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Abstract. We establish the factorization of the Dirac operator on an
almost-regular fibration of spinc manifolds in unbounded KK-theory.
As a first intermediate result we establish that any vertically elliptic
and symmetric first-order differential operator on a proper submersion
defines an unbounded Kasparov module, and thus represents a class
in KK-theory. Then, we generalize our previous results on factoriza-
tions of Dirac operators to proper Riemannian submersions of spinc

manifolds. This allows us to show that the Dirac operator on the total
space of an almost-regular fibration can be written as the tensor sum
of a vertically elliptic family of Dirac operators with the horizontal
Dirac operator, up to an explicit ‘obstructing’ curvature term. We
conclude by showing that the tensor sum factorization represents the
interior Kasparov product in bivariant K-theory.
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1 Introduction

In this paper we study factorizations of Dirac operators on singular fibrations of
spinc manifolds into vertical and horizontal components. We restrict ourselves
to almost-regular fibrations of spinc manifolds; these are defined to be Rieman-
nian spinc manifolds M for which a proper Riemannian submersion to a spinc

manifold B is defined on the (open, dense) complementM of a finite collection
of compact embedded submanifolds which all have codimension strictly greater
than 1. We will show that the Dirac operator DM on the total space can be
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factorized as a tensor sum of a (vertically elliptic) family of Dirac operators
DV with the horizontal Dirac operator DB, up to an explicit curvature term Ω.
Thus, we obtain that (up to unitary equivalence and on a core of DM ) we can
write

DM = DV ⊗ 1 + 1⊗∇ DB +Ω ,

where ∇ is a suitable metric connection on vertical spinors. At a first glance
this result can be viewed as an extension of [6, Theorem 10.19] to the sin-
gular setting of almost-regular fibrations. Our factorization result is thus re-
lated to Bismut’s local index theorem for families, [2, 55, 7]. However, the
present approach also has an advantage at the conceptual level, indeed, “super
connections and infinite dimensional bundles” are systematically replaced by
connections and unbounded operators on Hilbert C∗-modules, and the above
factorization result is thereby firmly placed in the more general context of non-
commutative geometry, [14, 15].
We show that our factorization results fit well with the index theoretical part
of noncommutative geometry by proving (Theorem 30) that the tensor sum
represents the interior Kasparov product in bivariant K-theory (or KK-theory)
[43]. That is to say, we show that DV defines an unbounded Kasparov module
(aka unbounded KK-cycle [4]) that represents a class in KK(C0(M), C0(B))
whereas DB defines a half-closed chain (in the sense of [31]), representing the
fundamental class of B in KK(C0(B),C). Similarly, since we do not assume
that the Riemannian manifold M is complete, the Dirac operator DM defines
a half-closed chain (and not necessarily a spectral triple) representing the fun-
damental class of M in KK(C0(M),C). The tensor sum factorization is then
an unbounded representative of the interior Kasparov product

⊗̂C0(B) : KK(C0(M), C0(B)) × KK(C0(B),C) → KK(C0(M),C)

in the sense that

ı∗[DM ] = [DV ]⊗̂C0(B)[DB] ,

where ı∗ is the pullback homomorphism in bivariant K-theory of the ∗-
homomorphism ı : C0(M) → C0(M) given by extension by zero. Our proof
of this factorization result in bounded KK-theory makes heavy use of a gener-
alization to half-closed chains of a theorem by Kucerovsky [44, Theorem 13],
which we proved recently in [40].
In summary we achieve a full generalization of our previous result [41, Theo-
rem 24] to proper Riemannian submersions (not necessarily between compact
manifolds).
We stress that the curvature term Ω is invisible at the level of bounded KK-
theory, whereas, at the level of unbounded KK-theory, this term can be under-
stood as a geometric obstruction to achieving a full unbounded factorization
result for the total Dirac operator in terms of the unbounded Kasparov prod-
uct. Indeed, it is the great advantage of working at the level of unbounded
KK-cycles and half-closed chains that geometric information remains intact.
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To appreciate the difference between bounded and unbounded KK-theory it
suffices to remark that the whole sequence of eigenvalues of an unbounded op-
erator is available at the level of unbounded KK-theory, whereas the only part
of this information seen at the level of bounded KK-theory is the mere shadow
provided by the signs of the eigenvalues.

Let us spend a few words on the main motivation for this paper. This comes
from a class of almost-regular fibrations derived from actions of tori on Rie-
mannian manifolds (see Examples 26 and 28 below for more details). Consider
a torus G acting on a Riemannian spinc manifold N (thus respecting the metric
and spinc structure on M). Let N0 ⊆ N denote the principal stratum for the
action and suppose that all other orbits are singular (i.e. there are no excep-
tional orbits). Then our main factorization result (Theorem 30) implies that
the Dirac operator DN on N can be written as

DN = DV ⊗ 1 + 1⊗∇ DN0/G + Ω ,

in terms of a vertically elliptic family of Dirac operators DV , the Dirac oper-
ator DN0/G on the principal orbit space, and the curvature Ω of the proper
Riemannian submersion N0 → N0/G. Moreover, this tensor sum factorization
is an unbounded representative of the interior Kasparov product:

ı∗[DN ] = [DV ]⊗C0(N0/G) [DN0/G] ,

where ı∗ is the pullback homomorphism in KK-theory of the embedding map
ı : N0 →֒ N .
In particular, we are motivated by the implications the above factorization
results will have for Dirac operators on toric noncommutative manifolds [17,
16, 56].
Interestingly, this very same class of examples also arises in the study of holon-
omy groupoids for singular foliations. Indeed, the orbits of an isometric Lie
group action constitute an example of singular Riemannian foliations [51, 1]
and, more generally, orbits of any Lie group action are an example of the
almost-regular foliations that are analyzed using holonomy groupoids in [3, 20].
We expect that —at least in the context of these examples— our factorization
results of Dirac operators in unbounded KK-theory and the appearance of
curvature can be applied to index theory on singular foliations as studied in
[12, 18, 32, 22, 23].
Another potential application of our results is to equivariant index theory. For
instance, in [33] a decomposition appears of a G-equivariant Dirac operator
DM on a spinc manifold M carrying a proper G-action. More precisely, after
identifying M ∼= G×KN as a bundle over G/K for a suitable subgroup K ⊆ G
and submanifold N ⊆M , they write DM = DG/K+DN with DG/K a so-called
G-differential operator and DN differentiating only in the vertical direction. It
is an interesting question to see whether this formula can be cast as a tensor
sum and represents the interior Kasparov product of the corresponding classes
in bivariant K-theory.
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On a more general level our paper could indicate how to proceed in the search
for an unbounded, geometric version of bivariant K-theory. This is intimately
related to the construction of a category of spectral triples, initiated in [47] and
ongoing in [38, 24, 28, 36, 49]. It is clear that having examples (or, even better,
classes of examples) of unbounded representatives of the interior Kasparov
product is of vital importance for finding the correct geometrical enrichment
of the KK-category [19, 29, 48]. A list of such examples includes [9, 10, 11, 27,
39, 41], and to which we now add the present general construction.
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2 Unbounded Kasparov modules and fiber bundles

Let π :M → B be a smooth fiber bundle with a compact model fiber F . We do
not put any compactness restrictions on the manifolds M and B (but they are
not allowed to have a boundary). By Ehresmann’s fibration Theorem (cf. [50,
Lemma 17.2] for a proof) the above is equivalent to demanding that π :M → B
is a proper and surjective submersion. We will assume thatM comes equipped
with a Riemannian metric in the fiber direction. In particular, we have a fixed
hermitian form

〈·, ·〉V : XV (M)× XV (M) → C∞(M)

on the C∞(M)-module of (complex) vertical vector fields XV (M) ⊆ X (M).
We will moreover assume that we have a smooth hermitian complex vector
bundle E → M . We denote the C∞(M)-module of smooth sections of E by
E := Γ∞(M,E) and the C∞

c (M)-module of compactly supported sections of E
by E c := Γ∞

c (M,E). We denote the hermitian form by

〈·, ·〉E : E × E → C∞(M) .

We remark that E can be considered as a C∞(M)-C∞(B)-bimodule where the
right action is given by (s · f)(x) := s(x) · f(π(x)) for all s ∈ E , f ∈ C∞(B),
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x ∈M . We finally fix a first-order differential operator

D : E → E

which only differentiates in the fiber direction, or in other words: D is C∞(B)-
linear.
We let σD : HomC∞(M)

(
X (M), C∞(M)

)
→ EndC∞(M)(E ) denote the princi-

pal symbol of D such that

σD(df) = [D , f ] f ∈ C∞(M) ,

where df ∈ HomC∞(M)

(
X (M), C∞(M)

)
denotes the exterior derivative of f ∈

C∞(M). We let dV f ∈ HomC∞(M)

(
XV (M), C∞(M)

)
denote the restriction

of df to the C∞(M)-submodule XV (M) ⊆ X (M).

Definition 1. We say that D is vertically elliptic when it holds for all x ∈M
that the symbol σD(df)(x) : Ex → Ex is invertible whenever f ∈ C∞(M)
satisfies that (dV f)(x) : TV (M)x → C is non-trivial, where TV (M) → M
denotes the complex vertical tangent bundle.

The fiber-wise Riemannian metric 〈·, ·〉V : XV (M)×XV (M) → C∞(M) gives
rise to a Riemannian metric 〈·, ·〉b : X (Mb) × X (Mb) → C∞(Mb) on each of
the fibers Mb := π−1({b}) ⊆ M , b ∈ B. Indeed, the inclusion ib : Mb → M
induces an isomorphism dib : X (Mb) → XV (M)⊗C∞(M)C

∞(Mb) of C
∞(Mb)-

modules for all b ∈ B. In particular, we have an associated measure µb on Mb

for all b ∈ B. We may thus define the C∞
c (B)-linear map

ρ : C∞
c (M) → C∞

c (B) ρ(f)(b) :=

∫

Mb

f |Mb
dµb b ∈ B

by integration over the fiber. This operation provides us with a C∗-
correspondence X from C0(M) to C0(B) defined as the completion of E c with
respect to the inner product

〈s, t〉X := ρ(〈s, t〉E ) s, t ∈ E
c . (1)

Notice that the bimodule structure on X is induced by the C∞
c (M)-C∞

c (B)-
bimodule structure on E c. We let L(X) denote the C∗-algebra of bounded
adjointable operators on X and denote the ∗-homomorphism providing the left
action on X by m : C0(M) → L(X).
We may promote our first-order differential operator D : E → E to an un-
bounded operator

D0 : E
c → X D0(s) := D(s) .

We immediately record that the commutator

[D0,m(f)] : E
c → X

extends to a bounded operator δ(f) : X → X for all f ∈ C∞
c (M). We empha-

size that this is true even though the first-order differential operator D : E → E

is not assumed to have finite propagation speed.
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Definition 2. We say that D : E → E is symmetric when D0 : E c → X is
symmetric in the sense that 〈D0(s), t〉X = 〈s,D0(t)〉X for all s, t ∈ E c.

When D : E → E is symmetric we denote the closure of D0 : E c → X by
D := D0 : Dom(D) → X .
Our first main result can now be formulated. The full proof will occupy the
remainder of this section.

Theorem 3. Suppose that the first-order differential operator D : E → E

is vertically elliptic and symmetric. Then the triple
(
C∞

c (M), X,D
)
is an odd

unbounded Kasparov module from C0(M) to C0(B). Moreover,
(
C∞

c (M), X,D
)

is even when E comes equipped with a Z/2Z-grading operator γ ∈ EndC∞(M)(E )
which anti-commutes with D (in this case γ induces the grading operator on
X).

Proof. We already know that m(f) : X → X preserves the domain of D and
that the commutator [D,m(f)] : Dom(D) → X extends to a bounded operator
on X whenever f ∈ C∞

c (M).
We need to show that D : Dom(D) → X is selfadjoint and regular and that
m(f) · (i + D)−1 : X → X is a compact operator (in the sense of Hilbert
C∗-modules) for all f ∈ C∞

c (M). The selfadjointness and regularity is proved
in Proposition 6 and the compactness result follows from Proposition 8 and
Proposition 12.

Remark 4. The above theorem is well-known to experts working on pseudod-
ifferential operators in the context of foliation C∗-algebras or more generally
groupoid C∗-algebras, [52, 53]. It can mostly be deduced from results appearing
in the thesis of Stéphane Vassout, see [58, Proposition 3.4.5 and Proposition
3.4.9] and [57, Theorem 18 and Proposition 21], but see also [13, Section 9,
Proposition 1]. We emphasize however that in our setting neither the base
manifold B nor the total manifold M are assumed to be compact. The proof
we are presenting here is (except for the regularity part) selfcontained and does
not rely on pseudodifferential operator techniques. In particular, our proof of
selfadjointness and regularity does not use any ellipticity assumption on the
differential operator. On our way we also establish (the apparently novel re-
sult) that the restriction of D to trivializing coordinate charts on M provides
an (in general non-selfadjoint) regular unbounded operator.

2.1 Symmetry and regularity

For each b ∈ B we define the localization of X at the point b ∈ B as the interior
tensor product

Xb := X⊗̂C0(B)C ,

where the left action of C0(B) on C is defined via the ∗-homomorphism evb :
C0(B) → C given by evaluation at the point b ∈ B. We remark that Xb is a
Hilbert space.
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For each b ∈ B, we denote the smooth sections of the smooth hermitian complex
vector bundle E|Mb

→Mb by

Eb := Γ∞(Mb, E|Mb
) ∼= E ⊗C∞(M) C

∞(Mb) .

We use the notation
〈·, ·〉Eb

: Eb × Eb → C∞(Mb)

for the hermitian form (inherited from the hermitian form on E ) and we let
L2(Eb) denote the Hilbert space obtained as the completion of Eb with respect
to the inner product

〈s, t〉 :=
∫

Mb

〈s, t〉Eb
dµb .

We remark that the map E c → Eb defined by s 7→ s|Mb
, or alternatively by

s 7→ s⊗ 1, is a surjection. The next lemma can now be verified by computing
the inner products involved:

Lemma 5. Let b ∈ B. The linear map

E
c ⊗C∞

c (B) C → Eb s⊗ λ 7→ s|Mb
· λ

induces a unitary isomorphism of Hilbert spaces: Xb
∼= L2(Eb).

We recall that the model fiber F of our smooth fiber bundle π : M → B is
assumed to be compact. This plays an important role in the following propo-
sition.

Proposition 6. Suppose that D0 : E c → X is symmetric. Then the closure
D := D0 : Dom(D) → X is selfadjoint and regular.

Proof. By [54, Theorem 1.18] and [37, Theorem 5.8] it suffices to verify that
the induced unbounded operator (the localization)

D⊗̂1 : Dom(D⊗̂1) → X⊗̂C0(B)C

is selfadjoint for all points b ∈ B (recall that any pure state on C0(B) is of the
form evb : C0(B) → C for some b ∈ B). Moreover, we recall that the image of
the map

E
c → Xb s 7→ s⊗̂1

is a core for D⊗̂1 for all b ∈ B. We denote this core by E c ⊗C∞
c (B) C ⊆ Xb.

Let thus b ∈ B be fixed. Under the identification Xb
∼= L2(Eb) (of Lemma

5) we have that the core E c ⊗C∞
c (B) C corresponds to Eb ⊆ L2(Eb) and that

D0 ⊗ 1 : E c ⊗C∞
c (B) C → Xb corresponds to a first-order symmetric differential

operator (D0)b : Eb → L2(Eb). Since Mb is compact we have that the closure
Db := (D0)b is selfadjoint, see [30, Corollary 10.2.6]. Moreover, we obtain that
D⊗̂1 agrees with Db under the unitary isomorphism of Lemma 5. But this
means that the localization D⊗̂1 is selfadjoint for all b ∈ B and the proposition
is therefore proved.

Documenta Mathematica 25 (2020) 2049–2084



2056 J. Kaad, W. D. van Suijlekom

2.2 Restriction to an open subset

We continue in this subsection under the assumption that D : E → E is
symmetric. We thus know from Proposition 6 that the closure of D0, D :=
D0 : Dom(D) → X is a selfadjoint and regular unbounded operator. We are
now going to provide a local criteria that will later on allow us to verify the
local compactness of the resolvent of D (under an extra ellipticity condition).

Remark 7. One might believe that the local compactness of the resolvent of D :
Dom(D) → X would follow immediately from the compactness of the resolvents
of all the localized operators Db : Dom(Db) → L2(Eb), b ∈ B. This kind of
argumentation is however erroneous. Indeed, consider the simple case where
both the fiber bundle π : M → B and the vector bundle E → M are trivial. In
this case we may identify X with the standard module X ∼= C0(B)⊗̂L2(F )⊕k

and the compactness of the resolvents of all the localized operators Db amounts
to the pointwise compactness of (i + D)−1. However, the compact operators
on X are given by the operator norm continuous maps B → K(L2(F )⊕k) which
vanish at infinity, see [42, Lemma 4]. The selfadjointness and regularity of D
only implies that the resolvent (i+D)−1 : B → L(L2(F )⊕k) is continuous with
respect to the ∗-strong topology.
In general, the task of proving the local compactness of the resolvent of D is
also made more complicated by the fact that our vector bundle E → M need
not be trivial over open subsets of the form π−1(V ) ⊆M .

For any open subset U ⊆M we let EU := Γ∞(U,E|U ) denote the smooth sec-
tions of the restriction of E →M to U . The notation E c

U := Γ∞
c (U,E|U ) refers

to the smooth compactly supported sections. We define the C∗-correspondence
XU from C0(U) to C0(π(U)) as the completion of E c

U with respect to (the norm
coming from) the inner product

〈s, t〉XU
:= 〈iU (s), iU (t)〉X ∈ C0

(
π(U)

)
s, t ∈ E

c
U ,

where iU : E c
U → E c denotes the inclusion given by extension by zero. We re-

mark that the bimodule structure on XU is induced by the C∞
c (U)-C∞

c (π(U))-
bimodule structure on E c

U . Our first-order differential operator D : E → E

then restricts to a first-order differential operator DU : EU → EU which we may
promote to a symmetric unbounded operator

(DU )0 : E
c
U → XU .

We emphasize that the closure DU := (DU )0 : Dom(DU ) → XU need not be
selfadjoint.
We equip Dom(DU ) with the structure of a Hilbert C∗-module over C0(π(U))
by defining the inner product

〈s, t〉DU
:= 〈s, t〉XU

+ 〈DU (s), DU (t)〉XU
,

and the right action induced by the right action of C0(π(U)) on XU . The
inclusion iDU

: Dom(DU ) → XU is then a bounded operator between the two
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Hilbert C∗-modules. Remark that the existence of an adjoint to this inclusion
is equivalent to the regularity of DU so for the moment we only know that the
inclusion is bounded.
We denote the left actions by

m : C0(M) → L(X) and mU : C0(U) → L(XU ) .

Our localization result for resolvents can now be stated and proved:

Proposition 8. Suppose that, for each p ∈ M we may find an open subset
U ⊆M with p ∈ U such that the bounded operator

Dom(DU )
iDU−−−−→ XU

mU (χ)−−−−→ XU

is compact for all χ ∈ C∞
c (U). Then we have that

m(f) · (i+D)−1 : X → X

is compact for all f ∈ C∞
c (M).

Proof. Let us fix an f ∈ C∞
c (M). Without loss of generality we may assume

that supp(f) ⊆ U for some open subset U ⊆ M satisfying the assumptions
to this proposition. Moreover, we may assume that f ≥ 0 and that f has a
smooth square root.
The proof runs in four steps.

1. Consider the interior tensor product XU ⊗̂C0(π(U))C0(B) where C0(π(U))
acts on C0(B) via the ∗-homomorphism C0(π(U)) → C0(B) given by
extension by zero. We start by showing that the composition

Dom(DU ⊗̂1)
i
DU ⊗̂1

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

XU ⊗̂C0(π(U))C0(B)

XU ⊗̂C0(π(U))C0(B)

mU (
√
f)⊗̂1

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

is a compact operator. To this end, we remark that Dom(DU ⊗̂1)
is unitarily isomorphic to Dom(DU )⊗̂C0(π(U))C0(B) and that the map

iDU ⊗̂1 : Dom(DU ⊗̂1) → XU ⊗̂C0(π(U))C0(B) corresponds to iDU
⊗̂1 :

Dom(DU )⊗̂C0(π(U))C0(B) → XU ⊗̂C0(π(U))C0(B) under this unitary iso-
morphism. It thus suffices to show that the bounded operator

(
mU (

√
f) · iDU

)
⊗̂1 : Dom(DU )⊗̂C0(π(U))C0(B) → XU ⊗̂C0(π(U))C0(B)

is compact. But this follows from [45, Proposition 4.7] since mU (
√
f) ·

iDU
: Dom(DU ) → XU is compact by assumption and since C0(π(U))

acts on C0(B) by compact operators.
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2. The map E c
U ⊗C∞

c (π(U)) C
∞
c (B) → E c defined by s⊗ g 7→ iU (s) · (g ◦ π)

induces a C0(B)-linear isometry j : XU ⊗̂C0(π(U))C0(B) → X and we may
thus conclude (using (1)) that the composition

Dom(DU ⊗̂1)
(mU (

√
f)⊗̂1)·i

DU ⊗̂1−−−−−−−−−−−−−→ XU ⊗̂C0(π(U))C0(B)
j−−−−→ X

is a compact operator. Remark that we do not need

j : XU ⊗̂C0(π(U))C0(B) → X

to be adjointable since the compact operators are compatible with left
multiplication by bounded operators that are linear over the base (the
corresponding statement for right multiplication need not be true).

3. The multiplication operator rU (
√
f) : E c → E c

U⊗C∞
c (π(U))C

∞
c (B) induces

a bounded adjointable operator

rU (
√
f) : Dom(D) → Dom(DU ⊗̂1) .

To prove this claim, we recall that δ(
√
f) : X → X denotes the bounded

adjointable extension of the commutator [D0,m(
√
f)] : E c → X .

The fact that rU (
√
f) is bounded then follows since

‖rU (
√
f)(s)‖Dom(DU ⊗̂1) = ‖(i+D)(

√
f · s)‖X

≤ ‖m(
√
f)‖∞ · ‖s‖Dom(D) + ‖δ(

√
f)‖∞ · ‖s‖X

for all s ∈ E c.

It can then be verified by a direct computation that the adjoint of rU (
√
f)

is given by the expression:

rU (
√
f)∗ = m(

√
f) · j − (i +D)−1 · δ(

√
f) · j

− (1 +D2)−1 · δ(
√
f) · (i+D) · j

on the dense subspace of Dom(DU ⊗̂1) provided by the tensor product
E c
U ⊗C∞

c (π(U)) C
∞
c (B).

This proves the claim.

4. We end the proof of the proposition by concluding that the composition

Dom(D)
iD−−−−→ X

m(f)−−−−→ X

is a compact operator. Indeed, this composition can be rewritten as the
composition

Dom(D)
rU (

√
f)−−−−−→ Dom(DU ⊗̂1)

i
DU ⊗̂1−−−−→ XU ⊗̂C0(π(U))C0(B)

mU (
√
f)⊗̂1−−−−−−−→ XU ⊗̂C0(π(U))C0(B)

j−−−−→ X

but this latter composition is compact by a combination of (2) and (3).

Documenta Mathematica 25 (2020) 2049–2084



Factorization of Dirac Operators on Fibrations 2059

2.3 Compactness of local resolvents

Throughout this subsection we will suppose that the first-order differential
operator D : E → E is vertically elliptic and symmetric.
Let us fix an open subset U ⊆M such that the following holds:

Assumption 1. 1. There exists a diffeomorphism ψ : U → π(U) × Bδ(0)
such that p1◦ψ = π where p1 : π(U)×Bδ(0) → π(U) denotes the projection
onto the first component and where Bδ(0) ⊆ Rdim(F ) denotes the open ball
with center 0 and radius δ > 0.

2. There exists a unitary smooth trivialization φ : E|U → U × Ck of the
restriction of the vector bundle E →M to U .

We define the vertical coordinates associated to ψ by yi := ri ◦ p2 ◦ψ : U → R,
i = 1, . . . , dim(F ), where ri : Bδ(0) → R are restrictions of the standard
coordinates on Rdim(F ) and p2 : π(U) × Bδ(0) → Bδ(0) is the projection onto
the second component. We then have the associated smooth map

gV : U → GL+(R
dim(F )) gVij := 〈∂/∂yi, ∂/∂yj〉V .

The next lemma follows by a straightforward computation of inner products.

Lemma 9. The C∞
c (π(U))-module isomorphism

α : E
c
U → C∞

c

(
π(U)× Bδ(0)

)⊕k

defined by α(s) :=
(
(φ ◦ s) · det(gV )1/4

)
◦ ψ−1 induces a unitary isomorphism

of Hilbert C∗-modules over C0(π(U)):

α : XU → C0

(
π(U)

)
⊗̂L2

(
Bδ(0)

)⊕k
.

We are going to study the closed and symmetric unbounded operator

Dα := α ◦DU ◦ α−1 : Dom(Dα) = α
(
Dom(DU )

)

→ C0

(
π(U)

)
⊗̂L2

(
Bδ(0)

)⊕k
.

We immediately remark that C∞
c (π(U)×Bδ(0))

⊕k is a core for Dα. Moreover,
we can find smooth maps Aj , B : π(U) × Bδ(0) → Mk(C), j = 1, . . . , dim(F ),
such that

Dα
0 =

dim(F )∑

j=1

Aj ·
∂

∂rj
+ B : C∞

c (π(U) × Bδ(0))
⊕k

→ C0

(
π(U)

)
⊗̂L2

(
Bδ(0)

)⊕k
,

where Dα
0 denotes the restriction of Dα to the core C∞

c (π(U)× Bδ(0))
⊕k. For

each x ∈ π(U) we define the first-order differential operator

D
α
x :=

dim(F )∑

j=1

Aj(x, ·) ·
∂

∂rj
+B(x, ·) : C∞(Bδ(0))

⊕k → C∞(Bδ(0))
⊕k .
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The vertical ellipticity of D : E → E then implies that Dα
x is elliptic for all

x ∈ π(U). For each x ∈ π(U), we let

Dα
x : Dom(Dα

x ) → L2(Bδ(0))
⊕k

denote the closure of the unbounded operator (Dα
x )0 : C∞

c (Bδ(0))
⊕k →

L2(Bδ(0))
⊕k induced by the first-order differential operator Dα

x .
By passing to a smaller open subset U ′ ⊆ U if necessary we may assume that
the following holds:

Assumption 2. 1. For each x ∈ π(U), the smooth maps Aj(x, ·), B(x, ·) :
Bδ(0) →Mk(C), j = 1, . . . , dim(F ), are bounded.

2. The maps Aj , B : π(U) → Cb(Bδ(0),Mk(C)), j = 1, . . . , dim(F ), are con-
tinuous, where Cb(Bδ(0),Mk(C)) is equipped with the supremum norm.

3. Dα satisfies the following uniform G̊arding’s inequality: There exists a
constant C > 0 such that

‖ξ‖2 + ‖Dα
x (ξ)‖2 ≥ C ·

(
‖ξ‖2 +

dim(F )∑

j=1

‖∂ξ/∂rj‖2
)
,

for all ξ ∈ C∞
c (Bδ(0))

⊕k and all x ∈ π(U), where ‖ · ‖2 denotes the L2-

norm on L2
(
Bδ(0)

)⊕k
. Indeed, this is a consequence of the proof of the

usual G̊arding’s inequality, see for example [30, Theorem 10.4.4].

Let us apply the notation

∇ : Dom(∇) → L2
(
Bδ(0)

)⊕ dim(F )·k

for the closure of the gradient

∇0 : C∞
c (Bδ(0))

⊕k → L2
(
Bδ(0)

)⊕ dim(F )·k ∇0(ξ) =




∂ξ/∂r1
...

∂ξ/∂rdim(F )


 .

The above assumptions imply the following:

Lemma 10. We have that Dom(∇) = Dom(Dα
x ) and there exist constants

C0, C1 > 0 such that

C1 · ‖ξ‖∇ ≥ ‖ξ‖Dα
x
≥ C0 · ‖ξ‖∇ ,

for all x ∈ π(U). Moreover, we have that

Dα
x (ξ) = A(x, ·) · ∇(ξ) +B(x, ·)(ξ) ,

for all ξ ∈ Dom(∇) and all x ∈ π(U), where

A(x, ·) := (A1(x, ·), . . . , Adim(F )(x, ·))
: L2

(
Bδ(0)

)⊕ dim(F )·k → L2
(
Bδ(0)

)⊕k
.
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Define the map

R : π(U) → L
(
L2(Bδ(0))

⊕k
)

R(x) :=
(
1 + (Dα

x )
∗Dα

x

)−1

as well as its square root R1/2 : x 7→ R(x)1/2, x ∈ π(U). We remark that it
follows by Lemma 10 that Im(R1/2(x)) = Dom(∇) for all x ∈ π(U) and that
the map

∇ ·R1/2 : π(U) → L
(
L2(Bδ(0))

⊕k, L2(Bδ(0))
⊕ dim(F )·k)

∇ ·R1/2(x) := ∇ ·
(
1 + (Dα

x )
∗Dα

x

)−1/2

is well-defined. Moreover, Lemma 10 implies that

sup
x∈π(U)

‖∇ · R1/2(x)‖∞ <∞ ,

where ‖ · ‖∞ refers to the operator norm.

Lemma 11. The maps R : π(U) → L
(
L2(Bδ(0))

⊕k
)
and ∇ · R : π(U) →

L
(
L2(Bδ(0))

⊕k, L2(Bδ(0))
⊕ dim(F )·k) are continuous in operator norm.

Proof. We will only prove the statement for the map ∇ ·R since the argument
in the case of R is similar but easier.
Thus, let ξ ∈ L2(Bδ(0))

⊕k and η ∈ L2(Bδ(0))
⊕ dim(F )·k as well as x, y ∈ π(U)

be given. To ease the notation, we define the bounded operator

T (y) := R1/2(y)
(
∇ · R1/2(y)

)∗
: L2(Bδ(0))

⊕ dim(F )·k → L2(Bδ(0))
⊕k

and remark that

T (y)∗ = ∇ ·R(y) : L2(Bδ(0))
⊕k → L2(Bδ(0))

⊕ dim(F )·k .

Using the resolvent identity we have that

∇ · (R(x)−R(y)) = ∇ ·R1/2(y)(Dα
yR

1/2(y))∗Dα
yR(x)

+∇R(y)R(x)−∇R(y)
= (Dα

y T (y))
∗Dα

yR(x) + T (y)∗R(x) − T (y)∗

= (Dα
y T (y))

∗Dα
yR(x)− T (y)∗(Dα

x )
∗Dα

xR(x)

and thus that

〈∇ · (R(x)−R(y))ξ, η〉
=

〈
Dα

yR(x)ξ,D
α
y T (y)η

〉
−
〈
(Dα

x )
∗Dα

xR(x)ξ, T (y)η
〉

=
〈(
A(y, ·)−A(x, ·)

)
∇ · R(x)ξ,Dα

y T (y)η
〉

+
〈(
B(y, ·)−B(x, ·)

)
R(x)ξ,Dα

y T (y)η
〉

+
〈
Dα

xR(x)ξ,
(
A(y, ·)−A(x, ·)

)
∇ · T (y)η

〉

+
〈
Dα

xR(x)ξ,
(
B(y, ·)−B(x, ·)

)
T (y)η

〉
.
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But this implies that

‖∇ · (R(x) −R(y))‖∞ ≤ 2 · ‖A(y, ·)−A(x, ·)‖∞ ·K2

+ 2 · ‖B(y, ·)−B(x, ·)‖∞ ·K ,

where K := supz∈π(U) ‖∇ ·R1/2(z)‖∞. This estimate proves the lemma.

Proposition 12. Suppose that D : E → E is vertically elliptic and symmetric.
For each p ∈M , there exists an open subset U ⊆M with p ∈ U such that

1. The closed and symmetric unbounded operator DU : Dom(DU ) → XU is
regular.

2. The bounded adjointable operator

mU (χ) · (1 +D∗
UDU )

−1 : XU → XU

is compact for all χ ∈ C∞
c (U).

In particular, it holds that the composition

Dom(DU )
iDU−−−−→ XU

mU (χ)−−−−→ XU

is a compact operator for all χ ∈ C∞
c (U).

Proof. We choose the open subset U ⊆M with p ∈ U such that Assumption 1
and Assumption 2 are satisfied.
Let us first show that Dα is regular. Since DU and Dα are unitarily equiv-
alent this is equivalent to the regularity of DU . We show that the op-
erator norm continuous map R : π(U) → L

(
L2(Bδ(0))

⊕k
)

satisfies that

Im(R) ⊆ Dom
(
(Dα)∗Dα

)
and that

(
1 + (Dα)∗Dα

)
R(ξ) = ξ for all ξ ∈

C0

(
π(U)

)
⊗̂L2(Bδ(0))

⊕k. Remark here that R is identified with a bounded

adjointable operator on C0

(
π(U)

)
⊗̂L2(Bδ(0))

⊕k in the obvious way. Now,
by Lemma 10 and Lemma 11 we have that Im(R) ⊆ Dom(Dα). For each
ξ ∈ C0(π(U))⊗̂L2(Bδ(0))

⊕k and each η ∈ Dom(Dα) we then have that

〈DαR(ξ), Dα(η)〉(x) = 〈Dα
xR(x)(ξ(x)), D

α
x (η(x))〉 = 〈(1−R)(ξ), η〉(x)

for all x ∈ π(U). But this shows that Im(DαR) ⊆ Dom
(
(Dα)∗

)
and hence that

Im(R) ⊆ Dom
(
(Dα)∗Dα

)
. Moreover, we may conclude that (Dα)∗DαR = 1−

R. We have thus proved that Dα is regular with resolvent (1+ (Dα)∗Dα)−1 =
R.
To show that mU (χ) · (1 + D∗

UDU )
−1 : XU → XU is a compact op-

erator for all χ ∈ C∞
c (U) it now suffices to show that m(f) · R(x) :

L2
(
Bδ(0)

)⊕k → L2
(
Bδ(0)

)⊕k
is a compact operator for all x ∈ π(U) and

all f ∈ C∞
c (Bδ(0)). But this follows from Rellich’s Lemma since Dα

x :

C∞(
Bδ(0)

)⊕k → C∞(
Bδ(0)

)⊕k
is an elliptic first-order differential operator,

see [30, Lemma 10.4.3].

Documenta Mathematica 25 (2020) 2049–2084



Factorization of Dirac Operators on Fibrations 2063

3 Factorization in unbounded KK-theory

We remain in the setting described in Section 2, thus we consider a smooth fiber
bundle π : M → B with a compact model fiber F . We will assume that bothM
and B are Riemannian and that the submersion π :M → B is Riemannian thus
that the derivative dπ(x) : (TVM)⊥x → (TB)π(x) is an isometry for all x ∈ M
(TVM → M denotes the smooth hermitian vector bundle of vertical tangent
vectors). We will finally assume that M and B are both spinc manifolds.
The second main result of this paper is the factorization in unbounded KK-
theory of the Dirac operator DM on the total manifoldM in terms of a vertical
operator DV and the Dirac operator DB on the base manifold B. This factori-
zation result holds up to an explicit curvature term, which is invisible at the
level of bounded KK-theory.
We work in the case where M and B are both even dimensional, but notice
that our results can be readily translated to the remaining three cases (counting
parity of dimensions).
The Riemannian metrics on M and B will be denoted by 〈·, ·〉M : X (M) ×
X (M) → C∞(M) and 〈·, ·〉B : X (B)× X (B) → C∞(B), respectively.

3.1 The vertical unbounded Kasparov module

In order to link the Dirac operators DB and DM via a tensor-sum factoriza-
tion, we start by constructing a vertical Dirac operator DV : EV → EV . This
vertical Dirac operator will be an odd symmetric, vertically elliptic, first-order
differential operator acting on the smooth sections EV of a Z/2Z-graded smooth
hermitian vector bundle EV → M (see Definition 2 and Definition 1). In par-
ticular, using Theorem 3, we will obtain an even unbounded Kasparov module
from C0(M) to C0(B).
We follow the approach and notation of [41], where we studied —actually,
as a preparation for the present paper— Riemannian submersions of compact
Riemannian spinc manifolds.
Working with the unital function algebras C∞(M) and C∞(B), we consider the
smooth sections EM := Γ∞(M,EM ) and EB := Γ∞(B,EB) of the Z/2Z-graded
spinor bundles EM → M and EB → B, respectively. The spinc-structures
provide us with even isomorphisms

cM : Cl(M) → EndC∞(M)(EM ), cB : Cl(B) → EndC∞(B)(EB) .

We fix even hermitian Clifford connections∇EM : Γ∞(M,EM ) → Γ∞(M,EM⊗
T ∗M) and ∇EB : Γ∞(B,EB) → Γ∞(B,EB ⊗ T ∗B).
We let

ClV (M) := Γ∞(
M,Cl(TVM)

)
, ClH(M) := Γ∞(

M,Cl(THM)
)

denote the Clifford algebras of vertical and horizontal vector fields, respectively.
Remark that the horizontal vector fields XH(M) are defined as the smooth
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sections of the smooth vector bundle THM →M with fiber (TVM)⊥x ⊆ (TM)x
at each x ∈M .
Then, as in [41], we arrive at

• a Z/2Z-graded horizontal spinor bundle EH := π∗EB, together with a
hermitian Clifford connection ∇EH for Clifford multiplication cH by hor-
izontal vector fields on M .

• a Z/2Z-graded vertical spinor bundle EV := E∗
H ⊗Cl(THM) EM , together

with a hermitian Clifford connection ∇EV for Clifford multiplication cV
by vertical vector fields on M .

The explicit formulae for these operations can be found in [41, Section 3]. We
let EH := Γ∞(M,EH) and EV := Γ∞(M,EV ) denote the smooth sections of
the horizontal and vertical spinor bundle, respectively.
The vertical Dirac operator DV : EV → EV is defined by the local expression

DV (ξ) = i

dim(F )∑

j=1

cV (ej)∇EV

ej (ξ) ξ ∈ EV ,

where {ej} is a local orthonormal frame of real vertical vector fields. Clearly,
DV is an odd first-order differential operator, which only differentiates in the
fiber direction.
As in Section 2.1 we let X denote the Z/2Z-graded C∗-correspondence from
C0(M) to C0(B) obtained as the C∗-completion of the compactly supported
sections in EV (the inner product is defined in Equation (1) and the grading is
induced by the grading on EV ). We promote DV to an odd unbounded operator

(DV )0 : E
c
V → X .

As in [41, Lemma 15] we obtain the following symmetry result:

Lemma 13. The odd unbounded operator (DV )0 : E c
V → X is symmetric.

The closure of (DV )0 will be denoted by DV : Dom(DV ) → X .

Proposition 14. The triple (C∞
c (M), X,DV ) is an even unbounded Kasparov

module from C0(M) to C0(B).

Proof. Let f ∈ C∞(M) and let x ∈ M . By Lemma 13 and Theorem 3 it is
enough to verify that the principal symbol σDV

(df)(x) : (EV )x → (EV )x is
invertible whenever (dV f)(x) : (TVM)x → C is non-trivial. We compute this
principal symbol to be given by the local expression

σDV
(df) = [DV , f ] = i

dim(F )∑

j=1

cV (ej)ej(f) .
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Hence σDV
(df)(x) = cV ((dV f)

♯)(x), where

♯ : HomC∞(M)(XV (M), C∞(M)) → XV (M) ♯ : 〈ej | 7→ ej

denotes the musical isomorphism. This proves the proposition.

We apply the notation L2(E c
M ) and L2(E c

B) for the Z/2Z-graded Hilbert space
completions of the smooth compactly supported sections of the spinor bundles
EM and EB, respectively. The inner products come from the Riemannian
metrics and the hermitian forms in the usual way.
For later use, we record the following result. The proof is the same as the
proof of [41, Proposition 14]. Notice, when reading the statement, that we
are tacitly applying the identifications EndC∞(M)(EH) ∼= ClH(M) ⊆ Cl(M) ∼=
EndC∞(M)(EM ).

Proposition 15. The even left C∞
c (M)-module isomorphism

W : E
c
V ⊗C∞

c (B) E
c
B → E

c
M

W : (〈ξ| ⊗ s)⊗ r 7→
(
|r ◦ π〉〈ξ|

)
(s)

defined for ξ ∈ E c
H , s ∈ E c

M and r ∈ E c
B, induces an even unitary isomorphism

W : X⊗̂C0(B)L
2(E c

B) → L2(E c
M )

of Z/2Z-graded Hilbert spaces.

3.2 Lift of the Dirac operator on the base

Our next ingredient is the Dirac operator on the base defined by the local
expression,

DB = i

dim(B)∑

α=1

cB(fα)∇EB

fα
: EB → EB ,

for any local orthonormal frame {fα} for X (B) consisting of real vector fields.
This Dirac operator is an odd, symmetric and elliptic, first-order differential
operator. We are interested in the associated symmetric unbounded operator

(DB)0 : E
c
B → L2(E c

B)

and we denote its closure by DB : Dom(DB) → L2(EB). Since the Riemannian
manifold B is not assumed to be complete, it can happen that DB is not selfad-
joint and the triple (C∞

c (B), L2(E c
B), DB) is therefore in general not a spectral

triple over C0(B). Instead, as in [5] and [31], the above triple forms an even
half-closed chain, representing the fundamental class [B] ∈ KK0(C0(B),C).
In order to form the unbounded Kasparov product of the vertical and the
horizontal components we need to lift the Dirac operator DB to a symmetric
unbounded operator on the Hilbert space X⊗̂C0(B)L

2(E c
B). It turns out that
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the hermitian Clifford connection ∇EV on EV does not define a metric connec-
tion on E c

V ⊆ X , due to correction terms that come from the measure on the
fibers Mb, b ∈ B.

To obtain a metric connection for the C∞
c (B)-valued inner product 〈·, ·〉X on

E c
V , we recall that the second fundamental form S ∈ Γ∞(M,T ∗

VM ⊗ T ∗
VM ⊗

T ∗
HM) can be defined by

S(X,Y, Z) :=
1

2

(
Z(〈X,Y 〉M )− 〈[Z,X ], Y 〉M − 〈[Z, Y ], X〉M

)
(2)

for real vertical vector fields X,Y and real horizontal vector fields Z on M .
Moreover, the mean curvature k ∈ HomC∞(M)

(
XH(M), C∞(M)

)
is given as

the trace

k = (Tr⊗1)(S) .

As in [41, Definition 18], we define a metric connection on E c
V ⊆ X by

∇X
Z (ξ) = ∇EV

ZH
(ξ) +

1

2
k(ZH) · ξ ∈ E

c
V ⊆ X

for any real vector field Z on B, with horizontal lift ZH ∈ XH(M) ∼=
Γ∞(M,π∗TB), and any ξ ∈ E c

V ⊆ X .

Lemma 16. The local expression

(1⊗∇ DB)0(ξ ⊗ r)

:= ξ ⊗DB(r) + i
∑

α

∇X
fα(ξ)⊗ cB(fα)(r) ξ ∈ E

c
V , r ∈ E

c
B

defines a symmetric unbounded operator

(1⊗∇ DB)0 : E
c
V ⊗C∞

c (B) E
c
B → X⊗̂C0(B)L

2(E c
B) .

We denote the closure of (1⊗∇ DB)0 by

1⊗∇ DB : Dom(1 ⊗∇ DB) → X⊗̂C0(B)L
2(E c

B) .

The selfadjoint and regular unbounded operator DV : Dom(DV ) → X induces
a selfadjoint unbounded operator

(DV ⊗ 1)0 : Dom(DV )⊗C0(B) L
2(E c

B) → X⊗̂C0(B)L
2(E c

B)

and we let DV ⊗ 1 : Dom(DV ⊗ 1) → X⊗̂C0(B)L
2(E c

B) denote its closure.

We now compute the commutator of DV ⊗ 1 and 1 ⊗∇ DB (when restricted
to E c

V ⊗C∞
c (B) E c

B ⊆ X⊗̂C0(B)L
2(E c

B)). This computation will be crucial in the
proof of our main Theorem 23 below.
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Lemma 17. Suppose that ξ ∈ E c
V ⊆ X and r ∈ E c

B ⊆ L2(E c
B). Then we have

the local expression

[DV ⊗ 1, 1⊗∇ DB](ξ ⊗ r)

= −
∑

j,k,α

S(ek, ej , (fα)H)
(
cV (ej)∇EV

ek

)
(ξ)⊗ cB(fα)(r)

−
∑

j,α

cV (ej)
(
ΩEV (ej , (fα)H) +

1

2
ej
(
k((fα)H)

))
(ξ)⊗ cB(fα)(r) ,

where ΩEV : Γ∞(M,EV ) → Γ∞(M,EV ⊗ T ∗M ∧ T ∗M) is the curvature form
of the hermitian connection ∇EV .

Proof. We let ∇V = (P ⊗ 1)∇MP : Γ∞(M,TVM) → Γ∞(M,TVM ⊗ T ∗M)
denote the compression of the Levi–Civita connection on M to vertical vector
fields (thus, P : X (M) → X (M) denotes the orthogonal projection with
image XV (M) ⊆ X (M)).
We insert the definition of DV and 1 ⊗∇ DB in the above expression and
compute

[DV ⊗ 1, 1⊗∇ DB] = −
∑

j,α

[
cV (ej)∇EV

ej ,∇X
fα

]
⊗ cB(fα)

=
∑

j,α

(
cV (∇V

(fα)H
(ej))∇EV

ej − cV (ej)
[
∇EV

ej ,∇
EV

(fα)H

]

− 1

2
cV (ej)ej

(
k((fα)H)

))
⊗ cB(fα) .

We consider the second term after the last equality sign, for which
[
∇EV

ej ,∇
EV

(fα)H

]
= ∇EV

[ej ,(fα)H ] +ΩEV (ej , (fα)H)

in terms of the curvature form ΩEV of the connection ∇EV .
For each α ∈ {1, . . . , dim(B)}, we proceed by computing the first-order differ-
ential operator

∑

j

(
cV (∇V

(fα)H
(ej))∇EV

ej + cV (ej)∇EV

[(fα)H ,ej ]

)

=
∑

j,k

cV (ej)
(〈

∇M
(fα)H

(ek), ej
〉
M

+
〈
[(fα)H , ej], ek

〉
M

)
∇EV

ek

=
∑

j,k

cV (ej)

(
1

2

〈
[(fα)H , ek], ej

〉
M

+
1

2

〈
[(fα)H , ej ], ek

〉
M

)
∇EV

ek
,

where we used Koszul’s formula for the Levi–Civita connection ∇M on M , to-
gether with the fact that the Lie-bracket [(fα)H , ej ] is a vertical vector field for
all α, j, see [41, Lemma 1]. When expressed in terms of the second fundamental
form of Equation (2) this leads to the desired formula.
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As a consequence of the above lemma we obtain that the commutator [DV ⊗
1, 1⊗∇ DB] is relatively bounded by DV ⊗ 1 on compact subsets of M .

Lemma 18. Suppose that K ⊆ M is a compact subset. Then there exists a
constant C > 0 such that

‖[DV ⊗ 1, 1⊗∇ DB](η)‖ ≤ C ·
(
‖η‖+ ‖(DV ⊗ 1)(η)‖

)
,

for all η ∈ E c
V ⊗C∞

c (B) E c
B with support contained in K.

Proof. Throughout this proof, we will suppress the left C∞(M)-module iso-
morphism W : E c

V ⊗C∞
c (B) E c

B → E c
M from Proposition 15.

Without loss of generality, suppose that K ⊆ U , where U ⊆ M is an open
subset supporting an orthonormal frame {ej} for (TVM)|U and where π(U) ⊆
B supports an orthonormal frame {fα} for (TB)|π(U).
Recall from Proposition 14 that DV : EV → EV is a vertically elliptic first-
order differential operator. In particular, we have that DV ⊗ 1 corresponds to
a vertically elliptic first-order differential operator on EM . It therefore follows
from G̊arding’s inequality that there exists a constant C0 > 0 such that

dim(F )∑

j=1

‖(∇EV
ej ⊗ 1)(η)‖ ≤ C0 ·

(
‖η‖+ ‖(DV ⊗ 1)(η)‖

)
,

for all η ∈ E c
V ⊗C∞

c (B) E c
B with support contained in K ⊆ U .

By Lemma 17 there exist A1, . . . , Adim(F ), B ∈ Γ∞(
U,End(EM )|U

)
such that

[DV ⊗ 1, 1⊗∇ DB](η) =

dim(F )∑

j=1

Aj(∇EV

ej ⊗ 1)(η) +B(η) ,

for all η ∈ E c
V ⊗C∞

c (B) E c
B with support contained in K ⊆ U .

This proves the present lemma.

3.3 Factorization of the Dirac operator

The tensor sum we are after is given by the symmetric unbounded operator

(DV ×∇ DB)0 := (DV ⊗ 1)0 + (γX ⊗ 1)(1⊗∇ DB)0

: Dom(DV ×∇ DB)0 → X⊗̂C0(B)L
2(E c

B) ,

where the domain is the image of E c
V ⊗C∞

c (B) E c
B in X⊗̂C0(B)L

2(E c
B) and where

γX : X → X denotes the Z/2Z-grading operator on X . The closure of the
symmetric unbounded operator (DV ×∇DB)0 will be denoted by DV ×∇DB.
We are going to compare this tensor sum with the Dirac operator on the spinc

manifold M . As mentioned earlier, these two unbounded operators agree up to
an explicit error term given by the curvature form of the proper Riemannian
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submersion π :M → B. We recall that this curvature form Ω ∈ Γ∞(M,T ∗
HM∧

T ∗
HM ⊗ T ∗

VM) is defined by

Ω(X,Y, Z) := 〈[X,Y ], Z〉M
for any real horizontal vector fields X,Y and any real vertical vector field Z.
We represent this curvature form as an endomorphism of EM via the Clifford
multiplication cM : X (M) → EndC∞(M)(EM ) as follows:

c : Γ∞(M,T ∗
HM ∧ T ∗

HM ⊗ T ∗
VM) → EndC∞(M)(EM )

c(ω1 ∧ ω2 ⊗ ω3) :=
[
cM (ω♯

1), cM (ω♯
2)
]
· cM (ω♯

3) .

Notice that the sharps refer to the musical isomorphisms ♯ : Ω1
H(M) → XH(M)

and ♯ : Ω1
V (M) → XV (M). We emphasize that the corresponding operator

c(Ω) : E c
M → L2(E c

M ) can be unbounded.
We recall that the Dirac operator on M is defined by the local expression

DM =

dim(M)∑

k=1

cM
(
(dxk)

♯
)
∇EM

∂/∂xk
: EM → EM .

As usual, we let DM : Dom(DM ) → L2(E c
M ) denote the closure of the symmet-

ric unbounded operator (DM )0 : E c
M → L2(E c

M ) induced by DM .
Let γB : L2(E c

B) → L2(E c
B) denote the grading operator on L2(E c

B). The
grading operator on X⊗̂C0(B)L

2(E c
B) is then given by γ := γX ⊗γB. We define

the even selfadjoint unitary isomorphism

Γ := (γX ⊗ 1)
1 + γ

2
+

1− γ

2
: X⊗̂C0(B)L

2(E c
B) → X⊗̂C0(B)L

2(E c
B) .

Proposition 19. Under the even unitary isomorphism given by WΓ :
X⊗̂C0(B)L

2(E c
B) → L2(E c

M ) we have the identity

WΓ(DV ×∇ DB)ΓW
∗ = (DM )0 −

i

8
c(Ω) . (3)

Proof. We first notice that

Γ(DV ×∇ DB)Γ(η) = (DV ⊗ γB)(η) + (1⊗∇ DB)(η) ,

for all η ∈ E c
V ⊗C∞

c (B)E
c
B. As in the proof of [41, Theorem 23] we then establish

that

WΓ(DV ×∇ DB)ΓW
∗(ξ) =

(
DM − i

8
c(Ω)

)
(ξ)

for all ξ ∈ E c
M . The result of the proposition now follows since E c

M is a core for
both of the unbounded operators appearing in Equation (3).

Lemma 20. The triple
(
C∞

c (M), X⊗̂C0(B)L
2(E c

B), DV ×∇DB

)
is an even half-

closed chain over C0(M). Moreover, this even half-closed chain represents the
fundamental class [M ] in KK0(C0(M),C).
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Proof. By Proposition 19, (DV ×∇ DB)0 is unitarily equivalent to the odd,
symmetric and elliptic, first-order differential operator (DM )0 − i

8c(Ω) : E c
M →

L2(E c
M ). This establishes that the triple

(
C∞

c (M), X⊗̂C0(B)L
2(E c

B), DV ×∇ DB

)

is an even half-closed chain, see [5, 31].
To end the proof, we need to show that the even half-closed chains

(
C∞

c (M), L2(E c
M ), DM

)
and

(
C∞

c (M), L2(E c
M ), (DM )0 −

i

8
c(Ω)

) (4)

represent the same class in KK0(C0(M),C).
For a function x ∈ C0(M), we let 〈x,C∞

c (M)〉 ⊆ C0(M) denote the smallest
∗-subalgebra of C0(M) containing both C∞

c (M) and x. We then choose a
positive function x ∈ C0(M) such that x · C0(M) ⊆ C0(M) is norm-dense and
such that

(
〈x,C∞

c (M)〉, L2(E c
M ), DM

)
and

(
〈x,C∞

c (M)〉, L2(E c
M ), (DM )0 −

i

8
c(Ω)

)

are still even half-closed chains from C0(M) to C. Moreover, we may arrange
that

x((DM )0 −
i

8
c(Ω))x(ξ) = xDMx(ξ) −

i

8
xc(Ω)x(ξ)

for all ξ ∈ E c
M and that c(Ω)x is a bounded operator on L2(E c

M ). Clearly,
the passage from C∞

c (M) to 〈x,C∞
c (M)〉 does not change the corresponding

classes in KK-theory.
We now localize our symmetric unbounded operators with respect to the pos-
itive function x, obtaining the essentially selfadjoint unbounded operators
xDMx : E c

M → L2(E c
M ) and xDMx − i

8xc(Ω)x : E c
M → L2(E c

M ), see [40,
Proposition 11]. Moreover, we have that

(
〈x,C∞

c (M)〉, L2(E c
M ), xDMx

)
and

(
〈x,C∞

c (M)〉, L2(E c
M ), xDMx− i

8
xc(Ω)x

) (5)

are even spectral triples overC0(M) and that these spectral triples represent the
same classes in KK-theory as our original even half-closed chains in Equation
(4), see [40, Theorem 13 and Theorem 19].
But the two spectral triples in Equation (5) clearly represent the same class
in KK-theory since the unbounded selfadjoint operators xDMx and xDMx −
i
8xc(Ω)x are bounded perturbations of each other. This ends the proof of the
lemma.
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Remark 21. The result of the above lemma can not be proved directly using the
recent work of van den Dungen, since we are lacking an “adequate approximate
identity” for the unbounded symmetric operator DM : Dom(DM ) → L2(E c

M ),
see [25]. Instead we rely on the general localization techniques initiated in [34]
and developped further in [35, 40].

For any compact subset K ⊆M , we introduce the subspace

L2(E K
M ) :=

{
ξ ∈ L2(E c

M ) | ψ · ξ = ξ , ∀ψ ∈ C∞
c (M) with ψ|K = 1

}
.

Lemma 22. Suppose that K ⊆M is a compact subset. Then

Dom(DV ×∇ DB) ∩ L2(E K
M ) ⊆ Dom(DV ⊗ 1) .

Moreover, there exists a constant CK > 0 such that

‖(DV ⊗ 1)(η)‖ ≤ CK ·
(
‖(DV ×∇ DB)(η)‖ + ‖η‖

)

for all η ∈ Dom(DV ×∇ DB) ∩ L2(E K
M ).

Proof. Throughout this proof we will suppress the left C∞
c (M)-module isomor-

phism W : E c
V ⊗C∞

c (B) E c
B → E c

M from Proposition 15.
Let L ⊆ M be a compact subset. Since (DV ×∇ DB)0 : E c

M → L2(E c
M ) is

induced by an elliptic first-order differential operator and since (DV ⊗ 1)0 :
E c
M → L2(E c

M ) is induced by a first-order differential operator we may apply
G̊arding’s inequality to find a constant CL > 0 such that

‖(DV ⊗ 1)(η)‖ ≤ CL ·
(
‖(DV ×∇ DB)(η)‖ + ‖η‖

)
(6)

for all η ∈ E c
M with support contained in L.

Let now η ∈ Dom(DV ×∇ DB) ∩ L2(E K
M ). Since E c

M is a core for DV ×∇ DB

we may find a sequence {ηn} in E c
M such that ηn → η and (DV ×∇DB)(ηn) →

(DV ×∇DB)(η) in the norm on L2(E c
M ). Moreover, since η ∈ L2(E K

M ) we may
suppose, without loss of generality, that there exists a compact subset L ⊆M
such that the support of ηn is contained in L for all n ∈ N.
The result of the lemma now follows from Equation (6).

Finally, we establish that the tensor sum half-closed chain

(C∞
c (M), X⊗̂C0(B)L

2(E c
B), DV ×∇ DB)

is indeed an unbounded representative of the Kasparov product of the cor-
responding classes in bounded KK-theory. Note that the relevant Kasparov
product and KK-groups are the following:

⊗̂C0(B) : KK0(C0(M), C0(B)) ×KK0(C0(B),C) → KK0(C0(M),C) .

We are thus going to prove the identity

[X,FDV
]⊗̂C0(B)[L

2(E c
B), FDB

] = [X⊗̂C0(B)L
2(E c

B), FDV ×∇DB
]
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in KK0(C0(M),C), where FD := D(1 + D∗D)−1/2 : E → E denotes the
bounded transform of a symmetric and regular unbounded operator D :
Dom(D) → E.
The proof will be based on a generalization to half-closed chains of a theorem by
Kucerovsky [44, Theorem 13], which we proved recently in [40] (see Appendix A
Theorem 36 for the main result).

Theorem 23. Suppose that π : M → B is a proper Riemannian submer-
sion of even dimensional spinc manifolds. Then the even half-closed chain
(C∞

c (M), L2(E c
M ), DM ) is the unbounded Kasparov product of the even un-

bounded Kasparov module (C∞
c (M), X,DV ) with the even half-closed chain

(C∞
c (B), L2(E c

B), DB) up to the curvature term − i
8c(Ω) : E c

M → L2(E c
M ).

Proof. From Proposition 19 we know that the tensor sum half-closed chain is
unitarily equivalent to the half-closed chain

(
C∞

c (M), L2(E c
M ), (DM )0 −

i

8
c(Ω)

)
.

Moreover, Lemma 20 says that the tensor sum half-closed chain represents
the fundamental class [M ] in KK0(C0(M),C). We therefore only need to
verify the connection condition (Definition 33) and the local positivity condition
(Definition 34) for the tensor sum half-closed chain, the vertical unbounded
Kasparov module and the horizontal half-closed chain.
For the connection condition we work with the core E c

V ⊗C∞
c (B)E

c
B forDV ×∇DB

and the core E c
B forDB. We then compute locally for homogeneous ξ ∈ E c

V ⊆ X
and r ∈ E c

B ⊆ L2(E c
B) that

(DV ×∇ DB)(ξ ⊗ r)− (−1)∂ξ · (ξ ⊗DB(r))

= DV ξ ⊗ r + (−1)∂ξ · i
∑

α

∇X
fα(ξ)⊗ cB(fα)r

which clearly extends to a bounded operator from L2(E c
B) to the interior tensor

product X⊗̂C0(B)L
2(E c

B).
For the localizing subset Λ ⊆ C∞

c (M) we start by choosing a countable open
cover {Um} of the base manifold B and a smooth partition of unity {χm}
subordinate to that cover and with supp(χm) compact for eachm ∈ N. Clearly,
{π−1(Um)} is a countable open cover of M , and {χm ◦ π} is a partition of
unity. We will then take as a localizing subset Λ = {χm ◦ π} for which one
readily checks the two first conditions of Definition 34. Note that Km :=
supp(χm ◦ π) = π−1(supp(χm)) is compact because π : M → B is assumed to
be proper. The final condition of Definition 34 follows from Lemma 22.
Let m ∈ N and choose a compact subset Lm ⊆ M such that Km is contained
in the interior of Lm. To verify the local positivity condition it suffices to show
that there exists a κm > 0 such that

〈(DV ⊗̂1)η, (DV ×∇ DB)η〉+ 〈(DV ×∇ DB)η, (DV ⊗̂1)η〉 ≥ −κm〈η, η〉 (7)
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for all η ∈ Im
(
(χm ◦ π)2

)
∩Dom(DV ×∇ DB).

By Lemma 18 we may find a constant Cm > 0 such that

‖[DV ⊗ 1, 1⊗∇ DB](η)‖2 ≤ Cm ·
(
‖η‖2 + ‖(DV ⊗ 1)(η)‖2

)
(8)

for all η ∈ E c
V ⊗C∞

c
E c
B with support contained in Lm.

We claim that the inequality in Equation (7) is satisfied for κm := 1
2 (1 +Cm).

Suppose first that η ∈ E c
V ⊗C∞

c (B) E c
B with supp(η) ⊆ Km. Arguing just as in

the proof of [37, Lemma 7.5] and using Equation (8) we obtain that

± 〈η, (γX ⊗ 1)[DV ⊗ 1, 1⊗∇ DB]η〉

= ±1

2

(〈
C1/2

m η, (γX ⊗ 1)[DV ⊗ 1, 1⊗∇ DB]C
−1/2
m η

〉

+
〈
(γX ⊗ 1)[DV ⊗ 1, 1⊗∇ DB]C

−1/2
m η, C1/2

m η
〉)

≤ 1

2Cm
· ‖[DV ⊗ 1, 1⊗∇ DB]η‖2 +

Cm

2
· ‖η‖2

≤ 1

2
· ‖(DV ⊗ 1)η‖2 + κm · ‖η‖2 .

This implies that

〈(DV ⊗ 1)η, (DV ×∇ DB)η〉+ 〈(DV ×∇ DB)η, (DV ⊗ 1)η〉
= 〈η, (γX ⊗ 1)[1⊗∇ DB, DV ⊗ 1]η〉+ 2 · ‖(DV ⊗ 1)η‖2

≥ −κm‖η‖2
(9)

and hence that Equation (7) holds for all η ∈ E c
V ⊗C∞

c (B)E
c
B with supp(η) ⊆ Lm.

Suppose now that η ∈ Im
(
(χm ◦ π)2

)
∩ Dom(DV ×∇ DB). We then choose a

sequence {ηn} in E c
V ⊗C∞

c (B) E c
B which converges to η in the graph norm of

DV ×∇ DB. We may assume, without loss of generality, that ηn has support
in Lm ⊆M for all n ∈ N. By Lemma 22 this implies that {ηn} also converges
to η in the graph norm of DV ⊗ 1. The inequality in Equation (7) therefore
follows from Equation (9).
We have thus established the local positivity condition and this completes the
proof of the theorem.

4 Almost regular fibrations

In this section we come to the third main result of this paper, which is the
factorization in unbounded KK-theory of the Dirac operator DM on the total
manifold M of a so-called almost-regular fibration of spinc manifolds. This
factorization takes place on a dense open submanifold M of M and is given
in terms of a vertical Dirac operator DV and the Dirac operator DB on a
base manifold B. The point is here that all information about the total Dirac
operator DM can be deduced from the behaviour of its restriction DM to M .
But let us begin with the precise definitions.
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Definition 24. Let M be a Riemannian manifold (not necessarily compact
but without boundary), together with a finite union P = ∪m

j=1Pj of compact

embedded submanifolds Pj ⊆ M each without boundary and of codimension
strictly greater than 1. If there exist a Riemannian manifold without boundary
B and a proper Riemannian submersion π : M → B with total space M =
M \ P , we call the data (M,P,B, π) an almost-regular fibration.

Note that M = M \ P is a dense open subset of M (and P has Riemannian
measure zero).

Example 25. A proper Riemannian submersion π : M → B is an example of
an almost-regular fibration when we take P = ∅.

Example 26. Let G be a torus acting isometrically, but not necessarily freely,
on a compact Riemannian manifold N such that the orbit space N/G is con-
nected. Let Hprin, H1, . . . , Hm ⊆ G denote the finitely many isotropy groups,
where Hprin is the principal stabilizer. We suppose that all the orbits G/Hj,
j = 1, . . . ,m, are singular and moreover, that each subspace of Hj-fixed points
NHj is connected. Then, letting N0 ⊆ N denote the principal stratum, we
have that N \ N0 = ∪m

j=1N
Hj and that each NHj ⊆ N is a compact embed-

ded submanifolds of codimension strictly greater than 1, see [21, Theorem 5.11,
Theorem 5.14 and Proposition 5.15] and [46, Proposition 1.24]. The projec-
tion map π : N0 → N0/G is a proper Riemannian submersion hence the data
(N,∪m

j=1N
Hj , N0/G, π) is an almost-regular fibration.

In fact, in the above we may restrict our attention to a subset {Hji} of the
isotropy groups such that N \N0 = ∪iN

Hji . It does moreover suffice to assume
that each quotient space NHji /G is connected instead of assuming that each
NHji is connected. In this case we use the connected components of the Hji-
fixed points as our compact embedded submanifolds instead.

Definition 27. An almost-regular fibration of spinc manifolds is an almost-
regular fibration (M,P,B, π) such that M and B are equipped with spinc struc-
tures.

Example 28. Continuing with Example 26, if we assume that N carries a
G-equivariant spinc structure, it follows that the open submanifold N0 is a G-
equivariant spinc manifold. If in addition the action of G on N is effective, the
orbit space N0/G is a spinc manifold. This forms a key class of examples of
almost-regular fibrations of spinc manifolds.

In fact, the techniques developed here have already been applied to toric non-
commutative manifolds, see [39].

Example 29.

Let us consider an almost-regular fibration of even dimensional spinc manifolds
(M,P,B, π). We let EM → M and EB → B denote the Z/2Z-graded spinor
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bundles. Thus there exist Dirac operators on the spinc manifolds M and B,
given as odd unbounded operators

(DM )0 : Γ∞
c (M,EM ) → L2(M,EM ) and

(DB)0 : Γ∞
c (B,EB) → L2(B,EB) .

Moreover, since the spinc structure on M restricts to a spinc structure on the
open submanifold M ⊆M we also obtain the Dirac operator

(DM )0 : Γ∞
c (M,EM ) → L2(M,EM ) ,

where the spinor bundle EM → M agrees with the restriction of EM to
M ⊆ M . Since P ⊆ M has Riemannian measure 0 we may identify the
Z/2Z-graded Hilbert spaces L2(M,EM ) and L2(M,EM ) using the inclusion
ι : Γ∞

c (M,EM ) → Γ∞
c (M,EM ) given by extension by zero. We may then

arrange that

(DM )0(ι(ξ)) = (DM )0(ξ) for all ξ ∈ Γ∞
c (M,EM ) .

Each of these unbounded operators determine even half-closed chains

(C∞
c (M), L2(M,EM ), DM )

(C∞
c (B), L2(B,EB), DB) and

(C∞
c (M), L2(M,EM ), DM ) ,

representing the fundamental classes [M ] ∈ KK0(C0(M),C), [B] ∈
KK0(C0(B),C) and [M ] ∈ KK0(C0(M),C), respectively.
Using the ∗-homomorphism ι : C∞

c (M) → C∞
c (M) given by extension by zero,

we may pullback the even half-closed chain

(C∞
c (M), L2(M,EM ), DM )

to an even half-closed chain

ι∗(C∞
c (M), L2(M,EM ), DM ) = (C∞

c (M), L2(M,EM ), DM ) .

At the level of bounded KK-theory this pullback operation corresponds to the
usual pullback homomorphism

ι∗ : KK0(C0(M),C) → KK0(C0(M),C)

coming from the ∗-homomorphism ι : C0(M) → C0(M) and the contravariant
functoriality in the first variable.
The following theorem is the third main result of this paper. The proof relies
for the main part on Theorem 23 and we apply the notation of that theorem
here as well.
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Theorem 30. Suppose that (M,P,B, π) is an almost regular-fibration of even
dimensional spinc manifolds. Then it holds (up to unitary equivalence) that

ι∗(C∞
c (M), L2(M,EM ), DM ) = (C∞

c (M), L2(M,EM ), DM ) . (10)

Moreover, the even half-closed chain (C∞
c (M), L2(M,EM ), DM ) is the

unbounded Kasparov product of the even unbounded Kasparov module
(C∞

c (M), X,DV ) and the even half-closed chain (C∞
c (B), L2(B,EB), DB)

up to the curvature term − i
8c(Ω) : Γ

∞
c (M,EM ) → L2(M,EM ). In particular

it holds that

ι∗[M ] = [M ] = [X,DV (1 +D2
V )

−1/2]⊗̂C0(B)[B]

at the level of bounded KK-theory.

Proof. Since π : M → B is a proper Riemannian submersion by assumption,
we may apply Theorem 23 to establish the second part of the present theorem.
It therefore suffices to prove the identity in Equation (10). But this identity
follows immediately from Proposition 32 here below.

The restriction we impose on the codimension of the compact embedded sub-
manifolds Pj ⊆M in the definition of an almost-regular fibration (M,P,B, π)
guarantees that given a closed extension of a first-order differential operator
—such as the Dirac operator— onM , its restriction to sections that have com-
pact support contained in M gives the same closure. The following lemma will
be useful in this context.

Lemma 31. Let P ⊆ M be a subset of a Riemannian manifold M such that
P =

⋃m
j=1 Pj is a finite union of compact embedded submanifolds Pj ⊆M , each

of codimension strictly greater than 1. Then there exists an increasing sequence
{ψn} of positive smooth functions on M such that

1. supp(ψn) ⊆M \ P for all n ∈ N;

2. supn(ψn|M\P ) = 1M\P ;

3. The exterior derivative dψn has compact support for all n ∈ N and the
sequence {dψn} is bounded in L2(M,T ∗M).

Proof. We may assume, without loss of generality, that P consists of a single
closed embedded submanifold P ⊆ M . Indeed, suppose that an increasing
sequence {ψj

n} of positive smooth functions satisfying (1), (2) and (3) has
been constructed for each compact embedded submanifold Pj ⊆M . Then the
sequence {ψn} := {ψ1

n · . . . · ψm
n } satisfies (1), (2) and (3) for P = ∪m

j=1Pj .

Let k > 1 denote the codimension of P ⊆ M . Choose an increasing sequence

{ψ̃n} of positive smooth functions on R
k such that

• supp(ψ̃n) ⊆ Rk \ {0};
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• supp(dψ̃n) ⊆ B1/n(0), where B1/n(0) ⊆ Rk denotes the ball of radius 1/n
and center 0;

• supn(ψ̃n|Rk\{0}) = 1|Rk\{0};

• There exists a constant C > 0 such that ‖dψ̃n‖∞ ≤ C · n for all n ∈ N,
where ‖·‖∞ denotes the supremum norm on Γ∞

c (Rk, T ∗Rk) ∼= C∞
c (Rk)⊕k.

Choose a finite open cover of P ⊆M by submanifold charts

(V 1, ϕ1), . . . , (V N , ϕN ) ,

such that V i ⊆ M is compact for all i ∈ {1, . . . , N}. Thus, for each i ∈
{1, . . . , N}, we have that

V i ∩ P =
{
x ∈ V i | (π1 ◦ ϕi)(x) = 0

}
,

where π1 : R
k × R

dim(M)−k → R
k denotes the projection onto the first k

coordinates.
Put V 0 :=M \P and choose a smooth partition of unity χ0, χ1, . . . , χN for M
with supp(χi) ⊆ V i for all i ∈ {0, 1, . . . , N}. Remark that supp(χi) is compact
for all i ∈ {1, . . . , N} but that supp(χ0) need not be compact. It does however
hold that the support of the exterior derivative dχ0 is compact.
We define

ψn := χ0 +
N∑

i=1

χi · (ψ̃n ◦ π1 ◦ ϕi) for all n ∈ N .

We leave it to the reader to verify that the increasing sequence {ψn} of positive
smooth functions satisfies (1), (2) and (3). When verifying (3), notice that

{
‖dψ̃n‖2∞ · Vol(B1/n(0) ⊆ R

k)
}∞
n=1

is a bounded sequence since k > 1.

The following proposition generalizes the results in [8, Prop. 4.12] and [28,
Sect. 2.2.1].

Proposition 32. Let M be a Riemannian manifold and P = ∪m
j=1Pj be a

finite union of compact embedded submanifolds, each of codimension strictly
greater than 1; write the complement as M :=M \P . Let E →M be a smooth
hermitian vector bundle and (DM )0 : Γ∞

c (M,E) → L2(M,E) be a first-order
differential operator. Then, if we let (DM )0 : Γ∞

c (M,E|M ) → L2(M,E|M )
denote the restriction of (DM )0 to the smooth compactly supported sections
Γ∞
c (M,E|M ), the closure of (DM )0 coincides with the closure of (DM )0, both

as operators in L2(M,E).
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Proof. First of all, we use that both M and M are manifolds without bound-
ary so that by [30, Lemma 10.2.1] both (DM )0 and (DM )0 are closable. We
denote the closures by DM and DM , respectively. Since P ⊆ M is a null-set,
we can identify L2(M,E|M ) with L2(M,E) and consider the operators DM

and DM both as being (densely defined) on L2(M,E). Indeed, the inclusion
Γ∞
c (M,E|M ) → Γ∞

c (M,E) induces a unitary isomorphism of Hilbert spaces
L2(M,E|M ) ∼= L2(M,E).
Clearly, DM ⊆ DM , so it suffices to show that the core Γ∞

c (M,E) for DM is
included in the domain of DM .
Let thus s ∈ Γ∞

c (M,E) be given. For the increasing sequence of positive
smooth functions {ψn} constructed in Lemma 31 we have that ψns→ s in the
norm of L2(M,E) (recall that P has Riemannian measure 0). By construction
ψns ∈ Γ∞

c (M,E|M ) for all n ∈ N and, by [30, Lemma 1.8.1], we may thus
conclude that s ∈ Dom(DM ), if we can establish that {DM (ψns)} is a bounded
sequence in L2(M,E).
Let σM : Γ∞(M,T ∗M) → Γ∞(M,End(E)) denote the principal symbol of
the first-order differential operator DM : Γ∞(M,E) → Γ∞(M,E). For each
x ∈ M we let ‖σM (x)‖∞ denote the norm of the fiber-wise operator σM (x) :
T ∗
xM → End(Ex) and we let ‖s‖∞ denote the supremum norm of the compactly

supported section s :M → E.
We then have the estimates

‖DM (ψns)‖L2(M,E) = ‖σM (dψn) · s+ ψn ·DM (s)‖L2(M,E)

≤ ‖σM (dψn) · s‖L2(M,E) + ‖DM (s)‖L2(M,E)

≤ sup
x∈supp(s)

‖σM (x)‖∞ · ‖s‖∞ · ‖dψn‖L2(M,T∗M)

+ ‖DM (s)‖L2(M,E) .

Using property (3) of the sequence {ψn} from Lemma 31, these estimates show
that {‖DM (ψns)‖L2(M,E)} is a bounded sequence. This proves the proposition.

A On a theorem of Kucerovsky for half-closed chains

We summarize the main result of [40], which generalizes a theorem by
Kucerovsky [44, Theorem 13] to half-closed chains. Let us fix three C∗-algebras
A,B and C with A separable and B, C σ-unital. Throughout this section we
will assume that (A , E1, D1), (B, E2, D2) and (A , E,D) are even half-closed
chains from A to B, from B to C and from A to C, respectively. We de-
note the ∗-homomorphisms associated to the C∗-correspondences E1, E2 and
E by φ1 : A → L(E1), φ2 : B → L(E2) and φ : A → L(E), respectively.
We will moreover assume that E = E1⊗̂BE2 agrees with the interior tensor
product of the C∗-correspondences E1 and E2. In particular, we assume that
φ(a) = φ1(a) ⊗ 1 for all a ∈ A. We let γ1 : E1 → E1, γ2 : E2 → E2 and
γ := γ1⊗̂γ2 denote the Z/2Z-grading operators on E1, E2 and E.
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We will denote the bounded transforms of our half-closed chains by (E1, FD1
),

(E2, FD2
) and (E,FD) and the corresponding classes in KK-theory by

[E1, FD1
] ∈ KK0(A,B), [E2, FD2

] ∈ KK0(B,C) and [E,FD] ∈ KK0(A,C).
We may then form the interior Kasparov product

[E1, FD1
]⊗̂B[E2, FD2

] ∈ KK0(A,C)

and it becomes a relevant question to find an explicit formula for this class in
KK0(A,C).
For each ξ ∈ E1, we let Tξ : E2 → E denote the bounded adjointable operator
given by Tξ(η) := ξ ⊗ η for all η ∈ E2.

Definition 33. The connection condition demands that there exist a dense
B-submodule E1 ⊆ E1 and cores E2 and E for D2 : Dom(D2) → E2 and
D : Dom(D) → E, respectively, such that

(a) For each ξ ∈ E1:

Tξ(E2) ⊆ Dom(D) , T ∗
ξ (E ) ⊆ Dom(D2) , γ1(ξ) ∈ E1

(b) For each homogeneous ξ ∈ E1:

DTξ − (−1)∂ξTξD2 : E2 → E

extends to a bounded operator Lξ : E2 → E.

Definition 34. A localizing subset is a countable subset Λ ⊆ A with Λ = Λ∗

such that

(a) The span
spanC

{
x · a | a ∈ A , x ∈ Λ

}
⊆ A

is norm-dense in A.

(b) The commutator

[D1⊗̂1, φ(x)] : Dom(D1⊗̂1) → E

is trivial for all x ∈ Λ.

(c) We have the domain inclusion

Dom(D) ∩ Im(φ(x∗x)) ⊆ Dom(D1⊗̂1)

for all x ∈ Λ.

Definition 35. Given a localizing subset Λ ⊆ A , the local positivity condition
requires that for each x ∈ Λ, there exists a constant κx > 0 such that

〈
(D1⊗̂1)φ(x∗)ξ,Dφ(x∗)ξ

〉
+ 〈Dφ(x∗)ξ, (D1⊗̂1)φ(x∗)ξ〉

≥ −κx · 〈ξ, ξ〉

for all ξ ∈ Im(φ(x)) ∩Dom(Dφ(x∗)).
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In practice, it is useful to record that the local positivity condition would follow
if for each x ∈ Λ, there exists a constant κx > 0 such that

〈(D1⊗̂1)η,Dη〉+ 〈Dη, (D1⊗̂1)η〉 ≥ −κx〈η, η〉 ,

for all η ∈ Im(φ(x∗x)) ∩Dom(D).

Theorem 36. Suppose that the three half-closed chains (A , E1, D1),
(B, E2, D2) and (A , E,D) satisfy the connection condition and the local
positivity condition. Then (E,FD) is the Kasparov product of (E1, FD1

) and
(E2, FD2

) in the sense of Connes and Skandalis, [18]. In particular we have
the identity

[E,FD] = [E1, FD1
]⊗̂B[E2, FD2

]

in the KK-group KK0(A,C).
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