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1 INTRODUCTION

The phase density f of a dilute gas evolves according to the Boltzmann equa-
tion, which writes

g(t,x,v)—l—v-vmf(t,x,v):Q(f,f)(t,x,v), t>0, ze€Q, veR3

ot
(1.1)
where © C R? is the spatial domain. The left-hand side of (1.1) describes free
transport, whereas the right-hand side describes the impact of collisions. In a

discrete velocity model, the velocities are concentrated on a usually finite set
of points v; € R3, j € J, in the velocity space,

Fta,v) =D Fj(t, )6 =0, (1.2)

jeJ
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The Boltzmann equation is then changed into a nonlinear system of conserva-
tion laws

or,

5 (H@) v Vakj(ta) = > TH(F.F — FF)(t, ),

ik,l
t>0, z€Q, je, (1.3)

where the constants Ff]l must be chosen so that (1.3) makes sense from a
physical point of view, i.e. gives the right conservation laws and an entropy
principle. Discrete velocity models are of conceptual interest in the kinetic
theory of gases, and an interesting mathematical subject. Simple examples
are important because they serve as study cases for general discrete velocity
models and the full Boltzmann equation. The two simplest discrete velocity
models are the Carleman and the Broadwell models. The model proposed by
Carleman [11] describes a gas whose molecules move parallel to a given axis
with constant, equal or opposite speeds. However, it is not a physical model
because the conservation of momentum is not satisfied. The model proposed by
Broadwell [10] describes a gas in which molecules travel with speed of constant
magnitude in either direction along a coordinate axis. If particles traveling
in opposite directions collide, they are equally likely to move after collision in
each of the three coordinates directions, with velocities of opposite sign. In
this paper, we consider the two-dimensional stationary Broadwell model in a
square,

0. F1 = F3Fy — 1 I, Fi(0,) = for,
— O Iy = F3Fy — 1 Iy, Fy(1,) = fro,
OyFs = F1Fy — F3Fy, F3(-,0) = fu3,
— OyFy = F1Fy — F3Fy, Fy(-,1) = fa, (1.4)

with unknown (F;)i<i<4 defined on [0,1]2, and given (fy;)1<i<4 defined on
[0,1]. Tt is a four velocity model for the Boltzmann equation, with F;(z,y) =

f(zayvvi)a
v1 = (1,0), vy =(-1,0), w3=(0,1), wvg=(0,-1).

In the two-dimensional setting of this paper, it describes a gas of particles
with identical masses, moving along two perpendicular coordinate axis with
the same modulus of velocity.

The boundary value problem (1.4) is considered in L! in one of the following
equivalent forms,

the exponential multiplier form:

Fi(z,y) = for(y)e™ Jo F2lsw)ds +/ (F3Fy)(s,y)e™ Js Felmw)drgs,
0

a.a. (z,y) €[0,1]% (1.5)
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and analogous equations for F;, 2 < i < 4,
the mild form:

Fi(x,y) = fu(y) + /OJE(FBFAL — F1F)(s,y)ds, aa. (z,y) €[0,1]%, (1.6)

and analogous equations for F;, 2 < i < 4,
the renormalized form:
F3Fy— B

1

B Fl(oa) :fbla (17)
in the sense of distributions, and analogous equations for F;, 2 < i < 4.
The entropy dissipation of a distribution function F' = (F;)1<i<4 is defined as

F\Fy
FsF,

/ (FiF; — F3F,)In (z,y)dxdy.
[0.1]2

The main result of the paper is the following.

THEOREM 1.1.
Given a non-negative boundary value f, = (fvi)1<i<a with finite mass and
entropy, t.e.

2 1 P
;/o fbi(l-l—lnfbi)(y)dy‘f';/o foi(1+1n fo;)(x)dx < +oo,

there exists a stationary non-negative renormalized solution in L' with finite
entropy-dissipation to the Broadwell model (1.4).

Most mathematical results for discrete velocity models of the Boltzmann equa-
tion have been performed in one space dimension. An overview of early results
is given in [14]. Half-space problems [5] and weak shock waves [6] for discrete
velocity models have also been studied. In two dimensions, special classes of
solutions are given in [7], [8], and [15]. [7] contains a detailed study of the sta-
tionary Broadwell equation in a rectangle with comparison to a Carleman-like
system, and a discussion of (in)compressibility aspects. Discussion of normal
discrete velocity models, i.e. conserving nothing but mass, momentum and
energy, is done in [9)].

The existence of continuous solutions to the two-dimensional stationary Broad-
well model with continuous boundary data for a rectangle, is proven in [12].
That proof starts by solving the problem with a given gain term, and uses the
compactness of the corresponding twice iterated solution operator to conclude
by Schaeffer’s fixed point theorem.

The present paper on the Broadwell model is set in a context of physically
natural quantities. Mass and entropy flow at the boundary are given, and the
solutions obtained, have finite mass and finite entropy dissipation. Averaging
techniques from the continuous velocity case [13] being unavailable, a direct
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compactness approach is used, based on the Kolmogorov-Riesz theorem.

The plan of the paper is the following. An approximation procedure for the
construction of solutions to (1.1) is introduced in Section 2. The passage to
the limit in the approximations is performed in Section 3. Here a compactness
property of the approximated gain terms in mild form is carried over to the
corresponding solutions themselves, using a particular sequence of successive
alternating approximations and the Kolmogorov-Riesz theorem [16], [17].

A common approach to existence for stationary Boltzmann like equations is
based on the regularizing properties of the gain term. In the continuous ve-
locity case an averaging propery is available to keep this study of the gain
term within a weak L! frame as in [3]. However, in the discrete velocity case,
averaging is not available. Instead strong convergence of an approximating
sequence is here directly proved from the regularizing properties for the gain
term (cf Lemma 3.5 below). But the technique in that proof is restricted to two
dimensional velocities, whereas the averaging technique in the continuous ve-
locity case is dimension independent. Stationary solutions to discrete velocity
models with arbitrarily many velocities have recently been obtained [1]. There
the constancy of the sums F} 4+ F» and F3 + F along characteristics, which in
an essential way is used in the present paper, no longer holds.

2 APPROXIMATIONS

Denote by L% ([0,1]?) the set of non-negative integrable functions on [0, 1]?,
and by a A b the minimum of two real numbers a and b. Let N* = N\ {0}.
Approximations to (1.4) to be used in the proof of Theorem 1.1, are introduced
in the following lemma.

LEMMA 2.1. For any k € N*, there exists a solution F* € (L1 ([0, 1]2))4 to

Fk Fk FF Fk
O FF = —2 = L s (2.1)
R T ]
Fk Fk Fk Fk
— 0, FF = 3 = L s (2.2)
R I ]
Fk Fk Fk Fk
Oy Fy = — o —2 : 4Fk : (2.3)
IR B
- @Ff - 1Fk 2 2 4Fk ’ (xvy) € [07 1]27 (24>
R B
. k k
Fy (an):fbl(y)/\ga F. ( )_be( ) bR ye [0’1]’ (2'5)
k k
F;(x,O):fbg(x)/\i, FF(z,1) = fra(z) 50 €01, (2.6)
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Proof of Lemma 2.1.

2027

The sequence of approximations (F*)pen- is obtained in the limit of a further
approximation with damping terms «fj and convolutions in the collision

operator.

Step I. Approximations with damping and convolutions.

Take o > 0 and set

K,={f¢€ (L}r([(), 1]2))4; Z/ filx,y)dedy < e}

i—1 7 [0,1]2

(2.7)

Let p, be a smooth mollifier in (z,y) with support in the ball centered at the
origin of radius a. Let 7 be the map defined on K, by T(f) = F, where

F = (F})1<i<a is the solution of

F. o F; o
aF, +0,F = —> f‘“;’i - f”}’j : (2.8)
T+ 1 gk 14 FH 14 25k
o F o F
WFy — O, Fy = f3*;/i 4F B fl’;,u 2F ’ (2.9)
L4 Bk 1+ 2 14 g1+ 2
F o F: o
aFy + 0, Fy = — fox o 5 Jaxpa (2.10)
1+ 80y 4 Lxtte 4 Tag g Jarita
o F o F
aFy — 0,F, = f”;’j S f?”;“ L () €[0,1% (2.11)
L Ak 1+ 2 14 gk 1+ 3
k k
Fl(oay):fbl(y)/\ga F2(1,y):fb2(y)/\§, ye[oal]a (212)
k k
F3(.T,0) = fb3($) AN 5, F4($, 1) = fb4($) A 5, S [0, 1] (2.13)

F = T(f) is obtained as the limit in L!([0, 1]?) of the sequence (F™),en defined
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by F? =0 and

1
aFn+1+aan+1: Fénn f4*,ua . Fanrn f2*ﬂa
! ! 14 Bg e g g By fovita?

aFPT — 9, Pt = fsjua Fan N fljua anJ:m
Rl R I s el
aF§1+1+ayF§1+1: FlnFn fo j/:a . F;—;ln fa* o ,
14 B Loe g By Soe
frxpa  FY faxpa  Fy

aF " — 9, Frtl = - — -
! v R

. koo k
Fl +1(05y):fb1(y)/\§a F2+1(17y>:fb2(y)/\57 Yy e [071]7

k k
F;*l(x,O):fbg(x)A§, Ff“(:c,1):fb4(:c)A5, z€[0,1, neN.

The sequence (F™),en is monotone. Indeed, F* < F', by the exponential form
of F'. Moreover, assume F™ < F"*+l Tt follows from the exponential form
that F*t1 — F7+2 < (0. Moreover,

4
o> Fr 4o, (FpT - FptY) 4 0, (Bt - Fp

1=1

_ fixpa FQH_FZH_1 f2 * pa Fln_Fln-’_1
14 83e g B2 gy fase g B
fsxpa FP —Fp fixpe Fy— Fpt
R . A

<0,

so that

4
Z/ EM (2, y)dzdy < c,. (2.14)
i—1 710,1]2
By the monotone convergence theorem, (F™),cy converges in L'([0,1]?) to
some solution F' of (2.8)-(2.13). The solution of (2.8)-(2.13) is unique in the
set of non-negative functions. Indeed, let G = (G;)1<i<a be a solution of
(2.8)-(2.13) with G; > 0, 1 <i < 4. Let us prove by induction that

VneN, Fr<G;, 1<i<d (2.15)
(2.15) holds for n = 0, since G; > 0, 1 < i < 4. Assume (2.15) holds for n.
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Using the exponential form of F1"Jrl implies

x fo*po
k/’ —az—f F‘”—W(X,y)dX
F1n+1(1',y) = (fbl(y) A 5)6 0 (1+T%)(1+f271)
' —a@=X)= [3 2 (ry)d
+/ F??F" f4*Ma (X,y)e oz Jx (1+£,g—)<1+i2*];ﬂ_a) Y rdX
0 14514 e
k. —oe—f§ —a i (Xy)dX
< (fbl(y> A 5)6 0 (H%)(Hszu)
’ - _X)—[z —_Jaxka d
+/ GBG f4*,ua (X, y)e a(z =% (1+%)(1+f2*%)(r,y) rdX
o 1+ TB 1+ fL’;‘CH_a

=Gi(z,y), (z,y) €0, 1)

The same argument can be applied to prove that FZ-”Jr1 < G 2<id <4
Consequently,

F, <Gy 1<i<A4. (2.16)

Moreover, substracting the sum of the partial differential equations satisfied by
G; from the sum of the partial differential equations satisfied by F;, 1 <1 < 4,
and integrating the resulting equation on [0,1]2, it results

O[Z/[O,uz(Gi — F))(z,y)dxdy +/0 ((G1 —F)(1,y) + (Gs — FQ)(O,y))dy

i=1

+/O ((Gs — F3)(x,1) 4+ (G4 — Fy)(x,0))dz = 0. (2.17)

It results from (2.16)-(2.17) that G = F..

The map 7 is continuous in the L!'-norm topology (cf. [1] pages 124-5).
Namely, let a sequence (¢;)ien in K, converge in L([0,1]?) to ¢ € K,. Set
®; = T(¢1). Because of the uniqueness of the solution to (2.8)-(2.13), it is
enough to prove that there is a subsequence of (®;) converging to ® = T ().
Now there is a subsequence of (¢;), still denoted (¢;), such that decreasingly
(resp. increasingly) (Gi) = (sup,,>; ¢m) (resp. (gi) = (inf,,>;¢m)) converges
to o in L'. Here sup,,~; @m (resp. inf,,>; ¢, ) means the vector equal to

(:quf; ‘Pmﬁi)lgigzx’ (resp. (gmnzfl Wmvi)lgig)'
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Let (S;) (resp. (s1)) be the sequence of solutions to

(resp.

aS;; + 8,5 = Siz Guxpa  Su g2 % o
" v 1+%11+Gl—i& 1+§]L€l1+gl2;:;ﬂa’
Sy — 0, S = Giz*pa S gn*pa _ Sp
12 012 1+%1+§]¢CA 1+911;ga1+§]¢f’
S Gig * g S5 gua* fa
aSis + 0,513 = _ o
13 Y13 1_‘_%14_% 1+%1+gl4k#a
OZSZ4 7aySl4 = n Hao 12 g3 Ha 4 7

G1* S
1+ Guzta 1 4 52

71+%1+%

k k
Sll(oay):fbl(y)/\ia SlQ(lay):be(y)/\ia ye[oal]a
k k
Sl?)(wao):fb?)(w)/\ia Sl4($51):fb4($)/\§a HARS [Oa 1]3
813 gia * Ho s G * o

as;y + 0511 = 1 ¢ 55 1 4 fake
% %

913 * la S14

1 Glo*lia
L4 51 4 Slztite

G * o Si2

asip — 0,812 = -

1+ ngkHa 1+n5lT4

Si1 gi2 * Ha

14 Gurita ] 4 22

s1i3 G * g

asiz + 0ysi3 = —

1+% 1+glzzga

g1 * fa S12

1+ SJ];L 14+ Gz4]:ua

QsS4 — aySl4 = -

1+_¢Zl1;ga 1+SJ]C2

Sll(oay) = fbl(y) A ga Sl?(lay) =
si3(x,0) = fpz(x) A g, sz, 1) =

Gi3 * fla  Si4
1+st}:;¢a 1+§]L€A ’
k
be(y)/\ia ye[oal]a
k
fus@) A5, w[0,1]).

(2.18)
(2.19)
(2.20)
(2.21)

(2.22)

(2.23)

(2.24)
(2.25)
(2.26)
(2.27)

(2.28)

(2.29)

(S;) is a non-increasing sequence, since that holds for the successive iterates
defining the sequence. Then (S;) decreasingly converges in L' to some S.
Similarly (s;) increasingly converges in L! to some s. The limits S and s

satisfy (2.8)-(2.13) written for (F, f) = (®, ¢).

s=® =9, hence that (®;) converges in L! to ®.
The map T is also compact in the L'-norm topology. Indeed, let (¢;);en be
a sequence in K, and (®;)ien = (T (¢1))ien. For any |h| < 1, denote by

G (=,

Hy(z,y) =

y) = Cu(x,y +h) — @ (z,y) and

_ Qi3 Q1 * o
1+%1+5‘%“—“

A P2 *
- ) h (7*

(zay+h)7

D3 Qu * o (2.1)
1+ 2a 14 euiia Y

Mo P12 * to

(T, y +h) — =
1 + lekH
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They satisfy

(o + 1<P+12M)Gu +8,Gn = Hn, Gu(0,) =0,

so that

—a(e=X)— [ Ty (wy)du

Gu(z,y) / Hp (X, y)e e dX, (z,y)€[0,1)%

The boundedness by k? of the integrands in the right-hand side of (2.8) and
(2.10) induces uniform L'-equicontinuity of (®;1)ien (resp. (®i3)1en) with
respect to the x (resp. y) variable. Together with the L!'-compactness of
(1 * f1a)1en, this implies uniform L-equicontinuity with respect to the y vari-
able of (Hj1)ien, then of (®;1);en. This proves the L! compactness of (®;1)en.
The L' compactness of (®y;)1en, 2 < i < 4 can be proven similarly.

Hence by the Schauder fixed point theorem there is a fixed point T(F) = F,
i.e. a solution F' to

F3 F4*/La F1 Fg*,ua

aFy + 0. F = — , 2.30
! ! 1+%1+% 1+%1+% (2.30)
FB*,Ufa F4 Fl * Uy F2
aFy —0:F2 = - T e g (2.31)
F Fy % g F: Fy* plo
aFy 4 0,Fy = —1_ 227 Fe 73 Ja*fa (2.32)
1+ 1+Lﬂ_a 1_|_ 1+L/J_a
Fyxpe  Fo Fg*Ma Fy
CYF4 - ayF4 = Fryxpg 1 Fy Fsxpg 1 Fy 0 (:L"y) = [O’ 1]2 (233)
1+ T “r? 1+ 2 + T
k k
F1(0,y) = for(y) A 5 Fy(1,y) = foa(y) A 5 VE [0, 1], (2.34)
k k
Fg(SC,O) = fbg( ) 5, F4(£L', 1) = fb4(1'> 5, S [0, 1] (235)

Step II. Removal of the damping and the convolutions in (2.30)-(2.35).

Let k > 1 be fixed. Denote by F the solution to (2.30)-(2.35) defined in
Step I. Each component of F'® being bounded by a multiple of k2, (FY)aeo
is weakly compact in L'([0,1]?). Denote by F* a limit of a subsequence for
the weak topology of L!([0,1]2). Let us prove that the convergence is strong
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in L'([0,1]2). Consider the approximation scheme (&, f&°!)1en of (F, Fg),

=1t =0,
afei+l | g e+l _ B Ff*pa f’l:llﬂ za’l;klﬂa ,
1+J_1+ 4”“ +f +f2’k*ua
N0, = fuly) A g
afol+l _ g o+l _ F?? Ff;‘ﬂa B f{l’l*ﬂa 2&,1;1“,
R e M G
S 1Ly) = f) A, LEN. (2.36)

By induction on [ it holds that

a21 <foz 2142 <F1 < fa ,214-3 < fa 2l+1

a2l <fa 2042 <F2 S f2a,2l+3 S f2a,2l+1, OéE]O,l[, ZGN (237)

For every | € N, (f{" )aG 0,1[ (resp. (f3" )aE]O 17) is translationally equicontinu-
ous in the z-direction, since all integrands in its exponential form are bounded.
It is translationally Ll—equicontinuous in the y-direction by induction on .
Indeed, it is so for (Fy') (resp. (Fy)) since Oy(e®YF5') ( resp. Oy(e®VFy))
is bounded by ek?, and (1f:a Jacloap ¢ € {3,4}, is bounded by k. Conse-

oK
Fl xpa

quently, it is so for (1 Fl’;a )aelo,1- There is a limit sequence (g, gb) in

, suc at up to subsequences 7 ) (resp. ")) converges to g
L'(]0,1]?))? such that up to sub ol oot ges to gt
resp. gs) in , when a — 0. ey satisty
12 in L'([0,1]?) wh 0. Th isf
0<gi' <gi"*? < Ff < gi"™® < g,
0<g3 <@ <F <g3™ < g™, leN,

20+1 21 21 20—1
g g g g
axg%l-‘rl G- ! 2gzz ) azg%l =G - 1gzz 2 201
1+-‘71 1+2 1+ 51+ &
20+1 201—1
2+1 _ oy _ g 95 _o.d =G 91 95"
G2 g2 20510 zd2 = 201 g2
1+11+~"2 14+ 38— 1+
l k l k
gl(Ovy): bl(y)/\§a gQ(Iay):be(y)/\Ev Yy e [071]7

Fspo
1_;,_45_ 1+#

ticular, (92)ien and (93")ien (resp (627" )ien and (g2 )1en) non-decreasingly
(resp. non-increasingly) converge in L' to some g; and go (resp. hi and hs)

where @ is the weak L' limit of (—=

)aclo,1f When a — 0. In par-
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when | — +o00. The limits satisfy

0< g1 <FF<hy, 0<gy<FEY<hy,

hy g2 g1 ho
Ogh1 =G — — O G —
SRR A
g1 ha h1 g2
— Ozhs = G — , —0zg90 =G — ,
TR T ey

(hl_gl)(oay)zoa (h2_92)(1ay):0a y e [Oal]'

Hence,

(h2 = g2)(w,y) = (1 — g1)(@,y) — (1 — g1)(L,y), (2,y) € [0,1]%,

and
x hy
(hl 7g1)($,y> = - (hl 791)(1ay)/0 (1 + Tl)(l + 92)(1 + %)(

o [ x h2(1+? —hi(1+ 91) ) )
P( /X (1—1—%)(1—}—%)(14_ )(1+72)(,y)d )dX,

X.y)

The non-negativity of h1 — g1, g1, g2, h1 and he implies that hy — g1 = 0. The
same holds for he — go. Consequently

nghIZFlka g2:h2:

(F{)aeo,1] converges to Ff in L'([0,1]?) when o — 0. Indeed, given > 0,

choose Iy big enough so that || gZ°* — g2 || i< n and || g2 — FF ||pi< 1,

then ag small enough so that

| f 2lo+1 g%l"""l l:<n and | fi" 2l g%lo lz2<n, €0, a0

Then split || Ff — FF |1 as follows,
I FY = FY |z
<IFP = F720 o+ 1A = g7 o+ 1 g2 = Yl

1 1
<|| T = R | 421 by (2.37)
<J| AP = gt I+ | gt = g e+ ] gt — R e 21

<5np, «ac€]o, ao[.

The L' convergence of (F®)ken to FF, 2 < i < 4, can be proven similarly.
Passing to the limit when o« — 0 in (2 30) ( .35) is straightforward. And so,

F* is a non-negative solution to (2.1)-(2.6). O
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3 PASSAGE TO THE LIMIT WHEN k — +00

The study of the passage to the limit when & — +o00 in (2.1)-(2.6) is split into
six lemmas. In Lemma 3.1, uniform bounds are obtained for mass, entropy and
the entropy production term of the approximations. Lemma 3.2 splits [0,1]2
into ‘large’ sets of type 0 < z < 1 times a ’large’ set in y for (FF, F¥) (resp.
a ’large’ set in x times 0 < y < 1 for (F¥, FF)), where the approximations
are uniformly bounded in L°°, and their complements, where the mass of the
approximations is small. Lemma 3.3 proves uniform equicontinuity with respect
to the x (resp. y) variable of the two first (resp. last) components of the
approximations. In Lemma 3.4, L'-compactness of a truncated gain term of
the approximations is proven. Lemma 3.5 proves that the approximations form
a Cauchy sequence in L'([0,1]?). Their limit is proven to be a renormalized
solution to the Broadwell model in Lemma 3.6 .

In this section, ¢, denotes constants that only depend on the given boundary
value fp.

LEMMA 3.1.
There are constants ¢, such that
/ Ff (x, y)dady <, (3.1)
[0,1]?
/ EfF (2, y)dzdy < i, ie{l, -4}, (3.2)
F¥(z,y)>k Ink
Fk Fk Fk Fk Fka _3
/( 2 3 4 )hl ( Rl )F( (x,y)dzdy
1+ 11+ I 31+ (1+ ( T)F’CF’C
<c,, k>2. (3.3)

Proof of Lemma 3.1.

Adding (2.1)-(2.4), integrating the resulting equation on [0,1]? and taking
(2.5)-(2.6) into account, implies that total outflow equals total inflow. Also
using 9, (Ff + F¥) = 0,(F¥ + Ff) = 0 implies boundedness of the total mass

4 k
S [ FF(z,y)dedy. Multiply (2.1), (2.2), (2.3), (2.4) by In —r, In L2,
=1 T +
k k
In —F‘fF—k, In FFk , respectively, add the corresponding equations, and integrate
1+ 14+

the resulting equation on [0, 1]2. Denoting by D* the entropy production term
for the approximation F*,

Dk_/( Ff sz Fy Ff)
NI S

F1F2(1+F3)(1+F4)

xz,y)dxdy,
(1+ )(+ )F’“F’“( y)dwdy
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leads to
1 Fk k
/ (FflnF{uk(H—l —1)
0 2
! F¥k F¥
(F§ In 7 — k(1 + %) In(1 + 7))(0 y)dy
1 k k
F F
+/ (F§ In £ — k(1 + =) In(1 + f))(x, 1)dz
0
1 Fk Fk
+/ (Ff InFF — k(1+ =2)In(1 + —4))(x,0)dx + D < q.
0 2 2
Moreover,
Fk
k/ln(1+7®)§/ﬂkgcb, 1<i<d.
Hence

1 k k
F} F}
/ (Ff In —7(1,y) + FIn —2 — = 0 y))dy
0 1+

1+
1 k k
F F
+ [ (Ffm + P In——1 0 (,0))dz + D" < g,
f; (St A S 0
Consequently,
Fk Fk
/ FFln —(1, y)der/ FYIn —2(0,y)dy
Fk(ly)>k 1+_ F;(O,y)>kk 1+T

Fk Fk
+/ F¥ln 7Fk(z 1)dx +/ FFln =7 (z,0)dx
Ff(@,1)> 5k 1+ 5 Ff(@,0)>5t5 1+

+ D <c¢p, k>2.
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And so, (3.3) holds. Moreover, for any A > 2 and k > 2,

A
In— (/ F{“(l,y)der/ F5(0,y)dy
+ 7 NFEFLy)>E F3(0,y)>k

+/ Ff(z,l)d:ch/ Ff(z,O)d:c)
F¥(z,1)>k Ff(z,0)>k

" FY
<a+ Y | In ——¢ [ (1, y)dy
FF(Ly) <z 1 L

k

k Fy
+ Fy [ In—— [ (0,y)dy
FF(0,y)<gy 1+ -2

k
Fk
+/ F¥ |ln BFk | (z,1)dx
Ff(z, 1)< 2 1+ 2
Fk
+/ Fy |ln 4F’€ | (z,0)dx
Ff(z,0)<ghy 1+
<42, k>2 (3.4)

In particular,

/ FE(L )y + / FE(0,y)dy
FF(1,y)>k FF(0,y)>k
o

+/ F¥(x,1)dx +/ FF(z,0)de < —, k>2.  (3.5)
Fk(z,1)>k FF(z,0)>k Ink
Since
k k k k 2
(7 + F) (@) = FY(Ly) + fe(W) A 50 (2,y) € 0,1], (3.6)

it holds that

[NR Iy

FF(z,y) > k= FF1,y9) > =, (z,y)€[0,1]%

Consequently, for some subset wy of [0, 1] such that |wy| < £,

/ Ff(z,y)dzdy < / FFQy)dy+ [ foely)dy
Flk(z7y)>k,‘ F1k(17y)>§ Wk
C

<
~ Ink’

by (3.4) and the boundedness of the fy2 entropy. a

LEMMA 3.2.
For e >0, A > exp(22) and k > exp(22), there is a subset Q3 of [0,1] with
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measure smaller than << such that

A
A 2A 2A 2A
Flk(xay) S ;exp(?)a FQk('Tay) S ?exp(?)a
z€0,1], yel0,1]\ 5, (3.7)
1
| (] Gy} do < e (35)
0 Q;fl\

Proof of Lemma 3.2.

Since fy2 € L'([0,1]) and

/ (L) + FEO,9)dy + / (FE 1) + FE @ 0)dz < o

the measure of the set

Q) = {y €[0,1]; fra(y) > = or Ff(1,y) > %}, (3.9)

=

is smaller than %€. (Ff, F¥) is uniformly bounded on [0,1] x ([0,1] \ Q§%),
since

F¥(x,y) < FE(Ly) exp( / FH(X,y)dX)
0

FF(Ly)exp(FF(1L,y) + fra(y)) by (3.6)
A

IN

2A

oxp( 22
€Xp(€),

IN

and

F¥(z,y) < FE(0, ) exp( / FF(X,y)dX)
(FF(1,9) + fra(y) exp(FF (1, y) + fra(y))

2A 2A
?GXP(?>; T e [0,1], Yy e [07 1]\921}

IN

IN
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2 3
Moreover, for any A > exp(=2) and k > exp(=2),

/ (/QA (FY +F2k)(””’y)dy)d$ = /qu(Ff(l,y) + foa(y))dy

IN

FE(1,y)dy +/ FE(1,y)dy
FF(1y)>A

Fay)dy + / L ey
b2 Y

/yeﬂ“‘ FF(Ly)<A

k1>

+

/yGQGA sz(y)</\
< 2A[05A | +

S

InA

In

+%

1
by (3.4) and the boundedness of the entropy of fpo
< ¢pe.

LEMMA 3.3.
There is ¢y, > 0, and for e > 0 given there is § > 0 such that for |h| < §,
uniformly in k € N*,

/ |FF(z + h,y) — FF(z,y)|dzdy < cpe, i€ {1,2},

[0,1]2

/ |EF(2z,y + h) — FEF(x,y)|dedy < cpe, i€ {3,4}. (3.10)
[0,1]2

Proof of Lemma 3.3.

The four cases FF,.., Ff are analogous. The detailed estimates are car-
ried out for FF. The translational L' equicontinuity in the z-direction for
In(1+ F}) is obtained as follows from the 9,-term in the renormalized equation.
Consider h € [0,1]. Write the equation for F¥ in renormalized form (1.7)
integrated on [z, x + h|, where the integration from = + h > 1 tending to zero
with h uniformly in k, is being omitted from the following computations;

(1 + Ff(z + h,y)) — In(1 + Ff(z,y))
/erh 1 ( Fk Fk Flk Fk
VI P B R ]

)(X ydX.  (3.11)

Denote by sgn the sign function,
sgn(r) =1ifr >0, sgn(r)=-1ifr<0.
Multiply the previous equation by sgn (In(1+ F{'(z + h,y)) — In(1+ Ff(z,y)))
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and integrate on [0, 1]%. Uniformly w.r.t. k € N*,

/ (1 + FF (2 + hyy)) — In(1 + (2, ) |dady
[0,1]2

1 Fk Fk FF Fk
sh/ IS S L2 |(X, y)dXdy
12 1+ F7 1 4 3 1+ 14 1 1+ 22
FF Fk
<n( [, 1 (X, y)dXdy
F:;k F£k< Fka F?ik (1+F1k)(1—|— )1+F
4+ 1+ 1+ 1+
FF FF
+/ . 2 (X, y)dX dy
e <t ot S aa S 1+ 5
e -l o 1+Tf1 - 1=
Fk FF
+/FJ€ rk Fk rk BF’“ 4F’“ (X’ y)dXdy)
S E 2 1+731+T4

< cph. (3.12)

Recall that for any non-negative real numbers x1 > zo, there is 6 €]0, 1| such
that

21 — 22 = exp(In(l + 21)) — exp(In(1 + z2))
=exp (0In(1+z1) + (1 —0)In(1 4+ 22)) (In(1 + 1) — In(1 + 22)).

And so the L'-norms of the translation differences of Ff and In(1 + F}), are
equivalent on [0, 1]x ([0, 1]\Q¢4) since F¥ and (z,y) — Ff(2+h,y) are bounded
in L°°([0, 1] x ([0,1]\ Q4)). There is also the small set [0, 1] x Q) with masses
of Ff and FF(- + h,-) bounded by ce. Together with (3.12) this proves the
translational equicontinuity in the z-direction for k£ > exp(3°”) The proof for
h €] —1,0] is similar. O

Given € > 0, A > eXp(QCb) and k > exp(22), let Q) C [0,1] as defined in
Lemma 3.2, and take X as the corresponding cutoff function,

XGy) =1if ye¢ Qh,  xA) =0if yeQf

LEMMA 3.4.
Let (a*)ren be a non-negative sequence bounded in L™ and compact in L' .
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The sequences

(xi?(y) /0 3 (X y)e~Jx e (“’y)d“dX)

1+41+ keN*

1 k

F F X k

and (xi?(y)/ : = (X, y)e “Jae (“’y)d“dX)
z 14 3 14+ k

1 k k
Fy Fy
X, y)dX ),
0 1 3 1 Fk ( y) )keN*

keN*’

(resp- (i1 ()

are compact in L*([0,1]?) (resp. in L1(]0,1])).
Proof of Lemma 3.4. For any v > 1, using Lemmas 3.1-3.2,

Fk x
o1p

31+

T F¥ Ef ,
*/ S (Xoy)em 5 DX | dady
0 1-+ 3 1-+

Ff
< / Xia (y I/ A (X, y)dX|dzdy
0,1]2 4

I F
+/ XZ?(y)/ S — o (Xy dX|/ (u, y)du|dxdy
[0,1]2 0 1+ 3 1+ k

§—+ h/ X FEEF (2, y)dady
In~y 0,12 W FS (2, y)

A24A
< ﬂ?§ +2 h( )ew.

Choosing v big enough, then h small enough, proves the translational L!
equicontinuity in the x direction of

v Fk Fk .k
(it [ = = (Xgge [ iy
0o 14 3 1-+

keN*

Let us prove its translational L' equicontinuity in the y direction. Given € > 0,
let

€

2
(E)Qef%, As > eXp(ﬁ). (3.13)

3Cb
> A
7> exp(“2) : =

<
3 6cpy

Let Q3"  [0,1] as defined in Lemma 3.2 for (FJ¥, Ff), and x§3** the corre-
sponding cutoff function,

X (@) =1if ¢ QY. xi@) =0if z e QP
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First,
Fk Fk
/(/ ok ok —F 7Fk (X, y)dX ) dady
XG[O,:E]; dig ;l,k (X y) ;‘k i‘k ( ) 1+ 3 1 —+ -
1+ 1+T4 1+T1 1+T?
Ch €
< —< =
“lny ~ 3
Moreover,
€ es\
ijl\(y) rk gk rk ok (1- Xk3 $(X))
3 4 1 2
[0 1]2 XE[O,I] 7E Pk (va)<'y R 7k (X,y)
14+ 1+ 4 1=k 1=
Fk Fk ANZ 4
o 3 A Fk (X,y)dXdxdy < 20177( ) ' e

€

< =

-3

dcb) on

kzexp(,e—s

by definition of €3. Given the boundedness of (F¥, FF)
[0,1], and the statements of Lemmas 3.2-3.3 for (F¥, Fy'), there is

() % [0,1],
hs > 0 such that
Ft  FF FF  Fk
S (X, h) — —E (X, y)|dX dady
: L+ 51

€
< 5
-3
for h €]0, hs[, uniformly with respect to k > eXp(?’:Sb)
The proofs of the L([0,1]?) (resp. L(]0,1])) compactness of

1 Fk
F X k
(xi?(y)/ : (X y)e Ja @ (“’y)d“dX) R
e 14 g B hen
1 k k
Ff  F}
(X y)dX )
3 1+ )keN

eA( )

(resp-(Xkl Y
0 1+

are similar.

LEMMA 3.5.
(F®)ren= is compact in L'([0,1]?)
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Proof of Lemma 3.5.

By (3.1)-(3.2), (F¥)gen- is weakly compact in (L'(]0,1]?))*. Denote by F the
weak limit of a subsequence, still denoted by (F'*). Let us prove that (FF)gen-
is strongly compact in L'([0,1]?). It is by (3.8) enough to prove that up to

a subsequence, given € > 0, for A > e~ , k > e °2 and Q¢ as defined in
Lemma 3.2, (X3 FF)ren- is strongly compact in L1([0, 1] ) For every F* in

the subsequence, consider the approximation scheme ( lk b 5 l)leN of (FF, F¥),
defined by

—1 —1 k0 k,0
fl 7f2 —J1 = Ja2 :0,

P @, y) = for(y)

T A Fk Fk kl—i—l k,l
€ 4
+ [ w2 T R 6
0 1+ 3 1+ 5% 1+ 14 3=
2 (@,y) = fialy)
1 k k k,l k41
e By F f
ey - EEpax. )
x 1+ 3 1+ I+ 2= 1+ 25—

By induction on I, and using an exponential form of (f; kol+1 Qk’lH), it holds
that

k21 k,20+2 k,21+3 k,20+1
Lo<fHm""° h < fi

)

Pt < R e < A () € (0,12, K EN', IeN,
(3.16)
and
ff 21 <F1 <fk 2041 f2k’2l SFQk <fk 2l+1

(z,y) €[0,1] x (Q;Q) , keN*, 1leN (317

3

The sequence (Xklfk 2l) e (resp. (xklfk 2l) ) is bounded from above
by (Xlel )k 3cy (resp (XMFQ) e ), hence by eXp( A) . The sequence
( k2l+1) o (resp. (XA fr 2l+1) . 3¢, ) is bounded by 22 exp(#2)(1 +
=4 exp(TA)) since -

eA k,214+1 eA k eA * Flk

Xkt () fi (@, 9) = X1 WY (2, 9) + X3 (v) =
0o 1+ =
fk‘,l
k k,l -Jx 7T f21c,171 ok (ry)dr
L I e >
1+ 5 14 4t

< XBFE) + X2 W) / FEEF(X,y)dX.
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By Lemma 3.4, there is a subsequence of (xkl fo ” Fk 15‘% (X, y)dX)keN*,
o
still denoted by (x4 (y fo ‘Zk (X y)dX), ., converging in L'([0,1])
S 1+

to some F;. Given 1 > 0, there is a subset w,, of [0,1] with measure smaller
than n such that on wj the convergence of this sequence is uniform and
(F1, for, fbg) is bounded. It follows from (3.14)-(3.15) and the non-negativity
of (f; k2 f2 2l) ke that (f] k, 2l,f2k’2l)(kﬁl)€N2 is bounded on [0, 1] x wy. Given
these bounds, Lemma 3.4 and the expression of ( flk ok f2k ’l) in exponential form,

it holds by induction that for each | € N, the sequence (flk’ﬂ, ka’l)k> 3¢, 1S
Ze €

strongly compact in L'([0, 1] x wg). Denote by (g4, ¢%) its limit up to a subse-
quence. By Lemma 3.4, let G (resp. H) with 0,G = —9,H, be the limit in L'
when k — 400 of

. T Fk Fk
(Xt () / S (Xo)dX) o,
o 141y ke

1 k
. FtF
(resp. (x§1(v) / k —4
z 1+ 3 14+ =+

(97", 93 angl,gng) satisfies

91:92:(),

g (z,y) = fu(y) + G(z,y) —/ 91y T (X, y)dX, 1eN,
0
G (z,y) = fuy) + G(z,y) —/ 2N (X, y)dX, €N,
0
93 (z,y) = froly) + H(z,y) f/ 2N (X, y)dX, 1eN,

1
95" M (@, y) = fraly) + H(z,y) —/ 9193 (X, y)dX,
leN, z(:I:,y) € [0,1] x wy,. (3.18)
By induction on [ it holds that
0<gi' <gi'™? < g™ < g™,
0 S g%l S g§l+2 S g§l+3 S gglJrl, lG N. (319)

Moreover,

1
/ 97 (x, y)dady < / o (y)dy
(0,1]xws 0

+/ (G+ H)(z,y)dxdy, je€{1,2}, leN.
[0,1] xwe
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By the monotone convergence theorem, (g2!);en (resp. (¢%+1);en) increasingly
(resp. decreasingly) converges in L'([0,1] x wg) and almost everywhere on
[0,1] X wy to some g (resp. h). By the dominated convergence theorem,

lim g%lg3171 =g1hy and lim g%”lggl =higo in L'([0,1] x wy)-
l—+4oc0 l—+oc0
Consequently,

x

g1(z,y) = for(y) + G(x,y) — g1ha (X, y)dX,

S—

x

hi(z,y) = for(y) + G(z,y) — | higa(X,y)dX,

1

92(2,y) = fooy) + H(z,y) — [ h1ga(X,y)dX

S~

:gﬂ&y%*G@zw4i/zhwﬂﬁlde,
0
mmm:m@+H@m3/mmme

= ha(0,y) — G(x,y) + /OI g1h2(X,y)dX,
(z,y) €[0,1] x wy,
and
hi>g1, h2>g2, (w,y)€[0,1] X w,. (3.20)
Hence
(h1 = g1)(1,y) = —(h2 — g2)(0,y),
so that, by (3.20),

91(1,y) :hl(lay)v 92(05y) :hQ(an)
Consequently,
hi —g1=h2—g2, giha —higa = (g1 — g2)(h1 — q1),

and

(- g)@0) = [ (- g)m—g)(Xp)ax.  (2)

0

It follows from (h1 —g1)(0,y) = 0 and the boundedness of (g1, g2) on [0, 1] x wy
that hy — g1 = 0 and (g1,92) = (h1,h2) on [0,1] x wy. Hence the whole

sequence (g4, g4 )ien converges to (g1, g2) in L*([0,1] x wy). Letting n — 0 and
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using (2.16), the convergence holds in L!([0,1]?).

Given € > 0, choose Iy big enough so that || g?° — ¢?°*' |,1< & then

ko big enough so that

2ot =gt < e and || f7H0 - gl a<E k> ko
Hence || it — pl20 ||, < 3¢ for k > ko. Then

I Ff = F 1

k k'
<[ FY = FY llnaas)e) +2ce by (3.8)
k,21 ’ k21

<|| Ff — e raeayey + 1Y = f177° lias)e

A0 = 0 | 20

<A = O M (ST = 5

+ £ — £ || +2ce by (3.17)

_ 301, ’ 3Cb

< 8€+ 2cpe, k> max{ko,exp(T)}, k' > max{ko,exp(T)}.

And so (FF) is a Cauchy sequence in L'([0, 1]2) with the limit equal to the weak

limit F. Similarly, (F})a<j<4 is a Cauchy sequence in (L*([0,1]?))® with the
limit equal to the weak limit (Fj)2§j§4- O

LEMMA 3.6.

The limit F' of (F*)ren< in L1([0,1]?) is a renormalized solution to the Broad-
well model (1.4).

Proof of Lemma 3.6.

Start from a renormalized formulation of (2.1),

/ s01(1’”1’“(1Jrl['ﬁlk(lvw)dy*/ <P1(07y)1n(1+fb1(y)A§)dy
0 0

,/ In (14 Ff'(z,y)) 0pp1 (2, y)dady
[0,1]2

FEFE
— [ e L (e,y)dedy
[0,1]2 1+ FF) A+ F) A+ )

FrFk
— —— (. y)dzdy, (3.22)

B /[0,112 Al (1+FR) 1+ I+ 22

for test functions ¢ € (C([0,1]%))*. Using the strong L' convergence of the
sequence (F*) to pass to the limit when k — +oc in the left hand side of (3.22),
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gives in the limit,

/501(1,y)1n(1+F1(1,y))dy*/ 01(0,9)In (1 + fo1(y))dy
0 0

7/ In (14 Fi(z,y)) 01 (x,y)dzdy.
[0,1]2

For the passage to the limit when k& — 400 in the right hand side of (3.22),
given 77 > 0 there is a subset A, of [0,1]* with |AS[ < 7, such that up to

a subsequence, (F*)pen- uniformly converges to F on A, and F € L>®(4,).
Passing to the limit when k — 400 on A, is straightforward. Moreover,

. i Fy
lim %)
n—0 A; 1+F1

(z,y)dzdy =0

FFF}
and lim -2 -

. (z,y)dxdy = 0,
=0 T+ ShHa+ 5

uniformly with respect to k, since

Fl Flk . k
<1, 0 i <1, and lim Fy =0,
b L+ AL+ 3+ 3) 0 Lag

uniformly with respect to k.

The gain term can be estimated as follows. The uniform boundedness of the
entropy production term of (F*) is given in Lemma 3.1. A convexity argument
together with the L' convergence of (F¥) to F (see [13]), imply that

F\F.
/[ }Q(FlFQ — F3F;)In F;Fj (z,y)dzdy < cp. (3.23)
0,1

It follows that, for any v > 1,

F3Fy
1+ R

R,
1+ F

(w,y)dzdy < ﬁ + cv/ (z,y)dxdy

7
Afl A

7
<-4 cv/ Fy(z,y)dzdy,
In~y A

c
n
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which tends to zero when 7 — 0. Similarly, using (3.3),

® & ®
a5 1+ FA+ 550+ o)
Fkpk
<c — (z, y)dxdy
k Fk FF

Ar T+ FP)A 4+ )1+ )

c FFFE
1— +C'7 " Vi Ja
ny g (L FH R )

o
— + Cv/ F¥(x,y)dady,
In~y A

(z,y)dzdy

(z,y)dxdy

c
n

which tends to zero when n — 0, uniformly in k. It follows that the right hand
side of (3.22) converges to

F3F4 / F1F2
x, x,y)drdy — x, x,y)dxdy,
/[011]250( y)1+F1( y)dzdy [011]250( y)1+F1( y)dzdy

when k — +o0o. Consequently, F' satisfies the first equation of (1.4) in renor-
malized form. It can be similarly proven that F' is solution to the last equations

of (1.4). O

This completes the proof of Theorem 1.1.
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