action on the Fy,-points described above. The
action of I' on Chevalley generators is included in appendix 1 and 2.
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2.2 KRONECKER TENSOR PRODUCT

The titular Kronecker tensor product map, on the level of matrices over a field
extension E/F, is the universal map M, (E) x M,,(E) — M, (E) ® M,,,(E)
M,,;» (E). These maps restrict to produce the following two group scheme ho-
momorphisms.

pso: SO, x SO,, — SO,
Po: szn X szm — So4nm (w2n & z/}Zm)

Rather than consider the second homomorphism, we will compose it with a
conjugation to obtain

Psp: Sp2n X Sp2m - So4nm
(A7B) = P_lp()(AvB)P

where

2.3 RosT MULTIPLIERS

Here we introduce the notion of the Rost multipliers of a homomorphism be-
tween linear algebraic groups following [GMS]. Rost multipliers are integers
that describe the homomorphism’s induced map between quadratic invariants
as follows. Let G be a split semisimple linear algebraic group and let T C G
be a split maximal torus.

TG and T* =Homy(T,G,,) XZ".

Since T acts diagonalizably on the Lie algebra of G via the adjoint action, a
copy of the root system of G, denoted @, lies within T*. Let W be the Weyl
group of ®. The action of W on ® extends naturally to T* and then also to
the degree 2 elements of the symmetric tensor product, S?(T*). The invariant
elements, S?(T*)W, are integral W-invariant quadratic forms on T* @R. These
are the aforementioned quadratic invariants. When G is simple, SZ(T*)W ~
Z{q) is an infinite cyclic group generated by an element ¢ called the normalized
Killing form of G. When G is semisimple these invariants form a free group
generated by the normalized Killing forms of the simple components.

This construction has functorial properties, [GMS, pg.119]. If ¢: G — H is
a homomorphism of split semisimple linear algebraic groups, then there is an
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induced map on characters, ¢*: Ty — T¢g, which in turn induces a map on

quadratic invariants
el S(T)"™ — (1)

by extending algebraically. Because ¢! is a homomorphism of free groups,
the image of each generator is an integral combination of generators in the
codomain, and these integers are called the Rost multipliers of .

3  GARIBALDI'S EXAMPLE, PSp, x PSpg — HSpin 4

In [Ga09], Garibaldi considered the map given over F by

n 0 0 0

p: Spy(F) x Spg(F) — SO16(F) 0 0 Q4 0
. where P =

(A,B) — P~ 'p(A, B)P 0 - 0 0

0 0 0 Iy

This P differs slightly from the one printed in [Ga09] but later calculations
there agree with this P. Garibaldi described the restriction of ¢ to maximal
tori using the language of Chevalley groups and then noted that there is a lifting
¢: Sp,y X Spg — Spin, ¢ which acts analogously on Chevalley generators. The
lifting’s restriction to maximal tori, and in particular to the center, is described
in the following tables.

h € Sp, X Spg #(h) € Spingg
(hi(t), 1) hy (£)ha (£2) ha (%) ha (8 hs (83 ) h (1) hr (1)
(1, ha(u)) ha(u)he(u™")
(1, ha(u)) ha(u)he(u")
(I, hs(u)) hs(u)hs(u™")
(1, ha(u)) ha(u)hs (u?)he(u?)hr (w)hs (u)
h € Z(Spy X Spg) | #(h) € Spinyg
7.0 i
(h1(=1),1) hi(=1)hs(=1)hs(=1)h7(=1) = &
(I, hi(=1)h3(=1)) | ha(=1)hs(=1)hs(=1)h7(=1) =&
(h1(=1), ha(=1)h3(-1) 1

Therefore ¢ induces an injection (Sp, X Spg)/Z(Sp, X Spg) — Sping /{1,&1}
which is the desired map PSp, x PSpg — HSpin,g.

4  CHEVALLEY GENERATOR DESCRIPTIONS OF KRONECKER TENSOR PROD-
UCTS

Following the method of the previous example, we aim to explicitly describe
Kronecker tensor product maps between simply connected groups using the lan-
guage of Chevalley generators. To begin, we apply [BT72, Proposition 2.24(i)]
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to the maps,
Psp- Sp2n X Sp2m — So4nm
Spin,, x Spin,, — SO,, x SO,, ¢ SO,
By doing so we obtain unique maps ¢sp and ¢gpin making the following dia-

grams commute.

Spiny,,, Spin, x Spin,, M Spin,,,,

= | | l

SPoy, X SPom, —2+ SO4pm SO, x SO, —22 SO,,,,

Since various properties of ¢gpin depend on the parities of n and m, we also
denote it by ¢ m. On the level of Fyep-points these groups are described by the
Chevalley generators given in appendix 1 and 2, so we may describe the maps
in terms of Chevalley generators also. The images for the maps pgp(Feep)
and pso(Fsep) can be computed explicitly using the matrix representations
of Spy, (Fsep) and SO, (Fsep). These images are recorded in appendix 3. It
turns out that the images of the lifted maps ¢sp and ¢spin are described with
analogous products of Chevalley generators. To verify this we use identities
from [St68, Lemma 37] as well as the following collection of identities.

LEMMA 1. Let n > 2 and let ® be the root system of Spin,,. The following
relations hold in Spin,,(Fs.p) for all a € ®.

(1) wa(tu) = Wq (t)wa(_l)woc(u)
(2) wa(t) =w_o(~t71)
(3) wa(t)Q = ha(-1)

Furthermore, if o, B € @ are two roots of the form £e; £e; such that a+ 8 € ®
then

(4) ha(t)hp(t) = hayp(t).

If Spin,, is of type B we also have for i # j,
(5) hiei+(—1)mej (t)h(,l)wwlej (t) = hieiJr(,l)erlej (t)
(6) he, (t>hi€j (t) = h‘ieiﬂ:ej (t2)'

Proof. Point (1) follows from h,(tu) = h(t)he(u) by expanding both sides
into w’s and cancelling the rightmost w,(—1)’s. We remark that therefore (1)
holds in any Chevalley group, not just Spin,,. Point (2) comes from [St68,
Lemma 37(b)] by conjugating w, (t) with itself to obtain

Wa () = Wo (D) wa (H)wa (—t) = w_o(ct™2t) = w_o(ct™).
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Then since the constants ¢ are the same in Spin as in SO, calculations in SO
show that for the above case ¢ = —1, and s0 w4 (t) = w_o(—t~1) as desired.
Point (3) follows from (1),(2) and the fact that ho(t)™! = h_,(%).

we(t)?

Wa (D) Wa () = wo (H)wa (—1)we (—1)we (—t) = ha(t) (wa(t)wa(l))_1
ha(t) (W_a(—t"w_o(=1)) 7" = ha(t)h_a(—t"1)~"
ho()ha(—t71) = ho(—1).

To see (4), consider such «, 8 € ®, which without loss of generality must be
of the form a = +e; + (—1)"e;, 8 = (=1)™"le; £ ef with i # k. Therefore
—(B,0) = —(e, ) = 1 and 7o (8) = rg(a) = o+ . Then using parts (b) and
(c) of [St68, Lemma 37],

ha(t)hs(t) = wa(t)wa(=1)hs(t) = wa(t)hats(t)wa(-1)
= (wa(t)warp(t)wa(—t))wa(t)wa(—1) (Wa()was(~1)wa(-1))
= wp(ct™ @ F D) ho (Hws(—c) = ws()ha(tyws(—c)
= hayp(t)ws(c)ws(—c) = hatp(t).
For (5), let @ = %e; + (—=1)™e;, 3 = (—1)™T'e;. Therefore —(8,a) =

1,—(a,8) = 2 and so r4(f) = a + B,rg(a) = o+ 2B. The argument is
then the same as the one above except at the second last step.

~

ha(ths(t) = - = wg(c)ha(t)ws(—c) = hat2p(t)ws(c)ws(—c) = hat25(t)

and hay25(t) = hie,y(—1)mi1e,(t). Finally (6) follows from (5). Let a =
+e;, 5 = xe;. Then (5) applies to the pairs o, —a + 8 and o — 3, 8. Therefore

ha(t)hs(t) = ha(t)h—a+s(Dha—p(O)hs(t) = hats(t)hats(t) = hars(t?). O

PROPOSITION 2. The group scheme homomorphisms ¢sp and ¢spin act anal-
ogously on Chevalley generators as the homomorphisms psp and pso Tespec-
tively. For example

2m

p2n,2m(m€i—€j (t)’ 1) = H Le(i_1)omtk—€(Gi—1)2m+k (t)
k=1

where the x,(t) appearing are generators of SO, and therefore

2m

¢2n72m($€i—€j (t)v 1) = H Te(i1y2mtk—€(—1)2mtk (t)
k=1

where now the x,(t) appearing represent generators of Spin. All images of ¢sp
and ¢spin are obtained similarly.
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Proof. First, define homomorphisms
f: Spsy, X Spsy,, = Spin,,,,,, and g: Spin,, x Spin,,, — Spin,,,,

to act analogously to psp and pgo respectively on Fgep-points as recorded in
appendix 3. Since these maps are between simply connected groups, to verify
they are well-defined it is sufficient via [St68, Theorem 8] to check that the
image of any x,(t) is again additive in ¢, the image of any h,(t) remains mul-
tiplicative in ¢, and that the commutator relations given in the appendices are
preserved. This can be verified using the relations in Spin given in appendix 2
and the relations of [St68, Lemma 37] and lemma 1. We note that f and g both
preserve the action of the Galois group Gal(Fsep/F) and therefore descend to
full group scheme homomorphisms. Since the natural projection Spin,, - SO,,
sends a Chevalley generator z4(t) € Spin,, (Fsp) to the analogous generator
z4(t) € SO, (Fsep), f and g clearly make the following diagrams commute.

Spiny,,,,, Spin,, x Spin,, —— Spin,,,,

] | |

SPy, X SPay —2 SO4nm SO,, x SO,, —=% SO,

Finally, since [BT72, Proposition 2.24(i)] produces unique maps, we must have
that f = ¢sp and g = Pspin. [

REMARK 3. We note that the maps ¢sp and ¢spin also exist when I is char-
acteristic 2, however it is unclear to us whether the techniques used in propo-
sition 2 apply in that case.

COROLLARY 4. The maps ¢sp, Pspin Testrict to maps between mazimal tori.
The images of ha(t) for simple roots «a are given below for each map.

Sp2n X Sp2m ¢Sp(h) € Sp1n4nm where [y} - (Qm)y
(he'i_ei+l (t)’ I) he[l 14k —€[i]+k (t)
(h2€n (t)7 I) Hk 1 he n—1]+kt€[n—1]+m+k (t)
T _
(I’ hej—€j+1 (u)) Zf({ he([k]+j_€[k]+j+l(u)h_e[k]+m+j+e[k]+m+j+l (u 1)
(Ia hZem (u)) k=0 he[ka*e[kHzm (u)
Spin,,, X Spin,,,, | ¢spin(h) € Spiny,,,,, . [y = Cm)y, y=2m+1—y
2m
(hei*6i+1 (t) 1) l2c:1 h’e[ifl]#»k Clil+k (t)
m
(hen—1+6n( ) ) k=1 h'e[n 2]+k+€[n 1]+% (t)
n—1
(1’ hej—61+1( )) k:(i he[kHj_e [k]+3+1 (u)he[ka_e[kH;(u)
(1’ hem—l‘f‘em( )) k=0 he[kH»m—l_e[kH»W(u)h'e[k]+m_e[k]+m(u)
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Spiny, x Spiny, ., gsiaggz)JrGQS_p;nzn(zmH) -yl =@m+1)y,
(hei*€z+1 (t)’ 1) in:TiH he[i—1]+1«*e[i]+1« (ﬁ)

(he,_1+e,(t),1) iﬁfl efn2pskter_iox (L)

(17 hej—ej+1 (u)) Z;é he[k]+j_e[k]+j+l (u)he[kHW—e[kHj (u)
(1, he,, (u)) Z;S P tug e — gy (u?)

. . (ZSS in(h) € Spln n m . [y] = (2m + 1):1/7
Spin,,, ; x Spin,,, 7 ;) om 2y (2n+1)(2m+1)
2m+1
(hei—€71+1 (t)7 1) 15:111 he[i—1]+k_h[i]+k (t)
(hen (t)7 1) k=1 he[n—1]+k (t)
n—1

(1, h6j—€j+1 (u)) ( k=0 he[k‘]“ih[’“]““ (u)he[kHW*e[kH? (u))

'he[n]ﬂ —€ln]4j+1 (u)

n—1 _

(17 h'em (U)) he[n]+m (U’) k=0 h’e[k]er (u)he[k]er (u 1)

where 1 <i<n—1and1<j<m—1 in all tables.

Proof. These images can be computed using the explicit descriptions of ¢gp
and ¢spin given in proposition 2. For roots o of the form +e; & ¢e; or £2¢;, the
factors in the image of z,(t) pairwise commute. Therefore w,(t) maps to an
analogous product of w’s, and in turn h,(t) maps to an analogous product of
h’s. For roots of the form o = +e; in type B, the image of z,,(¢) contains factors
which do not commute. In these cases the image of h,(t) can be computed using
additional identities such as those in [St68] and lemma 1. O

5 INDUCED MAPS ViA CENTRAL QUOTIENTS

Now that we have our desired liftings we wish to track their behaviour on
central elements in order to identify induced maps between central quotients.
In particular, we are interested in maps involving HSpin.

PROPOSITION 5. Let at least one of n and m be even. Then there exists an
injection of group schemes ¢’Sp making the following diagram commute.

¢s .
Sp2n X Sp2m —_— Sp1n4nm

L

PSp,,, x PSp,,, — HSpin,,,,,

Proof. Since the kernel of the map psp is a central subgroup of Sp,,, X Spy,,,
and psp factors through Spiny,,, via ¢sp, we must have that ker(¢gp) is
contained within the center as well. By direct computation using the results
of corollary 4 and the description of the centers of Sp and Spin in section 2.1,
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we see that when at least one of n,m is even ¢g, behaves on elements of the
center of Sp,,, X Spy,,, as

(L H)—1, (-I,L)—&, (I,-I)—&, (-I,-I)—1

Thus the kernel of the composition Sp,,, x Sp,,, — Spiny,,,, — HSpin,,,,
is the center of Spy,, X Spy,,. The first isomorphism theorem then yields the
desired injection. O

PROPOSITION 6. Let at least one of n and m be even. Then there exists an
injection of group schemes ¢’2n72m making the following diagram commute.

Spin,,, x Spin,,, an 2m, Sping,,,,

oo s e

PSO;,, x PSO,,, —— HSpin,,,,,

Proof. The kernel of ¢2, 2/, is a subset of the kernel of the composition
Spin,,, X Spin,,,, — Spiny,,,,, = SO4y, which is the same map as the com-
position Spin,,, X Spin,,, = SO2, X SO, — SOy4y,,, by construction. The
kernel of pap 2, is a central subgroup of SOs, x SOs,, and the inverse of
Z(803y, x 8SOy,,) under the natural projection is Z(Spin,,, x Spin,,,). Thus
the kernel of ¢9,, 2, is a central subgroup of Spin,,, x Spin,,,,. Using the de-
scription of the center of Spin in section 2.1 and corollary 4 we compute that
®2n,2m behaves on generators of the center as follows, depending on the parities

of n and m.
n even n odd n even

m even m even m odd

EL,D=& | (GD=& | (G, D)= &
(5271)’_) 51 (]-751)}_> 51 (52,1)*—> 51
(1761)’_> é-l (1>§2>}_> 51 (17C)}_> El

In all cases we see that the kernel of the composition
Spin,,, x Spin,,, — Spiny,,,,, = HSpin,,,,,,

is the center of Spin,, x Spin,,,. The first isomorphism theorem then yields
the desired injection. O

PROPOSITION 7. Letn be even. Then there exists an injection of group schemes
P 2my1 Mmaking the following diagram commute.

. . P2n,2m+1 .
Spin,,, x Spin,,,,; —— Sp1n2n<2m+1)

l ¢’2n,2m+1 i

HSpin,,, x SOz, 11 —— HSpiny,, 5, 41)
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Proof. By similar arguments as in the proof of proposition 6 above, the kernel
of pan 2m+1 is a central subgroup of Spin,,, X Spin,,,,, ;. Using the description
of the center of Spin in section 2.1 and corollary 4 we compute that @2, 2m+1
behaves on generators of the center of Spin,,, x Spin,,, ,; as

(fla 1) = 517 (527 ]-) = 52, (1, han(_l)) — 1.

Thus the kernel of the composition

Spiny,, X Spiny,, ;1 — Sping, (5, 11) = HSping, 5., 41)

is {1,£1} xZ(Spiny,,, ). The first isomorphism theorem then yields the desired
injection. O

6 COMPUTING ROST MULTIPLIERS

In what follows we compute the Rost multipliers of the maps constructed in
section 5. For each of our groups, we choose the standard simple system of
roots {ai,...,a,} as in [Bou] where n is the rank of the group. and then
consider the maximal torus given by

n

T(F) = ([ [ hau () | t: € FX).

i=1

In all types, for 0 € T' = Gal(Fge,/F) the action on h's is by o(ha(t)) =
ha(o(t)). Therefore the group T(F) consists of products of h’s with arguments
from F. The groups T are then

i
Tfplnzn Z<€1,"' aen—17%(61+"'+6”)>

Spiny, 4,

*
Tso.,
TS0271+1 Z<615 e 76n>
Tsp,

™ P2y, {Z”fl — T 7 n—1 -

HSpin,, iz1 Ci€i tengler+ - ten) | €Z,3 5 ¢ even}
T*

PSO,, {0 ciei| ¢ € 2,57 | ¢ even}.
TPSp

2n
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where the characters act as follows by type.

D, el(Hhm(ti))—tl
ej([Tha, (t:) = ¢; _11t for2<j<n—-2orj=n
enfl(Hhal‘( ))—t7 2tn 1ln
Her -+ e)([Tha, () =
By | er([[ha:(t:) =t
eIl ha;(t:)) = t_l for2<j<n-1
)

en(Hhal( i) —t llt2

%(61 +.ot n)(HhOtl( l)) = tn
Cn | ex(I]ha (i) = ta
ej(H hOéi (tl)) = tj__lltj for 2 S] <n

Each T* contains the root system of its group in the usual way and therefore we
can compute the normalized Killing forms by finding the smallest multiple of
Y acd o? present in S?(T*). This yields the following, as computed for HSpin
in [BR13, §5.1] and as computed for Sp, PSp, Spin, and PSO in [Mel6, §4b].

4S04, = 4SOspsy = USpy, | qPSp,, = IPSO,,
Srie? n=0 (mod4)
S e? 23" €2 n=2 (mod4)
45" €2 n=1,3 (mod 4)
4spiny, = qSPin2n+1 ‘ qHSpin,,

N
- g
3

MMM
I3

N
Il
-

% Z?:l 622

oS-
S

2
7

2 n=~2 (mod4)
2 n=1,3 (mod 4)

Since these are all rational multiples of gso = ¢sp it will be sufficient to describe
the images pgp(qsp) and p§o(gso) where psp: Sps,, X Spa,, — SOun., and
pso: SO, x SO,, — SO,,, are the tensor product maps from section 4. From
these, all other images can be extrapolated.

[\

Il
-

LEMMA 8. Let psp and ¢sp be the split version of the maps from section 4.
Then the map pg: Tso,,,. — Tgpm ®Tgp, ~is the restriction of the map
¢$p* Tspin,, — Tsp,. 1§,  to the subgroup T50,m < TSpin,. -

Proof. Restricting the commutative diagram on the left to maximal tori and
then dualizing yields the adjacent diagram on the right,

. *
Spiny,,,, Tspin,,,,,

= B

Ps
SPa, X SPay, —— SOunm T, ©Tgy, 2 Tg,

from which the claim becomes clear. ¢g,, agrees with pg, on the subgroup
Tso, - O
4nm
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LEMMA 9. Let pso and ¢spin be the split version of the maps from sec-
tion 4. Then the map pso: Tso,, — Tso, ®Tgo, can be identified with
the restriction of the map ¢g, Topin,  — Tspin, ST§ to the subgroup
TgOnm S Tgpin .

nm

p1n771

Proof. Restricting the commutative diagram on the left to maximal tori and
then dualizing yields the adjacent diagram on the right.

. . ¢Spin . * * ¢§pi" *
Spin,, x Spin,, —% Spin,,,, Tspin, ® Tspin,, Tspin,,,

| | ;o]

SO, xS0,, —=°+ 80,  Tio, ®Tho, 22— Tio

Since the diagram is commutative we see that ¢g.;, maps elements of
the subgroup Tgo, < Tgpi, ~ into the subgroup Tgo, @ Tgo, <
TSpin, ® Tspin, - Therefore we may identify pgo with this restriction of ¢z,
to Tgo,, - O

PROPOSITION 10. The Rost multipliers of ¢sp: SPg, X Spa,, — Spinyg,,, are
(m,n). That is

Q%I, (QSpin4nm) = (qup2n 5 nQszm)~

Proof. As a result of [GMS, Proposition 7.9(5)(b)] the Rost multipliers of psp
are (2m,2n). That is

pTSp(qSO4nm) = (2quP2n7 2nqSP2m)'

Therefore using lemma 8 and the description of the normalized Killing forms
above, we can compute

1 1
0k (spin,,,.) = Pp(50804..) = 5p(0504,..)

1
= 5(2qup2n ’ 2n(ISp2m) = (mqspzn ’ nqspzm)'

Hence the Rost multipliers of ¢sp are (m,n). O

PropPOSITION 11. The Rost multipliers of ¢, m: Spin, x Spin,, — Spin,,,,
are (m,n). That is

Qsil)m(QSpinnm) = (qupinn » G4Spin,, ) .

Proof. As a result of [GMS, Proposition 7.9(5)(b)] the Rost multipliers of p;,
are (m,n). That is

pl m(aso,..) = (mgso, . ngso,,)
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Therefore by lemma 9 and using the description of the normalized Killing forms
above, we can compute

1

1
Ol m(Gspin,,, ) = ¢L,m(§qsom) = §pl,m(QSom)

1
= 5\"Mgso,,,"4so,,) = \"M4spin,, ; ""4Spin,,, )
3 )= )

Hence the Rost multipliers of ¢y, ., are (m,n) also. O

THEOREM 12. Let qﬁ’sp and ¢’2n,2m be the maps of propositions 5 and 6 respec-
tively. Then their Rost multipliers are equal and they are described by

(¢ISP)T(qHSPin4nm) = (aqpspzn ’ quSsz)

($n.2m) " (qHSpin,,,,) = (agpso,, , bapso.,,)

m  (mod 4)
0 1 2 3
where (a,b) =< n (mod 4) (1) Eg:g% (m, %) E”%T: g; (m, %)
2| (Fmn) (m3) (3,3 (m3)
3| (F.n) ()

with gaps appearing since these maps only occur when at least one of n and m
18 even.

Proof. By restricting the commutative diagrams on the right to maximal tori
and then dualizing we obtain the adjacent diagrams on the right.

¢

$sp

Sp . * * *
Sp2n X Sp2m Sp1n4nm TSp2n @ Tszm TSpin4nm
PS lPS *>/Sp HS l T8 ]\T* L/Sp)* * ]\
Pop X Pom Py, PSp,, © PSp,,, HSpiny,,,,
Spin,, x Spin,,, —" Spi Tg o ®Th . 2 T
piny, pmy,, Py, Spin,,, Spin,,,, Sping,,,,

l Bon,2m J‘ T (P2, 2m)" T

PSOQn X PSOQm e HSpin4nm TP*’SOQT,, D TE’SOzm — TIikISpin4nm

From the top diagrams we see that (¢/Sp)* can be viewed as a restriction of
¢§p, and therefore (QS{SP)T can be viewed as a restriction of gzsgp. Similarly, the

bottom diagrams show that ((b’2n72m)T can be viewed as a restriction of ¢£n,2m.
Then, since we know the Rost multipliers of ¢sp and @2y, 2., from propositions
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10 and 11 respectively we can compute

<¢/SP)T(qHSpin4nm,) = (b;p(CQSPinzlnm) = (Cszp%,CnCIspQM)
o cm cn
= (quPSPQTL’ d72qPSp2m,)

where ¢, dy, ds € Z are integers depending on n (mod 4) and m (mod 4) as de-
scribed at the beginning of section 6. Sorting through the possible cases yields
that the Rost multipliers are (a,b) as described in the table above. Similarly
we can compute

(¢/2n72m)T(qHSPi“4nm) = ¢£n,2m(chpin4nnL) = (QCquPinzn’2cnqSPi“2m)
_(2m 2
- le QPSOQ,H 2d2 QPSOQm

for the same ¢,d;,ds € Z as in the previous case, and therefore we obtain the
same Rost multipliers (a, b). O

THEOREM 13. Let ¢, 9,41 be the map from proposition 7. Then its Rost
multipliers are described by

((b/277,72m+1)T(qHSpin2n(2m+1)) = (CLQHSpinzn ) bqso2vn+1)

(2m+1,n) § =0 (mod 4)
where (a,b) =< (2m+1,2n) § =2 (mod 4)
(2m+1,4n) §=1,3 (mod 4)

Proof. Restricting the commutative diagram on the top to maximal tori and
dualizing yields the diagram on the bottom

. . b2n,2m+1 .
Spin,,, X Spiny,, | ; ——— Spiny,, o, 41)

} l

D2n2m .
HSpin,,, x SOz, 41 MIHSPIHQn(2m+1)

Bon 2
* * n,2m+1 *
TSpin2n b TSPinzm+1 TSPinzn(2m+1)

] J

(¢’2 2 +1)*
* * n,2m *
THSpin2n & TSOZ7n+1 THspinQn(2m+1)

As in previous proofs this means we can consider (¢5,, 5, +1)T as a restriction

of ¢;n,2m+l' Then we can compute

(¢’2n72m+1)f (qHSPin2n(2m+1) ) = ¢£n,2m+1 (Cqspiﬂzn(anA) )

= ((2m + 1)chpin2n B 2"’LC(]Spir12m+1)

(2m + 1)c 2nc
= TQHSpinz,na TQSO2m+1
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where ¢,d; € Z depend on n/2 (mod 4). Sorting through the possible cases
yields that the Rost multipliers of ¢5,, 5,,,; are the (a,b) given above. O

We briefly note that the results given above agree with the Rost multipli-
ers appearing in [Ga09] on the case in which they overlap. For the map
w: Spy X Spg — Spin,g it is noted in [Ga09, (7.2)] that the restriction
¢lspy: Spg — Spinjg has a Rost multiplier of 1. Comparing this to our
map ¢: Sps, X Sp,y,, — Spin,,,,, for the case n = 1,m = 4 we see that the
duals of ¢ and ¢[sp, are given by

* ik * * * ok *
¢ . /I’Spin16 - TSp2(1) D TSp2(4) (b‘SpS . {Z—‘Spin16 - T‘Sp8
4Spin,; T (4 *4Sp,, 1- qus) gSpin,; 1- dSpg

and hence ¢|sp, also has a Rost multiplier of 1.

7 APPLICATION TO DEGREE 3 COHOMOLOGICAL INVARIANTS

Following [Mel6] for a linear algebraic group G over a field F we consider its
group of degree 3 cohomological invariants with coefficients in Q/Z(2), denoted
Inv®(G,2), where such an invariant is a natural transformation

a: Hl(—,G) — H3(—,@/Z<2))~

of the functors H!(—,G), H?(—,Q/Z(2)): Fields/F — Groups. Such an invari-
ant is called normalized if it maps the trivial G-torsor to 0, and the group of
normalized invariants is denoted InvS(G, 2)norm- Note that

Inv?*(G,2) = H3(F,Q/Z(2)) ® Inv*(G, 2)norm-

Forming a subgroup of the normalized invariants are the decomposable invari-
ants, Inv3(G, 2)dec, which are those o € Inv3(G, 2)norm given by a finite sum
of cup products of ¢; € F* with invariants o/,: H'(—, G) — H?(—,Q/Z(1)) of
degree 2. That is, for all E a field extension of F and Y € HY(E, G),

a(Y) =Y ¢ Uay(Y).

For PSp,,, the decomposable invariants are described in [Mel6, Theorem 4.6]
and are

Inv? (PSp,,,, 2)dec = F*/(F*)?

where the isomorphisms is as follows. For (¢) € F*/(F*)? = Inv®(PSpa,,, 2)dec
it behaves over a field extension E/F as

(C) : Hl(Ev PSan) - HS(]Ea Q/Z(2))
(A, )] = () U [A]
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where (¢) U [A] is a cohomological cup product considered an element of
H3(E,Q/Z(2)) by the identifications

(c) € EX/(EX)* = H'(E, p2) < H'(E,Q/Z)

[A] € Br(E) = H*(E,Q/Z)
H'(E,Q/Z)U H*(E,Q/Z) — H*(E,Q/Z(2)).

Similarly, we have that the decomposable invariants of HSpin,,, are

Inv® (HSping,,, 2)qec = F* /(F*)2.
For (¢) € F* /(F*)? = Inv® (HSpiny,,, 2)ec it behaves over E as

(c): H'(E,HSpin,,) — H*(E,Q/Z(2))
Y i () U[A(Y)]

where [A(Y)] is the class of the algebra represented by the image of Y under
the map H'(E, HSpin,, ) — H'(E,PSQy,) induced by the natural projection.
This can be seen from a remark in [Mel6, §1a] which tells us that

Inv?(HSpiny,,, 1)norm = 15 = Z/27

since po is the kernel of the universal covering Spin,,, - HSpin,,,. Therefore
the degree two invariant Y — [A(Y")], which comes from a degree two invariant
of PSOy,, is the non-trivial degree two invariant of HSpin,,,, from which the
statement follows.

Additionally, we consider the quotient of the normalized invariants by the de-
composable invariants, denoted

Inv3(G, 2)norm

I 3 G;2in = G
v (G, Zing Iv3 (G, 2) qee

and called indecomposable invariants. We note that despite their name, inde-
composable invariants may not be invariants in the sense of natural transfor-
mations described above. We take from [Mel6] and [BR13] some descriptions
of these groups of indecomposable invariants.

Z/2Z mn=0 (mod 4)

Inv® (PSp,,,, 2)ind =
0 else

Inv* (PS04, 2)ind

1%

{Z/QZ n=0 (mod 4)

0 else

0 n>1oddorn=2
Inv?(HSping,, 2)ina £ { Z/2Z n=2 (mod 4),n # 2
Z/4Z n=0 (mod4)
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As noted in [BR13], the above groups of invariants are functorial in G, that is
a homomorphism of linear algebraic groups p: G — H induces a commutative
diagram

Inv®(H,2)gee — Inv®(H,2)norm — Inv®(H, 2)ing

| l |

Inv3(G,2)dec — Inv3(G72)norm — Inv3(G,2)ind

where the vertical maps between decomposable invariants and between nor-
malized invariants send an invariant A to the composition

HY(-,G) — HY(—,H) 3 H—,Q/Z).

Now we can use our map (b'sp of proposition 5 within this framework to describe
the structure of Inv® (HSpiny,,, 2)norm-

LEMMA 14. Let (b’sp be the map of proposition 5. Then its induced map on
decomposable invariants is the diagonal map

FX/(FX)Z — FX/(FX)Q @FX/(FX)Q
(€)= ((e), (c))
which in particular is injective.

Proof. Let E/F be a field extension. We consider the following commutative
diagram of cohomology sets where the horizontal map is induced by qﬁ’sp, the
vertical map is induced by the natural projection, and the diagonal map is
induced by the Kronecker tensor product map between adjoint groups.

HI(E7PSp2n X PSpZm) — Hl(EaHSpinzlnm)

\ l

HY(E,PSOy4nm)

Since the diagonal map comes from the tensor product map, if we consider cen-
tral simple algebras (A1, 1), (A2, ¥2) over E of degree 2n and 2m respectively
with symplectic involution then we can denote their images within the above
diagram as

([A1,91], [A2,4p]) —————— Y

|

[A1 ® Ag, Y1 @ ).

Now for a decomposable degree three invariant of HSpin, A €
Inv® (HSping,,,,,2)dec, A corresponds to some (¢) € FX/(F*)? and we
have that

AY) = (c) U[A(Y)] = (¢) U [A1 ® As].
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Therefore, denoting the image of A under the map
Inv® (HSpiny,,,,, 2)dec — Inv® (PSpy, X PSPy, 2)dec
by A’ we have that
A([Ar, 9], [Az,1h2]) = A(Y) = () U [A1 ® Az] = () U[A1] + (¢) U [42]

since addition in Br(EE) is the tensor product of algebras. Hence we see that A’
corresponds to the diagonal element ((c), (c)) € F*/(F*)2 @ F* /(F*)2. O

THEOREM 15. Let n > 2. The exact sequence
0 — Inv3(HSpiny,,, 2)gec — Inv? (HSpiny,,, 2)norm — Inv? (HSpiny,,, 2)inga — 0

is split. In particular, we can describe the degree three normalized invariants
of HSpin,,, as

F*/(F*)?2 n is odd or n =2
Inv? (HSping,, 2)norm = { F*/(F*)2 @ Z/2Z n=2 (mod 4) and n # 2
F*/(F*)2 @ Z/AZ n=0 (mod 4).

Proof. First, we note that if n > 1is odd or n = 2 then Inv®(HSpin,,,, 2)ing = 0
and the result is immediate.

Next assume that n =2 (mod 4) and n # 2. In this case we can write n = 2m
where m > 3 is an odd integer. Then we consider the commutative diagram of
degree three invariants induced by the map qb’sp : PSp, x PSp,,,, = HSpin,,,.
In this case it takes the form

F*/(F*)? e« Inv®(HSping,,, 2)norm — Z/2Z

J ! |

F*X/(F*)? @ F*/(F*)? —— F*/(F*)2 o F*/(F*)? —— 0

where the leftmost vertical map is the injection of lemma 14. From this di-
agram we see that for all A € Inv3(HSpin4n,2)norm, 2A maps to 0 in both
Z/2Z and F*/(F*)? & F*/(F*)2. Therefore, 2A comes from F* /(F*)? and
maps to 0 along an injection, meaning 2A = 0. Thus, the exponent of
Inv® (HSpin,,,, 2)norm is 2, the same as of Z/27Z, and so any choice of preimage
of 1 € Z/27Z produces a splitting as desired.

Finally, assume that n = 0 (mod 4). Again we write n = 2m where now m
is an even integer, and we consider the commutative diagram of degree three
invariants induced by the map ¢g,: PSpy x PSp,,, — HSpiny,. In this
case, the group Inv®(PSp, x PSp,,,,,2)ind is either 0 or Z/2Z depending on m
(mod 4). Therefore the commutative diagram takes the form

F*/(F¥)2 — Inv®(HSpiny,,, 2)nom —— Z/AZ

I ! l

F*/(F*)? @ F*/(F*)? —— Inv®(PSp, x PSp,,,, 2)norm — 0 or Z/27
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Since the bottom row is exact, the exponent of Inv®*(PSp, X PSps,.,2)norm
divides 2 if IDV3<PSp4 X PSpo,;2)ina = 0, or it divides 4 if
Inv?(PSp, X PSPy, 2)ind = Z/2Z. In either case the exponent divides 4.
Hence, for all A € Inv®(HSping,,2)norm, 4A maps to 0 in both Z/4Z
and Inv?(PSp, x PSpy,,,2)norm. Therefore, 4A comes from F*/(F*)? and

maps to 0 along an injection, meaning 4A = 0. Thus, the exponent of
Inv® (HSping,,, 2)norm is 4, the same as Z/47Z, and so any choice of preimage
of 1 € Z/4Z produces a splitting as desired. O

We note that theorem 15 is a generalization of [BR13, Corollary 5.2] which
states the result for HSping.

7.1 AN EXPLICIT INVARIANT OF HSpin

In [Mel6], Merkurjev constructed a non-trivial, non-decomposable invariant
I € Inv® (PSO2,, 2)norm when n =0 (mod 4) and the characteristic of F is dif-
ferent from 2. T is therefore a representative of 1 € Z/27 = Inv?’(PSOgn, 2)ind-
We briefly summarize the construction. Consider an element (4,0,e) €
HY(F,PSO3,,) where (A, o) is a central simple F-algebra with orthogonal in-
volution of trivial discriminant, and e € Z(C(A, 0)) is a non-trivial idempotent
from the center of the Clifford algebra. Merkurjev finds a hyperbolic involution
o’ on A and another corresponding idempotent e’ from the center of C'(A4, d’).
Merkurjev then notes that (4,0’ ¢e’) lies in the image of the natural map

HY(F,SO(A,0)) = H(F,PSO(A,0)).

The set H'(F,SO(A4,0)) is described as equivalence classes of pairs (a,z) €
A x F where a = o(a) and 22 = Nrd(a). Since (4,0, ¢’) is in the image of this
map, it comes from some (a,x). The invariant then acts by

I(A,0,e) = (v) U[A] € H*(F,Q/Z(2)).

Now, let n = 0 (mod 4) and n # 4. We consider the above invariant pulled
back to HSpin,,,,

Ian(PSOQ7“ 2)norm — Inv3 (HSpin,,,, 2)norm
I—T

and we see that for Y € H!(F, HSpin,,,) it acts via
I'(Y) = (z) U[A(Y)]

where [A(Y)] is the algebra represented by the image of Y in H(F,PSOy,),
and x € F is chosen through the process outlined above. As a result of [Mel6,
Remark 3.10], since the map 7: HSpin,, — PSOs, is between split groups,
the induced map

Inv* (PS04, 2)ina — Inv? (HSpin,,,, 2)ind
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is described by the Rost multiplier of the homomorphism. In this case the dual
map 7*: Tpgo,, —> Thspin,, 15 simply the inclusion as a subgroup, and so
by referencing the normalized Killing forms given in section 6 we see the Rost
multiplier is 1 if n/2 =2 (mod 4), and is 2 if n/2 =0 (mod 4). Therefore the
induced map between indecomposable invariants is

727 = 7.]27 ifn/2=2 (mod 4)
7)27 — Z]AZ ifn/2=0 (mod 4)
1—2

REMARK 16. In the case when m = 2 (mod 4), the invariant I’ above, along
with the decomposable invariants, gives a explicit description of all degree three
normalized invariants Inv®(HSpiny,,, 2)norm.

8 APPENDICES

The simply connected groups Spin, and Sp,, are defined by the relations
given in [St68, Theorem 8]. The constants ¢;; appear below. The Galois action
given for each group is the entry-wise action on matrix entries in the case of
Sp,,, and SO,. The action is defined analogously for Spin,; making the natural
projection Spin; - SO, a I'-morphism.

APPENDIX 1. Sp,, is of type C,, and by [Bou] it has root system
O ={te;+ej,£2e, |1 <i<j<n,1<k<n}
The Fgep-points of Sp,,, have Chevalley generators
Tey—e;(t) = Ton +t(Eij — Eony1—jont1-d)

Teite; (1) = Ton + t(Ei2nt1-5 + Ej2nt1-i)
Toe,; () = Ion +tEj2n41-j

fort € Feep, 1 <i<n—1,1<j<nwithi<j, and z_,(t) = 24(t)T. For all
a € ® and for all o € I' = Gal(Fgsep /F), we have

U(xa(t)) = Za (U(t))-

For o, € ®,if 0 # a+ 3 ¢ ® then (x,(t),zg(u)) is trivial. Otherwise, if
a+ € @ then it falls into one of the following cases. For integers i, j, k,l € [1, n]
with ¢ < j, k,l and k < [, and for ay,as, a3, as € {1,—1} the commutators are

Jj=k :(xa161+a26j (t)’ L—azej+ase; (U)) = Zaje;+aze (Ctu)
iFkj=1 :(xaleﬁazej (t)71‘asek—a25j (1)) = Taye;+age, (ctu)

xa16j+a38l(0tu) ]<l

Z':k'7. l:Jf S .t,l'— i u =
J 7& ( azerf‘al%( ) a251+a3€l( )) {xa36z+alej (Ctu) I < J-
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where ¢ = ag - min{ajas, —asas}. Furthermore,

2are; (—2a2tu)

(xa1et+a2€_ (t) Taie;—aze; (U €T
T2aye; (—2a1tu)
T_

(
(
(
(

)
u)
u)

)

(Ia1€i+a2€]( ) T—2a5e; (U

($a1€i+a2€j (t) x—a1€z+a2€]

aje;taze; (G’Qtu) : xZaer (_a1a2t2u)

Taie;—aze; (altu) . I2a1ei(_a1a2t2u)

(xa18i+a2ej( ) T _2ay¢;

—_— — — —

APPENDIX 2. SQy is of type D,, if d = 2n, or it is of type B, if d = 2n +
1.Therefore by [Bou] it has root system ® = {+e; +e; | 1 < i < j < n}
or & = {xe; tej,ter | 1 <i < j<n, 1<k < n}respectively. Letting
i=d+1—1, the Fyep-points of SO4 have Chevalley generators

Le;—e; (t) =la+t(Ei; — E57) xei+61( ) =1+ t(E ;- E7)

J, Jst

in all cases, and when d = 2n + 1 they have additional generators
e, (t) = Ia+ V2Ejp41 — V2UE, s — °E; -

fort €E, 1 <i<n-11<j<nwithi<j, and z_,(t) = z,(t)T. For
0 € T = Gal(Fgep/F) and for a € ® a long root, i.e. a = te; £ e;, we have
o(xa(t)) = zo(o(t)). If @ € @ is a short root, i.e. @ = te;, then

To(o(t if 0(v/2) =2

za(=0o(t) ifo(v2)=-v2
The commutator relations for SO4 and Spin, are the same. For «, 3 € @, if
0# a+f ¢ @ then (z4(t), zs(u)) is trivial. Otherwise, if « + 8 € @ then it

falls into one of the following cases. For integers 4, j, k, 1 € [1,n] with ¢ < j,k,1
and k < [, and for a1, ag, as,as € {1, —1} the commutators are

J =k (Tare+aze; (t), T—ase;+ase (1)) = Tayeitaze, (—aztu)

i # k,j =1:(Tase+aze; (1), Tager—aze; (U) = Tayeitaze, (—astu)

1= k»] 7é l :<ma1€i+a2€j (t)’ L—aje;+ase (u)) = {

xa2€j+a3€[ (Clg?fu) .7 < l
xa36l+a2€j(7a3tu) I < ]

and furthermore if d is odd there are additional relations

('Taleri'az@j (t)7 T—aie; (u)) = T—aje;+aze; (_tuz)xazej (G’Qtu)
($a16i+0«2€j (t)a x*GQEj (U)) = xa1€i*azej (tu2)xa1€i (_G‘Qtu)
(x(llei (t), Lase; (u)) = xa1ei+azej(*2a2tu)~
For all groups, commutators where k is the minimal index involved instead of

1 are described by taking the inverse of the appropriate relation above. The
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constants for Sp,, were calculated using the natural representation sp,, —
M, (F). The constants for Spin, were calculated within SO using the natural
representation sog < Mg4(F). By [St68, Lemma 15.1] these constants do not
depend on the chosen representation of so4 and so also apply to Spin,.

APPENDIX 3. The images of the map psp on Fyep-points in terms of Chevalley
generators.

SPy X SPay | Psp(#) € SOunm  where [y] = (2m)y

(Tei—e; (1), 1) iml Tep;_1j1r—ef— 1]+k(t)

(e, (0, 1) | T2y @mepsp ity ()

(mei+ej(t)7 ) Hk 1x€[7 1+kte—1]+m+k (t)xeh 14+m+ktTel— 1+k( t)
(x_ei_ej<t)7l) Hk 1x—€[1 1]+k " €[j—1]+m+k (t —€li—1]4+m+k — 6[1—1]+k( t)
(xQei(t)7I) Hk 1Tep_1ypntens 1]+m+k()

(x—Qei(t)7I) Hk 1P—epajin—epn 1]+'m+k(

(vaei—ej () Z éxe([k]+1—e[k]+j (w)7—e (k] fmtiTelk ]+m+j(_u)
(I’$*€i+€j(u)) Hk Ox €[k] +L+e[k]+]( u)z [k]+m+z*€[k]+mﬂ( u)
<I’$€i+ej(u)) k 0xe[k]+z*€[k +m+]( )xe[k]ﬂ*e [k]+m+i —u)
(I7I—ei—ea‘ (u)) Hk_é I—P[k]+z+9[k]+m+;( u—e €k ]+J+P[k]+m+1(7u)
(I7$25i(u)) Hkil me[k]+q*€[k]+m+¢( u)

(I, 2—2¢, (u)) [T oz—e[k yite k]+7n+1( u)

Images of the maps pso on Fy.p-points in terms of Chevalley generators.

SO2n X SO2m | pso(x) € SOunm - [yl = 2m)y, §=2m +1 —
Te;—e,; (t), 1) iml e aprn—ep-ayen ()
T_eite; (1) 1) Hk 1T —epipy ke (
Te,ye; (t), ) Hk 1 Pepimntrtey_y4w t)

(
(
(
(T—e;—e; (1), 1) Hk 1 Tepiayn—e g ()
(
(
(
(

.7
T
1, Tei—e, (u)) Z 0 e +i—ekl+j (u 'Ie[k]%—?_e[k]-%—?(iu)
I"T—Ci+ej(u)) Hk ox— k] +i € [k]+ (u)x—e[k]g—&-e[k]g(*u)
n—1
1, Leite; (u)) k= 0 Lepy, k]+i " C€lk]+7 (u)xe[k]ﬂ,e[ ]+1( u)
L ei—e;(u) | TI:Z ox ek]+itep, H;(u)mfe[k]HJre[ng(_u)
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SO3, x SO2p,41

2021

pso(r) € SOgnamy1) - W] = Cm+ 1)y, g=2m+2—y

Te;—e; (1), 1)
L—e;+te; (t) )
xeb-i-ej( ), 1)

Toei—e; (1), 1)

2m+1
k=1 xe[l 1]4+k —€[j— 1]+k(t)
2m-+1

k=1 T—ep_1j4rtey—_1+k (t)
2m—+1 t)
k=1 're[l U+kTe_1)4%
2m-+1

k=1 *— Cli—1]4+k " Ci—1]+ (t)

I T— e+e]( ))
Iz, +eJ( ))
Iw_c,_c;(u))

(

(

(

(

(I, e, —c, (1))
(

(

(

(I, e, (u))

(L, e, ()

=T
Z 0 Lefpy+i—en+ (u)xe[k]g—@[k]g(*u)

- ?x erureirtenyes (W —epy 5rep i (—1)
n—

k=0 Tepy =g (WTep s —eq7 (1)
Hk Ox €k +i+e[k]+7(u)mfe[k]+j+e[k]+’i(_u)

n—1 (\/iu)

k=0 (xe[k]+i —€[k]+(m+1)

2
Te(n ]+i—€[k]+7(u ))
n—1

k= O(x e[k]+(m+1)+e[k]+z( \[u)m €[k] +z+€k]+<m+1)(\[u)

T (u2))

(= V2u)

L)+ (m+1)—Cr

elk]+i e 47

*Te

SO2p+1 X SO2pm41 gssgi)fliio_@""‘l)@m-%l) : [y} = (2m + 1)y,

(xei*ej(t)“[) i:;rl eli—1]+k—€[j— 1]+k(t)

(T—eite; (1), 1) T e erep e ()

(‘x@i+€_j(t)’I i:fl xe[b 1]+k+e] 4% t)

(e, (), 1) [ N .

(we, (1), 1) (TlE=aeqrpn et +’°(\/§t)me[z—u+ﬁ+e[n1+k(\@t)
eli—1]+ktep 1+k )

‘TP[L 1]+(m+1)(t)
eli—1]+k e[ ]+k(\/>t)

e )

(Hk 1‘7j €li—1]+% ©€ln +k(\/>g)

xXr_
T—efimyri— Cli— 1+lc ))

[km(_“))

n—1
( kzoxe[k]JrFe[k]Jrj(u)xe[k]g*
we[rz1+i—€[v»1+j U
(Hk O‘T €[k]+iT€[k] (u)xfe[k]+j+e[k]+7(_u))
L—epn)pitemg; (U
<Hk 0Te+i—e k]+;(u)me[k]ﬂ‘—e[k]-g(_u))
1 Tefn)itemi \U
(Hk:ox_e[k]+i+e[k]+§(u)x_e[k]+j+e[k]+7(7u))
Ty pi—epny+s (U)
(ITiz oxek1+z*e[k1+<m+12)(‘/5“)$6[k1+<m+1> e (— V2u)
xe[k]+i_e H_;(u )) €ln]+ ( )
(Hk 0T =€)t (mn)te k]+l( V2u )‘T—e[k +ite k]+<m+1>(\fu)
T_

T—epypiter s (u? )) €[n]+i (u)
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