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Abstract. Using the motivic stable homotopy category over a
field k, a smooth variety X over k has an Euler characteristic χ(X/k)
in the Grothendieck-Witt ring GW(k). The rank of χ(X/k) is the
classical Z-valued Euler characteristic, defined using singular coho-
mology or étale cohomology, and the signature of χ(X/k) under a
real embedding σ : k → R gives the topological Euler characteristic
of the real points Xσ(R).

We develop tools to compute χ(X/k), assuming k has characteristic
6= 2 and apply these to refine some classical formulas in enumera-
tive geometry, such as formulas for the top Chern class of the dual,
symmetric powers and tensor products of bundles, to identities for
the Euler classes in Chow-Witt groups. We also refine the classi-
cal Riemann-Hurwitz formula to an identity in GW(k) and compute
χ(X/k) for hypersurfaces in Pn+1

k defined by a polynomial of the form∑n+1
i=0 aiX

m
i ; this latter includes the case of an arbitrary quadric hy-

persurface.

This paper is a revision of “Toward an enumerative geometry with
quadratic forms” [27].
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2180 M. Levine

1 Introduction

We work throughout in the category of smooth quasi-projective schemes over
a field k, Smk, with char(k) 6= 2. The main goal of this paper is to take
steps toward constructing a good theory of enumerative geometry with values
in quadratic forms, refining the classical Z-valued enumerative geometry. The
foundations of this theory have been laid by work of Barge-Morel [7], Fasel
[14], Fasel-Srinivas [15] and Morel [34, 35] (and many others), and first steps
in this direction have been taken by Hoyois [20], Kass-Wickelgren [24, 25] and
Pauli [42].
The main tool is the replacement of the Chow groups CHn(X) of a smooth
variety X, viewed via Bloch’s formula as the cohomology of the Milnor K-
sheaves

CHn(X) ∼= Hn(X,KMn ),

with the Chow-Witt groups of Barge-Morel [7, 14]

C̃H
n
(X;L) := Hn(X,KMW

n (L)).

Here KMW
n (L) is the nth Milnor-Witt sheaf, as defined by Hopkins-Morel [34,

35], twisted by a line bundle L on X. This theory has many of the formal
properties of the Chow ring, with the subtlety that one needs suitable twists to
allow for the pushforward maps: for a proper morphism f : Y → X of relative
dimension d, one has

f∗ : Ha(Y,KMW
b (f∗L⊗ ωY/k))→ Ha−d(X,KMW

b−d (L⊗ ωX/k)),

where ωX/k := det ΩX/k, ωY/k := det ΩY/k are the respective dualizing sheaves.
The second important difference is that, although a rank r vector bundle
V → X has an Euler class [7, §2.1]

eCW(V ) ∈ Hr(X,KMW
r (det−1 V )),

the group this class lives in depends on V (or at least detV ). Under the map

KMW
∗ (det−1 V )→ KM∗

eCW(V ) maps to the top Chern class cr(V ) and eCW(detV ) maps to c1(V ),
but there is no projective bundle formula for the oriented Chow groups, and
thus no obvious “intermediate” classes lifting the other Chern classes of V to
the oriented setting. There are versions of the classical Pontryagin classes, but
we will not study these in detail here.
There is still enough here to define an Euler characteristic of a smooth projec-
tive k-scheme p : X → Spec k as

χCW(X/k) := p∗(e
CW(TX)) ∈ KMW

0 (k),

where, if X has dimension d over k, eCW(TX) ∈ Hd(X,KMW
d (ωX/k)) is the Eu-

ler class of the tangent bundle TX . Morel [34, Lemma 6.3.8] identifies KMW
0 (k)
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with the Grothendieck-Witt group of non-degenerate quadratic forms over k,
GW(k), so we have the Euler characteristic χCW(X/k) ∈ GW(k). The fact
that the Euler class eCW(TX) maps to cd(TX) ∈ Hd(X,KMd ) = CH0(X) under
the map of sheaves KMW

∗ (ωX/k)→ KMd shows that the image χCW(X/k) under
the rank homomorphism GW(k)→ Z is the classical Euler characteristic of X,
which agrees with the topological Euler characteristic of X(C) defined using
singular cohomology if k ⊂ C, or the `-adic Euler characteristic of Xk̄, defined
using étale cohomology.
One can also define a categorical Euler characteristic χ(X/k), by using the
infinite suspension spectrum Σ∞T X+ ∈ SH(k), where SH(k) is the motivic stable
homotopy category over k. Hoyois [21, Theorem 5.22], Hu [22, Appendix A],
Riou [44] and Voevodsky [51, §2] have shown that this suspension spectrum is
always a strongly dualizable object in SH(k), so it gives rise in a standard way
to an endomorphism of the unit object Sk:

χ(X/k) ∈ EndSH(k)(Sk).

By Morel’s theorem [34, Theorem 6.4.1, Remark 6.4.2] there is a canonical
isomorphism EndSH(k)(Sk) ∼= GW(k), so we have a second Euler characteristic
in GW(k)1.
We should mention that for k ⊂ R ⊂ C, the image of the categorical Euler
characteristic χ(X/R) in GW(R) has the property that its signature gives the
Euler characteristic of X(R), while the rank gives the Euler characteristic of
X(C).
In our paper with A. Raksit [29] we showed that these two Euler characteristics
agree.

Theorem 1 ([29, Theorem 8.4]). Let X be a smooth projective variety of pure
dimension over k. Then

χCW(X/k) = χ(X/k)

in GW(k).

One consequence of this comparison result is the fact that the Euler charac-
teristic of an odd dimensional smooth projective variety is always hyperbolic
(Corollary 4.2); one can view this a a generalization of the fact that the topo-
logical Euler characteristic of a real oriented manifold of dimension 4m + 2 is
always even. This has already been proven in our paper [29] with Raksit using
hermitian K-theory, but we include this somewhat different proof relying on
the Chow-Witt Euler class here.
We then turn to developing some computational techniques. Here the main goal
is to compare eCW(V ) and eCW(V ⊗L) for a line bundle L, without having the

1Morel’s theorem is for k perfect. In positive characteristic, one needs to invert the
characteristic if k is not perfect, but this is mostly harmless, see Remark 2.1
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“lower Chern classes” of V on hand. We also prove a useful formula relating
Euler class of a vector bundle V with that of its dual (Theorem 8.1):

eCW(V ) = (−1)rankV eCW(V ∨).

and compute the Euler class of symmetric powers and tensor products of rank
two bundles.
Kass-Wickelgren [24] have constructed an “Euler number” in GW(k) for a
relatively oriented algebraic vector bundle with enough sections on a smooth
projective k-scheme; as one application, they use this in [25] to lift the count
of lines on a smooth cubic surface over k to an equality in GW(k). For a
pencil f : X → P1 of curves on a smooth projective surface X over k, they lift
the classical computation of the Euler number of T ∗X ⊗ f∗TP1 in terms of the
singularities of the fibers of f to an equality in GW(k). This approach to Euler
numbers has been studied further by Bachmann-Wickelgren [6].
We approach the question of lifting such classical degeneration formulas to
GW(k) from a somewhat different point of view. We apply Theorem 1 and
the results obtained in §5-10 to give a generalization of the classical degener-
ation formulas for counting singularities in a morphism f : X → C, with X
a smooth projective variety and C a smooth projective curve (admitting for
technical reasons a half-canonical line bundle in case X has odd dimension);
for X a curve, this a refinement of the classical Riemann-Hurwitz formula. Our
generalization gives an identity in GW(k); applying the rank homomorphism
recovers the classical numerical formulas. In the case of even dimensional vari-
eties, we apply the degeneration formula to compute the Euler characteristic of
generalized Fermat hypersurfaces, that is, a hypersurface X ⊂ Pn+1

k defined by

a polynomial of the form
∑n+1
i=0 aiX

m
i , see Theorem 12.1. As a special case, we

find an explicit formula for the Euler characteristic of a quadric hypersurface,
Corollary 12.2. The question of computing the Euler characteristic of a quadric
hypersurface was raised by Kass and Wickelgren2.
This current version is a substantial revision of the original [27], helped along
by many developments in this area since then. Much of the first version was
concerned with showing that the pushforward maps for the Chow-Witt groups,
as defined by Fasel [14], agree with those using the structure of H∗(−,KMW

∗ )
as an SL-oriented theory, and using this to prove Theorem 1. Both of these
results have been subsumed in our paper with Raksit [29]. The original proof
of Theorem 8.1 followed Asok-Fasel [4] in viewing eCW(V ) as an obstruction
class; recent work of Wendt [53], building on the paper of Hornbostel-Wendt
[19], allows a quicker path to this result and also gives a nice extension to the
Chow-Witt groups of products of classifying spaces BGLn and BSLn of the
fact that the map (rank, π) : GW(k) → Z × W (k) is injective, where W (k)
is the Witt ring and π : GW(k) → W (k) is the canonical surjection. This
shows that one can detect universal identities among Chow-Witt-valued Euler
classes by passing to the corresponding top Chern classes and the Euler classes

2private communication
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with values in the the cohomology of the Witt sheaves (see Proposition 7.1 and
Theorem 7.3). This useful fact also allows us to give a much simpler proof of
our result comparing the Euler characteristics of a vector bundle V and the L-
twisted bundle V ⊗L, for L a line bundle. Using the Witt sheaves also enables
us to improve our main result, the quadratic Riemann-Hurwitz formula (Corol-
lary 11.4), removing the hypothesis of the existence of a theta-characteristic
on the target curve in case the source variety has even dimension. We have
also added a section discussing the work of Kass-Wickelgren and Bachmann-
Wickelgren, which gives a description of the local indices for a section of a vector
bundle with isolated zeros in terms of an associated Scheja-Storch quadratic
form; in our previous version, we had restricted this explicit representation to
the case of “diagonalizable” sections.

Acknowledgement

The author is grateful to Aravind Asok for a number of very helpful suggestions,
as well as corrections to an earlier version of this manuscript. He also wishes to
thank Kirsten Wickelgren for raising a number of questions on the results in the
earlier version, for example, asking if the Riemann-Hurwitz formula would hold
in the even-dimensional case without assuming the existence of a theta-divisor
on the target curve. Finally, thanks are due to Matthias Wendt for very helpful
discussions about his paper [53] and to the referee, whose comments greatly
improved the organization and presentation of this paper. This paper is part of
a project that has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 832833). The author thanks to DFG for support through
the grant LE 2259/8-1 and the ERC for support through the project QUADAG.

2 The categorical Euler characteristic

In this section we review and collect a number of facts and constructions con-
cerning Euler characteristics in a symmetric monoidal category, specializing
quickly to the motivic stable homotopy category SH(k) over a field k. Most of
the results here are not new, but we include this introductory section to give
an overview of some of the basic properties of the Grothendieck-Witt-valued
Euler characteristic. Beside the motivic stable homotopy category SH(k), we
will be using the unstable motivic homotopy category H(k), the category of
spaces over k, Spc(k), and the pointed versions H•(k) and Spc•(k), as well as
the classical stable homotopy category SH. We use [21, 23, 36] as references
for these constructions and their basic properties.

2.1 Properties of the categorical Euler characteristic

Let (C,⊗, 1, τ) be a symmetric monoidal category. Following [12], we have the
notion of the dual (X∨, δX : 1 → X ⊗ X∨, evX : X∨ ⊗ X → 1) of an object
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X of C, where one requires that the maps δX and evX satisfy the following
conditions: the compositions

X ∼= 1⊗X δX⊗Id−−−−→ X ⊗X∨ ⊗X Id⊗evX−−−−−→ X ⊗ 1 ∼= X (2.1)

and

X∨ ∼= X∨ ⊗ 1
Id⊗δX−−−−→ X∨ ⊗X ⊗X∨ evX⊗Id−−−−−→ 1⊗X∨ ∼= X∨ (2.2)

are the respective identity maps. It follows from an easy computation that if
(X∨, δX , evX) is a dual of X, then (X, τX,X∨ ◦ δX , evX ◦ τX∨,X) is a dual of
X∨.

It follows from [12, Theorem 1.3] that notion of dual described above is equiva-
lent to that of “strong dual” given in [12, §1]. It also follows from [12, Theorem
1.3] that the dual (X∨, δX , evX) of an object X, if it exists, is unique up to
unique isomorphism. An object admitting a dual is called strongly dualizable.

Recall that an object X ∈ C is invertible if there exists an object Y and an
isomorphism α : 1 → Y ⊗ X; clearly this determines the isomorphism class
of Y . We call Y the inverse to X and write Y = X−1. By [13, Proposition
4.11] an invertible X is strongly dualizable with dual X−1 and with δX−1 = α
(but note, evX−1 is not necessarily α−1 ◦ τX−1,X).

For X strongly dualizable, we have the categorical Euler characteristic χC(X) ∈
EndC(1) defined as the composition

1
δX−−→ X ⊗X∨

τX,X∨−−−−→ X∨ ⊗X evX−−→ 1.

Clearly the collection of strongly dualizable objects in C is closed under ⊗ and

χC(X ⊗ Y ) = χC(X) · χC(Y ), χC(X
∨) = χC(X),

for strongly dualizable objects X and Y .

Let C be a triangulated tensor category. May [31, Theorem 0.1] has given
conditions under which the collection of strongly dualizable objects in C forms
the objects in a thick subcategory of C, and the Euler characteristic is additive
in distinguished triangles: if A → B → C → A[1] is a distinguished triangle
of strongly dualizable objects, then χC(B) = χC(A) + χC(C), and χC(A[1]) =
−χC(A). In particular, for X ∈ C a strongly dualizable object, each translation
X[p] of X is a strongly dualizable object. The May axioms are not satisfied
for an arbitrary triangulated tensor category, but as noted in loc. cit., they
are satisfied for the classical stable homotopy category SH and for SH(k). In
addition to assuming that C is a closed symmetric monoidal category (i.e.,
there are internal Homs), May requires various compatibilities of the monoidal
product with the triangulated structure. See [31, §4] for details.

The respective sphere spectra S ∈ SH, Sk ∈ SH(k) are the units in the sym-
metric monoidal categories SH, SH(k).
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Remarks 2.1. 1. As we have mentioned in the introduction, for k a perfect
field, Morel’s theorem [34, Theorem 6.4.1, Remark 6.4.2] gives a natural iso-
morphism GW(k) → EndSH(k)(Sk); we will usually view the categorical Euler
characteristic χSH(k)(−) as being valued in GW(k). For F a field and u ∈ F×
a unit, we let 〈u〉 ∈ GW(F ) denote the rank one quadratic form x 7→ ux2; for

a positive integer n, we set nε :=
∑n−1
i=0 〈−1〉i.

2. We have also mentioned in the introduction that for X smooth and projec-
tive over k, the suspension spectrum Σ∞T X+ is a strongly dualizable object in
SH(k) (see [21, Theorem 5.22],[22, Appendix A], [44] and [51, §2]). If k admits
resolution of singularities and U is in Smk, then taking a smooth projective
completion with complement a normal crossing divisor, and using suitable lo-
calization distinguished triangles, May’s results mentioned above imply that
Σ∞T U+ is strongly dualizable in SH(k).
More generally, Riou [30, Theorem B.2] has shown that for k a perfect field
of characteristic p > 0, and U ∈ Smk, Σ∞T U+ is strongly dualizable in
SH(k)[1/p], so has a well-defined Euler characteristic in GW(k)[1/p]. As-
suming as we do p to be odd, since each element of the kernel I(k) of the
rank homomorphism GW(k) → Z has finite order a power of 2, the map
GW(k) → GW(k)[1/p] is injective, and defines an isomorphism from I(k) to
the kernel of GW(k)[1/p]→ Z[1/p]. Moreover, since the étale Euler character-
istic of U is Z-valued, the categorical Euler characteristic χSH(k)[1/p](Σ

∞
T U+)

lands in GW(k) ⊂ GW(k)[1/p]. Thus, even in positive characteristic, we may
treat each U ∈ Smk as dualizable by passing to SH(k)[1/p], and we still get a
a categorical Euler characteristic valued in GW(k).
Similarly, for k an arbitrary field of positive characteristic p 6= 2, we may pass
to the perfect closure kperf . For each n, the base-extension map GW(k) →
GW(k1/pn) is an isomorphism, with inverse induced by the Frobenius map
Frobn : k1/pn → k, so GW(k) ∼= GW(kperf ). We may therefore work in
SH(kperf )[1/p] and still have a GW(k)-valued Euler characteristic. We will
silently pass to SH(k)[1/p] or SH(kperf )[1/p] as needed in the remainder of the
paper, and refer to a space X ∈ Spc(k) as dualizable if Σ∞T X+ ∈ SH(kperf )[1/p]
is strongly dualizable.
For a dualizable space X ∈ Spc(k), we write χ(X/k) for χSH(k)(Σ

∞
T X+) or

for χSH(kperf )[1/p](Σ
∞
T X+) if we need to invert the characteristic and pass to

kperf . For a dualizable space X ∈ Spc•(k) we similarly write χ(X/k) for
χSH(k)(Σ

∞
T X ) or χSH(kperf )[1/p](Σ

∞
T X ).

In SH(k) we have for a, b ∈ Z the suspension operators Σa,b : SH(k)→ SH(k),
Σa,b := Σa−bS1 ◦ΣbGm

, which are commuting autoequivalences with Σa,b ◦Σa
′,b′ =

Σa+a′,b+b′ and Σ0,0 = Id. Moreover, we have the canonical isomorphisms
Σa,bX ∧ Σa

′,b′Y ∼= Σa+a′,b+b′(X ∧ Y). This gives us the invertible objects

Sa,bk := Σa,bSk of SH(k) with inverse S−a,−bk , which are thus strongly dualizable.
For all p ≥ q ≥ 0, we have the sphere Sp,qk := Sp−q ∧ G∧qm ∈ Spc•(k), and a
canonical isomorphism Sp,qk ∼= Σ∞T S

p,q
k in SH(k). Thus Sp,qk is strongly dualiz-

able for p ≥ q ≥ 0.
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For example (Ank \ {0n}, {1n}) ∼= S2n−1,n
k is strongly dualizable.

Lemma 2.2. χSH(k)(Sp,qk ) = (−1)p · 〈−1〉q.

Proof. We have (Sp,qk )∨ = S−p,−qk , so χSH(k)(Sp,qk ) = χSH(k)(S−p,−qk ), reducing
us to the case q ≥ 0. Since Σp,qSk ∼= (Σ2q,qSk)[p− 2q], we have

χSH(k)(Sp,qk ) = (−1)pχSH(k)(S2q,q
k ) = (−1)p(χSH(k)(S2,1

k ))q.

This reduces us to showing that χSH(k)(S2,1
k ) = 〈−1〉. Since S2,1

k
∼= Σ∞T (P1,∞)

we have Σ∞T P1
+
∼= S2,1

k ⊕Sk. Since Sk is the unit in SH(k), we have χSH(k)(Sk) =
〈1〉, so we need to show that χ(P1/k) = 〈1〉+ 〈−1〉.
This is proven by Hoyois [20, Example 1.7] and also follows from our result
with Raksit [29, Corollary 8.7].

Remarks 2.3. 1. The categorical Euler characteristic in an arbitrary symmet-
ric monoidal category is clearly natural with respect to symmetric monoidal
functors. In particular, if k = C, the image of χ(X/k) for a dualizable space
X ∈ Spc(C)) under the Betti realization functor ReB : SH(C)→ SH is the Eu-
ler characteristic of ReB(X ) computed in SH. As the map π0(S) = EndSH(S)→
EndD(Ab)(Z) = Z under the Z-linearization map is an isomorphism, the Euler
characteristic in SH of Σ∞T+, for a finite CW complex T , is just the topological
Euler characteristic of T . Since GW(C) = Z by rank, we see that, for k ⊂ C,
and for X ∈ Smk, rankχ(X/k) is the topological Euler characteristic of the
complex manifold X(C)an of C-points of X.
We have as well the R-Betti realization functor ReBR : SH(R) → SH, which
for X ∈ SmR sends the suspension spectrum Σ∞T X+ to the suspension spec-
trum of the real points of X, Σ∞X(R)an. We note that the induced map
GW(R) → EndSH(S) = Z is the signature homomorphism. Indeed, we need
only check that 〈−1〉 goes to −1. To see this, the map GW(k)→ EndSH(k)(Sk)
is constructed by sending the one-dimensional form 〈u〉 to the automorphism
mu of P1 given by [x0 : x1] 7→ [x0 : ux1]. On P1(R)an = S1, m−1 is the map
θ 7→ −θ and hence has degree −1.3 Concretely, for X ∈ SmR, the rank of
χ(X/R) is the Euler characteristic of X(C)an and the signature of χ(X/R) is
the Euler characteristic of X(R)an.

2. For q ∈ GW(R) with signature sgn(q), one has rank(q) ≡ sgn(q) mod 2.
This implies that for X ∈ SmR, the Euler characteristic of X(C)an and
X(R)an are congruent modulo 2. At least for proper R-schemes, this is an
easy consequence of the fact (see for example [32, pg. 76]) that for a compact
Riemannian manifold M with an isometry f : M → M , the fixed point locus
Mf has Euler characteristic given by the Lefschetz number

χtop(Mf ) =
∑
i

(−1)iTr(f∗|Hi(M,Q)).

3I am grateful to Fabien Morel for this argument.
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One applies this to complex conjugation c : X(C)an → X(C)an, after decom-
posing Hi(X(C)an,Q) into plus and minus eigenspaces for the action of c, to
give the congruence. Probably this argument can be extended without much
trouble to the case of open smooth varieties.
There is also an upper bound for χtop(X(R)) in terms of the Hodge theory of
X, due to Abelson [1], namely, if X/R is smooth and projective and has even
dimension 2n over R, then

|χtop(X(R)an)| ≤ dimCH
n,n(XC).

The proof uses the Hodge decomposition, the hard Lefschetz theorem and the
Lefschetz fixed point theorem as above.
On the other hand, as mentioned in [29], this last inequality also follows from
our theorem with Raksit [29, Theorem 1.3]. In fact, for X smooth and projec-
tive of even dimension 2n over k, this result shows that χ(X/k) is of the form
Q+m ·H, where H is the hyperbolic form H(x, y) = x2 − y2, m is an integer
and Q is the quadratic form associated to the symmetric bilinear form

Hn(X,ΩnX/k)×Hn(X,ΩnX/k)
∪−→ H2n(X,Ω2n

X/k)
Tr−→ k,

where ∪ is cup product and Tr is the canonical trace map corresponding to
1 ∈ H0(X,OX) by Serre duality. This shows that for k ⊂ R,

|χtop(X(R)an)| = |sig(χ(X/k))|
= |sig(Q)|
≤ dimkH

n(X,ΩnX/k),

which recovers Abelson’s inequality.

Here are some additional elementary but useful properties of the Euler charac-
teristic χ(−/k).

Proposition 2.4. 1. Let F , X and Y be in Smk and let p : Y → X be a
Zariski locally trivial fiber bundle with fiber F . Then

χ(Y/k) = χ(X/k) · χ(F/k).

2. Let X be in Smk and let p : V → X be a rank r vector bundle. Then the
Thom space Th(V ) is dualizable and

χ(Th(V )/k) = 〈−1〉rχ(X/k).

3. Let X be in Smk, let j : U → X be an open subscheme with closed com-
plement i : Z := X \ U → X. Suppose that Z is smooth over k and of pure
codimension c in X. Then

χ(X/k) = χ(U/k) + 〈−1〉cχ(Z/k).
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4. Let X be in Smk and let p : V → X be a rank r vector bundle. Let
q : P(V )→ X be the associated projective space bundle ProjX(Sym∗V ∨). Then

χ(P(V )/k) = rε · χ(X/k).

5. Let i : Z → X be a codimension c closed immersion in Smk. Let X̃ be the
blow up of X along Z. Then

χ(X̃/k) = χ(X/k) + 〈−1〉 · (c− 1)ε · χ(Z/k).

6. Let σ : k → F be an extension of fields, inducing the homomorphism
σ∗ : GW(k)→ GW(F ). Then for X ∈ Smk,

χ(XF /F ) = σ∗(χ(X/k)).

Proof. (1) Take a finite Zariski open cover U = {Ui} of X that trivializes the
bundle Y → X. Since

χ((Ui0 ∩ . . . ∩ Uin)× F/k) = χ(Ui0 ∩ . . . ∩ Uin/k) · χ(F/k)

the additivity of χ in distinguished triangles together with the Mayer-Vietoris
triangles for U and for V := {Ui × F} shows that

χ(Y/k) = χ(X/k) · χ(F/k).

For (2), the distinguished triangle

Σ∞T (V \ 0X)+ → Σ∞T V+ → Σ∞T Th(V )→

shows that Th(V ) is dualizable and gives

χ(Th(V )/k) = χ(X/k)− χ(V \ 0X/k)

Since p : V → X is Zariski locally trivial, so is V \ 0X → X, so

χ(V \ 0X/k) = χ(Ar ×X \ 0X/k) = χ(Ar \ 0/k) · χ(X/k).

Since Σ∞T Ar \ 0 ∼= S2r−1,r
k ⊕ Sk, we have

χ(Ar \ 0/k) = 〈1〉 − 〈−1〉r

by Lemma 2.2. Thus

χ(Th(V )/k) = χ(X/k)− (〈1〉 − 〈−1〉r) · χ(X/k) = 〈−1〉r · χ(X/k)

For (3), we have the cofiber sequence U+ → X+ → X/U . The Morel-Voevodsky
homotopy purity theorem [36, Theorem 3.2.23] gives the isomorphism X/U ∼=
Th(NZ/X) in the unstable pointed motivic homotopy category H•(k), where
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NZ/X is the normal bundle of Z in X. This gives us the distinguished triangle
in SH(k)

Σ∞T U+ → Σ∞T X+ → Σ∞T Th(NZ/X)→
hence by (2), χ(X/k) = χ(U/k) + χ(Th(NZ⊂X)/k) = χ(U/k) + 〈−1〉cχ(Z/k).
For (4), (1) reduces us to the computation of χ(Pr−1/k). Letting U = Ar−1

k ⊂
Pr−1
k with complement Z ∼= Pr−2

k , (3) gives the identity χ(Pr−1/k) = 〈1〉 +
〈−1〉 · χ(Pr−2

k ), so (4) follows by induction in r.

For (5), let p : NZ → Z be the normal bundle of i and let E ⊂ X̃ be the
exceptional divisor, so E = P(NZ). Let U = X \ Z = X̃ \ E. By (2), (3) and
(4), we have

χ(X/k)− 〈−1〉cχ(Z/k) = χ(X̃/k)− 〈−1〉 · χ(P(NZ)/k)

= χ(X̃/k)− 〈−1〉 · cεχ(Z/k)

which proves (5).
For (6), let π : SpecF → Spec k be the morphism induced by σ. Then we have
the exact symmetric monoidal functor π∗ : SH(k)→ SH(F ), with π∗Σ∞T X+ =
Σ∞T XF+. Moreover the map π∗ : EndSH(k)(Sk)→ EndSH(F )(SF ) is equal to the
map σ∗ : GW(k)→ GW(F ) via Morel’s identification EndSH(k)(Sk) ∼= GW(k),
EndSH(F )(SF ) ∼= GW(F ); this is clear from the definition of Morel’s map on
the generators of GW(k), sending the rank one form 〈u〉, u ∈ k×, to the
endomorphism of Sk induced by the endomorphism of P1

k sending (x : y) to
(x : uy). Since π∗ is compatible with duality, these facts prove (6).

One has a simple expression for the Euler characteristic of a smooth cellular
scheme. Recall that a reduced finite type k-scheme X is cellular if X admits a
filtration

∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xn = X

with Xi \Xi−1 a disjoint union of affine spaces Aik. Xi is called the i-skeleton
of the filtration.
We recall the following result of Hoyois’ (private communication).

Proposition 2.5. Let X be a smooth cellular k-scheme of dimension n with i
skeleton Xi. Suppose that Xi \Xi−1 is the disjoint union of mi copies of Ai.
Then X is dualizable and

χ(X/k) =
n∑
i=0

mi〈−1〉n−i.

Proof. Let d be the minimum i such that Xi 6= ∅; the proof is by downward
induction on d. If d = n, then X = qmnAn, which is isomorphic in H(k) to
qmnSpec k, so χ(X/k) = mn · 〈1〉, proving the assertion in this case. If d < n,
apply the induction hypothesis to U := X \Xd, which gives

χ(U/k) =

n∑
i=d+1

mi〈−1〉n−i.
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By Proposition 2.4(3), we have

χ(X/k) = χ(U/k) + 〈−1〉n−dχ(qmdAd) =

n∑
i=d

mi〈−1〉n−i.

Examples 2.6. 1. As a simple example, Proposition 2.5 gives another proof
that

χ(Pnk/k) = (n+ 1)ε.

2. Let X be a Severi-Brauer variety over k of dimension n. The Euler char-
acteristic of Severi-Brauer varieties have been computed by Hoyois (private
communication). Using his quadratic refinement of the Lefschetz trace formula
[20, Theorem 1.3] and the fact that for a central simple algebra A over k,
SL1(A) is A1-connected, he shows

χ(X/k) = χ(Pnk/k).

In fact, the case of even n follows from the fact that X is split by a separable
field extension k ⊂ F of odd degree and GW(k)→ GW(F ) is injective if [F : k]
is odd and F/k is separable.
If X has odd dimension n, then by Corollary 4.2 below and the fact that χ(X/k)
and χ(Pnk/k) have the same rank, we have

χ(X/k) =
n+ 1

2
·H = χ(Pnk/k).

3 SL–oriented and GL-oriented theories

We recall some basic facts about SL-oriented and GL-oriented ring spectra,
Thom isomorphisms, and other related notions; for details, we refer the reader
to [2, 3]. We also introduce the theories we will be using here: EM(KMW

∗ ),
EM(W∗), EM(KM∗ ), representing the cohomology of the sheaves of Milnor-Witt
K-theory, the Witt sheaf and the sheaves of Milnor K-theory, respectively. We
will also discuss hermitian K-theory, represented by KO ∈ SH(k), and Quillen
K-theory, represented by KGL ∈ SH(k).
For a commutative ring spectrum E ∈ SH(k) an SL-orientation is the assign-
ment of a Thom class th(V, ρ) ∈ E2r,r(Th(V )) for each pair (V, ρ) consisting of a
rank r vector bundle V → X, X ∈ Smk, and an isomorphism ρ : detV

∼−→ OX ,
such that this assignment satisfies the axioms of [3, Definition 3.3]. A commu-
tative ring spectrum E together with an SL-orientation is called an SL-oriented
ring spectrum.
Similarly, a choice of Thom classes th(V ) ∈ E2r,r(Th(V )) for each rank r vector
bundle V → X, satisfying the axioms of [39, Definition 1.9] for the associated
Thom isomorphisms, is a GL-orientation, or simply, an orientation, for E. An
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oriented theory is automatically SL-oriented; in the case of a GL-orientation,
the Thom class is independent of the choice of isomorphism detV ∼= OX .
For W ⊂ Y a closed subset of some Y ∈ Smk, and E ∈ SH(k), one defines

Ea,bW (Y ) := Ea.b(Y/(Y \W )). For V → X a rank r vector bundle, let detV
denote the line bundle ΛrV and write det−1 V for the dual of detV . The rank
r + 1 vector bundle V ⊕ det−1 V has a canonical isomorphism canV : det(V ⊕
det−1 V )

∼−→ OX . For L → X a line bundle with zero-section s0 : X → L, we
define

Ea,b(X,L) := Ea+2,b+1(Th(L)) = Ea+2,b+1
s0(X) (L)

and for Z ⊂ X a closed subset

Ea,bZ (X,L) := Ea+2,b+1
s0(Z) (L).

For an SL-oriented ring spectrum E, an X ∈ Smk with closed subset Z and
rank r vector bundle p : V → X with zero-section s0 : X → V , the Thom class
th(V ⊕ det−1 V, canV ) induces the Thom isomorphism

ϑV : Ea,bZ (X)
∼−→ Ea+2r,b+r

s0(Z) (V, p∗ det−1(V )) (3.1)

The canonical Thom class th(V ) ∈ E2r,r
s0(X)(V, p

∗ det−1(V )) is defined as

ϑV (1X), where 1X ∈ E0,0(X) is the unit. The Thom isomorphism satisfies

ϑV (x) = p∗(x) ∪ th(V ),

where ∪ is the cup product

Ea,bp−1(Z)(V )× E2r,r
s0(X)(V, p

∗ det−1(V ))→ Ea+2r,b+r
s0(Z) (V, p∗ det−1(V )).

Using the Thom isomorphisms and the six-functor formalism, one has functorial
pushforward maps

f∗ : Ea,b(X,ωX/k ⊗ f∗(L))→ Ea−2d,b−d(Y, ωY/k ⊗ L)

for each proper map f : X → Y in Smk of relative dimension d. For f
the zero-section s0 : X → V , as above, s0∗(1X) ∈ E2r,r(V, p∗ det−1 V ) is the
image of th(V ) under the “forget the supports” map E2r,r

s(X)(V, p
∗ det−1(V ))→

E2r,r(V, p∗ det−1(V )).
Applying this to the zero-section s0 : X → V for a rank r vector bundle, one
arrives at the Euler class

e(V ) := s∗0s0∗(1X) = s∗0(th(V )) ∈ E2r,r(X,det−1 V ).

For s : X → V an arbitrary section, if Z ⊂ X is a closed subset containing the
closed subset s−1(s0(X)), we have the Euler class with supports

eZ(V, s) := s∗(th(V )) ∈ E2r,r
Z (X,det−1 V )
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mapping to e(V ) under E2r,r
Z (X,det−1 V )→ E2r,r(X,det−1 V ).

Before discussing the particular theories we will need, we recall some basic
notions concerning homotopy modules. This setting will enable us to unify a
number of arguments across different cohomology theories. We refer the reader
to [34, §5], [35, Chapter 5], [16] for details.
For F a strictly A1-invariant Nisnevich sheaf on Smk, we have the strictly
A1-invariant sheaf F−1 := Hom(Gm,F). Recall [34, Defintion 5.2.4] that a
homotopy module is a sequence (Mn)n≥0 of strictly A1-invariant Nisnevich
sheaves on Smk together with isomorphisms δn : Mn → (Mn+1)−1. For n < 0,
define Mn inductively as Mn := (Mn+1)−1. We let HM(k) denote the category
of homotopy modules.
With the evident notion of morphism, HM(k) forms an abelian category. Via
[34, Theorem 5.2.6], there is an equivalence from the category of homotopy
modules on Smk to the heart of the homotopy t-structure on SH(k), which
we denote by M∗ 7→ EM(M∗). For a homotopy module M∗, the correspond-
ing cohomology theory EM(M∗)

∗,∗ satisfies EM(M∗)
a,b(X) = Ha−b

Nis (X,Mb) =

Ha−b
Zar (X,Mb). Conversely, for E ∈ SH(k), the corresponding homotopy module

is τ t0(E) := (π−n,−n(E))n.
The primary example of a homotopy module is given by the Milnor-Witt
sheaves KMW

∗ , about which we recall a few facts. For a field F , the Milnor-
Witt K-theory of F , KMW

∗ (F ), is the Z-graded Z-algebra with generators [u] ∈
KMW

1 (F ), for each unit u ∈ F× and an additional generator η ∈ KMW
−1 (F ),

with relations given in [34, Definition 6.3.1]. As explained in [35, §3.2], this con-
struction extends to a Nisnevich sheaf KMW

∗ on Smk, with stalk KMW
∗ (k(X))

at the generic point ηX ∈ X ∈ Smk. For a field F , sending the rank one
quadratic form 〈u〉, u ∈ F×, to the element 〈u〉 := 1+[u]η ∈ KMW

0 (F ) extends
uniquely to an isomorphism of rings GW(F ) → KMW

0 (F ) (see [34, Lemma
6.3.8]). The Hopkins-Morel presentation of KMW

∗ (F ) mentioned above extends
to an analogous presentation of the sheaf KMW

∗ [18, Definition 5.1] and Morel’s
isomorphism GW(F )

∼−→ KMW
0 (F ) extends to an isomorphism of Nisnevich

sheaves GW ∼−→ KMW
0 [18, Theorem 6.3] (assuming k is infinite).

As explained in [34, §6], the sheaf KMW
∗ defines a homotopy module on Smk;

in particular (we omit the Nis and Zar from the notation)

EM(KMW
∗ )a,b(X) = Ha−b(X,KMW

b ).

Specifically, Morel’s theorem identifying KMW
n with π−n,−n(Sk) shows that

(KMW
n )n = τ0(Sk). As Sk is the unit in SH(k), this shows that for an arbitrary

homotopy module (Mn)n, Mn is canonically a sheaf of KMW
0 -modules.

One also has a sheaf-theoretic description of the L-twisted theory for L a line
bundle on X ∈ Smk. The multiplication action of KMW

0 on KMW
n induces

an action of the sheaf of units KMW×
0 on KMW

n . Sending a unit u ∈ O×X,x
to 〈u〉 ∈ KMW

0 (OX,x) defines a homomorphism of sheaves of abelian groups
Gm → KMW×

0 . For L→ X a line bundle, the action of O×X on L makes L into
a Z[O×X ]-module, and similarly the sheaf KMW

n on X is a Z[O×X ]-module. The
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twisted sheaf KMW
n (L) on X is defined as

KMW
n (L) := KMW

n ⊗Z[O×X ] L = KMW
n ⊗KMW

0
KMW

0 (L).

See [9, Section 1.2] for details. For an arbitrary homotopy module M∗, we
thus have the L-twisted version Mn(L) := Mn ⊗KMW

0
KMW

0 (L), defining the

homotopy module M∗(L).
For X ∈ Smk and M∗ a homotopy module, we have the Rost-Schmid complex
(see [35, §5] for details)

C∗(X,Mn, L) := ⊕x∈X(0)ix∗Mn(k(x), i∗xL⊗ det−1 mx/m
2
x)

→ ⊕x∈X(1)ix∗Mn−1(k(x), i∗xL⊗ det−1 mx/m
2
x)→

. . .→ ⊕x∈X(p)ix∗Mn−p(k(x), , i∗xL⊗ det−1 mx/m
2
x)→ . . .

and a canonical isomorphism Hp(X,Mn(L)) = Hp(Γ(X,C∗(X,Mn, L)). More
generally, for Z ⊂ X a closed subset, the part of C∗(X,Mn, L) supported in Z,

C∗Z(X,Mn, L) := ⊕x∈X(0)∩Zix∗Mn(k(x), i∗xL⊗ det−1 mx/m
2
x)

→ ⊕x∈X(1)∩Zix∗Mn−1(k(x), i∗xL⊗ det−1 mx/m
2
x)→

. . .→ ⊕x∈X(p)∩Zix∗Mn−p(k(x), i∗xL⊗ det−1 mx/m
2
x)→ . . . ,

computes Hp
Z(X,Mn(L)) as Hp(Γ(X,C∗Z(X,Mn, L)).

Feld [16] defines a category of Milnor-Witt cycle modules and shows in [17, The-
orem 4.2] that this category is equivalent to the category of homotopy modules.
Via this equivalence the Milnor-Witt complex defined in [17, §3.1] goes over to
the Rost-Schmid complex; we will state and use various results proven about
the Milnor-Witt complexes for the corresponding Rost-Schmid complex with-
out mentioning this correspondence explicitly. For example, the isomorphism
Hp
Z(X,Mn(L)) ∼= Hp(Γ(X,C∗Z(X,Mn, L)) stated above is a consequence of the

acyclicity theorem [16, Theorem 8.1] for Milnor-Witt cycle modules.
For Z ⊂ X a smooth closed subscheme of codimension c with normal bundle
NZ/X , the evident isomorphism

C∗Z(X,Mn, L) ∼= C∗(Z,Mn−c, i
∗
ZL⊗ detNZ/X)[−c]

gives rise to the purity isomorphism [14, Remarque 9.3.5]

Hp
Z(X,Mn(L)) ∼= Hp−c(Z,Mn−c(i

∗
ZL⊗ detNZ/X)).

More generally, for W ⊂ Z ⊂ X closed, we have

Hp
W (X,Mn(L)) ∼= Hp−c

W (Z,Mn−c(i
∗
ZL⊗ detNZ/X)). (3.2)

It follows directly from the construction that these purity isomorphisms are
functorial with respect to compositions of closed immersions.

Documenta Mathematica 25 (2020) 2179–2239



2194 M. Levine

For Z a closed subset of codimension ≥ c, the complex C∗Z(X,Mn, L) is 0 in
degrees < c, hence

Hp
Z(X,Mn(L)) = 0 for p < codimXZ. (3.3)

The natural isomorphisms EM(M∗)
a+b,b
Z (X) ∼= Ha

Z(X,Mb) extend to the twists

by a line bundle L → X. To see this, we have EM(M∗)
a+b,b
Z (X,L) :=

EM(M∗)
a+b+2,b+1
s0(Z) (L), with s0 : X → L the 0-section. The purity isomorphism

Ha+1
s0(Z)(L,Mb+1) ∼= Ha

Z(X,Mb(L))

thus gives the isomorphisms

EM(M∗)
a+b,b
Z (X,L) := EM(M∗)

a+b+2,b+1
s0(Z) (L)

∼= Ha+1
s0(Z)(L,Mb+1) ∼= Ha

Z(X,Mb(L)) (3.4)

as claimed.
For L → X a line bundle, the isomorphism GW → KMW

0 of sheaves on X
extends to an isomorphism GW(L) → KMW

0 (L), where GW(L) is the sheaf of
(virtual) L-valued non-degenerate quadratic forms. For L′ → X a second line
bundle, we have the isomorphism ψL′ : GW(L) → GW(L ⊗ L′⊗2) defined as
follows: if q : V → L is an L-valued non-degenerate quadratic form, then ψL′(q)
is the induced form V ⊗ L→ L⊗ L′⊗2, which in local coordinates is given by
ψL′(q)(v⊗λ) = q(v)⊗λ2. Via the description of Mn(L) as Mn⊗KMW

0
GW(L),

the isomorphism ψL′ : GW(L)→ GW(L⊗ L′⊗2) defines an isomorphism

ψL′ : M∗(L)→M∗(L⊗ L′⊗2) (3.5)

of homotopy modules.
Similarly, an isomorphism of line bundles ρ : L → L′ induces an isomorphism
of sheaves

ρ∗ : Mn(L)→Mn(L′). (3.6)

and a corresponding isomorphism on cohomology with supports

ρ∗ : Hp
Z(X,Mn(L))→ Hp

Z(X,Mn(L′))

Let X be in Smk with closed subset Z. Via the canonical isomorphism
EM(KMW

∗ )a+b,b(−) ∼= Ha−b(−,KMW
b ), the suspension isomorphism

EM(KMW
∗ )a+b,b(X/(X \ Z))

αn−−→ EM(KMW
∗ )a+b+2n,b+n((An/(An \ {0}) ∧X/(X \ Z))

transforms to the isomorphism

αn : Ha
Z(X,KMW

b )
∼−→ Ha+n

0×Z(An ×X,KMW
b+n ) (3.7)
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Lemma 3.1. The suspension isomorphism (3.7) is equal to the inverse of the
purity isomorphism βn : Ha+n

0×Z(An ×X,KMW
b+n )

∼−→ Ha
Z(X,KMW

b ).

Proof. Since the suspension isomorphism for some n ≥ 1 is the composition of
suitable suspension isomorphisms for n = 1, and the same holds for the purity
isomorphism, we reduce to the case n = 1.
We first handle the case X = SpecF , F a finitely generated field extension
of k.
The suspension isomorphism α1 relies on the bonding isomorphism εb : KMb →
(KMW

b+1 )−1 as follows: Letting Gm be the pointed scheme (A1 \ {0}, {1}), we
have

(KMW
b+1 )−1(−) = KMW

b+1 (Gm ∧ (−)+)

= ker(KMW
b+1 (A1 \ {0} × (−))

i∗1−→ KMW
b+1 (1× (−))

so εb induces the map ε̃b,F : KMW
b )(F ) → KMW

b+1 (A1
F \ {0}) by ε̃b(x) := [t] · x.

We can pass from the Gm-loops to the P1-loops via the standard affine cover
of P1, U := {U0, U1}, Ui = P1 \ {Xi = 0}, giving the pushout diagram

U0 ∩ U1
//

��

U1

��

U0
// P1

We view U0 ∩ U1 as the open subset U0 \ {(1 : 0)} ∼= A1 \ {0}. The map ε̃b
induces the map

ξb,F : KMW
b (F )→ H1(P1

F ,KMW
b+1 )

by sending x ∈ KMW
b (F ) to the image of the Čech 1-cocycle (ε̃b, U0 ∩U1). We

have the isomorphisms

H1
0 (A1

F ,KMW
b+1 ) ∼= H1

0 (P1
F ,KMW

b+1 ) ∼= H1(P1
F ,KMW

b+1 ) (3.8)

the first being excision, and the second following from the strict A1-homotopy
invariance of KMW

b+1 , so we may consider ξb,F as a map

ξb,F : KMW
b (F )→ H1

0 (A1
F ,KMW

b+1 ),

and this is the suspension isomorphism for X = SpecF .
Via the Rost-Schmid complex, we have the isomorphism

H1
0 (A1

F ,KMW
b+1 ) ∼= KMW

b (F, F · ∂/∂t)

and via this isomorphism, ξb sends x ∈ KMW
b (F ) to x ⊗ ∂/∂t ∈ KMW

b (F, F ·
∂/∂t). The purity isomorphism is this map, composed with the map
KMW
b (F, F · ∂/∂t)→ KMW

b (F ) sending y ⊗ ∂/∂t to y.
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In general, the map ε̃b is represented by the map of Rost-Schmid complexes

C∗(ε̃b) : C∗Z(X,KMW
b )→ C∗A1\{0}×Z(A1 \ {0} ×X,KMW

b+1 )

which on the summand KMW
b−a (k(y)), y ∈ y ∈ Z ∩X(a), is the map

ε̃b,k(y) : KMW
b−a (k(y))→ KMW

b−a+1(k(t, y))

with KMW
b−a+1(k(t, y)) in the summand indexed by (η, y) ∈ (A1 \ {0} ×X)(a) ∩

A1 × Z, where η is the generic point of A1.

The suspension map is natural with respect morphisms of spaces, in particular,
with respect to maps of schemes and with respect to maps of the form U →
U/(U \ p) for p ∈ U . This implies that our description of the suspension map
for X = SpecF extends termwise on the Rost-Schmid complex, to give the
suspension map

C∗Z(α1) : C∗Z(X,KMW
b )→ C∗0×Z(A1 ×X,KMW

b+1 ),

where C∗Z(α1) sends an element xy ⊗ v ∈ KMW
b−a (k(y)) ⊗ det−1 my/m

2
y in the

summand for y ∈ Z ∩ X(a) to the element xy ⊗ ∂/∂t ∧ v of KMW
b−a (k(y)) ⊗

det−1 m0,y/m
2
0,y in the summand indexed by (0, y). As the purity isomorphism

sends this latter element to xy⊗v ∈ KMW
b−a (k(y))⊗det−1 my/m

2
y in the summand

for y ∈ Z ∩X(a), this completes the proof.

Remark 3.2. It was not completely clear to us whether the map ε̃b,F should
send x to [t] ·x or x · [t], in other words, if the Gm-suspension used to define the
homotopy module (KMW

n )n is the left or right smash product; we used the left
smash product. However, in the case of the right smash product, one would
also replace A1 × X with X × A1 throughout, the map C∗Z(α1) would send
xy ⊗ v to xy · [t]⊗ v, then to xy ⊗ v ∧ ∂/∂t, and the purity isomorphism would
send this element back to xy ⊗ v, so the result would still hold.

We now explain how one uses the purity isomorphism to define the SL-
orientation on EM(KMW

∗ ).

Let p : V → X be a rank r bundle with trivialized determinant ρ : detV →
OX . Via the purity isomorphism, the isomorphism s∗0Ns0(X)/V

∼= V gives the
isomorphism

Hr
s0(V )(V,K

MW
r (p∗ det−1 V )) ∼= H0(X,GW)

via which we have the element th(V ) ∈ Hr
s0(V )(V,K

MW
r (p∗ det−1 V )) corre-

sponds to 〈1〉 ∈ H0(X,GW). If we have an isomorphism ρ : detV
∼−→ OX ,

applying the induced map Hr
s0(V )(V,K

MW
r (p∗ det−1 V ))

∼−→ Hr
s0(V )(V,K

MW
r )

to th(V ) gives us the class th(V, ρ) ∈ Hr
s0(V )(V,K

MW
r ).
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Proposition 3.3. 1. The assignment (V → X, ρ : detV
∼−→ OX) 7→ th(V, ρ) ∈

Hr
s0(V )(V,K

MW
r ), for V a rank r vector bundle on X ∈ Smk with trivialization

ρ of detV defines an SL-orientation on EM(KMW
∗ ).

2. For p : V → X a rank r vector bundle on X ∈ Smk, the element th(V ) ∈
Hr
s0(V )(V,K

MW
r (p∗ det−1 V )) is the canonical Thom class associated to the SL-

orientation on EM(KMW
∗ ) given by (1).

Proof. We note that the presheaf X 7→ EM0,0(KMW
∗ )(X) = KMW

0 (X) is a
Zariski sheaf on Smk. By [2, Theorem 1.2], EM(KMW

∗ ) admits a unique “nor-
malized” SL-orientation, (V, ρ) 7→ t̃h(V, ρ); the proof of loc. cit. shows that
the classes t̃h(V, ρ) are characterized by three properties:

i. For the trivial bundle V = OrX with ρ the canonical isomorphism detOrX =

OX , t̃h(V, ρ) is the image of 1 ∈ EM0,0(KMW
∗ )(X) under the suspension iso-

morphism EM0,0(KMW
∗ )(X) ∼= EM2r,r

s0(X)(K
MW
∗ )(V ).

ii. The classes t̃h(V, ρ) are natural with respect to vector bundle isomorphisms:
if f : V → V ′ is an isomorphism of vector bundles on X and we have trivi-
alizations ρ : detV → OX , ρ′ : detV ′ → OX such that ρ′ ◦ det f = ρ, then
f∗t̃h(V ′, ρ′) = t̃h(V, ρ).

iii. The classes t̃h(V, ρ) are natural with respect to restriction by open immer-
sions.

The property (i) for the classes th(V, ρ) follows from Lemma 3.1 and the prop-
erties (ii) and (iii) follows from the fact that the purity isomorphism is natural
with respect to smooth morphisms. This proves (1).
For (2), the canonical Thom class t̃h(V ) ∈ EM(KMW

∗ )2r,r
s0(X)(V, p

∗ det−1 V ) is

by definition the Thom class t̃h(V ⊕ det−1 V, canV ) ∈ EM(KMW
∗ )2r+2,r+1

s′0(X) (V ⊕
det−1 V ), where can : det(V ⊕ det−1 V ) → OX is the canonical isomorphism
and s′0 : X → V ⊕ det−1 V is the 0-section. We have

EM(KMW
∗ )2r+2,r+1

s′0(X) (V ⊕ det−1 V ) = Hr+1
s′0(X)(V ⊕ det−1 V,KMW

r+1 ).

Letting sV : V → V ⊕ det−1 V be the 0-section over V , the normal bundle of
sV is p∗ det−1 V , giving the purity isomorphism

β : Hr+1
s′0(X)(V ⊕ det−1 V,KMW

r+1 )
∼−→ Hr

s0(X)(V,K
MW
r (p∗ det−1 V ))

Since the diagram of purity isomorphisms

Hr+1
s′0(X)(V ⊕ det−1 V,KMW

r+1 )

β o
��

∼

))

Hr
s0(X)(V,K

MW
r (p∗ det−1 V ))

∼ // H0(X,KMW
0 )
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commutes, we have th(V ) = β(t̃h(V )), which proves (2).

The next theory we consider, EM(W∗), arises from the sheafW of Witt groups.
For F a field, the Witt group W (F ) is the quotient GW(F )/(H), where (H) is
the two-sided ideal generated by the hyperbolic form H(x, y) = x2 − y2. Since
q · H = rank(q) · H for q ∈ GW(F ), (H) is also the additive subgroup Z · H
of GW(F ) generated by H. Via the isomorphism GW(F )

∼−→ KMW
0 (F ), H

maps to the element h := 2 + η[−1]. The surjective map ×η : KMW
0 (F ) →

KMW
−1 (F ) has kernel exactly (h), identifying W (F ) with KMW

−1 (F ). For n < 0,
×η : KMW

n (F )→ KMW
n−1 (F ) is an isomorphism, so we have W (F ) ∼= KMW

n (F )
for all n < 0. All these assertions extend to the sheaf level, giving in particular
an isomorphism

W ∼= colimn→−∞KMW
n

with the colimit taken with respect to the maps ×η : KMW
n → KMW

n−1 . For
L→ X a line bundle, this extends to an isomorphismW(L) ∼= colimnKMW

n (L),
whereW(L) := GW(L)/H ·GW(L). DefiningWn :=W, we have the homotopy
module

W∗ := colim×ηKMW
∗ ,

the associated T -spectrum EM(W∗) and cohomology theory EM(W∗)a,b(X) =
Ha−b(X,W). The SL-orientation for EM(KMW

∗ ) induces an SL-orientation for
EM(W∗).
We will also use the SL-oriented theory of hermitian K-theory KO, see [48,
49] for the basic construction and first properties. The canonical Thom class
th(V ) ∈ KO2r,r

s0(X)(V ; p∗ det−1 V ) for a rank r vector bundle p : V → X is the

Koszul complex

Kos(V, can) := Λrp∗V ∨ → . . .→ p∗V ∨ → OV

endowed with the det−1 p∗V [r]-valued quadratic form p∗qV : Kos(V, can) ⊗
Kos(V, can)→ det−1 p∗V [r] given by the exterior product maps

− ∧− : Λip∗V ∨[i]⊗ Λr−ip∗V ∨[r − i]→ Λrp∗V ∨[r].

See [41, Theorems 1.4, 5.1] for details. The Euler class is thus (⊕iΛiV ∨[i], qV ) ∈
KO2r,r(X; det−1 V ).
We will also use the GL-oriented theories EM(KM

∗ ) associated to the homotopy
module KM∗ ,

EM(KM
∗ )a,b(X) = Ha−b(X,KMb ),

and Quillen algebraic K-theory KGL, KGLa,b(X) = K2b−a(X). Via Bloch’s
formula and purity, Hn

Z(X,KMn ) = CHn−c(Z) for Z ⊂ X a smooth codi-
mension c closed subscheme of X ∈ Smk, the Thom class for V is repre-
sented by the 0-section in V and the Euler class is the top Chern class cr(V ),
r = rank(V ). The Thom class in K-theory is represented by Kos(V, can) and
the Euler class is

∑r
i=0(−1)i[ΛiV ∨]. This all follows by a similar argument to

what we used to construct SL-orientations above, from the fact that EM(KM
∗ )
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and KGL admit purity isomorphisms EM(KM
∗ )a+2c,b+c

Z (X) ∼= EM(KM
∗ )a,b(Z)

and KGLa+2c,b+c
Z (X) ∼= KGLa,b(X) for Z ⊂ X a codimenison c closed immer-

sion in Smk. The purity isomorphism for EM(KM
∗ ) is a direct consequence

of the Gersten resolution for KM
∗ [26]. For KGL the purity isomorphism is

a consequence of Quillen’s localization theorem for the K-theory of coherent
sheaves [43] and the fact that KGL represents Quillen K-theory [40].
We have the surjection of homotopy modules π : KMW

∗ → KM∗ = KMW
∗ /(η)

and the induced map EM(π) : EM(KMW
∗ )→ EM(KM∗ ) is a map of SL-oriented

theories. Similarly, we have the morphism of ring spectra KO → KGL, which
is also a map of SL-oriented theories. Finally, we have the homotopy module
I∗, where I ⊂ KMW

0 is the augmentation ideal for the rank homomorphism
KMW

0 → KM0 = Z and In is the n power of this sheaf of ideals. In fact, In+1 is
the kernel of the surjection π : KMW

n → KMn [33, Corollaire 5.4], which shows
that I∗ is indeed a homotopy module4.
If the context does not make clear the choice of cohomology theory, we write
eCW, eKO, eCH, eKGL for the Euler classes for EM(KMW

∗ ), KO, EM(KM∗ ) and
KGL, respectively, and similarly for the Thom classes, pushforward maps, etc.
We reserve the standard notation for Chern classes, cn, for the Chern classes
with values in CHn(−) = Hn(−,KMn ).

4 Euler class and Euler characteristic

We recall two special cases of the general motivic Gauß-Bonnet theorem of
Déglise-Jin-Khan [11, Theorem 4.6.1].

Theorem 4.1. Let πX : X → Spec k be a smooth projective dimension d k-
scheme, with tangent bundle TX → X. Then we have

χ(X/k) = πCW
X∗ (eCW(TX)) = πKO

X∗ (eKO(TX)) ∈ GW(k)

As consequence (see Remark 2.3), we have classical versions of Gauß-Bonnet:

χtop(X) = rankχ(X/k) = πCH
X∗ (e

CH(TX)) = πKGL
X∗ (eKGL(TX)) ∈ Z.

With Raksit, have also given a proof of a motivic Gauß-Bonnet formula [29,
Theorem 1.5] in the setting of SL-oriented theories.
To give Theorem 4.1 a concrete expression, we have shown in the proof of [29,
Theorem 8.4, Theorem 8.6] that the pushforward maps for EM(KMW

∗ ) defined
using the SL-orientation and the six-functor formalism agree with those defined
by Fasel and Fasel-Srinivas [14, 15] and those for KO agree with the ones defined
by Grothendieck-Serre duality, and used by Calmés-Hornbostel [10] (for the
Witt groups). Similarly, the six-functor pushforward maps for EM(KM∗ ) and
KGL are the “standard” ones: on EM(KM∗ )2∗,∗ = CH∗, the standard ones
are the classical pushforward maps on CH∗ and on KGL2∗,∗ = K0, these are

4The result of Morel cited here is for fields, but this extends to sheaves using the fact
that KMW

n and KM
n are unramified sheaves.
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the usual F 7→
∑
i(−1)iRif∗F , using Quillen’s resolution theorem to identify

K0(X) with the Grothendieck group of coherent sheaves on X, for X ∈ Smk.
We give a first consequence of the Gauß-Bonnet theorem.

Corollary 4.2. Let Y be an integral smooth projective k-scheme of odd dimen-
sion over k. Then the Euler characteristic χ(Y/k) is hyperbolic: χ(Y/k) = m·H
for some m ∈ Z, hence rank(χ(Y/k)) = 2m is even.

The proof is based on the following lemma, which is also of independent interest.

Lemma 4.3. Let π : V → Y be a vector bundle of odd rank r over some
Y ∈ Smk. Then for all u ∈ k×,

eCW(V ) = 〈u〉 · eCW(V )

in Hr(Y,KMW
r (det−1 V )). Moreover,

η · eCW(V ) = 0

in Hr(Y,KMW
r−1 (det−1 V ))

Proof. Let φu : V → V be the map multiplication by u. The naturality of the
Thom class says that

(φu,det−1 φu)∗(thCW(V )) = thCW(V )

Since det−1 φu : det−1 V → det−1 V is multiplication by u−r, det−1 φ∗u acts
by multiplication by 〈u−r〉 = 〈u〉 on the sheaf KMW

r (π∗ det−1 V ). Thus
(Id,det−1 φu)∗ acts by ×〈u〉 on Hr(V,KMW

r (π∗ det−1 V )).
Letting φ∗u := (φu, Id)∗, we have (φu,det−1 φu)∗ = φ∗u ◦ (Id,det−1 φu)∗, and
thus

φ∗u(thCW(V )) = 〈u〉 · thCW(V ).

Since φu ◦ s0 = s0, we have

eCW(V ) = s∗0(thCW(V ))

= s∗0(φ∗u(thCW(V )))

= s∗0(〈u〉 · thCW(V ))

= 〈u〉 · eCW(V ).

We now show that η ·eCW(V ) = 0. Let O be the local ring k[t](t), with quotient
field K := k(t) and residue field k. Let Y = Y ×k O, with open subscheme
j : YK → Y, closed complement i : Y → Y and projections p : Y → Y ,
pK : YK → Y We have the exact localization sequence

. . .→ Hr(Y,KMW
m (p∗ det−1 V ))

j∗−→ Hr(YK ,KMW
m (p∗K det−1 V ))

δ−→ Hr(Y,KMW
m−1(det−1 V ))→ . . .
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and a similar sequence for O,

. . .→ KMW
n (O)

j∗0−→ KMW
n (K)

δ0−→ KMW
n−1 (k)→ . . . .

We claim that
δ(α · p∗Kx) = δ0(α) · x

for x ∈ Hr(Y,KMW
m (det−1 V )), α ∈ KMW

n (K). To see this, first represent x as
an r-cocycle in the Rost-Schmid complex C∗(Y,KMW

m (det−1 V )),

x = [
∑

y∈Y (r)

xy ⊗ vy; xy ∈ KMW
m−r(k(y)), vy ∈ det−1 my/m

2
y ⊗ det−1 V ].

Here the [−] means: take the associated cohomology class. This represents
α · p∗Kx as

α · p∗Kx = [
∑

y∈Y (r)

α · p∗Kxy ⊗ vy],

where α ·p∗Kxy⊗vy is in the summand corresponding to yK := SpecK⊗k k(y).
Thus δ(α · p∗Kx) is represented by

δ(α · p∗Kx) = [
∑

y∈Y (r)

δy(α · p∗Kxy ⊗ vy)]

where δy : KMW
m−r(K⊗k k(y))→ KMW

m−r−1(k(y)) is the boundary map associated
to the DVR O ⊗k k(y) = k(y)[t](t) with parameter t. But since p∗Kxy extends
to an element of KMW

m−r(O ⊗k k(y)) that maps to xy under the quotient map
sO ⊗k k(y)→ k(y), we have δy(p∗Kxy) = 0 and the explicit formula for δy and
δ0 show that

δy(α · p∗Kxy) = δ0(α) · xy.

Taking x = eCW(V ), α = 〈t〉, and noting that δ0(〈t〉) = δ0(1 + η · [t]) = η, this
gives

δ(〈t〉 · p∗KeCW(V )) = η · eCW(V ).

Similarly,
δ(p∗Ke

CW(V )) = 0

and since

〈t〉 · p∗KeCW(V ) = 〈t〉 · eCW(p∗KV ) = eCW(p∗KV ) = p∗Ke
CW(V )

we have η · eCW(V ) = 0.

Proof of Corollary 4.2. Suppose Y is integral of odd dimension d over k. Ap-
plying Lemma 4.3, we have

η · eCW(TY ) = 0 ∈ Hd(Y,KMW
d−1 (ωY/k));
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pushing forward to Spec k and using Theorem 4.1 gives

η · χ(Y/k) = 0.

Via the isomorphisms GW(k) ∼= KMW
0 (k), W (k) ∼= KMW

−1 , the surjection ×η :
KMW

0 (k) → KMW
−1 (k) transforms to the canonical surjection GW(k) → W (k)

with kernel the ideal generated by the hyperbolic form H. As q ·H = rank(q)·H
in GW(k) for each q ∈ GW(k), the identity η ·χ(Y/k) = 0 says χ(Y/k) = m ·H
for some m ∈ Z. Since rank(m ·H) = 2m, this finishes the proof.

Proposition 4.4. Let π : V → Y be a vector bundle of odd rank r over some
Y ∈ Smk. Then the Euler class eW(V ) ∈ Hr(Y,W(det−1 V )) is zero.

Proof. Since W ∼= KMW
∗ [η−1] and eW(V ) is the image of eCW(V ) under the

canonical map Hr(Y,KMW
r (det−1 V ))→ Hr(Y,W(det−1 V )), this follows from

Lemma 4.3.

An analog of part of Lemma 4.3 holds for eKO; the proof is even easier. Recall
the hyperbolic map hL : KGLa,b(Y )→ KOa,b(Y ;L) (see, e.g. [47, §4.7]). For a
vector bundle V and (a, b) = (2r, r), hL(V ) = (V ⊕ V ∨ ⊗ L[r], h(can)), where
can : V × V ∨ ⊗ L[r]→ L[r] is the canonical pairing, and

h(can) =

(
0 can

can 0

)
: (V ⊕ V ∨ ⊗ L[r])× (V ⊕ V ∨ ⊗ L[r])→ L[r]

Lemma 4.5. Let π : V → Y be a vector bundle of odd rank r over some

Y ∈ Smk. Then eKO(V ) = hdet−1 V (⊕[r/2]
i=0 (−1)i[ΛiV ∨]) in KO2r,r(Y, det−1 V ).

As consequence 〈u〉·eKO(V ) = eKO(V ) for all u ∈ Γ(Y,O×Y ) and η ·eKO(Y ) = 0.

Proof. This follows easily from the explicit form of eKO(V ) as

eKO(V ) = (⊕ri=0ΛiV ∨[i], qV )

where qV is the sum of the exterior product maps −∧− : ΛiV ∨[i]⊗Λr−iV ∨[r−
i]→ ΛrV ∨[r]. The induced isomorphism Λr−iV ∨[r−i]⊗ΛrV [−r] ∼= (ΛiV ∨[i])∨

gives an isomorphism of the restriction qV,i of qV ,

qV,i : (ΛiV ∨[i]⊕ Λr−iV ∨[r − i])⊗ (ΛiV ∨[i]⊕ Λr−iV ∨[r − i]→ ΛrV ∨[r],

with the hyperbolic form on ΛiV ∨[i], which gives the identity

hdet−1 V (

[r/2]∑
i=0

(−1)i[ΛiV ∨]) = (⊕ri=0ΛiV ∨[i], qV )

in KO2r,r(Y,det−1 V ).
The two further assertions follow from 〈u〉 · hL(x) = hL(x) and η · hL(x) = 0
for all x ∈ KGL2r,r(Y ), u ∈ Γ(Y,O×Y ), L→ X a line bundle.

Remark 4.6. One can also prove Corollary 4.2 using χ(X/k) = πX∗(e
KO(TX))

and the explicit form this latter pushforward takes; this is the proof given in
[29, Corollary 8.7].
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5 Local indices

We consider the problem of computing the Euler class with support associated
to a section s of a vector bundle π : V → X on a smooth k-scheme X. Kass and
Wickelgren [24] have defined a “degree of the Euler class” for a so-called rela-
tively oriented vector bundle V on a smooth and proper k-scheme X, assuming
that V has rank equal to the dimension of X and comes with a section having
isolated zeros (plus some additional technical assumptions). Their definition
relies on the construction of an explicit symmetric bilinear form associated to
the given section σ and a zero of σ, going back to work of Scheja and Storch
[45]. Bachmann and Wickelgren [6] have refined this method and their results
show that the Scheja-Storch form computes the local Euler class as defined
above, for a section with isolated zeros, without the introduction of a relative
orientation. We recall the definition of the Scheja-Storch form here and explain
how the results of Bachmann-Wickelgren give this computation.
Let O be a regular local ring with residue field k and maximal ideal m. We
assume that the quotient map π : O → k splits, that is, O is a k-algebra.
Let t∗ := t1, . . . , tn be a system of parameters for O and let s∗ := s1, . . . , sn
be elements of m such that the ideal (s1, . . . , sn) is m-primary. Let J(s∗) =
O/(s1, . . . , sn). Then J(s∗) is a finite dimensional k-algebra with quotient map
p : O → J(s∗).
For an element f ∈ O, let fδ = f ⊗1−1⊗f ∈ O⊗kO, and let Iδ ⊂ O⊗kO be
the ideal (tδ1, . . . , t

δ
n). One sees easily that Iδ is the kernel of the multiplication

map µ : O ⊗k O → O and that fδ is in Iδ for all f ∈ m. In particular, there
are elements aij ∈ O ⊗k O with

sδi =

n∑
j=1

aij · tδj ; i = 1, . . . , n. (5.1)

The Scheja-Storch element et∗,s∗ ∈ J(s∗) is defined as

et∗,s∗ := (p⊗ π)(det(aij)) ∈ J(s∗)⊗k k = J(s∗).

Let ∆t∗,s∗ ∈ J(s∗)⊗k J(s∗) be the element (p⊗ p)(det(aij)). By [45, Satz 3.3],
the map

Θt∗,s∗ : Homk(J(s∗), k)→ J(s∗)

defined by Θt∗,s∗(φ) := (φ⊗ Id)(∆t∗,s∗) is an isomorphism (of J(s∗)-modules).
Let ηt∗,s∗ := Θ−1

t∗,s∗(1); ηt∗,s∗ is called the generalized trace in [45].
We summarize the main facts about J(s∗) and et∗,s∗ .

Theorem 5.1. 1. et∗,s∗ ∈ J(s∗) is independent of the choice of the aij.

2. The socle of J(s∗), that is, {x ∈ J(s∗) | m · x = 0}, is a one-dimensional
k-vector space, with generator et∗,s∗ .

3. Let Tr : J(s∗) → k be a k-linear map such that Tr(et∗,s∗) = 1. Then the
bilinear form on J(s∗)

Bs∗,t∗(x, y) := Tr(xy)
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is non-degenerate, and [Bs∗,t∗ ] ∈ GW(k) is independent of the choice of Tr
(satisfying Tr(et∗,s∗) = 1).

4. Suppose we have a new system of parameters (t′1, . . . , t
′
n) for m and a second

set of generators (s′1, . . . , s
′
n) for the ideal (s1, . . . , sn). Write

t′i =
∑
j

αijtj , s
′
i =

∑
j

βijsj

for αij , βij ∈ O. Let α, β ∈ k be the respective images of det(αij), det(βij) in
k. Then

[Bs′∗,t′∗ ] = 〈α · β〉 · [Bs∗,t∗ ] ∈ GW(k)

5. If we write si =
∑
j āijtj in O, then et∗,s∗ = det(āij).

6. The map ηt∗,s∗ : J(s∗)→ k satisfies ηt∗,s∗(et∗,s∗) = 1, hence

[Bs∗,t∗ ] = [(x, y) 7→ ηt∗,s∗(xy)] ∈ GW(k).

Proof. By [45, Lemma 1.2(α)], (p⊗p)(det(aij)) ∈ J(s∗)⊗kJ(s∗) is independent
of the choice of the aij , which proves (1). (2) is proven in [24, Lemma 3]. (3)
follows from [24, Lemma 5] and (4) follows from the transformation law [46,
Satz 1.1]. For (5), we apply (p⊗ π) to the equation (5.1), giving si =

∑
j(p⊗

π)(aij) · tj , so et∗,s∗ = det((p ⊗ π)(aij)). On the other hand, if si =
∑
j āijtj ,

then again by [45, Lemma 1.2(α)], we have det(āij) = det((p⊗π)(aij)) = et∗,s∗ .
For (6), choose a k-basis b1, . . . , bn for J(s∗). We may assume that b1 = 1
and bn = et∗,s∗ (unless n = 1, in which case we take b1 = 1) and that bj is in
m/(s1, . . . , sn) for 1 < j < n. Write

∆t∗,s∗ =
∑
ij

bij · bi ⊗ bj ; bij ∈ k.

By [45, Satz 3.1] bij = bji for all i, j. Then et∗,s∗ = (p ⊗ π)(∆t∗,s∗) = (π ⊗
p)(∆t∗,s∗), so bi1 = b1i = 0 for i < n and b1n = bn1 = et∗,s∗ . By construction,

1 = (ηt∗,s∗ ⊗ Id)(∆t∗,s∗) = ηt∗,s∗(et∗,s∗) · 1 +

n∑
i,j=2

ηs∗(bij) · bj ,

so ηt∗,s∗(et∗,s∗) = 1.

Remark 5.2. With O, t∗ and s∗ as above, the k-algebra J(s∗) has dualizing
module

ωJ(s∗)/k
∼= ωO/k ⊗O det−1(s1, . . . , sn)/(s1, . . . , sn)2

so the basis elements s̄1 ∧ . . . ∧ s̄n for det(s1, . . . , sn)/(s1, . . . , sn)2 and dt1 ∧
. . .∧dtn for ωO/k give an isomorphism ωJ(s∗)/k

∼= J(s∗). Via this isomorphism,
the isomorphism given by Grothendieck duality theory

Homk(J(s∗), k) ∼= HomJ(s∗)(J(s∗), ωJ(s∗)/k) ∼= J(s∗)

is given by φ 7→ (φ⊗ Id)(∆t∗,s∗); this is proven in [6, Theorem 2.18].
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Let X be a smooth k-scheme of dimension d over k and let x ∈ X be a closed
point. We have the purity isomorphism (3.2)

Hd
x(X,KMW

d (L)) ∼= GW(k(x),det−1 m/m2 ⊗ L).

Corollary 5.3. Let k be a field. Let p : V → X be a rank d vector bundle,
with X ∈ Smk of dimension d over k and let s : X → V be a section. Suppose
a closed point x ∈ X is an isolated zero of s; suppose in addition that k(x) is a
separable extension of k. Choose a framing e1, . . . , ed for V in a neighborhood
of x and let t∗ := t1, . . . , td be a system of parameters for the maximal ideal
mx ⊂ OX,x. Write s =

∑d
i=1 siei near x and let s∗ = s1, . . . , sd. Then

ex(V, s) ∈ Hd
x(X,KMW

d (det−1 V )) = GW(k(x),det−1 m/m2 ⊗ det−1 V )

is given by

ex(V, s) = [Bs∗,t∗ ]⊗
∂

∂t1
∧ . . . ∧ ∂

∂td
⊗ (e1 ∧ . . . ∧ ed)−1

Proof. Since the finite extension k ⊂ k(x) is separable, we have a canonical
isomorphism

ωX/k ⊗ k(x) ∼= detm/m2

The choice of framing e1, . . . , ed and the choice of parameters t1, . . . , td uniquely
define an isomorphism in a neighborhood U of x

φ : det−1 V
∼−→ ωX/k

by φ((e1 ∧ . . . ∧ ed)−1) = dt1 ∧ . . . ∧ dtn. Via this isomorphism, we have the
corresponding isomorphism

det−1 m/m2 ⊗ det−1 V
∼−→ k(x)

giving the isomorphism

GW(φ) : GW(k(x),det−1 m/m2 ⊗ det−1 V )→ GW(k(x))

sending [Bs∗,t∗ ] · ∂
∂t1
∧ . . . ∧ ∂

∂td
⊗ (e1 ∧ . . . ∧ ed)−1 to [Bs∗,t∗ ].

Note that both ex(V, s) and [Bs∗,t∗ ] · ∂
∂t1
∧ . . . ∧ ∂

∂td
⊗ (e1 ∧ . . . ∧ ed)−1 are

unchanged if we replace X with a Nisnevich neighborhood (X ′, x)→ (X,x), so
we may assume that k = k(x). Moreover, the isomorphism φ defines a relative
orientation for V over U . In this case, [6, Proposition 2.32 and Theorem 7.6]
says that GW(φ)(ex(V, s)) = [Bs∗,t∗ ], which proves the result.

Remark 5.4. If k is perfect, the separability assumption in the statement of
Corollary 5.3 is automatically satisfied; we can always reduce to this case by
the base-change k → kperf following Remark 2.1.
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Example 5.5. As an example, suppose we have a local framing e1, . . . , ed for
V near x, local parameters t1, . . . , td, units ui ∈ O×X,x and positive integers ni
such that s =

∑
i uit

ni
i ei; we call such a section “diagonalizable”. The Scheja-

Storch element is et∗,s∗ =
∏
i uit

ni−1
i ∈ J(s∗) = OX,x/(tn1

1 , . . . , tnd

d ). If d = 1,
n = n1, u = u1, the Scheja-Storch form has class

[B(u, n)] =

{
(n/2) ·H for n even

〈u〉+ (1/2)(n− 1) ·H for n odd

and in general [Bs∗,t∗ ] =
∏d
i=1[B(ui, ni)]. Since x · H = rank(x) · H for x ∈

GW, we see that [Bs∗,t∗ ] = (1/2)(
∏
i ni) · H if at least one ni is even and is

〈
∏
i ui〉+ (1/2)(

∏
i ni − 1) ·H if all ni are odd. We can also express this as

[Bs∗,t∗ ] = 〈u〉nε

where u =
∏
i ui and n =

∏
i ni.

Example 5.6. We consider the simplest case of a vector bundle π : V → X of
rank d = dimkX with a section s : X → V which is transverse to the zero-
section. If x ∈ X is a zero of s, choose a basis of sections λ1, . . . , λd of V in a
neighborhood of x, and a system of parameters t1, . . . , td ∈ mx. As in the proof
of Corollary 5.3, we may assume that k(x) = k. If we write s as s =

∑d
i=1 siλi,

the condition that s is transverse to the zero-section at x translates into the
the fact that the matrix

∂s/∂t|x :=
(
∂si/∂tj

)
∈Md×d(k(x))

is invertible. We then have J(s∗) = k and the Scheja-Storch form is ∂s/∂t|x.
By Corollary 5.3, we thus have

ex(V ; s) = 〈det(∂s/∂t|x)〉 ⊗ ∧λ−1
∗ ⊗ ∧∂/∂t∗. (5.2)

Remark 5.7. Although we are restricting to the case of a bundle of rank equal
to the dimension of the base-scheme, this is not an essential restriction. The
local Euler class es=0(V, s) for a vector bundle V → Y is determined by the
restriction to SpecOY,y for all generic points y of (s = 0). Working over a
perfect field k, we can always find a subfield K of OY,y such that k(y) is a
separable extension of K. Thus, we can reduce to the case rank(V ) = dimY if
the section s has zero-locus of codimension equal to the rank of V

6 Cohomology of classifying spaces

Let G be an algebraic group over k. We use the so-called geometric classifying
space to define BG as an object of H(k). This follows the method introduced
by Totaro [50], with details to be found in [36, §4.2]. One takes a faithful
representation ρ : G→ GLN for some N and considers an increasing sequence
of compatible GLN -representations V0 ⊂ V1 ⊂ . . . ⊂ Vm ⊂ . . . and GLN -stable
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open subsets Um ⊂ Vm such that GLN acts freely on Um and such that the
codimension cm of Wm := Vm \Um in Vm goes to infinity with m. In addition,
one assumes that the inclusions im : Vm → Vm+1 satisfy i−1

m (Um+1) = Um and
that the im are split by GLN -equivariant linear projections πm : Vm+1 → Vm
with Wm+1 ⊂ p−1

m (Wm). Setting Xm := G\Um, one then defines BgmG as the
colimit (in the category of Nisnevich sheaves on Smk)

BgmG := colimmXm.

This is the same as the Nisnevich sheaf represented by the ind-scheme (Xm)m.
We will write BG for BgmG; we will only use this construction for G =
GLn,SLn and products of these groups.
By [36, Lemma 2.5], the corresponding object BG ∈ H(k) is independent of
the various choices. One such choice (given N) is to take Vm ∼= AN ·(N+m) to be
the space of N ×N +m matrices with GLN acting by left multiplication, and
Um ⊂ Vm to be the matrices of rank N . The inclusion Vm → Vm+1 is given by
adding a 0 column at the right, and the projection is the projection to the first
m+N columns. In this case Wm := Vm \ Um has codimension cm = m+ 1.
We first concentrate on the two cases G = GLn,SLn. For G = GLn with
the identity embedding, this choice yields Xn = Gr(n,m + n) and for G =
SLn with the standard inclusion SLn ⊂ GLn, we have Xn = G̃r(n,m + n),
the Gm-bundle detEn,m+n \ 0Gr(n,m+n) over Gr(n,m + n), where En,m+n →
Gr(n,m + n) is the tautological rank n vector bundle. For G a product, G =∏r
i=1 GLni ×

∏s
j=1 SLmj , we will use the product of these choices, so Xm =∏r

i=1 Gr(ni, ni +m)×
∏s
j=1 G̃r(mj ,mj +m).

By a vector bundle on BG, we mean a choice of vector bundles Em → Xm

for each m together with isomorphisms ψm : Em+1|Xm

∼−→ Em; we similarly
define Gm-bundles, etc. Since Pic(Um) is trivial for all m, one has a canoni-
cal isomorphism of Pic(Xm) with the group of characters of G, and this iso-
morphism is compatible with the closed immersions Xm ↪→ Xm+1, so the
group Pic(BG) of isomorphism classes of line bundles on BG is isomorphic
to the group of characters of G. For example the system of vector bundles
(En,m+n → Gr(n,m+n))m defines the tautological vector bundle En → BGLn
and the pullbacks (Ẽn,m+n → G̃r(n,m + n))m defines the tautological vector

bundle Ẽn → BSLn. Similarly, the line bundles (detEn,m+n → Gr(n,m+n))m
define the line bundle detEn → BGLn, which is a generator of Pic(BGLn) ∼= Z.
For G =

∏r
i=1 GLni

×
∏s
j=1 SLmj

, Pic(BG) ∼= Zr, with basis the pullback of
the line bundles detEni

→ BGLni
, i = 1, . . . , r.

Lemma 6.1. Let ρ : G → GLN be a faithful representation. Let M∗ be a
homotopy module, let Vm, Um,Wm be as chosen above and let cm denote the
codimension of Wm in Vm. Let χ : G → Gm be a character and let L → BG
be the corresponding line bundle Let Xm = G\Um with inclusion im : Xm →
Xm+1 and let Lm → Xm be the line bundle corresponding to χ. Then for cm >
p + 1, and q ∈ Z arbitrary, the restriction map i∗m : Hp(Xm+1,Mq(Lm+1)) →
Hp(Xm,Mq(Lm)) is an isomorphism.
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Proof. Let U ′m+1 = Vm+1 \ π−1
m (Wm) ∼= Um × kerπm. The projection πm :

U ′m+1 → Um realizes U ′m+1 as a G-vector bundle over Um with 0-section i′m
induced by im. Thus, letting X ′m+1 := G\U ′m+1, πm induces a projection
pm : X ′m+1 → Xm making X ′m+1 a vector bundle over Xm. Since Mq(Lm) is
strictly A1-invariant, we have the isomorphism

p∗m : Hp(Xm,Mq(Lm))→ Hp(X ′m+1,Mq(p
∗
mLm))

inverse to i∗m : Hp(X ′m+1,Mq(p
∗
mLm))→ Hp(Xm,Mq(Lm)).

We have the open immersion j : X ′m+1 → Xm+1 with complement Ym+1 :=
G\(π−1

m (Wm) \Wm+1) and a canonical isomorphism j∗Lm+1
∼= p∗mLm. Since

Wm has codimension cm in Vm, Ym+1 has codimension cm in Xm+1. By (3.3),
Hj
Ym+1

(Xm+1,Mq(Lm+1)) = 0 for cm > j, and thus

j∗ : Hp(Xm+1,Mq(Lm+1))→ Hp(X ′m+1,Mq(p
∗
mLm))

is an isomorphism for cm > p + 1. Since im = j ◦ i′m, we see that i∗m :
Hp(Xm+1,Mq(Lm+1)) → Hp(Xm,Mq(Lm)) is an isomorphism for cm > p +
1.

Proposition 6.2. Let M∗ be a homotopy module and let L→ BG be a line bun-
dle. The the pro-system (Ha−b(Xm,Mq(L)))m is eventually constant. More-
over, the canonical map

EM(M∗(L))a,b(BG)→ lim
←
Ha−b(Xm,Mb(L))

is an isomorphism and the restriction map

EM(M∗(L))a,b(BG)→ Ha−b(Xm,Mb(L))

is an isomorphism for all m sufficiently large.

Proof. The first assertion is just a rephrasing of Lemma 6.1. For the second,
we have the Milnor sequence

0→ R1 limHa−b−1(Xm,Mb(L))→ EM(Mq(L))a,b(BG)

→ lim
←
Ha−b(Xm,Mq(L))→ 0.

Since the system (Ha−b−1(Xm,Mq(L)))m is eventually constant, the R1 lim
vanishes.

We will write Ha(BG,Mb(L)) for EM(M∗(L))a+b,b(BG).

Lemma 6.3. Let Y be in Smk, let X be a smooth k-scheme, M ∈ Pic(X),
L ∈ Pic(Y ) and fix an integer N . Suppose that for each finitely generated field
extension F of k, and for n ≤ N ,

Hn(XF ,W(M)) ∼= W (F )⊗W (k) H
n(X,W(M)),
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with map induced by the pullback map Hn(X,W(M))→ Hn(XF ,W(M)). Sup-
pose in addition that Hn(X,W(M)) is a projective W (k)-module. Then the
external product map

⊕a+b=nH
a(Y,W(L))⊗W (k) H

b(X,W(M))→ Hn(Y ×k X,W(p∗1L⊗ p∗2M))

is an isomorphism for all n < N .

Proof. Let Y (p) be the set of codimension p points of Y . We take the ind-
stratification of Y ×kX with codimension p stratum Y (p)×kX. Gluing together
the corresponding sequences of cohomology with support gives the spectral
sequence

Ep,q1 := Hp+q
Y (p)×kX

(Y \ Y (p+1) ×k X,W(p∗1L⊗ p∗2M))

⇒ Hp+q(Y ×k X,W(p∗1L⊗ p∗2M)).

By purity we have the isomorphisms

Ep,q1
∼= ⊕y∈Y (p)Hq(k(y)×k X,W(p∗1(L⊗ det−1 my/m

2
y)⊗ p∗2M)),

where my ⊂ OY,y is the maximal ideal. Since L ⊗ det−1 my/m
2
y is (non-

canonically) isomorphic to k(y), our assumption on X implies that the external
product gives a canonical isomorphism for q ≤ N

Ep,q1
∼=W(k(y), L⊗ det−1 my/m

2
y⊗)⊗W (k) H

q(X,W(M))
∼−→ Hq(k(y)×k X,W(p∗1(L⊗ det−1 my/m

2
y)⊗ p∗2M)).

We have the analogous spectral sequence

Ep,q1 (Y ) := Hp+q
Y (p)((Y \ Y (p+1),W(L))⇒ Hp+q(Y,W(L))

Since Hn(X,W(L)) is a projective W (k)-module for n ≤ N , this spectral
sequence gives rise to a truncated spectral sequence

Ẽp,q1 := [H∗Y (p)((Y \ Y (p+1)),W(L))⊗W (k) H
∗(X,W(M))]′p+q

⇒ [H∗(Y,W(L))⊗W (k) H
∗(X,W(M))]′′p+q, p+ q ≤ N

where the ′ means that the term is zero if p+q > N and is the same as without
the ′ if p+ q ≤ N . The ′′ means the same as the ′ if p+ q 6= N and we ignore
what the spectral sequence converges to for p+ q = N .
Pull-back by the projection p1 : Y ×k X → Y together with the cup product
action via p∗2 of H∗(X,W(M)) on H∗F×X(Y \G×X,W(p∗1L⊗p∗2M)) for G ⊂ Y
and F ⊂ Y \G both closed gives a map of spectral sequences

p∗1 ∪ p∗2 : Ẽ∗,∗∗ → E′∗,∗∗
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which is an isomorphism on the E1-terms, where we truncate the terms in
spectral sequence E∗,∗∗ to be zero if p + q > N to form the spectral sequence
E′∗,∗∗ . Since both spectral sequences are strongly convergent in total degree
< N , we see that the external product

p∗1 ∪ p∗2 : H∗(Y,W(L))⊗W (k) H
∗(X,W(M))→ H∗(Y ×k X,W(p∗1L⊗ p∗2M))

is an isomorphism in total degree < N .

Proposition 6.4. Let X =
∏r
i=1 BGLni

×
∏r+s
i=r+1 BSLni

.

1. For each p, CHp(X) := Hp(X,KMp ) is a free, finitely generated abelian
group.

2. Let L → X be a line bundle. Then for each p Hp(X,W(L)) is a finitely
generated free W (k)-module.

Moreover, we have

CH∗(X) = ⊗rZ,i=1CH∗(BGLni
)⊗Z ⊗r+sZ,i=r+1CH∗(BSLni

)

and for L = L1 � . . .� Lr+s, we have

H∗(X,W(L))

= ⊗rW (k),i=1H
∗(BGLni ,W(Li))⊗W (k) ⊗r+sW (k),i=r+1H

∗(BSLni ,W(Li)).

Proof. It is well-known that Gr(n,N) is a cellular variety and that

CH∗(Gr(n,N)) = Z[c1, . . . , cn]/(In,N )

where ci = ci(En,N ), En,N → Gr(n,N) the tautological rank n vector bundle
and the ideal In,N is homogeneous with generators in degree > N − n (where
we give ci degree i). As c1(detEn,N ) = c1(En,N ), the localization sequence for

the open immersion G̃r(n,N)→ detEn,N gives

CH∗(G̃r(n,N)) = Z[c1, . . . , cn]/(In,N , c1) ∼= Z[c2, . . . , cn]/(Jn,N )

with Jn,N homogeneous with generators again in degree > N − n. By
Lemma 6.2, this shows that

CH∗(BGLn) = Z[c1, . . . , cn], CH∗(BSLn) = Z[c2, . . . , cn].

Since cellular varieties satisfy the Künneth formula for the Chow groups, a
similar argument shows that

CH∗(

r∏
i=1

Gr(ni, N)×
r+s∏
i=r+1

G̃r(ni, N))

= ⊗ri=1CH∗(Gr(ni, N))⊗Z ⊗r+si=r+1CH∗(G̃r(ni, N))
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with the tensor products over Z. Thus by Lemma 6.2

CH∗(X) = ⊗ri=1CH∗(BGLni)⊗Z ⊗r+si=r+1CH∗(BSLni),

which proves (1).
For (2), Ananyevskiy [2, Introduction] computes

H∗(BSLn,W) =

{
W (k)[p1, . . . , pn/2, e]/(pn/2 − e2) for n even

W (k)[p1, . . . , pn−1/2] for n odd

In [28, Theorem 4.1], we have shown that the pullback by the projection
BSLn → BGLn induces an inclusion H∗(BGLn,W(L)) ⊂ H∗(BSLn,W) with
image given by

H∗(BGLn,W(L)) =


W (k)[p1, . . . , p[n/2]] for L = OBGLn

e ·W (k)[p1, . . . , pn/2] for n even and L = detEn

0 for n odd and L = detEn.

Applying Lemma 6.1, and then using Lemma 6.3 for the finite dimensional
approximations to

∏r
i=1 BGLni ×

∏r+s
i=r+1 BSLni , we see that for L = �ri=1Li

we have

H∗(X,W(L)) ∼= ⊗ri=1H
∗(BGLni

,W(Li))⊗W (k) ⊗r+si=r+1H
∗(BSLni

,W)

where all tensor products are over W (k). This together with our description
of H∗(BGLn,W(L)) and H∗(BSLn,W) proves (2).

Remark 6.5. The last two results for the product scheme
∏r
i=1 Gr(ni, Ni) ×∏s

j=1 G̃r(mj ,Mj) and the product ind-scheme
∏r
i=1 BGLni

×
∏s
j=1 BSLmj

cer-
tainly hold more generally, but as we only need them in these cases, we have
refrained from formulating our results in greater generality.

7 Decomposing the Chow-Witt Euler class

In this section we show that in universal cases, the Milnor-Witt Euler class
is determined by the associated top Chern class together with the Euler class
in W-cohomology. Wendt [53] and Hornbostel-Wendt [19] give a detailed de-
scription of the Milnor-Witt Chow groups of Grassmannians, which forms an
essential part of the argument; we recall some aspects of this treatment here.
As mentioned at the end of § 3, we have the sheaf I ⊂ GW of augmentation
ideals, that is, the kernel of the rank homomorphism rank : GW → Z. We have
the powers Im and the twisted version Im(L) ⊂ GW(L) fitting into an exact
sequence

0→ Im+1(L)→ KMW
m (L)

πm−−→ KMm → 0,

where Im(L) =W(L) and KMm = 0 for m < 0. In addition, the graded subsheaf
I∗+1 ⊂ KMW

∗ forms a sub-homotopy module of KMW
∗ . Thus, we may apply

Lemma 6.1 and Proposition 6.2 to define H∗(BG, Im(L)).
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Multiplication by η ∈ KMW
−1 (k) induces the map ×η : KMW

m (L) → KMW
m−1(L)

and the corresponding colimit is isomorphic to W(L). This gives us the map
φm : KMW

m (L)→W(L).

Proposition 7.1. Let m be a non-negative integer. Let

X =

r∏
i=1

BGLni ×
s∏
j=1

BSLmi ,

and take L ∈ Pic(X). The map

Hm(X,KMW
m (L))

(φm,πm)−−−−−→ Hm(X,W(L))× CHm(X)

is injective.

Proof. Morel [33, Théorème 5.3] (see also [4, proof of Proposition 2.3.1]) shows
that KMW

m (L) fits into a fiber diagram

KMW
m (L)

pm

��

πm // KMm

red

��

Im(L)
ρm

// KMm /2

and multiplication by η induces a commutative diagram

KMW
m (L)

pm

��

×η
// KMW

m−1

pm−1

��

Im(L) // Im−1(L),

where Im(L) → Im−1(L) is the inclusion for m ≥ 1, the canonical surjection
GW(L) = KMW

0 (L) → W(L) for m = 0 and the identity map W(L) → W(L)
for m < 0. This identifies W(L) with colimm→−∞Im(L), giving the map
φ̃m : Im(L)→W(L), and factors φm : Hm(X,KMW

m (L))→ Hm(X,W(L)) as

Hm(X,KMW
m (L))

pm−−→ Hm(X, Im(L))
φ̃m−−→ Hm(X,W(L)).

By Proposition 6.4, Hm(X,W(L)) is a free W(k)-module. We apply [53,
Lemma 2.3], which shows that the map ρm : Hm(X, Im(L))→ Hm(X,KMm /2)
is injective on the kernel of φ̃m : Hm(X, Im(L))→ Hm(X,W(L))5. Following

5Although the results of Wendt and Wendt-Hornbostel used here and throughout the
proof are for smooth k-schemes rather than the ind-smooth scheme X, we may apply these
results to X by using the approximation result Proposition 6.2
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the remark of Wendt [53, §2.3], a twisted version of [19, Proposition 2.11] and
the fact that CHm(X) has no non-trivial 2-torsion implies that the map

(pm, πm) : Hm(X,KMW
m (L))→ Hm(X, Im(L))×Hm(X,KMm )

is injective. Since red ◦ πm = ρm ◦ pm, it follows that

(φm, πm) : Hm(X,KMW
m (L))→ Hm(X,W(L))×Hm(X,KMm )

is injective as well. Noting that Hm(X,KMm ) = CHm(X) finishes the proof.

We recall Ananyevskiy’s SL2 splitting principle.

Theorem 7.2 (Ananyevskiy [2]). Let A ∈ SH(k) be an SL-oriented ring spec-
trum such that ×η acts invertibly on A∗,∗(k). Let ιn : SL2× . . .× SL2 → SL2n

be the block-diagonal embedding (with n copies of SL2). Then the induced map

ι∗n : A∗∗(BSL2n)→ A∗∗(BSL2× . . .× BSL2)

is injective. Moreover

A∗∗(BSL2× . . .× BSL2) ∼= A∗∗(BSL2)⊗n

where the tensor product is over A∗∗(k).

This is not stated as such in [2], but follows directly from [2, Theorem 6,
Theorem 10]. Using Proposition 7.1, we can refine this to a GL2-splitting
principle for Milnor-Witt cohomology

Theorem 7.3. Let n be a positive integer. For n = 2m even, consider the
block-diagonal embedding

ιn : Gn := (GL2)m → GLn

and for n = 2m+ 1 odd, consider the the block-diagonal embedding

ιn : Gn := (GL2)m ×GL1 → GLn

Then for L ∈ Pic BGLn, Bιn induces an injection

Bι∗n : Hp(BGLn,KMW
p (L))→ Hp(BGn,KMW

p (ι∗nL)).

Moreover the map BSL
[n/2]
2 → BGLn induced by the block-diagonal map

(SL2)m → GLn for n = 2m and (SL2)m × Id → GLn for n = 2m + 1 in-
duces an injection

Hp(BGLn,W(L))→ Hp((SL2)[n/2],W)
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Proof. By Proposition 7.1, we have the injection

Hp(BGLn,KMW
∗ (L))→ Hp(BGLn,W(L))× CHp(BGLn).

[28, Theorem 4.1] and the fact that BSL1 = {∗} implies that
Hp(BGL1,W(L)) = 0 for p > 0 and all L, H0(BGL1,W(detE1)) = 0
and H0(BGL1,W) = W (k). Similarly, [28, Theorem 4.1], together with
Ananyeskiy’s SL2 splitting principle gives the injection

Hp(BGLn,W(L))→ Hp((BSL2)[n/2],W)

factoring as

Hp(BGLn,W(L))
Bι∗n−−→ Hp(BGn,W(ι∗nL))→ Hp((BSL2)[n/2],W),

with the second map induced by the inclusion SL2 → GL2 (and {1} → GL1

if n is odd). The classical splitting principle shows that Bι∗n : CHp(BGLn) →
CHp(BGn) is injective, which completes the proof.

Corollary 7.4. Let n be a positive integer, L ∈ Pic BGLn. Then the map

Hp(BGLn,KMW
p (L))→ [H∗(BSL2,W)⊗[n/2]]p × [CH∗(P∞)⊗n]p

induced by the diagonal embeddings (SL2)[n/2] → GLn, GLn1 → GLn and the
maps φ2, π1 is injective. Here the first tensor product is over W (k) and the
second is over Z.

Proof. This follows from Proposition 7.1 and Theorem 7.3, together with The-
orem 7.2 and the classical splitting principle for the Chow groups.

Remark 7.5. We recall that H∗(BSL2,W) = W (k)[eW(E2)] and CH∗(P∞) =
Z[c1(E1)].

8 Dual bundles

The main result of this section is the comparison of the Chow-Witt Euler classes
for E and the dual E∨.

Theorem 8.1. Let X be a smooth quasi-projective scheme over k, E a rank n
vector bundle on X and E∨ the dual bundle. Let

ψ : Hn(X,KMW
n (det−1E∨))→ Hn(X,KMW

n (det−1E))

be the isomorphism induced by ψdet−1 E (3.5). Then

ψ(eCW(E∨)) = (−1)neCW(E)

in Hn(X,KMW
n (det−1E)).
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In the forerunner [27] of this article, we proved this result by identifying the
Euler class as an obstruction class.

Proof. To simplify the notation, we drop the mentions of the isomorphism ψ.
ForX a smooth quasi-projective k-scheme and E → X a rank n bundle, we have
a Jouanolou cover p : X̃ → X of X, an affine space bundle over X with X̃ affine.
Since an affine space bundle is locally trivial in the Zariski topology (Hilbert
theorem 90) and Milnor-Witt cohomology is A1-homotopy invariant [35, The-
orem 3.37], the Mayer-Vietoris property for Zariski cohomology implies that p
induces an isomorphism Hn(X,KMW

n (det−1E))→ Hn(X̃,KMW
n (det−1 p∗E)).

Thus it suffices to prove the result for X affine, in which case E∨ is glob-
ally generated and is thus E is the pull-back of the tautological sub-bundle
En → BGLn for some morphism f : X → Gr(n, n + m) ⊂ BGLn. Thus we
need only show that eCW(E∨n ) = (−1)neCW(En).
The map of sheaves φn : KMW

n →W arises from a map of SL-oriented theories,
and in particular is compatible with the respective Euler classes of vector bun-
dles; the same holds for πn : KMW

n → KMn . Passing to Hn(−,KMn ) = CHn(−),
the Euler class of En is the top Chern class cn(En) ∈ CHn(BGLn), and it
follows easily from the splitting principle that cn(E∨n ) = (−1)ncn(En), that is,
πn(eCW(E∨n )) = πn((−1)neCW(En)) ∈ CHn(BGLn).
We have the Euler class eW(En) ∈ Hn(BGLnW(det−1(En))). In case n is odd,
it follows from Lemma 4.3 and the identity W = KMW

∗ [η−1] that eW(En) =
0 = eW(E∨n ) in Hn(BGLn,W(det−1(En))).
If n = 2m is even, we use Corollary 7.4. By the naturality of the Euler classes,
the image of eCW(En) under the map

Hn(BGLn,KMW
n (det−1(En)))→ [H∗(BSL2,W)⊗W (k)m]n × [CH∗(BGL2)⊗m]n

is (eW(Ẽ2)⊗m, c2(E2)⊗m), and similarly for the image of eCW(E∨n ). This re-
duces us to the case of a rank 2 bundle with trivialized determinant.
For V → X of rank 2, we have the canonical isomorphism V ∼= V ∨ ⊗ detV
induced by the perfect pairing V × V → detV , inducing the identity

eW(V ) = eW(V ∨ ⊗ detV ) ∈ H2(X,W(det−1 V ))

An isomorphism ρ : detV → OX induces the isomorphism IdV ∨ ⊗ ρ : V ∨ ⊗
detV → V ∨, giving the identity

ρ∗(e
W(V ∨ ⊗ detV )) = eW(V ∨) ∈ H2(X,W(det−1 V ∨))

The map ρ∗ involves the isomorphism det ρ−1 ◦ det ρ∨ : W(det−1 V ) ∼=
W(det−1 V ∨)). A direct computation shows that det ρ−1 ◦ det ρ∨ = ψdetV ,
so

ψdet−1 V (eW(V ∨)) = eW(V ).

Thus, we have the identities πn(eCW(E∨n )) = (−1)nπn(eCW(En))
in CHn(BGLn) and φn(eCW(E∨n )) = (−1)nφn(eCW(En)) in
Hn(BGLn,W(det−1(En))); Proposition 7.1 completes the proof.
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The corresponding identity for hermitian K-theory is also valid and the proof
is considerably easier. For L,M → X line bundles, the exact functor −⊗OX

M
on complexes of OX -modules induces the map

ψM : KOa,b(X,L)→ KOa,b(X,L⊗M⊗2)

Theorem 8.2. Let X be a smooth quasi-projective scheme over k, E a rank n
vector bundle on X and E∨ the dual bundle. Then

ψdet−1 E(eKO(E∨)) = (−1)neKO(E)

in KO2n,n(X,det−1E).

Proof. We have the hyperbolic maps

hdet−1 E,n : K0(X) = KGL2n,n(X)→ KO2n,n(X,det−1E)

and

hdetE,n : K0(X) = KGL2n,n(X)→ KO2n,n(X,detE)

with hdet−1 E,n(V ) = (V ⊕ (V ∨ ⊗ det−1E[n])), h(candet−1 E[n])), hdetE,n(V ) =
(V ⊕ (V ∨ ⊗ detE[n])), h(candetE[n])), where canL[n] is the canonical pairing
V × (V ∨ ⊗ L[n])→ L[n] and

h(canL[n]) =

(
0 canL[n]

canL[n] 0

)
.

Explicitly

ψdet−1 E((−1)i(hdetE,n(ΛiE)) = ψdet−1 E(hdetE,n(ΛiE[i]))

= hdet−1 E,n(ΛiE ⊗ det−1E[i])

∼= hdet−1 E,n(ΛiE∨[n− i]) = (−1)n+ihdet−1 E,n(ΛiE∨).

the isometry arising from exchanging the order of the summands ΛiE ⊗
det−1E[i] = (ΛiE∨[n − i])∨ ⊗ det−1E[n] and ΛiE∨[n − i] = (ΛiE ⊗
det−1E[i])∨ ⊗ det−1E[n].
For n odd, we have

eKO(E) =

n−1/2∑
i=0

(−1)ihdet−1 E,n(ΛiE∨), eKO(E∨) =

n−1/2∑
i=0

(−1)ihdetE,n(ΛiE)

so ψdet−1 E(eKO(E∨)) = (−1)neKO(E).
For n even,

eKO(E) = hdet−1 E,n(⊕n/2−1
i=0 (−1)iΛiE∨) + (Λn/2E∨[n/2], qE,n/2)
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where qE,n/2 is the restriction of qE . We have a similar formula for eKO(E∨).
Arguing as above, we have

ψdet−1 E(hdetE,n(⊕n/2−1]
i=0 (−1)iΛiE)) = hdet−1 E,n(⊕n/2−1

i=0 (−1)iΛiE∨),

so we need to show that

ψdet−1 E((Λn/2E[n/2], qE∨,n/2)) = (Λn/2E∨[n/2], qE,n/2)

in KO2n,n(X). This follows from the isomorphism Λn/2E∨ ∼= Λn/2E⊗det−1E
defined by the perfect pairing Λn/2E ⊗ Λn/2E → detE.

9 Symmetric powers and tensor products

We give a few additional applications of the results of §7.
Recall the hyperbolic element h ∈ KMW

0 (k), h = 2 + [−1]η = 〈1〉 + 〈−1〉,
corresponding to the hyperbolic class H ∈ GW(k). Let L → X be a line
bundle on X ∈ Smk. The relations η · h = 0 and KMn = KMW

n (L)/η · KMW
n+1 (L)

show that the map ×h : KMW
n (L)→ KMW

n (L) descends to the hyperbolic map
of sheaves on X

h̄L : KMn → KMW
n (L)

and πn ◦ h̄L : KMn → KMn is multiplication by 2.

Theorem 9.1. Let V → X be a rank two bundle on X ∈ Smk. Suppose
chark = 0 or 2n is prime to chark. Let L = det−1 SymnV . Then there are
universal integers Bi,n, i = 0, . . . , [n−1

2 ], such that

eCW(SymnV ) =



h̄L(c1(V ) ·
∑n
i=0

∑(n−2)/2
i=0 Bi,nc1(V )2ic2(V )(n−2i)/2)

for n even

n!!eCW(V )(n+1)/2

+h̄L(
∑(n−1)/2
i=0 Bi,nc1(V )2ic2(V )(n−2i+1)/2)

for n odd.

Here n!! = n(n− 2)(n− 4) · · · 3 · 1 for n odd.

Proof. SymnV has rank n+ 1; we first compute cn+1(SymnV ). Suppose V has
Chern roots ξ1, ξ2. Then SymnV has Chern roots {(n − i)ξ1 + iξ2}0≤i≤n and
thus

cn+1(SymnV ) =

n∏
i=0

((n− i)ξ1 + iξ2)

Note that

((n− i)ξ1 + iξ2)(((n− i)ξ2 + iξ1) = i(n− i)(ξ2
1 + ξ2

2) + (i2 + (n− i)2)ξ1ξ2

= i(n− i)c1(V )2 + (2i− n)2c2(V )
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so

cn+1(SymnV ) =


(n/2)c1(V ) ·

∏(n−2)/2
i=0 i(n− i)c1(V )2 + (n− 2i)2c2(V )

for n even∏(n−1)/2
i=0 i(n− i)c1(V )2 + (n− 2i)2c2(V )

for n odd

This gives us the universal expression

cn+1(SymnV )) =

{
c1(V ) ·

∑(n−2)/2
i=0 Ai,nc1(V )2ic2(V )(n−2i)/2 for n even∑(n−1)/2

i=0 Ai,nc1(V )2ic2(V )(n+1−2i)/2 for n odd

with the Ai,n ∈ Z. In case n > 0 is even, all the Ai,n are even, and in case n is
odd, all the Ai,n except for A0,n are even. Let

Bi,n =

{
(1/2)Ai,n for n even, or for n odd and i > 0

(1/2)(A0,n − n!!) for n odd and i = 0.

By [28, Theorem 8.1],

eW(SymnV ) =

{
0 for n even

n!! · eW(V )(n+1)/2 for n odd.

By Proposition 7.1 and the identities

πn+1 ◦ h̄L = 2 · Id, πn+1(eCW(−)) = cn+1(−),

φn+1 ◦ h̄L = 0, φn+1(eCW(−)) = eW(−)

the result follows in case V is the universal rank 2 bundle on BGL2; the result
in general follows by using a Jouanolou cover for X, reducing to the case of V
globally generated, and then pulling back from the universal case.

Our next formula is for the Euler class of V ⊗ V ′, for V, V ′ rank two bundles.
The expression for the Euler class in W-cohomology was worked out in [28,
Proposition 9.1]; there is a perhaps surprising asymmetry in the formula, which
we should explain.
Let V, V ′ be rank two bundles on some X ∈ Smk. We have the universal
isomorphism

ρV,V ′ : det−1(V ⊗ V ′) ∼−→ (detV )⊗−2 ⊗ (detV ′)⊗−2

which in terms of local framings e1, e2 for V and f1, f2 for V ′ sends

[(e1 ⊗ f1) ∧ (e2 ⊗ f1) ∧ (e1 ⊗ f2) ∧ (e2 ⊗ f2)]−1

to
(e1 ∧ e2)⊗−2 ⊗ (f1 ∧ f2)⊗−2.
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Note that the diagram

det−1(V ⊗ V ′)

det−1(τV,V ′ )

��

ρV,V ′
// (detV )⊗−2 ⊗ (detV ′)⊗−2

τ(detV )⊗−2,(detV ′)⊗−2

��

det−1(V ′ ⊗ V )
ρV ′,V

// (detV )⊗−2 ⊗ (detV ′)⊗−2

anti-commutes. With this in mind, we recall the formula for eW(V ⊗ V ′),

ρV,V ′∗(e
W(V ⊗ V ′)) = eW(V )2 − eW(V ′)2 ∈ H4(X,W) (9.1)

For simplicity, we have omitted the canonical isomorphisms

H4(X,W((detV )⊗−2 ⊗ (detV ′)⊗−2)) ∼= H4(X,W)

and
H2(X,W(det−2(V )) ∼= H2(X,W) ∼= H2(X,W(det−2(V ′))

Theorem 9.2. Let V, V ′ be rank two bundles on X ∈ Smk. Then

ρV,V ′∗(e
CW(V ⊗ V ′)) = eCW(V )2 + 〈−1〉 · eCW(V ′)2

+ eCW(V ) · eCW(detV ′) · eCW(detV ⊗ detV ′)

+ eCW(V ′) · eCW(detV ) · eCW(detV ⊗ detV ′)

− h̄(c2(V )c2(V ′)) ∈ H4(X,KMW
4 ) (9.2)

Proof. Let L = (detV )⊗−2 ⊗ (detV ′)⊗−2. Note that the terms

eCW(V ) · eCW(detV ′) · eCW(detV ⊗ detV ′),

eCW(V ′) · eCW(detV ) · eCW(detV ⊗ detV ′)

in the right-hand side of (9.2) are in H4(X,KMW
4 (L)) ∼= H4(X,KMW

4 ).
As in the proof of Theorem 9.1, we may replace X with BGL2×BGL2 and take
V = p∗1E2, V ′ = p∗2E2. We note that eW(L) = 0 for each line bundle L, and
〈−1〉 = −1 in W (k), so the expression on the right-hand side of the (9.2) maps
to eW(V )2−eW(V ′)2 under the canonical map φ4 : H4(X,KMW

4 )→ H4(X,W).
By [28, Proposition 9.1], the identity (9.2) holds after applying φ4.
The splitting principle gives

c4(V ⊗ V ′) = c2(V )2 + c2(V ′)2 + c1(V ) · c1(V ′)(c2(V ) + c2(V ′))

+ c1(V )2 · c2(V ′) + c2(V ) · c1(V ′)2 − 2c2(V )c2(V ′)

= c2(V )2 + c2(V ′)2

+ c2(V ) · c1(detV ′) · c1(detV ⊗ detV ′)

+ c2(V ′) · c1(detV ) · c1(detV ⊗ detV ′)

− 2c2(V )c2(V ′)
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We note that 〈−1〉 maps to 1 under the rank map GW(k) → Z, that
π2(eCW(V )) = c2(V ), π2(eCW(V ′)) = c2(V ′) and π2(eCW(L)) = c1(L) for
L a line bundle. Thus the identity (9.2) holds after applying π4, and then
Proposition 7.1 completes the proof.

Remark 9.3. Using the GL2-splitting principle (Theorem 7.3) one reduces the
proof of identities for the Euler classes of a functor ρ of representations applied
to a sequence of bundles V1, . . . , Vr, to the case of direct sums of rank two
bundles and line bundles. For instance, Theorem 9.2 gives rise, at least in
principle, to formulas for the Euler class eCW of tensor products of bundles of
arbitrary even ranks.

10 Twisting a bundle by a line bundle

Rather than looking at the Euler class for tensor product of rank 2 bundles,
as in Theorem 9.2, we wish to compute the Euler class of V ⊗ L, for L a line
bundle and V of arbitrary rank r.

Here the situation is a bit more complicated. For example, there is no formula
for eCW(L⊗M) in terms of eCW(L) and eCW(M) for L,M → X arbitrary line
bundles. To see this, consider the universal case X = P∞ × P∞, L = O(1, 0),
M = O(0, 1). Then we have

eCW(L⊗M) ∈ H1(X,KMW
1 (L−1 ⊗M−1)),

eCW(L) ∈ H1(X,KMW
1 (L−1)),

eCW(M) ∈ H1(X,KMW
1 (M−1)).

Thus, if one wishes to express eCW(L⊗M) in terms of eCW(L) and eCW(M),
one would need classes in H0(X,KMW

0 (L−1)) and H0(X,KMW
0 (M−1)). These

groups are however both zero: By Proposition 7.1 and the vanishing of
H∗(P∞,W(O(−1))), H0(X,KMW

0 (M−1)) is a subgroup of CH0(X) ∼= Z. But
restricting to pt × P∞ is an injective map from CH0(X) to CH0(P∞), while
Wendt’s theorem [53, Theorem 1.1] shows that H0(P∞,KMW

0 (O(−1))) = 0, so
the map H0(X,KMW

0 (M−1))→ CH0(P∞) is the zero map.

We will find a universal formula for eCW(V ⊗ L) if L ∼= M⊗2 for some line
bundle M (Theorem 10.1 ). For example, in the case of V = L′ a line bundle,
we have the formula

eCW(L⊗ L′) = h̄L′−1(c1(M)) + eCW(L′),

where we use the comparison isomorphisms

H1(X,KMW
1 (L−1 ⊗ L′−1)) ∼= H1(X,KMW

1 (M−2 ⊗ L′−1))

∼= H1(X,KMW
1 (L′−1))
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and the hyperbolic map h̄L′−1 : H1(X,KM1 ) → H1(X,KMW
1 (L′−1)) to put all

the classes in the same group. Passing to the first Chern classes, we recover
the usual formula

c1(L⊗ L′) = 2c1(M) + c1(L′).

For the KO-valued Euler classes, we also have a universal formula in case V
has even rank and L is an arbitrary line bundle (Theorem 10.2).
We first consider the classes in Milnor-Witt cohomology and Witt cohomology.

Theorem 10.1. Let V → X be a rank r vector bundle on X ∈ Smk and let L
be a line bundle.

(1) Suppose r = 2m is even. Then

ψL⊗m(eW(V ⊗ L)) = eW(V )

in Hr(X,W(det−1 V )).

(2) Suppose we have an isomorphism ρ : L
∼−→ M⊗2 for some line bundle M

on X. Then

ψM⊗r ◦ρ⊗−r∗ (eCW(V ⊗L)) = eCW(V )+ h̄det−1 V (c1(M) ·
r∑
i=1

cr−i(V ) ·c1(L)i−1).

in Hr(X,KMW
r (det−1 V )) (see (3.6) for the definition of the map ρ∗ and (3.5)

for the map ψ).

Proof. The map

ρ⊗−r∗ : Hr(X,det−1(V ⊗ L))→ Hr(X,det−1(V )⊗M⊗−2r),

is the map induced by the isomorphisms

det−1(V ⊗ L)
∼−→ det−1(V )⊗ L⊗−r Id⊗ρ⊗−r

−−−−−−→ det−1(V )⊗M⊗−2r

where the first isomorphism sends (v1 ⊗ λ1) ∧ . . . ∧ (vr ⊗ λr) to (v1 ∧ . . . ∧
vr)⊗ (λ1 ⊗ . . .⊗ λr). Note that different choices of ρ multiplies ρ⊗−r∗ by 〈ur〉
for some u ∈ O×X(X). Thus, if r is even, ρ⊗−r∗ is independent of the choice
of isomorphism ρ, and if r is odd, Lemma 4.3 implies ρ⊗−r∗ (eCW(V ⊗ L)) is
independent of the choice of ρ. For this reason, we simplify the notation in the
proof by assuming L = M⊗2, ρ = Id, in case (2).
We first consider the universal situation, namely, on X := BGLr ×kP∞, we
consider the bundles Er � O(1) → X and p∗1Er → X. Let 0 ∈ P∞(k) be the
point (1, 0, . . .), giving the section s0 : BGLr → BGLr ×kP∞. Since

Hn(P∞,W) =

{
W (k) for n = 0

0 else,

(see, e.g., [28, Theorem 4.1] in the case n = 1) the Künneth formula Propo-
sition 6.4 shows that p∗1 : H∗(BGLr,W(M)) → H∗(BGLr ×kP∞,W(p∗1M)) is
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an isomorphism, with inverse the pull-back by s∗0. In both cases (1) and (2),
the comparison isomorphism ψO(2m) restricts via s0∗ to the identity, hence

ψO(m)(e
W(V ⊗O(1))) = eW(V )

if rank(V ) = 2m or

ψO(r)(e
W(V ⊗O(2))) = eW(V )

if rank(V ) = r.
In general, using a Jouanolou cover we may assume that X is affine. Pulling
back by the classifying morphism f = (fV , fL) : X → BGLr ×kP∞ in case
V has even rank r = 2m, or by f = (fV , fM ) : X → BGLr ×kP∞ in case
L = M⊗2, we have

ψL⊗m(eW(V ⊗ L)) = eW(V )

if V has rank 2m and

ψM⊗r (eW(V ⊗ L)) = eW(V )

if L = M⊗2.
This proves (1) and in case (2) Lemma 6.1, Proposition 6.2 and Proposition 7.1
reduce us to showing that

cr(V ⊗ L) = cr(V ) + πn ◦ h̄det−1 V (c1(M) ·
r∑
i=1

c1(L)i−1 · cr−i(V ))

Since πn ◦ h̄det−1 V is multiplication by 2, this follows from the formula

cr(V ⊗ L) = cr(V ) +

r∑
i=1

c1(L)i · cr−i(V ),

an easy consequence of the splitting principle.

Here is the analogous result in hermitian K-theory.

Theorem 10.2. Let V → X be a rank r vector bundle on X ∈ Smk and let L
be a line bundle.

(1) Suppose r = 2m is even. Then

ψL⊗m(eKO(V ⊗ L)) = eKO(V ) + hdet−1 V (

m−1∑
i=0

(−1)i[L⊗m−i ⊗ ΛiV ∨])

KO2r,r(X,det−1 V ).

(2) Suppose we have an isomorphism ρ : L
∼−→ M⊗2 for some line bundle M

on X. Then

ψM⊗r ◦ρ⊗−r∗ (eKO(V ⊗L)) = eKO(V )+hdet−1 V,r(

[(r−1)/2]∑
i=0

(−1)i[M⊗r−2i⊗ΛiV ∨])

in KO2r,r(X,det−1 V ).
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Proof. Suppose r = 2m. Since

eKO(V ⊗ L) = (⊕ri=0Λi(V ⊗ L)∨[i], qV⊗L)

we have

ψL⊗m(eKO(V ⊗ L)) = (⊕ri=0L
⊗m ⊗ Λi(V ⊗ L)∨[i], Id⊗ qV⊗L)

Since

L⊗m⊗Λi(V ⊗L)∨ = L⊗m−i⊗ΛiV ∨, L⊗m⊗Λr−i(V ⊗L)∨ = L⊗i−m⊗Λr−iV ∨

we see that

ψL⊗m(eKO(V ⊗ L))− eKO(V ) = ⊕[(r−1)/2]
i=0 hdet−1 V,r(L

⊗m−i ⊗ ΛiV ∨[i])

which proves case (1).
For case (2), we may assume as in the proof of Theorem 10.1 that L = M⊗2

and ρ = Id. We have

ψM⊗r (eKO(V ⊗ L)) = (⊕ri=0M
⊗r ⊗ Λi(V ⊗ L)∨[i], Id⊗ qV⊗L)

and

M⊗r⊗Λi(V ⊗L)∨ = M⊗r−2i⊗ΛiV ∨, M⊗r⊗Λr−i(V ⊗L)∨ = M⊗2i−r⊗Λr−iV ∨

so

ψM⊗r (eKO(V ⊗ L))− eKO(V ) = ⊕[(r−1)/2]
i=0 hdet−1 V,r(M

⊗r−2i ⊗ ΛiV ∨[i])

11 Quadratic Riemann-Hurwitz formulas

We consider a projective morphism f : Y → X, with Y a smooth projective
integral k-scheme, and X a smooth projective curve over k. Kass and Wickel-
gren have raised the question of finding Grothendieck-Witt liftings of classical
Euler characteristic formulas for such maps and have obtained formulas of this
type. We give a different approach here to this problem.

Proposition 11.1. Let f be a surjective projective morphism f : Y → X,
with Y a smooth projective integral k-scheme of dimension r over k, and X a
smooth projective curve over k.

1. Suppose that X admits a half-canonical line bundle M , with isomorphism
ρ : ωX/k →M⊗2.6 Then

ψM⊗−r ◦ ρ⊗r∗ (eCW(ΩY/k ⊗ f∗ω−1
X/k)) = eCW(ΩY/k)

+ h̄ω−1
X/k

(c1(f∗M−1) ∪ cr−1(ΩY/k)),

6This condition is satisfied if for instance X = P1
k or if X is a hyperelliptic curve but is

not satisfied if X is a conic without a rational point. A half-canonical line bundle is often
referred to as a theta characteristic, see for example [5, 37].
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2. Suppose that dimkX = 2m is even. Then

ψω⊗−m
X/k

(eW(ΩY/k ⊗ f∗ω−1
X/k)) = eW(ΩY/k).

Proof. This is just a special case of Theorem 10.1, noting that c1(f∗M−1) ∪
c1(f∗ω−1

X/k) = f∗(c1(M−1) ∪ c1(ω−1
X/k)) = 0 since X is a curve. Note that, just

as remarked in the proof of Theorem 10.1, the choice of isomorphism ρ does
not play a role.

Under the assumption that X admits a half-canonical line bundle M , we may
transform e(ΩY/k ⊗ f∗ω−1

X/k) ∈ Hr(Y,KMW
r (ω−1

Y/k ⊗ f
∗ω⊗rX/k)) to an element of

Hr(Y,KMW
r (ωY/k)) by applying the isomorphism ψωY/k⊗f∗M−⊗r ◦ρ⊗r∗ , and the

image of eCW(ΩY/k⊗f∗ω−1
X/k) is independent of the choice of isomorphism ρ and

choice of M . We make a similar adjustment if r is even, using ψ
ωY/k⊗f∗ω

−⊗r/2

X/k

.

We will omit the comparison isomorphism from the notation in what follows.
For instance, we have the pushforward map

πY ∗ : Hr(Y,KMW
r (ωY/k))→ H0(Spec k,KMW

0 ) = GW(k)

which induces pushforward maps

πY ∗ : Hr(Y,KMW
r (ω−1

Y/k))→ H0(Spec k,KMW
0 ) = GW(k),

and, if r is even or if we have an isomorphism ρ : ωX/k →M⊗2,

πY ∗ : Hr(Y,KMW
r (ω−1

Y/k ⊗ f
∗ω⊗rX/k))→ H0(Spec k,KMW

0 ) = GW(k).

The pushforward on Hr(Y,KMW
r (ω−1

Y/k)) is induced by the pushforward map

on Hr(Y,KMW
r (ωY/k)) by composing with ψωY/k

, and the pushforward on

Hr(Y,KMW
r (ω−1

Y/k⊗f
∗ω⊗−rX/k )) is induced by the one on Hr(Y,KMW

r (ω−1
Y/k)) by

composing with ψ
f∗ω

⊗r/2

X/k

if r is even, or by composing with ψf∗M⊗r ◦ (f∗ρ)⊗−r∗

if we have an isomorphism ρ : ωX/k
∼−→ M⊗2. As noted above, the value of

this last pushforward on eCW(ΩY/k ⊗ f∗ω−1
X/k) is independent of the choice of

isomorphism ρ and choice of M .

Theorem 11.2. Let f be a projective morphism f : Y → X, with Y a smooth
projective integral k-scheme of dimension r over k, and X a smooth projective
curve over k. Let

D(f) := (1/2)[degk(cr(ΩY/k ⊗ f∗ω−1
X/k))− deg(cr(ΩY/k))].

1. D(f) is an integer.

2. Suppose X admits a half-canonical line bundle or r is even. Then

πY ∗(e
CW(ΩY/k ⊗ f∗ω−1

X/k)) = (−1)rχ(Y/k) +D(f) ·H

in GW(k).
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Proof. To compute the degree, we may assume that k is algebraically closed.
Let L = f∗ω−1

X/k. Since ωX/k has degree 2gX − 2, and k is algebraically closed,

there is a half-canonical line bundle M on X. Since X is a curve, c1(L)2 = 0,
and we have

cr(ΩY/k ⊗ f∗ω−1
X/k))− cr(ΩY/k) = c1(L) ∪ cr−1(ΩY/k)

so

D(f) = (1/2) degk[c1(L) ∪ cr−1(ΩY/k)]

= degk[c1(f∗M−1) ∪ cr−1(ΩY/k)]

so D(f) is an integer.
If X admits a half-canonical line bundle M (over the original field k), then by
Theorem 4.1, Theorem 8.1 and Proposition 11.1, we have

πY ∗(e
CW(ΩY/k ⊗ f∗ω−1

X/k))

= πY ∗[e
CW(ΩY/k) + h̄(c1(f∗M−1) ∪ cr−1(ΩY/k))]

= πY ∗(e
CW(ΩY/k)) +D(f) ·H

= (−1)rχ(Y/k) +D(f) ·H.

If on the other hand Y has even dimension 2m, then we have

πY ∗(e
W(ΩY/k ⊗ f∗ω−1

X/k)) = πY ∗(e
W(ΩY/k))

in W (k), so πY ∗(e
CW(ΩY/k ⊗ f∗ω−1

X/k)) − πY ∗(eCW(ΩY/k)) ∈ GW(k) goes to

zero under the canonical surjection GW(k)→W (k). Thus

πY ∗(e
CW(ΩY/k ⊗ f∗ω−1

X/k))− πY ∗(eCW(ΩY/k) = ` ·H

for some integer `. Applying the rank homomorphism gives

degk(cr(ΩY/k ⊗ f∗ω−1
X/k))− degk(cr(ΩY/k)) = 2 · `

so ` = D(f).

We now turn to the discussion of the local invariants. As usual, a critical point
of f is a point y ∈ Y with df(y) = 0, a critical value of f is a point x = f(y)
of X with y a critical point. We assume that f has only finitely many critical
points and let c(f) denote the set of critical points.
In case Y has odd dimension, we assume we have a half-canonical line bun-
dle M and an isomorphism ρ : ωX/k → M⊗2. Thus, we have a comparison

isomorphism ψ : KMW
r (det−1(ΩY/k ⊗ f∗ω−1

X/k))→ KMW
r (ωY/k),

ψ :=

{
ψ
ωY/k⊗f∗ω

⊗r/2

X/k

if r is even

ψωY/k⊗f∗M⊗r ◦ ρ⊗−r∗ if r is odd, M a theta characteristic.
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Let y be a critical point of f , giving the Euler class with support

ey(df) := ey(ΩY/k ⊗ f∗ω−1
X/k; df) ∈ Hr

y (Y,KMW
r (ω−1

Y/k ⊗ f
∗ω⊗rX/k)).

Applying the comparison isomorphism ψ and the purity isomorphism

KMW
0 (y) ∼= Hr

y (Y,KMW
r (ωY/k))

we will also consider ey(df) as an element of KMW
0 (y). We have the pushforward

iy∗ : KMW
0 (y)→ Hr(Y,KMW

r (ωY/k)).

Remark 11.3. If r is odd, we have noted that ψ(eCW(ΩY/k ⊗ f∗ω−1
X/k)) does

not depend on the choice of M or ρ. However, this is not the case for the
local Euler classes ey(df). Nonetheless, we will omit this dependence from the
statements below, which remain valid for each such choice.

Corollary 11.4. Let f be a projective morphism f : Y → X, with Y a smooth
projective integral k-scheme of dimension r over k, and X a smooth projective
curve over k. Suppose f has only finitely many critical points. In addition,
suppose that X admits a half-canonical line bundle in case r is odd.Then

(−1)r · χ(Y/k) =
∑
y∈c(f)

πY ∗iy∗ey(df)−D(f) ·H

in GW(k).

Proof. Forgetting supports sends the Euler class with supports

edf=0(ΩY/k ⊗ f∗ω−1
X/k; df) ∈ Hr

df=0(Y,KMW
r (ω−1

Y/k ⊗ f
∗ω⊗rX/k))

to eCW(ΩY/k ⊗ f∗ω−1
X/k; df) in Hr(Y,KMW

r (ω−1
Y/k ⊗ f∗ω⊗rX/k)). Applying the

comparison isomorphism ψ to eCW(ΩY/k ⊗ f∗ω−1
X/k; df) and ψ and the inverse

of the Thom isomorphism to the local index ey(ΩY/k⊗f∗ω−1
X/k; df) as described

in the paragraphs above, we have

ψ(eCW(ΩY/k ⊗ f∗ω−1
X/k)) =

∑
y∈c(f)

iy∗ey(df).

Applying πY ∗ and using Theorem 11.2, this gives

(−1)r · χ(Y/k) =
∑
y∈c(f)

πY ∗iy∗ey(df)−D(f) ·H

in GW(k).

Remark 11.5. The rank of the term D(f) · H in Corollary 11.4 is (−1)r−1 ·
χtop(f−1(x)) · χtop(X) for x ∈ X a general geometric point.
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In case Y has odd dimension and there is a half-canonical bundle ρ : ωX/k
∼−→

M⊗2, there is a normalization that picks out good local parameters at critical
values of f : Y → X. As explained in Remark 2.1, we may (and will) assume
that k is perfect.
Let y ∈ Y be a critical point of f and let x = f(y) be the corresponding critical
value. A parameter tx ∈ mx is normalized if there is a generating section λM,x

of M in a neighborhood of x ∈ X such that

ρ⊗−1(∂/∂tx) = λ−2
M,x ⊗ k(x)

via the canonical isomorphism ω−1
X/k ⊗ k(x) ∼= (mx/m

2
x)∨.

Corollary 11.6. Let f be a projective morphism f : Y → X, with Y a smooth
projective integral k-scheme of dimension r over k, and X a smooth projective
curve over k. If r is odd, we assume X admits a half-canonical line bundle
ρ : ωX/k →M⊗2. Suppose f has only finitely many critical points.
For each y ∈ c(f), we choose a system of parameters ty1, . . . , t

y
r ∈ my and a

parameter tx ∈ mx, x = f(y); if r is odd, we assume that tx is normalized.
Write

d(f∗(tx)) =

r∑
i=1

syi · dt
y
i ; syi ∈ OY,y.

We have the class of the Scheja-Storch form [Bsy∗,ty∗ ] ∈ GW(k(y)). Then

(−1)rχ(Y/k) =
∑
y∈c(f)

Trk(y)/k([Bsy∗,ty∗ ])−D(f) ·H

in GW(k).

Remarks 11.7. 1. In our earlier version of this paper [27, Corollary 12.4], we had
an assumption on the local behavior of df (diagonalizability) that allowed an
explicit computation of the local index without having to use the Scheja-Storch
form; df is always diagonalizable if Y is a smooth curve. We also assumed in
loc. cit. that the residue field extension k(y)/k was separable. In another
result, [27, Theorem 12.7], we made the expression in [27, Corollary 12.4] even
more explicit in the case of a tamely ramified map of curves.

2. In [8] the authors of that paper use a Scheja-Storch form to give a quadratic
Riemann-Hurwitz formula for a separable map of smooth projection curves
over a field k that is also valid in the case of inseparable residue field extension
and for wild ramification; their formula agrees with the one of [27, Corollary
12.4] in the case of a separable residue field extension. They raise the question
(Remark 1.2(2)) of whether their explicit expression agrees with the abstract
pushforward of the local index; this has been settled affirmatively in [6]. Their
formula also agrees with the one given above in the case of a perfect base-field k.

Proof of Corollary 11.6. By Corollary 5.3, the local class ey(ΩY/k⊗f∗ω−1
X/k, df)

is given by

[Bsy∗,ty∗ ]⊗ ∂/∂t
y
1 · df∗(tx) ∧ . . . ∧ ∂/∂tyr · df∗(tx)⊗ ∂/∂ty1 ∧ . . . ∧ ∂/∂tyr
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in GW(k(y),det−1(ΩY/k ⊗ f∗ω−1
X/k) ⊗ det−1 my/m

2
y). Under the comparison

isomorphism ψ, this gets sent to [Bsy∗,ty∗ ] ∈ GW(k(y)).

Applying the canonical isomorphism iy∗ : GW(k(y))
∼−→ Hr

y (Y,KMW
r (ωY/k))

and the forget the supports map, we have

ψ(eCW(ΩY/k ⊗ f∗ω−1
X/k)) =

∑
y∈c(f)

iy∗ψ(ey(ΩY/k ⊗ f∗ω−1
X/k)) =

∑
y∈c(f)

[Bsy∗,ty∗ ]

and thus by Corollary 11.4, we have

(−1)r · χ(Y/k) =
∑
y∈c(f)

πy∗([Bsy∗,ty∗ ])−D(f) ·H

where πy : Spec k(y) → Spec k is the structure map. Since k is perfect, k(y)
is a separable extension of k, so πy∗ is the trace map Trk(y)/k : GW(k(y)) →
GW(k). This completes the proof.

Let f : Y → X be as before a morphism of a smooth integral projective k-
scheme Y of dimension r to a smooth projective curve X.
Let y ∈ Y be a critical point of f . Let t1, . . . , tr be a system of parameters at
y, and let tx ∈ mx be a parameter. Since y is a critical point of f , f∗(tx) is in
m2
y and thus

f∗(tx) =
∑
i≤j

aijtitj

for elements aij ∈ OY,y, uniquely determined modulo my. Let āij ∈ k(y) be
the residue of aij modulo my. Let

hij =


āij if i < j

2āii if i = j

āji if i > j

The symmetric matrix
H(f)y :=

(
hij
)

is the Hessian matrix of f with respect to the chosen system of parameters. The
point y is called a non-degenerate critical point of f if H(f)y is a non-singular
matrix and k(y)/k is a separable extension.
Let y be a non-degenerate critical point of f , let x = f(y). Choose a system
of parameters t1, . . . , tr at y and a parameter tx at x, and let H(f)y =

(
hij
)
.

The section df satisfies

df ≡
∑
i,j

hijtidtj ⊗ ∂/∂tx mod m2
y.

By Example 5.6, we have

ey(ΩY/k ⊗ f∗ω−1
X/k; df) = 〈detH(f)y〉 ⊗ ∂/∂tx.
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Corollary 11.8. Let f be a surjective projective morphism f : Y → X, with
Y a smooth projective integral k-scheme and X a smooth projective curve over
k. Suppose that f has only non-degenerate critical points. For each y ∈ c(f),
let x = f(y), choose a parameter tx ∈ mx, and let 〈detH(f)y〉 ∈ GW(y) be the
corresponding 1-dimensional quadratic form. In case Y has odd dimension, we
assume that X admits a half-canonical line bundle and that tx is normalized.
Then

(−1)r · χ(Y/k) =
∑
y∈c(f)

Trk(y)/k(〈detH(f)y〉)−D(f) ·H

in GW(k).

Proof. This follows directly from Corollary 11.6 and the preceding discussion.

Remark 11.9. Suppose X = P1
k. Let t = X1/X0 be the standard parameter on

A1 = P1 \ {(0 : 1)}. We have a unique isomorphism

ω−1
P1/k
∼= OP1(2)

sending ∂/∂t to X2
0 and ∂/∂t−1 to −X2

1 . We use the section X0 of M := OP1(1)
as our λM . For a closed point x ∈ A1

k, let gx ∈ k[t] be the monic irreducible
polynomial for x over k. Then

tx := (dgx/dt)
−1gx

is a normalized local parameter at x.

We apply these results to the case of a map of smooth projective curves f :
Y → X. For p : C → Spec k a smooth projective curve over k, define

gC/k := dimkH
0(C,ωC/k).

This is the usual genus of C if C is geometrically integral over k.

Theorem 11.10 (Riemann-Hurwitz formula for curves). Let f : Y → X be
a separable surjective morphism of smooth integral projective curves over k.
Suppose that X admits a half-canonical bundle M and fix an isomorphism
ρ : ωX/k →M⊗2. For y ∈ c(f), choose a parameter ty ∈ my and a normalized
parameter tx ∈ mx, x = f(y). Write

f∗(tx) = uyt
ny
y

with uy ∈ O×Y,y and let ūy ∈ k(y)× be the image of uy. Suppose that k(y) is
separable over k and ny is prime to chark for all y ∈ c(f). Then∑

y∈c(f)

Trk(y)/k(〈nyūy〉(ny − 1)ε) = (gY/k − 1− deg f · (gX/k − 1)) ·H

in GW(k).
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Proof. Since f is separable and surjective, c(f) is a finite set. Near y ∈ c(f)
we have

df = nyuyt
ny−1
y ⊗ dty ⊗ ∂/∂tx.

By Corollary 11.6, we have∑
y∈c(f)

Trk(y)/k(〈nyūy〉(ny − 1)ε) = −χ(Y ) +D(f) ·H.

Since Y has odd dimension over k, χ(Y ) = A · H for some integer A, by
Corollary 4.2. Thus∑

y∈c(f)

Trk(y)/k(〈nyūy〉(ny − 1)ε) = B ·H

for some integer B. Applying the rank homomorphism gives∑
y∈c(f)

[k(y) : k](ny − 1) = 2B

so the classical Riemann-Hurwitz formula tells us that

B = (gY/k − 1− deg f · (gX/k − 1)).

Remark 11.11. With notation as in Theorem 11.10, suppose y ∈ Y is a ramified
point. Then

〈nyūy〉 · (ny − 1)ε =

{
1
2 (ny − 1) ·H if ny is odd,

〈nyūy〉+ 1
2 (ny − 2) ·H if ny is even.

We can rewrite the GW-Riemann-Hurwitz formula as∑
y∈c(f),ny even

Trk(y)/k(〈nyūy〉)

=

gY/k − 1− deg f · (gX/k − 1)−
∑
y∈c(f)

[k(y) : k] ·
[
ny − 1

2

] ·H.
In other words, the ramification points with ny even impose a global relation
in GW(k) beyond the numerical identity

2gY/k − 2 = deg f · (2gX/k − 2) +
∑
y∈c(f)

[k(y) : k] · (ny − 1)

given by the classical Riemann-Hurwitz formula. One recovers the classical
Riemann-Hurwitz formula by applying the rank map to the GW version.
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Remark 11.12. Theorem 11.10 covers the case of tame ramification; in case of
wild ramification over a perfect base-field, one can use Corollary 11.6 and if
the base-field is not perfect, one simply extends to the perfect closure.

Example 11.13. We take k = R. Suppose we have a surjective map f : Y → P1
k

with Y a smooth projective curve of genus g. Suppose in addition that f is
simply ramified, that is, ny ≤ 2 for all y ∈ Y . Take a closed point y ∈ Y
with ny = 2. If k(y) = C, then the trace form (ei, ej) 7→ TrC/R(eieju) is
hyperbolic for all u ∈ C×. If k(y) = R, then πY ∗(ey(df)) is just the quadratic
form 〈2ūy〉, using tx = t− f(y) as the normalized local parameter at x = f(y)
and writing f∗(tx) = uyt

2
y. Thus, the extra information in the GW-Riemann-

Hurwitz formula is just that there are the same number of real ramified points
y of f with ūy > 0 as there are real ramified points y with ūy < 0. This is also
obvious by looking at the real points of Y , which is a disjoint union of circles,
and using elementary Morse theory.

Remark 11.14. Going back to the guiding example of smooth projective vari-
eties over R, the formula of Corollary 11.8 for a map f : Y → P1 may be viewed
as combining the classical enumerative formulas for counting degeneracies for
schemes over C with using Morse theory to compute the Euler characteristic
of a compact oriented manifold M by counting the number of critical points
of a map f : M → S1 having only non-degenerate critical points, where we
count a critical point with the sign of the Hessian determinant. In fact, as
the signature of a hyperbolic form in GW(R) is zero, and since the trace map
Tr : GW(C) → GW(R) sends q to rank(q) · h, taking the signature of the for-
mula in Corollary 11.8 expresses the Euler characteristic of Y (R)an as the sum
of the signs of the Hessian determinant at each of the real critical points of f .

Example 11.15 (Fibering by curves). We consider the case of a pencil of curves
in P2. Let C,C ′ be smooth curves of degree d in P2, intersecting transversely.
Let Z = C ∩C ′ and let F, F ′ ∈ k[X0, X1, X2]d be respective defining equations
for C and C ′. Let µZ : Y → P2 be the blow-up of P2 along Z. The rational
map f : P2 // P1,

f(x0 : x1 : x2) = (F (x0 : x1 : x2) : F ′(x0 : x1 : x2)),

defines a morphism f : Y → P1 with f−1(a : b) the curve bF − aF ′ = 0. We
suppose that for x ∈ P1, f−1(x) smooth except for x ∈ {x1, . . . , xs}, a set
of closed points of P1. For simplicity we assume in addition that for each i,
f−1(xi) is reduced and has a single ordinary double point yi as singular point
(we do not assume that k(yi) = k(xi)).
Note that our f has only non-degenerate critical points and for x ∈ P1 general,
the smooth curve f−1(x) satisfies degk c1(ωf−1(x)) = d(d − 3). This gives us
D(f) = d(d− 3); applying Corollary 11.8 and Proposition 2.4, we have

s∑
i=1

Trk(yi)/k〈detH(f)yi〉 = 〈1〉+ (d2 − 3d+ 1) ·H + 〈−1〉 · χ(Z/k).
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Since χ(Z/k) is the trace form of the finite separable extension k → k(Z),
our Riemann-Hurwitz formula gives a relation between this trace form and the
“ramification index”

∑s
i=1 Trk(yi)/k〈detH(f)yi〉. Taking the rank recovers the

numerical relation given by the classical Riemann-Hurwitz formula, namely

s∑
i=1

[k(yi) : k] = 3d2 − 6d+ 3.

12 Generalized Fermat hypersurfaces

We use Corollary 11.6 to compute the Euler characteristic of a generalized Fer-
mat hypersurface X in Pn+1, that is, one with defining polynomial

∑n+1
i=0 aiX

m
i .

Fix an integer m ≥ 1 and a base-field k of characteristic prime to 2m; we
may assume that k is infinite by replacing k with infinite extension of `-power
degree for some odd prime `. Let X = X(a0, . . . , an+1;m) ⊂ Pn+1 be the

hypersurface with defining equation
∑n+1
i=0 aiX

m
i = 0, ai ∈ k×. Let π : X̃ → X

be the blow-up along the closed subscheme Z defined by Xn = Xn+1 = 0; note
that Z = X(a0, . . . , an−1;m). We apply Proposition 2.4 to give

χ(X̃) = χ(X) + 〈−1〉χ(Z). (12.1)

We have the morphism
f : X̃ → P1

induced by the rational map X → P1, (x0 : . . . : xn+1) 7→ (xn : xn+1). The
map f has non-degenerate critical points (0 : . . . : 0 : xn : xn+1) satisfying
anx

m
n +an+1x

m
n+1 = 0 (the critical points do not lie over Z, so we may describe

the critical points of f as points of X). Since anan+1 6= 0, the critical points
of f lie in the affine open subset Xn+1 6= 0, so we may use affine coordinates
xi := Xi/Xn+1.
On the affine hypersurface X0 ⊂ An+1 defined by

∑n
i=0 aix

m
i + an+1 = 0, the

map f is given by
f(x0, . . . , xn) = xn

and has critical subscheme Xcrit ⊂ X0 defined as a subscheme of An+1 by
xi = 0, i = 0, . . . , n− 1, xmn + an+1/an = 0.
We now apply the Riemann-Hurwitz formula to the projection f : X̃ → P1.
Let y = Xcrit, a 0-dimensional reduced closed subscheme of X, and use the
system of parameters (x0, . . . , xn−1), generating the maximal ideal in OX,y′ for
each closed point y′ of y. Similarly, we let g(T ) = Tm + an+1/an, let x ⊂ A1

k

be the subscheme Spec k[T ]/g(T ) and use the parameter tx := (1/g′(T ))g(T )
in OA1,x.
As df is given by the expression

df =

n∑
i=0

(−1/anmx
m−1
n ) ·maixm−1

i dxi ⊗ ∂/∂tx
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and det−1 ΩX/k ⊗ det−1 mx/m
2
x
∼= (det(mx/m

2
x)∨)⊗2, we have the local index

ex(df) living in GW(k(x); (det(mx/m
2
x)∨)⊗2 ⊗ f∗ωP1):

ex(df) := 〈(−1/anx
m−1
n )n((m− 1)ε)

n(

n−1∏
i=0

ai)〉 ⊗ (∧∂/∂x∗)⊗2 ⊗ dtx

If n is odd, we know that χ(X/k) is hyperbolic, so we may assume that n = 2r
is even, in which case this expression reduces to

ex(df) =


1
2 (m− 1)n ·H〈(

∏n−1
i=0 ai)〉 ⊗ (∧∂/∂x∗)⊗2 ⊗ dtx if m is odd,

[ 1
2 ((m− 1)n − 1) ·H + 〈1〉]〈(

∏n−1
i=0 ai)〉 ⊗ (∧∂/∂x∗)⊗2 ⊗ dtx

if m is even.

which reduces further to

ex(df) =


1
2 (m− 1)n ·H ⊗ (∧∂/∂x∗)⊗2 ⊗ dtx if m is odd,

[( 1
2 (m− 1)n − 1)H + 〈

∏n−1
i=0 ai〉]⊗ (∧∂/∂x∗)⊗2 ⊗ dtx

if m is even.

Following Remark 11.9, our choice of parameter tx is normalized, so after ap-
plying the appropriate comparison isomorphism to put the local index ex(df)
in GW(k(x)), as in the proof of Corollary 11.4, we have the identity in
Hn(X,KMW

n (ωX/k))

ix∗(ex(df)) =

{
ix∗[

1
2 (m− 1)n ·H] if m is odd,

ix∗[
1
2 ((m− 1)n − 1)H + 〈

∏n−1
i=0 ai〉)] if m is even,

where

ix∗ : GW(k(x)) = H0(x,KMW
0 )→ Hn(X,KMW

n (ωX/k))

is the push-forward.

The extension k(x)/k is a finite separable extension, so we have the pushforward
map p∗ : GW(x)→ GW(k) given by the trace form. Since

Trk(x)/k(〈1〉) =

{
〈m〉+ m−1

2 ·H for m odd

〈m〉+ 〈−manan+1〉+ m−2
2 ·H for m even,

we get

pX∗ix∗(ex(df)) =


1
2 (m− 1)nm ·H for m odd,

〈m
∏n−1
i=0 ai〉+ 〈−m

∏n+1
i=0 ai〉+ 1

2 ((m− 1)n − 1)m ·H
for m even.

(12.2)
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Theorem 12.1. Let X = X(a0, . . . , an+1;m) ⊂ Pn+1
k be a generalized Fermat

hypersurface of degree m ≥ 1, a0, . . . , an+1 ∈ k×. Suppose that char(k)6 | 2m.

Let δ(X) :=
∏n+1
i=0 ai and define An,m ∈ Q by

An,m =


1
2 deg(cn(TX)) for n odd,
1
2 (deg(cn(TX))− 1) for n even and m odd,
1
2 (deg(cn(TX))− 2) for n and m even.

Then An,m is an integer, depending only on n and m. Moreover,

χ(X/k) =


An,m ·H for n odd,

An,m ·H + 〈m〉 for n even and m odd,

An,m ·H + 〈m〉+ 〈−mδ(X)〉 for n and m even.

Proof. It is clear that the rational number An,m depends only on n and m. For
n odd, the identity χ(X/k) = B·h for some integer B follows from Corollary 4.2.
Since πn(eCW(TX)) = cn(TX) in Hn(X,KMn ), we see that

2B = rank(χ(X/k)) = deg(cn(TX)),

so An,m = B.
We now assume n is even and we prove the identity by induction on n. We
first consider the case of even m. For n = 0,

X(a0, a1;m) = Spec k[T ]/(Tm + a1/a0)

and χ(X/k) is given by the trace form,

χ(X/k) = TrX/k(〈1〉) =
m− 2

2
·H + 〈m〉+ 〈−mδ(X)〉.

As c0(TX) has degree m, the result is proven in this case. In general, assume
the result for n − 2, and let Z = X(a0, . . . , an−1). Then combining (12.1),
Corollary 11.6 and our computation of the local contributions (12.2), we have

χ(X/k) = 〈mδ(Z)〉+ 〈−mδ(X)〉 − 〈−1〉χ(Z/k) +A ·H

for some integer A. Using our induction hypothesis, this reduces to

χ(X/k) = −〈−m〉+ 〈−mδ(X)〉+B ·H

for some integer B. But

H − 〈−m〉 = 〈m〉+ 〈−m〉 − 〈−m〉 = 〈m〉

so we have
χ(X/k) = 〈m〉+ 〈−mδ(X)〉+ (B − 1) ·H.
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In particular, this shows that deg(cn(TX)) = 2B, which shows as above that
An,m is an integer and gives

χ(X/k) = −〈m〉+ 〈−mδ(X)〉+An,m ·H.

For odd m, the proof is essentially the same, starting with

χ(X/k) = TrX/k(〈1〉) =
m− 1

2
·H + 〈m〉.

for X = X(a0, a1;m); we leave the details to the reader.

Recall that for a quadratic form q of even rank n = 2m over a field k of char-
acteristic different from 2, the discriminant of q is the element of k×/k×2 given
by det(q), where (q) is the matrix of the symmetric bilinear form corresponding
to q, with respect to some choice of basis for the underlying vector space of q.
For quadrics, Theorem 12.1 gives

Corollary 12.2. Let k be a field with chark 6= 2 and let Q be a non-singular
quadric hypersurface in Pn+1

k . Suppose Q has defining form q, with discrimi-
nant δq. Then

χ(Q/k) =

{
n+1

2 ·H for n odd,
n
2 ·H + 〈2〉+ 〈−2δq〉 for n = 2m even.

This answers a question raised by Kass and Wickelgren (private communica-
tion).

Proof. If k is algebraically closed, then Q is cellular with n+ 1 cells in case n
is odd, and n+ 2 cells if n is even. Thus by Proposition 2.4

rankχ(Q/k) =

{
n+ 1 for n odd,

n+ 2 for n even.

With this, the corollary follows from Theorem 12.1, since every quadratic form
is diagonalizable by a linear change of coordinates, and the discriminant is
invariant modulo squares.

Remark 12.3. Applying Theorem 12.1 for m = 1 gives yet another proof that

χ(Pn/k) =

{
n+1

2 ·H for n odd,

〈1〉+ n
2 ·H for n even.

Remark 12.4. The fact that χ(X(a0, . . . , an+1;m)/k) depends only on m and
n for m odd should not be surprising: every generalized Fermat hypersurface
X(a0, . . . , an+1;m) with m odd is isomorphic to X(1, . . . , 1;m) ⊂ Pn+1 after a
field extension of odd degree, and the base-extension map GW(k) → GW(F )
for a finite field extension F/k is injective if [F : k] is odd.
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