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Abstract. Let Q → B be a quadric fibration and T → B a family of
sextic du Val del Pezzo surfaces. Making use of the theory of noncom-
mutative mixed motives, we establish a precise relation between the
Schur-finiteness conjecture for Q, resp. for T , and the Schur-finiteness
conjecture for B. As an application, we prove the Schur-finiteness con-
jecture for Q, resp. for T , when B is low-dimensional. Along the way,
we obtain a proof of the Schur-finiteness conjecture for smooth com-
plete intersections of two or three quadric hypersurfaces. Finally, we
prove similar results for the Bass-finiteness conjecture.
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1 Introduction

Schur-finiteness conjecture

Let C be a Q-linear, idempotent complete, symmetric monoidal category. Given
a partition λ of an integer n ≥ 1, consider the corresponding Q-linear rep-
resentation Vλ of the symmetric group Sn and the associated idempotent
eλ ∈ Q[Sn]. Under these notations, the Schur-functor Sλ: C → C sends an ob-
ject a ∈ C to the direct summand of a⊗n determined by eλ. Following Deligne
[11, §1], an object a ∈ C is called Schur-finite if it is annihilated by some Schur-
functor. Voevodsky introduced in [39] a triangulated category of geometric
mixed motives DMgm(k)Q (over a perfect base field k). By construction, this
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category is Q-linear, idempotent complete, symmetric monoidal, and comes
equipped with a ⊗-functor M(−)Q: Sm(k) → DMgm(k)Q defined on smooth
k-schemes of finite type. Given X ∈ Sm(k), an important conjecture in the
theory of motives is the following:

Conjecture S(X): The geometric mixed motive M(X)Q is Schur-finite.

Thanks to the (independent) work of Guletskii [12] and Mazza [28], the conjec-
ture S(X) holds in the case where dim(X) ≤ 1. Thanks to the work of Kimura
[21] and Shermenev [31], the conjecture S(X) also holds in the case where X
is an abelian variety. Besides these cases (and some other cases scattered in
the literature), the Schur-finiteness conjecture remains wide open. The main
goal of this note is to prove the Schur-finiteness conjecture in the new cases of
quadric fibrations and families of sextic du Val del Pezzo surfaces.

Quadric fibrations

Our first main result is the following:

Theorem 1. Let q:Q → B a flat quadric fibration of relative dimension d− 2.
Assume that B and Q are k-smooth, that all the fibers of q have corank ≤ 1,
and that the locus D ⊂ B of the critical values of the fibration q is k-smooth.
Under these assumptions, the following holds:

(i) When d is even, we have S(Q) ⇔ S(B) + S(B̃), where B̃ stands for the
discriminant 2-fold cover of B (ramified over D).

(ii) When d is odd and char(k) 6= 2, we have {S(Vi)} + {S(D̃i)} ⇒ S(Q),

where Vi is any affine open of B and D̃i is any Galois 2-fold cover of
Di := D ∩ Vi.

To the best of the author’s knowledge, Theorem 1 is new in the literature. Intu-
itively speaking, it relates the Schur-finiteness conjecture for the total space Q
with the Schur-finiteness conjecture for certain coverings/subschemes of the
base B. Among other ingredients, its proof makes use of Kontsevich’s noncom-
mutative mixed motives of twisted root stacks; consult §3-§4 below for details.
Making use of Theorem 1, we are now able to prove the Schur-finiteness con-
jecture in new cases. Here are two low-dimensional examples:

Corollary 2 (Quadric fibrations over curves). Let q:Q → B be a quadric
fibration as in Theorem 1 with B a curve1. In this case, S(Q) holds.

Corollary 3 (Quadric fibrations over surfaces). Let q:Q → B be a quadric
fibration as in Theorem 1 with B a surface and d odd. In this case, the impli-
cation S(B) ⇒ S(Q) holds.

Proof. Given a smooth k-surfaceX , we have S(X) ⇔ S(U) for any open U ofX .
Therefore, thanks to Theorem 1(ii), the proof follows from the fact that when B
is a surface, the conjectures {S(Vi)} can be replaced by the conjecture S(B).

1Since B is a curve, the locus D ⊂ B of the critical values of q is necessarily k-smooth.
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Corollary 3 can be applied to the case where B is (an open subscheme of)
an abelian surface or a smooth projective surface with pg = 0 which satisfies
Bloch’s conjecture (see Guletskii-Pedrini [13, §4 Thm. 7]). Recall that Bloch’s
conjecture holds for surfaces not of general type (see Bloch-Kas-Leiberman [6]),
for surfaces which are rationally dominated by a product of curves (see Kimura
[21]), for Godeaux, Catanese and Barlow surfaces (see Voisin [40, 41]), etc.

Remark 4 (Related work). Let q:Q → B be a quadric fibration as in Theo-
rem 1. In the particular case where Q and B are smooth projective, Bouali
[9] and Vial [38, §4] “computed” the Chow motive h(Q)Q of Q using smooth
projective k-schemes of dimension ≤ dim(B). Since the category of Chow mo-
tives (with Q-coefficients) embeds fully-faithfully into DMgm(k)Q (see [39, §4]),
these computations lead to an alternative “geometric” proof of Corollaries 2-3.
Note that in Theorem 1 and in Corollaries 2-3 we do not assume that Q and B
are projective; we are (mainly) interested in geometric mixed motives and not
in pure motives.

Intersections of quadrics

Let Y ⊂ Pd−1 be a smooth complete intersection of m quadric hypersurfaces.
The linear span of these quadric hypersurfaces gives rise to a flat quadric fibra-
tion q:Q → Pm−1 of relative dimension d − 2, with Q k-smooth. Under these
notations, our second main result is the following:

Theorem 5. We have S(Q) ⇒ S(Y ). When 2m ≤ d, the converse also holds.

By combining Theorem 5 with the above Corollaries 2-3, we hence obtain a
proof of the Schur-finiteness conjecture in the following cases:

Corollary 6 (Intersections of two or three quadrics). Assume that the quadric
fibration q:Q → Pm−1 is as in Theorem 1. In this case, the conjecture
S(Y ) holds when Y is a smooth complete intersection of two, or of three odd-
dimensional, quadric hypersurfaces.

Families of sextic du Val del Pezzo surfaces

Recall that a sextic du Val del Pezzo surface X is a projective k-scheme with
at worst du Val singularities and ample anticanonical class such that K2

X = 6.
Consider a family of sextic du Val del Pezzo surfaces f :T → B, i.e. a flat
morphism f such that for every geometric point x ∈ B the associated fiber Tx is
a sextic du Val del Pezzo surface. Following Kuznetsov [26, §5], given d ∈ {2, 3},
let us write Md for the relative moduli stack of semistable sheaves on fibers
of T over B with Hilbert polynomial hd(t) := (3t + d)(t + 1), and Zd for the
coarse moduli space of Md. By construction, we have finite flat morphisms
Z2 → B and Z3 → B of degrees 3 and 2, respectively. Under these notations,
our third main result is the following:
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Theorem 7. Let f :T → B be a family of sextic du Val del Pezzo surfaces.
Assume that char(k) 6∈ {2, 3} and that T is k-smooth. Under these assumptions,
we have the equivalence of conjectures S(T ) ⇔ S(B) + S(Z2) + S(Z3).

To the best of the author’s knowledge, Theorem 7 is new in the literature. It
leads to a proof of the Schur-finiteness conjecture in new cases. Here is an
illustrative example:

Corollary 8 (Families of sextic du Val del Pezzo surfaces over curves). Let
f :T → B be a family of sextic du Val del Pezzo surfaces as in Theorem 7 with
B a curve. In this case, the conjecture S(T ) holds.

Remark 9. Let f :T → B be a family of sextic du Val del Pezzo surfaces as in
Theorem 7. To the best of the author’s knowledge, the associated geometric
mixed motive M(T )Q has not been “computed” (in any non-trivial particular
case). Nevertheless, consult Helmsauer [16] for the “computation” of the Chow
motive h(X)Q of certain smooth (projective) del Pezzo surfaces X .

Remark 10 (Conservativity conjecture). Given a field k equipped with a com-
plex embedding σ: k → C, recall from Ayoub [3, Conj. 2.1] that the conservativ-
ity conjecture asserts that the Betti realization functor Bσ: DMgm(k)Q → D(Q)
is conservative. As explained in [3, Prop. 2.26], if the conservativity conjecture
holds, then every object of the category DMgm(k)Q is Schur-finite. In partic-
ular, the conjecture S(X) holds for every smooth k-scheme of finite type X
(when k is equipped with a complex embedding). However, despite the (mon-
umental) work of Ayoub [4], the conservativity conjecture remains wide open2.

Bass-finiteness conjecture

Let k be a finite base field and X a smooth k-scheme of finite type. The
Bass-finiteness conjecture B(X) (see [5, §9]) is one of the oldest and most
important conjectures in algebraic K-theory. It asserts that the algebraic K-
theory groups Kn(X), n ≥ 0, are finitely generated. In the same vein, given an
integer r ≥ 2, we can consider the conjecture B(X)1/r, whereKn(X) is replaced
by Kn(X)1/r := Kn(X)⊗ Z[1/r]. Our fourth main result is the following:

Theorem 11. The following holds:

(i) Theorem 1 and Corollaries 2-3 hold3 similarly for the conjecture B(−)1/2.
In Corollary 2, the groups Kn(Q)1/2, n ≥ 2, are moreover finite.

(ii) Theorem 5 holds similarly for the conjecture B(−).

(iii) Corollary 6 holds similarly for the conjecture B(−)1/2. In the case where
Y is a smooth complete intersection of two quadric hypersurfaces, the
groups Kn(Y )1/2, n ≥ 2, are moreover finite.

2I hope that Ayoub manages to correct his work [4] in the (near) future.
3Corollary 3 (for the conjecture B(−)1/2) can also be applied to the case where B is (an

open subscheme of) an abelian surface; see [19, Cor. 70 and Thm. 82].
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(iv) Theorem 7 and Corollary 8 hold similarly for the conjecture B(−)1/6. In
Corollary 8, the groups Kn(T )1/6, n ≥ 2, are moreover finite.

2 Preliminaries

In what follows, all schemes/stacks are of finite type over the perfect
base field k.

Dg categories

For a survey on dg categories we invite the reader to consult [20]. In what fol-
lows, we will write dgcat(k) for the category of (essentially small) dg categories
and dg functors. Every (dg) k-algebra A gives naturally rise to a dg category
with a single object. Another source of examples is provided by schemes/stacks.
Given a k-scheme X (or stack X ), the category of perfect complexes of OX -
modules perf(X) admits a canonical dg enhancement perfdg(X); consult [20,
§4.6] [27] for details. More generally, given a sheaf of OX -algebras F , we can
consider the dg category of perfect complexes of F -modules perfdg(X ;F).

Noncommutative mixed motives

For a book, resp. survey, on noncommutative motives we invite the reader to
consult [33], resp. [32]. Recall from [33, §8.5.1] (see also [22, 23, 24]) the defini-
tion of Kontsevich’s triangulated category of noncommutative mixed motives
NMot(k). By construction, this category is idempotent complete, symmet-
ric monoidal, and comes equipped with a ⊗-functor U : dgcat(k) → NMot(k).
In what follows, given a k-scheme X (or stack X ) equipped with a sheaf of
OX -algebras F , we will write U(X ;F) := U(perfdg(X ;F)).

3 Noncommutative mixed motives of twisted root stacks

Let X be a k-scheme, L a line bundle on X , σ ∈ Γ(X,L) a global section, and
r > 0 an integer. In what follows, we will write D ⊂ X for the zero locus of σ.
Recall from [10, Def. 2.2.1] (see also [1, Appendix B]) that the associated root
stack X is defined as the following fiber-product of algebraic stacks

X := r

√
(L, σ)/X

p

��

// [A1/Gm]

θr

��

X
(L,σ)

// [A1/Gm] ,

where θr stands for the morphism induced by the rth power maps on A1 and
Gm. A twisted root stack (X ;F) consists of a root stack X equipped with a
sheaf of Azumaya algebras F . In what follows, we will write s for the product of
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the ranks of F (at each one of the connected components of X ). The following
result, of independent interest, will play a key role in the proof of Theorem 1.

Theorem 12. Assume that X and D are k-smooth.

(i) We have an isomorphism U(X ) ≃ U(X)⊕ U(D)⊕(r−1).

(ii) Assume moreover that char(k) 6= r and that k contains the rth roots of
unity. Under these extra assumptions, U(X ;F)1/rs belongs to the small-
est thick triangulated subcategory of NMot(k)1/rs containing the non-

commutative mixed motives {U(Vi)1/rs} and {U(D̃l
i)1/rs}, where Vi is

any affine open subscheme of X and D̃l
i is any Galois l-fold cover of

Di := D ∩ Vi with l ∤ r and l 6= 1.

Proof. We start by proving item (i). Following [18, Thm. 1.6], the pull-back
functor p∗ is fully-faithful and we have the following semi-orthogonal decompo-
sition4 perf(X) = 〈perf(D)r−1, . . . , perf(D)1, p

∗(perf(X)〉. All the categories
perf(D)j are equivalent (via a Fourier-Mukai type functor) to perf(D). There-
fore, since the functor U : dgcat(k) → NMot(k) sends semi-orthogonal decom-
positions to direct sums, we obtain the searched direct sum decomposition
U(X ) ≃ U(X)⊕ U(D)⊕(r−1).
Let us now prove item (ii). We consider first the particular case where X =
Spec(A) is affine and the line bundle L = OX is trivial. Let µr be the group of
rth roots of unity and χ:µr → k× a (fixed) primitive character. Under these
notations, consider the global quotient [Spec(B)/µr], where B := A[t]/〈tr − σ〉
and the µr-action on B is given by g · t := χ(g)−1t for every g ∈ µr and by
g · a := a for every a ∈ A. As explained in [10, Example 2.4.1], the root
stack X agrees, in this particular case, with the global quotient [Spec(B)/µr].
By construction, the induced map Spec(B) → X is a r-fold cover ramified
over D ⊂ X . Moreover, for every l such that l | r and l 6= 1, the associated
closed subscheme Spec(B)µl agrees with the ramification divisor D ⊂ Spec(B).
Therefore, since the functor U(−)1/rs: dgcat(k) → NMot(k)1/rs is an additive
invariant of dg categories in the sense of [33, Def. 2.1] (see [33, §8.4.5]), we
conclude from [36, Cor. 1.28(ii)] that, in this particular case, U(X ;F)1/rs be-
longs to the smallest thick additive subcategory of NMot(k)1/rs containing the

noncommutative mixed motives U(Spec(B))µl

1/rs and {U(D̃l)1/rs}, where D̃
l is

any Galois l-fold cover of D with l ∤ r and l 6= 1. Furthermore, since the geo-
metric quotient Spec(B)//µr agrees with X and the latter scheme is k-smooth,
[36, Thm. 1.22] implies that U(Spec(B))µl

1/rs is isomorphic to U(X)1/rs. This

finishes the proof of item (ii) in the particular case where X is affine and the
line bundle L is trivial.
Let us now prove item (ii) in the general case. As explained above, given any
affine open subscheme Vi of X which trivializes the line bundle L, the non-
commutative mixed motive U(Vi;Fi)1/rs, with Vi := p−1(Vi) and Fi := F|Vi

,

4Consult [7, 8] for the definition of semi-orthogonal decomposition.

Documenta Mathematica 25 (2020) 2339–2354



Schur-Finiteness (and Bass-Finiteness) Conjecture 2345

belongs to the smallest thick additive subcategory of NMot(k)1/rs containing

U(Vi)1/rs and {U(D̃l
i)1/rs}, where D̃

l
i is any Galois l-fold cover of Di := D∩Vi

with l | r and l 6= 1. Let us then choose an affine open cover {Wi} of X which
trivializes the line bundle L. Since X is quasi-compact (recall that X is of finite
type over k), this affine open cover admits a finite subcover. Consequently, the
proof follows by induction from the Z[1/rs]-linearization of the distinguished
triangles of Lemma 13 below.

Lemma 13. Given an open cover {W1,W2} of X, we have an induced Mayer-
Vietoris distinguished triangle of noncommutative mixed motives

U(X ;F) −→ U(W1;F1)⊕ U(W2;F2)
±
−→ U(W12;F12)

∂
−→ ΣU(X ;F) , (14)

where W12 := W1 ∩W2 and F12 := F|W12
.

Proof. Consider the following commutative diagram of dg categories

perfdg(X ;F)Z

��

// perfdg(X ;F)

��

// perfdg(W1;F1)

��

perfdg(W2;F2)Z // perfdg(W2;F2) // perfdg(W12;F12) ,

where Z stands for the closed complement X − W1 = W2 − W12 and
perfdg(X ;F)Z , resp. perfdg(W2;F2)Z , stands for the full dg subcategory of
perfdg(X ;F), resp. perfdg(W2;F2), consisting of those perfect complexes of
F -modules, resp. F2-modules, that are supported on Z. Both rows are short
exact sequences of dg categories in the sense of Drinfeld/Keller (see [20, §4.6])
and the left vertical dg functor is a Morita equivalence. Therefore, since the
functor U : dgcat(k) → NMot(k) is a localizing invariant of dg categories in the
sense of [33, §8.1], we obtain the following morphism of distinguished triangles:

U(perfdg(X ;F)Z)

≃

��

// U(X ;F)

��

// U(W1;F1)

��

∂
// ΣU(perfdg(X ;F)Z)

≃

��

U(perfdg(W2;F2)Z) // U(W2;F2) // U(W12;F12)
∂
// ΣU(perfdg(W2;F2)Z) .

Finally, since the middle square is homotopy (co)cartesian, we hence obtain
the claimed Mayer-Vietoris distinguished triangle (14).

4 Proof of Theorem 1

Following [25, §3] (see also [2, §1.2]), let E be a vector bundle of rank d on B,
q′:P(E) → B the projectivization of E on B, OP(E)(1) the Grothendieck line
bundle on P(E), L a line bundle on B, and finally

ρ ∈ Γ(B,S2(E∨)⊗ L∨) = Γ(P(E),OP(E)(2)⊗ L∨)
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a global section. Given this data, recall that Q ⊂ P(E) is defined as the zero
locus of ρ on P(E) and that q:Q → B is the restriction of q′ to Q; note that
the relative dimension of q is equal to d − 2. Consider also the discriminant
global section disc(q) ∈ Γ(B, det(E∨)⊗2⊗(L∨)⊗d) and the associated zero locus
D ⊂ B; note that D agrees with the locus of the critical values of q.
Recall from [25, §3.5] (see also [2, §1.6]) that when d is even, we can consider

the discriminant cover B̃ := SpecB(Z(Cl0(q))) of B, where Z(Cl0(q)) stands for
the center of the sheaf Cl0(q) of even parts of the Clifford algebra associated to

q; see [25, §3] (and also [2, §1.5]). By construction, B̃ is a 2-fold cover ramified

over D. Moreover, since D is k-smooth, B̃ is also k-smooth.
Recall from [25, §3.6] (see also [2, §1.7]) that when d is odd and char(k) 6= 2, we
can consider the discriminant stack X := 2

√
(det(E∨)⊗2 ⊗ (L∨)⊗d, disc(q))/B.

Since char(k) 6= 2, X is a Deligne-Mumford stack with coarse moduli space B.

Proposition 15. Under the above assumptions, the following holds:

(i) When d is even, we have U(Q)1/2 ≃ U(B̃)1/2 ⊕ U(B)
⊕(d−2)
1/2 .

(ii) When d is odd and char(k) 6= 2, U(Q)1/2 belongs to the smallest thick
triangulated subcategory of NMot(k)1/2 containing the noncommutative

mixed motives {U(Vi)1/2} and {U(D̃i)1/2}, where Vi is any affine open

subscheme of B and D̃i is any Galois 2-fold cover of Di := D ∩ Vi.

Proof. As proved in [25, Thm. 4.2] (see also [2, Thm. 2.2.1]), we have the
following semi-orthogonal decomposition

perf(Q) = 〈perf(B; Cl0(q)), perf(B)1, . . . , perf(B)d−2〉 ,

where perf(B)j := q∗(perf(B)) ⊗ OQ/B(j). All the categories perf(B)j are
equivalent (via a Fourier-Mukai type functor) to perf(B). Therefore, since
the functor U : dgcat(k) → NMot(k) sends semi-orthogonal decompositions to
direct sums, we obtain the decomposition U(Q) ≃ U(B; Cl0(q)))⊕U(B)⊕(d−2).
We start by proving item (i). As explained in [25, §3.5] (see also [2, §1.6]),
when d is even, the category perf(B; Cl0(q)) is equivalent (via a Fourier-Mukai

type functor) to perf(B̃;F) where F is a certain sheaf of Azumaya algebras on B̃

of rank 2
d

2
−1. This leads to an isomorphism U(B; Cl0(q)) ≃ U(B̃;F). Making

use of [37, Thm. 2.1], we hence conclude that U(B; Cl0(q))1/2 is isomorphic to

U(B̃;F)1/2 ≃ U(B̃)1/2. Consequently, we obtain the isomorphism of item (i).
Let us now prove item (ii). As explained in [25, §3.6] (see also [2, §1.7]), when d
is odd, the category perf(B; Cl0(q)) is equivalent (via a Fourier-Mukai type
functor) to perf(X ;F) where F is a certain sheaf of Azumaya algebras on X

of rank 2
d−1
2 . This leads to an isomorphism U(B; Cl0(q)) ≃ U(X ;F). By com-

bining Theorem 12(ii) with the isomorphism U(Q) ≃ U(X ;F) ⊕ U(B)⊕(d−2),
we hence conclude that U(Q)1/2 belongs to the smallest thick triangulated

subcategory of NMot(k)1/2 containing U(B)1/2, {U(Vi)1/2}, and {U(D̃i)1/2},
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where Vi is any affine open subscheme of B and D̃i is any Galois 2-fold cover of
Di. We now claim that U(B)1/2 belongs to the smallest thick triangulated sub-
category of NMot(k)1/2 containing {U(Vi)1/2}; note that this would conclude
the proof. Choose an affine open cover {Wi} of B. Since B is quasi-compact
(recall that B is of finite type over k), this affine open cover admits a finite
subcover. Therefore, similarly to the proof of Theorem 12, our claim follows
from an inductive argument using the Z[1/2]-linearization of the Mayer-Vietoris

distinguished triangles U(B) → U(W1)⊕ U(W2)
±
→ U(W12)

∂
→ ΣU(B).

As proved in [34, Thm. 2.8], there exists a Q-linear, fully-faithful, ⊗-functor Φ
making the following diagram commute

Sm(k)
X 7→perfdg(X)

//

M(−)Q

��

dgcat(k)

U(−)Q

��

DMgm(k)Q

π

��

NMot(k)Q

Hom(−,U(k)Q)

��

DMgm(k)Q/−⊗Q(1)[2] Φ
// NMot(k)Q ,

(16)

where DMgm(k)Q/−⊗Q(1)[2] stands for the orbit category with respect to the
Tate motive Q(1)[2] and Hom(−,−) for the internal Hom of the monoidal
structure; note that the functors X 7→ perfdg(X) and Hom(−, U(k)Q) are con-
travariant. By construction, π is a faithful ⊗-functor. Therefore, it follows
from [28, Lem. 1.11] that we have the following equivalence:

S(X) ⇔ noncommutative mixed motive (Φ ◦ π)(M(X)Q) is Schur-finite. (17)

We now have all the ingredients necessary to conclude the proof of Theorem 1.

Item (i)

The above functors π and Hom(−, U(k)Q) are Q-linear. Therefore, by combin-
ing Proposition 15(i) with the commutative diagram (16), we conclude that

(Φ ◦ π)(M(Q)Q) ≃ (Φ ◦ π)(M(B̃)Q)⊕ (Φ ◦ π)(M(B)Q)
⊕(d−2) . (18)

Since Schur-finiteness is stable under direct sums and direct summands, the
proof of the equivalence S(Q) ⇔ S(B) + S(B̃) follows then from (17)-(18).

Item (ii)

Recall from [33, §8.5.1-8.5.2] that, by construction, NMot(k)Q is a Q-linear
closed symmetric monoidal triangulated category in the sense of Hovey [17, §6-
7]. As proved in [12, Thm. 1], this implies that Schur-finiteness has the 2-out-of-
3 property with respect to distinguished triangles. The functor Hom(−, U(k)Q)
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is triangulated. Hence, by combining Proposition 15(ii) with the commutative
diagram (16), we conclude that (Φ ◦ π)(M(Q)Q) belongs to the smallest thick
triangulated subcategory of NMot(k)Q containing the noncommutative mixed

motives {(Φ◦π)(M(Vi)Q)} and {(Φ◦π)(M(D̃i)Q)}, where Vi is any affine open

subscheme of B and D̃i is any Galois 2-fold cover of Di. Since by assumption
the conjectures {S(Vi)} and {S(D̃i)} hold, (17) implies that the noncommuta-

tive mixed motives {(Φ◦π)(M(Vi)Q)} and {(Φ◦π)(M(D̃i)Q)} are Schur-finite.
Therefore, making use of the 2-out-of-3 property of Schur-finiteness with re-
spect to distinguished triangles (and of the stability of Schur-finiteness under
direct summands), we conclude that (Φ ◦ π)(M(Q)Q) is also Schur-finite. The
proof follows now from the above equivalence (17).

5 Proof of Theorem 5

Recall from the proof of Proposition 15 that we have the semi-orthogonal de-
composition perf(Q) = 〈perf(Pm−1; Cl0(q)), perf(P

m−1)1, . . . , perf(P
m−1)d−2〉,

and consequently the following direct sum decomposition:

U(Q) ≃ U(Pm−1; Cl0(q))⊕ U(Pm−1)⊕(d−2) . (19)

As proved in [25, Thm. 5.5] (see also [2, Thm. 2.3.7]), the following also holds:

(a) When 2m < d, we have the following semi-orthogonal decomposition
perf(Y ) = 〈perf(Pm−1; Cl0(q)),O(1), . . . ,O(d − 2m)〉. Consequently,
since the functor U : dgcat(k) → NMot(k) sends semi-orthogonal decom-
positions to direct sums, we obtain the following direct sum decomposi-
tion U(Y ) ≃ U(Pm−1; Cl0(q)) ⊕ U(k)⊕(d−2m).

(b) When 2m = d, the category perf(Y ) is equivalence (via a Fourier-Mukai
type functor) to perf(Pm−1; Cl0(q)). Consequently, we obtain an isomor-
phism of noncommutative mixed motives U(Y ) ≃ U(Pm−1; Cl0(q)).

(c) When 2m > d, perf(Y ) is an admissible subcategory of
perf(Pm−1; Cl0(q)). Hence, U(Y ) is a direct summand of U(Pm−1; Cl0(q)).

Let us now prove the implication S(Q) ⇒ S(Y ). If the conjecture S(Q)
holds, then it follows from the decomposition (19), from the commutative
diagram (16), from the equivalence (17), and from the stability of Schur-
finiteness under direct summands, that the noncommutative mixed motive
Hom(U(Pm−1; Cl0(q))Q, U(k)Q) is Schur-finite. Making use of the above de-
scriptions (a)-(c) of U(Y ) and of the commutative diagram (16), we hence
conclude that the noncommutative mixed motive (Φ◦π)(M(Y )Q) is also Schur-
finite. Consequently, the conjecture S(Y ) follows now from the above equiv-
alence (17). Finally, note that when 2m ≤ d, a similar argument proves the
converse implication S(Y ) ⇒ S(Q).
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6 Proof of Theorem 7

Recall first from [26, Prop. 5.12] that since char(k) 6∈ {2, 3} and T is k-smooth,
the k-schemes B,Z2 and Z3 are also k-smooth.

Proposition 20. We have U(T )1/6 ≃ U(B)1/6 ⊕ U(Z2)1/6 ⊕ U(Z3)1/6.

Proof. As proved in [26, Thm. 5.2 and Prop. 5.10], we have the semi-orthogonal
decomposition perf(T ) = 〈perf(B), perf(Z2;F2), perf(Z3;F3)〉, where F2 (resp.
F3) is a certain sheaf of Azumaya algebras over Z2 (resp. Z3) of order 2 (resp.
3). Recall that the functor U : dgcat(k) → NMot(k) sends semi-orthogonal
decompositions to direct sums. Hence, we obtain the direct sum decomposition:

U(T ) ≃ U(B)⊕ U(Z2;F2)⊕ U(Z3;F3) . (21)

Since F2 (resp. F3) is of order 2 (resp. 3), the rank of F2 (resp. F3) is neces-
sarily a power of 2 (resp. 3). Making use of [37, Thm. 2.1], we hence conclude
that the noncommutative mixed motive U(Z2;F2)1/2 (resp. U(Z3;F3)1/3) is
isomorphic to U(Z2)1/2 (resp. U(Z3)1/3). Consequently, the proof follows now
from the Z[1/6]-linearization of (21).

The functors π and Hom(−, U(k)Q) in (16) are Q-linear. Therefore, similarly
to the proof of item (i) of Theorem 1, by combining Proposition 20 with the
commutative diagram (16), we conclude that

(Φ◦π)(M(T )Q) ≃ (Φ◦π)(M(B̃)Q)⊕(Φ◦π)(M(Z2)Q)⊕(Φ◦π)(M(Z3)Q) . (22)

Since Schur-finiteness is stable under direct sums and direct summands, the
proof follows then from the combination of (22) with the equivalence (17).

7 Proof of Theorem 11

Item (i)

We start by proving the first claim. As explained in [33, §8.6] (see also [35,
Thm. 15.10]), given X ∈ Sm(k), we have the isomorphisms of abelian groups:

HomNMot(k)(U(k),Σ−nU(X)) ≃ Kn(X) n ∈ Z . (23)

Assume that d is even. By combining Proposition 15(i) with the Z[1/2]-

linearization of (23), we conclude that Kn(Q)1/2 ≃ Kn(B̃)1/2 ⊕Kn(B)
⊕(d−2)
1/2 .

Therefore, since finite generation is stable under direct sums and direct sum-
mands, we obtain the equivalence B(Q)1/2 ⇔ B(B)1/2+B(B̃)1/2. Assume now
that d is odd and that char(k) 6= 2. Finite generation has the 2-out-of-3 prop-
erty with respect to (short or long) exact sequences and is stable under direct
summands. Therefore, the proof of the following implication

{B(Vi)1/2}+ {B(D̃i)1/2} ⇒ B(Q)1/2
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follows from the combination of Proposition 15(ii) with the Z[1/2]-linearization
of (23). Finally, recall from [14, 29, 30] that the conjecture B(X) holds in the
case where dim(X) ≤ 1. Therefore, the Corollaries 2-3 also hold similarly for
the conjecture B(−)1/2.
We now prove the second claim. Let q:Q → B be a quadric fibration as in
Theorem 1 with B a curve. Thanks to Corollary 2 (for the conjecture B(−)1/2),
it suffices to show that the groups Kn(Q), n ≥ 2, are torsion. Assume first
that d is even. By combining Proposition 15(i) with the Q-linearization of

(23), we obtain an isomorphism Kn(Q)Q ≃ Kn(B̃)Q ⊕Kn(B)
⊕(d−2)
Q . Thanks

to Proposition 24 below, we have Kn(B̃)Q = Kn(B)Q = 0 for every n ≥ 2.
Therefore, we conclude that the groups Kn(Q), n ≥ 2, are torsion. Assume
now that d is even and that char(k) 6= 2. Thanks to Proposition 15(ii), U(Q)Q
belongs to the smallest thick triangulated subcategory of NMot(k)Q containing

the noncommutative mixed motives {U(Vi)Q} and {U(D̃i)Q}, where Vi is any

affine open subscheme of B and D̃i is any Galois 2-fold cover of Di. Moreover,
U(Q)Q may be explicitly obtained from {U(Vi)Q} and {U(D̃i)Q} using solely
the Q-linearization of the Mayer-Vietoris distinguished triangles. Therefore,
since Kn(Vi)Q = 0 for every n ≥ 2 (see Proposition 24 below) and Kn(D̃i)Q = 0
for every n ≥ 1 (see Quillen’s computation [30] of the algebraic K-theory of a
finite field), an inductive argument using the Q-linearization of (23) and the
Q-linearization of the Mayer-Vietoris distinguished triangles implies that the
groups Kn(Q), n ≥ 2, are torsion.

Proposition 24. We have Kn(X)Q = 0, n ≥ 2, for every smooth k-curve X.

Proof. In the particular case where X is affine, this result was proved in [15,
Cor. 3.2.3] (see also [14, Thm. 0.5]). In the general case, choose an affine open
cover {Wi} of X . Since X is quasi-compact, this affine open cover admits
a finite subcover. Therefore, the proof follows from an inductive argument
(similar to the one in the proof of Theorem 12(ii)) using the Q-linearization of
(23) and the Q-linearization of the Mayer-Vietoris distinguished triangles.

Item (ii)

If the conjecture B(Q) holds, then it follows from the decomposition
(19) and from the isomorphisms (23) that the algebraic K-theory groups
Kn(perfdg(P

m−1; Cl0(q))), n ≥ 0, are finitely generated. Therefore, by com-
bining the descriptions (a)-(c) of the noncommutative mixed motive U(Y ) (see
the proof of Theorem 5) with (23), we conclude that the conjecture B(Y ) also
holds. Note that when 2m ≤ d, a similar argument proves the converse impli-
cation B(Y ) ⇒ B(Q).

Item (iii)

Items (i)-(ii) of Theorem 11 imply that Corollary 6 holds similarly for the
conjecture B(−)1/2. We now address the second claim. Let q:Q → P1 be
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the quadric fibration associated to the smooth complete intersection Y of two
quadric hypersurfaces. Thanks to item (i), the groups Kn(Q)1/2, n ≥ 2, are
finite. Hence, making use of the decomposition (19), of the Z[1/2]-linearization
of (23), and of the above descriptions (a)-(c) of U(Y ) (see the proof of Theo-
rem 5), we conclude that the groups Kn(Y )1/2, n ≥ 2, are also finite.

Item (iv)

We start by proving the first claim. By combining Proposition 20 with the
Z[1/6]-linearization of (23), we conclude that

Kn(T )1/6 ≃ Kn(B)1/6 ⊕Kn(Z2)1/6 ⊕Kn(Z3)1/6 .

Therefore, since finite generation is stable under sums and direct summands,
we obtain the equivalence B(T )1/6 ⇔ B(B)1/6 + B(Z2)1/6 + B(Z3)1/6. As
mentioned in the proof of item (i), the conjecture B(X) holds in the case where
dim(X) ≤ 1. Hence, Corollary 8 also holds similarly for the conjecture B(−)1/6.
We now prove the second claim. Let f :T → B be a family of sextic du Val
del Pezzo surfaces as in Theorem 7 with B a curve. Similarly to the proof
of item (i) of Theorem 11, it suffices to show that the groups Kn(T ), n ≥ 2,
are torsion. By combining Proposition 20 with the Q-linearization of (23), we
obtain an isomorphism Kn(T )Q ≃ Kn(B)Q ⊕ Kn(Z2)Q ⊕ Kn(Z3)Q. Thanks
to Proposition 24, we have moreover Kn(B)Q = Kn(Z2)Q = Kn(Z3)Q = 0 for
every n ≥ 2. Therefore, we conclude that the groups Kn(T ), n ≥ 2, are torsion.
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réalisations classiques en caractéristique nulle. Available at
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