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ABSTRACT. Pellarin introduced the deformation of multiple zeta val-
ues of Thakur as elements over Tate algebras. In this paper, we re-
late these values to a certain coordinate of the logarithm of a higher
dimensional Drinfeld module over the Tate algebra which we will in-
troduce. Moreover, we define multiple polylogarithms in our setting
and represent deformation of multiple zeta values as a linear combi-
nation of multiple polylogarithms. As an application of our results,
we also write Dirichlet-Goss multiple L-values as a linear combination
of twisted multiple polylogarithms at algebraic points.
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1 INTRODUCTION

1.1 BACKGROUND

Multiple zeta values were introduced by Euler as the infinite sum

1
C(Sl,...,ST)Z: E ﬁGR
ny'...ny
n1>ng>->n.>0
nl,...,nT6221
for positive integers si, ..., s, such that s; > 1. These values can be seen as

a generalization of special values ((n) of Riemann zeta function for a positive
integer n > 1. Their motivic interpretation is given by Terasoma [Ter(2] and
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Goncharov independently. Moreover for the tuple s = (sq,. .., s,), the multiple
polylogarithm Lig(z1, ..., 2,) is defined by

an o
. o 1 ---~r
Lis(21,...,2r) := g P € Q[z1,-- -, 2]l
ni>ng>o>n,>0 L T
N1, €L>1
and its specialization at z; = --- = 2z, = 1 gives the value of {(s1,..., ;).

We refer the reader to [Wal00] and [Zhal6] for interesting properties of those
objects.

In this paper, we are interested in the function field analogue of multiple zeta
values and their deformation in positive characteristic. Let ¢ be a power of a
prime p. We let Fy be the finite field with ¢ elements. We set A := F,[0] as the
polynomial ring in the variable 6 with coefficients from F,, and A4 as the set
of monic polynomials of A. We let K be the function field F,(#) and ord be the
valuation corresponding to the infinite place normalized so that ord(6) = —1.
Moreover, we define the norm |-|  corresponding to ord so that 0| = ¢. We
also let KP'f be the perfect closure of K and K be the algebraic closure of K.
The completion of K with respect to |-|  is denoted by K., and the completion
of an algebraic closure of K, is denoted by C.

We define the Carlitz-Goss zeta value (4(n) at a positive integer n by the

infinite series
1
CA(n) = Z a_" € K?;o’

a€Ay

which can be seen as a function field analogue of {(n). The arithmetic of these
special values were studied by Carlitz [Car35], Gekeler [Gek88|, Goss [Gos96]
and Thakur [Tha90]. Also their transcendental behavior over K was discovered
by Chang and Yu [CY07] and Yu [Yu91].

Let s = (s1,...,87) be a tuple in ZZ, for some positive integer r and set
w = >_s;. Then the multiple zeta value ((s) of weight w and depth 7 is
defined by Thakur in [Tha04, Sec. 5.10] as the infinite sum

Cals) = > % € Keo.

‘u’l‘oo>‘u’2‘oo> >‘u’7|30>_0

In 2009, Thakur [Tha09, Thm. 4] proved that (4(s) is non-zero. Furthermore,
Anderson and Thakur [AT09] give the realization of multiple zeta values as
periods of a certain t-motive (see [BP20, §4] for more details on t-motives).

In 2014, Chang [Chal4] defined the multiple polylogarithm Lig(z1, ..., 2,) by

. LT T
Lis(z1,...,2) i= > A e K], (1.1)

5 05"
i1>52>->0,>0 17T e
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DEFORMATION OF MULTIPLE ZETA VALUES 2357

where ¢; := ( —09)... (0 —09) for i > 0 and £y := 1. When 7 = 1, it becomes
the Carlitz n-th polylogarithm

i

tog(2) = > 7 € K[2]
1=0

=3

defined by Anderson and Thakur [AT90]. Moreover, Anderson and Thakur
[AT90] represents (a(n) as a K-linear combination of log, (67) where j <
ng/(g—1).
Unlike classical case, relating multiple zeta values to multiple polylogarithms is
not trivial in function field setting. Using t-motivic interpretation of multiple
zeta values in [AT09], Chang [Chal4] clarified this phenomenon for higher
depths stating that there exist tuples (a;, (u;1,...,uj)) € A x A" where j is
in a finite index set J, and I's € A, which all can be explicitly defined, such
that

FgcA(E) :Zaj Lis(ujla---;ujr)- (12)

jeJ

Later Chang and Mishiba [CM20, Thm. 1.4.1] related {4(s) to a certain co-
ordinate of the logarithm of a t-module (see [And86] for details on t-modules)
by proving that there exist a uniformizable t-module G5 of dimension ks de-
fined over K, a special point vs € G4(K) and an element Z; € G4(K ) such
that I'sCa(s) occurs as the w-th coordinate of Zs and expg, (Zs) = vs. Thus,
the logarithmic interpretation of multiple zeta values allow them to verify the
function field analogue of Furusho’s conjecture (see [Fur06] and [Fur07]).

1.2 TATE ALGEBRAS

Let U C Z> be any finite set and let Ty be the Tate algebra on the closed unit
polydisc over C with independent variables ¢; for i € U. Let ¥ C Z>; be a
finite union of finite sets U; C Z>1. The Frobenius automorphism 7 : Ty, = Ty,
is given by raising the coefficients of the given infinite series to their ¢g-th power
and fixing the independent variables ¢; (see §2.1 for details). Furthermore, for
any Fg-algebra R, set R[ty] := R[t; : i € U] and R(¢y) to be the fraction field
of the polynomial ring R[t;].

For a moment let us concentrate on Ty, where ¥ = {1,...,n}. In 2012, Pellarin
[Pel12] defined the following L-series

Co <§> =3 7“(“)?'5' altn) ¢ (1.3)
acAy

for some positive integer s as a deformation of Carlitz-Goss zeta value (4(s).
Similar notion of deformation has been also carried to multiple zeta values of
Thakur by Pellarin in [Pell6] and [Pell7] as follows: For any a € Ay and an
independent variable t, we set a(t) := ajg—¢- We now define the map oy : Ay —
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Fylts] by ov(a) :=1if U = 0 and oy (a) := [[,c; a(ti) € Fylts] otherwise. For

some r € Z>1, we call
Ui,...., U,
C< b > (1.4)

S1y...,8r

a composition array of weight w =: wght(C) and depth r := dep(C). Now we
define

Cl0) = > UUl(alzglU;éf o) cpy, 1)

la1|,o>laz] > >lar] >0

to be the multiple zeta value corresponding to C. Observe that when

C:(@""’@), (1.6)
S1y...45Spr

we see that (¢(C) = Ca(s). Using the non-vanishing of {4(s) and a specializa-
tion argument, Pellarin [Pell7, Prop. 3] proved that the multiple zeta values
Cc(C) are non-zero as elements of Ty.

For any i,j > 1, we define the element b;(t;) := [[._4(t; — 09°) € Alts] and
bo(tj) :== 1. We also let b;(U) := 1if U = 0 and b;(U) := [[ ;¢ bi(t;) otherwise.
For some tuple (u1,...,u,) € TE living in a certain subset of Ty (see §2.3 for

details), we define the multiple polylogarithm Lic(uq,...,u,) by the infinite
series

= Y bl b U ) )

- S1 Sr
e

Lic(’ul,... e Ts.

i1 >i2>>0,.20
Our first result (stated as Theorem 2.24 later) is as follows.

THEOREM 1.7. For any composition array C of depth r defined as in (1.4),
there exist tuples (aj, (uj1,...,uj)) € A x KPl(ts,)" where j is in a finite
index set J, and T'¢ € Alty|, which all can be explicitly defined, such that

FC§C(C) = Z Qj Lic(Uj1, R ujT).

jET

Note that Theorem 1.7 can be seen as a generalization of Chang’s identity (1.2)
and that identity follows from our result by choosing the composition array C
as in (1.6) (see §2.3 for details).

1.3 DIRICHLET-GOSS MULTIPLE L-VALUES

We denote the algebraic closure of Fy by Fq. Foranyl <i<r,let y; : A— Fq
be a Dirichlet character. Furthermore let (si,...,s,) be a tuple of positive
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DEFORMATION OF MULTIPLE ZETA VALUES 2359

integers. We define the Dirichlet-Goss multiple L-value L(x1, ..., Xr; S1, - -, Sr)
of weight w and depth r by the infinite series

Lt X810 87) = > o). xela) g ¢

ail...ay
...ay
lat | >laz] o >>lar] >0 1
a,...,ar€EAL

One of the advantages of studying (c(C) is to be able to deduce some properties
of Dirichlet-Goss multiple L-values. Consider the composition array C defined
as in (1.4) with pairwise disjoint sets U; such that ¥ = U!_,U;. For any
1 <i<randjé€U,letp;; € Ay be the minimal polynomial of & ; € F,.
Since (¢ (C) converges in Ty, evaluating (1.5) at t; = &;; produces the Dirichlet-
Goss multiple L-value L(x1, ..., Xr; $1,-- -, Sr) such that y; : A — Fq is the map
sending a € A to [[;.y, a(&i;) which is actually the Dirichlet character modulo
the ideal generated by HjeUi pi; in A.

For any j € Z>o, we set elements B,, ; € CX corresponding to the character
xi for all 1 <i <7 (see §2.4 for details). We define

Li(){l _____ Xr) (Zl,.. -;Zr)

= Z %zfﬁ .20 e Coollzy -y 2]
i1 >ip>>1, >0 ot

Let p be irreducible in A} of degree d and A, € CX be a p-torsion point. Let
K, := K()\y) be the p-th cyclotomic field extension of K and A, be its Galois
group (see [Ros02, Chap. 12] for the details of cyclotomic field extensions
over function fields). Consider the unique group isomorphism v, : A, — IFqu
induced by the Teichmiiller character corresponding to a fixed choice of a root
& of p and let g(vp) be the Gauss-Thakur sum (see §2.4 and [AP15] for the
details). We obtain the following corollary of Theorem 1.7.

COROLLARY 1.8. Fix a positive integer r. For any 1 < i < r and
Jis-eosdr € Z>q, let &1, ..., &y, be elements in Fq whose minimal polynomials
are pii, . .., Pij, respectively and define the Dirichlet character x; : A — Fq given
by xi(a) = a(&1)...a(&;j,). Then there exist elements b; € K and n;; € KPe™
for 1 <4 <r where j is in a finite index set J such that

H 9(Vpy) H 9(p ) L(X1,s - Xri 8155 Sp)

1<k<j 1<k<jr
= bjLi(m,...,xr)(ml,---ﬂh‘r)-
S1 Sy

jes St

For a special class of Dirichlet characters, we can deduce more about Dirichlet-
Goss multiple L-values and their transcendence. The next theorem will be
proved in §2.4.
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THEOREM 1.9. For a finite set U C Z>1 and a tuple € = (&| i€ U) € IF,‘JUl
where |U| is the cardinality of U, let xue : A — F, be the Dirichlet character

given by
xve(a) = [] a(&). (1.10)

€U

(i) Let Uy,..., U, be finite subsets of Z>1, (S1,...,8r) a tuple of posi-
tive integers and & = (&;| 1 € U;) € IFlIUj‘ for 1 < j < r. If
L(XUi 615+ XU 65515 -+, Sr) 18 non-zero, then it is transcendental over

K.

(i) Fiz positive integers m,ji1,...,Jm. For any 1 <i<m and 1 <k < j,,
let Uiy, be a finite subset of Z>1, &x = (Sinj] J € Uin) € FLU““ and
(si1,.-.,85) be a tuple of positive integers. Furthermore set w; =

7, s and assume that w; # wj if i # j for 1 < i,j < m. If
L(XUi1,€i1 -+ +» XU, 5,3 Sils - - - » Sij;)) 18 non-zero for each 1 < i < m, then
the set {L(XUs1 €1 s XU, €05,5 Sils - -+ Siji)| 1 <@ <m} s K -linearly
independent.

1.4 ANDERSON Alty,]-MODULES

Let Mat,(Tx)[r] be the twisted polynomial ring in 7 with coefficients in
Mat,,(Tyx) (see §2.1 for details). Inspired by [Dem14, §2], we call an Anderson
Alts]-module ¢ : Alts;] — Mat,,(Tx)[r] of dimension n defined over Ty, as an
F,[ts]-linear homomorphism given by

$(0) = Ao+ Ay7+ -+ AgT?

for some s and (0 Id,, —Ap)™ = 0. We should highlight the fact that Angles, Pel-
larin and Tavares Ribeiro [APTR16] and Angles and Tavares Ribeiro [ATR17]
have already studied n = 1 case, called Drinfeld Alty]-modules, due to their
relation with log-algebraic identities, Taelman’s class modules and Pellarin L-
series.

In this paper, we focus on a special class of Anderson A[ts,]-modules, given by

$(0) = 01d, +N + Et (1.11)

where N € Mat,, (F,) is a nilpotent matrix and E € Mat,(Tx). For such ¢,
similar to Anderson t-modules, we can assign an exponential function, which
is a vector valued function denoted by

expy : Mat, x1(Tx) — Mat,x1(Tx),
and we show that it has an infinite radius of convergence (see §3.1). We also

call ¢ uniformizable if exp, is a surjective function. Our next result (stated as
Theorem 4.46 later) is as follows.
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DEFORMATION OF MULTIPLE ZETA VALUES 2361

THEOREM 1.12. For any composition array C of weight w, there exist a uni-
formizable Anderson Alty]-module G¢ of dimension k¢ defined over Tx;, a spe-
cial point ve € KP*f(ts)ke and an element Z¢ € ']T;C, which all can be explicitly
defined, such that

(i) TcCe(C) occurs as the w-th coordinate of Zc.

(ii) expg.(Zc) = ve.

Remark 1.13. Let w; be the Anderson-Thakur element corresponding to ¢; —
and 7 be the Carlitz period (see §2.1 for details). Assume that ¥ = {1,...,n}
and s is a positive integer. Finally we set o := [];_, (t; —6). Using Anderson’s
ideas (see [GP19, §4.5] for Drinfeld modules over Tate algebras), we can show
that the generator of the kernel of expye. (see §3.2 for the definition of CF*)

g

is a vector whose last coordinate is given by PRI Together with the use
of Theorem 1.12, we are able to prove that if the point Z¢ is an Alty]-torsion
point for C%5, then L(x, ... Xt,,s) is Eulerian in the sense that

wy .. wnw € Fy(ts,0)

where F,(ty;, ) is the fraction field of the polynomial ring Fy[t5][f]. The op-
posite direction is expected to hold but due to lack of an analogue of Yu’s
transcendence theory [Yu91] in our setting, it is still an open problem. We can
also ask about the Eulerian criterion for (¢(C) in higher depth case similar to
the criterion given in [CPY19]. In this case, calculations show that not all the
generators of the kernel of expg, take 7 times the inverse of Anderson-Thakur
elements in their w-th coordinate and that causes difficulties even proving the
direction we show in depth 1 case. One should also understand the generalized
version [CGM20, Lem. 4.1.7] of Yu’s theorem [Yu91, Thm. 2.3] in this setting.
The author hopes to tackle this problem in the near future.

Remark 1.14. We remark that although Chang and Mishiba use dual ¢-motives
and their fiber coproducts to prove uniformizability of G in [CM20, Thm.
1.4.1], we use a different method as it is still not clear how we should define the
dual t-motives for Anderson A[ty]-modules. In our method, we first prove the
uniformizability of Anderson A[ts]-modules given of the form (4.4) by following
ideas modified from [GP19, §4], and we construct G¢ in (4.38) from those
modules. Then using the map A defined in (4.39), we prove that G¢ is also
uniformizable (Proposition 4.45).

1.5 OUTLINE OF THE PAPER

The outline of the paper can be given as follows: In §2 we cover some necessary
notation and background for the rest of the paper and recall recent develop-
ments on power sums. We prove Corollary 1.8 and continue to §2 by proving
Theorem 1.7. Basically our method is to modify Chang’s ideas in the proof
of [Chal4, Thm. 5.5.2]. The main difficulty in our case is to determine the
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radius of convergence of an infinite series defined in (2.31). This was overcome
in [Chal4] by using a property [ABP04, Prop. 3.1.1] of matrices satisfying
a certain functional equation. In our setting, we are able to prove the same
property (Theorem 2.40) after some analysis on the norm of a solution of a
functional equation (Lemma 2.37) and determining the solution in terms of
Anderson-Thakur elements (Proposition 2.38). We finish §2 by introducing
multiple star polylogarithms and expressing multiple polylogarithms in terms
of multiple star polylogarithms (Theorem 2.44).

In §3, we discuss Anderson A[ty]-modules and introduce some properties of a
special class of such modules defined as in (1.11). Furthermore, we define the
notion of uniformizability and give an example. Finally, we finish the section
by introducing Frobenius modules corresponding to Anderson A[ts]-modules.
In §4, we give the definition of Alty]-module G and make some analysis on the
coefficients of the logarithm function of G (see §3.1 for the details on logarithm
function) using Chang and Mishiba’s methods in [CM19] and [CM20]. We
introduce the Anderson A[ty]-module G¢ and show that G¢ is uniformizable
(Proposition 4.45). Moreover we give the proof of Theorem 1.12 and discuss
Example 4.48.

We conclude our paper with an Appendix to give the proof of Theorem 4.17
which relates rigid analytic triviality to uniformizability. We note that similar
result was proved by the author and Papanikolas in [GP19, Thm. 4.5.5] for
Anderson Afty]-modules of dimension 1 over Tate algebras using Anderson’s
ideas in his unpublished work. Here we modify those techniques for Anderson
Alty,]-module G of higher dimension.
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2  MULTIPLE POLYLOGARITHMS

2.1 PRELIMINARIES

Let U C Z>1 be a finite set. We denote the cardinality of U by |U]. Assume
that p = (p1,..., uju)) € Z|>UO‘ and set tf; := [],cy t5". Recall from §1 that
¥ C Z>o is a finite union of finite sets. We can write any element f € Ty
as f = ZuGZ‘fU‘ futh, where f, € Cy such that |fu|  — 0as >, .5 pi — oo.
Furthermore we let Tx; (Ko ) C Ty to be the set of elements f = ZueZ‘ZEU‘ futh €
Ts, such that f, € Ko. We define the Gauss norm ||-||o in Tx by setting
b
[ £lloe = sup{|ful | 1€ 25},
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and its corresponding valuation ord., given by

ords(f) = inf{ord(f,) | nez2y}.

Note that Ty is complete with respect to ||||oo. Moreover the Tate algebras
T; and Ty + in variables ¢ and ¢ and ¢; for ¢ € X respectively can be defined
similarly. For more details on Tate algebras, we refer the reader to [BGR84]
and [FVP04].

We cousider the Frobenius automorphism 7 : Ty, — Tyx, by 7(f) = Zuez‘fo‘ fits,

and we set f(™ := 7(f) for any integer n € Z. The extension of the homo-
morphism 7 to Ty + can be defined similarly.

For k,d € Z>1 and any matrix M = (M;;) € Matgxq(Ts), we define M™ by
applying the automorphism 7" to each entry of M. We set

[ M |0 = sup{][| Mij|oo }
]

and consider Matyxq(Tx)[[7]] the non commutative ring of power series
in 7 with coefficients in Matgxq(Ts) such that for any element M €
Matgywq(Ts)[[7]] we have

™M = M®r,

Finally, we set Matgxq(Tx)[r] C Matixq(Ts)[[7]] for the subring of polynomi-
als in 7 with coefficients in Matyxq(Tyx).

Now we start to define some special elements which will be in use throughout
the paper. For any j € ¥ and i € Z we define b;(t;) € KP°™(£,)* by

At — 07, ifi>1
bi(t;) =14 1, ifi=0
ot =0T YT i< 1
Note that one can also define b;(t) for any ¢ € Z similarly.
LEMMA 2.1. [Deml15, Lem. 3.5.2]

(i) For any integer i,d € Z, we have

_ bavilty) _ bilty) a0
©ba(t;)  balty) (ba(t;))-

_ { el ifi>0 }
T0i(tj)],—g L0, ifi<—1f

After fixing a (¢ — 1)-st root of —0, we define the function Q(¢) as the following
infinite product

T (bi(t;))

(i)

[e.°]

Q) = (—0)t ] (1 - 9%) € Tx.

=1
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One can observe that Q(¢) has infinite radius of convergence as a function of ¢
and satisfies
Q@) = (t - 0)Q(t). (2.2)

Moreover for any n € Z>1, we have

n) () _ Q(t)
Q) = (t—09)(t —09°)... (t—09") (23)

Note also that
Q) =71 (2.4)

where we define
%) N1
om0 (1-07) ey,
i=1

the Carlitz period. Let 8 be a unit in Ty. Then one can find an element
y € Cx such that |8 — ylleo < ||B]lec- Choose an element v € CX such that
~3~1 = 3. We now define the infinite product

y!
wp =7 : s
e

which converges in T by the choice of the element y (see [APTR16, Sec. 6] for
more details). The element ws € T is called the Anderson-Thakur element
corresponding to 3 and defines up to the multiplication by an element in Fy.
One also notes that

T(wp) = Buwp. (2.5)

—ord(8)

Furthermore, by [APTR16, §6.1], we have ||wg||cc = ¢ o1 and if B, B2 € TS,
then we obtain ws, 5, = cwp,ws, for some ¢ € Fy\. We set w; := wy,—p € Tg
where 7 € 3. For any integer n, it satisfies that

w™ = by (t;)ws. (2.6)

Now for any U C Z>1, let us set wy := [[;cywi- Recall from §1 that ¥ =
Ui—1U;. For any 1 < i <r, we define o; := [[y, (t; — 0). Thus we see that
ailloo = q!Vil. We also set ay := 1 and wy, := 1 if Uy = . Using (2.6) one
can obtain that

(=1) wu;

Wy, = Oéz(-il) : (27)

2.2 POWER SUMS

In most of this section, we summarize the work of Angles, Pellarin and Tavares
Riberio [APTR18, §6] and Demeslay [Dem15, §3.3.1] on power sums.
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We denote the set of degree d polynomials in A by Ay 4. Let z be an inde-
terminate over Co,. Following the notation in [APTRI18], for any N € Z and
s € Z>1, we define L(N, s, z) by

L(N,s,2) =Y 20 Y )%A}a(ts)el([tl,...,ts][[z]].

a
d>0 a€Ay g

Let us set exp, 1= }_,5 M irt € Kt1,...,ts,2][[7]], where Do := 1
and D; := (09 — 0)D!_,. By [APTRIS, Thm. 4.6, we know that
exp,(L(1,s,2)) € Alt1,...,ts][z]. Therefore for some m € Zso we can
let exp,(L(1,s,2)) = >, 0s:(t)z" so that og,;(t) € Alty,...,t5] for any
i€{0,...,m}.

PROPOSITION 2.8. [APTRI18, Prop. 5.6] We have deg,(exp,(L(1,s,z2))) <

s—1
q—1"

We further define logy , by

bi(t1) ... bi(ts) ; 4
10gN7Z:Z—( 1)@[ ( )ZT.
i>0 g

Let us fix N € Z, n € Z>; and set r € Z>; as a positive integer so that
N < ¢q". Moreover we set s := q¢" — N + n. Thus by Proposition 2.8 we see
that the z-degree of exp,(L(1,s,z)) only depends on integers N and n. For
any 0 <i<mand 0 <j < B:=(¢"— N)(r—1+m), we have the elements

Gij = Zz‘n+1+...+iS:j fin,+11---7is € A[tlﬂ s ’tn] where fin+11---7is € A[tla s atn]
so that

bT(t1> . 'br(tn)T(br—l(thrl)) .. .T(br,l(t ))7-7" (Us Z(t))
= D unadaid

7fn+11 s

By [APTR18, Thm. 6.2] we obtain

a(ty)...a(t, 1 i
Py s (§540.)

d>0 a€Ai g4 r—1 ]>0
(2.9)

If we analyze the coefficients of z¢ on both sides of (2.9) we get for any d > 0,

Z a(ty) ;I.A.[a(tn)

a€A+yd
min{m,d} B
1 ba—i(t ba—i(tn —i
= — Z d—i(t1) -- . d—i(tn) ggi gk (2.10)
b (8) b (tn) o, P
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Let KP°f(¢;,... t,) be the fraction field of the polynomial ring
KPerflty ... t,]. We now define the polynomial Q, n(t) € KP(ty,... t,)[t]
by

b_i(tl)...b_i(tn) . k
nN(t) = (g 5)t". 2.11
Qnn(1) ZZ TN (9ik) (2.11)
k=0 i=0
Remark 2.12. Tt is important to notice that it follows from the definition (2.11)
of @Qn, n(t) that the t-coefficients of @, n(t) lie also in the Tate algebra Ty, where

¥={1,...,n}.

Note that

A Td i(t1) ... 0—;(ln .
@Qun®) =33 (l;z(g.tb) _(tl;)N()t ) a “(gin)t". (2.13)
k=0 i=0 -

By Lemma 2.1(i), we have that 79(b_;(t1)...b_;(t,)) = % and

b))

7(ba()N) -
Thus by (2.13) we have
Td(Q N(t)) N ii ba— z bd z( n)Td z(g k)tk.
" bd(tl d( n) == bd HORY '
(2.14)
Using Lemma 2.1(ii) and (2.14) we see that
Td(Qn,N(t))H:O =
B min{m,d}
ba—i(t1)...bg—;(ty, i
S ( 1)@_, n) i, 06", (2.15)
Combining (2.10) with (2.15), we see that
a(ty)...a(t,) 1 ba(t1) ... ba(tn) 4
— T (Qn,N(t))\tZG'
N R R -
2.16

Observe that L(N, s, z) converges for z = 1. Thus we have by (2.16) that

ba(t1) .. .bd(tn)Td(QmN(f))“:g

N -0 (2.17)
Ed

as d — oco. Note that as d gets arbitrarily large, we have ||Q£ﬁ3\,(t)|t:9|\oo =
||Qn7N(t)HgZ + €4 where ¢4 € R is a constant depending on d such that
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limg 00 €4/ g® = 0. Thus, after calculating the norm of the terms in the left
hand side of (2.17), for some constant C' € R*, we obtain

qud(";fi‘?+logq<||Qn,,N<t>nx>+;%) S0

Ng—n

as d goes to infinity. This can only happen if [|Qn n(t)]|co < g 7T .
Now for any d, N € Z>¢ and U C Z>1, we denote the power sum Sq(U, N) by

Sa(U,N) = Y UZJ(VG) € Klty),

a€A+yd
and state the following theorem.

THEOREM 2.18. [Dem15, Thm. 8.3.6, Lem. 3.3.9] Let N € Z>¢ and r € Z>1
be such that N < q". Let U C Z>1 be a non-empty finite set. Then there exists
a unique polynomial Qu.n(t) € KP"/(t;,)[t] of the form

By mn R t; )
Qun(t) = Z Z %Tl(gN,i,kﬁk (2.19)
k=0 i=0 -t

for some By, myn € Z>o and gn i1 € Alty] such that

oy(a) ba(U)
Sa(U,N)= Y = —=
a€Ai g a’ Eévgg—ler(U)

(T(Qu.n (1)) j=s (2.20)

for all d > 0. In particular,

q"—N w
H#Sd(a N)= (wUQU,N(t)QN(t))\(tdiG'

Ng—|U|

Moreover, ||Qu,n(t)|lcoc < ¢~ =1

Proof. Due to above discussion, only remaining part is to prove uniqueness.
Suppose there exist two polynomials Qu,n (t) and Q; x(t) in KPeri(t)[t] sat-
isfying (2.20). Then we have (7*(Qu,n (t) — Q7 x(t)))ji=o = 0. Since ¢ — e " is
monic in KP™(£;,)[t], it divides Qu v () —Qp, n(t) for any non-negative integer
d in K" (t;;)[t]. But since Qu,n(t) and Qy; y(t) are polynomials, it is possible
only if Qu.n(t) = Q’U,N(t). O

For the completeness of this section, we also state Anderson and Thakur’s
result on power sums using our notation as follows.

THEOREM 2.21. [AT90, Eq. 8.7.5-8.7.4] Let N € Zx¢ be such that N = 3" n;q"
where 0 < n; < ¢ —1 and set Ty := [[D]*. Then there exists a unique
polynomial Qg n(t) € A[t] such that
1 1
Sa(0,N) = Z aN = = (T Qo.n (1)) 1=0

N
a€A+7d gd FN
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for all d > 0. In particular,

Lgsd@, N) = (2N ()Qon (1) }-

™

Moreover, ||Qp n(t)|oo < qlequ.

2.3 MULTIPLE ZETA VALUES OVER TATE ALGEBRAS

Throughout this section we assume that (s1,s2,...,s,;) € Z%, and ¥ = U;_, U;
unless otherwise stated.

DEFINITION 2.22. Let C be a composition array defined as in (1.4). We define
the multiple zeta values (¢ (C) over Tate algebras in the sense of the definition
of Pellarin [Pell6], [Pell7] as the following object which converges in Ty:

_ ou, (a1)ou, (a2) - - . ou, (ar)
CC (C) - Z a51a52 asr
lai| > >]ar| >0 172 e
ai,..., ar€AL

= Z Sil(UhSl)---SiT(Ur,Sr)-

11 >02>- >0 >0

We define n; := |U;| and consider the set D; C T%, given by

D i=A{(fi, fr) €T | |lfillo <q o3 fori=1,...,r}.
For an r-tuple (f1,..., fr) € D¢, we set
Z biy (U1) -+ bi, (Up) T (f1) - T (fr)

S1 Sy
e

LiC(fl, ey fr) =

11 >0 > >0, 20

Using the definition of elements b;(U) and ¢;, we note that Lic(f1,..., fr)
converges in Ty, if (f1,..., fr) € D.

Let us fix a composition array C of depth 7 as in (1.4) and let C; be the t-degree
of the polynomial Qu; s, (t) = > .5 uit? € KP(ty, )[t] for 1 < i < r. Then
consider the index set

3:={0,...,C1} x---x{0,...,C}.
For each i = (j1,...,j.) €7, we set
Ui = (Urjys ..o tUng,) € KP () x oo KPO(t ). (2.23)
Furthermore, we set a; := 71+ +ir,

THEOREM 2.24. Let J1 be the set of indices i such that U; # 0O and Jo be the
set of i such that U; = 0. Then we have
1
Co(C) = — > aiLic(u;) (2.25)
Hiejl fgsi_1 Zbrsi (Ui) Hiejz F&- i€J

where rs, > 1 is an integer such that s; < q"si for i € J;.
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In §2.5, we give a proof for Theorem 2.24. The main idea is to modify the idea
of the proof of [ABP04, Prop. 3.1.1] and combine it with the idea of the proof
of [Chal4, Thm. 5.5.2]. Before stating the proof, we discuss some applications
of our result.

2.4 APPLICATIONS OF THEOREM 2.24 TO DIRICHLET-GOSS MULTIPLE L-
VALUES

First we briefly discuss Gauss-Thakur sums. We recall the notation from §1.3
and for any j =0,...,d — 1 define the Gauss-Thakur sum

g0 ) == D" v (67N 3(Ap) € Fya[0][\p)-

seA,
By [Tha88, Thm. I|, we know that g(vy) is non-zero. Moreover, by [AP15,
Thm. 2.9], we have

g(vp) = p'(&) T w(&y) (2.26)

where p’ is the first derivative of p with respect to 6, w € T, is the Anderson-
Thakur element corresponding to ¢ — 6 defined by

o] -1
1 t
w = (=0)aT | | <1ﬁ> e T/,

=0

and w(§p) = wjy—¢,. For further details about Gauss-Thakur sums, we refer the
reader to [AP14], [AP15], [Gos96] and [Tha&8].

Proof of Corollary 1.8. Consider the composition array C as in (1.4) with pair-
wise disjoint subsets U; such that |U;| = j; for all 1 < ¢ < r. By the definition
of the polynomials Qu, s, (t), there exists m; € Z>( such that

Quisi(t) = ] bomi(tr) D cintt € KPi(ty,)[t]
keU; 1>0
where ¢;; = Zuezji Cuyity, € Kot | with Cpjil € Krerf and Cuig =0
>0 ¢ ‘

for I > 0 and all but finitely many tuple pu € ZQO. Up to permuta-

tion of elements & € Fq for 1 < i_g rand 1 < k < j;, assume that
the Dirichlet character x; : A — F, given by xi(a) = a(&1)...a(&;,)

is also given by xi(a) = [liey, a(tk)s,=¢,- For any [ € Zso, set
By, = erUiw,(cl)(fik)b_mi(tk)ﬁi:&k € CX. Finally for 1 < i < r,

set & = (&n,...,&; ) and for any tuple g = (p1,...,45) € Zgo, define
& = Ilick<j &"- Thus by using Lemma 2.1 and (2.6), for any tuple

DOCUMENTA MATHEMATICA 25 (2020) 2355-2411



2370 O. GEzMIg

(Uijy, .. Urj,.) € D as in (2.23), we have
LiC(Ulju cee 7uTjr) tr=E&ik
keU;
1
= X
[ico, weik) - [rer, wr(&rr)
q" q'r
M1 Hor BXl’il e er’ircﬂlalvll e CN‘T7T1lT
Z a6 Z N
ezl i1>ip > >0 >0 G
11yl >0
1
X

 Tlecw, we(&ar) - T, @k (Err)
Z gi“ glir Ll(Xlu 7X7‘) (cﬂlqull’ s ’c#mhlr>'

#iEZ]ZiO
l1,..,0»>0

Since the coefficients c,, ; ; = 0 for sufficiently large j and all but finitely many p
when 1 < ¢ < r, the sum in right hand side of the second equality above has
finitely many terms. Thus evaluating both sides of (2.25) at ¢t = &y for
1<i<r, keU; and using (2.26) finish the proof. O

Next we prove Theorem 1.9 by using Theorem 2.24 and the transcendence
theory developed in [Chal4].

Proof of Theorem 1.9. For some 1 < ¢ < m and j; < ¢, consider the
Dirichlet-Goss multiple L-value L(Xt1,¢:15- - > XUsj, 55,5 Sils - - - » Siji ). We con-
tinue with the notation of the proof of Corollary 1.8. For 1 < k < j;,
set Piri(tu,,) = ZMGZQQ Cu,(ik),lﬁgik € errf[zUi] so that Qu,,.s;, (t) =

[ocv,, b=mi (o) D150 Pyi(ty,, )t Since the field F, is invariant under the
automorphism 7, by using (2.5), we see that w, (&) is algebraic over K for
1 <k < j; and v € U;. Moreover, for any n € Z>q, we also see that

n

XUIk,n - H w gkv b—mlk(tv)fzj):&kv = ( H w’u(&ikv)b—mik(gikv))q

veUik veUik
(2.27)
where b_p,,, (§ikv) = b—m, (tv)|¢,=¢,,, - Furthermore one can also obtain that

n

q
t=ti) (2.28)
veU;k

szl(tUlk)( )—fk = (Pik,l(tUik)

veU;

Now for any tuple I = (I1,...,l;,) € 7 :={0,...,Ci1} x{0,...,Cj;,} where
Cin, is the degree of Qu,), s,, (t) as a polynomial of ¢ for 1 < h < jj;, set p to be
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an element of K given by

( H wv(éilv)bfmil(gilv)Pil,ll (tUil)

ty=&i1vs "
veUj vEUi
H Wy (gijiv)b*miji (&jw)Piji,lji (tUiji) thEijiv)'
veUij, velii;
. . Un ... U,
Consider the composition array C; = (SZ SW . Then, for any
il . ijs

(Uitly, - - -, uijy1;,) € De, corresponding to the tuple [ as in (2.23), using (2.27)
and (2.28), we immediately see that

1
Lic, (w11, s - - - Uij,1, = Li,,
C-L( illy s ) ’lel“) tzg&’;” HUGUM wv(&ilv) . HUGUI_” Wy(gij“;) 54 (Ml)
(2.29)
where §; = (si1,...,8;;,) and Lis, is the Carlitz multiple polylogarithm
defined as in (1.1). Thus we obtain that the Dirichlet-Goss L-value
L(XU11 6115+ - XUs1 &1y, 3 Sils - - -, Sij;) can be written as a K-linear combination

of multiple polylogarithms Lig at algebraic points by Theorem 2.24. Finally
the result now follows from [Chal4, Thm. 3.4.5] and [Chal4, Prop. 5.4.1]. O

Remark 2.30. In [CM20, Thm. 5.2.5], Chang and Mishiba introduced the
multiple zeta value (4(s) as a K-linear combination of multiple star polylog-
arithms at some algebraic points vy, ..., vy, for some m € Z>;. Furthermore,
they showed that those points are related to dual t-motives of certain An-
derson t-modules via the isomorphism between Ext'-modules and Anderson
t-modules (see [CPY19, Thm. 5.2.3] and [CM19, Rem. 3.3.5]). In our case,
when the Dirichlet characters are of the form as in Theorem 1.9, one can write
a Dirichlet-Goss multiple L-value as a K-linear combination of multiple star
polylogartihms at some algebraic points o1, ..., o), for some m’ € Z>; by using
Theorem 2.44 which will be proved in §2.6 and form a similar relation between
those points and dual t-motives. However, since the elements of F,, \ F, are not
invariant under the automorphism 7, we do not know the corresponding Ander-
son t-modules to these points when arbitrary Dricihlet characters are used to
construct Dirichlet-Goss multiple L-values. This is due to the fact that these
points can be only expressed after specializing variables by using our meth-
ods. It would be interesting to construct these ¢-modules directly to make the
relation between dual t-motives and the points o1, ..., ¥,, more transparent.
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2.5 PROOF OF THEOREM 2.24

For any 1 <[ < j <r+4 1, we define the following objects:

Lj,l(t> =
Z (WUZQSL (t)QUz,Sz (t>>(”) s (ijleSjil (t)QUj—lysj—l (t>>(ij71)

B> >0512>0

j—1
= ot () [ [ wo.

> Qi (1) QUL (00 (U) -1y, (Us-1)
om0 (E=09) L (E =07 ) ((E = 07) .. (t = 09777 )55
(2.31)
Moreover we set L;,;(t) := 1 if j = [. Observe that for some €;,...,¢;_1 € R,

we have by Theorem 2.18 and Theorem 2.21 that

QY (1) - QE =Y (D) lsollbiy (U) - bs,_, (Uj—1)loo
1((t = 09) ... (¢ = G0yt .. ((t—09) ... (¢ — 097" ))551] oo

i ((spa—1Uy] i (—J—M’ Uj—al )
i - j—1 —€ji—1
gql(qi 71*61)._. q’ a1 ’

qqil\it\;\UH ...qqij—l\quill\*\Ujfl\q (slq(ql 1)+ s 1q(q] 11 1))

ip (s1a=1Ul | 1Ul _ spa i (si—19=1Uj—al  Uj—1l sj—1a
= qq L( =1 Tg1 g1« . 0? ! q—1 +== -1 S-1) %
U= —1Uj—1l4+aq(s;+-+s;_1)
q a1
i i Ul == |Uj_1l+a(sp+-+s;_1)
—q'le —q'i—le;_ J— Jj—=
=q qter ..q q Jj—1 q—1 — 0

whenever 0 < ij_1 < --- < i — co. Thus we conclude that L;;(t) € Tx ;.

ProrosITION 2.32. For any 1 <l < j <r+41, we have

LEJ”( )= L;.(t) + QUJ sy )%QSH(t)ij,le_l,l(t). (2.33)

aj—l
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Proof. Observe that

j—1
Lja(t) = @1 (1) [T wv,
i=l

oy QUi (1) QUL (0B (V) b1, (U 1)
((t—09) ... (t—09))5t .. ((t—09)...(t—097 )5

i > >0 1>1
+ QUj—l,Sj,I (t)X
S QU (1) - QU2 (b (U) by, (Uj—2)
((t—09) ... (t—00 )y .. ((t—09)...(t—09772))si-2

Q> >0 22>1

Therefore using (2.2) and (2.7) together with the above equation, we see that
the equality in (2.33) holds. O

We recall the polynomials Qu, s, (t) € KP*{(¢; )[t] from Theorem 2.18 and
Theorem 2.21, and consider the matrix ®; € Mat,12_;(Tx[t]) defined by

(t_9)51+“‘+5r

oD 0 - 0
QL1 (1) (=) 1+ e
oD
=l "1
- 0 A NCEY
0
=1 (1 (r_pysr
0 O QUT,S;((?E;E 9) 1

and the matrix ¥; defined by

Qsittse (t) H;’A:l Wy,
Lagny ()@t ter () [T, wo,
\Ifl = € Mat(r+2,l)X1(Tg7t). (235)

Using (2.2), (2.7) and Proposition 2.32 one can prove the following lemma.

LEMMA 2.36. We have
v = o,

In order to prove that the function L;;(t) has infinite radius of convergence,
we need to state a technical lemma.
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LEMMA 2.37. Let {s1,...,8,} € Zgo. Let G,Q € Ty be such that |Glleo <

a(si+ - +s;) = (U [++|U; ) gsi—1—1U;—1l
q a1 and ||Qleo < ¢~ a1 for some 2 <i<j<k. Let
5 (e - a1 .
also H € TS such that ||H|leo = ¢g\** ! i a . Then there exists

an element F € Ty, such that
H(F(*l) _ Q(fl)G(fl)) - F

a(sj—1+ - +s)— U114+ +IU; )
Moreover, |F|loo < g 1

Proof. We define the potential solution F' as the following infinite sum

F:=QG+ Q(l)G(l)(H—l)(l) + Z Q(T)G(r)(H—l)(r)(H—l)(r—l) . (H—l)(l)_
r=2
One can see that F' satisfies the desired equality in the lemma. We need to
show that F' is a well-defined element in Tyx. By the assumptions on elements
G, H and Q, for some ¢ > 0 and r — co, we have the following estimate.
HQ(T)g(r)(H—l)(T) . (H—l)(l)”m

< g (asia Ui =etalsite o) = (Uil+-+1U1D) o

g =T (Calsimib sy HUima [+ U )

= g g (Calsimate s Ui U )

— 0.

Thus we can conclude that as r — oo, the norm of the general term of
the sum approaches to 0. Therefore the sum is well defined and since Ty
is a complete normed space, F' is in Ty. On the other hand, by the as-
sumptions and the properties of the non-archimedean norm ||-||c, we have
1P lloo < max{| HQEDGD |, [|FCVH]|| o}

Case 1: ||F|loo = |HQ VG| oo

By the assumption, we have the following estimate.

gsii1—1Ui_1l  a(sitrts))=(Ul++1U; D)
||F||oo < q(si—l"l‘""’l‘sj_(lUi—l|+“‘+‘Uj‘)/Q)q 1=y q ey L

(a=1) (5514 +s;)
_ e (Uil U D fa

qq(qilfl) (q(si—l+Si+~‘+sj)—(\Ui—1|+“‘+|Uj|))

a(si—1t--+s5)  AUi—1l+-+IU;D (
q

— q q—1

Case 2: ||Flloo = |[HF Y| .
We note that |[F(=1 ||, = ||F|\<1>éq Thus, in this case we have that

a(si—1+ - +s)—(U;_1 1+ +IU; D)
1

:q q—

1+:15)

R
[Flloo = [1Hll&"
_ q#((si—l“r“"‘rsj)*(‘Uiil‘ZHMHUjD)
a(sj—1+-+s;)—(U;—q11+---+IU;1)
= q q—1
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By the analysis of these two cases, we deduce the last statement of the lemma.
O

Now recall the matrix ®; from (2.34) and let us define elements b; €
Mat,o—;(Tyx) such that &; = Y7 b;t! for some m € Z>o.

PROPOSITION 2.38. There exists a matric U € GLy12-(Tx) such that
UDpy =U.

Proof. Without loss of generality let us take [ = 1. To avoid heavy notation let
Qu,.s; € Tx be the constant term of the polynomial Qu;, s, (t) for any 1 <4 <r.
Let {s1,...,s:} € ZL,. Observe that

r (—g)s1t s .

e 0 0 0
i=1
QU (Coyt e (=)s2tteor
oD oD 0 0
=1 'L (1) i=2 'L -
. Q1. (o)t ter
by = LD
0)°r
= = )1) 0
Q( 1) 9)°r
0 0 Fres Oy
L ozT -

Let the matrix U = (a;;) be defined as a potential solution of the equation in
the proposition. Therefore the i-th row R; of the matrix U(~Vb, appears as

. (_9)s1+"'+sr ( 1) ( "
R; = W( +QU1 s1%4,2 )a W
(=0)* 1 1 1
g eeey (71) ( 17‘)+QU Sr 17‘"1‘)1)’0/1(7“-{-)1 (239)

Ay

—Q)s2ttse
(—0) @G +Q5 Y aGY)

Now our aim is to pick elements a;; € Ty in a way that the desired equality
would be satisfied. First for 1 <i <r, we set a; ; = 0 when j > 4. In order to
see how we can pick the other elements let us analyze the k-th row of U where
1 <k <r. By the above setting, we know ay, +1=0. Then by (2.39), in order
to give the desired equality we want to have

(_9)8k+"'+sr
M, o™
7( g)q(sk+ +sr)

Set By S | Since B € T, by (2.7) we can pick aj = wg, € Ts.

(st tsr)—(Ug |+ +|Ur])
q—1

(=1
A~ = Ak k-

Note also that ||wg,|lcc = ¢
Now we need to find ax x—1 such that

(_9)8k71+“‘+ST
H;:kfl a’gil)
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51— |1Uk_1] L.
Since |Quy_ 1,50 1lloc < ¢ a1 , we have that the element ay x—1 is in
a(sgpmy e ter) = (Ugy [++1UrD)

Ts and ||agk—1llco < ¢ a1 by Lemma 2.37. The other
elements of the k-th row of U can be found by using the same idea together
with Lemma 2.37. Thus, we determine the k-th row of U recursively when
1 < k < r and conclude that all elements in the k-th row is in Tsy:.

To determine the last row, we let s,.1 = 0 and U,y1; = (). Then if we apply the
(—0)%5r+1

=D
Qg
pick ap4+1.,+1 = 1. We can now pick the other elements of the last row from
Ty, by again using Lemma 2.37.
According to our selection for the elements a; ; we now see that

same idea above we see that we let 8,11 = = 1 and therefore we can

Wey
a2,1 Wi
U =
W,
Qr41,1 ce “ee Qr41,r 1

Since U is a lower triangular matrix, one can obtain det(U) = [[;_, wg, € Ts.
Thus, we conclude that U € GL,41(Tx). O

THEOREM 2.40. The function Wi(t) := U, has infinite radius of convergence.
In particular the function Lj;(t) is well defined for any values of t € Tsx.

Proof. We modify the ideas of the proof of Proposition 3.1.3 of [ABP04].
Recall that ®&; = Z;io b;it'. By Proposition 2.38 there exists a matrix
U € GLy42-(Ts) such that UYpU~! = Id,42-;. Now set V) := UY,
and @) := UCY,U! and let &) = 37" bit' so that b = Id, 12— and
U =250 git'. By Lemma 2.36, one can see that \112(71) = ®}U;. Therefore
for all n > 1, we have that

min{n,m}

g =g =D bigh

i=1

Since ¥ € Mat(T_‘_Q_l)Xl(Tg,t) and U € GL(T+2_Z)(T2>, hmn%oo”g;lHoo = 0.

Let us set - m
gn= > (D ban)".

v=1 i=1
Note that g, also converges for all sufficiently large n and we have that
limy, 00 ||gn|lcc = 0. We also have that

m
G =N Vg i G =g = gl + Gn
1=1
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Thus (G, — ¢.,)Y = G, — ¢/, for n > 0. When n > 0, we see that g, — ¢/, is
invariant under twisting, thus by [GP19, Lem. 2.5.1], we have that ¢,, — g, €
F,lts]. But for sufficiently large n the norm of g, — g, is arbitrarily small.
Therefore we conclude that ¢, — g/, = 0. Therefore for n > 0 and a fixed real
number C' > 1 we have that

C"lg) e < w112 g 5
< (max O [0} 4) (miax] g7, il o)~ miax C" g7, oo
< tax Clgflloe
i=n—m
where the last inequality comes from the fact that
m ; m —
(max C[[b|2,) (max|| g, i[|0) ™" < 1

when n is sufficiently large. Therefore supS? , C™||g}]lcc < 00 and it implies
that all entries of ¥ = U¥; has infinite radius of convergence. Multiplying
the column matrix ¥} containing functions with infinite radius of convergence
with U~! from the left then implies that functions in the entries of ¥; have
also infinite radius of convergence. O

Proof of Theorem 2.24. The proof uses the ideas from the proof of Theorem
5.5.2 of [Chald]. Let C be the composition array as in (1.4) so that J; is the
set of indices i such that U; # () and Jy is the set of i’s such that U; = 0.
We denote Ly41(t) := Ly41,1(t). By Theorem 2.40 we have that the function
L,14(t) has infinite radius of convergence. Recall that

Lyya(t) = Q7o (t) Hin X

> QU (1) ...Q5, )by, (U1).. b, (U,)
R PR ((t—09)...(t —oq”)) o ((t=09). (¢ —9!1“))5#

Since L,41(t) is well-defined at ¢ = 6, by Theorem 2.18, Theorem 2.21 and the
equalities (2.3), (2.4) and (2.6), we obtain

Lyy1(0) = > @2 Quy ) M0) . (wr, 2 Qu, s,) ) (0)
11 >09> - >1, >0
H::l wu; Hzejl Eg:l—_lﬁb (Ul) HiEJQ Fsi
X
81t tse

Z Sil(Ulasl)---Sir(Ur,Sr)

i1 >03> >0 >0

szl wu; Hl 1 EZS :715117 (Uz) Hl Jo Ls,
_ € € e (C).

81t sy

(2.41)
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Observe that

LT+1(t)
szl inQs1 +otsp (t)
(i1) (ir) . .
S Quyysy (1) -+ Qus, W)biy (V1) - - by, (Ur) (2.42)

((t—69)... (¢ =69 )5 ... ((t—09)...(t—097))>r

i1 >19>->1, >0

Applying t = 6 to both sides of (2.42) and combining it with (2.41) by using
(2.4), we get that

¢o©) TT €2 3 br, (U:) T] T = >~ as Lic(w:)

1€7, i€J2 €T
sja—|Uj|
where the right hand side is justified by the fact that ||Qu; s; (t)[lc < ¢ e
for any j € {1,...,r} and therefore Lic(u) converges for any u € S. O

2.6 MULTIPLE STAR POLYLOGARITHMS

Let C be a composition array as in (1.4) such that » > 1. Recall that n; = |Uj]|
for 1 <1 < r. We define the subset D C T%, by

{(f=f o F)E€TE | Mfillo <g o7 |fillo <q ot fori=2,....r}
Inspired by the work of Chang and Mishiba in [CM20, Sec. 2.2], for u =
(u1,...,ur) € Dg, we define the multiple star polylogarithm Lij(u) corre-

sponding to the composition array C by the infinite series

. biy (Ur) .. b, (U7 (ug) .. T ()
Lig(w) = > = N =
i1 >ip > >0 >0 L
Observe that Lig(u) converges in Ty, if u € D .
Let C; = ([SJZ) be a composition array for all 1 < i < r. We define the addition
‘+’ between composition array C; and C; by

U, UU;
C; Jer = ( J>
Si + 85
and the operation ‘,” by
U;,U;
(Civcj) = ( ) J>
54, S;

Observe that (Cy,...,C,) =C.
Now similar to [CM20, Sec. 5.2], we define the set S whose elements are symbols
¢ and ‘+’ and the set S* containing symbols ‘,” and ‘x’. We define the map

f . Sr—l — er—l
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in a way that f fixes the symbol ‘,” and sending ‘4’ to ‘x’. As an example, if

v = (v1,v2) € S? so that v; = *,” and vy = ‘+’ then f(v) = v’ = (v}, v}) where
vp =4 and vh = ‘X’
We continue with further definition. For any v = (vy,...,v,_1) € S"~! and any

composition array C = (Cy, .. .,C,), we define v(C) = (C1v1C2v3 . . . v,—1C;.). For
any u = (ug,...,u,) € TS, we set v™(u) := (uy f(vi)uaf(ve) ... urf(vy)). We
also set y(v) to be the number of ‘+’ in v. As an example, let v = (v1, v2, v3)
be such that v; =, vo =+’ and v3 = ;. Let

C = U13U25U33U4
B 51,852,583, 54

and C; = (1) for i =1,2,3,4. Then

’U(C)* UlvUQUU3;U4
~\s1,52 + 83,81

and v* (u) = (uy, ugus, ug). Note also that y(v) = 1.

Observe that by the properties of non-archimedean geometry if v € D (D}
resp.) then v*(u) is also in D, (D{ resp.) for any v = (vq,...,v,—1) € S"7!
Finally for 7 = 1 we define S~ = S° and for any v € S° we have v(C) := C,
v*(u) :=u and y(v) := 0.

Now using the inclusion-exclusion principle on the set {i; > i3 > ...i, > 0} as
in [CM20, Prop. 5.2.3] we have that

Lic(u) = Y (1) Lijie)(v* (). (2.43)
veSr—1

THEOREM 2.44 (cf. [CM20, Thm. 5.2.5]). Let C be a composition array of
depth r as in (1.4). Let J1 be the set of indices i such that U; # 0 and Jo
be the set of i such that U; = (). Then there exist composition arrays C; with
wght(C) = wght(C;) and dep(C;) < r, elements a; € A and u; € KP/(ty)PC)
such that

I1rs 114 f:slb (U:)¢e(C) = ar(—1)*PECI Lig ()

i€J2 i€d1 !
where rs; > 1 is an integer such that s; < q"i for i € J;.
Proof. Using Theorem 2.24 and (2.43) we observe that

| R § R A el (o)

1€J2 1€EJ1

= a;Lic(u;)

€T

=Y ai Y ()L ) (V¥ (w)

i€J vesSr—1

=Y > U T la(=n) VO L o) (VX (i)

i€J Vesr—1
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where the last line follows from the fact that v(V') 4+ dep(V(C)) = r for V €
S7=1. Thus we can define the tuple (a;,C;, u;) by

(ar,Cryup) = ((=1)"a;, V(C), VX(C))

forieJand Ve S71. O

3 HIGHER DIMENSIONAL DRINFELD MODULES OVER TATE ALGEBRAS

3.1 ANDERSON A[ty,]-MODULES

The idea of Drinfeld modules over Tate algebras was first introduced by Angles,
Pellarin and Tavares Ribeiro [APTR16]. In this section, we introduce the
concept of Anderson A[ty]-modules which can be seen as higher dimensional
Drinfeld modules over Tate algebras.

DEFINITION 3.1. An Anderson Alty]-module ¢ : Alty,] — Mat, (Tx)[7] of di-
mension n defined over Ty, is an F, [ty ]-linear homomorphism such that

$(0) = Ao+ Ay7+ -+ AgT?

for some s and (01d,, —Ap)"™ = 0.
Any Anderson Alty]-module ¢ defines an A[ty]-module action on Mat,,«1(Tyx)
given by

o0) - f=Aof+ Ar(f)+ - -+ As7°(f), [ € Mat,«1(Tyx).

We also define the Fg[ty;]-linear homomorphism Jy : Alty,] — Mat,(Tx) by
04(0) = Ap and its action on Mat,x1(Tx) by 04(0) - f = Aof for any f €
Matnxl('ﬂ‘g).

Remark 3.2. We note that any t-module in the sense of Anderson [And86] can
be also seen as an Anderson A[ts,]-module over Co, C Ty.

Let ¢1 and ¢2 be Anderson Alty]-modules of dimension n; and ny respec-
tively. An Anderson Alty]-module homomorphism ¢ : ¢1 — ¢2 is defined as
an element ¢ € Maty,, xn, (Tx)[7] such that

$2(0)p = g1 (0).

We now discuss the exponential and logarithm function of some class of Ander-
son Alty]-modules. It is important to point out that one can define an expo-
nential and logarithm function corresponding to any Anderson Al[ty]-module
using methods of Anderson [And86] but concerning the purpose of the present
paper, we only analyze special cases.

Let ¢ be an Anderson Afty]-module defined by

$(0) = 01d, +N + Et (3.3)

for some N € Mat,, (F,) such that N* = 0 and E € Mat, (Tyx).
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For any square matrices X; and Xo, we first define [X;,Xo] = X3X5 —
XpX;. Then we set ad(X:1)%(Xz) := Xp and for j > 1, ad(X1)/(Xz) :=
(X1, ad(X1)7 (Xa)).

LEMMA 3.4. [Pap, Lem. 3.2.9] Let Y, N € Mat,,(Tx). Then we have

ad(N)/(Y) = i (-)™ (731) N™YNI=™,

m=0

Moreover, if N is a nilpotent matriz so that N™ = 0, then ad(N)?(Y) = 0 for
j>2n—2.

Proof. Using the definition of ad(N)’(Y') and an induction argument imply the
above formula. Now assume that N is a nilpotent matrix such that N™ = 0.
Thus for j > 2n —2 and 0 < m < j, we have N™Y NI—™ ig () as either m > n
or j —m > n and therefore we have either N™ = 0 or N7~ = (. o

PROPOSITION 3.5. Let

expy =Y By’ € Mat, (Tx)|[[7]]
>0

be the infinite series such that 5y = 1d,, and
expy, 0y (0) = ¢(0) exp,, (3.6)

holds in Mat, (Tx)[[r]]. Then we have

2n—2 j (1)
ad(N) (EB; )
Biv1 = Z hrpn (3.7)
j=0
Moreover ||Bi]|so < 10|23 | E|lE, fori > 0.

Proof. By comparing the coefficients of 7 in (3.6) we see that

Bir1 (09" 1d, +N) = 01d,, Biy1 + NBip1 + ESY (3.8)

After some arrangement we see that (3.8) can be rewritten as

[N, Bit1] n Eﬂi(l)

ﬂiJrl = qu+1 iy eqi+1 — 9

Thus a similar calculation as in [AT90, Eq. 2.2.3] implies that the formula for
Bi+1 in (3.7) holds. Now we claim that ||3;]|o < [10]|27 || E||%, for i > 0. We
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do induction on i. If i = 0, then By = Id,, and the claim holds. Assume it also
holds for ¢. Then by the induction hypothesis and (3.7) we have

(1)
1Bisrlleo < | _max TS

it . i+l
=[0I IEIZ 0l

= 00 B
as desired. 0

We call the infinite series expy = 3 ;7" € Mat,(Tx)[[7]] in Proposition 3.5
the exponential series of ¢. The exponential series exp,, induces an I [ty]-linear
homomorphism exp, : Mat,, «1(Ts) — Mat, «1(Tyx) defined by

expy(f) = _ BT (f), f € Maty(Tx).

i>0

Moreover by Proposition 3.5 we see that the function exp, converges every-
where on Mat,, x1(Tyx).

Using a similar argument as in the proof of [GP19, Thm. 3.3.2] together with
Proposition 3.5, we deduce the following lemma.

LEMMA 3.9 (cf. [GP19, Lem. 3.3.2]). Let ¢ be the Anderson Alty]-module de-
fined as in (3.3). Then there exists €4 > 0 such that the open ball {f €
Mat,x1(Ts) | [[flloo <€} C Matnx1(Tx) can be mapped ||| o -isometrically
by exp,, to itself.

Let Py =1Id,,. We define the logarithm series

log, = 3" P77 € Mat, (Ts) [[7]

Jj=0
as the formal inverse of exp, in Mat,(Tx)[[7]] such that
exp, log, = log, exp, = Id,, (3.10)

and it also satisfies
04(0) log, = log ¢(0). (3.11)

The logarithm series log, induces an F,[ty]-linear homomorphism log,
Mat,, 1 (Tx) = Mat, «1(Tyx) defined by

logs(f) =D Bir'(f), f€Matyx1(Ty)

i>0

which has a finite radius of convergence by Lemma 3.9. It also implies that
exp,, is an automorphism with its inverse log,, on {f € Mat,,»1(Tx) | ||fle <
£o} C Maty,x1(Tyx).
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Using a similar calculation to [CM19, Eq. (3.2.4)] we can obtain

2d' —2

ad(N) (P,E®W)
P =— ZO N (3.12)
iz

where d’ is a positive integer such that N% = 0 and N* # 0 for k < d'.

3.2 UNIFORMIZABILITY

We now discuss the uniformizability of Anderson Alts]-modules. We can refer
the reader to [APTRI16, Sec. 3,6] and [GP19] for more details about uniformiz-
ability of Anderson Alty,]-modules of dimension 1.

DEFINITION 3.13. We call an Anderson A[ty]-module ¢ of dimension n uni-
formizable if exp,, : Mat,,x1(Tx) — Mat,«1(Tyx) is a surjective function.

EXAMPLE 3.14. Assume that 3 = {1,...,s} for some s € Z>; and let f =
ZueZ‘E‘ f#ﬁE‘ be in Ty. For any positive integer n, we define the Anderson
>1

Alts]-module C®" : Alts,] — Mat,, (Tx)[r], the n-th tensor power of the Carlitz
module by

0 1 0 0 0

C®"(0) = 01d,, + R |
| : :
0 1 ... ... 0

When n = 1, we call C : Afty] — Tx[r] given by C(0) = 6 + 7 the Carlitz
module (see [Gos96, §3] for details). By [BP20, Sec. 4.3] we know that expoen :
Maty,x1(Coo) = Maty x1(Co) is surjective. Indeed we can show that expoen :
Mat,,»1(Tx) = Mat, «1(Tyx) is also surjective as follows. Let

y= [Zm,uﬂg, e Zamuﬂg]T € Mat,«1(Tyx)

for some a;, € Co where 1 < j < nand p € ZEA. Then for any pu, there
exists ©, = [T1,4,...,Tn,u]T € Cx such that expoen(x,) = (1,455 anp)T.
Note that the entries of y are elements in Ty. Thus by Lemma 3.9, for any 7,
there exists N; € Z such that a;, is in the radius of convergence of logsen
for any s-tuple p whose sum of the entries is bigger than N;. Thus for such
tuple (a1, ..., an,,)T, we can choose z, = logoen ((@1,, - - -, @n,,)T) such that
(@1, s anu) oo = |Tulloe and expoen(zu) = (@14 - -5 an,)T. Therefore
we guarantee that the element

Zzl,ufﬁ

T = :
> xn,utg
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lives in Mat,, »1(Tx). Furthermore, by the F,[ty]-linearity of expen, we have
expoan (T) = Y.

Recall that ¥ = U]_,U; C Z>1. We define o := [[;_, [[;cp, (t; — 0). Following
Demeslay [Dem14, Sec. 4.1], we define the Anderson Alty]-module C2" :
Alts] = Mat, (Tx)[7] by

o 1 ... 0 0O ... ... 0
CE"(9) = 91d,, + R aE: (3.15)
| : :
0 a ... ... 0
Note that if ¥ = ), then C€™ = C®" for any positive integer n. As an example,
whenr=1,n=1and ¥ =U; ={1,...,s} for some s € Z>1, we have that
Co(@) =0+ (t1 —0)...(ts — O, (3.16)
and when r =1, n = 2 and U; = {1,2} we have
0 1 0 0
®2 _
Ca(0) = [o 9} + [(tl —O)ta—0) 0|

3.3 FROBENIUS MODULES

We now investigate the idea of Frobenius modules in our setting. Alert reader
might notice that the terminology was also used in [CPY19, Sec. 2.2] and
[GP19, Sec. 4].

For any d,n € Z>;, we define the non-commutative polynomial ring
Matgxn(Tx)[o] subject to the relation

of = VY0, f e Matgxn,(Ts)[o].

Moreover for any M = (M;;) € Matgx,(Ts), we define the non-archimedean
norm |||, by

[[M||g := sup{|[ Mi;]|oo}-

Let o = Ag + Ay7 + - + A" € Matgxn(Ts)[7]. Then we define the map
* : Matgxn(Tx)[7] = Mat, «xq4(Tx)[o] by

(,0* — A(E +A'1|'(_1)0.+ . +AZ(_k)0k
We also define the ring Tx[t, o] := Tx[o][t] with respect to the condition
ct = te, g = oc, to =ot, ceTyx.

DEFINITION 3.17. Let ¢ be an Anderson Alty]-module of dimension n defined
asin (3.3). We call a Tx[t, o]-module H(¢) the Frobenius module corresponding
to ¢ if it is free of rank n over Tx[o] and its Tx[t]-action is defined by

ct - h = chg(0)* = ch(01d, +NT + ET V)
for any h € H(¢) and ¢ € Ty,.
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EXAMPLE 3.18. Let a = [],.s(t; — ). Consider the left Tx[t, o]-module H :=
Ts[t] whose Tso]-action is given by co - f = cfCDal=D 7" (t — )" for any
¢ € Ty and f € H. One can see that H is free of rank n over Tg[o] with
the basis {v,,...,v1} where v; = (t —0)""1 for 1 < i < n. Let H(C®") :=
Matix,(Tx[o]) be the Frobenius module corresponding to C®™ whose Tx|[t]-
module action is defined by ct-h = ch(C®™)* for any ¢ € Tx, and h € H(C®™).
We define e; € Matix,(Tx[o]) to be the row matrix whose i-th coordinate
is 1 and the rest is zero. One notes that {e, } forms a Tx[t]-basis for H(C®™).
There exists a Tx[t]-module isomorphism g : H — H(C2") given by g(1) = e,.
Furthermore ¢ also respects the Ty-linear action of ¢ and therefore g is a
Tx[t, o]-module isomorphism.

4 ANDERSON Alts]-MODULE G¢

4.1 THE CONSTRUCTION OF ANDERSON A[ts,]-MODULE G

For the rest of the paper, for any matrix M € Maty(Ty) of the form

M1 - M[ir]

=
I

(4.1)

Mrl] --- Mtrr]

such that M[ij] € Matg, xa,; (Tx), we call M[ij] the (i, j)-th block matrix of M.

We fix a composition array C defined as in (1.4) and consider (uq,...,u,) €
(T \{0})". Forany 1 < j <rwesetd; :=s;+---+srand k:=di+---+d.
For each j, we define the matrices N; € Matgq, (F;) and N € Mat(F,) by:

0 1 ... 0 N
. N2

0 Ny

Recall from §2.1 that ¥ C Zx>; is a union of finite sets given by ¥ = U/_,U;
and o; = [[¢y, (t; — 0). Set

0 0

Eljm] := : | eMaty,(To)ifj=m  (42)
0 R
_,an 0 ... 0
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and if j < m we define

0 0
E[jm] := ' . . IS Matdjxdm(TE)-
0 IR
D)™ wi e an O .o 0
(4.3)
Using (4.2) and (4.3) we define the block matrix E by
E[1] E[12] ... B[]
E = E[22] S Matk('ﬂ‘g).
E[(r—1)r]

E[rr]

Finally we define the Anderson Alty,]-module G : Afty] — Mat(Tx)[7] by
G(0) = 01d +N + Br.

Set a; := H;’A:j a;. Then we can also write the Anderson Alty]-module G of

dimension k corresponding to C and (u1,...,u,) € (Tx \ {0})" as

C24(9) EN2] ...  E[lr]
C&42(0) E[2r]
G(9) = N : : (4.4)
C(6)

By definition, the Frobenius module H(G) of G carries a T [t]-module structure
such that for any x € H(G) the t-action is given by

t-x=xG0)" (4.5)

and is free of rank k over Tx[o]. We now claim that H(G) can be given by the
direct sum of Tx[t, o]-modules

H(G)=H(CEM) & @ H(C2M) (4.6)

and therefore is free of rank r over Tx[t]. If 7 = 1, then we see that G = CZh
and the Frobenius module H(G) is free of rank 1 over Tyx[t] by Example 3.18.
Suppose that r = 2. We consider the short exact sequence

0 —— H(CS") — " H(G) —2— H(C2%:) ——— 0 (4.7)

of free Tx[o]-modules such that for any « = (x1,...,2q4,) € H(C®%) and
Yy = (yla' "ayd2) € H(C®d2)a we have pl(‘r) = (ZC,O,.. 50) and p2(l',y) =Y.
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Note that
pi(t-z) = pr(eCLM (6)") = pr(0w1 + 22, ... 210} Vo + 0z4,))

= (0x1 + 22,. .. ,xla(71)0 + 0z4,,0,...,0)

= (z,0,...,0)G(6)*

=t-pi(x).
Similar calculation can be applied to see that pa(t- (z,y)) =t p2((x,y)). Thus
the maps p1 and p; are compatible with the ¢-action of Ty [t]-modules H(C&),
H(C%) and H(G). Therefore the short exact sequence in (4.7) is also a short
exact sequence of Tx[t]-modules. Since H(CP%) and H(CE) are free over
Tx[t] of rank 1, H(G) is also free of rank 2 over Tg[t] with the basis {m1,m2}
such that under the projection map proj; : H(G) — H(C&%), proj;(m;) is a
Tx[t]-basis for H(CE%) when i = 1,2.
To show the claim for any r, we just replace the short exact sequence in (4.7)
with

0 —— H(CEh) —2 s H(G) —2— H(G, 1) —— 0

such that
C2%(9)  E[23] ... E[2r]
C®ds (g E[3r
Gt 210(0) o
C2i(0)

and apply the same argument above.

Remark 4.8. We observe from the above discussion and Example 3.18 that
if {my,...,m,} is a Tx[t]-basis for H(G), then the set {(t — )11 .
mi,...,my, ..., (t—0)% "1 .m. ... m,.} is a Tx[o]-basis for H(G). Let us
choose p;j = (t —0)%=9 -m; for 1 < i <rand1 < j <d;. Since H(G) is
isomorphic to Matixx(Tx)[o] as a Tx[o]-module, by the change of basis, we
can identify each p;; with e;; = (x,...,0,1,0,...,%) where 1 appears in the
(dy +---+d;—1 + j)-th place and the other entries are zero.

We let m := [mq,...,m,]T € Mat,«1(H(G)) be the column vector containing
Tx[t]-basis elements of H(G) and consider the matrix ® € GL,(Tx[t]) defined
by

(t—0)"

a(fl)
T i (t—0)%2
ag—l) a;—l)
ul ™D (t—6)%2 -
P = T ' . (49)

ulZV(=0)r-1 (4_g)dr

i aY ar
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PROPOSITION 4.10. We have cm = ®m.

Proof. Let p;; and e;; be as in Remark 4.8. Set ¢-m; := 0 € H(G) for any
¢ € Tx[t] and j < 0. Claim that for any 1 < i < r we have

(71) di_1 d;
u_y (t—0)% (t—0)*
T “Mi—1 + W M = om;. (411)
i—1 i
We do induction on . First we see that
t-pin=t-en
=(1,0,...,0)G(6)"
= (9,...,a§71)a,0,...,0) (4.12)
— Op11 +al Vopia,
= Op11 + o\ om,
where a{ Vo appears in the d;-th place. Since p1; = (t —0)®~1.my, it follows

from (4.12) that omy = a;fi? -myq. Assume that the equality in (4.11) holds
1

for ¢ — 1. By using the induction hypothesis and the t-action defined in (4.5)
we obtain

t-pi
=t-ep

=0pi1 + az(-fl) ((—1)i_1u§71) ul Ve “P1d, + (—1)i_2ug71) ui Ve D2dy

C = * =

+oeee (*1)%(-:})0 'p(i—1)di,1) + az(-_l)Upz‘di

_ . _ 1 (t—0)*h
= o+ ol V(0O
ay
i _n({t—0)h . _ o (t— )42
+( 1)1_2u( D ug_i)i( — ) -mq + (—l)l_gué 2 ug_i)i( — ) “Meo
at=b a=b
1 2
o (= _(t—0)%
+ (—1)1_2ug 1)...u5i)7( (71)) “ Mo
a
_1 i—(i—2)u(fl)u(fl) t— f)di—2
++( ) 1727 171( ) Mo
=D
i—2
(1) di_
—1Du; t—0)%i-1 _
+ ( ) Z71(,(1) ) 'mi—l) + U.Z(- 1)Upidi
a;_1
(1) di_
t— 0)%i-1
= Opia + o\ Hom, — i ) SMi—1
2 (-1
Q1
(4.13)
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Since pj1 = (t — 0)% =1 - pig, = (t — 0)%~1 . m,, the claim follows from the
calculation in (4.13). Thus the definition of the matrix ® and m together with
(4.11) imply the proposition. O

4.2 RIGID ANALYTIC TRIVIALIZATION OF (G

In this section, we introduce the idea of rigid analytic triviality for Anderson
Alts,]-module G of dimension k defined as in (4.4). We start with explaining
necessary background and at the end, we relate them to the uniformizability
of Anderson A[ty,]-modules.

Let H(G) be the Frobenius module corresponding to G which is free of rank r
over Tg[t] and m = [my,...,m,|T be the column vector consisting of Tx|t]-
basis elements of H(G). Then for any h = [hy,...,h,] € Mat;«(Tx[t]), we
define the map

v Maty . (Tx[t]) — Maty i (Ts[o])

by ¢«(h) = h-m = hy - mq + -+ + h, - m, where the action - is given by the
Tx[t]-action on H(G).

LEMMA 4.14. We have

(i) For any h = [hy,...,h;] € Matyx,.(Ts[t]), we have t(h=D®) = au(h).

(i) For all h = [hy,...,h;] € Mat1x,(Tx[t]), we have (th) = 1(h)G(0)*.
Proof. To prove the first part we observe by Proposition 4.10 that
ouh) =clhy, ... ) -m=[R{Y, e m=ha"YE m = (WD D).
On the other hand, we have by (4.5) that

L(th) =tlhy,...,h]-m=t-(h) = (h)G(O)*

which proves the second part. O

We call the tuple (¢, ®) a ¢-frame of G.
Before we state the definition of rigid analytic triviality, for any f € Ty, we
define the ring Tx:{t/f} by

To{t/f} :={Zaitieﬂrzntn | ||f||z;o|az-||mo}.

i>0
Moreover, we define the norm ||g||f = |3 ait’||; = sup{||fl|%|aillc} so that
the ring T {t/f} is complete with respect to the norm ||-|| . Furthermore, for
any M = (M;;) € Maty,xi(Ts{t/f}) we set | M||; := max; ;|| M;;|| ;-
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DEFINITION 4.15. Let (¢, ®) be a t-frame of G defined as in (4.4) and let
¥ € GL,(Tx{t/0}) be a matrix such that

D = ow.

Then we call (:,®,¥) a rigid analytic trivialization of G and say G is rigid
analytically trivial.

Remark 4.16. We recall Example 3.18. Note that the Tx[o]-action on the
Ty [t]-basis v1 of H(C®") is represented by ® = %" By (2.2) and (2.6)

D
we see that ¥ = w,Q(t)" satisfies the equality ¥(~1) = ®T. Moreover since
Q(t) € Te{t/0} by [GP19, Cor. 6.2.10] so is ¥. Thus C®™ is rigid analytically

trivial.

Now we finish this section with a fundamental theorem which will be useful to
prove Theorem 1.12.

THEOREM 4.17 (cf. [GP19, Thm. 4.5.5]). Let ¢ be an Anderson Alts]-module
defined in (3.3). If ¢ has a rigid analytic trivialization (1, ®, V), then ¢ is
uniformizable.

Proof. See Appendix A. O

As an immediate corollary of Remark 4.16 and Theorem 4.17, we deduce the
following.

COROLLARY 4.18. The Anderson Alts]-module CE™ defined in (3.15) is uni-
formizable.

We now discuss the rigid analytic triviality of the Anderson A[ty]-module G
whose corresponding Frobenius module H(G) given as in (4.6). We prove the
following proposition.

PROPOSITION 4.19. Let G be the Anderson Alty]-module defined as in (4.4)

corresponding C and the tuple u = (u1,...,u,) € (Ts\{0})" such that ||u;]|c <
54a—|U;|

q = for 1 < i <r. Then G is rigid analytically trivial. In particular, the

exponential function expg s surjective.

Proof. Let ® be given as in (4.9). Forany 1 <! < j <r+1 and u; =
sia—1U;]

(ugy ..., uj—1) € (Tx \ {0})” such that ||u;l|ec < ¢~ T forl<i<j—1,set

Lu, () : = Z (wy, 2 (t)ul)(“) (o, Q5 (t)uj71>(ijfl)

4> >0 1>0

j—1
= Qo) T wo, x
i=l

Wb (U) be (U-1)
l j—1 l j—1 J
2 ((t—09) ... (t— 0 ))s .. ((t—09)...(t— 097 ))si1

il>"'>ij7120
(4.20)
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Consider the matrix ¥ € Mat,(Ts ;) by

[ Q(t)dl H::l wu; 1
Lul,z (t)Q(t)dz H;‘A:Q Wy,

Ly, . (6)Q(t) % wy, coi Ly (0Q0) T wy, Q) wy, ]

Since (t) and wy, are invertible in Ty ¢, by Theorem 2.40, we see that U €
GL,(Tx{t/6}). Thus the proposition follows from the same argument of the
proof of Proposition 2.32. O

4.3 ANALYSIS ON THE COEFFICIENTS OF THE LOGARITHM FUNCTION

We continue with the notation from §4.1 and furthermore for any 1 < ¢ < r,
we define F; € Maty(Tyx) so that its (4,4)-th block matrix is E[ii] and the rest
is zero matrix.

We denote the logarithm function logg by logg = >, PiT" where

Pl . P
Py=1d, P = . € Matk(’]I‘g), Pl[]k] € Matdjxdk (TE)

Pi[rl] -+ PBjrr]

PROPOSITION 4.21 (cf. [CM19, Prop. 3.2.1]). We have P;[lm] = 0 for | > m.
For I < m, we denote the lower most right corner of P;[lm] by y;[lm]. Then
yillm] = E':Z’f# if l = m and when | < m, we have

yaltm] = (~1)"'x

>

0<iy <+ <iim -1 <i

’u,l(”) .. u&’i}l)b”(Ul) - bimfl(Umfl) HT bi(UJ)

j=m
S] Sm—1 pdm
N

(4.22)

Proof. We follow the ideas of Chang and Mishiba in [CM19, Prop. 3.2.1]. By

(3.12) we have
2d;—2

ad(N)) (P,E®)
Pip1=- Zo 0T — gyt (4.23)
]:

similar to the identity (2.1.3) in [AT90]. Note that the upper bound of j in
(4.23) is determined by the fact that N9 = 0. Moreover, we have by (4.23)
and the definition of the matrix £ and N that

Pllm] =0 forl>m. (4.24)
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Observe that for a block matrix Y € Maty(Tx) of the form (4.1), if y is the
element in the lower most right corner of the (I,m)-th block matrix, then
ETY E,, has all entries zero except the upper most left corner of the (I, m)-th
block matrix which is y H;:l a; H;:m Q.

Note that EJN = 0. On the other hand, for any j, we can write
ad(N) (P,E@W) = NM + (=1)’ P,E®) NI for some M € Matg(Ty). Thus,
using [CM19, Eq. (3.2.6)] we see that

EJPEONI—1E,,
(0 — 00" )dm

ElPi1E, = (4.25)

Observe that EONI=1E, = 0if j # d,, — 1 and EON®—1E,_ has all zero
columns except the (di; +---+dy—1+1)-st to (d1 + - - - + d;p, )-th columns which
are of the form

I oslEmm @, ... Efmm] @, ... 0.
j=m

Moreover EZTPZ- has all zero rows except the (dy + - - -+ d;—1 + 1)-th row which
is of the form [;_; a;[*,..., 3 [11],. .., 5i[12], ..., ys[lr]] where y;[lw] appears in
the (dy + - - - + dy)-th place for 1 < w < r.

Now comparing the upper most left corner of the (I, m)-th block matrix of both
sides of (4.25) by using (4.24) we observe that if | = m we have

Cipayirlim] = [ | oy, im]ed (4.26)
=l

and if m > [, then we obtain

m—1

IT =& +€?myi[lm]). (4.27)

e=n

T

m—1
Ef_;_”'lyprl[lm] = H agl) <€?m Z yilln](=1)™™"
j n=lI

j=m

We apply induction on . Note that if m = [ then the first part of the proposi-
tion can be easily shown by using (4.26) as yo[lm] = 1 in this case.

When m > [ we assume the proposition holds for y;[In] where [ < n < m and
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i > 0. Then using (4.27) we have that

E;'iriyi+1 [Ilm]

n=1_ () (7 \TI" _ (@) m—1
Z Hj:l Uy ézj (UJ)Hk:dn bz(Uk)ak (_1)mfn H O]
N T

0< <+ <ip_1<t TTin—171 e=n
m—1 T
1 i i i
+ 0 (=) )i (Un) i) TT be(0n) T o
;! k=l j=m
+ E?myi[lm] H agi)
j=m
= (~1)™!x
nil Z H;-L:_ll u;zj)bij (Uj)u%) .. -ugy?_lbi-i-l(Un) .. -bi—i-l(Ur)
S Sn—1 pSn Sm—1
T 0y < by < N P S
bi Um e bz UT 71—1 ’LL(Z)bZ U, r ;
o ettt @) b GRS w00 g T 0

S1 Sm—1
G =

bist (Unm) - b (U) [T a0, (U)

Jj=l
[sl Sm—1
2 " -1

0<i <+ <tm—1
Tm—1=1

+ (4, [im) H agl).
j=m

(4.28)

Since yo[lm] = 0 we obtain

H ag-i)ﬁf-l’" yil[lm]

j=m

bi(Unm) - 0i(Un) T a8 TIT a0, (U7)

i—1
_ m—l1 § § J=l
- (7]‘) gsl g?m—l
h=00<iy <+ i1 it P

im—1=h
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This also implies that

[T of e yilim) = (=1)"~'x

j=m
5 a0 i (Ui )bis (Un) < i (U)
0<i <+ <im 1<t [Zl T ’:::11
(4.29)
Thus the proposition follows from combining (4.28) and (4.29). O

LEMMA 4.30 (cf. [CM?O Lem. 4.2.1]). Let C be a composition array as in (1.4)
and v = (u1,...,u,) € (Tg '\ {0})’” Let also ny = |U)| be the nonnegative

integer for 1 <1 <r. If |wlle < ¢ = for each 1 <1 <, then

IPNUI oo < ="~ (ia' =dn) gyt (o) 5y (4.31)
for each i,j,k where i >0, 1 <I<7r, and1<j <d;.

Proof. We note that the matrix P,N%~7E; has all zero columns except the
(di + -+ + di—1 + 1)-th column which is [];_, a; multiple of the (dy +--- +
di—1 4+ j)-th column of P;. If i = 0 then the lemma holds. Assume by induction
that the inequality (4.31) holds for ¢ and we show that it also holds for i + 1.
By (4.23) we have that

W
P N4—iE,
2d1—2

- Z 9q1+1 —gym+1 Z ( >Nm "PEVNTTITIE. (4.32)

We observe that E() N*+d—iF; =0 for n # j — 1. Moreover by the definition
of N we have that N™~" = 0 for m —n > d;. Therefore using the definition
of the matrices E; and E we have

di+j5—-2 .
P N4 g — S (_1)J m Nm—Iitlp p@) yd-1p
1+1 | — Z (eq-;+1 — 9)m+1 _7 1 7 l
m=j—1

di+j—2 (_1)] m .

S D

D e AV
l T
S0, T el [T ey
n=1 n<e<l—1 h=l

where we define the matrix P' , as the matrix whose (dy +--- +dj—1 + 1)-th
column is the (dy +---+dp—1 + d )-th column of P; and all the other columns
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are zero. Thus taking | = n and j = d,, in the inequality (4.31) and using
induction hypothesis we see that

1P, T« T enal lls
h=l

n<e<l—1

) ) r
_ i_g,)—4_ 4 g (nntedng) 4’ (sea—ne) ;
el | (|
n<e<i—1 h=l

g1 di(ntdng_g)

i i N+t nge i
< g (na'—dn) gy Bt (dy—d) oy = e g

i a*(ny+-+nr)
e B e S =

q(nz+"'+nr)qi

) L O
—(dig —dy) gy + T Ctne)

IN

q
(4.33)

Thus using (4.32) and (4.33) we see that

. _ it1_ i_ g y_q_ (ntetnegtt!
[P i N Bl oo < max g (FFDOT Sl g TR
J—1<k<di+j-2
il i oy a  (ngtetne)gtt!
Ja' T —(did' —d1) 745 qJ—( tnr)e
o . i+1
(di—5)g" ! = (dig" ™! —d1) 7L +(nit-np) L

=4q

=4q
which concludes the proof. O

We continue with the notation in the statement of Lemma 4.30.

PROPOSITION 4.34 (cf.  [CM20, Prop. 4.2.2]). Let |ullc < q <7  for
1 <l <7randz = (v;) €T be a point such that |Tay+.td, 1+jllc <

—(dy—j)+ e Cytedne) .
q (di=5)+377 a=1 . Then log, converges at = in T%.

Proof. The proof follows from the standard estimation in non-archimedean
analysis. In particular since || Ej||oo = ¢/™* ") by Lemma 4.30 we have

1Pz oo
< gD ) T BT a2
s
i
— M _ s ﬂi_(" +-tng) q
= n}aix {q (it Ane)+ 244 <||xd1+---+d11+j||oo/q (di—g)+ 7 — 5 > }

(4.35)
But by the assumption on the element  when i goes to infinity, the last term

in (4.35) approaches to 0 and thus this proves the statement in the proposition.
O
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The special point v¢,, € T corresponding to a composition array C and u =
(U1, ...,up) € (Te \ {0})" is defined by

v="2vcu :=1[0,...,0,(=1)"tuy ... up0,...,0,(=1)" Pug...up, 0, .., 0,u,]T
(4.36)
where the entry (—1)"Ju;...u, for 1 < j < r appears in (di + - + d;)-th
place.

We continue with some notation. For any composition array

where 1 < j <4, we define the composition array C by

é‘ — (Uian—la . aU])
SiySi—1y.--5 85

Furthermore, for any u = (uj,l...,ui) € (Ts \ {0}/, we define @ :=
(uz',uiﬂ, . ,uj) c (’]I‘E \ {0})J—z+1_

THEOREM 4.37 (cf. [CM19, Thm. 3.3.3]). Let C be a composition array of
depth r defined as in (1.4) and u = (uq,...,u,) € (Tx \ {0})" be such that
U € D’Cf. Let G and v be defined as in (4.4) and (4.36) respectively corresponding
to C and u. Then logg converges at v. Moreover for any 1 < 1 < r, the
element in (dy + - - -+ d;)-th place of log(v) is equal to (—1)" " Lis () where

— (Uz »»»»» Ur

Sl7~~~,ST) and u; = (ula v aur)'

Proof. We follow the technique in [CM19, Thm. 3.3.3]. By the assumption on
the element u, the norm of the (d; + - -+ d;j—1 + d;)-th coordinate of v is

S19—="ny srqg—nr dig  (ny+--+ny)

(=1 upfloo < g o7 ...q a1 =gt a1

Then by Proposition 4.34 we see that log, converges at v. Using Proposition
4.21 and the definition of v we see that the (dy + --- + d;)-th coordinate of
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loga(v) is

S il (-1 )

>0 m=l

s (—1) T b (Ul

i>0 gfl
DIPNEIEE
i>0 m=I+1

175wl (U;)

Jj=l 7
S] Sm—1 pdm
LN P

>

0<iy <oy 1 <i
— IT,_, ui"b:(U))
=D l<z N

i>0

(—1)T_mu££) .. .ugf) H bZ(UJ)
Jj=m

oy Z > 17 b (Ul ol T 0a(U)
N

120 m=I+10<4 <+ <ipm -1 <i

Thus, by the above calculation, we obtain

Z i yillm] (=)™ uD WO

>0 m=l

= (-1

3 a0 ()L b (U)
0<% <+ <ip

- (—I)T*lLia (7).

4.4 THE CONSTRUCTION OF THE ANDERSON Alts]-MODULE G¢

Let C be a composition array as in (1.4) such that wght(C) = w and
dep(C) = r, and let v = (uy,...,u,) € (Tg \ {0})". We recall the set of
tuples {(a;,Cr,w)] 1 <1 < n} for some n € Z>1 from Theorem 2.44 and
without loss of generality, for 1 < [ < s, let C; be a composition array such
that dep(C;) = 1 and for s + 1 < I < n, let C; be a composition array whose
depth is bigger than 1. Assume that dep(C;) = m;. Let G| be the Anderson
Alts]-module corresponding to the tuple (C;, ;) defined as in (4.4). We also
recall the notation from §4.1 and set k] = Z;"ZIQ dij for any 1 <1 < n. It is
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easy to see from the definition that w = dj; for 1 <1 < n. Now define

C®diz E; [23] .. ... K [le]
C®hs  Fy[34] ... E3m]
P = : € Maty (Tx)[r]
C®-dl7nl
and G} == [Ey[12] E13] ... Eflm]] € Mat,, xx;(Ts;). Observe that

o= [0 ]

Let us set ke := w+ Y.,'; kj. Then we define the Anderson A[ty,]-module
Ge : Alts] = Matg, (Tx)[7] by

Cah Gl Gln . G
s+1 ,
Ge(0) = Gito € Matg, (Ts)[7]- (4.38)

G/

Using the definition of matrices G} and G} we see that G¢ can be rewritten as
in (3.3) and therefore it has an exponential function expg, : Maty, x1(Txs) —
Maty,. x1(Tx) which is everywhere convergent by Proposition 3.5.

For the rest of this section we aim to prove that exp,, is a surjective function.
Now let k; := Z;":’l dij = w+ k] for 1 <1 <mn. First we give the definition of

the following map A : T&=1 ¥ — The by

[ 2114tz 2y oot 2n |
211 211 :
le+"'+st+z(s+1)w+"'+znw
Z(s+1)(w4+1)
Z1ky 21k, .
A : — A : = ' , (4.39)
' ' Z(s+1)ks1
Znl Znl .
Zn(w+1)
Znky Znk., .
L Znky, i
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where the matrix A € Maty,, s> 1, (Ts) defined by the following block matrix

Ly sw Idw wak/

s+1
Okt oxw  Idi

Iy Owxrr., - Idu  Ouxp

s42

O

s42 XW Idk;+2

Okt sw  Idp,

(4.40)
so that I, xsw is the block matrix [Id,,...,Id,] € Matyxsw(Ts) and O;x; €
Mat;x;(Tyx) is the i x j zero matrix. Before we prove our next lemma, it
should be noted that we define the Anderson A[ty,]-module ®}" ; G; of dimension

2?21 ki by

G1(0)
Ga(0
S GiL9) = ) . (4.41)

n

C?;w (9) G//

G/
where G(6) € Maty,, (Tx)[7] defined as
Ca(0)
G(0) =
Ca(0)
Moreover its exponential function eXPgn @, Mat(SW+E{‘:s+1 kyx1(Ts) —

Mat(sw+zlrb:5+l kl)xl(’]rg) is given by
h expg, (f1)
eXPgr G, * —
fn €XPgq,, (fn)

where f; € Matg,«x1(Ty) for 1 < j < n. Using the matrices given in (4.38),
(4.40) and (4.41), we immediately prove the following lemma.

LEMMA 4.42. We have
Ge(0)A = AG@LGZ (9).
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In other words, A is an Anderson Alts]-module homomorphism.

Our next lemma introduces the relation between the matrix A, the infinite
series expg, and expgn g,

LEMMA 4.43. We have the following equality over Matsr g, xx. (Ts)[[7]]:
expg, A = Aexpgn ¢, -

In particular, for any f € Matzln:lklxl('ﬂ‘g), we have )\(expealn:lgl(f)) =
expg, (A(f))-

Proof. Let us set Ge(8) = 0Idg, +N; + Eq7 for the nilpotent matrix Ny
such that N{* = 0 and E; € Maty.(Tx). Similarly, let &} ,Gi(0) =
0Idsr 1, +N2 + Eo7 such that Ey € Matsr 4, (Tx). By the definition of
®},G1 we know that N3 = 0. Since A is invariant under the automorphism 7,
by Lemma 4.42 we have that

(9 Idkc +N1 + ElT)A = GIdkc A + NlA + ElAT = A0 Idz k; +AN2 + AEQT.

Since A Idy~y, = 01dg, A, comparing coefficients of 70 and T above, we see that
NiA = ANz and E1A = AFE,. Now let expg, = Y50 B1,i7" and XPop G, =
Zi>0 Bg,ﬂi. We claim that 31 ;A = ABy; for all ¢ > 0. We do induction on i.
For ¢ = 0, the claim holds. Assume that it is true for i. By (3.7) we have that

2022 ad(Nyn ) (Em B2

Bt = Y e meLe (4.44)
7=0

Moreover by the induction argument, Lemma 3.4 and commuting of V; and F;
with A for ¢ = 1,2 and for any 0 < j < 2w — 2 we have

ad(N1) (E18{))A = Aad(N>)! (E2351)).
Thus the claim follows from (4.44). O

PROPOSITION 4.45. The exponential function expg, : Maty.,,(Ts) —
Matg,,,(Tx) is surjective. In other words, the Anderson Alts]-module G
is uniformizable.

Proof. Let Gy,...,Gs,Gs11,...,Gy be the Anderson A[ty]-modules that are
used to construct G¢ such that for 1 < j < s, G; = C®" and G; # C®" when
j=2s+1 Lety= [yh s Yws Ys+Lw+1s - Ys+ ko1 - - Ynw+1y - - - 7yn,kn]T
be in Maty.x1(Tx). Let E;; € Matg, «x1(Fq) be the column matrix such that
j-th entry is 1 and the other entries are zero. We now define elements Y; €
Maty, «1(Tx) for different cases. If n > w > s, then we set

YLy, if1<j<s

kj . .
Vii=q whit Yitwpr YitBi, i s <j<w
le:w-i-l v Ej, fw<j<n
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If n>s>w, we set

Y;iEjj, ifl1<j<w

Ojj, fw<j<s
k; . .

Yl Y, ifs<j<n

Y. :

Jj=

where Oj; is the k; x 1-zero matrix. Finally, if w > n > s, then we define

yiEjj if1<j<s
k; . .
Yio=q ¥iEi+ 20y it Bt ifs<j<n-1
k; o -
Sen Y+ 30 i B ifj=n

By Corollary 4.18 and Proposition 4.19, expg  is surjective for all j. So
there exist elements X; € Maty, x1(Tx) such that expg, (X;) = ¥;. Now let
X = [Xl, R ,Xn]T S MatZklxl('JTz) and Y := [Yi, . ,Yn]T S MatZklxl('H‘g).
Thus by the definition of the map A and Lemma 4.43 we see that

Aexpgp 6, (7)) = A(Y) =y = expg, (A(z))

which gives the surjectivity of expg,. O

4.5 PROOF OF THEOREM 1.12

In this subsection we give the proof of our following result and introduce an
example.

THEOREM 4.46. Let C be a composition array as in (1.4) of weight w. Let
also J1 be the set of indices i such that U; # 0 and Jo be the set of i’s such
that U; = 0. Then there exist a uniformizable Anderson Alts|-module Ge of
dimension ke defined over Ty, a special point ve € Matkcxl(er"f(ﬁE)) and an
element Z¢ € Matg,x1(Tx) such that

(i) Tlies, Eifi‘lsisti (Ui) [ien, Ts:6c(C) occurs as the w-th coordinate of Zc
where rs, > 1 is an integer such that s; < q"i for i € J;.
(ii) expg.(Zc) = ve.

Proof. We recall the construction of the Anderson A[ty,]-module G¢ from §4.4
and elements a; € A coming from the tuples (a;,C;,w;) in Theorem 2.44. By
Proposition 4.45, we know that G¢ is uniformizable. We set Z; := logg, (vg, 4,)
and v = expg,(Z1) = vg, 4, € Maty, 1 (KP(ts;)) where the last equality
comes from the functional equation (3.10) and the definition of Z; makes sense
by Theorem 4.37. We define

ZC = )\((agl (al) . Zl, ey aGn (an) . Zn)T) S Matkcxl(']rg)
and

ve = AN(Gi(ar) - v1,...,Gnlayn) -v,)T) € Matkcxl(errf@E)).
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Note that by Theorem 4.37, the w-th coordinate of Z; is equal to
(f1)dep<ct>*1ma(ﬁl) = (—1)9PC€)~-1Lj; (4;).  We observe that by

the definition of Anderson Alty]-modules G;, for any a € Afty] and
f = (fi,-- s fi,)T € Matg,x1(Ty), the w-th coordinate of dg,(a) - f is
equal to af,. Thus, using the definition of the map A, we see that the w-th
coordinate of Z¢ is equal to Y, a;(—1)4PC) =1 Li§ (u;). But by Theorem 2.44,

we see that the sum is equal to [[;c,, Eg?__lsibmi(Ui)Hie:12 I's,¢c(C) which
proves the first part.
To prove part (ii), we use the equality (3.6) and Lemma 4.43 to see that

expe, (Ze) = expe, (M9, (a1) - Z1, -+, 0a, (an) - Zn)T))
= Aexpgn ¢, (0, (a1) - Z1, ..., 0c, (an) - Zn)T))

= M(G1(a1) - expg, (Z1), ..., Gnlan) - expg, (Zn))7)
= M(G1(a1) - v1,...,Gplan) - v,)T)

=c.
O

Remark 4.47. One can observe that we can capture Chang and Mishiba’s result
[CM20, Thm. 1.4.1] by defining the composition array C as in (1.6).

EXAMPLE 4.48. Let ¥ = {1,...,n} and let L(f) be the Pellarin L-series defined
as in (1.3). By Theorem 2.18, for any d > 0, there exists a polynomial

Qus(t) =Y wt' € KP(t5)[t]

1>0

such that

> a(m.a.s.a(tn)_ ba(®) iy (0)ms

acAy 4 f?_:—lsf‘:le(E)

where 7 > 1 is an integer satisfying ¢" > s. Choose 8 = (t1 —0) ... (t, —0) and
set G := C’?s. For any [, we define v; := (0,...,0,w;) and Z; := logq(v;) which
is a well-defined element in T§, by Theorem 2.18 and Proposition 4.34. Finally
we set ve 1= Y50 G(0') v € KP(ty)® and Ze == Y ,5,0c(0") - Z; € T%,.
Thus by the proof of Theorem 4.46, we see that

expa(Ze) = expa((*, ..., %, E?T:leT(E)L(Xh ce Xt S))T) = ve.

For the case n = s = 1, using [Perl4, Thm. 4.16], we immediately see that
Qx1(t) =ty —t. Thus, ve =t; — 0 —t1 + 60 =0 and by [APTRI16, Rem. 5.13,
Lem. 6.8, Lem. 7.1] (see also [Pell2, Thm. 1]) we have

Ze = (t, — O)L (f) = (t; — 0)loge(1) = *wll € Tx(Kuo).
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Remark 4.49. We continue with the notation of Example 4.48 and recall the
definition of Tx (K ) from §2.1. We set

Uge = {z € Matiox1(Ts(Kao)) | expge (@) € Matyex1 (Alt])}-

Using the action of Alts;] to Maty, x1(Tx (Ko )) by left multiplication, one can
see that Ug, is an A[ty]-module. We call Ug, the unit module (see [ATR17]
and [ANDTRI18] for more details). By Example 4.48, we see that Z¢ € Ug,
when n = s = 1. The situation is more interesting when n is larger. Set n = ¢
and s = 1. By [Deml15, Ex. 3.3.7], we have

Qmalt) = (1 =0t - t)(l (- 91/;;_..9(1,1 — 91/q)> € KP(ty)[t].

A small calculation shows that ve € Alty] and therefore Z¢ € Ug, for n = ¢
and s = 1. In other words, although the elements v; in the proof of Theorem
4.46 constructing the special point ve for this case are not in Afty], vc is itself
in Afty]. It would be interesting to analyze under what conditions Z¢ lies in
Ug.-

A THE PROOF OF THEOREM 4.17

Throughout this section we let G be the Anderson Alty,]-module of dimension &
defined as in (4.4). We should also mention that unlike the rest of the paper
we use the notation Gy for the matrix G(6) in (4.4) and Gy(f) for G(0) - f for
any f € Matgx1(Tyx) in this section.

A.1 OPERATORS

Let dp, 01 : Matyxq(Tx[o]) = Matgx1(Tx) be the maps given by

50(221:0 aiai) = af and 51(2220 aioi) =3, al. Furthermore for any
f=> a;m7" € Matyxq(Tx[7]) we recall the definition of f* in §3.3 and define
the map f*: Mat1x4(Tx[o]) = Mat1xx(Tx[o]) by

[ (g)=gf"

Then we state the following lemma whose proof can be given similar to the
proof of [GP19, Lem. 4.2.2] and [Jus10, Lem. 1.1.21- 1.1.22].

LEMMA A.1. Let f= Z?:O ijj € Mathd(Tg)[T].
(a) Let us define Opf : Matgx1(Ts) — Matgx1(Tx) by 00f(g9) = fog. The

following diagram commutes with exact rows:

0 — Matixa(Ts[o]) 2 Matya(Ts[o]) 2% Matax: (Ts]o]) — 0

I I Jos

0 — Matixp(Ts[o]) 29 Matyss(Ts[o]) 22 Matyr (Ts) — 0
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(b)

0 — Matyxa(Ts[o] 22 Mat xa(Ty[0]) 25 Matax: (Ts) — 0

7 Ir s

0 — Matyxx(Ts[o]) 2 Vaty x4 (Ts[o]) 25 Matyxi(Ts) — 0

In particular, we have Ggé1 = 61G}.

A.2 DivisioN TOWERS
We start with a definition.

DEFINITION A.2. For any z € Matgx1(Tx), we call a sequence {f,}52, in
Matgx1(Tyx) a convergent #-division tower above x if

o lim, 00| frlloo = 0.
e Go(fnt1) = fn foralln > 0.
[ ] GO(fO) =X.

We now give the following theorem whose proof uses similar ideas as in the
proof of [GP19, Thm. 4.3.2].

THEOREM A.3 (cf. [GP19, Thm. 4.3.2]). Let x € Matkx1(Tx) Then there
exists a canonical bijection

F: {¢ € Matpx1(Tx)|expa(¢) = z} — {convergent 0-division towers above x}

defined by F(¢) = {expg(9a(0)"" V() }o2y.  Moreover, if {fa}iy is a
convergent 0-division tower above x, then with respect to ||-|leo, we have
hmn—>oo aG(e)n+1fn = C

Proof. Note that by the functional equation (3.6) we have

Go(expg (9a(0)~ ")) = expg (96 (0) ")

and Gg(exps(06(0)71(¢)) = exps(¢) = z. We also see by Lemma 3.9 that
for arbitrarily large n, we have |lexps(9a(0) " "C)|looc = |06(0) " (||co. So the
sequence given as F({) converges to 0 and is actually a #-division sequence
above . Thus the map F' is well-defined. For the injectivitiy, let us assume that
expg(0c(0) =" ¢) = expg(0a(0)~ ("1 ¢) for some (1,¢ € Matgx1(Ts)
and any n € Zsq. Then we have exps (g (0)~ "tV (( — ¢2)) = 0. But by
Lemma 3.9 we see that dg ()~ ("t (¢; — ¢3) should be equal to zero matrix
for sufficiently large n. Thus, one can deduce by the invertibility of 9 (#) that
G = C.

We prove the surjectivity as follows. Let {f,}52, be a convergent 6-division
tower above z. By the convergence of the sequence, there exists N € Z>¢ such
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that for any n > N, f, is in the radius of convergence of log,. Now we set
¢ =0g(0")logs(fn) for any n > N. Then by (3.11) we have

9 (0"2)logg(fur1) = 0c (0" ) logg(Go(fur1)) = dc(0™) loga(fn)-

Thus, our choice for ( is independent of n. Therefore we have f, =
expe (06 (0™1)71¢). Then for any n < N, we obtain by using (3.7) that

fn = Gov-n(fn) = Gov-n(expg(9c(0V ) 71()) = expg (9 (0"1) 7¢).

Thus we see that F({) = {fn}>,- For the last assertion, we
observe that for any n > 0, ¢ — 9c(0"")expg(da(@™F')1¢() =
9 ()" Y51 Bi0c(0)~7 "tV where expg = Y5087, Notice that
for each j, |0c(0"+1)B;06(0)~7 D¢ — 0 as n — oo because by

Proposition 3.5 we see that 1imjﬁoo||ﬂj|\ooqu = 0 for any R € Rso. Thus
limy, 00 [|¢ — 8 (0") frlloo = 0. O

Remark A.4. We recall the definition of the row matrix m from §4.1. By (4.13),
for any 1 < j <r, we have

—1 w
(t —0)% JZ w 1
Hi:j ai w=1 n=1

We now consider the map dg ot : (Matyx,(Tx[t]), ||-]lo) = Matrx1(Ts), ||-lco)-

Let h = [h1,...,hy] € Matix,(Tx[t]) be such that h; = 3272 hi;(t — )7 and

hi; = 0 for j > 0. By the identification of Tx[o]-basis of H(G) as vectors e;;
as in Remark 4.8 and (A.5) we see that

dootlh)=0dp(h1-mi+---+h,-m;) (A6)
= (h1(d,—1)s -+ s P10s - s Pra,—1)s - - -5 Pro)-

LEMMA A.7. Let h € Tx[t] be such that h = Zé‘:o h;i(t—0)7 for somel € Z>g.
Then

Ihlle = sup{[IPillc10lli | @ € Zxo}-

Proof. Assume that h = Zé‘:o h;(t—0) = Zé‘:o g;t’ for some g; € Tx. By the
assumption on g; and h;, we see that g; = h;— (j;fl)hj+19j+1_j+- S (;.)hﬂl_j.
Thus we obtain

Illo = sup{lgsllocll011%}
J
< sup( sup {[[hafl |17 [61%.})
Joog<isl

< sup{ |2l 1015 }-

DOCUMENTA MATHEMATICA 25 (2020) 2355-2411



2406 O. GEzMIg

On the other hand, again by the assumption, we have that h; = Zé:j (;)gzﬂi’j.
Thus similarly we have

sup{[|h; oo [101l%} < sup( sup {[lgilloc[10]l5})

Jj o j<i<l
sup {]|gilloo 012071012, })
<3<l

Ixt>

= lI2le

= sup(
i

which completes the proof. O

Thus, using (A.6) and Lemma A.7, we obtain ||y o t(h)||ec < [|R|lo. There-
fore the map dp o ¢ is bounded. By the fact that Matyx.(Tx[t]) is [|-]e-
dense in Mat,(Tx{t/0}), we extend the map &y o ¢ to a map D :
(Maty - (Tx{t/0}), ||-llo) = Matgx1(Ts), |||lcc) of complete normed modules.

THEOREM A.8 (cf. [GP19, Thm. 4.4.6]). Let (:,®) be a t-frame for G.
Moreover let h € Mati«,(Ts)[t] and assume that there exists a matriz g €
Maty x,(Tx{t/0}) such that g~ D® —g = h. Ifv = 61(¢(h)) € Matyx1(Tsx) and
¢ =D(g+h), then we have exps(¢) = v.

Proof. The proof follows the ideas of the proof of Theorem 4.4.6 of [GP19].
We first let g = Y7, where g; € Mat;,(Tyx) and define g<,, = Zign g;t* and
g>n =D iop git" for n > 0. Furthermore we set

—1 _
. h+g§n - g(gn )q) o g(>n1)q) —G>n
- tn+1 - $n+1

han : € Maty - (Tx[[t]])- (A.9)

Observe that since g(-)® — g = h, the second expression in (A.9) is a power
series in ¢ and divisible by ¢"*!. But since deg,(9<») < n, h, should be a
polynomial in ¢ and therefore h, € Matix,(Tx[t]). Moreover, deg,(h,) <
max{deg;(h) —n — 1,0}. Thus the degree of h,, in t does not depend on n
and therefore h,, can be seen as an element of a free and finitely generated
Ty-module M of Mat; «,(Tx[t]). We now prove several claims.

Claim 1: The sequence {d1(¢(hn))}52, is a convergent #-division tower above

01(e(h)).
Proof of Claim 1: Using Lemma 4.14 and Lemma A.1, we see that

01 (t(hn)) = Go(61(t(hn+1))) = 01(e(hn)) — 61(G((hn+1)))
= 01(t(hn)) — 01(e(hn+1)Go) (A.10)
= 51(L(hn> — tthrl)-

From the definition of h,, and using Lemma 4.14 we obtain

n (_1) n n
51(t(hn — thns1)) = 51L<(§nﬁ) - i’nﬁ) =5, <(a - 1>L(‘fnﬁ)) -0
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where the last equality follows from Lemma A.1(b). Thus (A.10) and (A.11)
imply that §1(¢(hy,)) = Gg(61(t(hnt1))) for n > 0. Similar calculation as above
also shows that Gg(c(hg)) = v = 61(c(h)).

Recall the definition of the norm ||-||, from §3.3 and the norm ||-||; from §4.2
to observe that since ||gn||co — 0 as n — oo, we obtain ||gsn,|[1 = 0 as n — oo.
Moreover we have

—1 1
a1 < max{[lg$ @1, gl } = max{|lgsnlli41®]|1, gsnlli}-

Thus ||Ap]l1 — 0 as n — co. By [GP19, Lem. 2.2.2], the norms ||-||; and ||¢(+)]|+
are equivalent on M and therefore ||¢(hy)]le — 0 when n — oo. Since the t-
degree of h,, is bounded indepedent of n, we can also see that the o-degree of
t(hy) is also bounded and say for arbitrarily large n, ¢(h,) = Z;‘v:o ajol such
that ||a;|ls < 1. Thus we have

181 (c(h)lloo = 1Y IV |oo < sup{flasllcc} = lle(hn)llo- (A.12)
j=0

Thus (A.12) implies that [|61(¢(hn))]|lcc — 0 as n — oo and therefore the
sequence {01(¢(hn))}5%, is a convergent @-division tower above v = §1(¢(h)).
O

Claim 2: We have lim,,_,||0c (0" 1) |lso | hnlle = 0.

Proof of Claim 2: Let us set h,, = Ziv:(’o it where ¢; € Matyx,(Tyx) and by
the discussion in the beginning of the proof we know the existence of some
positive integer Ny which is independent of n. We have from the definition of
h,, that

(=1
n n Ion P — g>n
106" Hlcollhnlle = 0 (@) 15 = P =

= 0607+ sup{ 011 [le:ll: } R

n 1 13
= sup{[|0]|" 1 cs 11} (A-13)
= [leot™ ! + -+ enpt™ TN
= 950 = gonllo-

But observe that g € Maty x,(Tx{t/0} so ||g>nlloe — 0 as n — oo which implies
the claim together with (A.13). O

Claim 3: We have lim,, o0 O (0"T1)61(¢(hy)) = C.

Proof of Claim 3: Using the definition of h,, Lemma 4.14 and Lemma A.1,
observe that

lim 6o (e(t" ™ hy +g(§_nl)‘1))) = ILHI S0 (t(hn)Gons1)

n—oo
= lim A (0™ 1)do(1(hn)).

DOCUMENTA MATHEMATICA 25 (2020) 2355-2411



2408 O. GEzMIg

Thus using the definition of ¢, we see that ¢ = lim, e g (0"1)d0(L(h
Therefore we need to show that lim,, o dg (071 (01 (t(hn)) — do(t(hy)))
Observe that

n))-
0.

181 (2(hn)) = o (elhn)) oo < 1D alV oo < sup{llaz 9} < [le(hn) 2. (A14)

Jj=1

Thus (A.14) implies that the claim is equivalent to showing that
lim,, 00 O (07T)|[e(hn)||2 = 0. Since for sufficiently large n, [|c(hn)|ls < 1,
we have to show that lim, ., 9g(60""1)||¢(h,)|ls- By the equivalence of the
norms ||-||¢ and ||¢(-)|lc on M, the claim follows from Claim 2. O

Thus the proof of the theorem follows easily as by Claim 1, Claim 3 and The-
orem A.3 we see that exps(¢) = d1(¢(h)) = w. n

Proof of Theorem 4.17. Let us choose an arbitrary element
h = [hl(dlfl)a coshao, o R -1y hyo]T € Matgx1(Ts)

and let h = [zjl Yhag(t—0)7, . 0 hey(t — 0)7] € Maty (T [t]). Since
Matqx,(Tx[t]) 1s ||-]|o-dense in Matq ., (Tx{t/0}), we can write AU = u + h so
that u € Mat;x,(Tx[t]) and ||hllp < 1. We also have that ||A(™]||y < ||h||2

holds for all n > 0. Then the series H := > h(") converges to an element of
n=1

Mat; ., (Tx{t/60}) because ||h||s < 1. Moreover, H(~1)—H = h. By Proposition

[GP19, Prop. 4.5.2], there exists U € Matx,.(Tx[t]) such that U-D — U = u.

Set x := (U + H)¥~!. Then one can see that

2V — = (u+h) T =h.

Using Remark 4.8 and Remark A.4 one can observe that d1(¢(h)) = h. There-

L
fore by Theorem A.8 we have that expg(D(x + h)) = 61(¢(h)) = h. So expg is
surjective. O
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