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Abstract. Pellarin introduced the deformation of multiple zeta val-
ues of Thakur as elements over Tate algebras. In this paper, we re-
late these values to a certain coordinate of the logarithm of a higher
dimensional Drinfeld module over the Tate algebra which we will in-
troduce. Moreover, we define multiple polylogarithms in our setting
and represent deformation of multiple zeta values as a linear combi-
nation of multiple polylogarithms. As an application of our results,
we also write Dirichlet-Goss multiple L-values as a linear combination
of twisted multiple polylogarithms at algebraic points.
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1 Introduction

1.1 Background

Multiple zeta values were introduced by Euler as the infinite sum

ζ(s1, . . . , sr) :=
∑

n1>n2>···>nr>0
n1,...,nr∈Z≥1

1

ns1
1 . . . nsr

r
∈ R

for positive integers s1, . . . , sr such that s1 > 1. These values can be seen as
a generalization of special values ζ(n) of Riemann zeta function for a positive
integer n > 1. Their motivic interpretation is given by Terasoma [Ter02] and
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Goncharov independently. Moreover for the tuple s = (s1, . . . , sr), the multiple
polylogarithm Lis(z1, . . . , zr) is defined by

Lis(z1, . . . , zr) :=
∑

n1>n2>···>nr>0
n1,...,nr∈Z≥1

zn1
1 . . . znr

r

ns1
1 . . . nsr

r
∈ Q[[z1, . . . , zr]],

and its specialization at z1 = · · · = zr = 1 gives the value of ζ(s1, . . . , sr).
We refer the reader to [Wal00] and [Zha16] for interesting properties of those
objects.

In this paper, we are interested in the function field analogue of multiple zeta
values and their deformation in positive characteristic. Let q be a power of a
prime p. We let Fq be the finite field with q elements. We set A := Fq[θ] as the
polynomial ring in the variable θ with coefficients from Fq, and A+ as the set
of monic polynomials of A. We let K be the function field Fq(θ) and ord be the
valuation corresponding to the infinite place normalized so that ord(θ) = −1.
Moreover, we define the norm |·|∞ corresponding to ord so that |θ|∞ = q. We
also let Kperf be the perfect closure of K and K be the algebraic closure of K.
The completion of K with respect to |·|∞ is denoted by K∞ and the completion
of an algebraic closure of K∞ is denoted by C∞.

We define the Carlitz-Goss zeta value ζA(n) at a positive integer n by the
infinite series

ζA(n) =
∑

a∈A+

1

an
∈ K×

∞,

which can be seen as a function field analogue of ζ(n). The arithmetic of these
special values were studied by Carlitz [Car35], Gekeler [Gek88], Goss [Gos96]
and Thakur [Tha90]. Also their transcendental behavior overK was discovered
by Chang and Yu [CY07] and Yu [Yu91].

Let s = (s1, . . . , sr) be a tuple in Zr
≥1 for some positive integer r and set

w :=
∑

si. Then the multiple zeta value ζA(s) of weight w and depth r is
defined by Thakur in [Tha04, Sec. 5.10] as the infinite sum

ζA(s) :=
∑

|a1|∞>|a2|∞>···>|ar|∞≥0
a1,...,ar∈A+

1

as11 . . . asrr
∈ K∞.

In 2009, Thakur [Tha09, Thm. 4] proved that ζA(s) is non-zero. Furthermore,
Anderson and Thakur [AT09] give the realization of multiple zeta values as
periods of a certain t-motive (see [BP20, §4] for more details on t-motives).

In 2014, Chang [Cha14] defined the multiple polylogarithm Lis(z1, . . . , zr) by

Lis(z1, . . . , zr) :=
∑

i1>i2>···>ir≥0

zq
i1

1 . . . zq
ir

r

ℓs1i1 . . . ℓsrir
∈ K[[z1, . . . , zr]], (1.1)
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where ℓi := (θ− θq) . . . (θ− θq
i

) for i ≥ 0 and ℓ0 := 1. When r = 1, it becomes
the Carlitz n-th polylogarithm

logn(z) :=

∞
∑

i=0

zq
i

ℓni
∈ K[[z]]

defined by Anderson and Thakur [AT90]. Moreover, Anderson and Thakur
[AT90] represents ζA(n) as a K-linear combination of logn(θ

j) where j <
nq/(q − 1).

Unlike classical case, relating multiple zeta values to multiple polylogarithms is
not trivial in function field setting. Using t-motivic interpretation of multiple
zeta values in [AT09], Chang [Cha14] clarified this phenomenon for higher
depths stating that there exist tuples (aj , (uj1, . . . , ujr)) ∈ A × Ar where j is
in a finite index set J , and Γs ∈ A, which all can be explicitly defined, such
that

ΓsζA(s) =
∑

j∈J

aj Lis(uj1, . . . , ujr). (1.2)

Later Chang and Mishiba [CM20, Thm. 1.4.1] related ζA(s) to a certain co-
ordinate of the logarithm of a t-module (see [And86] for details on t-modules)
by proving that there exist a uniformizable t-module Gs of dimension ks de-
fined over K, a special point vs ∈ Gs(K) and an element Zs ∈ Gs(K∞) such
that ΓsζA(s) occurs as the w-th coordinate of Zs and expGs

(Zs) = vs. Thus,
the logarithmic interpretation of multiple zeta values allow them to verify the
function field analogue of Furusho’s conjecture (see [Fur06] and [Fur07]).

1.2 Tate algebras

Let U ⊂ Z≥1 be any finite set and let TU be the Tate algebra on the closed unit
polydisc over C∞ with independent variables ti for i ∈ U . Let Σ ⊂ Z≥1 be a
finite union of finite sets Ui ⊂ Z≥1. The Frobenius automorphism τ : TΣ → TΣ

is given by raising the coefficients of the given infinite series to their q-th power
and fixing the independent variables ti (see §2.1 for details). Furthermore, for
any Fq-algebra R, set R[tU ] := R[ti : i ∈ U ] and R(tU ) to be the fraction field
of the polynomial ring R[tU ].

For a moment let us concentrate on TΣ where Σ = {1, . . . , n}. In 2012, Pellarin
[Pel12] defined the following L-series

ζC

(

Σ

s

)

:=
∑

a∈A+

a(t1) . . . a(tn)

as
∈ T×

Σ (1.3)

for some positive integer s as a deformation of Carlitz-Goss zeta value ζA(s).
Similar notion of deformation has been also carried to multiple zeta values of
Thakur by Pellarin in [Pel16] and [Pel17] as follows: For any a ∈ A+ and an
independent variable t, we set a(t) := a|θ=t. We now define the map σU : A+ →
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Fq[tΣ] by σU (a) := 1 if U = ∅ and σU (a) :=
∏

i∈U a(ti) ∈ Fq[tΣ] otherwise. For
some r ∈ Z≥1, we call

C =

(

U1, . . . , Ur

s1, . . . , sr

)

(1.4)

a composition array of weight w =: wght(C) and depth r := dep(C). Now we
define

ζC(C) :=
∑

|a1|∞>|a2|∞>···>|ar|∞≥0
a1,...,ar∈A+

σU1(a1)σU2(a2) . . . σUr
(ar)

as11 as22 . . . asrr
∈ TΣ, (1.5)

to be the multiple zeta value corresponding to C. Observe that when

C =

(

∅, . . . , ∅

s1, . . . , sr

)

, (1.6)

we see that ζC(C) = ζA(s). Using the non-vanishing of ζA(s) and a specializa-
tion argument, Pellarin [Pel17, Prop. 3] proved that the multiple zeta values
ζC(C) are non-zero as elements of TΣ.

For any i, j ≥ 1, we define the element bi(tj) :=
∏i−1

k=0(tj − θq
k

) ∈ A[tΣ] and
b0(tj) := 1. We also let bi(U) := 1 if U = ∅ and bi(U) :=

∏

j∈U bi(tj) otherwise.
For some tuple (u1, . . . , ur) ∈ Tr

Σ living in a certain subset of TΣ (see §2.3 for
details), we define the multiple polylogarithm LiC(u1, . . . , ur) by the infinite
series

LiC(u1, . . . , ur) :=
∑

i1>i2>···>ir≥0

bi1(U1) . . . bir (Ur)τ
i1 (u1) . . . τ

ir (ur)

ℓs1i1 . . . ℓsrir
∈ TΣ.

Our first result (stated as Theorem 2.24 later) is as follows.

Theorem 1.7. For any composition array C of depth r defined as in (1.4),
there exist tuples (aj , (uj1, . . . , ujr)) ∈ A × Kperf(tΣ)

r where j is in a finite
index set I, and ΓC ∈ A[tΣ], which all can be explicitly defined, such that

ΓCζC(C) =
∑

j∈I

aj LiC(uj1, . . . , ujr).

Note that Theorem 1.7 can be seen as a generalization of Chang’s identity (1.2)
and that identity follows from our result by choosing the composition array C
as in (1.6) (see §2.3 for details).

1.3 Dirichlet-Goss multiple L-values

We denote the algebraic closure of Fq by Fq. For any 1 ≤ i ≤ r, let χi : A → Fq

be a Dirichlet character. Furthermore let (s1, . . . , sr) be a tuple of positive
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integers. We define the Dirichlet-Goss multiple L-value L(χ1, . . . , χr; s1, . . . , sr)
of weight w and depth r by the infinite series

L(χ1, . . . , χr; s1, . . . , sr) :=
∑

|a1|∞>|a2|∞>···>|ar|∞≥0
a1,...,ar∈A+

χ1(a1) . . . χr(ar)

as11 . . . asrr
∈ C∞.

One of the advantages of studying ζC(C) is to be able to deduce some properties
of Dirichlet-Goss multiple L-values. Consider the composition array C defined
as in (1.4) with pairwise disjoint sets Ui such that Σ = ⊔r

i=1Ui. For any
1 ≤ i ≤ r and j ∈ Ui, let pij ∈ A+ be the minimal polynomial of ξi,j ∈ Fq.
Since ζC(C) converges in TΣ, evaluating (1.5) at tj = ξij produces the Dirichlet-
Goss multiple L-value L(χ1, . . . , χr; s1, . . . , sr) such that χi : A → Fq is the map
sending a ∈ A to

∏

j∈Ui
a(ξij) which is actually the Dirichlet character modulo

the ideal generated by
∏

j∈Ui
pij in A.

For any j ∈ Z≥0, we set elements Bχi,j ∈ C×
∞ corresponding to the character

χi for all 1 ≤ i ≤ r (see §2.4 for details). We define

Li(χ1,...,χr
s1,...,sr

)(z1, . . . , zr)

:=
∑

i1>i2>···>ir≥0

Bχ1,i1 . . . Bχr ,ir

ℓs1i1 . . . ℓsrir
zq

i1

1 . . . zq
ir

r ∈ C∞[[z1, . . . , zr]].

Let p be irreducible in A+ of degree d and λp ∈ C×
∞ be a p-torsion point. Let

Kp := K(λp) be the p-th cyclotomic field extension of K and ∆p be its Galois
group (see [Ros02, Chap. 12] for the details of cyclotomic field extensions
over function fields). Consider the unique group isomorphism vp : ∆p → F×

qd

induced by the Teichmüller character corresponding to a fixed choice of a root
ξp of p and let g(vp) be the Gauss-Thakur sum (see §2.4 and [AP15] for the
details). We obtain the following corollary of Theorem 1.7.

Corollary 1.8. Fix a positive integer r. For any 1 ≤ i ≤ r and
j1, . . . , jr ∈ Z≥1, let ξi1, . . . , ξiji be elements in Fq whose minimal polynomials
are pi1, . . . , piji respectively and define the Dirichlet character χi : A → Fq given
by χi(a) = a(ξi1) . . . a(ξiji ). Then there exist elements bj ∈ K and ηji ∈ Kperf

for 1 ≤ i ≤ r where j is in a finite index set I such that

∏

1≤k≤j1

g(vp1k
) · · ·

∏

1≤k≤jr

g(vprk
)L(χ1, . . . , χr; s1, . . . , sr)

=
∑

j∈I

bj Li(χ1,...,χr
s1,...,sr

)(ηj1, . . . , ηjr).

For a special class of Dirichlet characters, we can deduce more about Dirichlet-
Goss multiple L-values and their transcendence. The next theorem will be
proved in §2.4.
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Theorem 1.9. For a finite set U ⊂ Z≥1 and a tuple ξ = (ξi| i ∈ U) ∈ F
|U|
q

where |U | is the cardinality of U , let χU,ξ : A → Fq be the Dirichlet character
given by

χU,ξ(a) =
∏

i∈U

a(ξi). (1.10)

(i) Let U1, . . . , Ur be finite subsets of Z≥1, (s1, . . . , sr) a tuple of posi-

tive integers and ξj = (ξji| i ∈ Uj) ∈ F
|Uj |
q for 1 ≤ j ≤ r. If

L(χU1,ξ1 , . . . , χUr ,ξr ; s1, . . . , sr) is non-zero, then it is transcendental over
K.

(ii) Fix positive integers m, j1, . . . , jm. For any 1 ≤ i ≤ m and 1 ≤ k ≤ ji,

let Uik be a finite subset of Z≥1, ξik = (ξikj | j ∈ Uik) ∈ F
|Uik|
q and

(si1, . . . , siji) be a tuple of positive integers. Furthermore set wi =
∑ji

b=1 sib and assume that wi 6= wj if i 6= j for 1 ≤ i, j ≤ m. If
L(χUi1,ξi1 , . . . , χUiji

,ξiji
; si1, . . . , siji) is non-zero for each 1 ≤ i ≤ m, then

the set {L(χUi1,ξi1 , . . . , χUiji
,ξiji

; si1, . . . , siji)| 1 ≤ i ≤ m} is K-linearly
independent.

1.4 Anderson A[tΣ]-modules

Let Matn(TΣ)[τ ] be the twisted polynomial ring in τ with coefficients in
Matn(TΣ) (see §2.1 for details). Inspired by [Dem14, §2], we call an Anderson
A[tΣ]-module φ : A[tΣ] → Matn(TΣ)[τ ] of dimension n defined over TΣ as an
Fq[tΣ]-linear homomorphism given by

φ(θ) = A0 +A1τ + · · ·+Asτ
s

for some s and (θ Idn −A0)
n = 0. We should highlight the fact that Anglès, Pel-

larin and Tavares Ribeiro [APTR16] and Anglès and Tavares Ribeiro [ATR17]
have already studied n = 1 case, called Drinfeld A[tΣ]-modules, due to their
relation with log-algebraic identities, Taelman’s class modules and Pellarin L-
series.
In this paper, we focus on a special class of Anderson A[tΣ]-modules, given by

φ(θ) = θ Idn +N + Eτ (1.11)

where N ∈ Matn(Fq) is a nilpotent matrix and E ∈ Matn(TΣ). For such φ,
similar to Anderson t-modules, we can assign an exponential function, which
is a vector valued function denoted by

expφ : Matn×1(TΣ) → Matn×1(TΣ),

and we show that it has an infinite radius of convergence (see §3.1). We also
call φ uniformizable if expφ is a surjective function. Our next result (stated as
Theorem 4.46 later) is as follows.
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Theorem 1.12. For any composition array C of weight w, there exist a uni-
formizable Anderson A[tΣ]-module GC of dimension kC defined over TΣ, a spe-
cial point vC ∈ Kperf(tΣ)

kC and an element ZC ∈ T
kC

Σ , which all can be explicitly
defined, such that

(i) ΓCζC(C) occurs as the w-th coordinate of ZC.

(ii) expGC
(ZC) = vC.

Remark 1.13. Let ωi be the Anderson-Thakur element corresponding to ti − θ
and π̃ be the Carlitz period (see §2.1 for details). Assume that Σ = {1, . . . , n}
and s is a positive integer. Finally we set α :=

∏n
i=1(ti − θ). Using Anderson’s

ideas (see [GP19, §4.5] for Drinfeld modules over Tate algebras), we can show
that the generator of the kernel of expC⊗s

α
(see §3.2 for the definition of C⊗s

α )

is a vector whose last coordinate is given by π̃s

ω1...ωn
. Together with the use

of Theorem 1.12, we are able to prove that if the point ZC is an A[tΣ]-torsion
point for C⊗s

α , then L(χt1 . . . χtn , s) is Eulerian in the sense that

ω1 . . . ωn
L(χt1 . . . χtn , s)

π̃s
∈ Fq(tΣ, θ)

where Fq(tΣ, θ) is the fraction field of the polynomial ring Fq[tΣ][θ]. The op-
posite direction is expected to hold but due to lack of an analogue of Yu’s
transcendence theory [Yu91] in our setting, it is still an open problem. We can
also ask about the Eulerian criterion for ζC(C) in higher depth case similar to
the criterion given in [CPY19]. In this case, calculations show that not all the
generators of the kernel of expGC

take π̃w times the inverse of Anderson-Thakur
elements in their w-th coordinate and that causes difficulties even proving the
direction we show in depth 1 case. One should also understand the generalized
version [CGM20, Lem. 4.1.7] of Yu’s theorem [Yu91, Thm. 2.3] in this setting.
The author hopes to tackle this problem in the near future.

Remark 1.14. We remark that although Chang and Mishiba use dual t-motives
and their fiber coproducts to prove uniformizability of Gs in [CM20, Thm.
1.4.1], we use a different method as it is still not clear how we should define the
dual t-motives for Anderson A[tΣ]-modules. In our method, we first prove the
uniformizability of Anderson A[tΣ]-modules given of the form (4.4) by following
ideas modified from [GP19, §4], and we construct GC in (4.38) from those
modules. Then using the map λ defined in (4.39), we prove that GC is also
uniformizable (Proposition 4.45).

1.5 Outline of the Paper

The outline of the paper can be given as follows: In §2 we cover some necessary
notation and background for the rest of the paper and recall recent develop-
ments on power sums. We prove Corollary 1.8 and continue to §2 by proving
Theorem 1.7. Basically our method is to modify Chang’s ideas in the proof
of [Cha14, Thm. 5.5.2]. The main difficulty in our case is to determine the
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radius of convergence of an infinite series defined in (2.31). This was overcome
in [Cha14] by using a property [ABP04, Prop. 3.1.1] of matrices satisfying
a certain functional equation. In our setting, we are able to prove the same
property (Theorem 2.40) after some analysis on the norm of a solution of a
functional equation (Lemma 2.37) and determining the solution in terms of
Anderson-Thakur elements (Proposition 2.38). We finish §2 by introducing
multiple star polylogarithms and expressing multiple polylogarithms in terms
of multiple star polylogarithms (Theorem 2.44).
In §3, we discuss Anderson A[tΣ]-modules and introduce some properties of a
special class of such modules defined as in (1.11). Furthermore, we define the
notion of uniformizability and give an example. Finally, we finish the section
by introducing Frobenius modules corresponding to Anderson A[tΣ]-modules.
In §4, we give the definition of A[tΣ]-module G and make some analysis on the
coefficients of the logarithm function of G (see §3.1 for the details on logarithm
function) using Chang and Mishiba’s methods in [CM19] and [CM20]. We
introduce the Anderson A[tΣ]-module GC and show that GC is uniformizable
(Proposition 4.45). Moreover we give the proof of Theorem 1.12 and discuss
Example 4.48.
We conclude our paper with an Appendix to give the proof of Theorem 4.17
which relates rigid analytic triviality to uniformizability. We note that similar
result was proved by the author and Papanikolas in [GP19, Thm. 4.5.5] for
Anderson A[tΣ]-modules of dimension 1 over Tate algebras using Anderson’s
ideas in his unpublished work. Here we modify those techniques for Anderson
A[tΣ]-module G of higher dimension.
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useful suggestions. The author also thanks the referee for valuable suggestions
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2 Multiple Polylogarithms

2.1 Preliminaries

Let U ⊂ Z≥1 be a finite set. We denote the cardinality of U by |U |. Assume

that µ = (µ1, . . . , µ|U|) ∈ Z
|U|
≥0 and set tµU :=

∏

i∈U tµi

i . Recall from §1 that
Σ ⊂ Z≥0 is a finite union of finite sets. We can write any element f ∈ TΣ

as f =
∑

µ∈Z
|Σ|

≥0

fµt
µ
Σ where fµ ∈ C∞ such that |fµ|∞ → 0 as

∑

i∈Σ µi → ∞.

Furthermore we let TΣ(K∞) ⊂ TΣ to be the set of elements f =
∑

µ∈Z
|Σ|

≥0

fµt
µ
Σ ∈

TΣ such that fµ ∈ K∞. We define the Gauss norm ‖·‖∞ in TΣ by setting

‖f‖∞ := sup{|fµ|∞ | µ ∈ Z
|Σ|
≥0},
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and its corresponding valuation ord∞ given by

ord∞(f) := inf{ord(fµ) | µ ∈ Z
|Σ|
≥0}.

Note that TΣ is complete with respect to ‖·‖∞. Moreover the Tate algebras
Tt and TΣ,t in variables t and t and ti for i ∈ Σ respectively can be defined
similarly. For more details on Tate algebras, we refer the reader to [BGR84]
and [FVP04].
We consider the Frobenius automorphism τ : TΣ → TΣ by τ(f) =

∑

µ∈Z
|Σ|
≥0

f q
µt

µ
Σ

and we set f (n) := τn(f) for any integer n ∈ Z. The extension of the homo-
morphism τ to TΣ,t can be defined similarly.
For k, d ∈ Z≥1 and any matrix M = (Mij) ∈ Matk×d(TΣ), we define M (n) by
applying the automorphism τn to each entry of M . We set

‖M‖∞ := sup
i,j

{‖Mij‖∞},

and consider Matk×d(TΣ)[[τ ]] the non commutative ring of power series
in τ with coefficients in Matk×d(TΣ) such that for any element M ∈
Matk×d(TΣ)[[τ ]] we have

τM = M (1)τ.

Finally, we set Matk×d(TΣ)[τ ] ⊂ Matk×d(TΣ)[[τ ]] for the subring of polynomi-
als in τ with coefficients in Matk×d(TΣ).
Now we start to define some special elements which will be in use throughout
the paper. For any j ∈ Σ and i ∈ Z we define bi(tj) ∈ Kperf(tΣ)

× by

bi(tj) :=







∏i−1
k=0(tj − θq

k

), if i ≥ 1
1, if i = 0
∏−i−1

k=0 (tj − θq
−k−1

)−1, if i ≤ −1







.

Note that one can also define bi(t) for any i ∈ Z similarly.

Lemma 2.1. [Dem15, Lem. 3.3.2]

(i) For any integer i, d ∈ Z, we have

τd(bi(tj)) =
bd+i(tj)

bd(tj)
=

bi(tj)

bd(tj)
τ i(bd(tj)).

(ii)
1

τ(bi(tj))

∣

∣

∣

∣

tj=θ

=

{

ℓ−1
i , if i ≥ 0
0, if i ≤ −1

}

.

After fixing a (q− 1)-st root of −θ, we define the function Ω(t) as the following
infinite product

Ω(t) := (−θ)
−q
q−1

∞
∏

i=1

(

1−
t

θqi

)

∈ T×
t .
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One can observe that Ω(t) has infinite radius of convergence as a function of t
and satisfies

Ω(−1)(t) = (t− θ)Ω(t). (2.2)

Moreover for any n ∈ Z≥1, we have

Ω(n)(t) =
Ω(t)

(t− θq)(t− θq2) . . . (t− θqn)
. (2.3)

Note also that
Ω(θ) = π̃−1 (2.4)

where we define

π̃ := θ(−θ)1/(q−1)
∞
∏

i=1

(

1− θ1−qi
)−1

∈ C×
∞,

the Carlitz period. Let β be a unit in TΣ. Then one can find an element
y ∈ C∞ such that ‖β − y‖∞ < ‖β‖∞. Choose an element γ ∈ C×

∞ such that
γq−1 = y. We now define the infinite product

ωβ := γ
∏

i≥0

yq
i

τ i(β)
,

which converges in T×
Σ by the choice of the element y (see [APTR16, Sec. 6] for

more details). The element ωβ ∈ T×
Σ is called the Anderson-Thakur element

corresponding to β and defines up to the multiplication by an element in F×
q .

One also notes that
τ(ωβ) = βωβ . (2.5)

Furthermore, by [APTR16, §6.1], we have ‖ωβ‖∞ = q
− ord(β)

q−1 and if β1, β2 ∈ T×
Σ ,

then we obtain ωβ1β2 = cωβ1ωβ2 for some c ∈ F×
q . We set ωi := ωti−θ ∈ T×

Σ

where i ∈ Σ. For any integer n, it satisfies that

ω
(n)
i = bn(ti)ωi. (2.6)

Now for any U ⊂ Z≥1, let us set ωU :=
∏

i∈U ωi. Recall from §1 that Σ =
∪r
i=1Ui. For any 1 ≤ i ≤ r, we define αi :=

∏

j∈Ui
(tj − θ). Thus we see that

‖αi‖∞ = q|Ui|. We also set αk := 1 and ωUk
:= 1 if Uk = ∅. Using (2.6) one

can obtain that
ω
(−1)
Ui

=
ωUi

α
(−1)
i

. (2.7)

2.2 Power Sums

In most of this section, we summarize the work of Anglès, Pellarin and Tavares
Riberio [APTR18, §6] and Demeslay [Dem15, §3.3.1] on power sums.
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We denote the set of degree d polynomials in A+ by A+,d. Let z be an inde-
terminate over C∞. Following the notation in [APTR18], for any N ∈ Z and
s ∈ Z≥1, we define L(N, s, z) by

L(N, s, z) :=
∑

d≥0

zd
∑

a∈A+,d

a(t1) . . . a(ts)

aN
∈ K[t1, . . . , ts][[z]].

Let us set expz :=
∑

i≥0
bi(t1)...bi(ts)

Di
ziτ i ∈ K[t1, . . . , ts, z][[τ ]], where D0 := 1

and Di := (θq
i

− θ)Dq
i−1. By [APTR18, Thm. 4.6], we know that

expz(L(1, s, z)) ∈ A[t1, . . . , ts][z]. Therefore for some m ∈ Z≥0 we can
let expz(L(1, s, z)) =

∑m
i=0 σs,i(t)z

i so that σs,i(t) ∈ A[t1, . . . , ts] for any
i ∈ {0, . . . ,m}.

Proposition 2.8. [APTR18, Prop. 5.6] We have degz(expz(L(1, s, z))) ≤
s−1
q−1 .

We further define logN,z by

logN,z =
∑

i≥0

bi(t1) . . . bi(ts)

ℓNi
ziτ i.

Let us fix N ∈ Z, n ∈ Z≥1 and set r ∈ Z≥1 as a positive integer so that
N ≤ qr. Moreover we set s := qr − N + n. Thus by Proposition 2.8 we see
that the z-degree of expz(L(1, s, z)) only depends on integers N and n. For
any 0 ≤ i ≤ m and 0 ≤ j ≤ B := (qr − N)(r − 1 +m), we have the elements
gi,j :=

∑

in+1+···+is=j fin+1,...,is ∈ A[t1, . . . , tn] where fin+1,...,is ∈ A[t1, . . . , tn]
so that

br(t1) . . . br(tn)τ(br−1(tn+1)) . . . τ(br−1(ts))τ
r(σs,i(t))

=
∑

in+1,...,is

fin+1,...,ist
in+1

n+1 . . . tiss .

By [APTR18, Thm. 6.2] we obtain

∑

d≥0

zd
∑

a∈A+,d

a(t1) . . . a(tn)

aN
=

1

ℓq
r−N

r−1 br(t1) . . . br(tn)

∑

j≥0

θj logN,z

( m
∑

i=0

zigi,j

)

.

(2.9)
If we analyze the coefficients of zd on both sides of (2.9) we get for any d ≥ 0,

∑

a∈A+,d

a(t1) . . . a(tn)

aN

=
1

ℓq
r−N

r−1 br(t1) . . . br(tn)

min{m,d}
∑

i=0

bd−i(t1) . . . bd−i(tn)

ℓNd−i

B
∑

k=0

g
(d−i)
i,k θk. (2.10)

Documenta Mathematica 25 (2020) 2355–2411



2366 O. Gezmiş

Let Kperf(t1, . . . , tn) be the fraction field of the polynomial ring
Kperf[t1, . . . , tn]. We now define the polynomial Qn,N(t) ∈ Kperf(t1, . . . , tn)[t]
by

Qn,N(t) :=

B
∑

k=0

m
∑

i=0

b−i(t1) . . . b−i(tn)

τ(b−i(t))N
τ−i(gi,k)t

k. (2.11)

Remark 2.12. It is important to notice that it follows from the definition (2.11)
ofQn,N(t) that the t-coefficients ofQn,N (t) lie also in the Tate algebra TΣ where
Σ = {1, . . . , n}.

Note that

τd(Qn,N (t)) =

B
∑

k=0

m
∑

i=0

τd(b−i(t1) . . . b−i(tn))

τd(τ(b−i(t))N )
τd−i(gi,k)t

k. (2.13)

By Lemma 2.1(i), we have that τd(b−i(t1) . . . b−i(tn)) =
bd−i(t1)...bd−i(tn)

bd(t1)...bd(tn)
and

τd(τ(b−i(t))
N ) = τ(τd(b−i(t))

N ) =
τ(bd−i(t)

N )

τ(bd(t))N )
.

Thus by (2.13) we have

τd(Qn,N (t)) =
τ(bd(t))

N )

bd(t1) . . . bd(tn)

B
∑

k=0

m
∑

i=0

bd−i(t1) . . . bd−i(tn)

τ(bd−i(t)N )
τd−i(gi,k)t

k.

(2.14)
Using Lemma 2.1(ii) and (2.14) we see that

τd(Qn,N(t))|t=θ =

ℓNd
bd(t1) . . . bd(tn)

B
∑

k=0

min{m,d}
∑

i=0

bd−i(t1) . . . bd−i(tn)

ℓNd−i

τd−i(gi,k)θ
k. (2.15)

Combining (2.10) with (2.15), we see that

∑

a∈A+,d

a(t1) . . . a(tn)

aN
=

1

ℓq
r−N

r−1 br(t1) . . . br(tn)

bd(t1) . . . bd(tn)

ℓNd
τd(Qn,N (t))|t=θ.

(2.16)
Observe that L(N, s, z) converges for z = 1. Thus we have by (2.16) that

bd(t1) . . . bd(tn)τ
d(Qn,N(t))|t=θ

ℓNd
→ 0 (2.17)

as d → ∞. Note that as d gets arbitrarily large, we have ‖Q
(d)
n,N(t)|t=θ‖∞ =

‖Qn,N(t)‖q
d

∞ + ǫd where ǫd ∈ R is a constant depending on d such that
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limd→∞ ǫd/q
d = 0. Thus, after calculating the norm of the terms in the left

hand side of (2.17), for some constant C ∈ R×, we obtain

Cq
qd
(

n−Nq
q−1 +logq(‖Qn,N (t)‖∞)+

ǫd

qd

)

→ 0

as d goes to infinity. This can only happen if ‖Qn,N(t)‖∞ < q
Nq−n
q−1 .

Now for any d,N ∈ Z≥0 and U ⊂ Z≥1, we denote the power sum Sd(U,N) by

Sd(U,N) :=
∑

a∈A+,d

σU (a)

aN
∈ K[tU ],

and state the following theorem.

Theorem 2.18. [Dem15, Thm. 3.3.6, Lem. 3.3.9] Let N ∈ Z≥0 and r ∈ Z≥1

be such that N ≤ qr. Let U ⊂ Z≥1 be a non-empty finite set. Then there exists
a unique polynomial QU,N(t) ∈ Kperf(tU )[t] of the form

QU,N(t) =

BN
∑

k=0

mN
∑

i=0

∏

j∈U b−i(tj)

τ(b−i(t))N
τ−i(gN,i,k)t

k (2.19)

for some BN ,mN ∈ Z≥0 and gN,i,k ∈ A[tU ] such that

Sd(U,N) =
∑

a∈A+,d

σU (a)

aN
=

bd(U)

ℓNd ℓq
r−N

r−1 br(U)
(τd(QU,N(t)))|t=θ (2.20)

for all d ≥ 0. In particular,

ℓq
r−N

r−1 br(U)ωU

π̃N
Sd(U,N) = (ωUQU,N (t)ΩN (t))

(d)
|t=θ .

Moreover, ‖QU,N(t)‖∞ < q
Nq−|U|

q−1 .

Proof. Due to above discussion, only remaining part is to prove uniqueness.
Suppose there exist two polynomials QU,N (t) and Q′

U,N(t) in Kperf(tU )[t] sat-

isfying (2.20). Then we have (τd(QU,N (t)−Q′
U,N(t)))|t=θ = 0. Since t−θq

−d

is

monic in Kperf(tU )[t], it divides QU,N (t)−Q′
U,N (t) for any non-negative integer

d in Kperf(tU )[t]. But since QU,N(t) and Q′
U,N (t) are polynomials, it is possible

only if QU,N (t) = Q′
U,N (t).

For the completeness of this section, we also state Anderson and Thakur’s
result on power sums using our notation as follows.

Theorem 2.21. [AT90, Eq. 3.7.3-3.7.4] Let N ∈ Z≥0 be such that N =
∑

niq
i

where 0 ≤ ni ≤ q − 1 and set ΓN :=
∏

Dni

i . Then there exists a unique
polynomial Q∅,N(t) ∈ A[t] such that

Sd(∅, N) =
∑

a∈A+,d

1

aN
=

1

ℓNd ΓN
(τd(Q∅,N (t)))|t=θ
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for all d ≥ 0. In particular,

ΓN

π̃N
Sd(∅, N) = (ΩN (t)Q∅,N (t))

(d)
|t=θ.

Moreover, ‖Q∅,N(t)‖∞ < q
Nq
q−1 .

2.3 Multiple Zeta Values over Tate algebras

Throughout this section we assume that (s1, s2, . . . , sr) ∈ Zr
≥1 and Σ = ∪r

i=1Ui

unless otherwise stated.

Definition 2.22. Let C be a composition array defined as in (1.4). We define
the multiple zeta values ζC(C) over Tate algebras in the sense of the definition
of Pellarin [Pel16], [Pel17] as the following object which converges in TΣ:

ζC(C) =
∑

|a1|∞>···>|ar|∞≥0
a1,...,ar∈A+

σU1 (a1)σU2 (a2) . . . σUr
(ar)

as11 as22 . . . asrr

=
∑

i1>i2>···>ir≥0

Si1(U1, s1) . . . Sir (Ur, sr).

We define nl := |Ul| and consider the set D′
C ⊂ Tr

Σ given by

D′
C := {(f1, . . . , fr) ∈ Tr

Σ | ‖fi‖∞ < q
siq−ni

q−1 for i = 1, . . . , r}.

For an r-tuple (f1, . . . , fr) ∈ D′
C , we set

LiC(f1, . . . , fr) :=
∑

i1>i2>···>ir≥0

bi1(U1) . . . bir (Ur)τ
i1 (f1) . . . τ

ir (fr)

ℓs1i1 . . . ℓsrir
.

Using the definition of elements bi(U) and ℓi, we note that LiC(f1, . . . , fr)
converges in TΣ if (f1, . . . , fr) ∈ D′

C.
Let us fix a composition array C of depth r as in (1.4) and let Ci be the t-degree
of the polynomial QUi,si(t) =

∑

j≥0 uijt
j ∈ Kperf(tUi

)[t] for 1 ≤ i ≤ r. Then
consider the index set

I := {0, . . . , C1} × · · · × {0, . . . , Cr}.

For each i = (j1, . . . , jr) ∈ I, we set

ui := (u1j1 , . . . , urjr) ∈ Kperf(tU1
)× · · · ×Kperf(tUr

). (2.23)

Furthermore, we set ai := θj1+···+jr .

Theorem 2.24. Let I1 be the set of indices i such that Ui 6= ∅ and I2 be the
set of i such that Ui = ∅. Then we have

ζC(C) =
1

∏

i∈I1
ℓq

rsi−si
rsi−1 brsi (Ui)

∏

i∈I2
Γsi

∑

i∈I

ai LiC(ui) (2.25)

where rsi ≥ 1 is an integer such that si ≤ qrsi for i ∈ I1.
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In §2.5, we give a proof for Theorem 2.24. The main idea is to modify the idea
of the proof of [ABP04, Prop. 3.1.1] and combine it with the idea of the proof
of [Cha14, Thm. 5.5.2]. Before stating the proof, we discuss some applications
of our result.

2.4 Applications of Theorem 2.24 to Dirichlet-Goss multiple L-
values

First we briefly discuss Gauss-Thakur sums. We recall the notation from §1.3
and for any j = 0, . . . , d− 1 define the Gauss-Thakur sum

g(vq
j

p ) = −
∑

δ∈∆p

vp(δ
−1)q

j

δ(λp) ∈ Fqd [θ][λp].

By [Tha88, Thm. I], we know that g(vp) is non-zero. Moreover, by [AP15,
Thm. 2.9], we have

g(vp) = p′(ξp)
−1ω(ξp) (2.26)

where p′ is the first derivative of p with respect to θ, ω ∈ Tt is the Anderson-
Thakur element corresponding to t− θ defined by

ω := (−θ)
1

q−1

∞
∏

i=0

(

1−
t

θqi

)−1

∈ T×
t ,

and ω(ξp) = ω|t=ξp . For further details about Gauss-Thakur sums, we refer the
reader to [AP14], [AP15], [Gos96] and [Tha88].

Proof of Corollary 1.8. Consider the composition array C as in (1.4) with pair-
wise disjoint subsets Ui such that |Ui| = ji for all 1 ≤ i ≤ r. By the definition
of the polynomials QUi,si(t), there exists mi ∈ Z≥0 such that

QUi,si(t) =
∏

k∈Ui

b−mi
(tk)

∑

l≥0

ci,lt
l ∈ Kperf(tUi

)[t]

where ci,l =
∑

µ∈Z
ji
≥0

cµ,i,lt
µ
Ui

∈ Kperf[tUi
] with cµ,i,l ∈ Kperf and cµ,i,l = 0

for l ≫ 0 and all but finitely many tuple µ ∈ Z
ji
≥0. Up to permuta-

tion of elements ξik ∈ Fq for 1 ≤ i ≤ r and 1 ≤ k ≤ ji, assume that
the Dirichlet character χi : A → Fq given by χi(a) = a(ξi1) . . . a(ξiji )
is also given by χi(a) =

∏

k∈Ui
a(tk)|tk=ξik . For any l ∈ Z≥0, set

Bχi,l :=
∏

k∈Ui
ω
(l)
k (ξik)b−mi

(tk)
(l)
|tk=ξik

∈ C×
∞. Finally for 1 ≤ i ≤ r,

set ξi := (ξi1, . . . , ξiji) and for any tuple µ = (µ1, . . . , µji) ∈ Z
ji
≥0, define

ξµi :=
∏

1≤k≤ji
ξµk

k . Thus by using Lemma 2.1 and (2.6), for any tuple
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(u1j1 , . . . , urjr) ∈ D′
C as in (2.23), we have

LiC(u1j1 , . . . , urjr)
∣

∣
tk=ξik
k∈Ui

=
1

∏

k∈U1
ωk(ξ1k) · · ·

∏

k∈Ur
ωk(ξrk)

×

∑

µi∈Z
ji
≥0

l1,...,lr≥0

ξµ1

1 . . . ξµr
r

∑

i1>i2>···>ir≥0

Bχ1,i1 . . . Bχr ,irc
qi1

µ1,1,l1
. . . cq

ir

µr ,r,lr

ℓs1i1 . . . ℓsrir

=
1

∏

k∈U1
ωk(ξ1k) · · ·

∏

k∈Ur
ωk(ξrk)

×

∑

µi∈Z
ji
≥0

l1,...,lr≥0

ξµ1

1 . . . ξµr
r Li(χ1,...,χr

s1,...,sr

)(cµ1,1,l1 , . . . , cµr,r,lr ).

Since the coefficients cµ,i,j = 0 for sufficiently large j and all but finitely many µ
when 1 ≤ i ≤ r, the sum in right hand side of the second equality above has
finitely many terms. Thus evaluating both sides of (2.25) at tk = ξik for
1 ≤ i ≤ r, k ∈ Ui and using (2.26) finish the proof.

Next we prove Theorem 1.9 by using Theorem 2.24 and the transcendence
theory developed in [Cha14].

Proof of Theorem 1.9. For some 1 ≤ i ≤ m and ji ≤ i, consider the
Dirichlet-Goss multiple L-value L(χUi1,ξi1 , . . . , χUiji

,ξiji
; si1, . . . , siji). We con-

tinue with the notation of the proof of Corollary 1.8. For 1 ≤ k ≤ ji,
set Pik,l(tUik

) :=
∑

µ∈Z
jik
≥0

cµ,(ik),lt
µ
Uik

∈ Kperf[tUi
] so that QUik,sik(t) =

∏

v∈Uik
b−mik

(tv)
∑

l≥0 Pik,l(tUik
)tl. Since the field Fq is invariant under the

automorphism τ , by using (2.5), we see that ωv(ξikv) is algebraic over K for
1 ≤ k ≤ ji and v ∈ Uik. Moreover, for any n ∈ Z≥0, we also see that

BχUik
,n =

∏

v∈Uik

ω(n)
v (ξkv)b−mik

(tv)
(n)
|tv=ξikv

=
(

∏

v∈Uik

ωv(ξikv)b−mik
(ξikv)

)qn

(2.27)
where b−mik

(ξikv) = b−mi
(tv)|tv=ξikv

. Furthermore one can also obtain that

Pik,l(tUik
)
(n)
∣

∣

∣

tv=ξikv

v∈Uik

=
(

Pik,l(tUik
)∣
∣
tv=ξikv

v∈Uik

)qn

. (2.28)

Now for any tuple l = (l1, . . . , lji) ∈ I′ := {0, . . . , Ci1} × {0, . . . , Ciji} where
Cih is the degree of QUih,sih(t) as a polynomial of t for 1 ≤ h ≤ ji, set µl to be
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an element of K
ji

given by

(

∏

v∈Ui1

ωv(ξi1v)b−mi1(ξi1v)Pi1,l1 (tUi1)
∣

∣
tv=ξi1v
v∈Ui1

, . . . ,

∏

v∈Uiji

ωv(ξijiv)b−miji
(ξijiv)Piji,lji

(tUiji
)∣
∣

tv=ξijiv
v∈Uiji

)

.

Consider the composition array Ci =

(

Ui1 . . . Uiji

si1 . . . siji

)

. Then, for any

(ui1l1 , . . . , uijilji
) ∈ D′

Ci
corresponding to the tuple l as in (2.23), using (2.27)

and (2.28), we immediately see that

LiCi
(ui1l1 , . . . , uijilji

)∣
∣

∣

tv=ξikv

v∈Uik

=
1

∏

v∈Uik
ωv(ξi1v) · · ·

∏

v∈Uiji
ωv(ξijiv)

Lisi(µl)

(2.29)
where si = (si1, . . . , siji) and Lisi is the Carlitz multiple polylogarithm
defined as in (1.1). Thus we obtain that the Dirichlet-Goss L-value
L(χU11,ξ11 , . . . , χUi1,ξiji

; si1, . . . , siji) can be written as a K-linear combination
of multiple polylogarithms Lis at algebraic points by Theorem 2.24. Finally
the result now follows from [Cha14, Thm. 3.4.5] and [Cha14, Prop. 5.4.1].

Remark 2.30. In [CM20, Thm. 5.2.5], Chang and Mishiba introduced the
multiple zeta value ζA(s) as a K-linear combination of multiple star polylog-
arithms at some algebraic points v1, . . . , vm for some m ∈ Z≥1. Furthermore,
they showed that those points are related to dual t-motives of certain An-
derson t-modules via the isomorphism between Ext1-modules and Anderson
t-modules (see [CPY19, Thm. 5.2.3] and [CM19, Rem. 3.3.5]). In our case,
when the Dirichlet characters are of the form as in Theorem 1.9, one can write
a Dirichlet-Goss multiple L-value as a K-linear combination of multiple star
polylogartihms at some algebraic points ṽ1, . . . , ṽ

′
m for some m′ ∈ Z≥1 by using

Theorem 2.44 which will be proved in §2.6 and form a similar relation between
those points and dual t-motives. However, since the elements of Fq \Fq are not
invariant under the automorphism τ , we do not know the corresponding Ander-
son t-modules to these points when arbitrary Dricihlet characters are used to
construct Dirichlet-Goss multiple L-values. This is due to the fact that these
points can be only expressed after specializing variables by using our meth-
ods. It would be interesting to construct these t-modules directly to make the
relation between dual t-motives and the points ṽ1, . . . , ṽm more transparent.

Documenta Mathematica 25 (2020) 2355–2411



2372 O. Gezmiş

2.5 Proof of Theorem 2.24

For any 1 ≤ l < j ≤ r + 1, we define the following objects:

Lj,l(t) :=
∑

il>···>ij−1≥0

(ωUl
Ωsl(t)QUl,sl(t))

(il) . . . (ωUj−1Ω
sj−1 (t)QUj−1,sj−1 (t))

(ij−1)

= Ωsl+···+sj−1(t)

j−1
∏

i=l

ωUi
×

∑

il>···>ij−1≥0

Q
(il)
Ul,sl

(t) . . . Q
(ij−1)
Uj−1,sj−1

(t)bil(Ul) . . . bij−1 (Uj−1)

((t− θq) . . . (t− θq
il ))sl . . . ((t− θq) . . . (t− θq

ij−1 ))sj−1

.

(2.31)

Moreover we set Lj,l(t) := 1 if j = l. Observe that for some ǫl, . . . , ǫj−1 ∈ R>0,
we have by Theorem 2.18 and Theorem 2.21 that

‖Q
(il)
Ul,sl

(t) . . . Q
(ij−1)
Uj−1,sj−1

(t)‖∞‖bil(Ul) . . . bij−1(Uj−1)‖∞

‖((t− θq) . . . (t− θq
il ))sl . . . ((t− θq) . . . (t− θq

ij−1 ))sj−1‖∞

= qq
il

(

slq−|Ul|

q−l
−ǫl

)

. . . qq
ij−1

(

sj−1q−|Uj−1 |

q−1
−ǫj−1

)

×

q
q
il |Ul|−|Ul|

q−1 . . . q
q
ij−1 |Uj−1|−|Uj−1|

q−1 q−
(

slq
(

q
il−1
q−1

)

+···+sj−1q
(

q
ij−1 −1
q−1

))

= qq
il

(

slq−|Ul|

q−1 +
|Ul|

q−1−
slq

q−1−ǫl

)

. . . qq
ij−1

(

sj−1q−|Uj−1 |

q−1 +
|Uj−1 |

q−1 −
sj−1q

q−1 −ǫj−1

)

×

q
−|Ul|−···−|Uj−1|+q(sl+···+sj−1)

q−1

= q−qilǫl . . . q−qij−1 ǫj−1q
−|Ul|−···−|Uj−1 |+q(sl+···+sj−1)

q−1 → 0

whenever 0 ≤ ij−1 < · · · < il → ∞. Thus we conclude that Lj,l(t) ∈ TΣ,t.

Proposition 2.32. For any 1 ≤ l < j ≤ r + 1, we have

L
(−1)
j,l (t) = Lj,l(t) +Q

(−1)
Uj−1,sj−1

(t)
(t − θ)sj−1

α
(−1)
j−1

Ωsj−1 (t)ωUj−1Lj−1,l(t). (2.33)
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Proof. Observe that

Lj,l(t) = Ωsl+···+sj−1(t)

j−1
∏

i=l

ωUi
×

[

∑

il>···>ij−1≥1

Q
(il)
Ul,sl

(t) . . . Q
(ij−1)
Uj−1,sj−1

(t)bil(Ul) . . . bij−1(Uj−1)

((t− θq) . . . (t− θq
il ))sl . . . ((t− θq) . . . (t− θq

ij−1 ))sj−1

+QUj−1,sj−1
(t)×

∑

il>···>ij−2≥1

Q
(il)
Ul,sl

(t) . . . Q
(ij−2)
Uj−2,sj−2

(t)bil(Ul) . . . bij−2(Uj−2)

((t− θq) . . . (t− θq
il ))sl . . . ((t− θq) . . . (t− θq

ij−2 ))sj−2

]

.

Therefore using (2.2) and (2.7) together with the above equation, we see that
the equality in (2.33) holds.

We recall the polynomials QUi,si(t) ∈ Kperf(tUi
)[t] from Theorem 2.18 and

Theorem 2.21, and consider the matrix Φl ∈ Matr+2−l(TΣ[t]) defined by

Φl :=































(t−θ)sl+···+sr

∏
r
i=l α

(−1)
i

0 · · · · · · 0

Q
(−1)
Ul,sl

(t)(t−θ)sl+···+sr

∏
r
i=l

α
(−1)
i

. . .
...

0
. . .

. . .
. . .

...

...
. . . (t−θ)sr

α
(−1)
r

0

0 · · · 0
Q

(−1)
Ur,sr

(t)(t−θ)sr

α
(−1)
r

1































. (2.34)

and the matrix Ψl defined by

Ψl :=















Ωsl+···+sr (t)
∏r

i=l ωUi

L(l+1),l(t)Ω
sl+1+···+sr(t)

∏r
i=l+1 ωUi

...
Lr,l(t)Ω

sr (t)ωUr

Lr+1,l(t)















∈ Mat(r+2−l)×1(TΣ,t). (2.35)

Using (2.2), (2.7) and Proposition 2.32 one can prove the following lemma.

Lemma 2.36. We have

Ψ
(−1)
l = ΦlΨl.

In order to prove that the function Lj,l(t) has infinite radius of convergence,
we need to state a technical lemma.
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Lemma 2.37. Let {s1, . . . , sk} ∈ Zk
≥0. Let G,Q ∈ TΣ be such that ‖G‖∞ ≤

q
q(si+···+sj)−(|Ui|+···+|Uj |)

q−1 and ‖Q‖∞ < q
qsi−1−|Ui−1|

q−1 for some 2 ≤ i ≤ j ≤ k. Let

also H ∈ T×
Σ such that ‖H‖∞ = q

(

si−1+···+sj−
|Ui−1|+···+|Uj |

q

)

. Then there exists
an element F ∈ TΣ such that

H(F (−1) −Q(−1)G(−1)) = F.

Moreover, ‖F‖∞ ≤ q
q(si−1+···+sj)−(|Ui−1|+···+|Uj |)

q−1 .

Proof. We define the potential solution F as the following infinite sum

F := QG+Q(1)G(1)(H−1)(1) +

∞
∑

r=2

Q(r)G(r)(H−1)(r)(H−1)(r−1) . . . (H−1)(1).

One can see that F satisfies the desired equality in the lemma. We need to
show that F is a well-defined element in TΣ. By the assumptions on elements
G,H and Q, for some ǫ > 0 and r → ∞, we have the following estimate.

‖Q(r)G(r)(H−1)(r) . . . (H−1)(1)‖∞

≤ q
qr

q−1

(

qsi−1−|Ui−1|−ǫ+q(si+···+sj)−(|Ui|+···+|Uj |)
)

×

q
qr−1
q−1 (−q(si−1+···+sj)+|Ui−1|+···+|Uj |)

= q
−qrǫ
q−1 q

−1
q−1 (−q(si−1+···+sj)+|Ui−1|+···+|Uj |) → 0.

Thus we can conclude that as r → ∞, the norm of the general term of
the sum approaches to 0. Therefore the sum is well defined and since TΣ

is a complete normed space, F is in TΣ. On the other hand, by the as-
sumptions and the properties of the non-archimedean norm ‖·‖∞, we have
‖F‖∞ ≤ max{‖HQ(−1)G(−1)‖∞, ‖F (−1)H‖∞}.
Case 1: ‖F‖∞ = ‖HQ(−1)G(−1)‖∞.
By the assumption, we have the following estimate.

‖F‖∞ < q(si−1+···+sj−(|Ui−1|+···+|Uj |)/q)q
qsi−1−|Ui−1|

q(q−1) q
q(si+···+sj)−(|Ui |+···+|Uj |)

q(q−1)

= q
(q−1)(si−1+···+sj)

q−1 −(|Ui−1|+···+|Uj |)/q×

q
1

q(q−1)

(

q(si−1+si+···+sj)−(|Ui−1|+···+|Uj |)
)

= q
q(si−1+···+sj)

q−1 −
(|Ui−1|+···+|Uj |)

q

(

1+ 1
q−1

)

= q
q(si−1+···+sj)−(|Ui−1 |+···+|Uj |)

q−1 .

Case 2: ‖F‖∞ = ‖HF (−1)‖∞.

We note that ‖F (−1)‖∞ = ‖F‖
1/q
∞ . Thus, in this case we have that

‖F‖∞ = ‖H‖
q

q−1
∞

= q
q

q−1

(

(si−1+···+sj)−
(|Ui−1|+···+|Uj |)

q

)

= q
q(si−1+···+sj)−(|Ui−1|+···+|Uj |)

q−1 .
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By the analysis of these two cases, we deduce the last statement of the lemma.

Now recall the matrix Φl from (2.34) and let us define elements bi ∈
Matr+2−l(TΣ) such that Φl =

∑m
i=0 bit

i for some m ∈ Z≥0.

Proposition 2.38. There exists a matrix U ∈ GLr+2−l(TΣ) such that
U (−1)b0 = U .

Proof. Without loss of generality let us take l = 1. To avoid heavy notation let
QUi,si ∈ TΣ be the constant term of the polynomial QUi,si(t) for any 1 ≤ i ≤ r.
Let {s1, . . . , sr} ∈ Zr

≥1. Observe that

b0 =































(−θ)s1+···+sr

∏
r
i=1 α

(−1)
i

0 0 · · · 0

Q
(−1)
U1,s1

(−θ)s1+···+sr

∏
r
i=1 α

(−1)
i

(−θ)s2+···+sr

∏
r
i=2 α

(−1)
i

0 · · · 0

0
Q

(−1)
U2,s2

(−θ)s2+···+sr

∏
r
i=2 α

(−1)
i

. . .
...

...
. . . (−θ)sr

α
(−1)
r

0

0 · · · 0
Q

(−1)
Ur,sr

(−θ)sr

α
(−1)
r

1































.

Let the matrix U = (aij) be defined as a potential solution of the equation in
the proposition. Therefore the i-th row Ri of the matrix U (−1)b0 appears as

Ri :=

[

(−θ)s1+···+sr

∏r
i=1 α

(−1)
i

(a
(−1)
i,1 +Q

(−1)
U1,s1

a
(−1)
i,2 ),

(−θ)s2+···+sr

∏r
i=2 α

(−1)
i

(a
(−1)
i,2 +Q

(−1)
U2,s2

a
(−1)
i,3 )

, . . . ,
(−θ)sr

α
(−1)
r

(a
(−1)
i,r +Q

(−1)
Ur,sr

a
(−1)
i,r+1), a

(−1)
i,r+1

]

. (2.39)

Now our aim is to pick elements ai,j ∈ TΣ in a way that the desired equality
would be satisfied. First for 1 ≤ i ≤ r, we set ai,j = 0 when j > i. In order to
see how we can pick the other elements let us analyze the k-th row of U where
1 ≤ k ≤ r. By the above setting, we know ak,k+1=0. Then by (2.39), in order
to give the desired equality we want to have

(−θ)sk+···+sr

∏r
i=k α

(−1)
i

a
(−1)
k,k = ak,k.

Set βk := (−θ)q(sk+···+sr)
∏

r
i=k

αi
. Since βk ∈ T×

Σ , by (2.7) we can pick ak,k = ωβk
∈ T×

Σ .

Note also that ‖ωβk
‖∞ = q

q(sk+···+sr)−(|Uk |+···+|Ur |)

q−1 .
Now we need to find ak,k−1 such that

(−θ)sk−1+···+sr

∏r
i=k−1 α

(−1)
i

(a
(−1)
k,k−1 −Q

(−1)
Uk−1,sk−1

a
(−1)
k,k ) = ak,k−1.
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Since ‖QUk−1,sk−1
‖∞ < q

qsk−1−|Uk−1|

q−1 , we have that the element ak,k−1 is in

TΣ and ‖ak,k−1‖∞ ≤ q
q(sk−1+···+sr)−(|Uk−1 |+···+|Ur |)

q−1 by Lemma 2.37. The other
elements of the k-th row of U can be found by using the same idea together
with Lemma 2.37. Thus, we determine the k-th row of U recursively when
1 ≤ k ≤ r and conclude that all elements in the k-th row is in TΣ.
To determine the last row, we let sr+1 = 0 and Ur+1 = ∅. Then if we apply the

same idea above we see that we let βr+1 = (−θ)qsr+1

α
(−1)
r+1

= 1 and therefore we can

pick ar+1,r+1 = 1. We can now pick the other elements of the last row from
TΣ by again using Lemma 2.37.
According to our selection for the elements ai,j we now see that

U =

















ωβ1

a2,1 ωβ2

...
. . .

... ωβr

ar+1,1 . . . . . . ar+1,r 1

















.

Since U is a lower triangular matrix, one can obtain det(U) =
∏r

i=1 ωβi
∈ T×

Σ .
Thus, we conclude that U ∈ GLr+1(TΣ).

Theorem 2.40. The function Ψl(t) := Ψl has infinite radius of convergence.
In particular the function Lj,l(t) is well defined for any values of t ∈ TΣ.

Proof. We modify the ideas of the proof of Proposition 3.1.3 of [ABP04].
Recall that Φl =

∑m
i=0 bit

i. By Proposition 2.38 there exists a matrix
U ∈ GLr+2−l(TΣ) such that U (−1)b0U

−1 = Idr+2−l. Now set Ψ′
l := UΨl

and Φ′
l := U (−1)ΦlU

−1 and let Φ′
l =

∑m
i=0 b

′
it
i so that b′0 = Idr+2−l and

Ψ′
l =

∑

i≥0 g
′
it
i. By Lemma 2.36, one can see that Ψ

′(−1)
l = Φ′

lΨ
′
l. Therefore

for all n ≥ 1, we have that

g′(−1)
n − g′n =

min{n,m}
∑

i=1

b′ig′n−i.

Since Ψ ∈ Mat(r+2−l)×1(TΣ,t) and U ∈ GL(r+2−l)(TΣ), limn→∞‖g′n‖∞ = 0.
Let us set

g̃n :=

∞
∑

ν=1

(

m
∑

i=1

b′ig
′
n−i

)(ν)
.

Note that g̃n also converges for all sufficiently large n and we have that
limn→∞‖g̃n‖∞ = 0. We also have that

g̃(−1)
n =

m
∑

i=1

b′ig
′
n−i + g̃n = g′(−1)

n − g′n + g̃n.
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Thus (g̃n − g′n)
(−1) = g̃n − g′n for n ≫ 0. When n ≫ 0, we see that g̃n − g′n is

invariant under twisting, thus by [GP19, Lem. 2.5.1], we have that g̃n − gn ∈
Fq[tΣ]. But for sufficiently large n the norm of g̃n − g′n is arbitrarily small.
Therefore we conclude that g̃n − g′n = 0. Therefore for n ≫ 0 and a fixed real
number C > 1 we have that

Cn‖g′n‖∞ ≤
m

max
i=1

Cn‖b′i‖
q
∞‖g′n−i‖

q
∞

≤ (
m

max
i=1

Ci‖b′i‖
q
∞)(

m
max
i=1

‖g′n−i‖∞)q−1 m
max
i=1

Cn−i‖g′n−i‖∞

≤
n−1
max

i=n−m
Ci‖g′i‖∞

where the last inequality comes from the fact that

(
m

max
i=1

Ci‖b′i‖
q
∞)(

m
max
i=1

‖g′n−i‖∞)q−1 ≤ 1

when n is sufficiently large. Therefore sup∞n=0 C
n‖g′n‖∞ < ∞ and it implies

that all entries of Ψ′
l = UΨl has infinite radius of convergence. Multiplying

the column matrix Ψ′
l containing functions with infinite radius of convergence

with U−1 from the left then implies that functions in the entries of Ψl have
also infinite radius of convergence.

Proof of Theorem 2.24. The proof uses the ideas from the proof of Theorem
5.5.2 of [Cha14]. Let C be the composition array as in (1.4) so that I1 is the
set of indices i such that Ui 6= ∅ and I2 is the set of i’s such that Ui = ∅.
We denote Lr+1(t) := Lr+1,1(t). By Theorem 2.40 we have that the function
Lr+1(t) has infinite radius of convergence. Recall that

Lr+1(t) = Ωs1+···+sr (t)
r
∏

i=1

ωUi
×

∑

i1>i2>···>ir≥0

Q
(i1)
U1,s1

(t) . . . Q
(ir)
Ur ,sr

(t)bi1 (U1) . . . bir(Ur)

((t− θq) . . . (t− θq
i1 ))s1 . . . ((t− θq) . . . (t− θqir ))sr

.

Since Lr+1(t) is well-defined at t = θ, by Theorem 2.18, Theorem 2.21 and the
equalities (2.3), (2.4) and (2.6), we obtain

Lr+1(θ) =
∑

i1>i2>···>ir≥0

(ωU1Ω
s1QU1,s1)

(i1)(θ) . . . (ωUr
ΩsrQUr,sr )

(ir)(θ)

=

∏r
i=1 ωUi

∏

i∈I1
ℓq

rsi −si
rsi−1 brsi (Ui)

∏

i∈I2
Γsi

π̃s1+···+sr
×

∑

i1>i2>···>ir≥0

Si1(U1, s1) . . . Sir (Ur, sr)

=

∏r
i=1 ωUi

∏

i∈I1
ℓq

rsi −si
rsi−1 brsi (Ui)

∏

i∈I2
Γsi

π̃s1+···+sr
ζC(C).

(2.41)
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Observe that

Lr+1(t)
∏r

i=1 ωUi
Ωs1+···+sr (t)

=
∑

i1>i2>···>ir≥0

Q
(i1)
U1,s1

(t) . . . Q
(ir)
Ur,sr

(t)bi1(U1) . . . bir (Ur)

((t− θq) . . . (t− θq
i1 ))s1 . . . ((t− θq) . . . (t− θqir ))sr

. (2.42)

Applying t = θ to both sides of (2.42) and combining it with (2.41) by using
(2.4), we get that

ζC(C)
∏

i∈I1

ℓq
rsi−si

rsi−1 brsi (Ui)
∏

i∈I2

Γsi =
∑

i∈I

ai LiC(ui)

where the right hand side is justified by the fact that ‖QUj,sj (t)‖∞ < q
sjq−|Uj |

q−1

for any j ∈ {1, . . . , r} and therefore LiC(u) converges for any u ∈ S.

2.6 Multiple Star Polylogarithms

Let C be a composition array as in (1.4) such that r > 1. Recall that nl = |Ul|
for 1 ≤ l ≤ r. We define the subset D′′

C ⊂ Tr
Σ by

{f = (f1, . . . , fr) ∈ Tr
Σ | ‖f1‖∞ < q

s1q−n1
q−1 , ‖fi‖∞ ≤ q

siq−ni
q−1 for i = 2, . . . , r}

Inspired by the work of Chang and Mishiba in [CM20, Sec. 2.2], for u =
(u1, . . . , ur) ∈ D′′

C , we define the multiple star polylogarithm Li∗C(u) corre-
sponding to the composition array C by the infinite series

Li∗C(u) :=
∑

i1≥i2≥···≥ir≥0

bi1(U1) . . . bir (Ur)τ
i1 (u1) . . . τ

ir (ur)

ℓs1i1 . . . ℓsrir
.

Observe that Li∗C(u) converges in TΣ if u ∈ D′′
C .

Let Ci =
(

Ui

si

)

be a composition array for all 1 ≤ i ≤ r. We define the addition
‘+’ between composition array Ci and Cj by

Ci + Cj =

(

Ui ∪ Uj

si + sj

)

and the operation ‘,’ by

(Ci, Cj) =

(

Ui, Uj

si, sj

)

Observe that (C1, . . . , Cr) = C.
Now similar to [CM20, Sec. 5.2], we define the set S whose elements are symbols
‘,’ and ‘+’ and the set S× containing symbols ‘,’ and ‘×’. We define the map

f : Sr−1 → S×r−1
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in a way that f fixes the symbol ‘,’ and sending ‘+’ to ‘×’. As an example, if
v = (v1, v2) ∈ S2 so that v1 = ‘,’ and v2 = ‘+’ then f(v) = v′ = (v′1, v

′
2) where

v′1 = ‘,’ and v′2 = ‘×’.
We continue with further definition. For any v = (v1, . . . , vr−1) ∈ Sr−1 and any
composition array C = (C1, . . . , Cr), we define v(C) = (C1v1C2v2 . . . vr−1Cr). For
any u = (u1, . . . , ur) ∈ Tr

Σ, we set v×(u) := (u1f(v1)u2f(v2) . . . urf(vr)). We
also set γ(v) to be the number of ‘+’ in v. As an example, let v = (v1, v2, v3)
be such that v1 =‘,’, v2 =‘+’ and v3 = ‘,’. Let

C =

(

U1, U2, U3, U4

s1, s2, s3, s4

)

and Ci =
(

Ui

si

)

for i = 1, 2, 3, 4. Then

v(C) =

(

U1, U2 ∪ U3, U4

s1, s2 + s3, s4

)

and v×(u) = (u1, u2u3, u4). Note also that γ(v) = 1.
Observe that by the properties of non-archimedean geometry if u ∈ D′

C (D′′
C

resp.) then v×(u) is also in D′
C (D′′

C resp.) for any v = (v1, . . . , vr−1) ∈ Sr−1.
Finally for r = 1 we define Sr−1 = S0 and for any v ∈ S0 we have v(C) := C,
v×(u) := u and γ(v) := 0.
Now using the inclusion-exclusion principle on the set {i1 ≥ i2 ≥ . . . ir ≥ 0} as
in [CM20, Prop. 5.2.3] we have that

LiC(u) =
∑

v∈Sr−1

(−1)γ(v) Li∗v(C)(v
×(u)). (2.43)

Theorem 2.44 (cf. [CM20, Thm. 5.2.5]). Let C be a composition array of
depth r as in (1.4). Let I1 be the set of indices i such that Ui 6= ∅ and I2
be the set of i such that Ui = ∅. Then there exist composition arrays Cl with
wght(C) = wght(Cl) and dep(Cl) ≤ r, elements al ∈ A and ul ∈ Kperf(tΣ)

dep(Cl)

such that
∏

i∈J2

Γsi

∏

i∈J1

ℓq
rsi −si

rsi−1 brsi (Ui)ζC(C) =
∑

l

al(−1)dep(Cl)−1 Li∗Cl
(ul)

where rsi ≥ 1 is an integer such that si ≤ qrsi for i ∈ I1.

Proof. Using Theorem 2.24 and (2.43) we observe that
∏

i∈J2

Γsi

∏

i∈J1

ℓq
rsi−si

rsi−1 brsi (Ui)ζC(C)

=
∑

i∈I

ai LiC(ui)

=
∑

i∈I

ai
∑

V ∈Sr−1

(−1)γ(V ) Li∗V (C)(V
×(ui))

=
∑

i∈I

∑

V ∈Sr−1

(−1)r−1ai(−1)dep(V (C))−1 Li∗V (C)(V
×(ui))
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where the last line follows from the fact that γ(V ) + dep(V (C)) = r for V ∈
Sr−1. Thus we can define the tuple (al, Cl, ul) by

(al, Cl, ul) = ((−1)r−1ai, V (C), V ×(C))

for i ∈ I and V ∈ Sr−1.

3 Higher Dimensional Drinfeld modules over Tate algebras

3.1 Anderson A[tΣ]-modules

The idea of Drinfeld modules over Tate algebras was first introduced by Anglès,
Pellarin and Tavares Ribeiro [APTR16]. In this section, we introduce the
concept of Anderson A[tΣ]-modules which can be seen as higher dimensional
Drinfeld modules over Tate algebras.

Definition 3.1. An Anderson A[tΣ]-module φ : A[tΣ] → Matn(TΣ)[τ ] of di-
mension n defined over TΣ is an Fq[tΣ]-linear homomorphism such that

φ(θ) = A0 +A1τ + · · ·+Asτ
s

for some s and (θ Idn −A0)
n = 0.

Any Anderson A[tΣ]-module φ defines an A[tΣ]-module action on Matn×1(TΣ)
given by

φ(θ) · f = A0f +A1τ(f) + · · ·+Asτ
s(f), f ∈ Matn×1(TΣ).

We also define the Fq[tΣ]-linear homomorphism ∂φ : A[tΣ] → Matn(TΣ) by
∂φ(θ) = A0 and its action on Matn×1(TΣ) by ∂φ(θ) · f = A0f for any f ∈
Matn×1(TΣ).

Remark 3.2. We note that any t-module in the sense of Anderson [And86] can
be also seen as an Anderson A[tΣ]-module over C∞ ⊂ TΣ.

Let φ1 and φ2 be Anderson A[tΣ]-modules of dimension n1 and n2 respec-
tively. An Anderson A[tΣ]-module homomorphism ϕ : φ1 → φ2 is defined as
an element ϕ ∈ Matn2×n1(TΣ)[τ ] such that

φ2(θ)ϕ = ϕφ1(θ).

We now discuss the exponential and logarithm function of some class of Ander-
son A[tΣ]-modules. It is important to point out that one can define an expo-
nential and logarithm function corresponding to any Anderson A[tΣ]-module
using methods of Anderson [And86] but concerning the purpose of the present
paper, we only analyze special cases.
Let φ be an Anderson A[tΣ]-module defined by

φ(θ) = θ Idn +N + Eτ (3.3)

for some N ∈ Matn(Fq) such that Nn = 0 and E ∈ Matn(TΣ).
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For any square matrices X1 and X2, we first define [X1, X2] := X1X2 −
X2X1. Then we set ad(X1)

0(X2) := X2 and for j ≥ 1, ad(X1)
j(X2) :=

[X1, ad(X1)
j−1(X2)].

Lemma 3.4. [Pap, Lem. 3.2.9] Let Y,N ∈ Matn(TΣ). Then we have

ad(N)j(Y ) =

j
∑

m=0

(−1)m
(

j

m

)

NmY N j−m.

Moreover, if N is a nilpotent matrix so that Nn = 0, then ad(N)j(Y ) = 0 for
j > 2n− 2.

Proof. Using the definition of ad(N)j(Y ) and an induction argument imply the
above formula. Now assume that N is a nilpotent matrix such that Nn = 0.
Thus for j > 2n− 2 and 0 ≤ m ≤ j, we have NmY N j−m is 0 as either m ≥ n
or j −m ≥ n and therefore we have either Nm = 0 or N j−m = 0.

Proposition 3.5. Let

expφ =
∑

i≥0

βiτ
i ∈ Matn(TΣ)[[τ ]]

be the infinite series such that β0 = Idn and

expφ ∂φ(θ) = φ(θ) expφ (3.6)

holds in Matn(TΣ)[[τ ]]. Then we have

βi+1 =

2n−2
∑

j=0

ad(N)j(Eβ
(1)
i )

[i+ 1]j+1
. (3.7)

Moreover ‖βi‖∞ ≤ ‖θ‖−iqi

∞ ‖E‖i∞ for i ≥ 0.

Proof. By comparing the coefficients of τ in (3.6) we see that

βi+1(θ
qi+1

Idn +N) = θ Idn βi+1 +Nβi+1 + Eβ
(1)
i (3.8)

After some arrangement we see that (3.8) can be rewritten as

βi+1 =
[N, βi+1]

θqi+1 − θ
+

Eβ
(1)
i

θqi+1 − θ
.

Thus a similar calculation as in [AT90, Eq. 2.2.3] implies that the formula for

βi+1 in (3.7) holds. Now we claim that ‖βi‖∞ ≤ ‖θ‖−iqi

∞ ‖E‖i∞ for i ≥ 0. We
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do induction on i. If i = 0, then β0 = Idn and the claim holds. Assume it also
holds for i. Then by the induction hypothesis and (3.7) we have

‖βi+1‖∞ ≤ max
0≤j≤2n−2

‖β
(1)
i ‖∞‖E‖∞
[i+ 1]j+1

= ‖θ‖−iqi+1

∞ ‖E‖i+1
∞ ‖θ‖−qi+1

∞

= ‖θ‖−(i+1)qi+1

∞ ‖E‖i+1
∞

as desired.

We call the infinite series expφ =
∑

βiτ
i ∈ Matn(TΣ)[[τ ]] in Proposition 3.5

the exponential series of φ. The exponential series expφ induces an Fq[tΣ]-linear
homomorphism expφ : Matn×1(TΣ) → Matn×1(TΣ) defined by

expφ(f) =
∑

i≥0

βiτ
i(f), f ∈ Matn×1(TΣ).

Moreover by Proposition 3.5 we see that the function expφ converges every-
where on Matn×1(TΣ).
Using a similar argument as in the proof of [GP19, Thm. 3.3.2] together with
Proposition 3.5, we deduce the following lemma.

Lemma 3.9 (cf. [GP19, Lem. 3.3.2]). Let φ be the Anderson A[tΣ]-module de-
fined as in (3.3). Then there exists εφ > 0 such that the open ball {f ∈
Matn×1(TΣ) | ‖f‖∞ < εφ} ⊂ Matn×1(TΣ) can be mapped ‖·‖∞-isometrically
by expφ to itself.

Let P0 = Idn. We define the logarithm series

logφ =
∑

j≥0

Pjτ
j ∈ Matn(TΣ)[[τ ]]

as the formal inverse of expφ in Matn(TΣ)[[τ ]] such that

expφ logφ = logφ expφ = Idn (3.10)

and it also satisfies
∂φ(θ) logφ = logφ φ(θ). (3.11)

The logarithm series logφ induces an Fq[tΣ]-linear homomorphism logφ :
Matn×1(TΣ) → Matn×1(TΣ) defined by

logφ(f) =
∑

i≥0

Piτ
i(f), f ∈ Matn×1(TΣ)

which has a finite radius of convergence by Lemma 3.9. It also implies that
expφ is an automorphism with its inverse logφ on {f ∈ Matn×1(TΣ) | ‖f‖∞ <
εφ} ⊂ Matn×1(TΣ).
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Using a similar calculation to [CM19, Eq. (3.2.4)] we can obtain

Pi+1 = −
2d′−2
∑

j=0

ad(N)j(PiE
(i))

(θqi+1 − θ)j+1
(3.12)

where d′ is a positive integer such that Nd′

= 0 and Nk 6= 0 for k < d′.

3.2 Uniformizability

We now discuss the uniformizability of Anderson A[tΣ]-modules. We can refer
the reader to [APTR16, Sec. 3,6] and [GP19] for more details about uniformiz-
ability of Anderson A[tΣ]-modules of dimension 1.

Definition 3.13. We call an Anderson A[tΣ]-module φ of dimension n uni-
formizable if expφ : Matn×1(TΣ) → Matn×1(TΣ) is a surjective function.

Example 3.14. Assume that Σ = {1, . . . , s} for some s ∈ Z≥1 and let f =
∑

µ∈Z
|Σ|

≥1

fµt
µ
Σ be in TΣ. For any positive integer n, we define the Anderson

A[tΣ]-module C⊗n : A[tΣ] → Matn(TΣ)[τ ], the n-th tensor power of the Carlitz
module by

C⊗n(θ) = θ Idn +













0 1 . . . 0
. . .

. . .
...

. . . 1
0













+













0 . . . . . . 0
...

...
...

...
1 . . . . . . 0













τ.

When n = 1, we call C : A[tΣ] → TΣ[τ ] given by C(θ) = θ + τ the Carlitz
module (see [Gos96, §3] for details). By [BP20, Sec. 4.3] we know that expC⊗n :
Matn×1(C∞) → Matn×1(C∞) is surjective. Indeed we can show that expC⊗n :
Matn×1(TΣ) → Matn×1(TΣ) is also surjective as follows. Let

y =
[

∑

a1,µt
µ
Σ, . . . ,

∑

an,µt
µ
Σ

]⊺
∈ Matn×1(TΣ)

for some aj,µ ∈ C∞ where 1 ≤ j ≤ n and µ ∈ Z
|Σ|
≥0 . Then for any µ, there

exists xµ = [x1,µ, . . . , xn,µ]
⊺ ∈ C∞ such that expC⊗n(xµ) = [a1,µ, . . . , an,µ]

⊺.
Note that the entries of y are elements in TΣ. Thus by Lemma 3.9, for any j,
there exists Nj ∈ Z such that aj,µ is in the radius of convergence of logC⊗n

for any s-tuple µ whose sum of the entries is bigger than Nj . Thus for such
tuple (a1,µ, . . . , an,µ)

⊺, we can choose xµ = logC⊗n((a1,µ, . . . , an,µ)
⊺) such that

‖(a1,µ, . . . , an,µ)⊺‖∞ = ‖xµ‖∞ and expC⊗n(xµ) = [a1,µ, . . . , an,µ]
⊺. Therefore

we guarantee that the element

x :=







∑

x1,µt
µ
Σ

...
∑

xn,µt
µ
Σ
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lives in Matn×1(TΣ). Furthermore, by the Fq[tΣ]-linearity of expC⊗n , we have
expC⊗n(x) = y.

Recall that Σ = ∪r
i=1Ui ⊂ Z≥1. We define α :=

∏r
i=1

∏

j∈Ui
(tj − θ). Following

Demeslay [Dem14, Sec. 4.1], we define the Anderson A[tΣ]-module C⊗n
α :

A[tΣ] → Matn(TΣ)[τ ] by

C⊗n
α (θ) = θ Idn +













0 1 . . . 0
. . .

. . .
...

. . . 1
0













+













0 . . . . . . 0
...

...
...

...
α . . . . . . 0













τ. (3.15)

Note that if Σ = ∅, then C⊗n
α = C⊗n for any positive integer n. As an example,

when r = 1, n = 1 and Σ = U1 = {1, . . . , s} for some s ∈ Z≥1, we have that

Cα(θ) = θ + (t1 − θ) . . . (ts − θ)τ, (3.16)

and when r = 1, n = 2 and U1 = {1, 2} we have

C⊗2
α (θ) =

[

θ 1
0 θ

]

+

[

0 0
(t1 − θ)(t2 − θ) 0

]

τ.

3.3 Frobenius Modules

We now investigate the idea of Frobenius modules in our setting. Alert reader
might notice that the terminology was also used in [CPY19, Sec. 2.2] and
[GP19, Sec. 4].
For any d, n ∈ Z≥1, we define the non-commutative polynomial ring
Matd×n(TΣ)[σ] subject to the relation

σf = f (−1)σ, f ∈ Matd×n(TΣ)[σ].

Moreover for any M = (Mij) ∈ Matd×n(TΣ), we define the non-archimedean
norm ‖·‖σ by

‖M‖σ := sup{‖Mij‖∞}.

Let ϕ = A0 + A1τ + · · · + Akτ
k ∈ Matd×n(TΣ)[τ ]. Then we define the map

∗ : Matd×n(TΣ)[τ ] → Matn×d(TΣ)[σ] by

ϕ∗ = A⊺
0 +A

⊺(−1)
1 σ + · · ·+A

⊺(−k)
k σk.

We also define the ring TΣ[t, σ] := TΣ[σ][t] with respect to the condition

ct = tc, c(−1)σ = σc, tσ = σt, c ∈ TΣ.

Definition 3.17. Let φ be an Anderson A[tΣ]-module of dimension n defined
as in (3.3). We call a TΣ[t, σ]-moduleH(φ) the Frobenius module corresponding
to φ if it is free of rank n over TΣ[σ] and its TΣ[t]-action is defined by

ct · h = chφ(θ)∗ = ch(θ Idn +N⊺ + E⊺(−1)σ)

for any h ∈ H(φ) and c ∈ TΣ.
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Example 3.18. Let α =
∏

i∈Σ(ti − θ). Consider the left TΣ[t, σ]-module H :=

TΣ[t] whose TΣ[σ]-action is given by cσ · f = cf (−1)α(−1)−1

(t − θ)n for any
c ∈ TΣ and f ∈ H . One can see that H is free of rank n over TΣ[σ] with
the basis {vn, . . . , v1} where vi = (t − θ)i−1 for 1 ≤ i ≤ n. Let H(C⊗n

α ) :=
Mat1×n(TΣ[σ]) be the Frobenius module corresponding to C⊗n

α whose TΣ[t]-
module action is defined by ct ·h = ch(C⊗n

α )∗ for any c ∈ TΣ and h ∈ H(C⊗n
α ).

We define ei ∈ Mat1×n(TΣ[σ]) to be the row matrix whose i-th coordinate
is 1 and the rest is zero. One notes that {en} forms a TΣ[t]-basis for H(C⊗n

α ).
There exists a TΣ[t]-module isomorphism g : H → H(C⊗n

α ) given by g(1) = en.
Furthermore g also respects the TΣ-linear action of σ and therefore g is a
TΣ[t, σ]-module isomorphism.

4 Anderson A[tΣ]-Module GC

4.1 The Construction of Anderson A[tΣ]-Module G

For the rest of the paper, for any matrix M ∈ Matk(TΣ) of the form

M =







M [11] · · · M [1r]
...

...
M [r1] · · · M [rr]






(4.1)

such that M [ij] ∈ Matdi×dj
(TΣ), we call M [ij] the (i, j)-th block matrix of M .

We fix a composition array C defined as in (1.4) and consider (u1, . . . , ur) ∈
(TΣ \ {0})r. For any 1 ≤ j ≤ r we set dj := sj + · · ·+ sr and k := d1+ · · ·+ dr.
For each j, we define the matrices Nj ∈ Matdj

(Fq) and N ∈ Matk(Fq) by:

Nj =













0 1 . . . 0
. . .

. . .
...

. . . 1
0













, N :=











N1

N2

. . .

Nr











.

Recall from §2.1 that Σ ⊂ Z≥1 is a union of finite sets given by Σ = ∪r
i=1Ui

and αi =
∏

j∈Ui
(tj − θ). Set

E[jm] :=













0 . . . . . . 0
...

. . .
...

0
. . .

...
∏r

n=m αn 0 . . . 0













∈ Matdj
(TΣ) if j = m (4.2)
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and if j < m we define

E[jm] :=













0 . . . . . . 0
...

. . .
...

0
. . .

...

(−1)m−j
∏m−1

i=j ui

∏r
n=m αn 0 . . . 0













∈ Matdj×dm
(TΣ).

(4.3)
Using (4.2) and (4.3) we define the block matrix E by

E :=













E[11] E[12] . . . E[1r]

E[22]
. . .

...
. . . E[(r − 1)r]

E[rr]













∈ Matk(TΣ).

Finally we define the Anderson A[tΣ]-module G : A[tΣ] → Matk(TΣ)[τ ] by

G(θ) = θ Idk +N + Eτ.

Set aj :=
∏r

i=j αi. Then we can also write the Anderson A[tΣ]-module G of
dimension k corresponding to C and (u1, . . . , ur) ∈ (TΣ \ {0})r as

G(θ) =











C⊗d1
a1

(θ) E[12] . . . E[1r]
C⊗d2

a2
(θ) E[2r]

. . .
...

C⊗dr
ar

(θ)











. (4.4)

By definition, the Frobenius moduleH(G) ofG carries a TΣ[t]-module structure
such that for any x ∈ H(G) the t-action is given by

t · x = xG(θ)∗ (4.5)

and is free of rank k over TΣ[σ]. We now claim that H(G) can be given by the
direct sum of TΣ[t, σ]-modules

H(G) = H(C⊗d1
a1

)⊕ · · · ⊕H(C⊗dr
ar

) (4.6)

and therefore is free of rank r over TΣ[t]. If r = 1, then we see that G = C⊗d1
a1

and the Frobenius module H(G) is free of rank 1 over TΣ[t] by Example 3.18.
Suppose that r = 2. We consider the short exact sequence

0 H(C⊗d1
a1

) H(G) H(C⊗d2
a2

) 0
ρ1 ρ2

(4.7)

of free TΣ[σ]-modules such that for any x = (x1, . . . , xd1) ∈ H(C⊗d1) and
y = (y1, . . . , yd2) ∈ H(C⊗d2), we have ρ1(x) = (x, 0, . . . , 0) and ρ2(x, y) = y.
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Note that

ρ1(t · x) = ρ1(xC
⊗d1
a1

(θ)∗) = ρ1((θx1 + x2, . . . , x1a
(−1)
1 σ + θxd1))

= (θx1 + x2, . . . , x1a
(−1)
1 σ + θxd1 , 0, . . . , 0)

= (x, 0, . . . , 0)G(θ)∗

= t · ρ1(x).

Similar calculation can be applied to see that ρ2(t · (x, y)) = t · ρ2((x, y)). Thus
the maps ρ1 and ρ2 are compatible with the t-action of TΣ[t]-modulesH(C⊗d1

a1
),

H(C⊗d2
a2

) and H(G). Therefore the short exact sequence in (4.7) is also a short
exact sequence of TΣ[t]-modules. Since H(C⊗d1

a1
) and H(C⊗d2

a2
) are free over

TΣ[t] of rank 1, H(G) is also free of rank 2 over TΣ[t] with the basis {m1,m2}
such that under the projection map proji : H(G) → H(C⊗di

ai
), proji(mi) is a

TΣ[t]-basis for H(C⊗di
ai

) when i = 1, 2.
To show the claim for any r, we just replace the short exact sequence in (4.7)
with

0 H(C⊗d1
a1

) H(G) H(Gr−1) 0
ρ1 ρ2

such that

Gr−1(θ) =











C⊗d2
a2

(θ) E[23] . . . E[2r]
C⊗d3

a3
(θ) E[3r]

. . .
...

C⊗dr
ar

(θ)











and apply the same argument above.

Remark 4.8. We observe from the above discussion and Example 3.18 that
if {m1, . . . ,mr} is a TΣ[t]-basis for H(G), then the set {(t − θ)d1−1 ·
m1, . . . ,m1, . . . , (t − θ)dr−1 · mr, . . . ,mr} is a TΣ[σ]-basis for H(G). Let us
choose pij = (t − θ)di−j · mi for 1 ≤ i ≤ r and 1 ≤ j ≤ di. Since H(G) is
isomorphic to Mat1×k(TΣ)[σ] as a TΣ[σ]-module, by the change of basis, we
can identify each pij with eij = (∗, . . . , 0, 1, 0, . . . , ∗) where 1 appears in the
(d1 + · · ·+ di−1 + j)-th place and the other entries are zero.

We let m := [m1, . . . ,mr]
⊺ ∈ Matr×1(H(G)) be the column vector containing

TΣ[t]-basis elements of H(G) and consider the matrix Φ ∈ GLr(TΣ[t]) defined
by

Φ :=































(t−θ)d1

a
(−1)
1

u
(−1)
1 (t−θ)d1

a
(−1)
1

(t−θ)d2

a
(−1)
2

u
(−1)
2 (t−θ)d2

a
(−1)
2

. . .

. . .
u
(−1)
r−1 (t−θ)dr−1

a
(−1)
r−1

(t−θ)dr

a
(−1)
r































. (4.9)
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Proposition 4.10. We have σm = Φm.

Proof. Let pij and eij be as in Remark 4.8. Set c · mj := 0 ∈ H(G) for any
c ∈ TΣ[t] and j ≤ 0. Claim that for any 1 ≤ i ≤ r we have

u
(−1)
i−1 (t− θ)di−1

a
(−1)
i−1

·mi−1 +
(t− θ)di

a
(−1)
i

·mi = σmi. (4.11)

We do induction on i. First we see that

t · p11 = t · e11

= (1, 0, . . . , 0)G(θ)∗

= (θ, . . . , a
(−1)
1 σ, 0, . . . , 0)

= θp11 + a
(−1)
1 σp1d1

= θp11 + a
(−1)
1 σm1

(4.12)

where a
(−1)
1 σ appears in the d1-th place. Since p11 = (t− θ)d1−1 ·m1, it follows

from (4.12) that σm1 = (t−θ)d1

a
(−1)
1

·m1. Assume that the equality in (4.11) holds

for i − 1. By using the induction hypothesis and the t-action defined in (4.5)
we obtain

t · pi1

= t · ei1

= θpi1 + a
(−1)
i

(

(−1)i−1u
(−1)
1 . . . u

(−1)
i−1 σ · p1d1 + (−1)i−2u

(−1)
2 . . . u

(−1)
i−1 σ · p2d2

+ · · ·+ (−1)u
(−1)
i−1 σ · p(i−1)di−1

)

+ a
(−1)
i σpidi

= θpi1 + a
(−1)
i

(

(−1)i−1u
(−1)
1 . . . u

(−1)
i−1

(t− θ)d1

a
(−1)
1

·m1

+ (−1)i−2u
(−1)
1 . . . u

(−1)
i−1

(t− θ)d1

a
(−1)
1

·m1 + (−1)i−3u
(−1)
2 . . . u

(−1)
i−1

(t− θ)d2

a
(−1)
2

·m2

+ (−1)i−2u
(−1)
2 . . . u

(−1)
i−1

(t− θ)d2

a
(−1)
2

·m2

+ · · ·+
(−1)i−(i−2)u

(−1)
i−2 u

(−1)
i−1 (t− θ)di−2

a
(−1)
i−2

·mi−2

+
(−1)u

(−1)
i−1 (t− θ)di−1

a
(−1)
i−1

·mi−1

)

+ a
(−1)
i σpidi

= θpi1 + a
(−1)
i σmi −

u
(−1)
i−1 (t− θ)di−1

α
(−1)
i−1

·mi−1.

(4.13)
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Since pi1 = (t − θ)di−1 · pidi
= (t − θ)di−1 · mi, the claim follows from the

calculation in (4.13). Thus the definition of the matrix Φ and m together with
(4.11) imply the proposition.

4.2 Rigid Analytic Trivialization of G

In this section, we introduce the idea of rigid analytic triviality for Anderson
A[tΣ]-module G of dimension k defined as in (4.4). We start with explaining
necessary background and at the end, we relate them to the uniformizability
of Anderson A[tΣ]-modules.

Let H(G) be the Frobenius module corresponding to G which is free of rank r
over TΣ[t] and m = [m1, . . . ,mr]

⊺ be the column vector consisting of TΣ[t]-
basis elements of H(G). Then for any h = [h1, . . . , hr] ∈ Mat1×r(TΣ[t]), we
define the map

ι : Mat1×r(TΣ[t]) → Mat1×k(TΣ[σ])

by ι(h) = h · m = h1 · m1 + · · · + hr · mr where the action · is given by the
TΣ[t]-action on H(G).

Lemma 4.14. We have

(i) For any h = [h1, . . . , hr] ∈ Mat1×r(TΣ[t]), we have ι(h(−1)Φ) = σι(h).

(ii) For all h = [h1, . . . , hr] ∈ Mat1×r(TΣ[t]), we have ι(th) = ι(h)G(θ)∗.

Proof. To prove the first part we observe by Proposition 4.10 that

σι(h) = σ[h1, . . . , hr] ·m = [h
(−1)
1 , . . . , h(−1)

r ]σ ·m = h(−1)Φ ·m = ι(h(−1)Φ).

On the other hand, we have by (4.5) that

ι(th) = t[h1, . . . , hr] ·m = t · ι(h) = ι(h)G(θ)∗

which proves the second part.

We call the tuple (ι,Φ) a t-frame of G.

Before we state the definition of rigid analytic triviality, for any f ∈ TΣ, we
define the ring TΣ{t/f} by

TΣ{t/f} :=

{

∑

i≥0

ait
i ∈ TΣ[[t]] | ‖f‖i∞‖ai‖∞ → 0

}

.

Moreover, we define the norm ‖g‖f = ‖
∑

ait
i‖f = sup{‖f‖i∞‖ai‖∞} so that

the ring TΣ{t/f} is complete with respect to the norm ‖·‖f . Furthermore, for
any M = (Mij) ∈ Matn×l(TΣ{t/f}) we set ‖M‖f := maxi,j‖Mij‖f .
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Definition 4.15. Let (ι,Φ) be a t-frame of G defined as in (4.4) and let
Ψ ∈ GLr(TΣ{t/θ}) be a matrix such that

Ψ(−1) = ΦΨ.

Then we call (ι,Φ,Ψ) a rigid analytic trivialization of G and say G is rigid
analytically trivial.

Remark 4.16. We recall Example 3.18. Note that the TΣ[σ]-action on the

TΣ[t]-basis v1 of H(C⊗n
α ) is represented by Φ = (t−θ)n

α(−1) . By (2.2) and (2.6)

we see that Ψ = ωαΩ(t)
n satisfies the equality Ψ(−1) = ΦΨ. Moreover since

Ω(t) ∈ TΣ{t/θ} by [GP19, Cor. 6.2.10] so is Ψ. Thus C⊗n
α is rigid analytically

trivial.

Now we finish this section with a fundamental theorem which will be useful to
prove Theorem 1.12.

Theorem 4.17 (cf. [GP19, Thm. 4.5.5]). Let φ be an Anderson A[tΣ]-module
defined in (3.3). If φ has a rigid analytic trivialization (ι,Φ,Ψ), then φ is
uniformizable.

Proof. See Appendix A.

As an immediate corollary of Remark 4.16 and Theorem 4.17, we deduce the
following.

Corollary 4.18. The Anderson A[tΣ]-module C⊗n
α defined in (3.15) is uni-

formizable.

We now discuss the rigid analytic triviality of the Anderson A[tΣ]-module G
whose corresponding Frobenius module H(G) given as in (4.6). We prove the
following proposition.

Proposition 4.19. Let G be the Anderson A[tΣ]-module defined as in (4.4)
corresponding C and the tuple u = (u1, . . . , ur) ∈ (TΣ \{0})r such that ‖ui‖∞ <

q
siq−|Ui |

q−1 for 1 ≤ i ≤ r. Then G is rigid analytically trivial. In particular, the
exponential function expG is surjective.

Proof. Let Φ be given as in (4.9). For any 1 ≤ l < j ≤ r + 1 and ul,j =

(ul, . . . , uj−1) ∈ (TΣ \ {0})r such that ‖ui‖∞ < q
siq−|Ui|

q−1 for l ≤ i ≤ j − 1, set

Lul,j
(t) : =

∑

il>···>ij−1≥0

(ωUl
Ωsl(t)ul)

(il) . . . (ωUj−1Ω
sj−1 (t)uj−1)

(ij−1)

= Ωsl+···+sj−1(t)

j−1
∏

i=l

ωUi
×

∑

il>···>ij−1≥0

u
(il)
l . . . u

(ij−1)
j−1 bil(Ul) . . . bij−1 (Uj−1)

((t− θq) . . . (t− θq
il ))sl . . . ((t− θq) . . . (t− θq

ij−1 ))sj−1

.

(4.20)

Documenta Mathematica 25 (2020) 2355–2411



Deformation of Multiple Zeta Values 2391

Consider the matrix Ψ ∈ Matr(TΣ,t) by

Ψ =























Ω(t)d1
∏r

i=1 ωUi

Lu1,2(t)Ω(t)
d2

∏r
i=2 ωUi

. . .

. . .
. . .

. . .

Lu1,r(t)Ω(t)
drωUr

. . . Lur−1,r (t)Ω(t)
drωUr

Ω(t)drωUr























.

Since Ω(t) and ωUi
are invertible in TΣ,t, by Theorem 2.40, we see that Ψ ∈

GLr(TΣ{t/θ}). Thus the proposition follows from the same argument of the
proof of Proposition 2.32.

4.3 Analysis on the Coefficients of The Logarithm Function

We continue with the notation from §4.1 and furthermore for any 1 ≤ i ≤ r,
we define Ei ∈ Matk(TΣ) so that its (i, i)-th block matrix is E[ii] and the rest
is zero matrix.
We denote the logarithm function logG by logG =

∑

i≥0 Piτ
i where

P0 = Idk, Pi =







Pi[11] · · · Pi[1r]
...

...
Pi[r1] · · · Pi[rr]






∈ Matk(TΣ), Pi[jk] ∈ Matdj×dk

(TΣ).

Proposition 4.21 (cf. [CM19, Prop. 3.2.1]). We have Pi[lm] = 0 for l > m.
For l ≤ m, we denote the lower most right corner of Pi[lm] by yi[lm]. Then

yi[lm] =
∏

r
j=m

bi(Uj)

Ldm
i

if l = m and when l < m, we have

yi[lm] = (−1)m−l×

∑

0≤il≤···≤im−1<i

u
(il)
l . . . u

(im−1)
m−1 bil(Ul) . . . bim−1(Um−1)

∏r
j=m bi(Uj)

ℓslil . . . ℓ
sm−1

im−1
ℓdm

i

.

(4.22)

Proof. We follow the ideas of Chang and Mishiba in [CM19, Prop. 3.2.1]. By
(3.12) we have

Pi+1 = −
2d1−2
∑

j=0

ad(N)j(PiE
(i))

(θqi+1 − θ)j+1
(4.23)

similar to the identity (2.1.3) in [AT90]. Note that the upper bound of j in
(4.23) is determined by the fact that Nd1 = 0. Moreover, we have by (4.23)
and the definition of the matrix E and N that

Pi[lm] = 0 for l > m. (4.24)
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Observe that for a block matrix Y ∈ Matk(TΣ) of the form (4.1), if y is the
element in the lower most right corner of the (l,m)-th block matrix, then
E⊺

l Y Em has all entries zero except the upper most left corner of the (l,m)-th
block matrix which is y

∏r
j=l αj

∏r
j=m αj .

Note that E⊺
l N = 0. On the other hand, for any j, we can write

ad(N)j(PiE
(i)) = NM + (−1)JPiE

(i)N j for some M ∈ Matk(TΣ). Thus,
using [CM19, Eq. (3.2.6)] we see that

E⊺
l Pi+1Em =

E⊺
l PiE

(i)Ndm−1Em

(θ − θqi+1)dm
. (4.25)

Observe that E(i)N j−1Em = 0 if j 6= dm − 1 and E(i)Ndm−1Em has all zero
columns except the (d1+ · · ·+dm−1+1)-st to (d1+ · · ·+dm)-th columns which
are of the form

r
∏

j=m

αj [E[1m](i), . . . , E[mm](i), . . . , 0]⊺.

Moreover E⊺
l Pi has all zero rows except the (d1 + · · ·+ dl−1 +1)-th row which

is of the form
∏r

j=l αj [∗, . . . , yi[l1], . . . , yi[l2], . . . , yi[lr]] where yi[lw] appears in
the (d1 + · · ·+ dw)-th place for 1 ≤ w ≤ r.

Now comparing the upper most left corner of the (l,m)-th block matrix of both
sides of (4.25) by using (4.24) we observe that if l = m we have

ℓi+1yi+1[lm] =

r
∏

j=l

α
(i)
j yi[lm]ℓdm

i (4.26)

and if m > l, then we obtain

ℓdm

i+1yi+1[lm] =
r
∏

j=m

α
(i)
j

(

ℓdm

i

m−1
∑

n=l

yi[ln](−1)m−n
m−1
∏

e=n

u(i)
e + ℓdm

i yi[lm]

)

. (4.27)

We apply induction on i. Note that if m = l then the first part of the proposi-
tion can be easily shown by using (4.26) as y0[lm] = 1 in this case.

When m > l we assume the proposition holds for yi[ln] where l ≤ n < m and
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i ≥ 0. Then using (4.27) we have that

ℓdm

i+1yi+1[lm]

= ℓdm

i

m−1
∑

n=l+1

(−1)n−l×

∑

0≤il≤···≤in−1<i

∏n−1
j=l u

(ij)
j bij (Uj)

∏r
k=n bi(Uk)α

(i)
k

ℓslil . . . ℓ
sn−1

in−1
ℓdn

i

(−1)m−n
m−1
∏

e=n

u(i)
e

+ ℓdm

i

1

ℓdl

i

(−1)m−lu
(i)
l . . . u

(i)
m−1bi(Um) . . . bi(Ur)

m−1
∏

k=l

bi(Ul)

r
∏

j=m

α
(i)
j

+ ℓdm

i yi[lm]

r
∏

j=m

α
(i)
j

= (−1)m−l×

m−1
∑

n=l+1

∑

0≤il≤···≤in−1<i

∏n−1
j=l u

(ij)
j bij (Uj)u

(i)
n . . . u

(i)
m−1bi+1(Un) . . . bi+1(Ur)

ℓslil . . . ℓ
sn−1

in−1
ℓsni . . . ℓ

sm−1

i

+ (−1)m−l
bi+1(Um) . . . bi+1(Ur)

∏m−1
j=l u

(i)
j bi(Uj)

ℓsli . . . ℓ
sm−1

i

+ ℓdm

i yi[lm]

r
∏

j=m

α
(i)
j

= (−1)m−l
∑

0≤il≤···≤im−1

im−1=i

bi+1(Um) . . . bi+1(Ur)
∏m−1

j=l u
(ij)
j bij (Uj)

ℓslil . . . ℓ
sm−1

im−1

+ ℓdm

i yi[lm]

r
∏

j=m

α
(i)
j .

(4.28)

Since y0[lm] = 0 we obtain

r
∏

j=m

α
(i)
j ℓdm

i yi[lm]

= (−1)m−l
i−1
∑

h=0

∑

0≤il≤···≤im−1

im−1=h

bi(Um) . . . bi(Ur)
∏r

j=m α
(i)
j

∏m−1
j=l u

(ij)
j bij (Uj)

ℓslil . . . ℓ
sm−1

im−1
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This also implies that

r
∏

j=m

α
(i)
j ℓdm

i yi[lm] = (−1)m−l×

∑

0≤il≤···≤im−1<i

u
(il)
l . . . u

(im−1)
m−1 bil(Ul) . . . bim−1(Um−1)bi+1(Um) . . . bi+1(Ur)

ℓslil . . . ℓ
sm−1

im−1

.

(4.29)

Thus the proposition follows from combining (4.28) and (4.29).

Lemma 4.30 (cf. [CM20, Lem. 4.2.1]). Let C be a composition array as in (1.4)
and u = (u1, . . . , ur) ∈ (TΣ \ {0})r. Let also nl = |Ul| be the nonnegative

integer for 1 ≤ l ≤ r. If ‖ul‖∞ ≤ q
slq−nl

q−1 for each 1 ≤ l < r, then

‖PiN
dl−jEl‖∞ ≤ q(dl−j)qi−(dlq

i−d1)
q

q−1+(nl+···+nr)
qi

q−1 (4.31)

for each i, j, k where i ≥ 0, 1 ≤ l ≤ r, and 1 ≤ j ≤ dl.

Proof. We note that the matrix PiN
dl−jEl has all zero columns except the

(d1 + · · · + dl−1 + 1)-th column which is
∏r

j=l αj multiple of the (d1 + · · · +
dl−1+ j)-th column of Pi. If i = 0 then the lemma holds. Assume by induction
that the inequality (4.31) holds for i and we show that it also holds for i + 1.
By (4.23) we have that

Pi+1N
dl−jEl

= −
2d1−2
∑

m=0

1

(θqi+1 − θ)m+1

m
∑

n=0

(−1)n
(

m

n

)

Nm−nPiE
(i)Nn+dl−jEl. (4.32)

We observe that E(i)Nn+dl−jEl = 0 for n 6= j − 1. Moreover by the definition
of N we have that Nm−n = 0 for m − n ≥ d1. Therefore using the definition
of the matrices El and E we have

Pi+1N
dl−jEl =

d1+j−2
∑

m=j−1

(−1)j

(θqi+1 − θ)m+1

(

m

j − 1

)

Nm−j+1PiE
(i)Ndl−1El

=

d1+j−2
∑

m=j−1

(−1)j

(θqi+1 − θ)m+1

(

m

j − 1

)

Nm−j+1×

l
∑

n=1

(−1)l−nP ′
i,l,n

∏

n≤e≤l−1

u(i)
e

r
∏

h=l

αhα
(i)
h

where we define the matrix P ′
i,l,n as the matrix whose (d1 + · · ·+ dl−1 + 1)-th

column is the (d1 + · · ·+ dn−1 + dn)-th column of Pi and all the other columns
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are zero. Thus taking l = n and j = dn in the inequality (4.31) and using
induction hypothesis we see that

‖P ′
i,l,n

∏

n≤e≤l−1

u(i)
e

r
∏

h=l

αhα
(i)
h ‖∞

≤ q−(dnq
i−d1)

q
q−1+

qi(nn+···+nr)
q−1

∏

n≤e≤l−1

q
qi(seq−ne)

q−1

r
∏

h=l

‖α
(i)
h ‖∞

≤ q−(dnq
i−d1)

q
q−1+

qi(nn+···+nr)
q−1 q(dn−dl)

qi+1

q−1 q−
qi(nn+···+nl−1)

q−1 q(nl+···+nr)q
i

≤ q−(dlq
i−d1)

q
q−1+

qi(nl+···+nr)

q−1 q(nl+···+nr)q
i

≤ q−(dlq
i−d1)

q
q−1+

qi+1(nl+···+nr)

q−1 .

(4.33)

Thus using (4.32) and (4.33) we see that

‖Pi+1N
dl−jEl‖∞ ≤ max

j−1≤k≤d1+j−2
q−(k+1)qi+1−(dlq

i−d1)
q

q−1 q
(nl+···+nr)qi+1

q−1

= q−jqi+1−(dlq
i−d1)

q
q−1 q

(nl+···+nr)qi+1

q−1

= q(dl−j)qi+1−(dlq
i+1−d1)

q
q−1+(nl+···+nr)

qi+1

q−1

which concludes the proof.

We continue with the notation in the statement of Lemma 4.30.

Proposition 4.34 (cf. [CM20, Prop. 4.2.2]). Let ‖ul‖∞ ≤ q
slq−nl

q−1 for
1 ≤ l < r and x = (xi) ∈ Tk

Σ be a point such that ‖xd1+···+dl−1+j‖∞ <

q−(dl−j)+
dlq

q−1−
(nl+···+nr)

q−1 . Then logG converges at x in Tk
Σ.

Proof. The proof follows from the standard estimation in non-archimedean
analysis. In particular since ‖El‖∞ = q(nl+···+nr), by Lemma 4.30 we have

‖Pix
(i)‖∞

≤ max
j,l

{q−(nl+···+nr)+(dl−j)qi−(dlq
i−d1)

q
q−1+(nl+···+nr)

qi

q−1 ‖xd1+···+dl−1+j‖
qi

∞}

= max
j,l

{

q−(nl+···+nr)+
d1q

q−1

(

‖xd1+···+dl−1+j‖∞/q−(dl−j)+
dlq

q−1−
(nl+···+nr)

q−1

)qi
}

.

(4.35)

But by the assumption on the element x when i goes to infinity, the last term
in (4.35) approaches to 0 and thus this proves the statement in the proposition.
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The special point vC,u ∈ Tk
Σ corresponding to a composition array C and u =

(u1, . . . , ur) ∈ (TΣ \ {0})r is defined by

v = vC,u := [0, . . . , 0, (−1)r−1u1 . . . ur, 0, . . . , 0, (−1)r−2u2 . . . ur, 0, . . . , 0, ur]
⊺

(4.36)
where the entry (−1)r−juj . . . ur for 1 ≤ j ≤ r appears in (d1 + · · · + dj)-th
place.

We continue with some notation. For any composition array

C =

(

Uj , . . . , Ui

sj , . . . , si

)

where 1 ≤ j ≤ i, we define the composition array C̃ by

C̃ :=

(

Ui, Ui−1, . . . , Uj

si, si−1, . . . , sj

)

.

Furthermore, for any u = (uj, . . . , ui) ∈ (TΣ \ {0})j−i+1, we define ũ :=
(ui, ui−1, . . . , uj) ∈ (TΣ \ {0})j−i+1.

Theorem 4.37 (cf. [CM19, Thm. 3.3.3]). Let C be a composition array of
depth r defined as in (1.4) and u = (u1, . . . , ur) ∈ (TΣ \ {0})r be such that
ũ ∈ D′′

C̃
. Let G and v be defined as in (4.4) and (4.36) respectively corresponding

to C and u. Then logG converges at v. Moreover for any 1 ≤ l ≤ r, the
element in (d1 + · · ·+ dl)-th place of logG(v) is equal to (−1)r−l Li∗

C̃l
(ũl) where

Cl =
(

Ul,...,Ur

sl,...,sr

)

and ul = (ul, . . . , ur).

Proof. We follow the technique in [CM19, Thm. 3.3.3]. By the assumption on
the element u, the norm of the (d1 + · · ·+ dl−1 + dl)-th coordinate of v is

‖(−1)r−lul . . . ur‖∞ < q
slq−nl

q−1 . . . q
srq−nr

q−1 = q
dlq

q−1−
(nl+···+nr)

q−1 .

Then by Proposition 4.34 we see that logG converges at v. Using Proposition
4.21 and the definition of v we see that the (d1 + · · · + dl)-th coordinate of
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logG(v) is

∑

i≥0

r
∑

m=l

yi[lm](−1)r−mu(i)
m . . . u(i)

r

=
∑

i≥0

(−1)r−l
∏r

j=l bi(Uj)u
(i)
l . . . u

(i)
r

ℓdl

i

+
∑

i≥0

r
∑

m=l+1

(−1)m−l×

∑

0≤il≤···≤im−1<i

∏m−1
j=l u

(ij)
j bij (Uj)

ℓslil . . . ℓ
sm−1

im−1
ℓdm

i

(−1)r−mu(i)
m . . . u(i)

r

r
∏

j=m

bi(Uj)

= (−1)r−l

(

∑

i≥0

∏r
j=l u

(i)
j bi(Uj)

ℓsli . . . ℓsri

+
∑

i≥0

r
∑

m=l+1

∑

0≤il≤···≤im−1<i

∏m−1
j=l u

(ij)
j bi(Uj)u

(i)
m . . . u

(i)
r

∏r
j=m bi(Uj)

ℓslil . . . ℓ
sm−1

im−1
ℓsmi . . . ℓsri

)

Thus, by the above calculation, we obtain

∑

i≥0

r
∑

m=l

yi[lm](−1)r−mu(i)
m . . . u(i)

r

= (−1)r−l
∑

0≤il≤···≤ir

u
(il)
l . . . u

(ir)
r bil(Ul) . . . bir (Ur)

ℓslil . . . ℓ
sr
ir

= (−1)r−l Li∗
C̃l
(ũl).

4.4 The Construction of the Anderson A[tΣ]-module GC

Let C be a composition array as in (1.4) such that wght(C) = w and
dep(C) = r, and let u = (u1, . . . , ur) ∈ (TΣ \ {0})r. We recall the set of
tuples {(al, Cl, ul)| 1 ≤ l ≤ n} for some n ∈ Z≥1 from Theorem 2.44 and
without loss of generality, for 1 ≤ l ≤ s, let Cl be a composition array such
that dep(Cl) = 1 and for s + 1 ≤ l ≤ n, let Cl be a composition array whose
depth is bigger than 1. Assume that dep(Cl) = ml. Let Gl be the Anderson
A[tΣ]-module corresponding to the tuple (C̃l, ũl) defined as in (4.4). We also
recall the notation from §4.1 and set k′l =

∑ml

j=2 dlj for any 1 ≤ l ≤ n. It is
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easy to see from the definition that w = dl1 for 1 ≤ l ≤ n. Now define

G′
l :=

















C⊗dl2 El[23] . . . . . . El[2ml]
C⊗dl3 El[34] . . . El[3ml]

. . .
...

. . .
...

C⊗dlml

















∈ Matk′
l
(TΣ)[τ ]

and G′′
l :=

[

El[12] El[13] . . . El[1ml]
]

∈ Matw×k′
l
(TΣ). Observe that

Gl(θ) =

[

C⊗w
a1

(θ) G′′
l

G′
l

]

.

Let us set kC := w +
∑n

l=1 k
′
l. Then we define the Anderson A[tΣ]-module

GC : A[tΣ] → MatkC(TΣ)[τ ] by

GC(θ) =















C⊗d1
a1

G′′
s+1 G′′

s+2 . . . G′′
n

G′
s+1

G′
s+2

. . .

G′
n















∈ MatkC (TΣ)[τ ]. (4.38)

Using the definition of matrices G′
l and G′′

l we see that GC can be rewritten as
in (3.3) and therefore it has an exponential function expGC

: MatkC×1(TΣ) →
MatkC×1(TΣ) which is everywhere convergent by Proposition 3.5.

For the rest of this section we aim to prove that expGC
is a surjective function.

Now let kl :=
∑ml

j=1 dlj = w + k′l for 1 ≤ l ≤ n. First we give the definition of

the following map λ : T
∑

n
l=1 kl

Σ → T
kC

Σ by

λ :



























z11
...

z1k1

...
zn1
...

znkn



























→ Λ



























z11
...

z1k1

...
zn1
...

znkn



























=









































z11 + · · ·+ zs1 + z(s+1)1 + · · ·+ zn1
...

z1w + · · ·+ zsw + z(s+1)w + · · ·+ znw
z(s+1)(w+1)

...
z(s+1)ks+1

...
zn(w+1)

...
znkn









































, (4.39)
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where the matrix Λ ∈ MatkC×
∑

n
l=1 kl

(TΣ) defined by the following block matrix























Iw×sw Idw Ow×k′
s+1

Idw Ow×k′
s+2

. . . Idw Ow×k′
n

Ok′
s+1×w Idk′

s+1

Ok′
s+2×w Idk′

s+2

. . .
. . .

. . .
. . .

Ok′
n×w Idk′

n























(4.40)
so that Iw×sw is the block matrix [Idw, . . . , Idw] ∈ Matw×sw(TΣ) and Oi×j ∈
Mati×j(TΣ) is the i × j zero matrix. Before we prove our next lemma, it
should be noted that we define the AndersonA[tΣ]-module ⊕n

l=1Gl of dimension
∑n

l=1 kl by

⊕n
l=1Gl(θ) :=











G1(θ)
G2(θ)

. . .

Gn(θ)











(4.41)

=



















G(θ)
C⊗w

a1
(θ) G′′

s+1

G′
s+1

. . .

C⊗w
a1

(θ) G′′
n

G′
n



















where G(θ) ∈ Matsw(TΣ)[τ ] defined as

G(θ) =







C⊗w
a1

(θ)
. . .

C⊗w
a1

(θ)






.

Moreover its exponential function exp⊕n
l=1Gl

: Mat(sw+
∑

n
l=s+1 kl)×1(TΣ) →

Mat(sw+
∑

n
l=s+1 kl)×1(TΣ) is given by

exp⊕n
l=1Gl

:







f1
...
fn






→







expG1
(f1)

...
expGn

(fn)







where fj ∈ Matkl×1(TΣ) for 1 ≤ j ≤ n. Using the matrices given in (4.38),
(4.40) and (4.41), we immediately prove the following lemma.

Lemma 4.42. We have

GC(θ)Λ = ΛG⊕n
l=1

Gl
(θ).
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In other words, Λ is an Anderson A[tΣ]-module homomorphism.

Our next lemma introduces the relation between the matrix Λ, the infinite
series expGC

and exp⊕n
l=1Gl

.

Lemma 4.43. We have the following equality over Mat∑n
l=1 kl×kC

(TΣ)[[τ ]]:

expGC
Λ = Λexp⊕n

l=1Gl
.

In particular, for any f ∈ Mat∑n
l=1 kl×1(TΣ), we have λ(exp⊕n

l=1Gl
(f)) =

expGC
(λ(f)).

Proof. Let us set GC(θ) = θ IdkC +N1 + E1τ for the nilpotent matrix N1

such that Nw
1 = 0 and E1 ∈ MatkC(TΣ). Similarly, let ⊕n

l=1Gl(θ) =
θ Id∑n

l=1 kl
+N2 + E2τ such that E2 ∈ Mat∑n

l=1 kl
(TΣ). By the definition of

⊕n
l=1Gl we know that Nw

2 = 0. Since Λ is invariant under the automorphism τ ,
by Lemma 4.42 we have that

(θ IdkC +N1 + E1τ)Λ = θ IdkC Λ +N1Λ + E1Λτ = Λθ Id∑ kl
+ΛN2 + ΛE2τ.

Since Λθ Id∑ kl
= θ IdkC Λ, comparing coefficients of τ0 and τ above, we see that

N1Λ = ΛN2 and E1Λ = ΛE2. Now let expGC
=

∑

i≥0 β1,iτ
i and exp⊕n

l=1Gl
=

∑

i≥0 β2,iτ
i. We claim that β1,iΛ = Λβ2,i for all i ≥ 0. We do induction on i.

For i = 0, the claim holds. Assume that it is true for i. By (3.7) we have that

βm,i+1 =

2w−2
∑

j=0

ad(Nm)j(Emβ
(1)
m,i)

[i+ 1]j+1
, m = 1, 2. (4.44)

Moreover by the induction argument, Lemma 3.4 and commuting of Ni and Ei

with Λ for i = 1, 2 and for any 0 ≤ j ≤ 2w − 2 we have

ad(N1)
j(E1β

(1)
1,i )Λ = Λad(N2)

j(E2β
(1)
2,i ).

Thus the claim follows from (4.44).

Proposition 4.45. The exponential function expGC
: MatkC×1(TΣ) →

MatkC×1(TΣ) is surjective. In other words, the Anderson A[tΣ]-module GC

is uniformizable.

Proof. Let G1, . . . , Gs, Gs+1, . . . , Gn be the Anderson A[tΣ]-modules that are
used to construct GC such that for 1 ≤ j ≤ s, Gj = C⊗w and Gj 6= C⊗w when
j ≥ s + 1. Let y = [y1, . . . , yw, ys+1,w+1, . . . , ys+1,ks+1 , . . . , yn,w+1, . . . , yn,kn

]⊺

be in MatkC×1(TΣ). Let Eij ∈ Matki×1(Fq) be the column matrix such that
j-th entry is 1 and the other entries are zero. We now define elements Yj ∈
Matkj×1(TΣ) for different cases. If n ≥ w ≥ s, then we set

Yj :=











yjEjj , if 1 ≤ j ≤ s

yjEjj +
∑kj

l=w+1 yjlEjl, if s < j ≤ w
∑kj

l=w+1 yjlEjl, if w < j ≤ n











.
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If n ≥ s ≥ w, we set

Yj :=







yjEjj , if 1 ≤ j ≤ w
Ojj , if w < j ≤ s
∑kj

l=w+1 yjlEjl, if s < j ≤ n







.

where Ojj is the kj × 1-zero matrix. Finally, if w ≥ n ≥ s, then we define

Yj :=











yjEjj , if 1 ≤ j ≤ s

yjEjj +
∑kj

l=w+1 yjlEjl, if s < j ≤ n− 1
∑w

l=n ylEjl +
∑kj

l=w+1 yjlEjl, if j = n











.

By Corollary 4.18 and Proposition 4.19, expGj
is surjective for all j. So

there exist elements Xj ∈ Matkj×1(TΣ) such that expGj
(Xj) = Yj . Now let

x := [X1, . . . , Xn]
⊺ ∈ Mat∑ kl×1(TΣ) and Y := [Y1, . . . , Yn]

⊺ ∈ Mat∑ kl×1(TΣ).
Thus by the definition of the map λ and Lemma 4.43 we see that

λ(exp⊕n
l=1Gl

(x)) = λ(Y ) = y = expGC
(λ(x))

which gives the surjectivity of expGC
.

4.5 Proof of Theorem 1.12

In this subsection we give the proof of our following result and introduce an
example.

Theorem 4.46. Let C be a composition array as in (1.4) of weight w. Let
also I1 be the set of indices i such that Ui 6= ∅ and I2 be the set of i’s such
that Ui = ∅. Then there exist a uniformizable Anderson A[tΣ]-module GC of
dimension kC defined over TΣ, a special point vC ∈ MatkC×1(K

perf(tΣ)) and an
element ZC ∈ MatkC×1(TΣ) such that

(i)
∏

i∈I1
ℓq

rsi−si
rsi−1 brsi (Ui)

∏

i∈I2
ΓsiζC(C) occurs as the w-th coordinate of ZC

where rsi ≥ 1 is an integer such that si ≤ qrsi for i ∈ I1.

(ii) expGC
(ZC) = vC .

Proof. We recall the construction of the Anderson A[tΣ]-module GC from §4.4
and elements al ∈ A coming from the tuples (al, Cl, ul) in Theorem 2.44. By
Proposition 4.45, we know that GC is uniformizable. We set Zl := logGl

(vC̃l,ũl
)

and vl := expGl
(Zl) = vC̃l,ũl

∈ Matkl×1(K
perf(tΣ)) where the last equality

comes from the functional equation (3.10) and the definition of Zl makes sense
by Theorem 4.37. We define

ZC := λ((∂G1(a1) · Z1, . . . , ∂Gn
(an) · Zn)

⊺) ∈ MatkC×1(TΣ)

and

vC := λ((G1(a1) · v1, . . . , Gn(an) · vn)
⊺) ∈ MatkC×1(K

perf(tΣ)).
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Note that by Theorem 4.37, the w-th coordinate of Zl is equal to

(−1)dep(C̃l)−1 Li∗˜̃Cl

( ˜̃ul) = (−1)dep(Cl)−1 Li∗Cl
(ul). We observe that by

the definition of Anderson A[tΣ]-modules Gl, for any a ∈ A[tΣ] and
f = (f1, . . . , fkl

)⊺ ∈ Matkl×1(TΣ), the w-th coordinate of ∂Gl
(a) · f is

equal to afw. Thus, using the definition of the map λ, we see that the w-th
coordinate of ZC is equal to

∑

l al(−1)dep(Cl)−1 Li∗Cl
(ul). But by Theorem 2.44,

we see that the sum is equal to
∏

i∈I1
ℓq

rsi−si
rsi−1 brsi (Ui)

∏

i∈I2
ΓsiζC(C) which

proves the first part.
To prove part (ii), we use the equality (3.6) and Lemma 4.43 to see that

expGC
(ZC) = expGC

(λ((∂G1(a1) · Z1, . . . , ∂Gn
(an) · Zn)

⊺))

= λ exp⊕n
l=1Gl

((∂G1(a1) · Z1, . . . , ∂Gn
(an) · Zn)

⊺))

= λ((G1(a1) · expG1
(Z1), . . . , Gn(an) · expGn

(Zn))
⊺)

= λ((G1(a1) · v1, . . . , Gn(an) · vn)
⊺)

= vC .

.

Remark 4.47. One can observe that we can capture Chang and Mishiba’s result
[CM20, Thm. 1.4.1] by defining the composition array C as in (1.6).

Example 4.48. Let Σ = {1, . . . , n} and let L
(

Σ
s

)

be the Pellarin L-series defined
as in (1.3). By Theorem 2.18, for any d ≥ 0, there exists a polynomial

QΣ,s(t) =
∑

l≥0

ult
l ∈ Kperf(tΣ)[t]

such that

∑

a∈A+,d

a(t1) . . . a(tn)

as
=

bd(Σ)

ℓq
r−s

r−1 ℓsdbr(Σ)
τd(QΣ,s(t))|t=θ

where r ≥ 1 is an integer satisfying qr ≥ s. Choose β = (t1− θ) . . . (tn− θ) and
set G := C⊗s

β . For any l, we define vl := (0, . . . , 0, ul) and Zl := logG(vl) which
is a well-defined element in Ts

Σ by Theorem 2.18 and Proposition 4.34. Finally
we set vC :=

∑

l≥0 G(θl) · vl ∈ Kperf(tΣ)
s and ZC :=

∑

l≥0 ∂G(θ
l) · Zl ∈ Ts

Σ.
Thus by the proof of Theorem 4.46, we see that

expG(ZC) = expG((∗, . . . , ∗, ℓ
qr−s
r−1 br(Σ)L(χt1 . . . χtn , s))

⊺) = vC .

For the case n = s = 1, using [Per14, Thm. 4.16], we immediately see that
QΣ,1(t) = t1 − t. Thus, vC = t1 − θ − t1 + θ = 0 and by [APTR16, Rem. 5.13,
Lem. 6.8, Lem. 7.1] (see also [Pel12, Thm. 1]) we have

ZC = (t1 − θ)L

(

Σ

s

)

= (t1 − θ) logG(1) = −
π̃

ω1
∈ TΣ(K∞).
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Remark 4.49. We continue with the notation of Example 4.48 and recall the
definition of TΣ(K∞) from §2.1. We set

UGC := {x ∈ MatkC×1(TΣ(K∞)) | expGC
(x) ∈ MatkC×1(A[tΣ])}.

Using the action of A[tΣ] to MatkC×1(TΣ(K∞)) by left multiplication, one can
see that UGC is an A[tΣ]-module. We call UGC the unit module (see [ATR17]
and [ANDTR18] for more details). By Example 4.48, we see that ZC ∈ UGC

when n = s = 1. The situation is more interesting when n is larger. Set n = q
and s = 1. By [Dem15, Ex. 3.3.7], we have

QΣ,1(t) = (t1 − t) . . . (tq − t)

(

1−
(t− θ)

(t1 − θ1/q) . . . (tq − θ1/q)

)

∈ Kperf(tΣ)[t].

A small calculation shows that vC ∈ A[tΣ] and therefore ZC ∈ UGC for n = q
and s = 1. In other words, although the elements vl in the proof of Theorem
4.46 constructing the special point vC for this case are not in A[tΣ], vC is itself
in A[tΣ]. It would be interesting to analyze under what conditions ZC lies in
UGC .

A The Proof of Theorem 4.17

Throughout this section we let G be the Anderson A[tΣ]-module of dimension k
defined as in (4.4). We should also mention that unlike the rest of the paper
we use the notation Gθ for the matrix G(θ) in (4.4) and Gθ(f) for G(θ) · f for
any f ∈ Matk×1(TΣ) in this section.

A.1 Operators

Let δ0, δ1 : Mat1×d(TΣ[σ]) → Matd×1(TΣ) be the maps given by

δ0

(

∑n
i=0 aiσ

i
)

= a⊺0 and δ1

(

∑n
i=0 aiσ

i
)

=
∑n

i=0 a
⊺(i)
i . Furthermore for any

f =
∑

aiτ
i ∈ Matk×d(TΣ[τ ]) we recall the definition of f∗ in §3.3 and define

the map f∗ : Mat1×d(TΣ[σ]) → Mat1×k(TΣ[σ]) by

f∗(g) = gf∗.

Then we state the following lemma whose proof can be given similar to the
proof of [GP19, Lem. 4.2.2] and [Jus10, Lem. 1.1.21- 1.1.22].

Lemma A.1. Let f =
∑n

j=0 fjτ
j ∈ Matk×d(TΣ)[τ ].

(a) Let us define ∂0f : Matd×1(TΣ) → Matk×1(TΣ) by ∂0f(g) = f0g. The
following diagram commutes with exact rows:

0 Mat1×d(Ts[σ]) Mat1×d(Ts[σ]) Matd×1(Ts[σ]) 0

0 Mat1×k(Ts[σ]) Mat1×k(Ts[σ]) Matk×1(Ts) 0

σ(·)

f∗

δ0

f∗ ∂0f

σ(·) δ0
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(b)

0 Mat1×d(Ts[σ]) Mat1×d(Ts[σ]) Matd×1(Ts) 0

0 Mat1×k(Ts[σ]) Mat1×k(Ts[σ]) Matk×1(Ts) 0

(σ−1)(·)

f∗

δ1

f∗ f

(σ−1)(·) δ1

In particular, we have Gθδ1 = δ1G
∗
θ.

A.2 Division Towers

We start with a definition.

Definition A.2. For any x ∈ Matk×1(TΣ), we call a sequence {fn}
∞
n=0 in

Matk×1(TΣ) a convergent θ-division tower above x if

• limn→∞‖fn‖∞ = 0.

• Gθ(fn+1) = fn for all n ≥ 0.

• Gθ(f0) = x.

We now give the following theorem whose proof uses similar ideas as in the
proof of [GP19, Thm. 4.3.2].

Theorem A.3 (cf. [GP19, Thm. 4.3.2]). Let x ∈ Matk×1(TΣ) Then there
exists a canonical bijection

F : {ζ ∈ Matk×1(TΣ)| expG(ζ) = x} → {convergent θ-division towers above x}

defined by F (ζ) = {expG(∂G(θ)
−(n+1)ζ)}∞n=0. Moreover, if {fn}∞n=0 is a

convergent θ-division tower above x, then with respect to ‖·‖∞, we have
limn→∞ ∂G(θ)

n+1fn = ζ.

Proof. Note that by the functional equation (3.6) we have

Gθ(expG(∂G(θ)
−(n+1)ζ)) = expG(∂G(θ)

−nζ)

and Gθ(expG(∂G(θ)
−1ζ)) = expG(ζ) = x. We also see by Lemma 3.9 that

for arbitrarily large n, we have ‖expG(∂G(θ)
−nζ)‖∞ = ‖∂G(θ)

−nζ‖∞. So the
sequence given as F (ζ) converges to 0 and is actually a θ-division sequence
above x. Thus the map F is well-defined. For the injectivitiy, let us assume that
expG(∂G(θ)

−(n+1)ζ1) = expG(∂G(θ)
−(n+1)ζ2) for some ζ1, ζ2 ∈ Matk×1(TΣ)

and any n ∈ Z≥0. Then we have expG(∂G(θ)
−(n+1)(ζ1 − ζ2)) = 0. But by

Lemma 3.9 we see that ∂G(θ)
−(n+1)(ζ1 − ζ2) should be equal to zero matrix

for sufficiently large n. Thus, one can deduce by the invertibility of ∂G(θ) that
ζ1 = ζ2.
We prove the surjectivity as follows. Let {fn}

∞
n=0 be a convergent θ-division

tower above x. By the convergence of the sequence, there exists N ∈ Z≥0 such
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that for any n ≥ N , fn is in the radius of convergence of logG. Now we set
ζ = ∂G(θ

n+1) logG(fn) for any n ≥ N . Then by (3.11) we have

∂G(θ
n+2) logG(fn+1) = ∂G(θ

n+1) logG(Gθ(fn+1)) = ∂G(θ
n+1) logG(fn).

Thus, our choice for ζ is independent of n. Therefore we have fn =
expG(∂G(θ

n+1)−1ζ). Then for any n < N , we obtain by using (3.7) that

fn = GθN−n(fN ) = GθN−n(expG(∂G(θ
N+1)−1ζ)) = expG(∂G(θ

n+1)−1ζ).

Thus we see that F (ζ) = {fn}∞n=0. For the last assertion, we
observe that for any n ≥ 0, ζ − ∂G(θ

n+1) expG(∂G(θ
n+1)−1ζ) =

∂G(θ)
n+1

∑

j>1 βj∂G(θ)
−qj (n+1)ζ(j) where expG =

∑

j≥0 βjτ
j . Notice that

for each j, ‖∂G(θ
n+1)βj∂G(θ)

−qj(n+1)ζ(j)‖∞ → 0 as n → ∞ because by

Proposition 3.5 we see that limj→∞‖βj‖∞Rqj = 0 for any R ∈ R>0. Thus
limn→∞‖ζ − ∂G(θ

n+1)fn‖∞ = 0.

Remark A.4. We recall the definition of the row matrixm from §4.1. By (4.13),
for any 1 ≤ j ≤ r, we have

(t− θ)dj

∏r
i=j α

(−1)
i

·mj = σmj +

j−1
∑

w=1

(−1)w
w
∏

n=1

u
(−1)
j−n σmj−w . (A.5)

We now consider the map δ0 ◦ ι : (Mat1×r(TΣ[t]), ‖·‖θ) → (Matk×1(TΣ), ‖·‖∞).
Let h = [h1, . . . , hr] ∈ Mat1×r(TΣ[t]) be such that hi =

∑∞
j=0 hij(t − θ)j and

hij = 0 for j ≫ 0. By the identification of TΣ[σ]-basis of H(G) as vectors eij
as in Remark 4.8 and (A.5) we see that

δ0 ◦ ι(h) = δ0(h1 ·m1 + · · ·+ hr ·mr)

= (h1(d1−1), . . . , h10, . . . , hr(dr−1), . . . , hr0).
(A.6)

Lemma A.7. Let h ∈ TΣ[t] be such that h =
∑l

j=0 hj(t− θ)j for some l ∈ Z≥0.
Then

‖h‖θ = sup{‖hi‖∞‖θ‖i∞ | i ∈ Z≥0}.

Proof. Assume that h =
∑l

j=0 hj(t−θ)j =
∑l

j=0 gjt
j for some gj ∈ TΣ. By the

assumption on gj and hj, we see that gj = hj−
(

j+1
j

)

hj+1θ
j+1−j+· · ·−

(

l
j

)

hlθ
l−j .

Thus we obtain

‖h‖θ = sup
j
{‖gj‖∞‖θ‖j∞}

≤ sup
j
( sup
j≤i≤l

{‖hi‖∞|θ|i−j
∞ |θ|j∞})

≤ sup
i
{‖hi‖∞‖θ‖i∞}.
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On the other hand, again by the assumption, we have that hj =
∑l

i=j

(

i
j

)

giθ
i−j .

Thus similarly we have

sup{‖hj‖∞‖θ‖j∞} ≤ sup
j
( sup
j≤i≤l

{‖gi‖∞‖θ‖i∞})

= sup
j
( sup
j≤i≤l

{‖gi‖∞|θ|i−j
∞ |θ|j∞})

= ‖h‖θ

which completes the proof.

Thus, using (A.6) and Lemma A.7, we obtain ‖δ0 ◦ ι(h)‖∞ ≤ ‖h‖θ. There-
fore the map δ0 ◦ ι is bounded. By the fact that Mat1×r(TΣ[t]) is ‖·‖θ-
dense in Mat1×r(TΣ{t/θ}), we extend the map δ0 ◦ ι to a map D :
(Mat1×r(TΣ{t/θ}), ‖·‖θ) → (Matk×1(TΣ), ‖·‖∞) of complete normed modules.

Theorem A.8 (cf. [GP19, Thm. 4.4.6]). Let (ι,Φ) be a t-frame for G.
Moreover let h ∈ Mat1×r(TΣ)[t] and assume that there exists a matrix g ∈
Mat1×r(TΣ{t/θ}) such that g(−1)Φ−g = h. If v = δ1(ι(h)) ∈ Matk×1(TΣ) and
ζ = D(g + h), then we have expG(ζ) = v.

Proof. The proof follows the ideas of the proof of Theorem 4.4.6 of [GP19].
We first let g =

∑∞
i=0 where gi ∈ Mat1×r(TΣ) and define g≤n =

∑

i≤n git
i and

g>n =
∑

i>n git
i for n ≥ 0. Furthermore we set

hn :=
h+ g≤n − g

(−1)
≤n Φ

tn+1
=

g
(−1)
>n Φ− g>n

tn+1
∈ Mat1×r(TΣ[[t]]). (A.9)

Observe that since g(−1)Φ − g = h, the second expression in (A.9) is a power
series in t and divisible by tn+1. But since degt(g≤n) ≤ n, hn should be a
polynomial in t and therefore hn ∈ Mat1×r(TΣ[t]). Moreover, degt(hn) ≤
max{degt(h) − n − 1, 0}. Thus the degree of hn in t does not depend on n
and therefore hn can be seen as an element of a free and finitely generated
TΣ-module M of Mat1×r(TΣ[t]). We now prove several claims.
Claim 1 : The sequence {δ1(ι(hn))}∞n=0 is a convergent θ-division tower above
δ1(ι(h)).

Proof of Claim 1: Using Lemma 4.14 and Lemma A.1, we see that

δ1(ι(hn))−Gθ(δ1(ι(hn+1))) = δ1(ι(hn))− δ1(G
∗
θ(ι(hn+1)))

= δ1(ι(hn))− δ1(ι(hn+1)G
∗
θ)

= δ1(ι(hn)− thn+1).

(A.10)

From the definition of hn and using Lemma 4.14 we obtain

δ1(ι(hn − thn+1)) = δ1ι

(

(gn+1

tn+1

)(−1)

−
gn+1

tn+1

)

= δ1

(

(σ − 1)ι
(gn+1

tn+1

)

)

= 0

(A.11)
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where the last equality follows from Lemma A.1(b). Thus (A.10) and (A.11)
imply that δ1(ι(hn)) = Gθ(δ1(ι(hn+1))) for n ≥ 0. Similar calculation as above
also shows that Gθ(ι(h0)) = v = δ1(ι(h)).
Recall the definition of the norm ‖·‖σ from §3.3 and the norm ‖·‖1 from §4.2
to observe that since ‖gn‖∞ → 0 as n → ∞, we obtain ‖g>n‖1 → 0 as n → ∞.
Moreover we have

‖hn‖1 ≤ max{‖g
(−1)
>n Φ‖1, ‖g>n‖1} = max{‖g>n‖

1/q
1 ‖Φ‖1, ‖g>n‖1}.

Thus ‖hn‖1 → 0 as n → ∞. By [GP19, Lem. 2.2.2], the norms ‖·‖1 and ‖ι(·)‖σ
are equivalent on M and therefore ‖ι(hn)‖σ → 0 when n → ∞. Since the t-
degree of hn is bounded indepedent of n, we can also see that the σ-degree of
ι(hn) is also bounded and say for arbitrarily large n, ι(hn) =

∑N
j=0 ajσ

j such
that ‖aj‖σ < 1. Thus we have

‖δ1(ι(hn))‖∞ = ‖
N
∑

j=0

a
⊺(j)
j ‖∞ ≤ sup{‖aj‖∞} = ‖ι(hn)‖σ. (A.12)

Thus (A.12) implies that ‖δ1(ι(hn))‖∞ → 0 as n → ∞ and therefore the
sequence {δ1(ι(hn))}∞n=0 is a convergent θ-division tower above v = δ1(ι(h)).

Claim 2 : We have limn→∞‖∂G(θn+1)‖∞‖hn‖θ = 0.

Proof of Claim 2: Let us set hn =
∑N0

i=0 cit
i where ci ∈ Mat1×r(TΣ) and by

the discussion in the beginning of the proof we know the existence of some
positive integer N0 which is independent of n. We have from the definition of
hn that

‖∂G(θ
n+1)‖∞‖hn‖θ = ‖∂G(θ)‖

n+1
∞ ‖

g
(−1)
>n Φ− g>n

tn+1
‖θ

= ‖∂G(θ)‖
n+1
∞ sup{‖θ‖i∞‖ci‖1}

= sup{‖θ‖n+1+i
∞ ‖ci‖1}

= ‖c0t
n+1 + · · ·+ cN0t

n+N0+1‖θ

= ‖g
(−1)
>n Φ− g>n‖θ.

(A.13)

But observe that g ∈ Mat1×r(TΣ{t/θ} so ‖g>n‖θ → 0 as n → ∞ which implies
the claim together with (A.13).

Claim 3: We have limn→∞ ∂G(θ
n+1)δ1(ι(hn)) = ζ.

Proof of Claim 3: Using the definition of hn, Lemma 4.14 and Lemma A.1,
observe that

lim
n→∞

δ0(ι(t
n+1hn + g

(−1)
≤n Φ)) = lim

n→∞
δ0(ι(hn)G

∗
θn+1)

= lim
n→∞

∂G(θ
n+1)δ0(ι(hn)).
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Thus using the definition of ζ, we see that ζ = limn→∞ ∂G(θ
n+1)δ0(ι(hn)).

Therefore we need to show that limn→∞ ∂G(θ
n+1)(δ1(ι(hn)) − δ0(ι(hn))) = 0.

Observe that

‖δ1(ι(hn))− δ0(ι(hn))‖∞ ≤ ‖
N
∑

j=1

a
⊺(j)
j ‖∞ ≤ sup{‖aj‖

qj

∞} ≤ ‖ι(hn)‖
q
σ. (A.14)

Thus (A.14) implies that the claim is equivalent to showing that
limn→∞ ∂G(θ

n+1)‖ι(hn)‖qσ = 0. Since for sufficiently large n, ‖ι(hn)‖σ ≤ 1,
we have to show that limn→∞ ∂G(θ

n+1)‖ι(hn)‖σ. By the equivalence of the
norms ‖·‖θ and ‖ι(·)‖σ on M , the claim follows from Claim 2.

Thus the proof of the theorem follows easily as by Claim 1, Claim 3 and The-
orem A.3 we see that expG(ζ) = δ1(ι(h)) = v.

Proof of Theorem 4.17. Let us choose an arbitrary element

h̃ = [h1(d1−1), . . . , h10, . . . , hr(dr−1), . . . , hr0]
⊺ ∈ Matk×1(TΣ)

and let h = [
∑d1−1

j=0 h1j(t− θ)j , . . . ,
∑dr−1

j=0 hrj(t− θ)j ] ∈ Mat1×r(TΣ[t]). Since
Mat1×r(TΣ[t]) is ‖·‖θ-dense in Mat1×r(TΣ{t/θ}), we can write hΨ = u + h so

that u ∈ Mat1×r(TΣ[t]) and ‖h‖θ < 1. We also have that ‖h(n)‖θ ≤ ‖h‖q
n

θ

holds for all n ≥ 0. Then the series H :=
∞
∑

n=1
h(n) converges to an element of

Mat1×r(TΣ{t/θ}) because ‖h‖θ < 1. Moreover,H(−1)−H = h. By Proposition
[GP19, Prop. 4.5.2], there exists U ∈ Mat1×r(TΣ[t]) such that U (−1) − U = u.
Set x := (U +H)Ψ−1. Then one can see that

x(−1)Φ− x = (u+ h)Ψ−1 = h.

Using Remark 4.8 and Remark A.4 one can observe that δ1(ι(h)) = h̃. There-
fore by Theorem A.8 we have that expG(D(x+ h)) = δ1(ι(h)) = h̃. So expG is
surjective.
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