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Abstract. Primitive inflation tilings of the real line with finitely
many tiles of natural length and a Pisot–Vijayaraghavan unit as in-
flation factor are considered. We present an approach to the pure
point part of their diffraction spectrum on the basis of a Fourier ma-
trix cocycle in internal space. This cocycle leads to a transfer matrix
equation and thus to a closed expression of matrix Riesz product type
for the Fourier transforms of the windows for the covering model sets.
In general, these windows are complicated Rauzy fractals and thus
difficult to handle. Equivalently, this approach permits a construc-
tion of the (always continuously representable) eigenfunctions for the
translation dynamical system induced by the inflation rule. We re-
view and further develop the underlying theory, and illustrate it with
the family of Pisa substitutions, with special emphasis on the classic
Tribonacci case.
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1 Introduction

Inflation tilings of the real line with an inflation (or stretching) factor λ that is
a Pisot–Vijayaraghavan (PV) number are intimately related to cut and project
sets. In the best case, which is the topic of the famous Pisot substitution
conjecture [49, 1], their vertex points (in the geometric realisation with intervals
of natural length) are regular model sets themselves, and thus have pure point
spectrum, equivalently in the dynamical or in the diffraction sense [31, 8, 9].
More generally, they might have mixed spectrum, see [4, 5] and references
therein for examples, but the PV-nature of λ still implies that they lead to
Meyer sets and thus have non-trivial point spectrum [54, Sec. 5.10]; see also
[53] for some general results.
When analysing such inflation tilings, one quickly encounters covering model
sets with complicated windows, known as Rauzy fractals [44, 42], which are
compact sets of positive measure that are topologically regular (that is, they
are the closure of their interior) and perfect (that is, they have no isolated
points), but display a fractal boundary and often also a non-trivial fundamental
group. While a lot is known about Rauzy fractals, see [48, 49, 42] and references
therein, it is not obvious how to calculate their Fourier transform in closed form,
which is needed to determine the diffraction intensities of the tiling system
explicitly. Phrased differently, but equivalently, this Fourier transform is also
needed to calculate the eigenfunctions of the corresponding dynamical system
under the translation action of R; compare [32, 9].
The purpose of this contribution is to reconsider this problem in a constructive
and explicit way. In particular, our goal is to make the Fourier–Bohr (FB)
coefficients or amplitudes (and thus also the eigenfunctions) of such inflation
tilings available, via a quadratic form with a matrix that can be expressed as an
infinite matrix Riesz product. Since the latter turns out to be compactly and
rapidly converging, all quantities are efficiently computable. Here, we solve the
problem for inflation tilings of the real line with finitely many prototiles and
an inflation factor that is a PV unit. The extension to general PV numbers
and to higher dimensions will be treated separately, as this requires a bigger
machinery, algebraically and analytically.

The paper is organised as follows. We begin by recalling the setting of inflation
tilings of the real line in Section 2. Then, in Section 3, we introduce the
Minkowski embedding and the description of our tilings (and point sets) in
internal space, which leads to a contractive iterated function system for the
windows of the covering model sets. This is followed by the introduction and
analysis of an internal cocycle in Section 4, which leads to a matrix Riesz
product expression for the Fourier transform of the Rauzy windows, and thus
also for the spectral quantities we are after. In this context, in Section 5, we
establish an important connection between the FB coefficients of PV inflation
point sets and those of the covering model sets, which emerges through a specific
uniform distribution result. Then, in Section 6, we embark on a number of
illustrative examples from the family of Pisa substitutions (including some
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based on cubic and quartic number fields), followed by an example of covering
degree 2 in Section 7 and a brief outlook.

2 Inflation tilings of the real line

Let us begin with the symbolic side of the problem, where we consider a prim-
itive substitution ̺ on a finite alphabet A = {a1, . . . , aN}. Here, the mapping
ai 7→ ̺(ai) is usually specified by the N -tuple

(
̺(a1), . . . , ̺(aN )

)
. The substi-

tution matrix of ̺ is M , where Mij counts the number of letters of type ai in
̺(aj); see [42, 43, 6] for general background and results. We denote the charac-
teristic polynomial of M by p(x), which is monic, but need not be irreducible
over Z in our setting, meaning that we can also include a variety of systems
with mixed spectrum.
Let λ = λPF be the Perron–Frobenius (PF) eigenvalue of M . As M is primitive
by assumption, we know [24, Thm. 8.4.4] that there are strictly positive left
and right eigenvectors for λ, denoted1 by 〈u| and |v〉, which we assume to be
normalised such that

〈1|v〉 = 〈u|v〉 = 1.

Here, 〈1| := 〈1, . . . , 1| is the row vector with N equal entries 1. In the substi-
tution context, the first condition thus ensures that the entries of |v〉 encode
the relative letter frequencies in the symbolic sequences defined by ̺, while the
second condition implies that

P := |v〉〈u| (2.1)

is a projector of rank 1, so P 2 = P with P (RN ) = im(P ) = R |v〉, where all
entries of P ∈ Mat(N,R) are strictly positive. Now, let ‖.‖ be any matrix
norm, not necessarily a sub-multiplicative one, where we recall that all matrix
norms are equivalent here. Then, the following property is standard; compare
[24, Thm. 8.5.1].

Fact 2.1. For a primitive, non-negative matrix M ∈Mat(N,R) with PF eigen-
value λ, one has limn→∞ λ−nMn = P , where P is the projector from (2.1).
This convergence also entails that 0 < supn∈N ‖λ−nMn‖ <∞.

Working with PV substitutions, we may as well profit from the underlying
geometry by turning the symbolic sequences into tilings; see [52, 6] for gen-
eral background and [15, 16] for the justification why this does not change
the spectral type of our system. Here, we choose intervals of natural length,
meaning proportional to the entries of 〈u|, with control points on their left
endpoints. As all entries ui of 〈u| lie in Q(λ), one normally multiplies them
with their common denominator, so that they become elements of Z[λ], but
not of a proper, λ-invariant submodule. For each sequence in the symbolic hull

1Since we will be using left and right eigenvectors throughout, we adopt Dirac’s bra-c-ket

notation, where 〈u|v〉 then stands for the sesquilinear inner product in CN , which becomes

bilinear when restricted to RN .
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defined by ̺, this leads to a multi-component or typed point set, Λ =
⋃̇

iΛi,
where the Λi emerge from the N distinct types of control points and now form
pairwise disjoint subsets of Z[λ].

Remark 2.2. Let us mention one consequence of the geometric setting. When
ℓi = αui with 1 6 i 6 N are the chosen interval lengths, the average distance
between neighbouring control points in Λ is well defined, compare [6, Sec. 4.3],
and reads

ℓ̄ =

N∑

i=1

vi ℓi = α〈u|v〉 = α,

so we get dens(Λ) = 1/α as the density of Λ, and dens(Λi) = vi dens(Λ) for
1 6 i 6 N . ♦

Next, we invoke the set-valued displacement matrix T = (Tij)16i,j6N , where
the set Tij consists of all relative (geometric) positions of tiles of type ai in
the supertile2 ̺(aj); see [3, 4, 5] for background. This gives rise to the Fourier

matrix of ̺ via B := |δT , so

Bij(k) =
∑

x∈Tij

e2πixk, k ∈ R ,

which is a trigonometric polynomial. Since card(Tij) = Mij , one has the in-
equality

|Bij(k)| 6 Mij (2.2)

for all i, j and all k ∈ R, where we get equality for k = 0 since B(0) = M .
Given B, we construct a cocycle (in the sense of [13, Sec. 2.1], over the dilation
k 7→ λk) from the Fourier matrix, via

B(n)(k) := B(k)B(λk) · · ·B(λn−1k), (2.3)

so B(1)(k) = B(k) together with

B(n+1)(k) = B(n)(k)B(λnk) = B(k)B(n)(λk) (2.4)

for n > 1. Inductively, one can check that B(n)(k) is the Fourier matrix of
̺n, see [5, Fact 3.6], with B(n)(0) = Mn. Further, for all n,m > 0, one has
B(n+m)(k) = B(n)(k)B(m)(λnk), with the convention B(0) := 1.
Recall that a matrix norm ‖.‖ is called weakly monotone when ‖A‖ 6

∥∥|A|
∥∥

holds for all A ∈ Mat(N,C), where |A| denotes the matrix with entries |Aij |; see
[28] for a general exposition of monotonicity properties of vector and matrix
norms. With this and Eq. (2.2), the following property is immediate from
Fact 2.1.

2Note that, by slight abuse of notation, we use ̺ both for the symbolic substitution and

for the geometric inflation, where the meaning will always be clear from the context.
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Fact 2.3. The entries of the cocycle (2.4) satisfy |B(n)
ij (k)| 6 (Mn)ij, for all

i, j and all k ∈ R. Consequently, if ‖.‖ is any weakly monotone matrix norm,
‖λ−nB(n)(k)‖ is uniformly bounded on R, which means that

cB := sup
n∈N

sup
k∈R

‖λ−nB(n)(k)‖

is finite, with 0 < cB <∞. Moreover, for all i, j and all k ∈ R, one has

0 6 lim inf
n→∞

λ−n|B(n)
ij (k)| 6 lim sup

n→∞
λ−n|B(n)

ij (k)| 6 Pij ,

where the Pij are the matrix elements of the projector P from Eq. (2.1). This
leads to more specific results on cB depending on the matrix norm chosen.

Let us from now on assume that λ is a PV unit of degree d 6 N . Since M is
an integer matrix and the equations for the left and right eigenvectors to λ can
thus be solved in the field Q(λ), a natural object to consider is the Z-module
L := Z[λ] = 〈1, λ, . . . , λd−1〉

Z
of rank d, which satisfies λL = L. This is the

main reason to choose the interval lengths (ℓ1, . . . , ℓN) for the tiling such that
Z[λ] comprises all possible coordinates of our control points (relative to one
of them, which may be placed at 0 without loss of generality). We assume
that L is optimal relative to the control point set in the sense that no proper,
λ-invariant submodule of L comprises all of those points (otherwise, we change
the natural interval lengths so that this is true). Next, we extract and harvest
some intrinsic geometric information from this setting.

3 Minkowski embedding and internal space

Let us recall the Minkowski embedding from [6, Sec. 3.4], tailored to L = Z[λ].
Since λ has degree d, this will lead to a lattice L ⊂ Rd as follows. There are
r real algebraic conjugates of λ, and s complex conjugate pairs, so d = r + 2s,
which are defined via the irreducible, monic polynomial in Z[x] that has λ as
a root. This polynomial is a factor of the characteristic polynomial p of M
in our case. Consequently, there are r > 1 real field isomorphisms κ1, . . . , κr,
with κ1 = id, and s > 0 complex field isomorphisms σ1, . . . , σs, together with
their complex conjugates, σ1, . . . , σs. In this setting, we can define a Z-linear
mapping Φ : Z[λ] −−→ Rd by

x 7→
(
x, κ2(x), . . . , κr(x),Re(σ1(x)), Im(σ1(x)), . . . ,Re(σs(x)), Im(σs(x))

)
,

which extends to a Q-linear mapping on the field Q(λ). Clearly, each image
point is of the form Φ(x) = (x, x⋆) with x⋆ ∈ Rd−1. The induced mapping
⋆ : Q(λ) −−→ Rd−1 is called the ⋆-map of the underlying cut and project
scheme; compare [6, Sec. 7.2] or [37]. Often, only its restriction to Z[λ] is
named the ⋆-map, but it has a unique extension to Q(λ), as used here.
It is a standard result of algebraic number theory [39, Sec. I.5] that the set
L := Φ(L) = Φ

(
Z[λ]

)
is indeed a lattice in Rd, where we prefer the real version
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over the (algebraically) perhaps more natural one with Rr×Cs because we will
need Fourier transforms shortly. So, we obtain the following Euclidean cut and
project scheme, or CPS for short; see [6, Sec. 7.2] and references therein for
details and general properties.

R
π←−−− R×Rd−1 πint−−−−→ Rd−1

∪ ∪ ∪ dense

π(L) 1−1←−−− L −−−→ πint(L)
‖ ‖
L

⋆−−−−−−−−−−−−−−−−−−−→ L⋆

(3.1)

Here, π and πint denote the canonical projections. Such a CPS is abbreviated
as (R,Rd−1,L).
To continue, observing that Rd = R×Rd−1, we also need the linear mapping Q
on Rd−1 that is induced by the dilation x 7→ λx (acting on the first component)
in internal space. It is immediate from the structure of Φ and the CPS (3.1)
that we get

Q = diag
(
κ2(λ), . . . , κr(λ)

)
⊕

s⊕

i=1

(
Re(σi(λ)) − Im(σi(λ))
Im(σi(λ)) Re(σi(λ))

)
. (3.2)

Clearly, Q ∈ Mat(d−1,R) is a normal matrix (so, [QT , Q] = 0) and a contrac-
tion, the latter because λ is a PV number, so all its algebraic conjugates lie
strictly inside the unit disk.
Since {1, λ, . . . , λd−1} is a Z-basis of Z[λ], a basis matrix B for L can be chosen
from here, with columns Φ(λi)T for 0 6 i 6 d − 1. The dual matrix, which is
B∗ := (B−1)T , is then a basis matrix of the dual lattice,

L∗ := {y ∈ Rd : 〈x|y〉 ∈ Z for all x ∈ L}.

Clearly, dens(L∗) = dens(L)−1 = |det(B)|.

Remark 3.1. When L = Z[λ] is minimal in the sense that the underlying
point set is contained in L, but not in any λ-invariant submodule of it, the
corresponding Fourier module of the point set or tiling can be extracted from
the first row of the dual basis matrix B∗ as

L⊛ =
〈
B∗
1i : 1 6 i 6 d

〉
Z
,

which is the projection of L∗ to the first component.
There is an intrinsic way to define L⊛ as follows. With the Galois isomorphisms
κi and σj from above, one defines the number-theoretic trace on Q(λ) as

tr(x) :=

r∑

i=1

κi(x) +

s∑

j=1

(
σj(x) + σj(x)

)
=

r∑

i=1

κi(x) + 2

s∑

j=1

Re
(
σj(x)

)
. (3.3)
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Then, one has L⊛ = {y ∈ Q(λ) : tr(xy) ∈ Z for all x ∈ L}, which bypasses the
explicit embedding step from above, though it is of course equivalent to it.

In our setting, the Abelian group L⊛ is the pure point part of the dynamical
spectrum, in additive notation, for the tiling dynamical system induced by the
inflation rule, where the dynamics is given by the translation action of R; see
[9] for background. ♦

To continue, in the spirit of [30], see also [6, Ch. 4], we return to the displace-
ment matrix T of ̺. By definition, when considering the ai as tiles with natural
length ℓi and left endpoint placed at 0, one has the stone inflation (compare
[6, p. 148] for the concept)

λai =
⋃

16j6N

⋃

t∈Tji

t+ aj .

More importantly, T enters the induced inflation action on the point sets via
the iteration

Λ′
i =

⋃̇

16j6N

λΛj + Tij , (3.4)

with a suitable and admissible initial condition, such as the left endpoints of a
legal pair of intervals, one placed at 0 and the other at the fitting position to
the left. Here, we use ′ to denote the image under one iteration step. Note that
this iteration produces the control point sets of the corresponding successive tile
inflations. The dot indicates that the union on the right-hand side of (3.4) is
disjoint, while + stands for the standard Minkowski sum of point sets; compare
[6, Sec. 2.1].

Remark 3.2. Note that the iteration based on (3.4), viewed in the local topol-
ogy, need not converge to a single typed point set Λ =

⋃
i Λi. However, via

a simple application of Dirichlet’s pigeon hole principle, one can show conver-
gence to a finite cycle of such typed point sets, starting from a fixed, admissible
(or legal) initial configuration. Each member of this cycle is equally well suited
to define the (geometric) hull as an orbit closure under translations; compare
[6, Chs. 4 and 5] for details. ♦

Under the ⋆-map, (3.4) turns into an iteration of N finite (and hence closed)
point sets in Rd−1, and thus into an iterated function system (IFS) on(
KRd−1

)N
, where KRm with m ∈ N denotes the space of non-empty, com-

pact subsets of Rm, equipped with the Hausdorff (metric) topology; see [10] or
[49, Sec. 4.6] and references therein for background. Here, the multiplication
by λ is replaced by the action of the contraction Q from (3.2), giving the fixed
point equations

Wi =
⋃

16j6N

QWj + T ⋆
ij =

⋃

16j6N

⋃

t∈Tij

QWj + t⋆ (3.5)

Documenta Mathematica 25 (2020) 2303–2337



2310 M. Baake, U. Grimm

for 1 6 i 6 N . In this step, since the Wi are compact sets in Rd−1, the union
on the right-hand side need no longer be disjoint. By Banach’s contraction

principle, there is a unique solution to the IFS (3.5) within
(
KRd−1

)N
; compare

[10, Thm. 1.1 and Prop. 1.3]. It is a well-known fact that the compact sets Wi

can be Rauzy fractals with complicated topological structure and boundary
[48, 49]; see [42, Sec. 7.4] and references therein for background. Note that
Banach’s contraction principle also gives us that each set Λ⋆

i lies dense in the
set Wi, which plays the role of a window for the CPS (3.1), as we shall exploit
shortly.

Remark 3.3. Let us briefly mention that Eq. (3.5) gives rise to a dual inflation,
via multiplying from the left by Q−1, which is an expansive mapping. This
results in

Q−1Wi =
⋃

16j6N

⋃

t∈Tij

Wj +Q−1t⋆,

where Q−1t⋆ = (t/λ)⋆. Iterating this rule in internal space either leads to a
tiling or to a multiple cover of internal space, where the covering degree is
constant almost everywhere. This follows from [49, Cor. 5.81], which extends
an earlier idea from [27]. ♦

Next, we recall a well-known result about the solution of the IFS (3.5), which
can be seen as a special case of [49, Prop. 4.99]. Since it is of crucial importance
to our further arguments, we also include a proof that is tailored to our setting.
The latter considers primitive inflation tilings of R, with a PV unit λ as inflation
factor and natural lengths of the N intervals chosen such that all control point
positions lie in Z[λ], but in no proper, λ-invariant submodule of it.

Lemma 3.4. Under our general assumptions, the solution (W1, . . . ,WN ) to the
IFS (3.5) is row-wise measure-disjoint, which means that, for each fixed index
1 6 i 6 N , any two distinct sets on the right-hand side of (3.5) intersect at
most in a Lebesgue-null set.
Moreover, there is a number η > 0 such that vol(Wi) = ηvi holds for all
1 6 i 6 N , where vi is the relative frequency of the tiles of type i.

Proof. All Wi are compact sets, hence measurable, with vol(Wi) > 0. Let Λi be

the set of control points of type i for one of the typed point sets Λ =
⋃̇

iΛi that
emerge from the limit cycle of the iteration (3.4), as explained in Remark 3.2.
By construction, due to the properties of the ⋆-map, we then know that

Λi ⊆ f(Wi) := {x ∈ L : x⋆ ∈Wi},

where Λi is linearly repetitive, with dens(Λi) = vi dens(Λ) > 0. Consequently,
by invoking [26, Prop. 3.4], which is a straightforward extension of the density
result [46, Thm. 1] for regular model sets to the more general setting of weak
model sets, we know that

0 < dens(Λi) 6 dens
(
f(Wi)

)
6 dens(L) vol(Wi),

Documenta Mathematica 25 (2020) 2303–2337



Rauzy Fractals and Spectrum of 1D Inflation Tilings 2311

where dens refers to the (always existing) lower density of a point set. This
estimate means that we have vol(Wi) > 0 for all 1 6 i 6 N .
Now, due to a potential overlap of sets on the right-hand side of Eq. (3.5), one
has

vol(Wi) 6 |det(Q)|
N∑

j=1

card(Tij) vol(Wj), for 1 6 i 6 N. (3.6)

Observing |det(Q)| = λ−1 and card(Tij) = Mij , this amounts to the vector
inequality

M |w〉 > λ|w〉,
where |w〉 denotes the vector with entries vol(Wi) and the inequality holds for
each component. Since λ is the PF eigenvalue of M , which is primitive, and
all entries of |w〉 are positive, we see that |w〉 is a positive multiple of the right
PF eigenvector of M ; compare [47, Thm. 1.1] and its proof, which we need not
repeat here.
This means we have equality in (3.6), which implies the first claim, while the
second is a consequence of |w〉 being proportional to |v〉.

All mappings that occur in our IFS (3.5) are of the form x 7→ Qx + u, and
hence homeomorphisms of Rd−1. Invoking parts (i) and (iii) of [49, Prop. 4.99],
one obtains the following improvement of Lemma 3.4.

Proposition 3.5. Let (W1, . . . ,WN ) be the unique solution to the contractive
IFS (3.5). Then, under our assumptions, each Wi ⊂ Rd−1 is a perfect, topolog-
ically regular set of positive Lebesgue measure. Moreover, each boundary ∂Wi

has Lebesgue measure 0.

In view of this result, all f(Wi) are regular model sets for the cut and
project scheme (R,Rd−1,L), see [37, 6] for background, hence alsof(W ) with
W =

⋃
i Wi. The corresponding dynamical system (X,R), where X is the orbit

closure of f(W ) in the local topology and R acts by translation, has pure
point spectrum, both in the diffraction and in the dynamical sense; see [6, 8, 9]
and references therein. The same property holds for the systems built from the
translation orbit closure of any of the f(Wi).

Remark 3.6. If we consider the weighted Dirac comb ω =
∑

i hi δΛi
with

hi ∈ C, the Bombieri–Taylor (or consistent phase) property for primitive in-
flation rules [5, Thm. 3.23 and Rem. 3.24] holds, which is an extension of the
results of [32] to the typed point sets emerging from a primitive inflation rule.
This implies the existence of coefficients Ai(k), called scattering or diffraction
amplitudes, such that ω has the diffraction measure

γ̂ω =
∑

k∈L⊛

I(k) δk with I(k) =
∣∣∣
∑
i

hiAi(k)
∣∣∣
2

, (3.7)

where the Fourier module L⊛ is the projection of L∗ into R as in Remark 3.1.
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Now, assume in addition that f(W ◦
i ) ⊆ Λi ⊆f(Wi) holds for all 1 6 i 6 N ,

with the Wi from the solution of (3.5). Then, due to the inflation origin, our

typed point set Λ =
⋃̇

iΛi consists of disjoint, regular model sets. Consequently,
by the general theory of model sets [37, 6], the amplitudes Ai(k) for k ∈ L⊛

are given by

Ai(k) =
dens(Λi)

vol(Wi)
}1Wi

(k⋆) =
dens(Λ)

vol(W )
}1Wi

(k⋆), (3.8)

where 1K is the characteristic function of K and q. denotes inverse Fourier
transform. For all other k, one has Ai(k) = 0. As we shall see later, a more
general connection is possible via the FB coefficients of Λ and its subsets; see
Eq. (5.1) below for more. The validity of (3.8) is a consequence of the uniform
distribution of Λ⋆

i in Wi ; compare the detailed discussions in [6, Sec. 7.1] and
[46, 38]. ♦

Though Eq. (3.8) looks nice, it is generally difficult to calculate }1Wi
directly,

due to the potentially fractal nature of the window boundaries. Let us thus turn
to an alternative approach of transfer matrix type that harvests the inflation
nature of our point sets. In view of Lemma 3.4, Eq. (3.5) can now be rewritten
as

1Wi
=

N∑

j=1

∑

t∈Tij

1QWj+t⋆ , (3.9)

to be understood in the Lebesgue sense (rather than pointwise).

Theorem 3.7. Let (W1, . . . ,WN ) ∈ (KRd−1)N be the unique solution to the
contractive IFS (3.5). Then, Eq. (3.9) holds in the Lebesgue sense for every
1 6 i 6 N .

Moreover, when considering the compact set W =
⋃

iWi, one has

mc(y) :=

N∑

i=1

1Wi
(y) = mc(y) 1W (y),

where mc is a measurable, integer-valued function on all of Rd−1, with
supp(mc) = W. In particular, the potential values on W are restricted to
{1, 2, . . . , N}.

Proof. The validity of (3.9) in the Lebesgue sense is clear from Lemma 3.4.

Since all Wi are compact, the function mc is well defined for all y ∈ W , and
clearly 0 outside of W . This means that we have mc 1W = mc on all of Rd−1,
while all remaining claims of the theorem are now immediate.

Remark 3.8. Under some additional conditions, the function mc is con-
stant for almost every y ∈ W, with integer value mc. In this case, one has
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∑N

i=1 vol(Wi) = mc vol(W ). This situation happens whenever the inflation de-
fines a model set, where mc = 1. Beyond this case, one can have integer values
of mc, possibly up to N − 1.
In general, however, the function mc need not be constant almost everywhere
in the total window W, as we shall see in the example of Eq. (7.2) in Section 7.
This seems a significant difference to the covering degree of internal space by
the dual inflation mentioned in Remark 3.3. We shall return to this point in
Section 5. ♦

Let us now switch to an analysis of the system (3.9) of equations after (inverse)
Fourier transform, which turns it into a rescaling equation for an N -tuple of
continuous functions.

4 Analysis of internal cocycle

Let us first recall a simple, but in our context vital, result on the inverse Fourier
transform of characteristic functions, which we prove for convenience.

Lemma 4.1. Let m ∈ N be fixed. Let K ⊂ Rm be compact and Q ∈ GL(m,R).
Then, one has the relation

1QK+t(y) = |det(Q)| e2πi〈t|y〉 |1K(QT y),

which holds for all t, y ∈ Rm, with continuity in both variables.

Proof. With the change of variable x = Qu+ t, one finds

1QK+t(y) =

∫

QK+t

e2πi〈x|y〉 dx = |det(Q)| e2πi〈t|y〉
∫

K

e2πi〈Qu|y〉 du

= |det(Q)| e2πi〈t|y〉
∫

K

e2πi〈u|Q
T y〉 du = |det(Q)| e2πi〈t|y〉 |1K(QT y).

Continuity in y follows from the Fourier transform of an L1-function being
continuous, see [45, Thm. IX.7], while continuity in t is obvious.

Let Q now be the linear map from (3.2) in internal space Rd−1 that is induced

by the dilation x 7→ λx in direct space, R. Set fi(y) := }1Wi
(y) and consider the

vector of functions |f(y)〉 = |f1(y), . . . , fN (y)〉. Also, let B(y) be the internal
Fourier matrix that emerges from the (inverse) Fourier transform of the ⋆-image
of the displacement matrix T , that is,

Bij(y) =
∑

x∈Tij

e2πi〈x
⋆|y〉,

with y ∈ Rd−1. The matrix elements are again trigonometric polynomials, this
time generally multivariate, where one still has

∣∣Bij(y)
∣∣ 6 Mij
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for all i, j and all y ∈ Rd−1, in complete analogy to (2.2). With Lemma 4.1
and |det(Q)| = λ−1, one now finds the following result of transfer matrix type
via an elementary computation; compare [41, Sec. 3.2] for a mathematically
similar structure.

Proposition 4.2. Under inverse Fourier transform, Eq. (3.9) becomes

|f(y)〉 = λ−1B(y) |f(Ry)〉,

with R = QT and B(y) = }δT⋆(y) as defined above, and all fi continuous.

It is clear that limy→0 B(y) = B(0) = M . Moreover, from the way it was con-
structed, we know that R is a normal matrix and a contraction. Consequently,
its spectral norm agrees with its spectral radius, see [25, Sec. 2.3], and we have
θ := ‖R‖2 = ρ(R) < 1. This leads to the following property, where we use ‖.‖2
also for the 2-norm of vectors.

Lemma 4.3. For any ε > 0, there exists δ = δ(ε) > 0 such that

‖B(Rmy)−M‖2 < θmε

holds simultaneously for all ‖y‖2 < δ and all m ∈ N.

Proof. Recall that ‖A‖2 6 N supi,j |Aij | holds for all A ∈ Mat(N,C). Observe
that

∣∣Bij(R
my)−Mij

∣∣ =

∣∣∣∣
∑

x∈Tij

(
e2πi〈x

⋆|Rmy〉 − 1
)∣∣∣∣ 6

∑

x∈Tij

∣∣e2πi〈x⋆|Rmy〉 − 1
∣∣

=
∑

x∈Tij

2
∣∣sin

(
π〈x⋆|Rmy〉

)∣∣ 6 2π
∑

x∈Tij

∣∣〈x⋆|Rmy〉
∣∣,

where we have used some trigonometric identities and the fact that |sin(z)| 6 |z|
holds for all z ∈ R. Combining this with the Cauchy–Schwarz inequality

∣∣〈x⋆|Rmy〉
∣∣ 6 ‖x⋆‖2‖Rmy‖2 6 ‖x⋆‖2 θm‖y‖2

gives the claim by standard arguments.

Now, for n ∈ N, we can define an internal cocycle from the Fourier matrix via

B(n)(y) := B(y)B(Ry) · · ·B(Rn−1y),

with B(1) = B and B(n)(0) = Mn. In analogy to (2.4), we now have

B(n+1)(y) = B(n)(y)B(Rny) = B(y)B(n)(Ry) (4.1)

for all n > 1, and also B(n+m)(y) = B(n)(y)B(m)(Rny) for all m > 1 and n > 0,
the latter with the convention B(0) := 1, which we adopt from now on. Clearly,
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one has |B(n)
ij (y)| 6 (Mn)ij , and Fact 2.3 remains valid with B(n) replaced by

the internal cocycle B(n).
Next, we want to consider the matrix function defined by

C(y) := lim
n→∞

βnB(n)(y), (4.2)

with β = |det(R)|, where βλ = 1 because λ is a unit. We thus need to establish
that C(y) is well defined as a limit, for every y ∈ Rd−1. To this end, we employ
the 2-norm for vectors and the corresponding operator norm, both denoted by
‖.‖2 as before.

Proposition 4.4. The sequence
(
βn(B(n)(y) −Mn)

)
n∈N

of matrix functions
is equicontinuous at y = 0, which is to say that

∀ε > 0: ∃δ = δ(ε) > 0: ∀n ∈ N :
(
‖y‖2 < δ =⇒ βn‖B(n)(y)−Mn‖2 < ε

)
.

Proof. Since M is non-negative, the spectral radius of Mn is ρ(Mn) = λn, for
all n ∈ N0. Let us first consider the case that M is normal. Then, we can most
easily work with the spectral norm, because we have ‖Mn‖2 = ρ(Mn) = λn

for n > 0, hence ‖Mn‖2 = ‖M‖n2 . Also, we get

‖B(y)‖2 6
∥∥ |B(y)|

∥∥
2
6 ‖M‖2

for all y in this case. This estimate holds because the spectral norm has the
required monotonicity property; see [28, Thm. 1] or [24, Exc. 5.6.P42].
Harvesting the cocycle property (4.1), a simple telescopic argument leads to

B(n)(y)−Mn =

n−1∑

ℓ=0

M ℓ
(
B(Rℓy)−M

)
B(n−1−ℓ)(Rℓ+1y)

for n > 1, with B(0) = 1 as above. Via the triangle inequality, using the above
properties, one then finds the estimate

‖B(n)(y)−Mn‖2 6 ‖M‖n−1
2

n−1∑

ℓ=0

‖B(Rℓy)−M‖2 = λn−1
n−1∑

ℓ=0

‖B(Rℓy)−M‖2 .

For ε > 0 and ‖y‖2 < δ, with β = λ−1 and the δ from Lemma 4.3, this gives

∥∥βn
(
B(n)(y)−Mn

)∥∥
2
6 β

n−1∑

ℓ=0

θℓε 6
βε

1− θ

by a geometric series argument, which establishes the claim when M is normal.
For the general case, we employ a different sub-multiplicative matrix norm,
which depends on M and again satisfies ‖M‖ = ρ(M), so ‖Mn‖ 6 ‖M‖n = λn.
Following [25, Sec. 2.4], one such norm can simply be constructed as follows.
Consider the convex body

K = diag(v1, . . . , vN ){x ∈ CN : ‖x‖∞ 6 1},
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where the vi are the strictly positive entries of |v〉, the (frequency normalised)
right PF eigenvector of M , and define

‖x‖v := inf
{
α > 0 : x ∈ αK

}
= max

16i6N

|xi|
vi

.

This is a matrix norm on CN that is absolute, so ‖x‖v =
∥∥|x|

∥∥
v
for all x ∈ CN,

with |x| denoting the vector with entries |xi|. Now, let ‖.‖K denote the match-
ing operator norm on Mat(N,C), as defined by

‖A‖K := sup
‖x‖v=1

‖Ax‖v ,

which is sub-multiplicative and satisfies ‖M‖K = ρ(M) = λ by construction.
What is more, it also satisfies the monotonicity property ‖A‖K 6

∥∥|A|
∥∥
K

for all A ∈ Mat(N,C), again by [24, Thm. 1]. Consequently, we still get
‖B(n)(y)‖K 6 ‖Mn‖K 6 ‖M‖nK for all y ∈ Cd−1 and all n ∈ N.
Equipped with this matrix norm, we can repeat our previous telescopic argu-
ment, now leading to the estimate

∥∥βn
(
B(n)(y)−Mn

)∥∥
K

6 β
n−1∑

ℓ=0

∥∥B(Rℓy)−M
∥∥
K
.

From here, since the vector norms ‖.‖2 and ‖.‖v are equivalent, as are the
matrix norms ‖.‖2 and ‖.‖K , we can adjust the choice of δ = δ(ε) to reach the
same conclusion.

Combining the equicontinuity of βnB(n)(y) at 0 from Proposition 4.4 with
B(n)(0) = Mn and Fact 2.1, a standard 2ε-argument gives the following con-
sequence.

Corollary 4.5. Let P be the projector from (2.1) and B(n)(y) the internal
cocycle. Then, for all ε > 0, there exists δ ′ = δ ′(ε) > 0 and n0 = n0(ε) such
that

‖βnB(n)(y)− P‖2 < ε

holds for all integer n > n0 and all y ∈ Rd−1 with ‖y‖2 < δ ′.

Now, we are set to establish the convergence of our internal cocycle as follows.

Theorem 4.6. The scaled internal cocycle sequence
(
βnB(n)(y)

)
n∈N

converges

compactly on Rd−1. Consequently, the matrix function C(y) from (4.2) is well
defined and continuous.

Proof. Let K ⊂ Rd−1 be compact, choose ε > 0, and let δ = δ(ε) > 0 be as in
Proposition 4.4. We will establish the claim by showing that the sequence is
uniformly Cauchy on K.
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For p, q, r ∈ N, we employ the cocycle property from (4.1) to get

‖βp+qB(p+q)(y)− βp+q+rB(p+q+r)(y)‖2
6 ‖βpB(p)(y)‖2 ‖βqB(q)(Rpy)− βq+rB(q+r)(Rpy)‖2 ,

(4.3)

where the first factor on the right is bounded by βp‖Mp‖2 and thus uniformly
bounded by a constant cB, as a consequence of Fact 2.3, applied to B(n) with
the spectral norm. Via the triangle inequality, the second factor on the right-
hand side of (4.3) is bounded by

∥∥βq
(
B(q)(Rpy)−M q

)∥∥
2
+
∥∥βqM q − βq+rM q+r

∥∥
2

+
∥∥βq+r

(
B(q+r)(Rpy)−M q+r

)∥∥
2
.

(4.4)

Choose p large enough so that RpK is contained in the open ball of radius δ
around 0, which is possible because R is a contraction. Then, the first term in
(4.4), as well as the last, is bounded by ε. Since (βnMn)n∈N

converges to P
by Fact 2.1, where β = λ−1, the sequence is Cauchy, so there is a q0 ∈ N

such that the middle term in (4.4) is bounded by ε, for all q > q0 and r ∈ N.
Consequently, (4.4) is bounded by 3ε for the chosen p, all q > q0, and all r ∈ N.
Via Fact 2.3, used with B(n) instead of B(n), this gives an upper bound of 3cB ε
to the left-hand side of (4.3). As this bound is independent of y ∈ K, and ε > 0
was arbitrary, uniform convergence on K follows.
Since we have a compactly convergent sequence of matrix functions, each of
which is analytic and thus certainly continuous, the last claim is obvious.

Let us next analyse the matrix function C(y), where we know

C(0) = P

from Fact 2.1. Now, Eq. (4.1) implies that, for any fixed m ∈ N,

C(y) = lim
n→∞

βn+mB(n+m)(y) = C(y)βm lim
n→∞

B(m)(Rny) = C(y)βmMm,

because R is a contraction and B(m)(0) = Mm. With m = 1, this gives

C(y)M = λC(y),

as well as C(y) = C(y)P from taking the limit m → ∞. Each row of C(y)
thus is a left eigenvector of M for its eigenvalue λ, or vanishes, hence is a
y-dependent multiple of 〈u|. But this means

C(y) = |c(y)〉〈u| (4.5)

with |c(0)〉 = |v〉. Observing that the window volumes are proportional to the
entries of |v〉 by Lemma 3.4, so |f(0)〉 = η|v〉 for some η > 0, one has the
following consequence.
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Corollary 4.7. For any y ∈ Rd−1, the matrix C(y) from (4.2) has rank

6 1, and can be represented as in (4.5). Moreover, with fi = }1Wi
, one has

|f(y)〉 = η |c(y)〉 with the above η, together with |c(y)〉 = C(y)|v〉.
In particular, this result makes the functions fi effectively computable from C.

Remark 4.8. Let us mention that the continuity of the functions fi is also clear
from the fact that each is the (inverse) Fourier transform of an L1-function,
and fi decays at infinity by the Riemann–Lebesgue lemma; see [45, Thm. IX.7].
What is more, since all Wi are compact, we actually know that each fi has an
analytic continuation to an entire analytic function of d−1 variables, with a
well-known growth estimate according to the Paley–Wiener theorem; compare
[45, Thm. IX.12]. This also means that the rank of the matrix C(y) is 1 almost
everywhere. ♦

5 Fourier–Bohr coefficients and uniform distribution

Here, we explain the general connection with the diffraction amplitudes men-
tioned earlier in Remark 3.6. Given a typed point set Λ =

⋃̇
i Λi ⊂ R, its

Fourier–Bohr (FB) coefficient (or amplitude) at k ∈ R is defined as a volume-
averaged exponential sum,

AΛ(k) := lim
r→∞

1
2r

∑

x∈Λ
|x|6r

e−2πikx, (5.1)

and similarly for the control point sets Λi with 1 6 i 6 N , provided the limits
exist. This is the case for point sets from primitive inflation rules, which are
linearly repetitive and thus uniquely ergodic [52, 29]. The definition entails that

AΛ(0) = dens(Λ), and one gets
∑N

i=1 AΛi
(k) = AΛ(k) for all k ∈ R because the

point sets Λi are disjoint by construction. Let us also recall that AΛ(.), when
viewed as a function of Λ, is continuous, which correponds to the continuity of
all eigenfunctions in this setting [32]; see Remark 5.6 below for more.
In general, we know from the embedding procedure that Λ⋆

i = Wi. If Λi is also a
model set, the point set Λ⋆

i is uniformly distributed (and even well distributed)
in Wi; compare [46, 38]. This uniform distribution occurs more generally, as
we analyse next.
It is clear from Remark 3.8 and the example in Section 7 that the lift of Λ to
internal space will not be uniformly distributed in W in general. However, the
situation is more favourable for the individual point sets Λi. For any 1 6 i 6 N ,

consider the sequence (µ
(n)
i )n∈N

of point measures in internal space defined by

µ
(n)
i = 1

2n

∑

x∈Λi

|x|6n

δx⋆ .

Clearly, one has supp(µ
(n)
i ) ⊂ Wi by construction, and µi := limn→∞ µ

(n)
i

exists (under weak convergence), due to the strict ergodicity of the dynamical
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system defined by Λi. An explicit argument for this convergence, based on
the linear repetitivity of Λi, can be formulated along the lines of the proof of
[29, Thm. 5.1], observing that

(
δx⋆ ∗ g

)
(y) = g(y − x⋆) and using the result

pointwise. Here, µi is a positive measure on Rd−1 with supp(µi) ⊆ Wi and
total mass ‖µi‖ = dens(Λi). We say that Λi induces the measure µi in internal
space.

Remark 5.1. If g ∈ C0(R
d−1) and a, b ∈ R with a < b, one can consider, for

each fixed i,

wi

(
[a, b]

)
:=

∑

x∈Λi∩[a,b]

g(x⋆).

Now, since any g ∈ C0(R
d−1) is bounded, the Delone property of Λi implies

that there are some numbers c, d > 0 such that b− a > c implies
∣∣wi

(
[a, b]

)∣∣ 6 (b − a)d,

and each wi is a local weight function in the sense of [29].
Then, [29, Thm. 5.1] yields convergence of wi

(
t + [a, b]

)
/(b − a), uniformly in

t ∈ R, due to the linear repetitivity of the Λi. An analogous argument applies
when g is replaced by δz ∗ g with an arbitrary z ∈ Rd−1. The result obtained
this way is stronger than needed below, and actually also gives the uniform
existence of the FB coefficients. ♦

When Λi induces µi, a simple calculation (with a change of the summation
variable) shows that λΛi + t with t ∈ Z[λ] induces the positive measure

1
λ
δt⋆ ∗ (Q.µi),

where Q is the contraction from (3.2) and Q.µ denotes the push-forward of a
finite measure µ, so

(
Q.µ

)
(ϕ) = µ(ϕ ◦Q) for ϕ ∈ C0(R

d−1). Equivalently, one

can use
(
Q.µ

)
(E) = µ

(
Q−1(E)

)
with E an arbitrary Borel set.

Let us now assume that our typed point set Λ =
⋃̇

iΛi is a fixed point of the
inflation equation (3.4). This is no restriction as one can always achieve this
via replacing ̺ by a suitable power; compare Remark 3.2. Then, our induced
measures µ1, . . . , µN must satisfy

µi = 1
λ

N∑

j=1

∑

t∈Tij

δt⋆ ∗ (Q.µj), (5.2)

which defines a system of N linear equations. We can spell out one solution as
follows, where µLeb denotes Lebesgue measure on internal space, Rd−1.

Lemma 5.2. The absolutely continuous measures µ′
i = giµLeb with Radon–

Nikodym densities

gi =
dens(Λi)

vol(Wi)
1Wi

satisfy (5.2) together with ‖µ′
i‖ = dens(Λi).
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Proof. Observe that Q.(1Wi
µLeb) = |det(Q)|−11QWi

µLeb, which follows from
a simple change of variable calculation. Likewise, one has δt⋆ ∗ 1Wi

= 1Wi+t⋆ ,
and inserting the expressions into (5.2) leads to

dens(Λi)

vol(Wi)
1Wi

=
N∑

j=1

∑

t∈Tij

dens(Λj)

vol(Wj)
1QWj+t⋆ .

By construction, we have dens(Λi) = dens(Λ)vi, where vi is the relative fre-
quency of points of type i; compare Remark 2.2. On the other hand, we know
from Lemma 3.4 that the N window volumes satisfy vol(Wi) = ηvi for some
fixed η > 0, which implies that

dens(Λi)

vol(Wi)
=

dens(Λ)

η

is independent of i, and the previous equation turns into the window equation
(3.9), which is satisfied in the Lebesgue sense.
The claimed normalisation is obvious.

Now, we interpret the right-hand side of (5.2) as a linear mapping on(
M+(R

d−1)
)N

, with M+(R
d−1) denoting the finite, positive measures on

Rd−1, equipped with the total variation norm, ‖.‖. If (µ1, . . . , µN ) is anN -tuple
of positive measures, its image is (µ′

1, . . . , µ
′
N) with

‖µ′
i‖ =

∥∥∥ 1
λ

N∑

j=1

∑

t∈Tij

δt⋆ ∗ (Q.µj)
∥∥∥ = 1

λ

N∑

j=1

∑

t∈Tij

∥∥δt⋆ ∗ (Q.µj)
∥∥

= 1
λ

N∑

j=1

Mij

∥∥Q.µj

∥∥ = 1
λ

N∑

j=1

Mij‖µj‖.

Consequently, when ‖µi‖ = αvi for all 1 6 i 6 N and some α > 0, the total
mass of each µi is preserved under the iteration because M |v〉 = λ|v〉. This
leads to the following result.

Proposition 5.3. Let α > 0 be fixed and consider the space

Mα :=
{
(ν1, . . . , νN ) : νi ∈ M+(R

d−1), ‖νi‖ = αvi
}
,

with |v〉 the right PF eigenvector of M . Then, Mα is invariant under the
iteration of the right-hand side of (5.2), and contains precisely one solution to
Eq. (5.2), namely the one defined by νi =

αvi
vol(Wi)

1Wi
µLeb for 1 6 i 6 N .

Proof. The space Mα can be equipped with the Hutchinson metric, compare
[10, Sec. 2] and references therein, which turns it into a complete metric space.
The iteration then is a contraction, as is obvious from

∥∥∥ 1
λ
δt⋆ ∗ (Q.νj)

∥∥∥ = 1
λ

∥∥δt⋆ ∗ (Q.νj)
∥∥ = 1

λ
‖Q.νj‖ = 1

λ
‖νj‖
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where λ > 1; see [10, Sec. 5] for the remaining steps.

Now, the first claim is a consequence of Banach’s contraction principle, while
the concrete form of the solution follows from Lemma 5.2.

If one starts the iteration with an arbitrary N -tuple of non-negative measures,
not all 0, there is a unique component of the total mass vector in the PF
direction of M , which defines the parameter α, and all other components decay
exponentially fast.

Our main result of this section can now be formulated as follows.

Theorem 5.4. Let Λ =
⋃̇

iΛi be the typed point set of a primitive, unimodu-
lar PV inflation rule as constructed above, and consider the natural CPS that
emerges from the Minkowski embedding. Then, each Λi induces a unique mea-
sure in internal space, namely

µi =
dens(Λi)

vol(Wi)
1Wi

µLeb ,

where the Wi are the solutions of the window IFS (3.5). This entails the
statement that, for all 1 6 i 6 N , the set Λ⋆

i is uniformly distributed in Wi.

Proof. The IFS (5.2) for the distributions induced by the Λi on the compact
sets Wi is contractive on Mα, with α = dens(Λ), and the unique solution is
the one stated.

Recalling the definition of the induced measures, weak convergence clearly is
equivalent to the uniform distribution of Λ⋆

i in Wi.

At this point, we can return to the connection between the FB coefficients and
the Fourier transform of the windows, even though the latter generally only
code a covering model set. Still, due to uniform distribution, one obtains an
explicit formula as follows.

Corollary 5.5. Under the assumptions of Theorem 5.4, the FB coefficients
of the Λi are proportional to the Fourier amplitudes of the covering model set
via

AΛi
(k) =

dens(Λi)

vol(Wi)
}1Wi

(k⋆)

for any k ∈ L⊛, together with AΛi
(k) = 0 for any k ∈ R \ L⊛.

In the special situation that the covering function mc from Remark 3.8 satisfies
mc(y) = mc for a.e. y ∈W, one further gets

AΛi
(k) =

dens(L)
mc

}1Wi
(k⋆), (5.3)

which reduces to the standard formula for model sets when mc = 1.
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Remark 5.6. If we interpret the FB coefficient AΛ(k) as a function of Λ, one
obtains

At+Λ(k) = e−2πikt AΛ(k).

Consequently, whenever the coefficient does not vanish, this defines an eigen-
function of the strictly ergodic dynamical system (Y,R), where Y is the hull
of Λ obtained as the closure of the translation orbit {t+Λ : t ∈ R} in the local
topology; compare [6, Ch. 4]. The analogous connection exists with the AΛi

for
1 6 i 6 N , not all of which can vanish simultaneously for any given k ∈ L⊛.
This explains why L⊛ is the pure point part of the dynamical spectrum (in
additive notation) and how the diffraction intensities are connected with the
eigenfunctions; see [9, 32] and references therein for more.

Both for regular model sets and for primitive inflation tilings, it is known that
the eigenfunctions on Y have continuous representatives; see [32] and references
therein. This also means that the dynamical point spectrum for such systems
is the same in the topological and in the measure-theoretic sense. ♦

Whenever constant covering of the total window is satisfied in our setting, we
have the following consequence for the FB coefficients, where we use c(y) from
(4.5) and Corollary 4.7.

Corollary 5.7. Assume that the total window covering is almost surely con-
stant. Then, the FB coefficients, for k ∈ L⊛, are obtained as

AΛi
(k) = dens(Λ) ci(k

⋆),

and vanish for all other k.

The corresponding diffraction intensities follow from Eq. (3.7). Note that the
covering degree does not show up in this relation. The intensity at any wave
number k ∈ L⊛ can efficiently be approximated by truncating the infinite
product representation for C(k⋆) and calculating the amplitudes as explained
above.

At this point, we turn to some applications of the cocycle method to concrete
inflation systems on the real line, which will illustrate the above results.

6 Examples – the Pisa substitutions

Let us introduce an interesting family of primitive inflations as follows, based
on the alphabet A = {a1, . . . , ad} with d > 2. The explicit rule is given
by ai 7→ a1ai+1 for 1 6 i 6 d − 1, together with ad 7→ a1. In short, we
have ̺d = (a1a2, a1a3, . . . , a1ad, a1). We call {̺d : d > 2} the family of Pisa
substitutions. For d = 2, this is the classic Fibonacci rule, while d = 3 is known
as the Tribonacci substitution in the literature; see [42] and references therein.
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Let us first collect some general results for this family. The substitution matrix
reads

Md =




1 1 1 . . . 1 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
0 0 0 . . . 1 0




with det(Md) = (−1)d−1. Note that Md is not normal for d > 3, whence we
need Proposition 4.4 in the generality stated and proved. The characteristic
polynomial of Md is

pd(x) = xd − (1 + x+ x2 + · · ·+ xd−1).

By [14, Thm. 2], pd is irreducible, with one root > 1, which is the PF eigenvalue
λd of Md, and all others inside the unit disk. So, λd is a PV unit of degree d,
which satisfies limd→∞ λd = 2. The discriminant of pd for d > 2 is given by

∆d = (−1)
d(d+1)

2
(d+ 1)d+1 − 2(2d)d

(d− 1)2
,

which is due to M. Alekseyev; see [51, A106273] for details.
The right PF eigenvector is denoted by |v〉 as before, where we now drop the
dependence on d for ease of notation. When normalised as 〈1|v〉 = 1, it reads

|v〉 =
(
λ−1, λ−2, λ−3, . . . , λ−d+1, λ−d

)T
.

The corresponding left PF eigenvector 〈u| is normalised such that 〈u|v〉 = 1,
which gives

〈u| = λd − λ

2λd − (d+ 1)λ+ (d− 1)

(
λ,

d−2∑

j=0

λ−j ,

d−3∑

j=0

λ−j , . . . , 1 + λ−1, 1

)
.

Here, the normalisation prefactor was simplified via the algebraic relation for
λ from pd(λ) = 0, which in particular gives λd(λ − 1) = λd − 1. Note that
the vector on the right-hand side is a canonical choice for the natural interval
lengths, which all lie in Z[λ]. The shortest interval then has length 1, and it is
straightforward to show that no proper, λ-invariant submodule of Z[λ] contains
all control point positions. Here, the density of the resulting point set Λ is

dens(Λ) =
λd − λ

2λd − (d+ 1)λ+ (d− 1)
,

with limd→∞ dens(Λ) = 1
2 .
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When working with the Z-module L = Z[λ], one can define the dual module L⊛

with respect to the quadratic form tr(xy) as explained in Remark 3.1, namely

L⊛ =
{
y ∈ Q(λ) : tr(xy) ∈ Z for all x ∈ L

}
. (6.1)

For our family, one finds L⊛ = ϑL with

ϑ =

(
d λd−1 −

d−2∑

m=0

(m+ 1)λm

)−1

∈ 1
∆d

Z[λ].

We are now set to look at some special cases in more detail.

6.1 The Fibonacci tiling

For ̺2 = (ab, a), which we write with the binary alphabet A = {a, b} for
simplicity, the inflation tiling with interval lengths τ = 1

2 (1 +
√
5 ) for a and 1

for b is well studied; see [6, Sec. 9.4.1] and references therein. For the standard
fixed point of the square of ̺2, with central seed a|a, one obtains the windows
Wa = (τ−2, τ−1] and Wb = (−1, τ−2], compare [6, Ex. 7.3], and can calculate

their Fourier transforms immediately. With sinc(z) = sin(z)
z

, they read

}1Wa
(y) = eπiy(2τ−3) sinc(πy) and }1Wb

(y) = eπiy(τ−3)

τ
sinc

(
πy
τ

)
.

Here, it does not matter whether we take open, half-open or closed intervals,
as their characteristic functions are equal as L1-functions. Consequently, this
detail is spectrally invisible.
The internal Fourier matrix and cocycle for this example read

B(y) =

(
1 1

e2πiσy 0

)
and B(n)(y) = B(y)B(σy) · · ·B(σn−1y),

with3 σ = τ⋆ = 1− τ , so |σ| = −σ. We find the relation

cb(y) = |σ|e2πiσyca(y)

expressing cb in terms of ca, while the latter is obtained as the limit

ca(y) = lim
n→∞

qn(y),

where the trigonometric polynomials qn are recursively defined by

qn+1(y) = |σ| qn(σy) + σ2e2πiσ
2yqn−1(σ

2y),

with initial conditions q1 = q0 = |σ|. From here, it is not difficult to check that

ca(y) = |σ|}1Wa
(y) and cb(y) = |σ|}1Wb

(y)

3Here, σ is a number which should not be confused with the Galois isomorphisms from

Section 3.
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as it must. The convergence of the recursive formula for ca is exponentially fast.
Though there is no need for this alternative approach in this case, it provides
a consistency check and some additional insight into the recursive structure of
the spectrum.

6.2 (Twisted) Tribonacci

Here, we compare two different substitution rules for d = 3, which share the
same substitution matrix, M = M3. These are the Tribonacci substitution
̺3 := (ab, ac, a) and its twisted counterpart, ̺′

3 := (ba, ac, a), with the alphabet
{a, b, c}. Further permutations of letter positions do not define new hulls, as
they are conjugate to one of these two. Both lead to inflation systems with
fractal windows in their model set description, as they must due to a result
by Pleasants [40, Prop. 2.35], but the twisted version is more tortuous; see
Figure 1 below, and compare [42, Figs. 7.5 and 7.8], where a different coordinate
system is used. The fundamental group of the windows in the twisted case is
huge, while the windows of the untwisted case are still simply connected, as in
other examples such as the inflation tiling that underlies the Kolakoski-(3, 1)
sequence [11].

The field Q(λ) is cubic. For ease of notation, we define κ± =
(
19 ± 3

√
33

) 1
3 .

With this, we find that the PF eigenvalue is

λ = 1
3

(
1 + κ+ + κ−

)
≈ 1.839287.

The characteristic polynomial is cubic, p(x) = x3−x2−x−1, with discriminant
∆ = −44. The remaining two eigenvalues form a complex conjugate pair
α, α with |α|2 = λ−1 = λ2 − λ − 1, where we assume α to be the one with
positive imaginary part. One also has λ−2 = λ(2 − λ). Further, one finds
Re(α) = (1−λ)/2 and Re(α2) = (3−λ2)/2, while Im(α) = 1

2
√
3

(
κ+−κ−

)
and

Im(α2) = (1 − λ) Im(α). From the discriminant and Vieta’s theorem, one also
gets

Im(α) =

√
11

3λ2 − 2λ− 1
=

√
11

22

(
−4λ2 + 9λ+ 1

)
.

The natural tile lengths can be chosen as (λ, λ2 − λ, 1) ≈ (1.839, 1.544, 1),
which then implies that all control point positions lie in the rank-3 Z-module
L = 〈1, λ, λ2〉

Z
, but in no proper submodule. The lattice for the CPS, L, is

obtained from the Minkowski embedding of L into 3-space. A canonical choice
for the basis matrix of L and its dual, L∗, is then given by

B =



1 λ λ2

1 Re(α) Re(α2)
0 Im(α) Im(α2)
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Figure 1: Rauzy fractals for the Tribonacci inflation (left panel) and its twisted
sibling (right panel), shown at the same scale. They are the windows for the
points of type a (blue), b (red) and c (green). The coordinate axes are those
emerging from the Minkowski embedding, with ticks indicating unit distances.

and

B∗ =
Im(α)√

11



λ2 − λ− 1 λ− 1 1
2λ2 − λ 1− λ −1
3λ−λ2

2 Im(α)
3(λ2−1)
2 Im(α)

1−3λ
2 Im(α)




with det(B) = Im(α)(3λ2 − 2λ− 1) =
√
11. From the first row of B∗, one can

now extract the Fourier module in our setting from an independent calculation,
which gives

L⊛ = ϑ 〈λ2 − λ− 1, λ− 1, 1〉Z = ϑL,

with ϑ = (3λ2 − 2λ − 1)−1, in agreement with our general formula (6.1). The
Abelian group L⊛ is also the dynamical spectrum (in additive notation) of our
systems; compare Remark 3.1. In fact, Tribonacci and twisted Tribonacci are
metrically isomorphic by the Halmos–von Neumann theorem, but have rather
different eigenfunctions. Also, they are obviously not mutually locally derivable
(MLD) from one another; see [6, Sec. 5.2] for background. Moreover, they are
not topologically conjugate either, as they can be distinguished via invariants
of gauge-theoretic origin [22], or by dimension arguments as follows.

Remark 6.1. The Hausdorff dimension of the fractal boundary of the Tri-
bonacci windows is known; compare [36] as well as [18, Ex. 4.2]. It can be
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calculated as a similarity dimension, which is the real solution sH to the equa-
tion |α|4sH + 2|α|3sH = 1. This gives

sH = 2
log(b)

log(λ)
≈ 1.093364,

where b is the positive real root of x4 − 2x− 1.
Likewise, for twisted Tribonacci, the Hausdorff dimension of the window bound-
ary is given by [18, Ex. 4.3]

sH = 2
log(b)

log(λ)
≈ 1.791903,

where b now is the positive real root of x6 − x5 − x4 − x2 + x − 1, as one
derives from the corresponding graph-directed IFS for the boundary; see also
[49, Sec. 6.9].
The much larger Hausdorff dimension for the twisted case corresponds to a
slower decay of the Fourier transform; see [33, App. B] for an explicit one-
dimensional example for which the Fourier transform shows a power-law decay
with exponent 1 − dB , where dB is the fractal dimension of the boundary,
and [23] for an interesting asymptotic scaling analysis of such coefficients. It
would be useful to establish a general result along these lines, which is of recent
interest also with respect to a refinement of the notion of complexity [21]. ♦

If σ1 : Q(λ) −−→ Q(α) is the field isomorphism induced by λ 7→ α, one de-

termines the ⋆-map of k ∈ L⊛ as k 7→ k⋆ :=
(
Re(σ1(k)), Im(σ1(k))

)T
. For

k = kp,q,r := ϑ(p+ qλ+ rλ2), this gives

k⋆p,q,r =

( 1
44

(
(−p+ 4q + 17r)− (9p− 3q + r)λ + (4p− 5q − 2r)λ2

)
1

4
√
11

(
(−p+ 2q + r) + 3(p+ q + r)λ− (3q + 2r)λ2

)
)
,

where the integers p, q, r are known as the Miller indices of the corresponding
Bragg peak in crystallography.
In Figure 2, we compare the peaks of the pure point diffraction measure for
the Tribonacci point set and its twisted sibling. The support is the same, but
the intensities show characteristic differences. The latter are calculated as

I(p, q, r) =
(
5 + λ+ 2λ2

22

)2 ∣∣〈1|C(k⋆p,q,r)|v
〉∣∣2

with the appropriate matrix function C for the two cases. The peaks of the
twisted case are often smaller than their untwisted counterparts. Note also
that an approximation of the diffraction measure by exponential sums of large
patches suffers from slow convergence, in particular for the twisted version, as
was previously observed and discussed for the plastic number PV inflation [7].
This reference also contains an illustration of the full Fourier transform of the
plastic number Rauzy fractal, which shows similar features as our case at hand.

Documenta Mathematica 25 (2020) 2303–2337



2328 M. Baake, U. Grimm

(0
,1
,0
)

(1
,1
,2
)

(0
,0
,1
)

(0
,1
,1
)

(1
,1
,1
)

(1
,1
,3
)

(1
,2
,1
)

(1
,2
,3
)

(2
,2
,3
)

(2
,3
,5
)

(3
,4
,5
)

(3
,4
,6
)

(4
,6
,6
)

(4
,7
,7
)

(4
,7
,8
)

(5
,7
,9
) (5
,7
,1
0)

(6
,8
,1
0)

Figure 2: Diffraction intensities (Bragg peaks) for the Tribonacci point set
(upper part, blue) and for its twisted counterpart (lower part, red). Displayed
are the relevant peaks for k ∈ L⊛∩ [0, 10], with the intensity represented by the
length of the line. The left-most peak is located at the origin and has height
dens(Λ)2, where dens(Λ) = 1

22 (5 + λ + 2λ2) ≈ 0.618420. Selected peaks are
labelled by their Miller index triples.

6.3 The quartic case

Let us briefly consider ̺4 = (01, 02, 03, 0) on A = {0, 1, 2, 3}, where Q(λ) is a
quartic field. Beyond the PF eigenvalue λ ≈ 1.927562, M has one real root
µ, with µ ≈ −0.774804, and a complex conjugate pair α, α, with numerical
value α ≈ −0.076379 + 0.814704i. For the natural choice of interval lengths,
(λ, λ2 − λ, λ3 − λ2 − λ, 1), the Fourier module becomes

L⊛ = ϑ 〈λ3 − λ2 − λ− 1, λ2 − λ− 1, λ− 1, 1〉
Z
= ϑZ[λ],

where

ϑ =
(
λ3 − 3λ2 − 2λ− 1

)−1
= 1

563

(
10 + 157λ− 103λ2 + 16λ3

)
.

This follows from (6.1) and can be verified via the quadratic form tr(xy), ob-
serving tr(1) = 4 and tr(λm) = 2m − 1 for m ∈ {1, 2, 3}. In analogy to before,
we parametrise k ∈ L⊛ by a quadruple (p, q, r, s) of Miller indices.
The internal Fourier matrix reads

B(y) =




1 1 1 1
e(y) 0 0 0
0 e(y) 0 0
0 0 e(y) 0
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Figure 3: Illustration of the pure point diffraction spectrum for the d = 4 Pisa
inflation, for k ∈ L⊛∩ [0, 10]. The left-most peak is located at 0 and has height
dens(Λ)2, with dens(Λ) = 1

563 (86 − λ + 15λ2 + 25λ3) ≈ 0.566343. Selected
peaks are labelled by their Miller index quadruples.

with e(y) := exp
(
2πi(µy1 + Re(α)y2 + Im(α)y3)

)
. A calculation analogous

to our previous ones leads to the diffraction measure as illustrated in Fig-
ure 3. Let us briefly mention that, using the methods from [49, Cor. 4.118 and
Prop. 4.122], one can derive an upper bound of 2.327 for the Hausdorff dimen-
sion of the window boundaries [50]. It is no problem to twist ̺4, as we did for
the Tribonacci case, but we leave further details to the interested reader.

7 Twisted extensions of Fibonacci chains with mixed spectrum

Let us close with a simple system with mixed spectrum. It is based on the
idea, taken from [4], of a twisted extension of ̺F = (ab, a), which is ̺2 from
Section 6.1, with a bar swap symmetry. As such, it works with the extended
alphabet A =

{
a, ā, b, b̄

}
, where we consider

̺ = (ab, āb̄, ā, a).

The natural interval lengths are those of the Fibonacci tiling, so τ for a and ā,
as well as 1 for b and b̄. Also, by identifying a with ā and b with b̄, one sees
that the system possesses the Fibonacci tiling as a topological factor, where the
factor map is 2 : 1 almost everywhere, but not everywhere [22]. Consequently,
we have a non-trivial point spectrum, together with a continuous component.
The latter, by an application of the renormalisation methods from [5, 34, 35],
must be singular continuous.
The substitution matrix of ̺ has spectrum {τ, 1−τ, 12 (1±i

√
3 )}, and a reducible

characteristic polynomial. Only the factor with τ as a root is relevant, and one
checks that the same embedding as for the Fibonacci tiling can be used. Here,
the embedding method produces covering supersets, where the contractive IFS
on (KR)4 reads

Wa = σWa ∪ σW
b̄
, Wb = σWa + σ,

Wā = σWā ∪ σWb , W
b̄
= σWā + σ,
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with σ = τ⋆ as before. The unique solution with compact subsets of R is

Wa = Wā = [−σ2,−σ] = [τ − 2, τ − 1] and

Wb = W
b̄
= [−1,−σ2] = [−1, τ − 2],

(7.1)

as can easily be verified by direct computation. Here, we are in the situation
that mc(y) = 2 for a.e. y ∈ [−1, τ − 1], and uniform distribution is preserved
both in the individual windows, by Theorem 5.4, and in the total window.
Note that the point sets Λ⋆

a and Λ⋆
ā are disjoint, but have the same closure,

and analogously for Λ⋆
b and Λ⋆

b̄
. The right-hand sides of the window equations

are measure-disjoint by Lemma 3.4, which means that the cocycle approach
can be applied, with the window covering degree being mc = 2. Since uniform
distribution is satisfied here by Theorem 5.4, the FB coefficients from (5.1) can
be calculated by means of (5.3). For weights hα ∈ C with α ∈ {a, ā, b, b̄}, the
pure point part of the diffraction reads

(γ̂)
pp

=
∑

k∈L⊛

∣∣∣
∑
α

hαAα(k)
∣∣∣
2

δk ,

with the additional part of the diffraction measure being singular continuous.

As was noticed by Gähler [22], one can employ a partial return word coding
to arrive at another inflation which defines a tiling system that is MLD with
the above. Concretely, consider the alphabet {A,B,C,D} and the inflation
̺′ = (AB,D,CA,C). Here, A and B correspond to a and b, while C replaces
āb̄ and D replaces each ā that is not followed by a b̄. This gives the substitution
matrix 



1 0 1 0
1 0 0 0
0 0 1 1
0 1 0 0




with the same eigenvalues as above. Here, the natural interval lengths are
(τ, 1, τ + 1, τ), in agreement with the local derivation rule just stated.
The resulting window equations read

WA = σWA ∪ (σWC + σ2) , WB = σWA + σ ,

WC = σWC ∪ σWD , WD = σWB ,

which constitute a contractive IFS on (KR)4 with unique solution

WA = [τ − 2, τ − 1] , WB = [−1, τ − 2] ,

WC = [τ − 2, 2τ − 3] , WD = [2τ − 3, τ − 1].

The total window is [−1, τ − 1] as in the twisted Fibonacci example, but the
window function mc now is a step function as induced by

WB

WA

WC WD

−1

τ−2 τ−1

τ−2 τ−12τ−3

(7.2)
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Figure 4: Illustration of the four windows for the primitive inflation rule
˜̺= (12, 13, 1, 0). Note that W0 ∪W1 = [−σ2,−σ] and W2 ∪W3 = [−1,−σ2],
while I = [−σ2,−σ3].

As was further analysed by Gähler [22], there is also a maximal topological pure
point factor such that the factor map is 2 :1 everywhere. Using the alphabet
{0, 1, 2, 3}, this maximal pure point factor is given by the inflation rule

˜̺ = (12, 13, 1, 0),

where 0 and 1 stand for intervals of length τ , while those of type 2 and 3 have
unit length. The factor map can most easily be given as a block map, where
words of length 2 at position n are mapped to an element of the new alphabet
at the same position, namely

aa, āā 7→ 0 , ab, āb̄, aā, āa 7→ 1 , ba, b̄ā 7→ 2 , bā, b̄a 7→ 3, (7.3)

and correspondingly for the tilings, where the resulting mapping is called a
local derivation rule; see [6, Sec. 5.2] for details.
Conversely, one proceeds in two steps. First, any given sequence from the
(symbolic) hull of ˜̺ is mapped to a sequence in {a, b}Z by 0, 1 7→ a and 2, 3 7→ b.
In the second step, choose one position and decide whether to place a bar on the
letter or not. Then, the bar status of the two neighbouring symbols is uniquely
determined from the original block map (7.3), read backwards. Inductively,
this fixes the entire sequence. Since the only choice was the initial bar, this
shows that the block map (7.3) is globally 2 :1. Once again, this block map
transfers to a local derivation rule for the corresponding tilings.
The new inflation rule ˜̺ leads to a regular model set, with window equations

W0 = σW3 , W1 = σW0∪σW1∪σW2 , W2 = σW0+σ , W3 = σW1+σ.

As a consequence of the factor map, we immediately know that W0 ∪W1 = Wa

and W2 ∪W3 = Wb with Wa and Wb from (7.1). The unique solution can be
determined by first observing that each Wi with i 6= 1 can be expressed in
terms of W1. This gives a rescaling equation for W1 alone, namely

W1 = σW1 ∪
(
σ3W1 + σ3

)
∪
(
σ4W1 + σ4 + σ2

)
= I ∪ g(W1),
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Figure 5: Illustration of |}1W1
(y)| (black curve) in comparison with the modulus

of the Fourier transform of an interval of length τ+2
5 (grey curve), which is the

value at 0 for both functions.

where I = (W2 ∪W3)− σ = [−σ2,−σ3] and g(x) = σ4x+ σ4 + σ2.
This leads to W1 = I ∪ g(I) ∪ g(g(I)) ∪ . . . which results in the formula

W1 =
⋃

n>0

(
σ4n[−σ2,−σ3] + σ(σ4n − 1)

)
, (7.4)

while the other windows follow from here via affine mappings. All four windows
are illustrated in Figure 4, each comprising countably many disjoint intervals.
The explicit expression for W1 in (7.4) leads to the (inverse) Fourier transform
of its characteristic function in the form

f1(y) = }1W1
(y) = −

∞∑

n=0

σ4n+1e−πi(2σ+2σ4n+σ4n+1)y sinc(πσ4n+1y) (7.5)

with f1(0) = τ/
√
5 = τ+2

5 , which is the total length of the window W1; see
Figure 5 for a comparison of |f1| with the function

∣∣ τ+2
5 sinc

(
τ+2
5 πy

)∣∣.
For the cocycle approach, we first note that the internal Fourier matrix reads

B(y) =




0 0 0 1
1 1 1 0

e2πiσy 0 0 0
0 e2πiσy 0 0




with B(0) = M as usual. The frequency-normalised right PF eigenvector is

|v〉 = 1
5 (−1− 3σ, 1 − 2σ, 3 + 4σ, 2 + σ)T ≈ (0.171, 0.447, 0.106, 0.276)T,

Documenta Mathematica 25 (2020) 2303–2337



Rauzy Fractals and Spectrum of 1D Inflation Tilings 2333

where one has vol(Wi) = τ vi for the total window lengths. With the relation
C(y) = limn→∞|σ|nB(n)(y), one gets f1(y) = τ 〈0, 1, 0, 0 |C(y)|v〉, where the
convergence of the underlying matrix product is exponentially fast. Here, one
can then study the rate of convergence in comparison to the alternative formula
in (7.5).

8 Outlook

It is possible to extend our approach to inflation tilings in higher dimensions,
if the inflation multiplier is a PV unit. In fact, this is needed and useful when
dealing with direct product variations (DPV) as considered in [19, 20, 2].
An extension to the non-unit case is also possible, but requires a larger ma-
chinery from algebraic number theory, as developed in [49] for the treatment
of the Pisot substitution conjecture in the general non-unit case. This is work
in progress.
Finally, also S-adic type inflations can be covered, provided that the partici-
pating inflation rules are compatible in the sense that they share the same sub-
stitution matrix. Further, there are applications of our results to the Eberlein
decomposition for Dirac combs of primitive inflation systems [12] and conse-
quences for the spectral theory of regular sequences [17].
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N. Strungaru for helpful discussions, and an anonymous referee for several
thoughtful suggestions that helped to improve the presentation. Our work was
supported by the German Research Foundation (DFG), within the CRC 1283
at Bielefeld University, and by EPSRC through grant EP/S010335/1.

References
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