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1 Introduction

The phase density f of a dilute gas evolves according to the Boltzmann equa-
tion, which writes

∂f

∂t
(t, x, v) + v · ∇xf(t, x, v) = Q(f, f)(t, x, v), t > 0, x ∈ Ω, v ∈ R

3,

(1.1)

where Ω ⊂ R
3 is the spatial domain. The left-hand side of (1.1) describes free

transport, whereas the right-hand side describes the impact of collisions. In a
discrete velocity model, the velocities are concentrated on a usually finite set
of points vj ∈ R

3, j ∈ J , in the velocity space,

f(t, x, v) =
∑

j∈J

Fj(t, x)δv=vj . (1.2)
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The Boltzmann equation is then changed into a nonlinear system of conserva-
tion laws

∂Fj

∂t
(t, x) + vj · ∇xFj(t, x) =

∑

i,k,l

Γkl
ij (FkFl − FiFj)(t, x),

t > 0, x ∈ Ω, j ∈ J, (1.3)

where the constants Γkl
ij must be chosen so that (1.3) makes sense from a

physical point of view, i.e. gives the right conservation laws and an entropy
principle. Discrete velocity models are of conceptual interest in the kinetic
theory of gases, and an interesting mathematical subject. Simple examples
are important because they serve as study cases for general discrete velocity
models and the full Boltzmann equation. The two simplest discrete velocity
models are the Carleman and the Broadwell models. The model proposed by
Carleman [11] describes a gas whose molecules move parallel to a given axis
with constant, equal or opposite speeds. However, it is not a physical model
because the conservation of momentum is not satisfied. The model proposed by
Broadwell [10] describes a gas in which molecules travel with speed of constant
magnitude in either direction along a coordinate axis. If particles traveling
in opposite directions collide, they are equally likely to move after collision in
each of the three coordinates directions, with velocities of opposite sign. In
this paper, we consider the two-dimensional stationary Broadwell model in a
square,

∂xF1 = F3F4 − F1F2, F1(0, ·) = fb1,

− ∂xF2 = F3F4 − F1F2, F2(1, ·) = fb2,

∂yF3 = F1F2 − F3F4, F3(·, 0) = fb3,

− ∂yF4 = F1F2 − F3F4, F4(·, 1) = fb4, (1.4)

with unknown (Fi)1≤i≤4 defined on [0, 1]2, and given (fbi)1≤i≤4 defined on
[0, 1]. It is a four velocity model for the Boltzmann equation, with Fi(x, y) =
f(x, y, vi),

v1 = (1, 0), v2 = (−1, 0), v3 = (0, 1), v4 = (0,−1).

In the two-dimensional setting of this paper, it describes a gas of particles
with identical masses, moving along two perpendicular coordinate axis with
the same modulus of velocity.
The boundary value problem (1.4) is considered in L1 in one of the following
equivalent forms,
the exponential multiplier form:

F1(x, y) = fb1(y)e
−

∫
x

0
F2(s,y)ds +

∫ x

0

(F3F4)(s, y)e
−

∫
x

s
F2(τ,y)dτds,

a.a. (x, y) ∈ [0, 1]2, (1.5)
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and analogous equations for Fi, 2 ≤ i ≤ 4,
the mild form:

F1(x, y) = fb1(y) +

∫ x

0

(F3F4 − F1F2)(s, y)ds, a.a. (x, y) ∈ [0, 1]2, (1.6)

and analogous equations for Fi, 2 ≤ i ≤ 4,
the renormalized form:

∂x ln(1 + F1) =
F3F4 − F1F2

1 + F1
, F1(0, ·) = fb1, (1.7)

in the sense of distributions, and analogous equations for Fi, 2 ≤ i ≤ 4.
The entropy dissipation of a distribution function F = (Fi)1≤i≤4 is defined as

∫

[0,1]2

(

F1F2 − F3F4) ln
F1F2

F3F4
(x, y)dxdy.

The main result of the paper is the following.

Theorem 1.1.
Given a non-negative boundary value fb = (fbi)1≤i≤4 with finite mass and
entropy, i.e.

2
∑

i=1

∫ 1

0

fbi(1 + ln fbi)(y)dy +

4
∑

i=3

∫ 1

0

fbi(1 + ln fbi)(x)dx < +∞,

there exists a stationary non-negative renormalized solution in L1 with finite
entropy-dissipation to the Broadwell model (1.4).

Most mathematical results for discrete velocity models of the Boltzmann equa-
tion have been performed in one space dimension. An overview of early results
is given in [14]. Half-space problems [5] and weak shock waves [6] for discrete
velocity models have also been studied. In two dimensions, special classes of
solutions are given in [7], [8], and [15]. [7] contains a detailed study of the sta-
tionary Broadwell equation in a rectangle with comparison to a Carleman-like
system, and a discussion of (in)compressibility aspects. Discussion of normal
discrete velocity models, i.e. conserving nothing but mass, momentum and
energy, is done in [9].
The existence of continuous solutions to the two-dimensional stationary Broad-
well model with continuous boundary data for a rectangle, is proven in [12].
That proof starts by solving the problem with a given gain term, and uses the
compactness of the corresponding twice iterated solution operator to conclude
by Schaeffer’s fixed point theorem.
The present paper on the Broadwell model is set in a context of physically
natural quantities. Mass and entropy flow at the boundary are given, and the
solutions obtained, have finite mass and finite entropy dissipation. Averaging
techniques from the continuous velocity case [13] being unavailable, a direct
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compactness approach is used, based on the Kolmogorov-Riesz theorem.
The plan of the paper is the following. An approximation procedure for the
construction of solutions to (1.1) is introduced in Section 2. The passage to
the limit in the approximations is performed in Section 3. Here a compactness
property of the approximated gain terms in mild form is carried over to the
corresponding solutions themselves, using a particular sequence of successive
alternating approximations and the Kolmogorov-Riesz theorem [16], [17].
A common approach to existence for stationary Boltzmann like equations is
based on the regularizing properties of the gain term. In the continuous ve-
locity case an averaging propery is available to keep this study of the gain
term within a weak L1 frame as in [3]. However, in the discrete velocity case,
averaging is not available. Instead strong convergence of an approximating
sequence is here directly proved from the regularizing properties for the gain
term (cf Lemma 3.5 below). But the technique in that proof is restricted to two
dimensional velocities, whereas the averaging technique in the continuous ve-
locity case is dimension independent. Stationary solutions to discrete velocity
models with arbitrarily many velocities have recently been obtained [1]. There
the constancy of the sums F1 + F2 and F3 + F4 along characteristics, which in
an essential way is used in the present paper, no longer holds.

2 Approximations

Denote by L1
+([0, 1]

2) the set of non-negative integrable functions on [0, 1]2,
and by a ∧ b the minimum of two real numbers a and b. Let N

∗ = N \ {0}.
Approximations to (1.4) to be used in the proof of Theorem 1.1, are introduced
in the following lemma.

Lemma 2.1. For any k ∈ N
∗, there exists a solution F k ∈

(

L1
+([0, 1]

2)
)4

to

∂xF
k
1 =

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

−
F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

, (2.1)

− ∂xF
k
2 =

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

−
F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

, (2.2)

∂yF
k
3 =

F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

−
F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

, (2.3)

− ∂yF
k
4 =

F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

−
F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

, (x, y) ∈ [0, 1]2, (2.4)

F k
1 (0, y) = fb1(y) ∧

k

2
, F k

2 (1, y) = fb2(y) ∧
k

2
, y ∈ [0, 1], (2.5)

F k
3 (x, 0) = fb3(x) ∧

k

2
, F k

4 (x, 1) = fb4(x) ∧
k

2
, x ∈ [0, 1]. (2.6)
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Proof of Lemma 2.1.

The sequence of approximations (F k)k∈N∗ is obtained in the limit of a further
approximation with damping terms αFj and convolutions in the collision
operator.

Step I. Approximations with damping and convolutions.

Take α > 0 and set

cα =
1

α

∫ 1

0

4
∑

i=1

fbi(u)du,

Kα = {f ∈
(

L1
+([0, 1]

2)
)4
;

4
∑

i=1

∫

[0,1]2
fi(x, y)dxdy ≤ cα}. (2.7)

Let µα be a smooth mollifier in (x, y) with support in the ball centered at the
origin of radius α. Let T be the map defined on Kα by T (f) = F , where
F = (Fi)1≤i≤4 is the solution of

αF1 + ∂xF1 =
F3

1 + F3

k

f4 ∗ µα

1 + f4∗µα

k

−
F1

1 + F1

k

f2 ∗ µα

1 + f2∗µα

k

, (2.8)

αF2 − ∂xF2 =
f3 ∗ µα

1 + f3∗µα

k

F4

1 + F4

k

−
f1 ∗ µα

1 + f1∗µα

k

F2

1 + F2

k

, (2.9)

αF3 + ∂yF3 =
F1

1 + F1

k

f2 ∗ µα

1 + f2∗µα

k

−
F3

1 + F3

k

f4 ∗ µα

1 + f4∗µα

k

, (2.10)

αF4 − ∂yF4 =
f1 ∗ µα

1 + f1∗µα

k

F2

1 + F2

k

−
f3 ∗ µα

1 + f3∗µα

k

F4

1 + F4

k

, (x, y) ∈ [0, 1]2, (2.11)

F1(0, y) = fb1(y) ∧
k

2
, F2(1, y) = fb2(y) ∧

k

2
, y ∈ [0, 1], (2.12)

F3(x, 0) = fb3(x) ∧
k

2
, F4(x, 1) = fb4(x) ∧

k

2
, x ∈ [0, 1]. (2.13)

F = T (f) is obtained as the limit in L1([0, 1]2) of the sequence (Fn)n∈N defined
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by F 0 = 0 and

αFn+1
1 + ∂xF

n+1
1 =

Fn
3

1 +
Fn

3

k

f4 ∗ µα

1 + f4∗µα

k

−
Fn+1
1

1 +
Fn

1

k

f2 ∗ µα

1 + f2∗µα

k

,

αFn+1
2 − ∂xF

n+1
2 =

f3 ∗ µα

1 + f3∗µα

k

Fn
4

1 +
Fn

4

k

−
f1 ∗ µα

1 + f1∗µα

k

Fn+1
2

1 +
Fn

2

k

,

αFn+1
3 + ∂yF

n+1
3 =

Fn
1

1 +
Fn

1

k

f2 ∗ µα

1 + f2∗µα

k

−
Fn+1
3

1 +
Fn

3

k

f4 ∗ µα

1 + f4∗µα

k

,

αFn+1
4 − ∂yF

n+1
4 =

f1 ∗ µα

1 + f1∗µα

k

Fn
2

1 +
Fn

2

k

−
f3 ∗ µα

1 + f3∗µα

k

Fn+1
4

1 +
Fn

4

k

,

Fn+1
1 (0, y) = fb1(y) ∧

k

2
, Fn+1

2 (1, y) = fb2(y) ∧
k

2
, y ∈ [0, 1],

Fn+1
3 (x, 0) = fb3(x) ∧

k

2
, Fn+1

4 (x, 1) = fb4(x) ∧
k

2
, x ∈ [0, 1], n ∈ N.

The sequence (Fn)n∈N is monotone. Indeed, F 0 ≤ F 1, by the exponential form
of F 1. Moreover, assume Fn ≤ Fn+1. It follows from the exponential form
that Fn+1 − Fn+2 ≤ 0. Moreover,

α
4

∑

i=1

Fn+1
i + ∂x(F

n+1
1 − Fn+1

2 ) + ∂y(F
n+1
3 − Fn+1

4 )

=
f1 ∗ µα

1 + f1∗µα

k

Fn
2 − Fn+1

2

1 +
Fn

2

k

+
f2 ∗ µα

1 + f2∗µα

k

Fn
1 − Fn+1

1

1 +
Fn

1

k

+
f3 ∗ µα

1 + f3∗µα

k

Fn
4 − Fn+1

4

1 +
Fn

4

k

+
f4 ∗ µα

1 + f4∗µα

k

Fn
3 − Fn+1

3

1 +
Fn

3

k

≤ 0,

so that

4
∑

i=1

∫

[0,1]2
Fn+1
i (x, y)dxdy ≤ cα. (2.14)

By the monotone convergence theorem, (Fn)n∈N converges in L1([0, 1]2) to
some solution F of (2.8)-(2.13). The solution of (2.8)-(2.13) is unique in the
set of non-negative functions. Indeed, let G = (Gi)1≤i≤4 be a solution of
(2.8)-(2.13) with Gi ≥ 0, 1 ≤ i ≤ 4. Let us prove by induction that

∀n ∈ N, Fn
i ≤ Gi, 1 ≤ i ≤ 4. (2.15)

(2.15) holds for n = 0, since Gi ≥ 0, 1 ≤ i ≤ 4. Assume (2.15) holds for n.
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Using the exponential form of Fn+1
1 implies

Fn+1
1 (x, y) = (fb1(y) ∧

k

2
)e

−αx−
∫

x

0

f2∗µα

(1+
Fn
1
k

)(1+
f2∗µα

k
)

(X,y)dX

+

∫ x

0

Fn
3

1 +
Fn

3

k

f4 ∗ µα

1 + f4∗µα

k

(X, y)e
−α(x−X)−

∫
x

X

f2∗µα

(1+
Fn
1
k

)(1+
f2∗µα

k
)

(r,y)dr

dX

≤ (fb1(y) ∧
k

2
)e

−αx−
∫

x

0

f2∗µα

(1+
G1
k

)(1+
f2∗µα

k
)
(X,y)dX

+

∫ x

0

G3

1 + G3

k

f4 ∗ µα

1 + f4∗µα

k

(X, y)e
−α(x−X)−

∫
x

X

f2∗µα

(1+
G1
k

)(1+
f2∗µα

k
)
(r,y)dr

dX

= G1(x, y), (x, y) ∈ [0, 1]2.

The same argument can be applied to prove that Fn+1
i ≤ Gi, 2 ≤ i ≤ 4.

Consequently,

Fi ≤ Gi, 1 ≤ i ≤ 4. (2.16)

Moreover, substracting the sum of the partial differential equations satisfied by
Gi from the sum of the partial differential equations satisfied by Fi, 1 ≤ i ≤ 4,
and integrating the resulting equation on [0, 1]2, it results

α
4

∑

i=1

∫

[0,1]2
(Gi − Fi)(x, y)dxdy +

∫ 1

0

(

(G1 − F1)(1, y) + (G2 − F2)(0, y)
)

dy

+

∫ 1

0

(

(G3 − F3)(x, 1) + (G4 − F4)(x, 0)
)

dx = 0. (2.17)

It results from (2.16)-(2.17) that G = F .
The map T is continuous in the L1-norm topology (cf. [1] pages 124-5).
Namely, let a sequence (ϕl)l∈N in Kα converge in L1([0, 1]2) to ϕ ∈ Kα. Set
Φl = T (ϕl). Because of the uniqueness of the solution to (2.8)-(2.13), it is
enough to prove that there is a subsequence of (Φl) converging to Φ = T (ϕ).
Now there is a subsequence of (ϕl), still denoted (ϕl), such that decreasingly
(resp. increasingly) (Gl) = (supm≥l ϕm) (resp. (gl) = (infm≥l ϕm)) converges
to ϕ in L1. Here supm≥l ϕm (resp. infm≥l ϕm) means the vector equal to

(

sup
m≥l

ϕm,i

)

1≤i≤4
, (resp.

(

inf
m≥l

ϕm,i

)

1≤i≤4
).
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Let (Sl) (resp. (sl)) be the sequence of solutions to

αSl1 + ∂xSl1 =
Sl3

1 + Sl3

k

Gl4 ∗ µα

1 + Gl4∗µα

k

−
Sl1

1 + Sl1

k

gl2 ∗ µα

1 + gl2∗µα

k

, (2.18)

αSl2 − ∂xSl2 =
Gl3 ∗ µα

1 + Gl3∗µα

k

Sl4

1 + Sl4

k

−
gl1 ∗ µα

1 + gl1∗µα

k

Sl2

1 + Sl2

k

, (2.19)

αSl3 + ∂ySl3 =
Sl1

1 + Sl1

k

Gl2 ∗ µα

1 + Gl2∗µα

k

−
Sl3

1 + Sl3

k

gl4 ∗ µα

1 + gl4∗µα

k

, (2.20)

αSl4 − ∂ySl4 =
Gl1 ∗ µα

1 + Gl1∗µα

k

Sl2

1 + Sl2

k

−
gl3 ∗ µα

1 + gl3∗µα

k

Sl4

1 + Sl4

k

, (2.21)

Sl1(0, y) = fb1(y) ∧
k

2
, Sl2(1, y) = fb2(y) ∧

k

2
, y ∈ [0, 1], (2.22)

Sl3(x, 0) = fb3(x) ∧
k

2
, Sl4(x, 1) = fb4(x) ∧

k

2
, x ∈ [0, 1], (2.23)

(resp.

αsl1 + ∂xsl1 =
sl3

1 + sl3
k

gl4 ∗ µα

1 + gl4∗µα

k

−
sl1

1 + sl1
k

Gl2 ∗ µα

1 + Gl2∗µα

k

, (2.24)

αsl2 − ∂xsl2 =
gl3 ∗ µα

1 + gl3∗µα

k

sl4
1 + sl4

k

−
Gl1 ∗ µα

1 + Gl1∗µα

k

sl2
1 + sl2

k

, (2.25)

αsl3 + ∂ysl3 =
sl1

1 + sl1
k

gl2 ∗ µα

1 + gl2∗µα

k

−
sl3

1 + sl3
k

Gl4 ∗ µα

1 + Gl4∗µα

k

, (2.26)

αsl4 − ∂ysl4 =
gl1 ∗ µα

1 + gl1∗µα

k

sl2
1 + sl2

k

−
Gl3 ∗ µα

1 + Gl3∗µα

k

sl4
1 + sl4

k

, (2.27)

sl1(0, y) = fb1(y) ∧
k

2
, sl2(1, y) = fb2(y) ∧

k

2
, y ∈ [0, 1], (2.28)

sl3(x, 0) = fb3(x) ∧
k

2
, sl4(x, 1) = fb4(x) ∧

k

2
, x ∈ [0, 1]). (2.29)

(Sl) is a non-increasing sequence, since that holds for the successive iterates
defining the sequence. Then (Sl) decreasingly converges in L1 to some S.
Similarly (sl) increasingly converges in L1 to some s. The limits S and s
satisfy (2.8)-(2.13) written for (F, f) = (Φ, ϕ). It follows by uniqueness that
s = Φ = S, hence that (Φl) converges in L1 to Φ.
The map T is also compact in the L1-norm topology. Indeed, let (ϕl)l∈N be
a sequence in Kα and (Φl)l∈N = (T (ϕl))l∈N. For any |h| < 1, denote by
Gl1(x, y) = Φl1(x, y + h)− Φl1(x, y) and

Hl1(x, y) =
Φl3

1 + Φl3

k

ϕl4 ∗ µα

1 + ϕl4∗µα

k

(x, y + h)−
Φl3

1 + Φl3

k

ϕl4 ∗ µα

1 + ϕl4∗µα

k

(x, y)

−
Φl1

1 + Φl1

k

(x, y + h)
( ϕl2 ∗ µα

1 + ϕl2∗µα

k

(x, y + h)−
ϕl2 ∗ µα

1 + ϕl2∗µα

k

(x, y)
)

.
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They satisfy

(

α+
ϕl2 ∗ µα

1 + ϕl2∗µα

k

)

Gl1 + ∂xGl1 = Hl1, Gl1(0, ·) = 0,

so that

Gl1(x, y) =

∫ x

0

Hl1(X, y)e
−α(x−X)−

∫
x

X

ϕl2∗µα

1+
ϕl2∗µα

k

(u,y)du
dX, (x, y) ∈ [0, 1]2.

The boundedness by k2 of the integrands in the right-hand side of (2.8) and
(2.10) induces uniform L1-equicontinuity of (Φl1)l∈N (resp. (Φl3)l∈N) with
respect to the x (resp. y) variable. Together with the L1-compactness of
(ϕl ∗ µα)l∈N, this implies uniform L1-equicontinuity with respect to the y vari-
able of (Hl1)l∈N, then of (Φl1)l∈N. This proves the L

1 compactness of (Φl1)l∈N.
The L1 compactness of (Φli)l∈N, 2 ≤ i ≤ 4 can be proven similarly.
Hence by the Schauder fixed point theorem there is a fixed point T (F ) = F ,
i.e. a solution F to

αF1 + ∂xF1 =
F3

1 + F3

k

F4 ∗ µα

1 + F4∗µα

k

−
F1

1 + F1

k

F2 ∗ µα

1 + F2∗µα

k

, (2.30)

αF2 − ∂xF2 =
F3 ∗ µα

1 + F3∗µα

k

F4

1 + F4

k

−
F1 ∗ µα

1 + F1∗µα

k

F2

1 + F2

k

, (2.31)

αF3 + ∂yF3 =
F1

1 + F1

k

F2 ∗ µα

1 + F2∗µα

k

−
F3

1 + F3

k

F4 ∗ µα

1 + F4∗µα

k

, (2.32)

αF4 − ∂yF4 =
F1 ∗ µα

1 + F1∗µα

k

F2

1 + F2

k

−
F3 ∗ µα

1 + F3∗µα

k

F4

1 + F4

k

, (x, y) ∈ [0, 1]2 (2.33)

F1(0, y) = fb1(y) ∧
k

2
, F2(1, y) = fb2(y) ∧

k

2
, y ∈ [0, 1], (2.34)

F3(x, 0) = fb3(x) ∧
k

2
, F4(x, 1) = fb4(x) ∧

k

2
, x ∈ [0, 1]. (2.35)

Step II. Removal of the damping and the convolutions in (2.30)-(2.35).

Let k > 1 be fixed. Denote by Fα the solution to (2.30)-(2.35) defined in
Step I. Each component of Fα being bounded by a multiple of k2, (Fα)α∈]0,1[

is weakly compact in L1([0, 1]2). Denote by F k a limit of a subsequence for
the weak topology of L1([0, 1]2). Let us prove that the convergence is strong
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in L1([0, 1]2). Consider the approximation scheme (fα,l
1 , fα,l

2 )l∈N of (Fα
1 , F

α
2 ),

fα,0
1 = fα,0

2 = 0,

αfα,l+1
1 + ∂xf

α,l+1
1 =

Fα
3

1 +
Fα

3

k

Fα
4 ∗ µα

1 +
Fα

4 ∗µα

k

−
fα,l+1
1

1 +
f
α,l+1
1

k

fα,l
2 ∗ µα

1 +
f
α,l
2 ∗µα

k

,

fα,l+1
1 (0, y) = fb1(y) ∧

k

2
,

αfα,l+1
2 − ∂xf

α,l+1
2 =

Fα
3

1 +
Fα

3

k

Fα
4 ∗ µα

1 +
Fα

4 ∗µα

k

−
fα,l
1 ∗ µα

1 +
f
α,l
1 ∗µα

k

fα,l+1
2

1 +
f
α,l+1
2

k

,

fα,l+1
2 (1, y) = fb2(y) ∧

k

2
, l ∈ N. (2.36)

By induction on l it holds that

fα,2l
1 ≤ fα,2l+2

1 ≤ Fα
1 ≤ fα,2l+3

1 ≤ fα,2l+1
1 ,

fα,2l
2 ≤ fα,2l+2

2 ≤ Fα
2 ≤ fα,2l+3

2 ≤ fα,2l+1
2 , α ∈]0, 1[, l ∈ N. (2.37)

For every l ∈ N, (fα,l
1 )α∈]0,1[ (resp. (f

α,l
2 )α∈]0,1[) is translationally equicontinu-

ous in the x-direction, since all integrands in its exponential form are bounded.
It is translationally L1-equicontinuous in the y-direction by induction on l.
Indeed, it is so for (Fα

3 ) (resp. (Fα
4 )) since ∂y(e

αyFα
3 ) ( resp. ∂y(e

αyFα
4 ))

is bounded by ek2, and (
Fα

i

1+
Fα
i
k

)α∈]0,1[, i ∈ {3, 4}, is bounded by k. Conse-

quently, it is so for (
Fα

3

1+
Fα
3
k

Fα
4 ∗µα

1+
Fα
4

∗µα

k

)α∈]0,1[. There is a limit sequence (gl1, g
l
2) in

(L1([0, 1]2))2 such that up to subsequences (fα,l
1 ) (resp. (fα,l

2 )) converges to gl1
(resp. gl2) in L1([0, 1]2) when α → 0. They satisfy

0 ≤ g2l1 ≤ g2l+2
1 ≤ F k

1 ≤ g2l+3
1 ≤ g2l+1

1 ,

0 ≤ g2l2 ≤ g2l+2
2 ≤ F k

2 ≤ g2l+3
2 ≤ g2l+1

2 , l ∈ N,

∂xg
2l+1
1 = G−

g2l+1
1

1 +
g
2l+1
1

k

g2l2

1 +
g2l
2

k

, ∂xg
2l
1 = G−

g2l1

1 +
g2l
1

k

g2l−1
2

1 +
g
2l−1
2

k

,

− ∂xg
2l+1
2 = G−

g2l1

1 +
g2l
1

k

g2l+1
2

1 +
g
2l+1
2

k

, −∂xg
2l
2 = G−

g2l−1
1

1 +
g
2l−1
1

k

g2l2

1 +
g2l
2

k

,

gl1(0, y) = fb1(y) ∧
k

2
, gl2(1, y) = fb2(y) ∧

k

2
, y ∈ [0, 1],

where G is the weak L1 limit of (
Fα

3

1+
Fα
3
k

Fα
4 ∗µα

1+
Fα
4

∗µα

k

)α∈]0,1[ when α → 0. In par-

ticular, (g2l1 )l∈N and (g2l2 )l∈N (resp (g2l+1
1 )l∈N and (g2l+1

2 )l∈N) non-decreasingly
(resp. non-increasingly) converge in L1 to some g1 and g2 (resp. h1 and h2)
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when l → +∞. The limits satisfy

0 ≤ g1 ≤ F k
1 ≤ h1, 0 ≤ g2 ≤ F k

2 ≤ h2,

∂xh1 = G−
h1

1 + h1

k

g2
1 + g2

k

, ∂xg1 = G−
g1

1 + g1
k

h2

1 + h2

k

,

− ∂xh2 = G−
g1

1 + g1
k

h2

1 + h2

k

, −∂xg2 = G−
h1

1 + h1

k

g2
1 + g2

k

,

(h1 − g1)(0, y) = 0, (h2 − g2)(1, y) = 0, y ∈ [0, 1].

Hence,

(h2 − g2)(x, y) = (h1 − g1)(x, y) − (h1 − g1)(1, y), (x, y) ∈ [0, 1]2,

and

(h1 − g1)(x, y) =− (h1 − g1)(1, y)

∫ x

0

h1

(1 + h1

k
)(1 + g2

k
)(1 + h2

k
)
(X, y)

exp
(

−

∫ x

X

h2(1 +
g2
k
)− h1(1 +

g1
k
)

(1 + g1
k
)(1 + h1

k
)(1 + g2

k
)(1 + h2

k
)
(r, y)dr

)

dX.

The non-negativity of h1 − g1, g1, g2, h1 and h2 implies that h1 − g1 = 0. The
same holds for h2 − g2. Consequently

g1 = h1 = F k
1 , g2 = h2 = F k

2 .

(Fα
1 )α∈]0,1[ converges to F k

1 in L1([0, 1]2) when α → 0. Indeed, given η > 0,

choose l0 big enough so that ‖ g2l0+1
1 − g2l01 ‖L1< η and ‖ g2l01 − F k

1 ‖L1< η,
then α0 small enough so that

‖ fα,2l0+1
1 − g2l0+1

1 ‖L1≤ η and ‖ fα,2l0
1 − g2l01 ‖L1≤ η, α ∈]0, α0[.

Then split ‖ Fα
1 − F k

1 ‖L1 as follows,

‖ Fα
1 − F k

1 ‖L1

≤‖ Fα
1 − fα,2l0

1 ‖L1 + ‖ fα,2l0
1 − g2l01 ‖L1 + ‖ g2l01 − F k

1 ‖L1

≤‖ fα,2l0+1
1 − fα,2l0

1 ‖L1 +2η by (2.37)

≤‖ fα,2l0+1
1 − g2l0+1

1 ‖L1 + ‖ g2l0+1
1 − g2l01 ‖L1 + ‖ g2l01 − fα,2l0

1 ‖L1 +2η

≤ 5η, α ∈]0, α0[.

The L1 convergence of (Fα
i )k∈N to F k

i , 2 ≤ i ≤ 4, can be proven similarly.
Passing to the limit when α → 0 in (2.30)-(2.35) is straightforward. And so,
F k is a non-negative solution to (2.1)-(2.6). �
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3 Passage to the limit when k → +∞

The study of the passage to the limit when k → +∞ in (2.1)-(2.6) is split into
six lemmas. In Lemma 3.1, uniform bounds are obtained for mass, entropy and
the entropy production term of the approximations. Lemma 3.2 splits [0, 1]2

into ‘large’ sets of type 0 ≤ x ≤ 1 times a ’large’ set in y for (F k
1 , F

k
2 ) (resp.

a ’large’ set in x times 0 ≤ y ≤ 1 for (F k
3 , F

k
4 )), where the approximations

are uniformly bounded in L∞, and their complements, where the mass of the
approximations is small. Lemma 3.3 proves uniform equicontinuity with respect
to the x (resp. y) variable of the two first (resp. last) components of the
approximations. In Lemma 3.4, L1-compactness of a truncated gain term of
the approximations is proven. Lemma 3.5 proves that the approximations form
a Cauchy sequence in L1([0, 1]2). Their limit is proven to be a renormalized
solution to the Broadwell model in Lemma 3.6 .
In this section, cb denotes constants that only depend on the given boundary
value fb.

Lemma 3.1.
There are constants cb such that
∫

[0,1]2
F k
i (x, y)dxdy ≤ cb, (3.1)

∫

Fk
i (x,y)>k

F k
i (x, y)dxdy ≤

cb
ln k

, i ∈ {1, · · ·, 4}, (3.2)

∫

( F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

−
F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

)

ln
F k
1 F

k
2 (1 +

Fk
3

k
)(1 +

Fk
4

k
)

(1 +
Fk

1

k
)(1 +

Fk
2

k
)F k

3 F
k
4

(x, y)dxdy

≤ cb, k > 2. (3.3)

Proof of Lemma 3.1.

Adding (2.1)-(2.4), integrating the resulting equation on [0, 1]2 and taking
(2.5)-(2.6) into account, implies that total outflow equals total inflow. Also
using ∂x(F

k
1 + F k

2 ) = ∂y(F
k
3 + F k

4 ) = 0 implies boundedness of the total mass
4
∑

i=1

∫

F k
i (x, y)dxdy. Multiply (2.1), (2.2), (2.3), (2.4) by ln

Fk
1

1+
Fk
1
k

, ln
Fk

2

1+
Fk
2
k

,

ln
Fk

3

1+
Fk
3
k

, ln
Fk

4

1+
Fk
1
4

, respectively, add the corresponding equations, and integrate

the resulting equation on [0, 1]2. Denoting by Dk the entropy production term
for the approximation F k,

Dk =

∫

( F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

−
F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

)

ln
F k
1 F

k
2 (1 +

Fk
3

k
)(1 +

Fk
4

k
)

(1 +
Fk

1

k
)(1 +

Fk
2

k
)F k

3 F
k
4

(x, y)dxdy,
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leads to

∫ 1

0

(

F k
1 lnF k

1 − k(1 +
F k
1

k
) ln(1 +

F k
1

k
)
)

(1, y)dy

+

∫ 1

0

(

F k
2 lnF k

2 − k(1 +
F k
2

k
) ln(1 +

F k
2

k
)
)

(0, y)dy

+

∫ 1

0

(

F k
3 lnF k

3 − k(1 +
F k
3

k
) ln(1 +

F k
3

k
)
)

(x, 1)dx

+

∫ 1

0

(

F k
4 lnF k

4 − k(1 +
F k
4

k
) ln(1 +

F k
4

k
)
)

(x, 0)dx+Dk ≤ cb.

Moreover,

k

∫

ln(1 +
F k
i

k
) ≤

∫

F k
i ≤ cb, 1 ≤ i ≤ 4.

Hence

∫ 1

0

(

F k
1 ln

F k
1

1 +
Fk

1

k

(1, y) + F k
2 ln

F k
2

1 +
Fk

2

k

(0, y)
)

dy

+

∫ 1

0

(

F k
3 ln

F k
3

1 +
Fk

3

k

(x, 1) + F k
4 ln

F k
4

1 + Fk42
k

(x, 0)
)

dx +Dk ≤ cb.

Consequently,

∫

Fk
1 (1,y)> k

k−1

F k
1 ln

F k
1

1 +
Fk

1

k

(1, y)dy +

∫

Fk
2 (0,y)> k

k−1

F k
2 ln

F k
2

1 +
Fk

2

k

(0, y)dy

+

∫

Fk
3 (x,1)> k

k−1

F k
3 ln

F k
3

1 +
Fk

3

k

(x, 1)dx +

∫

Fk
4 (x,0)> k

k−1

F k
4 ln

F k
4

1 +
Fk

4

k

(x, 0)dx

+Dk ≤ cb, k > 2.
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And so, (3.3) holds. Moreover, for any Λ > 2 and k > 2,

ln
Λ

1 + Λ
k

(

∫

Fk
1 (1,y)>k

F k
1 (1, y)dy +

∫

Fk
2 (0,y)>k

F k
2 (0, y)dy

+

∫

Fk
3 (x,1)>k

F k
3 (x, 1)dx+

∫

Fk
4 (x,0)>k

F k
4 (x, 0)dx

)

≤ cb +

∫

Fk
1 (1,y)< k

k−1

F k
1 | ln

F k
1

1 +
Fk

1

k

| (1, y)dy

+

∫

Fk
2 (0,y)< k

k−1

F k
2 | ln

F k
2

1 +
Fk

2

k

| (0, y)dy

+

∫

Fk
3 (x,1)< k

k−1

F k
3 | ln

F k
3

1 +
Fk

3

k

| (x, 1)dx

+

∫

Fk
4 (x,0)< k

k−1

F k
4 | ln

F k
4

1 +
Fk

4

k

| (x, 0)dx

≤ cb + 2, k > 2. (3.4)

In particular,

∫

Fk
1 (1,y)>k

F k
1 (1, y)dy +

∫

Fk
2 (0,y)>k

F k
2 (0, y)dy

+

∫

Fk
3 (x,1)>k

F k
3 (x, 1)dx+

∫

Fk
4 (x,0)>k

F k
4 (x, 0)dx ≤

cb
ln k

, k > 2. (3.5)

Since

(F k
1 + F k

2 )(x, y) = F k
1 (1, y) + fb2(y) ∧

k

2
, (x, y) ∈ [0, 1]2, (3.6)

it holds that

F k
1 (x, y) > k ⇒ F k(1, y) >

k

2
, (x, y) ∈ [0, 1]2.

Consequently, for some subset ωk of [0, 1] such that |ωk| <
c
k
,

∫

Fk
1 (x,y)>k

F k
1 (x, y)dxdy ≤

∫

Fk
1 (1,y)> k

2

F k
1 (1, y)dy +

∫

ωk

fb2(y)dy

≤
c

ln k
,

by (3.4) and the boundedness of the fb2 entropy. �

Lemma 3.2.
For ǫ > 0, Λ ≥ exp(2cb

ǫ
) and k ≥ exp(3cb

ǫ
), there is a subset ΩǫΛ

k1 of [0, 1] with
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measure smaller than cbǫ
Λ such that

F k
1 (x, y) ≤

Λ

ǫ
exp(

2Λ

ǫ
), F k

2 (x, y) ≤
2Λ

ǫ
exp(

2Λ

ǫ
),

x ∈ [0, 1], y ∈ [0, 1] \ ΩǫΛ
k1 , (3.7)

∫ 1

0

(

∫

ΩǫΛ
k1

(F k
1 + F k

2 )(x, y)dy
)

dx ≤ cbǫ. (3.8)

Proof of Lemma 3.2.

Since fb2 ∈ L1([0, 1]) and

∫ 1

0

(F k
1 (1, y) + F k

2 (0, y))dy +

∫ 1

0

(F k
3 (x, 1) + F k

4 (x, 0))dx ≤ cb,

the measure of the set

ΩǫΛ
k1 := {y ∈ [0, 1]; fb2(y) ≥

Λ

ǫ
or F k

1 (1, y) ≥
Λ

ǫ
}, (3.9)

is smaller than cbǫ
Λ . (F k

1 , F
k
2 ) is uniformly bounded on [0, 1] × ([0, 1] \ ΩǫΛ

k1),
since

F k
1 (x, y) ≤ F k

1 (1, y) exp(

∫ 1

0

F k
2 (X, y)dX)

≤ F k
1 (1, y) exp(F

k
1 (1, y) + fb2(y)) by (3.6)

≤
Λ

ǫ
exp(

2Λ

ǫ
),

and

F k
2 (x, y) ≤ F k

2 (0, y) exp(

∫ 1

0

F k
1 (X, y)dX)

≤ (F k
1 (1, y) + fb2(y)) exp(F

k
1 (1, y) + fb2(y))

≤
2Λ

ǫ
exp(

2Λ

ǫ
), x ∈ [0, 1], y ∈ [0, 1] \ ΩǫΛ

k1 .
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Moreover, for any Λ ≥ exp(2cb
ǫ
) and k ≥ exp(3cb

ǫ
),

∫ 1

0

(

∫

ΩǫΛ
k1

(F k
1 + F k

2 )(x, y)dy
)

dx =

∫

ΩǫΛ
k1

(F k
1 (1, y) + fb2(y))dy

≤

∫

y∈ΩǫΛ
k1 ;F

k
1 (1,y)<Λ

F k
1 (1, y)dy +

∫

Fk
1 (1,y)>Λ

F k
1 (1, y)dy

+

∫

y∈ΩǫΛ
k1

,fb2(y)<Λ

fb2(y)dy +

∫

fb2(y)>Λ

fb2(y)dy

≤ 2Λ|ΩǫΛ
k1 |+

cb

ln Λ
1+Λ

k

+
cb
ln Λ

by (3.4) and the boundedness of the entropy of fb2

≤ cbǫ.

�

Lemma 3.3.
There is cb > 0, and for ǫ > 0 given there is δ > 0 such that for |h| < δ,
uniformly in k ∈ N

∗,

∫

[0,1]2
|F k

i (x+ h, y)− F k
i (x, y)|dxdy ≤ cbǫ, i ∈ {1, 2},

∫

[0,1]2
|F k

i (x, y + h)− F k
i (x, y)|dxdy ≤ cbǫ, i ∈ {3, 4}. (3.10)

Proof of Lemma 3.3.

The four cases F k
1 ,..., F k

4 are analogous. The detailed estimates are car-
ried out for F k

1 . The translational L1 equicontinuity in the x-direction for
ln(1+F k

1 ) is obtained as follows from the ∂x-term in the renormalized equation.
Consider h ∈ [0, 1[. Write the equation for F k

1 in renormalized form (1.7)
integrated on [x, x + h], where the integration from x + h > 1 tending to zero
with h uniformly in k, is being omitted from the following computations;

ln(1 + F k
1 (x + h, y))− ln(1 + F k

1 (x, y))

=

∫ x+h

x

1

1 + F k
1

( F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

−
F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

)

(X, y)dX. (3.11)

Denote by sgn the sign function,

sgn(r) = 1 if r > 0, sgn(r) = −1 if r < 0.

Multiply the previous equation by sgn
(

ln(1+F k
1 (x+h, y))− ln(1+F k

1 (x, y))
)
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and integrate on [0, 1]2. Uniformly w.r.t. k ∈ N
∗,

∫

[0,1]2
|ln(1 + F k

1 (x+ h, y))− ln(1 + F k
1 (x, y))|dxdy

≤ h

∫

[0,1]2

1

1 + F k
1

|
F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

−
F k
1

1 +
Fk

1

k

F k
2

1 +
Fk

2

k

|(X, y)dXdy

≤ h
(

∫

Fk
3

1+
Fk
3
k

Fk
4

1+
Fk
4
k

<
Fk
1

1+
Fk
1
k

Fk
2

1+
Fk
2
k

F k
1

(1 + F k
1 )(1 +

Fk
1

k
)

F k
2

1 +
Fk

2

k

(X, y)dXdy

+

∫

Fk
1

1+
Fk
1
k

Fk
2

1+
Fk
2
k

<
Fk
3

1+
Fk
3
k

Fk
4

1+
Fk
4
k

<2
Fk
1

1+
Fk
1
k

Fk
2

1+
Fk
2
k

F k
3

(1 + F k
1 )(1 +

Fk
3

k
)

F k
4

1 +
Fk

4

k

(X, y)dXdy

+

∫

Fk
3

1+
Fk
3
k

Fk
4

1+
Fk
4
k

>2
Fk
1

1+
Fk
1
k

Fk
2

1+
Fk
2
k

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dXdy
)

≤ h
(

3

∫

[0,1]2
F k
2 (X, y)dXdy +

2

ln 2
Dk

)

≤ cbh. (3.12)

Recall that for any non-negative real numbers x1 > x2, there is θ ∈]0, 1[ such
that

x1 − x2 = exp(ln(1 + x1))− exp(ln(1 + x2))

= exp
(

θ ln(1 + x1) + (1− θ) ln(1 + x2)
)(

ln(1 + x1)− ln(1 + x2)
)

.

And so the L1-norms of the translation differences of F k
1 and ln(1 + F k

1 ), are
equivalent on [0, 1]×([0, 1]\ΩǫΛ

k1) since F
k
1 and (x, y) → F k

1 (x+h, y) are bounded
in L∞([0, 1]× ([0, 1]\ΩǫΛ

k1)). There is also the small set [0, 1]×ΩǫΛ
k1 with masses

of F k
1 and F k

1 (· + h, ·) bounded by cǫ. Together with (3.12) this proves the
translational equicontinuity in the x-direction for k ≥ exp(3cb

ǫ
). The proof for

h ∈]− 1, 0[ is similar. �

Given ǫ > 0, Λ ≥ exp(2cb
ǫ
) and k ≥ exp(3cb

ǫ
), let ΩǫΛ

k1 ⊂ [0, 1] as defined in
Lemma 3.2, and take χǫΛ

k1 as the corresponding cutoff function,

χǫΛ
k1(y) = 1 if y /∈ ΩǫΛ

k1 , χǫΛ
k1(y) = 0 if y ∈ ΩǫΛ

k1 .

Lemma 3.4.
Let (αk)k∈N be a non-negative sequence bounded in L∞ and compact in L1 .
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The sequences

(

χǫΛ
k1(y)

∫ x

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)e−
∫

x

X
αk(u,y)dudX

)

k∈N∗

and
(

χǫΛ
k1(y)

∫ 1

x

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)e−
∫

X

x
αk(u,y)dudX

)

k∈N∗

,

(

resp.
(

χǫΛ
k1(y)

∫ 1

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dX
)

k∈N∗

)

,

are compact in L1([0, 1]2) (resp. in L1([0, 1])).

Proof of Lemma 3.4. For any γ > 1, using Lemmas 3.1-3.2,

∫

[0,1]2
χǫΛ
k1(y)|

∫ x+h

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)e−
∫

x+h

X
αk(u,y)dudX

−

∫ x

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)e−
∫

x

X
αk(u,y)dudX |dxdy

≤

∫

[0,1]2
χǫΛ
k1(y)|

∫ x+h

x

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dX |dxdy

+

∫

[0,1]2
χǫΛ
k1(y)

∫ x

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dX |

∫ x+h

x

αk(u, y)du|dxdy

≤
cb
ln γ

+ γh

∫

[0,1]2
χǫΛ
k1(y)F

k
1 F

k
2 (x, y)dxdy

≤
cb
ln γ

+ 2γh
(Λ

ǫ

)2
e

4Λ
ǫ .

Choosing γ big enough, then h small enough, proves the translational L1

equicontinuity in the x direction of

(

χǫΛ
k1(y)

∫ x

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)e−
∫

x

X
αk(u,y)dudX

)

k∈N∗

.

Let us prove its translational L1 equicontinuity in the y direction. Given ǫ̃ > 0,
let

γ > exp(
3cb
ǫ̃
), ǫ3 <

ǫ̃

6cbγ

( ǫ

Λ

)2
e−

4Λ
ǫ , Λ3 ≥ exp(

2cb
ǫ3

). (3.13)

Let Ωǫ3Λ3

k3 ⊂ [0, 1] as defined in Lemma 3.2 for (F k
3 , F

k
4 ), and χǫ3Λ3

k3 the corre-
sponding cutoff function,

χǫ3Λ3

k3 (x) = 1 if x /∈ Ωǫ3Λ3

k3 , χǫΛ
k3(x) = 0 if x ∈ Ωǫ3Λ3

k3 .
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First,

∫

(

∫

X∈[0,x];
Fk
3

1+
Fk
3
k

Fk
4

1+
Fk
4
k

(X,y)>γ
Fk
1

1+
Fk
1
k

Fk
2

1+
Fk
2
k

(X,y)

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dX
)

dxdy

≤
cb
ln γ

≤
ǫ̃

3
.

Moreover,

∫

[0,1]2
χǫΛ
k1(y)

∫

X∈[0,x];
Fk
3

1+
Fk
3
k

Fk
4

1+
Fk
4
k

(X,y)<γ
Fk
1

1+
Fk
1
k

Fk
2

1+
Fk
2
k

(X,y)

(1− χǫ3Λ3

k3 (X))

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dXdxdy ≤ 2cbγ
(Λ

ǫ

)2

e
4Λ
ǫ ǫ3

≤
ǫ̃

3
,

by definition of ǫ3. Given the boundedness of (F k
3 , F

k
4 )k≥exp(

3cb
ǫ3

)
on

(

Ωǫ3Λ3

k3

)c
× [0, 1], and the statements of Lemmas 3.2-3.3 for (F k

3 , F
k
4 ), there is

h3 > 0 such that

∫ ∫ x

0

χǫ3Λ3

k3 (X)|
F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y + h)−
F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)|dXdxdy

≤
ǫ̃

3
,

for h ∈]0, h3[, uniformly with respect to k ≥ exp(3cb
ǫ3

).

The proofs of the L1([0, 1]2) (resp. L1([0, 1])) compactness of

(

χǫΛ
k1(y)

∫ 1

x

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)e−
∫

X

x
αk(u,y)dudX

)

k∈N∗

,

(

resp.
(

χǫΛ
k1(y)

∫ 1

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dX
)

k∈N∗

)

are similar. �

Lemma 3.5.
(F k)k∈N∗ is compact in L1([0, 1]2).
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Proof of Lemma 3.5.

By (3.1)-(3.2), (F k)k∈N∗ is weakly compact in (L1([0, 1]2))4. Denote by F the
weak limit of a subsequence, still denoted by (F k). Let us prove that (F k

1 )k∈N∗

is strongly compact in L1([0, 1]2). It is by (3.8) enough to prove that up to

a subsequence, given ǫ > 0, for Λ ≥ e
2cb
ǫ , k ≥ e

3cb
ǫ and ΩǫΛ

k1 as defined in
Lemma 3.2, (χǫΛ

k1F
k
1 )k∈N∗ is strongly compact in L1([0, 1]2). For every F k in

the subsequence, consider the approximation scheme (fk,l
1 , fk,l

2 )l∈N of (F k
1 , F

k
2 ),

defined by

fk,−1
1 = fk,−1

2 = fk,0
1 = fk,0

2 = 0,

fk,l+1
1 (x, y) = fb1(y)

+

∫ x

0

(

χǫΛ
k1(y)

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

−
fk,l+1
1

1 +
f
k,l−1
1

k

fk,l
2

1 +
f
k,l
2

k

)

(X, y)dX, (3.14)

fk,l+1
2 (x, y) = fb2(y)

+

∫ 1

x

(

χǫΛ
k1(y)

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

−
fk,l
1

1 +
f
k,l
1

k

fk,l+1
2

1 +
f
k,l−1
2

k

)

(X, y)dX. (3.15)

By induction on l, and using an exponential form of (fk,l+1
1 , fk,l+1

2 ), it holds
that

fk,2l
1 ≤ fk,2l+2

1 , fk,2l+3
1 ≤ fk,2l+1

1 ,

fk,2l
2 ≤ fk,2l+2

2 , fk,2l+3
2 ≤ fk,2l+1

2 , (x, y) ∈ [0, 1]2, k ∈ N
∗, l ∈ N,

(3.16)

and

fk,2l
1 ≤ F k

1 ≤ fk,2l+1
1 , fk,2l

2 ≤ F k
2 ≤ fk,2l+1

2 ,

(x, y) ∈ [0, 1]× (ΩǫΛ
k1)

c, k ∈ N
∗, l ∈ N. (3.17)

The sequence (χǫΛ
k1f

k,2l
1 )

k≥e
3cb
ǫ

(resp. (χǫΛ
k1f

k,2l
2 )

k≥e
3cb
ǫ

) is bounded from above

by (χǫΛ
k1F

k
1 )

k≥e
3cb
ǫ

(resp. (χǫΛ
k1F

k
2 )

k≥e
3cb
ǫ

), hence by 2Λ
ǫ
exp(2Λ

ǫ
). The sequence

(χǫΛ
k1f

k,2l+1
1 )

k≥e
3cb
ǫ

(resp. (χǫΛ
k1f

k,2l+1
2 )

k≥e
3cb
ǫ

) is bounded by 2Λ
ǫ
exp(2Λ

ǫ
)(1 +

2Λ
ǫ
exp(2Λ

ǫ
)), since

χǫΛ
k1(y)f

k,2l+1
1 (x, y) = χǫΛ

k1(y)F
k
1 (x, y) + χǫΛ

k1(y)

∫ x

0

F k
1

1 +
Fk

1

k

(
F k
2

1 +
Fk

2

k

−
fk,l
2

1 +
f
k,l
2

k

)(X, y)e

−
∫

x

X

f
k,l
2

(1+
f
k,l
2
k

)(1+
f
k,l−1
1

k
)(1+

Fk
1
k

)

(r,y)dr

dX

≤ χǫΛ
k1F

k
1 (x, y) + χǫΛ

k1(y)

∫ x

0

F k
1 F

k
2 (X, y)dX.
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By Lemma 3.4, there is a subsequence of
(

χǫΛ
k1(y)

∫ 1

0
Fk

3

1+
Fk
3
k

Fk
4

1+
Fk
4
k

(X, y)dX
)

k∈N∗
,

still denoted by
(

χǫΛ
k1(y)

∫ 1

0
Fk

3

1+
Fk
3
k

Fk
4

1+
Fk
4
k

(X, y)dX
)

k∈N∗
, converging in L1([0, 1])

to some F̃1. Given η > 0, there is a subset ωη of [0, 1] with measure smaller
than η such that on ωc

η the convergence of this sequence is uniform and

(F̃1, fb1, fb2) is bounded. It follows from (3.14)-(3.15) and the non-negativity

of (fk,2l
1 , fk,2l

2 )(k,l)∈N2 that (fk,2l
1 , fk,2l

2 )(k,l)∈N2 is bounded on [0, 1]×ωc
η. Given

these bounds, Lemma 3.4 and the expression of (fk,l
1 , fk,l

2 ) in exponential form,

it holds by induction that for each l ∈ N, the sequence (fk,2l
1 , fk,l

2 )
k≥e

3cb
ǫ

is

strongly compact in L1([0, 1]× ωc
η). Denote by (gl1, g

l
2) its limit up to a subse-

quence. By Lemma 3.4, let G (resp. H) with ∂xG = −∂xH , be the limit in L1

when k → +∞ of

(χǫΛ
k1(y)

∫ x

0

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dX)
k≥e

3cb
ǫ

,

(

resp. (χǫΛ
k1(y)

∫ 1

x

F k
3

1 +
Fk

3

k

F k
4

1 +
Fk

4

k

(X, y)dX)
k≥e

3cb
ǫ

)

.

(g2l1 , g2l2 , g2l+1
1 , g2l+1

2 ) satisfies

g01 = g02 = 0,

g2l1 (x, y) = fb1(y) +G(x, y)−

∫ x

0

g2l1 g2l−1
2 (X, y)dX, l ∈ N

∗,

g2l+1
1 (x, y) = fb1(y) +G(x, y)−

∫ x

0

g2l+1
1 g2l2 (X, y)dX, l ∈ N,

g2l2 (x, y) = fb2(y) +H(x, y)−

∫ 1

x

g2l−1
1 g2l2 (X, y)dX, l ∈ N

∗,

g2l+1
2 (x, y) = fb2(y) +H(x, y)−

∫ 1

x

g2l1 g2l+1
2 (X, y)dX,

l ∈ N, (x, y) ∈ [0, 1]× ωc
η. (3.18)

By induction on l it holds that

0 ≤ g2l1 ≤ g2l+2
1 ≤ g2l+3

1 ≤ g2l+1
1 ,

0 ≤ g2l2 ≤ g2l+2
2 ≤ g2l+3

2 ≤ g2l+1
2 , l ∈ N. (3.19)

Moreover,
∫

[0,1]×ωc
η

g2lj (x, y)dxdy ≤

∫ 1

0

fbj(y)dy

+

∫

[0,1]×ωc
η

(G+H)(x, y)dxdy, j ∈ {1, 2}, l ∈ N.
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By the monotone convergence theorem, (g2l)l∈N (resp. (g2l+1)l∈N) increasingly
(resp. decreasingly) converges in L1([0, 1] × ωc

η) and almost everywhere on
[0, 1]× ωc

η to some g (resp. h). By the dominated convergence theorem,

lim
l→+∞

g2l1 g2l−1
2 = g1h2 and lim

l→+∞
g2l+1
1 g2l2 = h1g2 in L1([0, 1]× ωc

η).

Consequently,

g1(x, y) = fb1(y) +G(x, y)−

∫ x

0

g1h2(X, y)dX,

h1(x, y) = fb1(y) +G(x, y) −

∫ x

0

h1g2(X, y)dX,

g2(x, y) = fb2(y) +H(x, y)−

∫ 1

x

h1g2(X, y)dX

= g2(0, y)−G(x, y) +

∫ x

0

h1g2(X, y)dX,

h2(x, y) = fb2(y) +H(x, y)−

∫ 1

x

g1h2(X, y)dX

= h2(0, y)−G(x, y) +

∫ x

0

g1h2(X, y)dX,

(x, y) ∈ [0, 1]× ωc
η,

and

h1 ≥ g1, h2 ≥ g2, (x, y) ∈ [0, 1]× ωc
η. (3.20)

Hence

(h1 − g1)(1, y) = −(h2 − g2)(0, y),

so that, by (3.20),

g1(1, y) = h1(1, y), g2(0, y) = h2(0, y).

Consequently,

h1 − g1 = h2 − g2, g1h2 − h1g2 = (g1 − g2)(h1 − g1),

and

(h1 − g1)(x, y) =

∫ x

0

(g1 − g2)(h1 − g1)(X, y)dX. (3.21)

It follows from (h1−g1)(0, y) = 0 and the boundedness of (g1, g2) on [0, 1]×ωc
η

that h1 − g1 = 0 and (g1, g2) = (h1, h2) on [0, 1] × ωc
η. Hence the whole

sequence (gl1, g
l
2)l∈N converges to (g1, g2) in L1([0, 1]× ωc

η). Letting η → 0 and

Documenta Mathematica 25 (2020) 2023–2048



Stationary Broadwell 2045

using (2.16), the convergence holds in L1([0, 1]2).

Given ǭ > 0, choose l0 big enough so that ‖ g2l01 − g2l0+1
1 ‖L1< ǭ, then

k0 big enough so that

‖ fk,2l0+1
1 − g2l0+1

1 ‖L1≤ ǭ and ‖ fk,2l0
1 − g2l01 ‖L1≤ ǭ, k ≥ k0.

Hence ‖ fk,2l0+1
1 − fk,2l0

1 ‖L1≤ 3ǭ for k ≥ k0. Then

‖ F k
1 − F k′

1 ‖L1

≤‖ F k
1 − F k′

1 ‖L1((ΩǫΛ
k1)

c) +2cbǫ by (3.8)

≤‖ F k
1 − fk,2l0

1 ‖L1((ΩǫΛ
k1)

c) + ‖ F k′

1 − fk′,2l0
1 ‖L1((ΩǫΛ

k1)
c)

+ ‖ fk,2l0
1 − fk′,2l0

1 ‖L1 +2cbǫ

≤‖ fk,2l0+1
1 − fk,2l0

1 ‖L1 + ‖ fk′,2l0+1
1 − fk′,2l0

1 ‖L1

+ ‖ fk,2l0
1 − fk′,2l0

1 ‖L1 +2cbǫ by (3.17)

≤ 8ǭ+ 2cbǫ, k ≥ max{k0, exp(
3cb
ǫ
)}, k′ ≥ max{k0, exp(

3cb
ǫ
)}.

And so (F k
1 ) is a Cauchy sequence in L1([0, 1]2) with the limit equal to the weak

limit F1. Similarly, (F k
j )2≤j≤4 is a Cauchy sequence in (L1([0, 1]2))3 with the

limit equal to the weak limit (Fj)2≤j≤4. �

Lemma 3.6.
The limit F of (F k)k∈N∗ in L1([0, 1]2) is a renormalized solution to the Broad-
well model (1.4).

Proof of Lemma 3.6.

Start from a renormalized formulation of (2.1),

∫ 1

0

ϕ1(1, y) ln
(

1 + F k
1 (1, y)

)

dy −

∫ 1

0

ϕ1(0, y) ln
(

1 + fb1(y) ∧
k

2

)

dy

−

∫

[0,1]2
ln
(

1 + F k
1 (x, y)

)

∂xϕ1(x, y)dxdy

=

∫

[0,1]2
ϕ1(x, y)

F k
3 F

k
4

(1 + F k
1 )(1 +

Fk
3

k
)(1 +

Fk
4

k
)
(x, y)dxdy

−

∫

[0,1]2
ϕ1(x, y)

F k
1 F

k
2

(1 + F k
1 )(1 +

Fk
1

k
)(1 +

Fk
2

k
)
(x, y)dxdy, (3.22)

for test functions ϕ ∈ (C1([0, 1]2))4. Using the strong L1 convergence of the
sequence (F k) to pass to the limit when k → +∞ in the left hand side of (3.22),
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gives in the limit,

∫ 1

0

ϕ1(1, y) ln
(

1 + F1(1, y)
)

dy −

∫ 1

0

ϕ1(0, y) ln
(

1 + fb1(y)
)

dy

−

∫

[0,1]2
ln
(

1 + F1(x, y)
)

∂xϕ1(x, y)dxdy.

For the passage to the limit when k → +∞ in the right hand side of (3.22),
given η > 0 there is a subset Aη of [0, 1]2 with |Ac

η| < η, such that up to

a subsequence, (F k)k∈N∗ uniformly converges to F on Aη and F ∈ L∞(Aη).
Passing to the limit when k → +∞ on Aη is straightforward. Moreover,

lim
η→0

∫

Ac
η

ϕ
F1F2

1 + F1
(x, y)dxdy = 0

and lim
η→0

∫

Ac
η

ϕ
F k
1 F

k
2

(1 + F k
1 )(1 +

Fk
1

k
)(1 +

Fk
2

k
)
(x, y)dxdy = 0,

uniformly with respect to k, since

F1

1 + F1
≤ 1,

F k
1

(1 + F k
1 )(1 +

Fk
1

k
)(1 +

Fk
2

k
)
≤ 1, and lim

η→0

∫

Ac
η

F k
2 = 0,

uniformly with respect to k.
The gain term can be estimated as follows. The uniform boundedness of the
entropy production term of (F k) is given in Lemma 3.1. A convexity argument
together with the L1 convergence of (F k) to F (see [13]), imply that

∫

[0,1]2
(F1F2 − F3F4) ln

F1F2

F3F4
(x, y)dxdy ≤ cb. (3.23)

It follows that, for any γ > 1,

∫

Ac
η

|ϕ|
F3F4

1 + F1
(x, y)dxdy ≤

c

ln γ
+ cγ

∫

Ac
η

F1F2

1 + F1
(x, y)dxdy

≤
c

ln γ
+ cγ

∫

Ac
η

F2(x, y)dxdy,
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which tends to zero when η → 0. Similarly, using (3.3),

∫

Ac
η

|ϕ|
F k
3 F

k
4

(1 + F k
1 )(1 +

Fk
3

k
)(1 +

Fk
4

k
)
(x, y)dxdy

≤ c

∫

Ac
η

F k
3 F

k
4

(1 + F k
1 )(1 +

Fk
3

k
)(1 +

Fk
4

k
)
(x, y)dxdy

≤
c

ln γ
+ Cγ

∫

Ac
η

F k
1 F

k
2

(1 + F k
1 )(1 +

Fk
1

k
)(1 +

Fk
2

k
)
(x, y)dxdy

≤
C

ln γ
+ Cγ

∫

Ac
η

F k
2 (x, y)dxdy,

which tends to zero when η → 0, uniformly in k. It follows that the right hand
side of (3.22) converges to

∫

[0,1]2
ϕ(x, y)

F3F4

1 + F1
(x, y)dxdy −

∫

[0,1]2
ϕ(x, y)

F1F2

1 + F1
(x, y)dxdy,

when k → +∞. Consequently, F satisfies the first equation of (1.4) in renor-
malized form. It can be similarly proven that F is solution to the last equations
of (1.4). �

This completes the proof of Theorem 1.1.
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[16] A.N. Kolmogorov, Über Kompaktheit der Funktionenmengen bei der Kon-
vergenz im Mittel, Nachr. Ges. Wiss. Göttingen 9 (1931), 60-63.

[17] M. Riesz, Sur les ensembles compacts de fonctions sommables, Acta Univ.
Szeged Sect. Sci. Math. 6 (1933), 136-142.

Leif Arkeryd
Mathematical Sciences
University of Göteborg and
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