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ABSTRACT. We study elliptic curves of the form z3 + y® = 2p and
22 + y3 = 2p? where p is any odd prime satisfying p = 2 mod 9 or
p =5 mod 9. We first show that the 3-part of the Birch—Swinnerton-
Dyer conjecture holds for these curves. Then we relate their 2-Selmer
group to the 2-rank of the ideal class group of Q(/p) to obtain some
examples of elliptic curves with rank one and non-trivial 2-part of the
Tate—Shafarevich group.
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1 INTRODUCTION AND THE MAIN RESULTS
Let n > 3 be a cube free integer. The elliptic curve
Ch:2®+y>=n

is the twist of C: 2° + y> = 1 by the cubic field Q({/n), where ¢/n denotes
the real root. The study of the arithmetic of C,, is very old. In particular,
it is well known that C,, has no non-zero rational torsion, and thus C,(Q) is
infinite precisely when n is the sum of two rational cubes. Let p be any odd
prime satisfying

p=2mod 9 or p=>5mod9. (1.1)

In [20], Satgé used the theory of Heegner points to show that Cy, has rank 1
when p = 2 mod 9, and Cy,> has rank 1 when p = 5 mod 9. More recently,
it was shown in [2] that, for all odd primes p satisfying (1.1) the 3-part of
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the Birch—Swinnerton-Dyer conjecture holds for the product of the two curves
Cap X Cop2; here, we remark that one of the curves in this product is of rank
zero, while the other is of rank one.

The first main result of this paper is the proof of the 3-part of the Birch—
Swinnerton-Dyer conjecture for each of the individual curves Cy, and Cs)2 for
all odd primes p satisfying (1.1). More precisely, we establish the following re-
sults. Let L(Cy, s) be the complex L-series of C,, over Q. Since C;, has complex
multiplication by the integer ring Ok of K = Q(v/=3), the analytic contin-
uation and functional equation of L(C,,s) are known by Deuring’s theorem.
Let A be the elliptic curve with classical Weierstrass equation

A:y? =42 — 1.

Then fixing an embedding of K into C, and noting that A also has complex
multiplication by O, the lattice L of complex periods of the differential dx/y
on A is of the form QO , with Q = 3.059908..., a real number. For each integer
n > 3, we then define

Q, = Q/(V3nl/?). (1.2)

The rationality of the algebraic part % of L(Cy,s) at s = 1 follows from
a result of Birch using modular symbols? which deals with any elliptic curve
over Q. Moreover, Stephens strengthened this result for C, in [24] to show
that this is a rational integer.

THEOREM 1.1. Let p be an odd prime satisfying (1.1). Then

1. Ifp=>5mod 9, the L-values L(Cyp, 1) and L(Cy2p2, 1) are both non-zero,
and the 3-part of the Birch—Swinnerton-Dyer conjecture holds for Cap and
Co2p2. Moreover, we have the following congruence

L(Cyp,1) _ L(Corpe, 1)

=1 d 3.
30, 30022 o

2. If p=2mod 9, the L-values L(Cyp2,1) and L(Cy2p, 1) are both non-zero,
and the 3-part of the Birch-Swinnerton-Dyer conjecture holds for Cspe
and Ca2,,. Moreover, we have the following congruence

L(Cy2p, 1) _ L(Cyp2, 1)
SQQZP B SQQPZ

=1 mod 3.

We write III(C),) for the Tate—Shafarevich group of C,, over Q. Combined with
the results in [2], we obtain the following corollary of Theorem 1.1.

COROLLARY 1.2. Let p be an odd prime satisfying (1.1).

1. If p=2mod 9, the curve Cap has rank 1 and L(Cap, s) has a simple zero
at s = 1. Furthermore, III(Csp) is finite and the 3-part of the Birch—-
Swinnerton-Dyer conjecture holds for Csp.
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2. If p =5 mod 9, the curve Cop2 has rank 1 and L(Csp2,s) has a simple
zero at s = 1. Furthermore, II(Cy,2) is finite and the 3-part of the
Birch-Swinnerton-Dyer conjecture holds for Cop2.

The second main result of this paper is on the 2-part of the Tate—Shafarevich
group of the curves Cs, and Cyp2 in the rank 1 case studied in Corollary 1.2.
For any abelian group (scheme) 90t (over a base scheme S) and a positive integer
m, we write 9[m] for the group (scheme) of m-torsion of M. We relate the
2-Selmer group of these curves to the 2-part of the ideal class group of the
field L = Q(¢/p). We remark that such a relation has already been obtained
in [11] for a wide class of elliptic curves without complex multiplication. We
can apply the same methods to our curves on noting that their Mordell-Weil
groups have trivial torsion subgroups and that for any prime number ¢, we have
®[2] = 0, where ®/F, denotes the component group scheme of a corresponding
Néron model over Q. In addition, in our case, we can use this relation to obtain
examples of curves with rank 1 and non-trivial 2-part of the Tate—Shafarevich
group.

Given a number field F', let CI(F') be the ideal class group of F. We call the
integer ranks (CU(F)) := dimg, (CI(F)/2CI(F)) the 2-rank of CI(F'). Here, Fo
denotes the finite field of two elements.

THEOREM 1.3. Let p be an odd prime satisfying (1.1).

1. If p =2 mod 9, we have ranks(CI(L)) > 2 if and only if III(Csp)[2] is
non-trivial. In particular, in the case ranks(CI(L)) > 2, the curve Cyp
has rank 1 and has non-trivial II1(Cy,)[2].

2. If p="5mod 9, we have ranky(CI(L)) > 2 if and only if IIT(Cy2)[2] is
non-trivial. In particular, in the case ranks(CI(L)) > 2, the curve Cype
has rank 1 and has non-trivial 1I1(Cy,2)[2].

We remark that, although we cannot show at present that there are infinitely
many primes p satisfying the condition ranks(CI(L)) > 2 in Theorem 1.3,
there are many such p. Indeed, for p < 1000000, 1852/13099 of the primes
p =2mod 9 and 1629/13068 of the primes p = 5 mod 9 satisfy the condition.
Some notable numerical examples can be found in Appendix A. We note also
that there are infinitely many elliptic curves over Q with rank 0 and non-trivial
2-part of the Tate—Shafarevitch group (see, for example, [17]). However, in the
rank 1 case, it seems that one can so far only find elliptic curves over Q with
non-trivial 2-part of the Tate—Shafarevich group via numerical computations.
Theorem 1.3 thus sheds new theoretical light on the existence of many curves
with rank 1 and non-trivial 2-part of the Tate—Shafarevich group.

In the remainder of this introduction, we explain the structure of the paper and
the key ideas involved. In Section 2, we will introduce the notion of ‘explicit
modulo 3 Birch—Swinnerton-Dyer conjecture’ and show congruences similar to
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those in Theorem 1.1 for the curves C}, and Cp2. The proof of Theorem 1.1
will be given in Section 3. The main idea of the proof is an extension of
Zhao’s averaging method [26, 10, 15] from 2-adic to 3-adic. However, a direct
application of Zhao’s method only gives us the 3-adic valuation of the sum of the
two algebraic L-values in Theorem 1.1, and does not give us the 3-adic valuation
of the individual algebraic L-value. To overcome this difficulty, we will study
the ‘explicit modulo 3 Birch-Swinnerton-Dyer conjecture’ introduced in Section
2 to separate the terms in the above sum. A key ingredient in establishing such
an ‘explicit modulo 3 Birch—Swinnerton-Dyer conjecture’ is Zhang’s adaptation
[27] of Razar’s method [16, 17] from 2-adic to 3-adic. This gives us a precise
3-adic valuation of certain rational functions on the curve A which appear
naturally in a special value formula (see [6]) for L(Csiys,1) for 4,5 € {0,1,2}.
Combining Zhao’s method, the results from Section 2 and congruences between
the L-values of Ca, and Cy2p2 (resp. Cyp2 and Cy2p) for p = 5 mod 9 (resp.
p = 2 mod 9) gives us Theorem 1.1. In Section 4, we will prove Theorem 1.3 by
a 2-descent argument. In Appendix A, we will give some numerical examples
which satisfy the condition ranks(CI(L)) > 2 in Theorem 1.3.

NOTATION AND CONVENTIONS

Throughout the paper, we will have K = Q(v/—3) and a fixed embedding of K
into C. We write Ok for the integer ring of K, and for every ideal (b) = bOk
of K, K(b) will denote the ray class field over K modulo (b). An odd prime p
is always assumed satisfying the condition (1.1), and we write H, = K(/p)
and H, = K(p, {/2). If m > 1 is an integer, p,, will denote the group
of m-th roots of unity. For any cube free integer n > 3, we write C,, for
the elliptic curve 23 +y> = n. Let A : y?> = 42® — 1 with a period lattice
L = QOgk, where 2 = 3.059908... is a real number. For each integer n > 1,
we set 2, = . Let L(Cy, s) be the complex L-series of C,, over Q. We

\/gnd)
call L(C D the algebraic part of L-value of C,, at s = 1. As usual, Q3 will
denote the field of 3-adic numbers, and Zsz the ring of 3-adic integers in Q3.
We write Q4 for a fixed algebraic closure of Q3, and Zs will denote the integer
ring of Q3. Given o € Q4, we write o € 3 (e1 + 36223) for three non-negative
rational numbers €; (i = 0,1,2) if the number («/3%) — € is divisible by 3
in Zs3. Finally, we fix a normalized additive 3-adic valuation ords on (@3 such
that ords(3) = 1.

2 ExprLiCIT MODULO 3 BIRCH-SWINNERTON-DYER CONJECTURE FOR C),
AND C)p2

We first introduce a special value formula for C,, to which we will refer fre-
quently in the later sections of the paper. We assume from now on that n is
prime to 3. Let v,, be the Hecke character over K associated to C),. From an
explicit description of 1), contained in [23], we have

dnl@) = (2) a 2.1)

(67
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for every a € O which is prime to 3n and is congruent to 1 modulo 3. Here,
(f)3 denotes the cubic residue symbol, and we denote by (f) the conductor of
¥n. A precise definition of the cubic residue symbol and a detailed description
of (f) can be found in [24].

Let z and s be complex variables. Given any lattice £ in the complex plane C,
the Kronecker—Eisenstein series is defined by

z+w
Hy(z,s,L): Z |z+w|25

where the sum is taken over all w € £ except —z if z € £. This series converges
to define a holomorphic function in s on the half plane Re(s) > 2, and it
has analytic continuation to the whole complex s-plane. We define the non-
holomorphic Eisenstein series by

Ei(z,L) = Hi(2,1,L).

It is shown in [24] that the Néron differential lattice of C, is ©,Ox. We have
the following special value formula for C,,, whose detailed proof can be found
in [6, Theorem 60].

THEOREM 2.1. Let (f) be the conductor of ,, and let g be an integer in K
such that g is a multiple of f. Then the value Ef ( =n Q) OK) lies in K(g),

and we have
Q Q
LY9(C, 1) = —Trg(g)/x (5f (_naQnOK)) , (2.2)
g g

where Trg(g)/kx denotes the trace map from K(g) to K. Here, we denote by
L(g)(Cn7 s) the imprimitive L-series of Cy, obtained by omitting the Euler fac-
tors at all primes dividing (g), so that in particular in the case (f) = (g),
LY (C,,s) is the complex L-series for C,,.

Let us say from now on that the explicit modulo 3 Birch—Swinnerton-Dyer
conjecture holds for C), if the algebraic part of its L-value at s = 1, when divided
by the product of the Tamagawa factors, satisfies the modulo 3 congruence
predicted by the Birch-Swinnerton-Dyer conjecture. When L(C,,, 1) # 0, the
explicit modulo 3 Birch—-Swinnerton-Dyer conjecture is stronger than the 3-
part of the Birch—Swinnerton-Dyer conjecture for C,, since the argument from
Iwasawa theory due to Rubin [19] excludes both the 2-part and the 3-part of the
Birch—Swinnerton-Dyer conjecture for C,,. In particular, it is not difficult to
check that the congruences in Theorem 1.1 gives the explicit modulo 3 Birch—
Swinnerton-Dyer conjecture for Cop, and Ch2p2 when p = 5 mod 9 and for Csyz,
and Cy,> when p = 2mod 9. Indeed, the factor 3 in the denominators of the
congruences in Theorem 1.1 comes from the Tamagawa factor at the prime 3
(a description of the Tamagawa factor for C), is given in [25]). Furthermore,
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by a 3-descent argument, we can show that the 3-part of the Tate—Shafarevich
group of the elliptic curves in Theorem 1.1 is trivial (see Proposition 3.11).
It follows from [18] that these Tate—Shafarevich groups are finite, and thus by
Cassels’ theorem [3], they have square orders. Hence their orders are congruent
to 1 modulo 3, as required.

In this section, we first prove

L(Cp,1) #0 and L(Cp2,1) #0,

then show that the 3-part of the Birch—Swinnerton-Dyer conjectures holds
for these curves. Moreover, we will show that the explicit modulo 3 Birch—
Swinnerton-Dyer conjecture holds for C, and C,:. We remark that the
non-vanishing of the L-values of these curves and the 3-part of the Birch-
Swinnerton-Dyer conjecture were shown by Zhang in [27]. The main result of
this section is the explicit modulo 3 Birch—Swinnerton-Dyer conjecture for the
curves Cp, and 2, which we will prove by applying Zhao’s induction argument
and by establishing certain congruences between the algebraic L-values of C),
and Cp2.

We write D for p or p?. We recall that A has the periods lattice L = Q0O
and write p(u) for the Weierstrass p-function associated to the lattice L. We
will use the following adaptation of formula (2.2). This formula was already
obtained in [24], but we give a different proof, and the style of the proof will
play a key role in our later arguments.

PRroOPOSITION 2.2. We have

ced

—Q c 1
L(Cp 1) =3 (5) —ror—
(Cp, 1) 2\/§pZD3p(@)1
P
where € denotes a set of representatives of (O /pOk)* such that ¢ € € implies
—ce (.

Proof. From [24], we know that the conductor of ¢p divides (3p) and has the
same prime ideal divisors as (3p). By formula (2.2), we have

Q Q
L(CD, 1) = ——?Z)TYK(&D)/K (5; (——?Z)7QD0K>) . (23)

We make a choice for a set of representatives of integral ideals in K whose
Artin symbols give precisely the Galois group Gal(K (3p)/K). Note that

Gal(K (3p)/K) = (O /3pOx)” /6 = (O /pOx)*,

where the inverse of the second isomorphism is given by sending c¢ €
(O /pOK)* to 3c — p. Here, we use the condition —p = 1 mod 3 and
identify pe with (Ox/30k)*. Therefore, the Artin symbols of (3¢ — p) in
Gal(K (3p)/K) give a set of representatives of Gal(K (3p)/K) as ¢ runs over all
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the elements of (Ok/pOk)*. Thus from (2.3) and the explicit Galois action

on & QpOk ) described in [6], we obtain

3p’

L(Cp,1) _Sp Z & (M,QDOK)

T (0 fnOw) —3p
52, S
c€(Ok /pOK)*

where L = QO . For the second equality, we use the homogeneity of Eisenstein
series

Ef Az, AL) = A\ 1E5 (2, L) AeC”

of degree —1. Furthermore, by (2.1), we have

on(e=p) = (525 ) @e=n = (), (=)

In the second equality, we use the cubic reciprocity law and the fact that
(), =1 (since 3, D € Q). It follows that

0 (e Q
L(Cp,1) = = - (%)351<C—p+§,L).

c€(Ok /pOK)*

We write L = Zu + Zv with Im(v/u) > 0. We define the positive real number
A(L) by A(L) = ¥5-“2_ Furthermore, we write

_ . —2 —2s
w0 g, & i

Let ((z, L) be the Weierstrass zeta function attached to L. Then by [6, Theorem
55], we have

Ei (2, L) = (2, L) — zso(L) — ZA(L)™!

Note that by [lo pp.  390-392], we have A(L) = +/3Q%/(27), s2(L) =
2¢(Q/2,L) — = and ((/3,1) = 25 + 2. Hence the additive formula
of the Weierstrass zeta function gives

(G515 s (Saom )

From [24], we know that

p(Q/3) =1, ¢'(2/3)=—V3,
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and we also have ¢(92/2, L) = 7/(v/39Q) (see [15, p. 391]). Thus from all of the
above, we obtain

¢ ¢ (e (= V3 mc
uer) =53 (5),(<(S0) +1 S T v fm) ’

c

where ¢ runs over the elements of (Ok /pOk)*. Now, since p is an odd prime,
we can choose a set € of representatives of (O /pOg)* such that ¢ € € implies

—Cc E C N()‘e ha‘
Z <c>
p 3

ced

and that ((z, L) and g'(z) are odd functions. Noting also that (%1)3 =1, we
obtain 0 .
c
Lo = 3 (5),
2v3 ‘\D/3 () _
\/_p ced Y ( D ) 1
as required. O

The curve A can also be written in the form
y* =2° — 16.

Now, we will construct a model A of the curve A over a certain finite abelian
extension of K so that A has good reduction at 3. The main theoretical reason
is the following theorem. The proof of the following theorem can be found in
[5, Theorem 2] or [7, Theorem 2.4].

THEOREM 2.3. Let E be an elliptic curve over K with compler multiplication
by Ok. Let p = («) be any prime ideal of K at which E has good reduction.

Denote by E, the subgroup of points in E(K) which are contained in the kernel
of the endomorphism «. Then E has good reduction everywhere over K(Ey).

Thus we can construct a model of A over the field K = K(A,_ /=3)), where
(2 —+/—3) is a prime ideal of K lying above the prime ideal 7Z of Q.

LEMMA 2.4. Let IC be given as above. Then we have

K=K|[¢{ 76\/7_3
1+3v-3

Proof. Since A has good reduction at 7, its formal group at 7 is a Lubin—Tate
formal group. Therefore, the degree of K over K is equal to 6, and Gal(K/K)
is a cyclic Galois group. Since pg is contained in K, by Kummer theory, we
just need to find an element « in K such that &« generates K. One can do
a direct calculation using the additive law and complex multiplication on the
curve 42 = 2% — 16 to get such an «, and we leave the details to the reader. O
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Now, we make the change of variables y = «%Y, z = u?X + r to the curve
y? = x3 — 16, where

of 64/-—3 u?
= —r = d =4—. 24
! 1+3v-3 e e 3 (2.4)

Then we obtain a model
A:Y?2=X? —4y/-3X? - 16X —8+8V-3 (2.5)
of A. Note that since ords(u) = 1, A has good reduction at 3.

LEMMA 2.5. If Q is a point on A of order prime to 3, then either X(Q) = 0
or ords (X(Q)) = 0.

Proof. The following proof is essentially an analogue of the same result in [16].
One can also find a proof in [27], but we give it here for the convenience of the
reader. Denote by A the reduced curve of A modulo 3, so that

AV =X X +1.

Since A has good reduction at 3, the torsion points of order prime to 3 on A
inject into A, and if Q1 # +Q2 on A, we have

e~ e~

X(Q1) — X(Q2) = X(Q1) — X(Q2) # 0. (2.6)

Let @ # 0 be a point on A satisfying X(Q) = 0. Then a direct computation
shows X (v/=3Q) = X(2Q), so that Q is a (2 — v/=3)- or a (2 + /—3)-torsion
point. Let @1 be any point with X (Q1) # 0. Then clearly @1 # +Q since
X(Q) = X(—Q). Thus setting Q2 = @ in (2.6), we see that if X(Q1) # 0 then

X(Q1) # 0, that is, ords(X(Q1)) = 0. O

From now on, we write (p(z), p’(2)) for a point on A: y* = 423 — 1, (z,y) for
a point on the model y? = 23 — 16 of A, and (X,Y) for a point the model A
whose equation is given in (2.5). The relation between the first two is given by

r=4p(z) y=4p'(2). (2.7)

Let Q = (p (%) ol (%)) be a point on A, where A is an integer prime to 3.
If ¢ € Ok is prime to A, then since x = u?X + r and ordz(u) = 1/4, Lemma
2.5 gives
Q

4p (CK) = 2(]JQ) = r mod 32. (2.8)
Here, we denote by [c] the complex multiplication by ¢ € Ok. Note that r is a
3-adic unit which is independent of the point [c]@, and thus p (%) is a 3-adic
unit.
The following lemma will be repeatedly used in the remainder of this section
and in Section 3.
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LEMMA 2.6. Let A be an integer prime to 3. Then we have

1. p (%) —1=33u; mod 3%, and

2. p (%)3 —1=3u? mod 36

for a 3-adic unit u; which is independent of the point [¢]Q. Moreover, we have
u} = (r —1)*/3, where r is given in (2.4). We remark that “ mod 3°” (for
e > 0) is taken in the ring of integers Zs of Q3.

Proof. Noting that = u?2X +r and ords(u) = i, Lemma 2.5 gives the equality

2([Q) —4=2([Q)—1-3=r—1mod 32.

Recall from (2.4) that r = 4 v’ Thus, we have

r—1=-v14 (\3/1—3\/—_3+€/ﬁ) mod 3. (2.9)

By considering the third power of /1 —3v—3 + /14, we know that
V/1—3y=3 + ¥/14 has 3-adic valuation equal to % Therefore, defining
up = T3_%1 and noting that 4p (X!) = z([JQ) and 47! € 1+ 3Z3, we obtain the
first assertion.

For the second assertion, let w = 71%‘/773 be a primitive 3rd root of unity.
Note that ords(w’ — 1) = 3 for i = 1,2, so that the first assersion gives

@ iz (L) Zqz s A3z  fori=1,2
oA w =p| R = 33u; mo ori=1,2.

LY

Thus
0\’ el 1
[9) K —1:H(32Aj+33u1)
§=0
=3u? mod 3.
Here, A; (j = 0,1,2) are 3-adic integers. The second assertion now follows. O
THEOREM 2.7 (Zhang [27]). Let p = 2,5 mod 9 be an odd prime, and recall

that D = p or p?. Then
L(CD71> #0

L(Cp,1)
Qp

and ords ( ) = 0. Moreover, the 3-part of the Birch-Swinnerton-Dyer

conjecture holds for Cp.

Proof. The following proof is contained in [27], but we give it here for the
convenience of the reader. By Proposition 2.2, we have

%L(Cp,l)z:(%)gﬁ'
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m=fece:(5),

where k = 0,1,2. We use the convention that k + 1,k + 2 are also in {0,1,2}
via taking modulo 3 in the following argument.

We define )
S = _—
)

Now, we define

Note that (%) = w or w? according as p = 2 mod 9 or p = 5 mod 9, and that
3

wgp (CT?) =p (%ﬂ) Then

B Biy1 if D=pand p=2mod9orif D=p?andp=>5mod 9,
w =

¥ Biyo if D=pand p=5mod9orif D=p?andp=2mod 9.
We just give the details of the proof in the cases D = p with p = 2 mod 9 and
D = p? with p =5 mod 9. The other cases can be proven in the same way. In
these cases, we have

2pV/3 1 w w?
—=q L(Cp,1) = > + +

Do @(%)—1 w@(%)—l w%(%?)—l

Now, by (2.8) and Lemma 2.6, we have
0\ 2 , O\ 3
30 <C—) = 3¢ mod 3%, p<c—> ~ 1= 3u? mod 3%.
p b

Recalling that w; and r are independent of ¢, we obtain

fpr(cD, 1) = (rPui®) - #(Bo) mod 3%

p’—1
3

which is a 3-adic unit, since #(By) =
Noting that

is prime to 3 when p = 2,5 mod 9.

Q
Qp = ——~
YT BDE
and D is prime to 3, we obtain ords ( L(g—’;’l)) = (0. The theorem follows since
we know that the 3-part of III(Cp) is trivial by 3-descent (see [27]). O
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It follows from Theorem 2.7 of Zhang that L(g—gl) € Z3 , and we can study its
value modulo 3. Now, we can prove the explicit modulo 3 Birch—Swinnerton-
Dyer conjecture for Cp.

LEMMA 2.8.

1. If p=>5mod 9, then

L 2,1
(Cpes 1) = L(Cp.1) mod 3.
20,2 Q,
2. If p=2 mod 9, then
L 1
(Cpe, 1) = L(Cp,1) mod 3.
Q, 20,

We remark that the factor 2 in the denominators of the above congruences
comes from the Tamagawa factor of Cp at 3.

Proof. We just give the details of the proof for (1), and (2) can be obtained
similarly. By Proposition 2.2 and the definition of €, we have

L(Cp,1)  /p? < 1
2002 T 4 Z p? :

ced 3@(%)71
and
LGy 1) _ P (2);

Recall that w = 71%‘/773 Since ords(w’ — w’) > 1 for i,j = 0,1,2, we obtain

o ((5),- ()=

From Lemma 2.6, we know that

 (2)-1) -4

Q

We define .
c
By (n)
ced p 3 p (%1) -1
and .
c
B=Y ()
cel€ 3 (7) -1
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Then )
ord3(31 — Bg) Z 6
3 P
Furthermore, we define A; := 7\4/—? and Ay = f;—‘/f. Noting that p =

2 mod 3, we have
1
¢/p =2 mod 33,

and thus
1
A; — Ay =0 mod 353.

Now, by the relations

L(Cp2,1) L(Cp, 1)
2P ) ALB —~P — AB
Qsz 121, Qp 202

and the identity
A1By — AsBs = (A — A2)By1 + Aa(B1 — Ba),

we obtain that 3% divides

L(Cp2,1)  L(Cp,1)

20,2 Q,

Our assertion now follows on noting that these L-values are in Zg. o

From Theorem 2.7, we know that the residue class of the two congruences in
Lemma 2.8 are non-zero modulo 3. Now, we use Zhao’s induction argument to
obtain the main result of this section giving the precise residue class modulo 3
in which these L-values lie.

THEOREM 2.9.
1. For p =5 mod 9, we have

L(C, 1) _ L(Che,1)
Q, 20,2

=1 mod 3.

Moreover, the explicit modulo 3 Birch—Swinnerton-Dyer conjecture holds
for Cp and Cp2.

2. For p=2 mod 9, we have

L(Cp,1)  L(Cp2,1)

20, 0,

=1 mod 3.

Moreover, the explicit modulo 3 Birch—Swinnerton-Dyer conjecture holds

for Cp and Cp2.
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For simplicity, we denote by ¢ the period €2, of C}, in the following. We will just
give the details for the case p = 5 mod 9, and the other case is similar. Recall
that K (3p) is the ray class field of K modulo (3p). Then we have ¢/p € K(3p),
and we recall that H), is the field K (¥/p).

For any positive divisor d | (p)?, we know that the period relation

Q4 =63/ (p/d) (2.10)

holds.
By formula 2.2, and the period relation (2.10), we have

L(?’P) 1 5 1 53 o
EGn s i L (S agox)
\/Z_j oceGal(K(3p)/K) P P

Note that > ,(V/d)°~! = 3 if o fixes V/d, and 3 ,(v/d)" ' = 0 otherwise. Now,
summing the above formula over all d | (p)? and noting /p € Hy, we obtain

L(3p)(Cd,1) 1 ../(9
Z —s = 3TrK(3p)/Hp (%51 (%,501()) . (2.11)

d|(p)?

First, we study the terms on the left hand side of (2.11). We write u (= 1 or 2)

for the residue class of L(g—zl) mod 3. Then we have

LEMMA 2.10.

1. Ford =1, we have L(sp)é(c’l) = ‘S/ﬁg:rl) € (Yp+3Ls) =2+ 337Z;.

(3p) —
2. For d = p, we have Le ng’l) = L(gz’l) € u+ 3Zs.
LEBP(C 51 L(C 2,1 ” =
3. For d = p?, we have (6 2l _ {gﬂv?lpz) € %—ﬁ + 3Zs.

As for the right hand side of (2.11), we have the following standard calculation.
Here, we recall that Q = §v/3 ¢/p. We will use the same set € of representatives
of Gal(K(3p)/K) ~ (Ok /pOk)™ as in Proposition 2.2. We denote by V the

subset of € such that ¢ € V if and only if (1_67) = 1. We see that H), is precisely
3

the fixed field of the subgroup generated by the Artin symbol of elements in V',

and thus V' gives a set of representative for Gal(K (3p)/H,). Recall that v, is

the Hecke character over K associated to C}. Then
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1., (6
g Z:3TYK(3P)/HP (%51 (@,50]{))
1 )
= — _TI'K(Bp)/Hp (51 (—,(SOK))

5251< ) 60k >

chzng* (wl’ Q(’)K)
:__Zgl (w”( (8c— p)) Q(’)K) V3.

CGV

Noting that, by our choice of €, we have —c € V whenever ¢ € V, the same
argument as in the proof of Proposition 2.2 shows

3\f VP
w- - Py, (212)
RN R

where #(V) = %.
Now, from Lemma 2.6, we know that the first term on the right hand side of
(2.12) has a positive 3-adic valuation, while the second term in (2.12) is

/P VP (p+1 ‘ =
VP iy = P (p—> (p—1) € 2 + 3Zs.
P P 3
Moreover, Lemma 2.10 and (2.11) give
L(Cy,1) N L(Cp2,1)
) )

On the other hand, by (2) and (3) of Lemma 2.10, the sum in (2.13) is contained
in

€ P+ 3Zs = 2+ 33Zs. (2.13)

= 2u — 2 _ _
(u+323)+(% +3Z3) :u(1+3—\/§)+3z3 = 2u + 35 7Z;. (2.14)

Here, we use the fact that )

¢p=2mod 33
and 33 exactly divides ¢/P — 2 when p =5 mod 9. Comparing formulas (2.13)
and (2.14), we obtain 4 = 1. This completes the proof of Theorem 2.9.

3 Expricit MODULO 3 BIRCH-SWINNERTON-DYER CONJECTURE FOR
021' J
D

The goal of this section is to give the proof of Theorem 1.1. We prove this in
the following steps. Firstly, we use Zhao’s induction argument to show that
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the sum of algebraic part of L-values of Cy, and Cazp2 (resp. Cype and Coz,,)
is non-zero when p = 5 mod 9 (resp. p = 2 mod 9) and satisfies an explicit
modulo 3 congruence. Secondly, by establishing some congruences between
the algebraic L-values in the sum of the first step, we can show each term in
the sum is non-zero and satisfies the explicit modulo 3 Birch—-Swinnerton-Dyer
conjecture. In this section, we again write D for p or p?. The first key result
of this section is the following.

THEOREM 3.1.
1. If p=>5 mod 9, we have

L(Cop, 1) " L(022p2, 1)
1 1

€3(2+337Z3)

and
L(Csp, 1) + L(ngpz, 1)

Qgp Q22p2

€ 3(2 4 3Z3).

2. If p=2 mod 9, we have
L(CQZP, 1) + L(CQPZ, 1)

€ 3(1+337Z3)

0 Q,

and L(Co2o 1) L(Cape, 1
(Cop 1) | L(Cop2, )63(2+323).
QQQP QQPZ

We will only give the details for the case p = 5 mod 9, and leave the proof for the
other case to the reader. Before the proof, we remark that, by a root number
consideration (for details, see [12]), we know that L(Csp2,1) = L(Cy2p,1) =0
(resp. L(Cap,1) = L(Cy2p2,1) = 0) when p =5 mod 9 (resp. p = 2 mod 9).

For simplicity, we write 7y for {22, in the following. Then we have the following

period relation:
3/2
devf/gp. (3.1)

We recall that 1, = K (V/2, ¢/p).

LEMMA 3.2. We have /p, V2 e K (6p), and the degree of the field extension

[K(6p) : Hp| = pZB;l, which is prime to 3.

Proof. Since K has class number 1, given any prime ideal ¢ = aOg of Ok which
is prime to 6p and a = 1 mod 3, the Artin symbol o4 of q in Gal(K(6p)/K)
acts on /p via

@ =(g), v

«/ 3

where (—) 5 denotes the cubic residue symbol. The Galois action on V2 is
given similarly. Thus, for any prime ideal m whose generator is congruent to 1
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modulo 6p, we know that /p, /2 are fixed by the Artin symbol oy, and the
first assertion follows. For the second assertion, note that Gal(K(6p)/K) ~
(0K /2pOk)*. Hence [K(6p) : K(¢/p, V2)] = p23_1, which is prime to 3 by our
assumption that p = 2,5 mod 9. o

For each d with 0 < d | (2p)?, from (2.2), and the period relation (3.1), we have
L) (Cy,1 1 2 7
(gd lo v & (V! (61‘ (—”6 ”,W?poK» :
TVep o€Gal(K(6p)/K) ¥ P

Taking the sum over all 0 < d | (2p)?, we obtain the following in the same way
we obtained (2.11):

LOP)(Cy,1) 1 v2p .
— 2 =3 —& [ X2 4 8/2p0 . 3.2
Z 7\3/2_]) K (6p)/Hyp (Gp 1 ( 6p Y p K)) ( )

d|(2p)?

First, we deal with terms on the left hand side of (3.2). We list the results in
the following two lemmas, and leave the proofs to the reader.

LEMMA 3.3. We have

(6p) —
1 B € 3(2 4+ 3Z).

P) —
2. L) ¢ 3(/22 4 3Z).

L(GP)(C 1) 1 —
v €3z + L)

By Theorem 2.9, we have the following estimate.

LEMMA 3.4. We have

(6p) _
1. Gl 63(3%/5 +323).

L(G”)(sz,l) 1 —
Moreover,
L©r(C, 1) L (Cp,1 23 1 = 1
5 pl) (Sp ) g (2L + 373 | =3(2+33Zs3),
Y/ 2p Y/ 2p \3/172

where we use the fact that ords(/p —2) = %
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LEMMA 3.5. Define

Lo (2320 55
[ORES TrK(6p)/7‘lp (6_])51 (76—1),73 2p(9K>) .

Then B
32® € 3(2 + 337Z3).

Proof. Since {/2p € H,,, we have

1 1 0
d=——T —er (L .
Vap KO (61951 (619’70[{))
We know that Gal(K(6p)/K) is isomorphic to
(0K /6pOK)™ [ps =~ (Ox /2pOk) ", (3-3)

where we identify ug with (O /30k)™, and the isomorphism from right to left
is given by sending any element ¢ of (O /2pOx)™ to 3¢ + 2p. Here, we note
that 2p = 1 mod 3.

For the set of representatives {3c+ 2p : ¢ € (Ok /2pOk)*} of (3.3), we know
that the Artin symbol of the ideal (3c+ 2p) in Gal(K (6p)/K) fixes v/2 and ¥/p

if and Only if
( ) (C)

<3C—i2-2p)3 B (g)g =1

hold. Therefore, we can identify

Vo= {CG (O /2pOx) % : (g) = (g)g - 1}

3

and

with the Galois group Gal(K (6p)/H,). Since (_—1)3 = 1, we can choose a set

C

of representatives of V' in Ok such that ¢ € V implies —c € V.
Then by the action of Artin symbols on &f (&,'YOK) (see the proof in [6,

Theorem 60]), we have

1 o [ Y2p((Bc+ 2p))y )
P = gr (2t T L0 )
6p/2 EZV : < 6p b

Recalling the definition of v, in (2.1), it follows that

cy

1 gl
p=— S (Z+250k).
6p\/32p(§, 1(2p+3’7 K)
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Now, noting that Q = yv/3/2p and L = QO , we obtain

1 ) Q
Hd=— &l +—=,L).
2\/5])2 (227 3 )

ceV

By a similar method as in the proof of Proposition 2.2, we have

1 1 1
d=—SN ).
4”;@( )1+6p#()

Furthermore, from Lemma 2.6, we know

) 1

d —|-1)==.

oo (0(5) 1) =3
The lemma now follows on noting that we have #(V) = ’723—_1 by Lemma 3.2
and p = 5 mod 9. O

By Lemmas 3.3 and 3.4, we have

L(pC'd,
SR AT

¢_ Zs) = 3(1 + 35Z3)

and

L) (Cy, 1) L
Bi= Y L €3(2+35Ly).
i VP

Here, we use the fact
24+ V22 4 (V22)"' €14 35Zs.

Now, a root number consideration combined with Lemmas 3.3, 3.4, 3.5 and
formula (3.2) gives

L(Cap1) , L(Care. 1)
] ]

=320 — of — B €32+ 35Zs), (3.4)

where we use the fact that ¢/p -~ = Q1. Thus, the first equation of Theorem
3.1 (1) holds. The second equation follows on noting that the algebraic part
of the L-values of Ca), and Cy2)2 are rational numbers and that these algebraic
L-values are divisible by 3 in Z3, which will be shown in (3.13). This completes
the proof of Theorem 3.1.

Now, we will show that each L-value in the sum in Theorem 3.1 is non-zero.
This is achieved by establishing certain congruence formulas between the alge-
braic L-values of C3, and Cyz2j2 (resp. Caz2;, and Csp2) for p = 5 mod 9 (resp.
p =2 mod 9). The main result of this section is the following.
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THEOREM 3.6.

1. Assume p =2 mod 9, then we have

L(Cyepi1)  L(Cope, 1)

= =1 d 3.
SQQZP SQQPZ mo
2. Assume p =5 mod 9, then we have
L 1 L(Cs2,2,1
(C2p’)5 (2p’)51m0d3.

30y, 30,

We will give the details of the proof for the case p = 5 mod 9, and the other
case is similar.

PROPOSITION 3.7. The element /3 is not in the field K (6p).

Proof. For the field extensions Q C K C L, we have the following conductor-
like formula:

K:
0r/Q = D[K/g] “NgoOr/k),

where 0,7, denotes the discriminant ideal of O; for an extension M/J and
O denotes the ring of integer of .J. Note that Q(v/3,v/—3) is a splitting field
of z* + 822 4 4 over Q with discriminant 2432, Thus K (v/3)/K has conductor
(4), and v/3 cannot be in K (6p). O

PROPOSITION 3.8. We can choose a set of representatives C of (Ok /2pOk)*
in Og such that ¢ € C whenever —c¢ € C, and the Artin symbol of ¢ in

Gal(K (6p)(v/3)/K) fizes /3.

Proof. By Proposition 3.7, we know the fields K (v/3) and K (6p) are linearly
disjoint over K. Thus, given an element 71 € Gal(K (6p)/K) and the identity
element ¢ € Gal(K (v/3)/K), the Chebotarev density theorem gives an element
c1 € Ok prime to 6p whose Artin symbol o, in Gal(K (6p)(v/3)/K) satisfies
ey | r(op)=T1 and oc, | (5= t-

Now, viewing ¢; € (O /2pOk)* via the isomorphism in (3.3), we know that
—c; gives another element in Gal(K (6p)(v/3)/K) whose restriction to K (1/3)
is ¢, since by class field theory the Artin symbol of —¢; acts on v/3 via the norm
map from K to Q, so must act trivially on v/3 (since ¢; acts trivially on v/3).
In this way, we can choose the set C, and the lemma follows. O

From now on, we fix the above choice of the representatives C. We denote by
V, the Galois group Gal(K (6p)/H,). We view V), as the subset

V,={ceC: (5) =1}
pP/3
of C. Let V5, the subset of C giving a set of representatives of the Galois group
Gal(K (6p)/Hyp).
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In the following argument, we will study the partial summation from Zhao’s
method. For simplicity, we write ¢ for 2 or 22, and we will study the relations
between the L-values of Ci, Ci, and Cyy2. We need to use the key result in
Theorem 2.9 on the explicit modulo 3 Birch—Swinnerton-Dyer conjecture for
Cp and Cpe.

Given any 0 < d | (p)?, we denote by 7 the period of Cy, for simplicity. Then

we have the period relation
Mg =1y - f/g (3.5)

For any such d, using the above period relation (3.5) and formula (2.2), we

have

L(6p) (Ctd’ 1) 1 o—1 cox \/_ 7
b 6 > (Va)7 '€ ( ,Ut\/_OK) . (3.6)
s€Gal(K (6p)/K)

Now, taking the sum over all d dividing p? in (3.6), we obtain

LOP)(Cig,1) 3 ( ( /D ))
= e Ty & , O t =222
d2p2 M- D Gp K(p)/Hp e /POK

First, we consider the case t = 2.
LEMMA 3.9. We have
L6 (5. 1 _
# € 3(2 + 3Zs).
Nt YP

LEMMA 3.10. We have

ngrK(%)/Hp <51*< \/_7,7“/‘()1()) 43 Try,/m, (\/_ Z W)

ceVayp

Proof. Recall that we use the set C of representatives of Gal(K (6p)/K) chosen
in Proposition 3.8. We take the trace of & ( L \/_(’)K) from K(6p) to
K in the following two steps: ﬁrst from K (6p) to Hp, then from H, to Hp.

Noting the Galois action on &7 ( L \/_OK) as described in [6], the period

relation
m-V/2p-V3=0Q

and that v/3 is fixed by C, we obtain the following equality after taking the
trace map from K (6p) to Hp:

s_pTrK(fip)/Hp (51 ( fﬂ?t\fo )) = ﬁTer/Hp (f D& (ﬁ % Q)) '

ceVayp
(3.7)
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By a similar calculation as in the proof of the Proposition 2.2, we get

c V3 »
% & );ezvp(z%ll) +E2L o9

Note that H, = H,(3/2) and v/3 is fixed by C. Thus applying (3.8) to (3.7)
gives the lemma. O

Next, we consider the case of ¢ = 22. Similar to the case of t = 2, we have

LOP)(Cy 1)

€ 3(1+3Z
e ( 3)
and
3 3
6_TrK(6P)/H:D (81 ( \/_77]2&\/_0K>> 4 Tr’Hp/H:D \/_ Z T .a\ . :
P cEVzpp(gp)fl
We write & for the sum ) .y, W. Then we have
P Sp )~
LOP)(Cy, 1)  LOP(Cy), 1 3
(32 )+ (321) ): = Try /m, (\/— éa) (3.9)
2P n2YP 4]7
and
LOP)(Co2,1)  LOP)(Cyzp2,1) 3 5
. 4 ol = Dy V2. £). 3.10
122 /P M22 /P ap T/t ( ) (3.10)

Given any o € Gal(H,/H,), we write x2(c) = (¥/2)°' and x2(0)? =
(v/22)°~1. Note that these characters take values in ps3.
Now, dividing (3.9) by /2 and (3.10) by V22, we get

LOP) (Cy, 1)  LOP)(Cyp,1) 3 Y
o + o B Z xz2(0)& (3.11)
o€Gal(H,/Hy)

and

L) (Cya, 1) N LOP) Oz, 1) _ 3 Z

2 po
o o X2(0)°&°. (3.12)

4p c€Gal(Hy/Hp)

By Lemma 2.6, we know that ords(36) = ords((3€)7) > 2. Thus (3.11) and
(3.12) give

LOP) (Cy2, 2,1 L(6p) 1
ords M >1, ords M > 1. (3.13)
Ql Q1
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As we mentioned after (3.4), (3.13) completes the proof Theorem 3.1.
Recall that ¢/p = /2 = 2 mod 33. Thus dividing both sides of (3.11) and
(3.12) by 3 and subtracting one from the other, and noting that

)

ordz(x2(0) = x2(0)?) > % > % = ord (K) (%) - 1) :

we see that
L(Cgp, 1) _ L(ngpz, 1) (3 14)
30 30 '

has a positive 3-adic valuation. Here, we use the fact that ya(o) — x2(0)? is
fixed by the elements of Gal(#H,/Hp) because it takes values in K, and that
ords((x2(0) — x2(0)*)&7) > .

By (3.13), we know that L(%‘;’l) and L(Cgéiz’l) lie in Z3. Recall also that
we have /2p = 1 mod 33 and that the period relations Qg, = \3{/221—1) and
Qo2p2 = Z; —. Then we know that

p

L(Csp,1)  L(Cop,1) L(Cy2p2,1) B L(Cy2p2,1)

— d
30, 30y, 30, 3022
have positive 3-adic valuations. Now, since L(gz”’l), L(gi”z’l) € Q, from (3.13)
p 22p
and (3.14), we obtain
L 1 L(Cy2p2,1
(Cva )E ( 2°p )mod3

3921) 3922p2

This congruence combined with the second assertion of (1) in Theorem 3.1
shows that
L(Csp,1)  L(Cy2p2,1)
3921, 3922172

=1 mod 3.

This completes the proof of Theorem 3.6.

Next, we give a 3-descent result for Cyp,, Co2p2 (resp. Cypz,Co2,) when p =
5 mod 9 (resp. p =2 mod 9).

PROPOSITION 3.11. Let Coipi: a* + y* = 2'p/, where i,j € {1,2} and p =
2,5 mod 9. Assume in addition that 2'p? = +1 mod 9. Then the 3-part of the
Tate—-Shafarevich group II(Cyip;)[3] of Caipi over Q is trivial.

Proof. We write
En:y?z =2 — 24330223

This is birationally equivalent to C,,, and over Q it is 3-isogenous to
Bl y?z =a® +2%n228,
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Explicitly, the isogeny ¢: E,, — E/, is given by
d(x,y,2) = (372(z* — 2533n223), 373y (a3 + 2733n223), 232)

and the kernel of ¢ is {(0,1,0), (0, +2%(v/=3)3n,1)}.

By assumption, we have n = 2'p/ = +1 mod 9. This happens precisely when
n = 2p,2%p? and p = 5 mod 9 or n = 2p?,2%p and p = 2 mod 9. Since n has no
prime divisor congruent to 1 modulo 3, hypothesis (H) of [21, Théoréme 2.9]
clearly holds, and thus (1) of the theorem gives us

Sely(En) =Z/3Z and  Sely(E}) =0, (3.15)

where ¢ denotes the dual isogeny of ¢. Here, Sel #(E) denotes the Selmer group
of an elliptic curve E over QQ associated to an isogeny f from E to another
elliptic curve E’. Recall that we have an exact sequence (see, for example,
[22])
0= E,(Q)/¢(En(Q)) — Sely(Ey) — II(Ey)[¢] — 0.
where ITI(E,,)[¢] denotes the subgroup of elements in III(E,,) killed by ¢. Now,
we know that E,(Q)ior = 0, E,(Q)tor = {(0,1,0),(0,422D, 1)} ~ Z/3Z, thus
II(E,)[¢] = 0. We also have the following exact sequence (see, for example,
[91)
d) ~
0 — II(E,)[¢] — MI(E,)[3] — LI(E},)[¢] =0,

where the last equality is immediate from (3.15). Thus we obtain III(E,)[3] is
trivial, as required. O

We end this section by completing the proof the 3-part of the Birch—Swinnerton-
Dyer conjecture of the curves appearing in Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1 and Corollary 1.2. We will just give the details for the
curves Coy, Uy, under the assumption of p = 5 mod 9, and the other case
is similar. By a theorem of Satgé [20] and the theorem of Gross—Zagier and
Kolyvagin, we know that L(Cs,2, s) has a simple zero at s = 1, and Cs,2(Q)
is of rank one. By Theorem 3.6, we know that L(Csp,1) does not vanish, so
it follows by the theorem of Gross—Zagier and Kolyvagin or Coates—Wiles [5]
that C,(Q) is finite. We also remark that in these cases, the Tate-Shafarevich
group of Cy, and Cy,2 are finite.

From [2], we know that the 3-part Birch-Swinnerton-Dyer conjecture holds for
the product curve Cs)p x CQPZ. Thus

<L(02p, 1)L (Cope, 1))
ords —
Q2,02 - h(P)
= ords (T(Cap)T(Copz) - #(II(Cap ) )#£(IL(Coy2 ) ))

where T'(Cap) = [16, me(C2p) and T'(Copz) = [, me(Cap2) are the prod-
ucts of local Tamagawa numbers of Cy, and Cs,2, respectively. Here, m¢(Cy)

(3.16)
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denotes the local Tamagawa number of C), at the prime ¢. Since C5,2(Q) is of
rank one, we let P be a generator of the free part of C5,2(Q), and denote by

o~

h(P) the Néron—Tate height of P. Note that the local Tamagawa numbers of
Csp and Oy, are all equal to 1 except that £ = 3, where m3(Csp) = 3 (see [25]).
By Theorem 3.6 and Proposition 3.11, the 3-part of the Birch—-Swinnerton-Dyer
conjecture holds for the curve Cy,. Thus

ords (L(%’;l)) = ords (T(Cap) - #(IIL(Cyp))) - (3.17)

Now the 3-part of the Birch-Swinnerton-Dyer conjecture for Cyp2 follows from
(3.16) and (3.17), and Corollary 1.2 follows as a consequence. O

4 SOME RELATIONS BETWEEN THE 2-SELMER GROUP OF Cj,; AND THE
2-CLASS GROUP OF Q({/p)

The aim of this section is to give a proof of Theorem 1.3. Given j € {1, 2}, the
curve Cy); is a twist of Cy by the cubic extension Q({/p7)/Q of discriminant
prime to 2. Since a global minimal Weierstrass model of C5 is given by y? =
2% — 27, we know that

y' =221 (j=1,2) (4.1)

gives a minimal model of Cy,; at 2.

In the remainder of this section, we write E for Cy,; for simplicity, and we
work with the equation given in (4.1). We will study the relation between the
2-class group of L = Q(/p) and the 2-Selmer group Sely(E). It is well known
that the torsion part E(Q)io, of E(Q) is trivial, and we identify

Q] _ Qs _ Q] _ Qi

(23 —27p%) (23 —p?)  (a—p) (% —27p?)
with L. To see where these fields come from, one may look at the classical proof

of the weak Mordell-Weil theorem in the case E(Q)[2] = 0 (see, for example,
[4, 22]). The proof of the following lemma can be found in [11].

LEMMA 4.1. Let Resyqu2 be the restriction of scalars of pa from L to Q,
treated as a Gg-module. Then we have the exact sequence

0 — E[2] — Resy, jque RN
where all of the terms in the exact sequence are considered as Q-points, and N

denotes the multiplication of the three components of Resr, qu2. Moreover, we
have an isomorphism

HY(Q, E[2]) ~ (L™ /(L*)*)g (4.2)
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where

(L*/(L*)*)p = {a € L*/(L*)*: N(a) € (Q*)*}
and N is the norm map from L to Q.

We denote by § the morphism which is the composition of the Kummer map

E(Q)/2E(Q) — H'(Q, E[2])

with the isomorphism in (4.2), which we still call the global Kummer map.
Then we have the following description of ¢ (for a detailed proof, see [11]):

LEMMA 4.2. The map J is given by
§: B(Q)/2E(Q) - (L*/(L*)))m, P a(P) -4,

where x(P) is the x-coordinate of P and j3 is the image of x in L = Q[z]/(z® —
27p%).

We remark that the above description of the map ¢ dates back to the proof of
the Mordell-Weil theorem when E(Q)[2] = 0. See the book of Cassels [4] for
more details. Similarly, we can state Lemmas 4.1 and 4.2 over Q, for all primes
g, finite or infinite. We put L, = L ®g Q4. Then we obtain the local Kummer
map 44, which is the composition of the Kummer map

E(Q,)/2E(Qq) — H'(Qq, E[2])
with the isomorphism
HY(Qq, B[2]) ~ (L /(L))o

where
(Lg /(Lg))m = {z € Ly /(Ly)* : N(z) € (Q})*}
and N is the norm map from L, to Q.

LEMMA 4.3. The map 64 is given by
8q: B(Qq)/2E(Qq) = (Ly/(LF)*)m, P a(P) -5,
where B is the image of x in Ly = Q4lz]/(z® — 27p*7).

To obtain a precise description of the Selmer group Sels(E), we need to describe
the image of all ;. We denote by O the ring of integers Z[z]/(x® — 27p?’) of
L, and we set Oy = O ®z Zg.

LEMMA 4.4. For any prime q and for any P € E(Q,), we have
3q(P) € (95/(95)*)o

where (O /(D)%) again denotes a subset of O /(O)? consisting of square
norms.
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Proof. For q # 2, this is Lemma 6 of [8]. Here, we note that since the Kodaira
type of E at each prime £ is IV or IV¥, ®[2] is trivial, where ® = £(F,)/£°(F,)
denotes the component group scheme of the Néron model £ of E over Qg, and
we thank the referee for pointing this out. Here, ~ denotes reduction modulo ¢
and £° denotes the identity component. For ¢ = 2, we just need to show

orde(z(P) — j3) is even, where ords denotes the normalized 2-adic valuation
with ordy(2) = 1. Note that

23 —27p% = (x +1)(2® + x + 1) mod 2. (4.3)

We write also 3{/p2J for the unique root in Zy of 2% — 27p% = 0 satisfying
3{/p% =1 mod 2 obtained by Hensel’s lemma. Thus we have a factorisation

3 —27p¥ = (x — 3\3/p2j)(z2 + 33/ p2x + (3,3/1)2]‘)2)

over Zso. Now, we have

20rd, (y) = ordy(z — 33/p2) + ordy (22 4 3/ p2x + (33/p2)?)
for x = x(P) and y = y(P) in Q2, so we know that the right hand side is
even. If ords(z) < 0, then ordy(z —3¢/p2) = ordy(z) and orda (2 +33/p?iz +
(3¢/p27)?) = 20rda(z), so it follows that 3ordz(z) is even, and thus ords(z) is
even. If ordy(x) > 0, noting that 22 + z + 1 # 0 mod 2 in (4.3), we see that
20rdy (y) = orda(z—3/p27), and thus ordy(z—3 ¢/p27) is even, as required. [

Now, we can describe the image of 4.
LEMMA 4.5.
1. The image of o is trivial.

2. If ¢ # 2,00, we have

/(95)*)g of index 2, and con-

3. The image of 02 is a subgroup of (O 5
/(95)?)g which are congruent to

tains the subgroup of elements in (
1 modulo 4.

25

Proof. Note that Lo, = C x R and we know that (LX /(LX)*)g = 1, thus
im(do) is trivial and (1) follows.

For (2) and (3), we know that the norm of L in Q; has index 3 by local class
field theory. Thus, in the commutative diagram

0—(9)) —= 90X —=90X/(0,)> —=0
T
0 —(2)) ——1; ——=1F/(Z})* —=0

q
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where N is the restriction of the norm map from L, to Qg, we see that A is
surjective. Furthermore, from the exact sequence

0= (D;/(9;))m = 05 /(D) = 2 /(Z)* >0,

we obtain y o
_ #O/O5))

#(Zq /(Z5)?)
Note that #(Z)/(Z))?) = 2 or 2% according as ¢ # 2 or ¢ = 2. Suppose
23 — 27p% is a product of ¢ irreducible polynomials modulo ¢q. For ¢ # 2, we
have #(0/(97)?) = 2°. For ¢ = 2, note that we have O = Z5 x Z[y]*
where v is a root of the irreducible polynomial 2 +33/p2iz+ (33/p2)? € Zy[x)]
from the proof of Lemma 4.4. Note also that (1 + 2Zs[y])? is a subgroup of
1 + 4Zs[7] of index 2. Thus we have #(D5/(9))?) = 2273 = 25. Tt follows
that #(0/(9)*)o = 27! or 2 according as ¢ # 2 or ¢ = 2. On the other
hand, a direct computation shows that

#(B(Qg)[2) =27

#(05/(95)%)0

Furthermore, since E(Qq) has a subgroup isomorphic to Z, of finite index, we
have #(F(Q,)/2E(Qy)) = #(E(Q,)[2]) = 27! or 2-#E(Q,)[2] = 22 according
as ¢ # 2 or ¢ = 2. Therefore (2) follows, and it remains to show that im(d2)
contains the subgroup (1 +492/(95)?)g = (1 + 4Za[y]/(Z2[v]*)?) of order 2.

Let E be the formal group of E over Zs given by (4.1). Let P € E(2Z,), and
write t = fz for the uniformizer of E. Then we have

z(P) =172+ O(t?)
since a1 = as = az = 0. Then
62(P)=x(P)—B=t"2-F+0*) =1— pt* mod (Ly)?,

where the last equality is obtained by noting that ¢ € 2Z, and that the units in
95 congruent to 1 modulo 16 lie in (95 )%. Now, take P € E(2Zy) correspond-
ing to t = 2u € 2Z3\4Zy. Then 62(P) = 1 — 4yu? clearly lies in the non-trivial
class of (1 + 4Zs[y]/(Z2[v]*)?). This concludes the proof of Lemma 4.5. O

We can now state a relation between the 2-Selmer group Selz(E) of E and the
2-class group of L = Q(¢/p). Write ¢(E/Q) for the global root number of E/Q.
Recall from the introduction that ranks (CI(F)) := dimg, (CI(F)/2CI(F)) de-
notes the 2-rank of CI(F).

PROPOSITION 4.6. Let k = ranky(CI(L)). Then

k if e(E/Q) = (-1)*,

dimg, Sely(E) = { k+1 if e(E/Q) = (—1)1.
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Proof. Since we may follow the methods in [11], we will only state the key ideas
in the argument. We define two subgroups

Ny = {a € L*/(L*)*: L(v/a)/L is unramified}
and
Ny ={ac L*/(L*)*:a>0,(a) =I?I C L is a fractional ideal}

of (L*/(L*)?)g. Then from the description of the local Kummer map given
in (4.5), we see that the 2-Selmer group Sels(E) satisfies

N1 g SGIQ(E) g NQ.
Furthermore, by Kummer theory, we have
Ny ~ Hom(Gal(M/L), us2)

where M is the maximal abelian extension of exponent two unramified
everywhere, so that Gal(M/L) = CI(L)[2]. Note that #(CI(L)[2]) =
#(CU(L)/2CI(L)), since CI(L) is a finite group. Thus we have

#(N,) = 2% where dimg, CI(L)[2] = k.

By Dirichlet’s unit theorem, the free part of the group OF of units in L has
rank one. Let uy be a generator. By choosing —ur or urp, we may assume
ur, > 0, and by choosing uy, or uzl, we may assume uz, > 1. Now, we define a
map

Ny — CIU(L)[2] aw[I]

where [ is a fractional ideal of L such that I? = («) and [I] denotes its ideal
class in CI(L). This map is surjective, and the kernel of this map is given by
u% Ju?? ~ 7,/27.. Hence we have

dimp, Ny = k + 1.

From all of the above considerations and the 2-parity conjecture proved in [13],
we obtain the assertion of Proposition 4.6. This also concludes the proof of
Theorem 1.3. o

A  NUMERICAL EXAMPLES

Let p = 2,5 mod 9 be an odd prime number. Let L = Q(¢/p), and write Cl(L)
for the ideal class group of L. We ran a numerical test for primes p < 1000000,
and obtained that 1629 out of 13068 primes p = 5 mod 9, and 1852 out of
13099 primes p = 2 mod 9 satisfy condition

ranks (CI(L)) = dimg, (CI(L)/2C1(L)) > 2 (A1)
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from Theorem 1.3. The following lists are small hand-picked samples of primes
p such that CI(L) satisfies (A.1), including all the cases when the Tate-
Shafarevich group of Cy, (resp. Cy,2) is strictly bigger than Z/27 @ Z/2Z for
p =5mod 9 (resp. p =2mod9) and p < 1000000. All the numerical results
were obtained using the computer algebra packages Magma [1] and PARI/GP

Y. KeEzuka, Y. L1

[14].

p=5mod9 CI(L) I (Cs,)[2]

113 Z]2Z & )27 Z]2L ® Z]27

3209 7./27 & 7./ 687 7./22. & 7./27

9941 7)27. & /AL 7)27.® /2L

15053 7/27 & 7./14Z 722 & /27

17573 7./27. & 7./3T4AZ 7)27.& /27

18257 7./27 & Z./170Z 7./22. & 7./27

24197 7./27 & 7./20Z 7/27. & 7.)27

32009 Z/27 & /16 Z/22.® 727

35969 Z/27 & 7,/ 140Z /22727

40577 7.JAZ & 7./ 287 7)27.& 7/27

41981 7.)27 & 7./]267 7/27. & 7./27

46229 7/22. & Z./27 & L./ AZ 727 & 7/27

54869 Z/27 & Z/1190Z /22727

61169 7/22 & Z./50Z /22727

61547 7./27 & 7./]3147 7.)27. & 7. 27,

73013 7/22. & /27 & L./ 27. 727 & 7/27

81077 L)L L)L B L)L S L/2L  L/2L D L2 ® L)L & L)2T
97943 Z/27 & 7./10Z /22727

166667 /22O L/27 & L/14Z 722 & /27

169007 /AL & 7./1247 7/27.& /27

195581 Z.JAZ & 7./1847 727 & 7/27

206489 L/AZ & 7./20Z 722 & /27

483017 L)L L)L ®L/2L S LIAL L)L D L2 ® L)L & L)2T
635909 L)L/ ®L/2L S LI2L  L/2L D L2 ® L)L & L)2T
805073 /2L L/2L ®L/2L S L)2T L)L & L/2L & L/27 & L)2Z
964589 /20 & L/2L ®L/2L S L)2T L)L & TL/2L & L/27 & L)27
p=2mod9 CI(L) (¢, )2

443 Z]2Z & )27 Z]2L & 227

857 7./27. & 7./ 287 7)27.& /27

4799 2/27. & 7/27 & 7./20Z 722 ® /27

5987 7/27 & 7./64Z 722 & /27

9011 7./27 & 7./AZ 7)27.& /27

9749 7./AZ & 7./ 167 727 & 7/27

13043 2/22.& 7/8Z 722 & /27

17579 7/22. & 7./27 & 7./230Z 722 & /27

26111 Z)27 & 7./52Z Z/27. & 7./2Z

31547 7./27 & 7./50Z 7./22. & 7./27

36263 7./27. & 7./ T0Z 727 & 7/27

47387 /22O L/27 & L/27 72 & /27

58727 7/22. & 7./32Z 722 & /27

60149 Z/22. & 7./ TAZ 722 & /27

65063 7./27. & 7./AZ & 1./ 87 7/27.& /27

78437 Z/AZ & 7./AZ 727 & 7/27

79967 Z/27 & 7./A0Z /22727

96329 7/22 & 7./227 727 & /27

99371 7/22. & 7./27 & L/ AZ 7/27.& 7/27

125003 7./27 & 7./AZ ® 7./ T00Z 7./22. & 7./27

167087 7)27. & 7./27 & 7./ 6567 7/22. & 7./27

266663 L)L/ ®L/2L S LIAL L)L D L)L ® L)L & L)2T
402131 L)L/ D L/2L S LI2L L)L D L2 ® L)L & L)2T
424163 /2L L)L ®L/2L S LIAL L)L L/2L & L/27 & L) 27
521831 L)L L/2L ®L/2L S L)2T L)L & L[/2T & L/27 & L)2Z
916103 /20 L/20 ®L/2L S L)2T L)L &L/ & L/2L & L)27
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