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Abstract. Estimates for the principal curvature of distance spheres
in Riemannian manifolds with sectional curvature bounded from
below are well known. The same holds for the mean curvature
of distance spheres in Riemannian manifolds with Ricci curvature
bounded from below.

In this article we present new estimates for convexity properties of the
distance function of a point under different assumptions, for example
for manifolds with lower bounds on the conjugate or on the focal
radius in addition to these curvature conditions.

The main idea is to introduce a new tensor field describing the
differential of the exponential map and verifying a Riccati equation.
This technique allows us to get new estimates for the volume form
and for Jacobi fields in this context but also to gain new insights into
well-known comparison theorems.
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1 Introduction and main results

In Riemannian geometry one aims to compare the local geometry of com-
plete Riemannian manifolds M with those of reference manifolds, usually with
manifolds of constant curvatureMn

λ . Convexity properties of distance functions
dp = d(p, .) of a point p ∈M are often useful for getting information about the
global structure of M . Therefore we consider the Hessian A = Hess dp. A can
be seen as the second fundamental tensor or Weingarten map of the distance
spheres centered at p, and trA

n−1 =
∆dp

n−1 is the mean curvature of those spheres.
The research question of this article is: What are necessary and sufficient con-
ditions to get estimates for Hess dp or ∆dp?

The task of finding estimates for A can be reduced to an ordinary differential
equation problem. A is a symmetric tensor field along geodesics c starting at
p, the integral curves of graddp. The changing of A is described by the Riccati
equation ∇

dtAc(t) + A2
c(t) + R = 0, where R = Rċ = R(., ċ)ċ is the curvature

tensor in the direction of ċ. Firstly, this follows from the general equation
(∇N Hess f)(X)+(Hess f)2(X)+RN(X) = ∇X∇NN for functions f :M → R

with N = gradf , X a vector field and RN (X) = R(X,N)N the curvature ten-
sor in direction N . Secondly, N is autoparallel because ‖ gradf‖ = 1 for dis-
tance functions. Hess dp|q at a point q except at p and the cut locus of p is there-
fore entirely determined by the Riccati equation and the curvature tensor R
along the minimal geodesic from p to q. graddp|q is an eigenvector of Hess dp to
the eigenvalue 0. Since distance spheres are increasingly convex with decreasing
radius, A is developing in t = 0 a pole of order 1 as in the Euclidean space. In

general, the Laurent expansion of A starts as A(t) = Ac(t) =
1
t I−

R(0)
3 t+O(t2)

as t→ 0.

In addition, for Jacobi fields J orthogonal along geodesics c starting in p with
J(0) = 0 and 〈∇dtJ(0), ċ(0)〉 = 0, we have ∇

dtJ(t) = Ac(t)J(t). This relation
shows that the solution of the Riccati equation holds up to the first conjugate
point. In fact, it is natural to suppose that the geodesic segment is only of
minimal length in all variations with fixed end points. A can be interpreted
as the shape operator of the Euclidean spheres centered in 0p in the tangent
space TpM with the pullback metric expp

∗g(v, w) = g(exp∗v, exp∗w), which is
positive definite outside critical points of expp. The images of these spheres
under the exponential map form locally a parallel hypersurface family (St)t>0

along geodesics starting at p up to the first conjugate point. These hypersur-
faces St are the levels of dp up to the cut locus of p and the levels of a local
distance function d : expp(U) → R given by d(q) = ‖(expp|U )−1(q)‖ for an
open neighborhood U of a non-critical point of expp.

A develops a singularity along c in the first conjugate point c(c0), c0 > 0. To
be precise, A is of the form 1

t−c0
P + B(t) near c0. If k > 0 is the multiplicity

of the conjugate point and J1, ..., Jk are the Jacobi fields with Ji(0) = 0 and
Ji(c0) = 0, so P is the orthogonal projection on the linear subspace spanned by
J ′
i(c0). B is differentiable in c0 and vanishes on the image of P , i.e. B(c0)P = 0

(cf. [11, Remark 2] and Section 6.2). In particular, the minimal eigenvalue of
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A goes to −∞ at c0.
To compare A with the geometry of the model spacesMn

λ of constant curvature
λ ∈ R, we denote by snλ and csλ the solutions of the Jacobi equation y′′+λy = 0
with snλ(0) = 0, sn′λ(0) = 1, csλ(0) = 1 and cs′λ(0) = 0. We set ctλ =
sn′

λ

snλ
= csλ

snλ
. If the curvature along c is controlled by λ ≤ R ≤ Λ, the upper

and lower bounds for A are of type 1
t + O(t) as t → 0. More precisely, the

Riccati comparison (cf. for example [11]) yields ctΛ I ≤ A ≤ ctλ I. If the Ricci
curvature along c is bounded from below by Ric(ċ) ≥ (n−1)λ, then the Riccati
comparison gives trA ≤ (n− 1) ctλ.
These relations are used to prove, for example, the comparison theorems
like Rauch’s comparison theorems, the Bishop-Gromov volume comparison,
Toponogov’s theorem, Myers’ theorem, Cheng’s maximal diameter sphere
therorem or Cheeger-Gromoll’s splitting theorem (cf. [16], [20]). The key
to this technique along a geodesic is that the second-order Jacobi equation
J ′′ = −RJ is split into two first-order equations

J ′ = AJ and A′ +A2 +R = 0 (1.1)

and that one can get estimates of the solution of the non-linear Riccati equation
which leads to Jacobi field estimates. These estimates are important because
many proofs use geodesic variations. An alternative technique is the use of the
index form (cf. [13, Section 4.5]).
In Theorem 1 we give new lower bounds for Hess dp and ∆dp of type 1

t +O(1)
as t→ 0.

Theorem 1 (Convexity properties of the distance function of a point, cf.
[6], Theorem 3.12). Let (Mn, g) be a complete n-dimensional Riemannian
manifold, c : [−l1, l2] → M a normal, minimal geodesic, l1, l2 > 0 and
δ(t) = ctλ(t+ l1) + ctλ(l2 − t). Then for the distance function dc(0) : M → R

of c(0) we have along c the following estimates:

1. If the curvature tensor R = R(., ċ)ċ along c is bounded from below by
λ ∈ R on [−l1, l2] we have for t ∈ (0, l2) and v ∈ Tc(t)M , ‖v‖ = 1,
〈v, ċ(t)〉 = 0

−δ(t) ≤ 〈Hess dc(0)|c(t)v, v〉 − ctλ(t) ≤ 0 (1.2)

2. If the Ricci curvature along c is bounded from below by (n − 1)λ, λ ∈ R

on [−l1, l2], i.e. Ric(ċ(t)) ≥ (n− 1)λ, we have for t ∈ (0, l2)

−δ(t) ≤ ∆dc(0)|c(t)
n− 1

− ctλ(t) ≤ 0 (1.3)

Remark 1. For the lower bound in (1.2) and (1.3) we have

δ(t) = ctλ(t+ l1) + ctλ(l2 − t) =
snλ(l1 + l2)

snλ(t+ l1) snλ(l2 − t)
.
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δ · I is the Hessian of triangle length excess function of the points cλ(−l1)
and cλ(l2) of a normal comparison geodesic cλ restrained to the orthogonal
complement of ċλ in the model space Mn

λ .

Remark 2. Theorem 1 is a generalization of a well-known estimate of the
Hessian of distance spheres which can be obtained by considering the triangle
length excess function e0,l2(q) = dc(0)(q) + dc(l2)(q) − l2(cf. [1, remark to
Lemma 1.4]). This identity is the special case l1 = 0 of (1.5)(see also (1.9)).
e0,l2 is convex on c[0,l2], i.e. 0 ≤ Hess e0,l2|c(t) ≤ ∆e0,l2|c(t) or equivalent
Hess dc(0)|c(t) ≥ −Hess dc(l2)|c(t). So upper bounds for Hess dc(l2)|c(t) can be
converted to lower bounds for Hess dc(0)|c(t). However, these lower bounds do
not describe the pole of Hess dc(0) in c(0) as Theorem 1 does.

Remark 3. In Theorem 1 and 2 we assume for regularity reasons of the
distance function that the geodesic c is minimal. This guarantees the existence
of Hess dp but also of the shape operator of the distance spheres of c(−l1) and
c(l2) along c on (−l1, l2). As a matter of fact, the estimate also holds for
the shape operator A of the distance spheres of c(0) along c if the geodesic
segment c[−l1,l2] has no conjugate points. This condition replaces the com-
monly used stronger assumption on the upper sectional curvature bound (see
also Theorem 8).

Remark 4. It is also possible to have non-constant lower sectional curvature
or Ricci curvature bounds. The non-constant curvature bounds are interesting,
for example, in the examination of almost flat manifolds (cf. [27]). In [17]
they proved a generalized Toponogov’s theorem for this geometry. A complete
analytic proof of Theorem 1 is given after the proof of Theorem 2 in Section 3.

Geometric Proof. The upper bound in (1.2) and (1.3) follows from the Riccati
comparison. Let dc(−l1) : M → R be the distance function of c(−l1) and
dc(l2) : M → R the distance function of c(l2). The idea is to compare the
distance spheres of c(0) with those of c(−l1) and c(l2).
Therefore we consider the triangle length excess functions

e−l1,l2(q) = dc(−l1)(q) + dc(l2)(q)− (l1 + l2)

and

e(q) = l1 + dc(0)(q)− dc(−l1)(q) (1.4)

(see Figure 1). e−l1,l2(q) measures the length of the detour from c(−l1) to c(l2)
going via q. e(q) is the length of the detour from c(−l1) to q always going
via c(0). The latter is a kind of reverse triangle inequality for the triangle
c(−l1), c(0) and q. The segment c[−l1,0] is always greater than the difference
of the other two sides. Because c : [−l1, l2] → M is minimal, we conclude
from the triangle inequality that e−l1,l2 ≥ 0, e−l1,l2(c(t)) = 0 for t ∈ [−l1, l2],
e ≥ 0 and e(c(t)) = 0 for t ∈ [0, l2]. That is why e−l1,l2 and e are convex on
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c(−l1)
c(0)

c(l2)

q

reverse triangle inequality: |dc(−l1)(q)− dc(0)(q)| ≤ l1 = d(c(−l1), c(0))
triangle inequality: d(c(−l1), c(l2)) = l1 + l2 ≤ dc(−l1)(q) + dc(l2)(q)

Figure 1: triangle length excess functions

c|(0,l2) (see Figure 2). Hess e−l1,l2 ≥ 0 and Hess e ≥ 0 means that the principal
curvature of the spheres of c(0) are bounded from the bottom by those of c(−l1)
which for its part is bounded from the bottom by upper bounds of distance
spheres of c(l2). We have

dc(0)(q) = l1 + dc(0)(q)− dc(−l1)(q)

+ dc(−l1)(q) + dc(l2)(q)− (l1 + l2)

− dc(l2)(q) + l2

= e(q) + e−l1,l2(q)− dc(l2)(q) + l2.

(1.5)

By the Riccati comparison, the Hessian and the Laplacian of dc(l2) in c(t) are
bounded from above by ctλ(l2 − t) and (n − 1) ctλ(l2 − t), respectively. The
lower bound now follows from this and from the lower convexity bound for e
in Theorem 2.

Corollary 1 (cf. [4], Theorem 5.6). Let (Mn, g) be a complete n-dimensional
Riemannian manifold, c : R → M a normal geodesic. Choose i0 > 0 such that
c|[s,s+i0] is minimal for all s ∈ [− i0

2 , 0]. Then in Theorem 1 the lower bound
can be defined by

δ(t) =

{

2 ctλ(
i0
2 ) for 0 ≤ t ≤ i0

2

ctλ(t) + ctλ(i0 − t) for i0
2 ≤ t < i0.

(1.6)

In particular, Hess dc(0)|{ċ}⊥ is strictly convex or ∆dc(0) > 0 along c|(0,f0) with

f0 > 0 such that ctλ(f0) = 2 ctλ(
i0
2 ).

Proof. As the injectivity radius is a continuous function, i0 with this property
exists. For a given t ∈ (0, i02 ) the function δ of Theorem 1 is minimal when t
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c(−l1)
c(0)

c(t)

c(l2)

{dc(0) ≡ t} {dc(−l1) ≡ l1 + t}

{dc(l2) ≡ l2 − t}

Figure 2: comparison of distance spheres

is in the middle of [−l1, l2], that is l1 = i0
2 − t and l2 = t + i0

2 . For a given

t ∈ [ i02 , i0) choose l1 = 0 and l2 = i0.

In Section 6 we discuss the results and apply them to get new Jacobi field esti-
mates (see Section 6.3), some rigidity properties (see Section 6.4) and volume
estimates (see Section 6.5) in this context. The analytic examples in Section 7
show the sharpness of the results and allow us a better understanding. It ends
with a geometric example constructed by a sequence of surfaces of revolution.
The key argument of the proof of Theorem 1 is the following Theorem 2.

Theorem 2 (Comparison theorem for the convexity of a reverse triangle
length excess function). Let (Mn, g) be a complete n-dimensional Rieman-
nian manifold, c : [−l1, l2] → M a normal minimal geodesic, l1, l2 > 0 and
ǫ(t) = ctλ(t) − ctλ(t + l1). Then the reverse triangle length excess function
e :M → R defined by e(q) = l1 + dc(0)(q)− dc(−l1)(q) is convex along c|(0,l2).

1. If the curvature tensor R(., ċ)ċ along c is bounded from below by λ ∈ R on
[−l1, l2] we have for t ∈ (0, l2) and v ∈ Tc(t)M , ‖v‖ = 1, < v, ċ(t) >= 0

〈Hess e|c(t)v, v〉 ≥ ǫ(t) > 0 (1.7)

2. If the Ricci curvature along c is bounded from below by (n−1)λ on [−l1, l2],
λ ∈ R, i.e. Ric(ċ(t)) ≥ (n− 1)λ, we have for t ∈ (0, l2)

∆e|c(t)
n− 1

≥ ǫ(t) > 0 (1.8)
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Remark 5. ǫ(t) are the non-zero eigenvalues of the Hessian of the correspond-
ing excess function e in the model space Mn

λ . It is

ǫ(t) = ctλ(t)− ctλ(t+ l1) =
snλ(l1)

snλ(t) snλ(l1 + t)
.

So the Laplacian and the Hessian of e are bounded from below by the geometry
of the model space.

Remark 6. We consider e0,l2 = dc(0) + dc(l2) − l2, the excess function of the
points c(0) and c(l2). As e0,l2(q) = e(q)+ e−l1,l2(q) (see (1.5)), we have on the
orthogonal complement of ċ

0 < Hess e|c(t) ≤ Hess e0,l2|c(t) ≤ ∆e0,l2|c(t) = ∆dc(0)|c(t) +∆dc(l2)|c(t). (1.9)

Under the assumptions of Theorem 2 this gives a lower bound for the Hessian
or the Laplacian of e0,l2 along the minimal geodesic connecting c(0) and c(l2).
Hess e0,l2|c(t) is only positive semidefinite when c(l2) is a conjugate point of
c(0), as for an orthogonal Jacobi field J with J(0) = 0, J(l2) = 0 we have
Hess e0,l2|c(t)J(t) = 0. In this case the inequalities (1.7) and (1.8) are not
applicable.
The Riccati comparison gives upper bounds for the Hessian or Laplacian of e0,l2
and e. For other estimates of e0,l2 in the case of lower Ricci curvature bounds,
we refer to [2, Proposition 2.3].

Remark 7. From the statement in Theorem 2 we deduce either
(

∂
∂s |s=0

Hess dc(s)

)

|c(t)
≥ 1

sn2
λ
(t)

or
(

∂
∂s |s=0

∆ dc(s)

n−1

)

|c(t)
≥ 1

sn2
λ
(t)

,

(cf. [6, Theorem 1.2]) which means that the principal curvature or the mean
curvature of the distance spheres at a given point c(t) increases at least as much
as in the model space when changing the center of the spheres along c. (see
Figure 2). In Section 3 we show that this inequality holds when R ≥ λ or
Ric(ċ) ≥ (n− 1)λ on c|[0,t] (see (3.13) and (3.17), respectively). This compar-
ison is the main argument to prove Theorem 2.

The proof of Theorem 2 given in subsection 3 uses only elementary analysis
techniques along a geodesic. The new idea is to introduce a regular tensor
field B(t) = A(t) − 1

t I which can be geometrically interpreted as the Hessian
of an excess function for right triangles (see Section 2.1). B fulfills, like A, a
Riccati equation (see (2.2)). In Section 6 we will see that Jacobi fields and the
volume form can be expressed in terms of B so that estimates of B are the
most interesting.
The convexity of the length excess function (1.9) can be seen as a comparison of
Hess dc(0) with a background shape operator Al2 of the distance spheres c(l2).
The same holds for the reverse length excess function with the background
shape operator A−l1 of the distance spheres c(−l1). The Riccati equation (1.1)
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gives a L1-barrier for these background shape operators on [0, l2) under the
assumption of a lower Ricci curvature bound. Considering the inverse tensor
field of Hess e and Hess e0,l2 along c allows us to express bounds of the Hessian of
these excess functions in terms of this L1-barrier (see Section 4). This improves
the upper and lower bounds for the Laplacian of both length excess functions
of Theorem 2.

Theorem 3 (Triangle length excess functions and Ricci curvature). Let
(Mn, g) be a complete n-dimensional Riemannian manifold, c : [−l1, l2] →M
a normal minimal geodesic, l1, l2 > 0. Let e : M → R be the reverse
triangle length excess function of the points c(0) and c(−l1) defined by
e(q) = l1 + dc(0)(q)− dc(−l1)(q) and e0,l2 :M → R be the triangle length excess
function of the points c(0) and c(l2) defined by e0,l2(q) = dc(0)(q)+dc(l2)(q)− l2.
Suppose that the Ricci curvature Ric(ċ) along c is bounded from below by
(n − 1)λ, λ ∈ R on [−l1, l2]. Then the comparison with the model space gives
for t ∈ (0, l2) and v ∈ Tc(t)M , ‖v‖ = 1, 〈v, ċ(t)〉 = 0

e−2γλ(t) ≤ 〈Hess e|c(t)v, v〉
ctλ(t)− ctλ(t+ l1)

≤ e2γλ(t) (1.10)

and

e−2γλ(t) ≤ 〈Hess e0,l2|c(t)v, v〉
ctλ(t) + ctλ(l2 − t)

≤ e2γλ(t) (1.11)

with γλ(t) =
√
n− 1

√

δλ(t)
√

snλ(t) and δλ(t) =
snλ(l1+l2)

snλ(l1) snλ(l2−t) .

Another possible estimate is

0 < 1
t e

−2γe(t) ≤ 〈Hess e|c(t)v, v〉 ≤ 〈Hess e0,l2|c(t)v, v〉 ≤ 1
t e

2γe(t)

for 0 < t < l2 with γe(t) =
√

(n− 1)
√

δe(t)
√
t and δe(t) = ctλ(l1) +

ctλ(l2 − t) − λt.

The examples in Section 7 show that under a lower Ricci curvature bound one
cannot expect that B(t) = A(t)− 1

t I is controlled along c by a bounded function

as in (1.2). However, from Theorem 3 a barrier for the L1-norm of order O(
√
t)

as t → 0, which is mostly sufficient for Jacobi field estimates as explained in
Section 6.3, is possible.

Theorem 4 (Convexity, conjugate radius and Ricci curvature, (cf. [5],
Theorem 2)). Let (Mn, g) be a complete n-dimensional Riemannian manifold,
c : [−l1, l2] →M a normal, geodesic, l1, l2 > 0, without conjugate points and
such that for the Ricci curvature along c we have Ric(ċ) ≥ (n − 1)λ, λ ∈ R.
Furthermore let A be the second fundamental tensor of the distance spheres of
c(0) along c. Then we have the following estimate

∫ t

τ

‖Ac(x) − ctλ(x)I‖ dx ≤
√
n− 1

√

δλ(t)
(

1 + 4 e2γλ(t)
)

√

snλ(t− τ) (1.12)
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for all 0 ≤ τ ≤ t < l2 with γλ(t) and δλ(t) as in Theorem 3. The comparison
with the Euclidean geometry gives

∫ t

τ

‖Ac(x) − 1
xI‖ dx ≤

√
n− 1

√

δe(t)
(

1 + 4 e2γe(t)
)√

t− τ (1.13)

for all 0 ≤ τ ≤ t < l2 with γe(t) and δe(t) as in Theorem 3.

Convexity of the distance function of a point is directly related to convexity of
metric balls. An open metric ball B(p, r) of radius r around p ∈M is meant to
be convex in the sense that for two points p1, p2 ∈ B(p, r) there exists exactly
one minimal geodesic connecting p1 and p2 and that this geodesic lies in B(p, r).
A lower bound on the convexity radius convexRad(M) ≥ c0 > 0 implies, for
the injectivity radius, injRad(M) ≥ 2 convexRad(M) ≥ 2c0 > 0, and that the
distance spheres are convex for a radius smaller than c0, i.e. Hess dp ≥ 0 on
B(p, c0). On the other hand, if Hess dp ≥ 0 on B(p, c0) for all p ∈ M , c0 > 0
then convexRad(M) ≥ min{c0, injRad(M)/2}. This strong assumption on the
convexity radius leads, in the case of a lower bound on the Ricci curvature
Ric(M) ≥ (n− 1)λ, λ ∈ R, to bounds for the Hessian of distance spheres. It is

0 ≤ Hess dp|q ≤ ∆dp|q ≤ (n− 1) ctλ(dp(q)) for q ∈ B(p, c0)\{p}. (1.14)

For q ∈ B(p, 2c0)\B(p, c0) we have, with the unique minimal geodesic c from p
to q and using the convexity of the length excess function,

Hess dp|q = Hess dp|q +Hess dc(2c0)|q −Hess dc(2c0)|q

≤ ∆dp|q +∆dc(2c0)|q

≤ (n− 1) (ctλ(dp(q)) + ctλ(2c0 − dp(q)))

(1.15)

and

Hess dp|q ≥ −Hess dc(2c0)|q

≥ −∆dc(2c0)|q

≥ −(n− 1) ctλ(2c0 − dp(q)).

(1.16)

For these manifolds we constructed a C1,1-atlas (cf. [6, Chapter 8]) by defining,
for a p ∈ M and a unit vector ei ∈ TpM , a component ϕi of a chart ϕ on
B(p, c0) by ϕi(q) = c0 − dexpp(c0ei)

(q). Observe that ϕi(p) = 0, gradϕi|p = ei
and ‖Hessϕi‖ ≤ (n−1)(ctλ(c0−r)+ctλ(c0+r)) on B(p, r). Using the volume
comparison (see Theorem 7), this allows us to get a C1-compactness theorem
for the space of manifolds with convexRad(M) ≥ c0 > 0, Ric ≥ (n−1)λ, λ ∈ R

and Vol(M) ≤ V . Compared to the Anderson - Cheeger’s Cα-compactness
theorem ([1]), the stronger assumption on the convexity radius allows us to get
better regularity by only using ordinary differential equation techniques.
With regard to the Riccati equation it is natural to consider only explicit or
implicit properties of the curvature tensor Rċ along c. Implicit properties are,
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for example, the conjugate or the focal radius of c, because they are deter-
mined by Jacobi fields. An upper curvature bound R ≤ Λ along a geodesic c
implies a lower bound on the conjugate radius of c (conjRad(c) ≡ ∞ if Λ ≤ 0,
conjRad(c) ≥ π√

Λ
if Λ > 0) and on the focal radius of c (focalRad(c) ≡ ∞ if

Λ ≤ 0, focalRad(c) ≥ π
2
√
Λ

if Λ > 0). For a geodesic, a lower bound on the

focal radius focalRad(c) ≥ f0 > 0 means that if c(s) is a focal point of c(t),
s > t, i.e. there exists a Jacobi field J 6= 0 with ∇

dtJ(t) = 0 and J(s) = 0, we
have s− t ≥ f0.
The correlation between the radius function is expressed through

convexRad(M) = min{focalRad(M), injRad(M)
2 } and 2 focalRad(M) ≤

conjRad(M). The relation between the focal radius and convexity of the
distance function of a point from Lemma 2 (see Section 4.2) implies that a
geodesic c with conjugate radius (conjRad(c) ≥ c0) and sectional curvature
bounded below (R ≥ λ) also has a lower focal radius bound f0. Indeed, from
Corollary 1 it follows that all distance spheres are convex on (0, f0) with
0 < f0 <

c0
2 such that ctλ(f0) = 2 ctλ(

c0
2 ). The analytic example in Section 7

shows that this is not true when only the Ricci curvature along a geodesic
is bounded below. But this behavior along a geodesic does not imply that
manifolds with injectivity radius and Ricci curvature bounded below do not
admit a universal lower focal radius bound. If this is true, the proof of the
Anderson - Cheeger’s compactness theorem could be simplified. The examples
show only that an approach by arguing along a geodesic will be impossible.
The following Theorem 5 shows that a lower focal radius barrier implies
estimates of the second fundamental tensor of distance spheres and that this
represents a strong assumption on the local geometry of a manifold. The
bounds from (1.14) can be improved in the way that we get estimates of type
1
dp

+O(1) as dp → 0 for Hess dp.

Theorem 5 (Convexity, focal radius and Ricci curvature, (cf. [6], Chapter 6)).
Let (Mn, g) be a complete n-dimensional Riemannian manifold, c : R → M
a normal geodesic. We suppose that the focal radius of c and of the inverse
geodesic c−(t) := c(−t) are bounded below, i.e., that there is a f0 with
min{focalRad(c), focalRad(c−)} ≥ f0 > 0. Then for the conjugate radius of c
we have

conjRad(c) = conjRad(c−) ≥ focalRad(c) + focalRad(c−) ≥ 2f0

and the second fundamental tensor A of the distance spheres of c(0) along c is
strictly convex on (0, f0).
If, in addition, we have for the Ricci curvature Ric(ċ(t)) ≥ (n − 1)λ, λ ∈ R,

λf2
0 ≤ π2

4 , then

0 < Ac(t) ≤ (n− 1) ctλ(t) for t ∈ (0, f0) (1.17)

and we have for t ∈ (f0, 2f0)

−(n− 1) ctλ(2f0 − t) ≤ Ac(t) ≤ (n− 1)
(

ctλ(t) + ctλ(2f0 − t)
)

. (1.18)
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Moreover, there exists a continuous function β : [0, 2f0) → R only depending
on n, λ and f0 with β(0) = (n− 1) ctλ(f0) such that

‖Ac(t) − 1
t I‖ ≤ β(t) for t ∈ [0, 2f0). (1.19)

Remark 8. To be explicit in (1.19), we have for 0 ≤ t < f0

−(n− 1) ctλ(f0 − t) ≤ A(t) − 1
t I ≤ (n− 1) ctλ(f0) (1.20)

which is much better than (1.17) for small t. On the whole interval (0, 2f0]
another possible upper estimate is given by

A(t) − 1
t I ≤ (n− 1)149 ctλ(f0 − t

3 )− (n− 1)λ t
3

for 0 ≤ t ≤ 2f0 and a lower estimate by

1
t I −A(t) ≤ (n− 1)149 ctλ(f0 − t

3 )− (n− 1)λ t
3 + δ(t)

for 0 ≤ t < 2f0 with δ(t) as in (1.6) and i0 = 2f0 (see (4.15), (4.16)).

Remark 9. The hypothesis of a lower focal radius bound f0 can also be applied
in the context of a lower curvature bound λ ∈ R. The technique in Theorem 5
gives then (cf. [6, Lemma 6.7] and (4.6))

− ctλ(f0) ≤ A(t)− ctλ(t) ≤ 0 for 0 < t ≤ f0 (1.21)

which is better than the estimates in Corollary 1 with i0 = 2f0 by a factor of 2.
This estimate is sharp, as shown in Section 7.

In Section 4.2 we give two different proofs. Both techniques are interesting
because they can be used locally in different situations. Starting point of the
proofs are the bounds of A in (1.14), (1.15) and (1.16). These estimates also
hold for other second fundamental tensors Al of distance spheres of other points
c(l) along c. The first approach uses the same technique as in Theorem 3 with
these bounded background fields. The second approach (see Section 5) uses
the Riccati equation Rċ = −A′

l−A2
l . Bounds for the background field Al allow

us to get a barrier function for a kind of integral curvature tensor on [0, 2f0]
(see (1.22)). We can prove that this barrier function has a bounded distance
to Ac(t) − 1

t I due to Theorem 1 (cf. [4, Theorem 5.7]).

To answer the research question we summarize the sufficient conditions yield-
ing new estimates for Hess dp and ∆dp in the double entry Table 1. In the
top horizontal row there are implicit curvature conditions guaranteeing the
existence of A along a geodesic of a certain interval. This replaces the usually
explicit upper curvature condition. The vertical columns on the left side are
explicit lower curvature conditions. Sufficient conditions for getting bounds for
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Table 1: Overview of the new estimates (as t→ 0)

focalRad(c) ≥ f0
focalRad(c−) ≥ f0

conjRad(c) ≥ c0

Rċ ≥ λ A(t)− 1
t I ∈ ctλ(f0) +O(t) A(t) − 1

t I∈ 2 ctλ(
c0
2 ) +O(t)

Ric(ċ)
n−1 ≥ λ

A(t)− 1
t I

∈ (n− 1) ctλ(f0) +O(t)

trA(t)
n−1 − 1

t ∈ 2 ctλ(
c0
2 ) +O(t)

∫ t

0
‖A(x)− 1

xI‖ dx ∈ O(
√
t)

B are: firstly, bounded curvature by the Riccati comparison, secondly, curva-
ture and conjugate radius (Theorem 1) and thirdly, Ricci curvature and focal
radius (Theorem 5) bounded below (see also Table 2).
The Laurent expansion of A can also be written as (see (3.10))

A(t) = 1
t I −

∫ t

0

( τt )
2R(t) dτ − t3W (t) (1.22)

with a positive semi-definiteW andW (0) = 1
45R

2(0). The following Theorem 6
gives a sufficient and necessary condition only in terms of this integral curvature
tensor expression.

Theorem 6 (cf. [4], Theorem 7.2). Let Mn be a complete n-dimensional Rie-
mannian manifold and c : R → M a normal geodesic. Let A be the shape
operator of the distance spheres of c(0) and Rċ = R(·, ċ, ċ) the curvature tensor
along c.

1. Suppose that there is a continuous function β : [0, l2) → R such that
‖A(t)− 1

t I‖ ≤ β(t) on [0, l2).
Set c0 = sup{0 < t < l2 | τβ(τ) < 1 for all 0 ≤ τ ≤ t}. Then we have

(a) the geodesic segment c|[0,l2) has no conjugate points

(b) the distance spheres are strictly convex on (0, c0), i.e. A(t) > 0.

(c) No segment c−|[α,β] with [α, β] ⊂ (0, c0) of the inverse geodesic

c− : R →M with c−(t) = c(c0 − t) has a focal point.

(d)
∥

∥

∥

∥

∫ t

0

(

τ
t

)2
Rċ(τ) dτ

∥

∥

∥

∥

≤ β(t) +

∫ t

0

(

τ
t

)2
β2(τ) dτ on [0, l2).

2. Suppose that there exists a continuous function Λ : R → R such that
∥

∥

∥

∥

∫ t

0

(

τ
t

)2
Rċ(τ) dτ

∥

∥

∥

∥

≤ Λ(t) on [0,∞).

Let l2 > 0 such that β : [0, l2) → R is the maximal solution of β′ =
(Λ + β)2 with β(0) = 0. Then we have ‖A(t) − 1

t I‖ ≤ Λ(t) + β(t) on
[0, l2).
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The proof is given in Section 5 and uses the Riccati equation (2.2) for B(t) =
Ac(t) − 1

t I.

Remark 10. Suppose that Λ in Theorem 6 is a differentiable function with
Λ′ ≥ 0. If Λ(0) = 0 we suppose furthermore Λ′(0) > 0. Then we have β(t) ≤
tΛ2(t)
1−tΛ(t) and hence ‖A(t)− 1

t I‖ ≤ Λ(t)
1−tΛ(t) on [0, t0) where t0 is the unique value

with t0Λ(t0) = 1.

Remark 11. With Theorem 6 we retrieve asymptotically the bounds from the
Riccati comparison. If the curvature is bounded, e.g. ‖R‖ ≤ κ, κ > 0, we can
put Λ(t) = κ

3 t. β(t) =
√

κ
3 tan(

√

κ
3 t) − κ

3 t is a solution of β′ = (Λ + β)2 with

β(0) = 0 on [0,
√

3
κ

π
2 ). This gives ‖A(t) − 1

t I‖ ≤
√

κ
3 tan(

√

κ
3 t) =

κ
3 t +O(t3)

as t→ 0.

Remark 12. Suppose that there is only a bounded barrier for the integral cur-

vature tensor with Λ(t) = κ, κ > 0. Then β(t) = κ2t
1−κt is a solution of

β′ = (Λ + β)2 with β(0) = 0 on [0, 1
κ ). This gives ‖A(t) − 1

t I‖ ≤ κ
1−κt =

κ + κ2t + O(t2) as t → 0. This integral barrier can be obtained under the
assumption of Theorem 1 and 5. Hence Theorem 6 confirms approximately
these results for small t.

One considers normally the focal radius in the context of the Rauch’s second
comparison theorem. For a geodesic c the hypersurface H0 defined by
expc(0)({ċ(0)}⊥) is totally geodesic in c(0) and orthogonal to ċ(0). A signed
distance function to H0 defines an equidistant family Ht of hypersurfaces. The
shape operator H of this family along c develops a singularity in the focal
point. A lower bound on the focal radius guarantees the existence of this fam-
ily on a certain interval. In Section 6.6 we apply our techniques to H . In
particular, this allows us to better understand the geometric impact of a lower
focal radius bound and the relation between H and the shape operators A of
distances spheres. It also gives another proof of Theorem 5 and shows that in
Theorem 6 one can also take the integral curvature expression

∫ t

0
R(τ) dτ .

2 Geometric motivation

2.1 Excess function for right triangles and its convexity prop-

erties

For a better understanding of the analytic proof of Theorem 2 using only
ordinary differential equation techniques along a geodesic, it will be helpful
to consider some geometric aspects first. This leads to a geometric proof of
this theorem for manifolds with sectional curvature bounded from below using
Toponogov’s theorem.
Let c : R → M be a geodesic in M . For a fixed t > 0 let v ∈ Tc(t)M be
a unit vector orthogonal to ċ(t). We consider the total geodesic hypersurface
Ht orthogonal to ċ(t) given by Ht := expc(t){ċ(t)⊥} and the normal geodesic
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γ(s) = expc(t) sv, which lies in Ht. The idea is to express Ht in the model space
Mn

λ using distance functions. As the angle between γ and c is a right angle,
the distance between c(0) and γ(s) can be calculated in the model spaces Mn

λ

of constant curvature. In Rn, it follows from the Pythagorean theorem that we
have

d2c(0)(γ(s)) = d2(c(0), c(t)) + d2c(t)(γ(s))

= t2 + s2.

We conclude from Napier’s rules for right spherical triangles in Sn

cos(dc(0)(γ(s))) = cos(t) cos(s)

and the hyperbolic law of cosines for hyperbolic triangles gives

cosh(dc(0)(γ(s))) = cosh(t) cosh(s).

For the reason that csλ(a + b) = csλ(a) csλ(b) − λ snλ(a) snλ(b), we have 1 =
cs2λ +λ sn

2
λ and therefore csλ(a) = 1− 2λ sn2λ(

a
2 ). This gives for λ 6= 0

2λ sn2λ(
1
2dc(0)(γ(s))) = 1− csλ(dc(0)(γ(s)))

= 1− csλ(t) csλ(s)

= 1− csλ(t)
(

1− 2λ sn2λ(
s
2 )
)

= 2λ sn2λ
(

t
2

)

+ csλ(t)2λ sn
2
λ(

s
2 ).

So the Euclidean Pythagorean relationship for right triangles can be generalized
for all model spaces of constant curvature by

sn2λ
(

1
2dc(0)(γ(s))

)

= sn2λ(
t
2 ) + csλ(t) sn

2
λ

(

1
2dc(t)(γ(s))

)

. (2.1)

The distance function is often rescaled to get a smooth modified distance
function. In the model space, this modified function has equal eigenvalues,
also in normal direction. This is done by introducing the function mdλ(r) =
∫ r

0 snλ(t) dt = 2 sn2λ(
r
2 ) (see 1.4.3 in [16], [20] or the estimate for distance func-

tions in [7]). Note that mdλ is even. Motivated by (2.1), we define for fixed
t > 0 and c minimal on [0, t] the excess function for right triangles of c(0) and
c(t) with right angle in c(t) by

et(q) = mdλ(dc(0)(q))−mdλ(t)− csλ(t)mdλ(dc(t)(q)).

It is et(c(τ)) = snλ(t) snλ(τ − t). For the gradient of et we have

grad et|q = snλ(dc(0)(q)) · graddc(0)|q − csλ(t) snλ(dc(t)(q)) · graddc(t)|q

for q 6= c(t) and q 6= c(0). As grad(mdλ ◦ dc(t))|c(t) = 0 it follows

grad et|c(τ) = snλ(t) csλ(τ − t) · ċ(τ) for 0 ≤ τ ≤ t.
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The Hessian of et in q with v ∈ TqM is given by

Hess et|qv = csλ(dc(0)(q))〈grad dc(0)|q, v〉 · graddc(0)|q
+ snλ(dc(0)(q)) · Hess dc(0)|qv
− csλ(t) csλ(dc(t)(q))〈grad dc(t)|q, v〉 · graddc(t)|q
− csλ(t) snλ(dc(t)(q)) ·Hess dc(t)|qv.

So we have for v orthogonal to ċ(τ), τ 6= t, τ 6= 0,

Hess et|c(τ)v = snλ(τ) · Hess dc(0)|c(τ)v − csλ(t) snλ(t− τ) ·Hess dc(t)|c(τ)v.

As Hess(mdλ ◦ dc(t))|c(t) = id it follows that for v orthogonal to ċ(t)

Hess et|c(t)v = snλ(t)Hess dc(0)|c(t)v − csλ(t)v.

The hypersurface Et := {et ≡ 0} through c(t) is orthogonal to ċ(t). Et

corresponds in the model space to the total geodesic hypersurface Ht. The
shape operator Bλ(t) in c(t) of Et is given by

Bλ(t)v = ∇v
grad et

‖ grad et‖

= 1
‖ grad et‖

(

Hess et(v)− 1
‖ grad et‖2 〈Hess et(v), grad et〉 grad et

)

= 1
‖ grad et‖ (Hess et(v))

⊤
= Ac(t)v − ctλ(t)v.

Bλ measures the difference between the principal curvature of the distance
spheres in M and those in Mλ. We will see that Bλ plays an important role in
the comparison theory along a geodesic and can be used to get new estimates
for A.
If the curvature K of M is bounded from below by λ ∈ R it follows from
Toponogov’s theorem that et(γ(s)) ≤ 0 and that et therefore has a maximum
in s = 0. We conclude

Bλ(t) ≤ 0 if K ≥ λ, that is Et is concave (see Figure 3).

This is equivalent to the upper bound for A = Hess dp given by the Riccati
comparison.
Another geometric property of Bλ under curvature conditions is a monotony
while changing c(0) along c. Let

e−l1
t = mdλ(dc(−l1)(q))−mdλ(t+ l1)− csλ(t+ l1)mdλ(dc(t)(q))

be the excess function for right triangles of the points c(−l1) and c(t) with
right angle in c(t), and suppose that c is minimal on [−l1, t]. We conclude from
Toponogov’s theorem that for a point q with e−l1

t (q) = 0, we have et(q) ≥ 0 if
K ≥ λ (see Figure 3). Let B−l1

λ (t) be the shape operator of E−l1
t := {e−l1

t ≡ 0}
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c(−l1)
c(0)

c(t)

Ht = expc(t)({ċ(t)⊥}) ⊂ {et ≤ 0}

E−l1
t = {e−l1

t ≡ 0} ⊂ {et ≥ 0}

Et = {et ≡ 0}

{et < 0} {et > 0}
α ≥ π

2

Figure 3: case K ≥ λ: Et is concave and the principal curvature of Et is
monotone while changing the center c(0).

in c(t) and v ∈ Tc(t)M orthogonal to ċ(t). Let γ : (−ǫ, ǫ) →M be a curve with

e−l1
t (γ(s)) = 0, γ(0) = c(t) and γ̇(0) = v. Then we have

〈Bλ(t)v, v〉 − 〈B−l1
λ (t)v, v〉

=
1

snλ(t)
〈Hess etv, v〉 −

1

snλ(t+ l1)
〈Hess e−l1

t v, v〉

=
1

snλ(t)

(

(et ◦ γ)′′(0)− 〈grad et,∇Dγ̇|s=0〉
)

− 1

snλ(t+ l1)

(

(e−l1
t ◦ γ)′′(0)− 〈grad e−l1

t ,∇D γ̇|s=0〉
)

=
1

snλ(t)
(et ◦ γ)′′(0) ≥ 0.

0 ≥ Bλ(t) ≥ B−l1
λ (t) is in fact equivalent to (1.7) of Theorem 2.

The excess function for right triangles can also be used for the construction of
almost linear functions in [15]. Indeed, l(q) = mdλ(dc(0)(q))−mdλ(dc(2t)(q)) =
et(q) − e2tt (q) used for this purpose is also the difference of et and the excess
function for right triangles e2tt of the points c(2t) and c(t) with right angle in
c(t).

2.2 Exponential map and Jacobi fields

In this section we will see that Bλ will also appear naturally in the
description of the differential of the exponential map exp∗. To com-
pare the geometry of M around p ∈ M with those of manifolds Mλ

with constant curvature λ ∈ R around pλ ∈ Mλ, we identify Tpλ
Mλ

with TpM via a linear isometry I : TpM → Tpλ
Mλ and consider the map
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Expλ = expp ◦ I−1 ◦ exp−1
pλ

:Mλ →M (see Figure 4). If λ > 0 then Expλ
is defined on Mλ except for the cut locus, i.e. the antipodal point of pλ. We
can consider Expλ to be a generalized normal parametrization of M .

IλtIu : Tpλ
Mλ → TtIuTpλ

Mλ

0pλ

in Tpλ
Mλ

Iu

Iv

tIλtIuIv

Itu : TpM → TtuTpM

in TpM

0p

u

v

tItuv

I

in Mλ

cλ

pλ
Iu

J ′
λ(0) = Iv

Jλ(t) = snλ(t)PtIv

in M

cu

p
u

J ′
v(0) = v

Jv(t) = expp∗|tu tItuv

Expλ := expp ◦I−1 ◦ exp−1
pλ

(exppλ
)−1

normal
coordinates

exppλ

normal
parametrization

(expp)
−1 expp

Figure 4: generalized normal parametrization - Expλ

Jacobi fields describe the differential exp∗ of the exponential map. For p ∈M
and u, v ∈ TpM , ‖u‖ = 1 and 〈u, v〉 = 0, we have expp∗|tutItuv = Jv(t) with

the canonical identification Itu : TpM → TtuTpM and Jv the Jacobi field
along the normal geodesic cu(t) = expp(tu) with Jv(0) = 0 and ∇

dtJv(0) = v.

expp∗ maps the Euclidian Jacobi field Jeucl
v = tItuv with Jeucl

v (0) = 0 and
d
dtJ

eucl
v (0) = v onto the corresponding Jacobi field in M . Therefore the ratio

1
t Jv(t) between the Euclidean Jacobi field and the corresponding one in M
describes the differential of the exponential map expp∗|tu Ituv = 1

t Jv(t).

cλ(t) = exppλ
tIu is the corresponding normal comparison geodesic. The Jacobi

field Jλ along cλ with Jλ(0) = 0 and ∇
dtJλ(0) = Iv is given by snλ(t)PtIv, where
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Pt : Tpλ
Mλ → Tcλ(t)Mλ is the parallel transport along cλ. With the natural

identification IλtIu : Tpλ
Mλ → TtIuTpλ

Mλ we have exppλ∗|tIuI
λ
tIuIv = 1

t Jλ(t) =
snλ(t)

t PtIv. Hence, Expλ∗ is described by the following relations

Expλ∗|cλ(t)PtIv = Jv(t)
snλ(t)

, Expλ∗|cλ(t)ċλ(t) = ċ(t) and Expλ∗|pλ
Iv = v.

Expλ∗ maps the Jacobi field in the model space onto the corresponding one
in M . It maps the tangent field of the comparison geodesic onto the tangent
field of c. In pλ Expλ∗ is the identity.
We conclude from Rauch’s first comparison theorem that Expλ contracts
length, i.e. ‖Expλ∗‖ ≤ 1, if for the sectional curvature we have K ≥ λ. Simi-
larly, Expλ dilates length if K ≤ λ. Furthermore, Expλ contracts volumes, i.e.
| det(Expλ∗)| ≤ 1, if the Ricci curvature satisfies Ric ≥ (n− 1)λ.

The ratio Ev
λ(t) :=

Jv(t)
snλ(t)

of the Jacobi field in M and the corresponding one

in Mλ is a vector field along c, which describes the differential of Expλ in
orthogonal direction. For the covariant derivative of this vector field along c,
we calculate

∇
dtE

v
λ(t) =

1
snλ(t)

∇
dtJv(t)−

csλ(t)
sn2

λ
(t)
Jv(t)

= Ac(t)E
v
λ(t)− ctλ(t)E

v
λ(t)

= Bλ(t)E
v
λ(t).

The shape operator Bλ(t) of the level Et is therefore determined by these vector
fields. Via this equation it defines a symmetric tensor field Bλ(t) along c. Bλ(t)
can be extended to t = 0 smoothly and is defined on the orthogonal complement
of ċ. It fulfills, on the one hand, the equation

∇2

dt2E
v
λ(t) = − csλ(t)

sn2
λ
(t)

∇
dtJv(t) +

1
snλ(t)

∇2

dt2Jv(t)

−
(

−λ snλ(t)
sn2

λ
(t)

− 2
cs2λ(t)

sn3
λ
(t)

)

Jv(t)− csλ(t)
sn2

λ
(t)

∇
dtJv(t)

= − ctλ(t)Ac(t)E
v
λ(t)−Rċ(t)E

v
λ(t)

+ λEv
λ(t) + 2 ct2λ(t)E

v
λ(t)− ctλ(t)Ac(t)E

v
λ(t)

= −
(

Rc(t) − λI + 2 ctλ(t)Bλ(t)
)

Eλ
v (t)

and, on the other hand,

∇2

dt2E
v
λ(t) =

(∇
dtBλ(t) +B2

λ(t)
)

Eλ
v (t).

So we get two decoupled equations

∇
dtE

v
λ = BλE

v
λ Ev

λ(0) = v, Ev
λ = Jv

snλ

∇
dtBλ = −2 ctλBλ −B2

λ − (Rc(t) − λI) Bλ(0) = 0. (2.2)
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Bλ satisfies, like A, a Riccati equation along the geodesic c. These equations
have a calculational advantage over the equations (1.1) because Bλ is regular in
t = 0, whereas A develops a pole. The relation with the exponential map leads
to another approach to Jacobi field and volume form estimates as explained in
Section 6.
The construction of the family of hypersurfaces Et = e−1

t (0) is based on a
parametrized family of functions et, unlike the distance spheres of a point
that are the level sets of a distance function. More generally, for a func-
tion f :M → R and p ∈ M with gradf|p 6= 0, the shape operator A of the

level set f−1(f(p)) in a neighborhood of p is given by A(X) = ∇X
grad f

‖ grad f‖ =
1

‖ grad f‖ Hess f(X) − 1
‖ grad f‖3 〈Hess f(gradf), X〉 gradf , X ⊥ grad f . For the

covariant derivation in normal direction T = grad f
‖ grad f‖ we have the Riccati equa-

tion
(∇TA)(X) + ΦA(X) +A2(X) +RT (X)− Λ(X) = 0

with a vector field X , the curvature tensor RT (X) = R(X,T )T , a function
Φ = 1

‖ grad f‖3 〈Hess f(grad f), gradf〉 and a tensor field Λ defined by

Λ(X) = 3
‖ grad f‖6 〈Hess f(gradf), X〉 gradf

− 1
‖ grad f‖4 〈∇X(Hess f(gradf)), grad f〉 gradf

− 1
‖ grad f‖4 〈Hess f(grad f),Hess f(X)〉 gradf

− 2
‖ grad f‖4 〈Hess f(grad f), X〉Hess f(grad f)

+ 1
‖ grad f‖2∇X(Hess f(gradf)).

The Riccati equation (2.2) for Bλ has the same structure. Along an integral
curve γ of gradf we have Φ ◦ γ = − d

dt
1

‖γ̇‖ . Thus (2.2) cannot come from such

a construction. Note that for a distance function f , i.e. ‖ gradf‖ = 1, this
equation is reduced to (∇TA)(X) +A2(X) +RT (X) = 0.

3 On the analysis of the Riccati equation

The proof of Theorem 1 and 2 will be given at the end of this section. First we
will reduce the problem to an elementary, purely analytical one, introduce the
notations for the comparison geometry, and prove some properties of the second
fundamental tensor of the distance spheres and related geometric objects. The
definitions are motivated by the preceding Section 2.
We suppose that c : R → M is a normal geodesic without conjugate points in
the interval [−l1, l2], l1, l2 > 0. Let us choose an orthonormal basis (Xi)2≤i≤n

of parallel vector fields along c and orthogonal to ċ. A vector field X or-
thogonal to ċ can be considered a curve 〈X,Xi〉2≤i≤n in Rn−1. A symmetric
tensor field T along c defined on the orthogonal complement of ċ is also a
curve 〈Xi, T (Xj)〉2≤i,j≤n in the space of symmetric (n−1)× (n−1) - matrices
Sym(n− 1,R). The vector field T (X) is then the product of a matrix and a
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vector. The covariant derivation
(∇
dtT
)

(X) := ∇
dtT (X) − T (∇dtX) is the com-

ponentwise derivation of the curve of matrices.
Let R : R → Sym(n− 1,R) be the curvature tensor R(·, ċ)ċ along c expressed
in this basis and S : R →M(n− 1,R) and C : R →M(n− 1,R) be the unique
solution of the Jacobi equation Y ′′+RY = 0 with S(0) = 0, S′(0) = I, C(0) = I
and C′(0) = 0. The columns of S form a basis of Jacobi fields orthogonal to
ċ vanishing in 0. S(t) is invertible unless c(t) and c(0) are conjugated along c.
The columns of C form a basis of Jacobi fields J orthogonal to ċ with J ′(0) = 0.
C(t) is invertible unless c(t) is a focal point of c(0). S and C build a basis for
all matrix solutions of the Jacobi equation. So for fixed s,

S(t, s) := S(t) · tC(s)− C(t) · tS(s) = −tS(s, t) (3.1)

and

C(t, s) := C(t) · tS′(s)− S(t) · tC′(s) =
∂tS

∂t
(s, t) = −∂S

∂s
(t, s) (3.2)

are solutions of the Jacobi equation. We have S(s, s) = 0, ∂S
∂t (s, s) = I,

C(s, s) = I and ∂C
∂t (s, s) = 0. This follows from the fact that for two solu-

tions V and W of the Jacobi equation, the term tV ′(t)W (t) − tV (t)W ′(t) is
constant and therefore

(

tS′(s) −tS(s)
− tC′(s) tC(s)

)

is not only left inverse but also right inverse of
(

C(s) S(s)
C′(s) S′(s)

)

.

We define

E(t, s) :=
S(t, s)

t− s
=

∫ 1

0

∂S

∂t
(s+ τ(t− s), s) dτ

= −
∫ 1

0

tC(s, s+ τ(t − s)) dτ,

the differential of the exponential map. E is differentiable with

∂kE

∂tk
(s, s) =

1

k + 1

∂k+1S

∂tk+1
(s, s) for k ≥ 0.

This gives

E(s, s) = I,
∂E

∂t
(s, s) = 0,

∂2E

∂t2
(s, s) = −1

3
R(s)

and
∂3E

∂t3
(s, s) = −1

2
R′(s). (3.3)
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E(t, s) is invertible if c(t) is not conjugated to c(s). We define furthermore

A(t, s) :=
∂S

∂t
(t, s)S−1(t, s) = tC(s, t)S−1(t, s), (3.4)

which is the shape operator of the distance spheres along c. The shape oper-
ator B of the hypersurface, which is defined by the excess function for right
triangles, is given by

B(t, s) :=
∂E

∂t
(t, s)E−1(t, s)

=

(

1

t− s

∂S

∂t
(t, s)− 1

(t− s)2
S(t, s)

)

(t− s)S−1(t, s)

= A(t, s)− 1

t− s
I.

A and so also B are symmetric, since for all solutions V of the Jacobi equation
we have

V ′(t)V −1(t)− tV −1(t)tV ′(t)

= tV −1(t)
(

tV (t)V ′(t)− tV ′(t)V (t)
)

V −1(t)

= tV −1(t)

(
∫ t

0

tV (τ)(tR(τ) −R(τ))V (τ)dτ

)

V −1(t)

+ tV −1(t)
(

tV (0)V ′(0)− tV ′(0)V (0)
)

V −1(t)

= tV −1(t)
(

tV (0)V ′(0)− tV ′(0)V (0)
)

V −1(t)

= 0 if V (0) = 0 or V ′(0) = 0.

(3.5)

One verifies with (3.3)

B(s, s) = 0,
∂B

∂t
(s, s) = −1

3
R(s) and

∂2B

∂t2
(s, s) = −1

2
R′(s).

We note that A and B fulfill a Riccati equation

∂A

∂t
=

∂

∂t

(

∂S

∂t
S−1

)

=
∂2S

∂2t
S−1 − ∂S

∂t
S−1 ∂S

∂t
S−1 = −R−A2 (3.6)

∂B

∂t
= −R−A2 +

1

(t− s)2
I = −R− 2

(t− s)
B −B2. (3.7)

The key idea for the proof is the study of the dependence of A on s. By
the triangle inequality we have for s < s′ that the balls B(c(s′), t − s′) ⊂
B(c(s), t− s). This implies that the function s→ A(t, s) is increasing. In fact,
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we have for all t 6= s, t, s ∈ [−l1, l2]

∂A

∂s
=

∂

∂s

(

∂S

∂t
S−1

)

=
∂2S

∂s∂t
S−1 − ∂S

∂t
S−1 ∂S

∂s
S−1

= −∂C
∂t
S−1 + tS−1 ∂

tS

∂t
CS−1 as

∂S

∂s
= −C, ∂S

∂t
S−1 = A = tA

= tS−1

(

∂ tS

∂t
C − tS

∂C

∂t

)

S−1 as
∂ tS

∂t
C − tS

∂C

∂t
is constant

= tS−1S−1 > 0.

(3.8)

This yields ∂B
∂s (s, s) =

1
3R(s).

We now introduce the notations for the comparison geometry. We suppose
that there is a manifold (Mn

λ , g) with a geodesic cλ : R → Mn
λ without con-

jugate points in [−l1, l2] and a curvature tensor along cλ given by Rċλ = λI
with a function λ : R → R. Analogous to the matrix solutions S and C, we
define sλ, cλ : R → R to be the solutions of the linear differential equation
y′′ + λy = 0 with sλ(0) = 0, s′λ(0) = 1, cλ(0) = 1 and c′λ(0) = 0. Then
sλ(t, s) := sλ(t) ·cλ(s)−cλ(t) ·sλ(s) and cλ(t, s) := cλ(t) ·s′λ(s)−sλ(t) ·c′λ(s) are
the solutions of the Jacobi equation with sλ(s, s) = 0, ∂sλ

∂t (s, s) = 1, cλ(s, s) = 1

and ∂cλ
∂t (s, s) = 0 for fixed s ∈ R. We define eλ(t, s) = sλ(t, s)/(t − s) and

bλ(t, s) = ∂eλ
∂t (t, s)/eλ(t, s) for all (t, s) ∈ [−l1, l2] × [−l1, l2]. For t 6= s, let

aλ(t, s) =
∂sλ
∂t (t, s)/sλ(t, s). To compare the geometry of M with those of Mλ,

we consider the differential of the generalized normal parametrization

Eλ(t, s) :=
E(t, s)

eλ(t, s)
=

S(t, s)

sλ(t, s)
= tEλ(s, t),

and we introduce

Bλ(t, s) : =
∂Eλ

∂t
(t, s)E−1

λ (t, s)

=

(

1

sλ(t, s)

∂S

∂t
(t, s)−

∂sλ
∂t (t, s)

s2λ(t, s)
S(t, s)

)

(

S(t, s)

sλ(t, s)

)−1

= A(t, s)− aλ(t, s)I

= B(t, s)− bλ(t, s)I.

It is easy to check that Bλ(s, s) = 0 and ∂Bλ

∂t (s, s) = − 1
3 (R(s) − λ(s)I). From
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(3.6) and ∂aλ

∂t (t, s) = −λ(t)− a2(t, s) we have

∂

∂t
(s2λBλ) = 2sλ

∂sλ
∂t

Bλ + s2λ
∂Bλ

∂t

= 2sλ
∂sλ
∂t

Bλ + s2λ(−R−A2 + λI + a2λI)

= −s2λ(R− λI)− s2λ(−2aλBλ − a2λI + (Bλ + aλI)
2)

= −s2λ(R− λI)− s2λB
2
λ.

It follows
∂Bλ

∂t
= −2aλBλ −B2

λ − (R− λI) (3.9)

and

Bλ(t, s) = −
∫ t

s

s2λ(τ, s)

s2λ(t, s)
(R(τ) − λ(τ)) dτ −

∫ t

s

s2λ(τ, s)

s2λ(t, s)
B2

λ(τ, s) dτ. (3.10)

With (3.8) we also have ∂aλ

∂s = 1
s2
λ

and therefore

∂A

∂s
= tS−1S−1 =

∂aλ
∂s

tE−1
λ E−1

λ . (3.11)

This gives, using (〈Eλw,Eλw〉)′ = 2〈BλEλw,Eλw〉 and (ln ‖Eλw‖2)′ =
2〈Bλ

Eλw
‖Eλw‖ ,

Eλw
‖Eλw‖ 〉,

〈∂A
∂s

(t, s)v, v〉 = ∂aλ
∂s

(t, s)〈tE−1
λ (t, s)E−1

λ (t, s)v, v〉

=
∂aλ
∂s

(t, s)‖v‖2 exp
(

ln
∥

∥

∥
E−1

λ (t, s) v
‖v‖

∥

∥

∥

2
)

=
∂aλ
∂s

(t, s)‖v‖2

× exp

(

−2

∫ t

s

〈Bλ(τ, s)Y (τ, t, s), Y (τ, t, s)〉dτ
)

(3.12)

with Y (τ, t, s) =
Eλ(τ,s)E

−1
λ

(t,s)v

‖Eλ(τ,s)E
−1
λ

(t,s)v‖ = S(τ,s)S−1(t,s)v
‖S(τ,s)S−1(t,s)v‖ = Jv(τ)

‖Jv(τ)‖ and the

Jacobi field Jv defined by Jv(s) = 0 and Jv(t) = v. We note ∂Bλ

∂s (s, s) =
1
3 (R(s)− λ(s)I).
We can conclude now some first comparison results. Supposing thatR(t) ≥ λ(t)
on [−l1, l2] we get from (3.10) and consequently from (3.12)

A(t, s) ≤ aλ(t, s) and
∂A

∂s
(t, s) ≥ ∂aλ

∂s
(t, s) for s < t (3.13)

or

(t− s)Bλ(t, s) ≤ 0 and
∂Bλ

∂s
(t, s) ≥ 0 for all t, s ∈ [−l1, l2]. (3.14)
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The first inequality is the upper bound (1.2) in Theorem 1.
The second comparison result involves traces. From (3.10) we get

trBλ(t, s) = −
∫ t

s

s2λ(τ, s)

s2λ(t, s)
(trR(τ)− (n− 1)λ(τ)) dτ

−
∫ t

s

s2λ(τ, s)

s2λ(t, s)
trB2

λ(τ, s) dτ.

(3.15)

From the inequality of arithmetic and geometric means we have, for a

(n− 1)× (n− 1)-Matrix M , the inequality tr(tMM)
n−1 ≥ n−1

√

det(tMM). We

conclude with (3.11) and (ln detEλ)
′ = tr(E′

λE
−1
λ ) = trBλ

tr ∂Aλ

∂s (t, s)

n− 1
=
∂aλ
∂s

(t, s)
tr(tE−1

λ (t, s)E−1
λ (t, s))

n− 1

≥ ∂aλ
∂s

(t, s) n−1

√

det(tE−1
λ (t, s)E−1

λ (t, s)) = n−1

√

det ∂Aλ

∂s (t, s)

=
∂aλ
∂s

(t, s)(detEλ)
− 2

n−1 (t, s)

=
∂aλ
∂s

(t, s) exp

(

− 2

n− 1
ln detEλ(t, s)

)

=
∂aλ
∂s

(t, s) exp

(

−2

∫ t

s

trBλ(τ, s)

n− 1
dτ

)

.

(3.16)

If trR ≥ (n − 1)λ on [−l1, l2], we get from (3.15) and (3.16) the following
relation with the comparison geometry

trA(t, s)

n− 1
≤ aλ(t, s) and

∂A
∂s (t, s)

n− 1
≥ ∂aλ

∂s
(t, s) for s < t (3.17)

or

(t− s) trBλ(t, s) ≤ 0 and tr ∂Bλ

∂s (t, s) ≥ 0 for all t, s ∈ [−l1, l2]. (3.18)

3.1 Proof of Theorem 1 and 2: Convexity and conjugate radius

Proof of Theorem 2. The Hessian of the reverse triangle length excess function
e in c(t) restraint to the orthogonal complement of ċ(t) is analytically given

by A(t) − A(t,−l1). With ǫ(t) =
∫ 0

−l1
∂aλ

∂s (t, σ) dσ = aλ(t, 0) − aλ(t,−l1) =
sλ(0,−l1)

sλ(t)sλ(t,−l1)
, the corresponding values in the model space, we have

A(t)− A(t,−l1) =
∫ 0

−l1

∂A

∂s
(t, σ) dσ

=

∫ 0

−l1

∂Bλ

∂s
(t, σ) dσ + ǫ(t)I

= Bλ(t, 0)−Bλ(t,−l1) + ǫ(t)I.
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The proof follows from (3.14) and (3.18).

On the one hand, the Riccati comparison is used to prove ∂Bλ

∂s ≥ 0, which
is equivalent to Theorem 2 (see Remark 7). On the other hand, the Riccati
comparison follows again from this inequality because of the equation

A(t)− aλ(t) = Bλ(t)−Bλ(t, t) = −
∫ t

0

∂Bλ

∂s (t, σ) dσ.

Proof of Theorem 1. With the notations and equations above we can give a
complete analytic proof of Theorem 1 and can extend the statement to a
geodesic segment without conjugate points and non-constant curvature bounds.
We start with the discussion of the Hessian of the length excess function of the
points c(−l1) and c(l2) and show that it is positive-definite.
For two solutions U and V of the Jacobi equation Y ′′+RY = 0, the expressions
C0 = tU ′U − tUU ′ and C1 = tU ′V − tUV ′ are constant. If U and V are
invertible on a same interval, we can consider the difference U ′U−1−V ′V −1 =
tU−1(tUU ′− tU ′U)U−1+tU−1(tU ′V −tUV ′)V −1 = tU−1C0U

−1+tU−1C1V
−1.

With U(t) = S(t,−l1) and V (t) = S(t, l2) we have C0 = 0, C1 = S(−l1, l2) =
−tS(l2,−l1) and

A(t,−l1)−A(t, l2) =
∂S

∂t
(t,−l1)S−1(t,−l1)−

∂S

∂t
(t, l2)S

−1(t, l2)

= tS−1(t,−l1)S(−l1, l2)S−1(t, l2)

= −tS−1(t,−l1)tS(l2,−l1)S−1(t, l2).

= δ(t) · tE−1
λ (t,−l1)Eλ(−l1, l2)E−1

λ (t, l2)

= Bλ(t,−l1)−Bλ(t, l2) + δ(t)I > 0

(3.19)

where we set δ(t) = aλ(t,−l1) − aλ(t, l2) =
sλ(−l1,l2)

sλ(t,−l1)sλ(t,l2)
the non-zero eigen-

values of the Hessian of the corresponding length excess function in the model
space. As the geodesic has no conjugate points, A(t,−l1)−A(t, l2) is invertible.
It behaves like 1

t+l1
I near −l1 and like 1

l2−tI near l2. Thus A(t,−l1)−A(t, l2)
is positive definite on −l1 < t < l2. This means that the excess function of
c(−l1) and c(l2) is strictly convex along c. Theorem 1 follows now from

Bλ(t) = Bλ(t, 0)−Bλ(t,−l1) +Bλ(t,−l1)

=

∫ 0

−l1

∂Bλ

∂s
(t, σ) dσ +A(t,−l1)−A(t, l2) +Bλ(t, l2)− δ(t)I.

If R ≥ λ we get from (3.19) and (3.14) 0 ≥ Bλ(t) > −δ(t). If trR ≥ (n − 1)λ

we conclude from (3.18) 0 ≥ trBλ(t)
n−1 > −δ(t).

For an alternative proof of Theorem 1 in the case of a lower curvature bound,
see Remark 14 in Section 4.
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4 Comparison of the shape operator of distance spheres with a

background second fundamental tensor

The convexity of the length excess function and the reverse length excess func-
tion can be seen as a comparison of the second fundamental tensor of distance
spheres with another background tensor field fulfilling the Riccati equation.
If the principal curvature of this tensor field is bounded, then the following
Lemma 1 already gives an estimate for the eigenvalues of the Weingarten map
of distance spheres which is able to describe the pole.

Lemma 1 (Estimates for the shape operator of distance spheres using a com-
parison second fundamental tensor). Let Mn be an n-dimensional Riemannian
manifold and c : R → M a normal geodesic. Let A denote the second funda-
mental tensor of the distance spheres of c(0) along c defined on (0, l]. Let X be
a comparison tensor field along c on [0, l] defined on the orthogonal complement
of ċ and verifying the Riccati equation ∇

dtX + X2 + Rċ = 0, where Rċ is the
curvature tensor along c. Suppose that f : [0, l] → R is a differentiable positive
comparison function. Set

g(t) :=

∫ t

0

dτ
f2(τ) .

1) In the case of bounded X we have the following comparison relation:

If X(t) ≤ f ′(t)
f(t) , on [0, l] then A(t)−X(t) ≥ g′(t)

g(t) > 0 on (0, l]. (4.1)

If X(t) ≥ f ′(t)
f(t) , on [0, l] then 0 < A(t)−X(t) ≤ g′(t)

g(t) on (0, l]. (4.2)

2) In the case of bounded trX and Ricci curvature bounded from below, we have

with Xf := X − f ′

f I and

δf (t) = f2(0)
trXf (0)
n−1 − f2(t)

trXf (t)
n−1 −

∫ t

0

f2(x)
(

trR(x)
n−1 + f ′′(x)

f(x)

)

dx

the inequalities

0 < g′(t)
g(t) e

−2
√

(n−1)δf (t)g(t) ≤ A(t)−X(t) ≤ g′(t)
g(t) e

2
√

(n−1)δf (t)g(t) on (0, l]

(4.3)
and the L1-bound

∫ t

τ

‖A(x)− ( f
′(x)
f(x) + g′(x)

g(x) )I‖ dx

≤
√
n− 1

√

δf (t)
(

1 + 4 e2
√
n−1

√
δf (t)

√
g(t)
)

√

g(t)− g(τ)

∈ O(
√
t− τ )

(4.4)

for 0 ≤ τ ≤ t ≤ l.
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Remark 13. The asymptotic behavior of g′

g is

g′(t)

g(t)
=

(

∫ t

0

(

f(t)

f(τ)

)2

dτ

)−1

=
1

t
− f ′(0)

f(0)
+O(t) as t→ 0.

So the estimates can describe the pole of A in t = 0. For the comparison

function f(t) = sλ(t,−l1), l1 > 0 we have g′(t)
g(t) = aλ(t) − aλ(t,−l1) and for

f(t) = −sλ(t, l2), l2 > 0 we obtain g′(t)
g(t) = aλ(t)− aλ(t, l2).

Remark 14. Let c : R → M a geodesic and l1, l2 > 0 such that the segment
c[−l1,l2] has no conjugate points. Assume that R(t) ≥ λ(t). Then the Riccati
comparison gives, with the notation of the proof of Theorem 1, A(t,−l1) ≤
aλ(t,−l1) and A(t, l2) ≥ aλ(t, l2). We conclude from the convexity of the length
excess function that A(t,−l1) − A(t, l2) ≥ 0. Consequently there are for both
comparison fields A(t,−l1) and A(t, l2) the same bounds aλ(t, l2) ≤ A(t, l2) ≤
A(t,−l1) ≤ aλ(t,−l1). With f(t) = sλ(t,−l1) and f(t) = −sλ(t, l2), Lemma 1
gives bounded estimates for the Hessian of both length excess functions

0 < aλ(t)− aλ(t,−l1) ≤ A(t) −A(t,−l1)
≤ A(t) −A(t, l2) ≤ aλ(t)− aλ(t, l2).

(4.5)

The left inequality is the lower estimate of the Hessian of the reverse triangle
excess function of the points c(0) and c(−l1) along c of Theorem 2 in the case
of R ≥ λ, whereas the right inequality is the upper bound of the Hessian of the
length excess function of the points c(0) and c(l2) due to the Riccati comparison.
Theorem 3 means that this is also true under a lower Ricci curvature bound
due to (4.3). (4.5) gives another proof of Theorem 1 in the case of a lower
curvature bound as

0 ≥ A(t)− aλ(t)I ≥ A(t, l2)− aλ(t,−l1) ≥ aλ(t, l2)− aλ(t,−l1).

If, in addition, l1 is so small such that A(t,−l1) ≥ 0 on (0, l2), then (4.5) gives
this better lower bound (see Remark 9)

0 ≥ A(t)− aλ(t)I ≥ A(t,−l1)− aλ(t,−l1) ≥ −aλ(t,−l1). (4.6)

The example in Section 7 shows that this estimate is sharp.

Proof Lemma 1. We begin by proving that A−X > 0 on (0, l). Let t0 ∈ (0, l)
and let V be the solution of the linear differential equation V ′ = 1

2 (A+X) · V
with V (t0) = I. Then V is invertible, as the inverse of V is the solution W
of the linear differential equation W ′ = −W · 1

2 (A +X) with W (t0) = I. To
see this we observe that (WV )′ = 0. From (tV (A − X)V )′ = 0 we conclude
A(t) −X(t) = tV −1(t)(A(t0) −X(t0))V

−1(t). As A develops a pole in t = 0,
A−X > 0 and is thus invertible.
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Furthermore, let U be the solution of the linear differential equation U ′ = XU
on [0, l] with U(0) = I. We next claim that A −X can be expressed in terms
of U . U fulfills the Jacobi equation as U ′′ = X ′U +XU ′ = −RU and can thus
be extended smoothly on R. The inverse of U is given by the solution of the
linear differential equation W ′ = −WX with W (0) = I. So X can be written
on [0, l] as X = U ′U−1. The columns of U form a basis of Jacobi fields along
c on [0, l]. The idea is to express the solution S of the Jacobi field equation
S′′+RS = 0 with S(0) = 0 and S′(0) = I in this basis. As U ′U−1 is symmetric
and tU ′(τ) S(τ) − tU(τ) S′(τ) is constant, we deduce

S(t) = U(t) U−1(t) S(t)

= U(t)

∫ t

0

U−1(τ) S′(τ) − U−1(τ) U ′(τ) U−1(τ) S(τ) dτ

= U(t)

∫ t

0

U−1(τ) tU−1(τ)
(

tU(τ) S′(τ) − tU ′(τ) S(τ)
)

dτ

= U(t)

∫ t

0

U−1(τ) tU−1(τ) dτ.

This gives

A(t) = S′(t) S−1(t)

=

(

U ′(t)

∫ t

0

U−1(τ) tU−1(τ) dτ + U(t) U−1(t) tU−1(t)

)

×
(
∫ t

0

U−1(τ) tU−1(τ) dτ

)−1

U−1(t)

= U ′(t) U−1(t) + tU−1(t)

(
∫ t

0

U−1(τ) tU−1(τ) dτ

)−1

U−1(t)

= X(t) +

(
∫ t

0

U(t) U−1(τ) tU−1(τ) tU(t) dτ

)−1

.

(4.7)

We set D(τ, t) := tU−1(τ) tU(t). Note that D(t, t) = I and ∂D
∂τ (τ, t) =

−X(τ)D(τ, t). For v ∈ Rn−1 we have

0 < 〈(A(t) −X(t))
−1
v, v〉 =

∫ t

0

‖D(τ, t)v‖2 dτ. (4.8)

As

∂
∂τ ln ‖D(τ, t)v‖2 = −2〈X(τ) D(τ,t)v

‖D(τ,t)v‖ ,
D(τ,t)v

‖D(τ,t)v‖ 〉
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we conclude

‖D(τ, t)v‖2 = ‖v‖2 exp
(

2

∫ t

τ

〈X(x) D(x,t)v
‖D(x,t)v‖ ,

D(x,t)v
‖D(x,t)v‖〉 dx

)

= ‖v‖2 f2(t)
f2(τ) exp

(

2

∫ t

τ

〈(X(x)− f ′(x)
f(x) I)

D(x,t)v
‖D(x,t)v‖ ,

D(x,t)v
‖D(x,t)v‖ 〉 dx

)

.

(4.9)

If X ≤ f ′

f we have ‖D(τ, t)v‖2 ≤ ‖v‖2 f2(t)
f2(τ) = ‖v‖2 g′(τ)

g′(t) and so 0 < (A−X)−1 ≤
g
g′ . We conclude similarly that 0 < g

g′ ≤ (A − X)−1 if X ≥ f ′

f . This shows

(4.1) and (4.2).
The Cauchy-Schwarz inequality, ‖Xf‖2 ≤ trX2

f and the equation f2X2
f =

−(f2Xf )
′ − f2(R+ f ′′

f I) allows us to obtain for 0 ≤ τ ≤ t ≤ l

xf (τ, t) :=

∫ t

τ

‖Xf(x)‖ dx =

∫ t

τ

1
f(x)f(x)‖Xf (x)‖ dx

≤
(
∫ t

τ

1
f2(x) dx

)1/2

·
(
∫ t

τ

f2(x)‖Xf (x)‖2 dx
)1/2

≤
√
n− 1

√

g(t)− g(τ) ·
(

1
n−1

∫ t

0

f2(x) trX2
f (x) dx

)1/2

=
√
n− 1

√

δf (t)
√

g(t)− g(τ).

From (4.8) and (4.9) we get for v ∈ Rn−1 that

0 < ‖v‖2f2(t)g(t)e−2xf (0,t) ≤ 〈(A(t) −X(t))−1v, v〉 ≤ ‖v‖2f2(t)g(t)e2xf (0,t).

We have thus proved (4.3)

g′(t)
g(t) e

−2xf (0,t) ≤ A(t)−X(t) ≤ g′(t)
g(t) e

2xf(0,t).

We conclude that

− g′(t)
g(t)

(

e2xf (0,t) − 1
)

≤ g′(t)
g(t)

(

e−2xf (0,t) − 1
)

≤ A(t)−X(t)− g′(t)
g(t) I ≤ g′(t)

g(t)

(

e2xf (0,t) − 1
)

. (4.10)

We deduce (cf.[5, Theorem 1])

∣

∣

∣
‖A(t)− ( f

′(t)
f(t) + g′(t)

g(t) )I‖ − ‖Xf(t)‖
∣

∣

∣

≤ ‖A(t)−X(t)− g′(t)
g(t) I‖

≤ g′(t)
g(t)

(

e2
√
n−1

√
δf (t)

√
g(t) − 1

)

using (4.10)

≤ 4
√
n− 1

√

δf (t)e
2
√
n−1

√
δf (t)

√
g(t) g′(t)

2
√

g(t)
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where the last inequality follows from ex − 1 ≤ xex for x ≥ 0. We obtain (4.4)

∫ t

τ

‖A(x)− ( f
′(x)
f(x) + g′(x)

g(x) )I‖ dx

≤
√
n− 1

√

δf (t)

×
(

√

g(t)− g(τ) + 4 e2
√
n−1

√
δf (t)

√
g(t)
(

√

g(t)−
√

g(τ)
))

≤
√
n− 1

√

δf (t)
(

1 + 4 e2
√
n−1

√
δf (t)

√
g(t)
)

√

g(t)− g(τ).

Considering the tensor field F := (A − X)−1 gives a more abstract point of
view of Lemma 1. F is the solution of the linear differential equation F ′ =
I +XF + FX with F (0) = 0. (4.7) is also a consequence of (U−1 F tU−1)′ =
U−1 tU−1. In dimension two there is an explicit solution to this differential
equation. This was used in [4] to prove Theorem 1 for dimension n = 2. Using
the comparison functions we find out that Fg := g′F − gI, Fg(0) = 0, fulfills

the linear differential equation F ′
g = 2gXf +XfFg+FgXf with Xf := X− f ′

f I.

Defining Uf (t) =
f(0)
f(t)U(t) we have (U−1

f Fg
tU−1

f )′ = 2g U−1
f Xf

tU−1
f which

shows that Xf ≥ 0 implies Fg ≥ 0.
In [4, Chapter 5] and [5, Theorem 2] we used Grönwall’s lemma for a barrier
function for Fg and the Neumann series

A−X = F−1 = g′

g

(

I + 1
gFg

)−1

= g′

g I −
g′

g
1
gFg

∞
∑

n=0

(−1)n( 1gFg)
n

for a similar barrier function for the L1-norm of A(t) − 1
t I as in (4.4). This

estimate for A− g′

g I−X is also the key argument for the lower mean curvature

estimates in the case of a lower Ricci curvature bound as in (1.3). In [4] we
injected the background field X in the integral equation (3.10) for B which
eliminates the curvature tensor

B(t) = X(t)−
∫ t

0

( τt )
2 (X(τ)(B(τ) −X(τ)) + (B(τ) −X(τ))X(τ)) dτ

−
∫ t

0

( τt )
2(B(τ) −X(τ))2 dτ −

∫ t

0

2τ
t2 X(τ) dτ.

Taking the trace gives a bounded lower estimate for trB similar to Theorem 1.

4.1 Proof of Theorem 3 and Theorem 4: Ricci curvature, Excess

functions and L1 bounds for the principal curvature of dis-

tance spheres

We consider for the proof of Theorem 3 and Theorem 4 a non-constant lower
Ricci curvature bound Ric(ċ(t)) ≥ (n − 1)λ(t) and assume that the segment
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c[−l1,l2] has no conjugate points.

Proof of Theorem 3. We conclude from the convexity of the excess function of
the points c(−l1) and c(l2) (see (3.19)) and the Riccati comparison (3.17) that

(n− 1) aλ(t, l2) ≤ trA(t, l2) ≤ trA(t,−l1) ≤ (n− 1) aλ(t,−l1)

for 0 ≤ t < l2. To prove (1.10) we apply (4.3) of Lemma 1 with the comparison
tensor field X(t) := A(t,−l1) and the comparison function f(t) := sλ(t,−l1).
We calculate g(t) = sλ(t)

sλ(0,−l1)sλ(t,−l1)
. The logarithmic derivation g′

g are the

eigenvalues of the excess functions in the model space g′(t)
g(t) = aλ(t)−aλ(t,−l1).

It is

δf (t) ≤ f2(t)(aλ(t,−l1)− aλ(t, l2)) = f2(t) sλ(−l1,l2)
sλ(t,−l1)sλ(t,l2)

= sλ(t,−l1) sλ(l2,−l1)
sλ(l2,t)

and therefore δf (t)g(t) ≤ sλ(l2,−l1)
sλ(0,−l1)sλ(l2,t)

sλ(t).

Applying Lemma 1 to X(t) = A(t, l2) and f(t) = −sλ(t, l2) we get g(t) =
sλ(t)

sλ(0,l2)sλ(t,l2)
. The logarithmic derivation g′(t)

g(t) = aλ(t)− aλ(t, l2) are the non-

zero eigenvalues of the excess function in the model space. It is

δf(t) ≤ f2(0)(aλ(0,−l1)− aλ(0, l2)) = f2(0) sλ(−l1,l2)
sλ(0,−l1)sλ(0,l2)

= −sλ(0, l2) sλ(l2,−l1)
sλ(0,−l1)

and therefore δf (t)g(t) ≤ sλ(l2,−l1)
sλ(0,−l1)sλ(l2,t)

sλ(t). This is the same upper barrier

function as for the other comparison tensor field. (1.11) follows again from
(4.3).
For the comparison with the Euclidean geometry we use f(t) = 1 as a com-
parison function. We have g(t) = t. Independently from X(t) = A(t,−l1) or
X(t) = A(t, l2) it follows that

δf (t) ≤ trX(0)
n−1 − trX(t)

n−1 −
∫ t

0

λ(τ) dτ ≤ aλ(0,−l1)− aλ(t, l2)−
∫ t

0

λ(τ) dτ.

Proof of Theorem 4. We chooseX(t) = A(t,−l1) as the comparison tensor field
to apply Lemma 1. For (1.12) setf(t) = sλ(t,−l1) and for (1.13) set f(t) = 1 as
the comparison function. The upper integral bound follows now from (4.4).

X. Dai, Z. Shen and G. Wei pointed out (see [9], [10]) that a L1-bound for B can
be expressed in terms of a bound for trB. So Theorem 4 is also a consequence
of Theorem 1. Indeed, the Cauchy-Schwarz inequality and ‖B‖2 ≤ trB2 give

∫ t

τ

‖B(x)‖ dx ≤
(
∫ t

τ

x−1/2 dx

)1/2

·
(
∫ t

τ

x1/2 trB2(x) dx

)1/2

. (4.11)
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We obtain
√
t trB2(t) = − 2√

t
trB(t)−

√
t trB′(t)−

√
t trR(t) using the Riccati

equation (3.7) for B. Theorem 1 gives us bounded barrier functions depending
on δ and λ of the right term in (4.11), which leads to L1-bounds for B of order
O((t − τ)1/4). Similarly, one gets L1-estimates for Bf using the differential

equation B′
f + 2 f ′

f Bf + B2
f + R + f ′′

f I = 0 and integrating
√
f trB2

f (cf. [6,

Theorm 5.5]) or simply by ‖Bf‖ ≤ ‖B‖+ | 1t −
f ′

f |.

4.2 Proof of Theorem 5: Convexity radius, focal radius,

Ricci curvature and bounded principal curvature of distance

spheres

We first describe the relation between focal points and convexity of the distance
function of a point.

Lemma 2 (focal points and convexity). Let c : [0, l] →M be a normal geodesic
in a Riemannian manifold M . The following two statements are equivalent

1. For every α ∈ [0, l) the geodesic segment c|[α,l] has no focal points.

2. The shape operator Al of the distance spheres of c(l) along c
−(t) := c(l−t)

is strictly convex on (0, l], i.e. Al > 0.

It follows that a lower bound f0 on the focal radius of c implies that all distance
spheres of points on c along c− exist and are convex at least on (0, f0). The
reverse is also true.

Proof. Suppose that there exists a focal point along c, i.e. there exists a Jacobi
field J 6= 0 with J ′(α) = 0 and J(β) = 0 with 0 ≤ α < β ≤ l. Relation (1.1)
implies a zero principal curvature of a distance sphere of c(β) along c− in c(α)
and vise versa. The strict convexity (3.8) completes the proof.

The relation in Lemma 2 motivates the introduction of a radius function
convexARad : T 1M → R (see [6, Chapter 7]) from the unit tangent bundle
to the compactification of R by

convexARad(v) = sup{r > 0 | Av > 0 on (0, r)}
= sup{r > 0 | S′

v is invertible on [0, r)}

for a unit tangent vector v ∈ T 1M , Av the second fundamental tensor of the
distance spheres along the normal geodesic cv(t) = exp tv and Sv the solution of
the Jacobi equation along cv with Sv(0) = 0 and S′

v(0) = I. (0, convexARad(v))
is the largest interval such that Av is strictly convex along cv. convexARad is
implicitly determined by the curvature tensor along cv. Lemma 2 means that
focalRad(ċ(α)) > l− α, 0 ≤ α < l, is equivalent to convexARad(−ċ(l)) > l. In
addition, the proof of Lemma 2 shows that

convexARad(−ċ(r)) ≤ r with r = focalRad(ċ(0)) <∞
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and

focalRad(ċ(l − r)) = r with r = convexRad(−ċ(l)) <∞.

convecARad is more convenient for expressing the assumptions of Theorem 5
but less known than the focal or conjugate radius function. Besides, the fo-
cal and conjugate raduis functions are locally Lipschitz continuous whereas
convexARad is only lower semi-continuous (see [6, Chapter 7]).

Proof of Theorem 5. The idea is to apply Lemma 1 with a bounded comparison
tensor field X . We start showing that the conjugate radius of c is bounded
below by 2f0. Suppose that l2 > 0 is the first conjugate point of c(0) of a
normal geodesic c : R → M . We use the notation of Section 3. From (3.19) we
conclude A(t) − A(t, l2) = limlրl2 −tS−1(t)tS(l)S−1(t, l) ≥ 0. The dimension
of the kernel of A(t)−A(t, l2) is equal to the multiplicity of the conjugate point
c(l2) because S(t) : ker(S(l2)) → ker(A(t) − A(t, l2)) is a linear isomorphism.
To prove this we define for u ∈ ker(S(l2)) the Jacobi field J0(t) = S(t)u and
J1(t) = S(t, l2)S

′(l2)u. These fields are equal because they have the same
initial values in t = l2. We have (A(t) − A(t, l2))S(t)u = J ′

0(t) − J ′
1(t) = 0,

i.e. S(t)u ∈ ker(A(t)−A(t, l2)). Conversely, if v ∈ ker(A(t)−A(t, l2)) we have
S(τ)S−1(t)v = S(τ, l2)S

−1(t, l2)v, as both sides define a Jacobi field with the
same initial values in τ = t. For τ = l2 we get S−1(t)v ∈ kerS(l2).
As focalRad(c) ≥ f0, we conclude with Lemma 2 that −A(t, l2) > 0 on
(l2 − f0, l2). focalRad(c−) ≥ f0 implies A > 0 on (0, f0). These intervals
cannot overlap because the kernel of A(t)−A(t, l2) is not empty. This implies
that l2 ≥ 2f0 and so conjRad(c) ≥ 2f0.
A is therefore defined at least on (0, 2f0) and all second fundamental tensors
are convex, i.e. A(t, l) > 0 on (l, l + f0) and A(t, l) < 0 on (l − f0, l). As the
Ricci curvature is bounded below, the Riccati comparison gives

0 < A(t, l) ≤ trA(t, l) ≤ (n− 1)aλ(t, l) on (l, l+ f0)

and
0 > A(t, l) ≥ trA(t, l) ≥ (n− 1)aλ(t, l) on (l − f0, l).

For l = 0 this means that A is bounded on (0, f0). From the convexity of
the length excess function of the points c(0) and c(2f0) we conclude that on
(f0, 2f0)

trA(t, 2f0) ≤ A(t, 2f0) ≤ A(t) ≤ A(t) − A(t, 2f0) ≤ tr(A(t) − A(t, 2f0)).

A is therefore also bounded on (f0, 2f0) with

(n− 1)aλ(t, 2f0) ≤ A(t) ≤ (n− 1)(aλ(t)− aλ(t, 2f0)).

These elementary estimates do not describe the pole of A in t = 0. As there are
bounded comparison tensor fields on [0, f0), Lemma 1 implies bounds for A− 1

t I

Documenta Mathematica 25 (2020) 2241–2302



2274 R. Brocks

on (0, f0). More precisely, for t ∈ (0, f0) we can choose X(τ) = A(τ, t−f0) > 0.
For an upper bound any constant comparison function f leads to

A(t) ≤ 1
t I +A(t, t− f0) ≤ 1

t + trA(t, t− f0) ≤ 1
t + (n− 1) aλ(t, t− f0).

Using the comparison function f(τ) := sn−1
λ (τ, t − f0) Lemma 1 gives a lower

bound

0 < g′(t)
g(t) =

(
∫ t

0

(

sλ(t,t−f0)
sλ(τ,t−f0)

)2(n−1)

dτ

)−1

≤ A(t)

also of type 1
t − (n − 1)aλ(0,−f0) + O(t) as t → 0. Using X(τ) = A(τ, f0) as

the comparison field, estimates of the same type holds

(n− 1)aλ(t, f0) +
1
t ≤ A(t) ≤

(
∫ t

0

(

sλ(t,f0)
sλ(τ,f0)

)2(n−1)

dτ

)−1

.

For constant λ we find the inequalities (1.20).

In the proof of Theorem 5 we get only piecewise continuous bounds for A
on (0, 2f0). For continuous estimates on (0, 2f0) one can extend Lemma 1 to
piecewise differentiable barrier functions and use the elementary estimates from
(1.17) and (1.18). Another possible technique for estimating B is to use the
integral equation (3.10) which gives

trB(t) +

∫ t

0

( τt )
2 Ric(ċ(τ)) dτ ≤ B(t) +

∫ t

0

( τt )
2R(τ) ≤ 0. (4.12)

Using Corollary 1 we get that the distance between B and the integral curvature
expression is bounded (see [4, Theorem 5.7]). The basic idea is to get new
estimates for the integral curvature expression. For this, we divide equidistantly
the interval [0, t] in sub-intervals of length t

k < f0, k ∈ N, k > 0. Under the
assumptions of Theorem 5 we can consider Xi(τ) := A(τ, ti + f0) on each sub-
interval [ti, ti+1], 0 ≤ i ≤ k− 1, with ti :=

i
k t. It is 0 ≤ −Xi(τ) ≤ − trXi(τ) ≤

−(n − 1) aλ(τ, ti + f0) = (n − 1) ctλ(f0 + ti − τ) ≤ (n − 1) ctλ(f0 − t
k ) for

τ ∈ [ti, ti+1]. It follows

∫ t

0

τ2

t2 R(τ) dτ = −
k−1
∑

i=0

∫ ti+1

ti

τ2

t2 (X
′
i(τ) +X2

i (τ)) dτ

≤
k−1
∑

i=0

(

t2i
t2Xi(ti)− t2i+1

t2 Xi(ti+1) +

∫ ti+1

ti

2τ
t2 Xi(τ) dτ

)

≤ −
k−1
∑

i=0

t2i+1

t2 Xi(ti+1) ≤ (n− 1) ctλ(f0 − t
k )

1
k2

k
∑

i=1

i2

≤ (n− 1) (k+1)(2k+1)
6k ctλ(f0 − t

k ).

(4.13)
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A lower integral curvature bound can be obtained using ‖Xi‖2 ≤ trX2
i

−
∫ t

0

τ2

t2 R(τ) dτ =

k−1
∑

i=0

∫ ti+1

ti

τ2

t2 (X
′
i(τ) +X2

i (τ)) dτ

≤
k−1
∑

i=0

(

− t2i
t2 trXi(ti)−

∫ ti+1

ti

2τ
t2 trXi(τ) dτ

)

−
k−1
∑

i=0

∫ ti+1

ti

τ2

t2 (trX
′
i(τ) + trR(τ)) dτ

= −
k−1
∑

i=0

t2i+1

t2 trXi(ti+1)−
∫ t

0

τ2

t2 trR(τ) dτ

≤ (n− 1) (k+1)(2k+1)
6k ctλ(f0 − t

k )− (n− 1)λ t
3 .

(4.14)

With (4.12) we conclude

−B(t) = 1
t I−A(t) ≤ (n−1) (k+1)(2k+1)

6k ctλ(f0− t
k )−(n−1)λ t

3−trB(t) (4.15)

and

B(t) = A(t)− 1
t I ≤ (n− 1) (k+1)(2k+1)

6k ctλ(f0 − t
k )− (n− 1)λ t

3 . (4.16)

For k ≥ 3 this upper barrier is better than the estimate in (1.18) which is not
bounded in t = 2f0. The inequalities in Remark 8 are the special case k = 3.
This gives a second proof of Theorem 5.

5 Proof of Theorem 6: Integral curvature bounds and convexity

Proof. We use the notation of Section 3. Statement (1) is straightforward: to
get the barrier for the integral curvature tensor we use the integral equation
(3.10) with λ ≡ 0. The properties of the focal points follow from the relation
A(t) < A(t, s) = tC(s, t)S−1(t, s) for 0 < s < t < c0 (see (3.4) and (3.8)).
Indeed, if A(t, s)v = 0 then J(τ) = S(τ, s)S−1(t, s)v is a Jacobi field with
J(s) = 0 and J ′(t) = 0 (see Lemma 2).
For the second statement we use again (3.10), which gives ‖A(t) − 1

t I‖ ≤
Λ(t) +

∫ t

0
‖A(τ) − 1

τ I‖2 dτ . Let β1(t) :=
∫ t

0
‖A(τ) − 1

τ I‖2 dτ . Then β′
1(t) =

‖A(t)− 1
t I‖2 ≤ (Λ(t) + β1(t))

2. Define

∆(t) = (β(t) − β1(t)) exp

(

−
∫ t

0

2Λ(τ) + β1(τ) + β(τ) dτ

)

.

Then ∆(0) = 0 and ∆′(t) ≥ 0. This gives ∆ ≥ 0 and proves the inequality. As
A is a solution of an ordinary differential equation, A must exist at least on
(0, l2).

With (4.13) and (4.14) Theorem 6 gives another proof of Theorem 5.
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6 Core applications

We have seen in Section 2.2 that the tensor field Bλ naturally describes the
exponential map. We will see that the use of Bλ simplifies the proof of the
known core comparison results and allows us to get new ones.

6.1 Convexity and upper curvature bounds

We start considering the general Riccati comparison and give a proof using B.
Suppose that R̃ is a curve in Sym(n− 1,R) and S̃ is the solution of S̃′′+R̃S̃ = 0
with S̃(0) = 0 and S̃′(0) = I. Put Ã = S̃′S̃−1 and B̃ = Ã − 1

t I. Let U be

the solution of U ′ = 1
2 (B + B̃) · U with U(0) = I and V the solution of

V ′ = −V · 1
2 (B + B̃) with V (0) = I. Then U and V are the inverse of each

other as (V U)′ = V ′U + V U ′ = −V 1
2 (B + B̃)U + V 1

2 (B + B̃)U = 0. We have

t2(B(t) − B̃(t)) = t2(A(t)− Ã(t))

= −tU−1(t) ·
∫ t

0

τ2 tU(τ)(R(τ) − R̃(τ))U(τ) dτ · U−1(t)

= −
∫ t

0

τ2 tX(τ, t)(R(τ)− R̃(τ))X(τ, t) dτ

(6.1)

with X(τ, t) = U(τ)U−1(t) = U(τ)V (t) since the left and the right side of the
equation fulfill the linear differential equation

Y ′ = −t2(R− R̃)− 1
2 (B + B̃) · Y − Y · 1

2 (B + B̃)

with Y (0) = 0. Equation (6.1) expresses the general Riccati comparison, i.e.
R ≤ R̃ implies A ≥ Ã (cf. [11, Theorem 1]). If R ≤ Λ we have BΛ ≥ 0. As a
consequence of (3.12) we have ∂BΛ

∂s ≤ 0. These inequalities can be interpreted
geometrically as in Section 2.1.

6.2 Behavior of the shape operator of distance spheres at the

first conjugate point

We introduced B to deal with the singularity of A in t = 0. We can generalize
this approach to analyze the behavior at the first conjugate point c(l), l > 0.
This is similar to the way in [11]. From the convexity of the triangle length
excess functions it follows that B(t, l)+ 1

t−l I ≤ A(t) ≤ A(t, s) for s ∈ (0, l) and
s < t < l. This gives a rough impression of the pole. Let Q be the orthogonal
projection on kerS(l) 6= {0} (S(l)Q = 0) and D(t) = 1

t−lQ + I −Q for t 6= l.

D scales imQ = kerS(l) and leaves kerQ = im(I − Q) = kerS(l)⊥ invariant.
k = dimkerS(l) is the index of the conjugate point c(l). If k = n − 1 we
have S(l) = 0, Q = I, S(t, l) = S(t) tC(l) − C(t)tS(l) = S(t) tC(l) and S(t) =
S(t, l)S′(l) + C(t, l)S(l) = S(t, l)S′(l). Thus A(t) = A(t, l) = 1

t−lI + B(t, l)
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describes the singularity in t = l. We define

E(t) = S(t)D(t) = S(t)Q−S(l)Q
t−l + S(t)(I −Q)

=

∫ 1

0

S′(l + (t− l)τ)Q dτ + S(t)(I −Q).

E is smooth in t = l with E(l) = S′(l)Q + S(l)(I − Q). E(l) is invertible
because S is a Lagrange tensor (tS(t)S′(t)−tS′(t)S(t) = 0) and non-degenerated
(kerS′(l) ∩ kerS(l) = {0}). In a neighborhood of t = l we can consider (note
that D−1(t) = (t− l)Q+ I −Q)

E′(t)E−1(t) = A(t)− 1
t−lE(t)QE−1(t) = A(t) − 1

t−lP (t)

with P (t) = E(t)QE−1(t) = S(t)QS−1(t). P (t) is a projection with
imP (t) = S(t)(imQ) and kerP (t) = S(t)(kerQ) for t 6= l. Let

P := P (l) = E(l)QE−1(l) = lim
t→l

(t− l)A(t) = lim
t→l

(t− l)tA(t) = tP.

P is an orthogonal projection with imP = S′(l)(imQ) and kerP = S(l)(kerQ).
Define

B(t) := A(t)− 1
t−lP = E′(t)E−1(t) +

∫ 1

0

P ′(l + (t− l)τ) dτ.

B is a smooth curve in Sym(n-1,R) fulfilling the Riccati equation

B′(t) + 1
t−l (B(t)P + PB(t)) +B2(t) +R(t) = 0.

Since B is smooth we obtain B(l)P + PB(l) = 0. This gives B(l)P = 0 and
consequently B(l) = (I−P )B(l)(I−P ). Observe that B′(l)+B′(l)P+PB′(l)+
B2(l) +R(l) = 0. We conclude that the behavior of A in t = l is

A(t) = 1
t−lI +A(t) −A(t, l) +B(t, l)

= 1
t−lP + (I − P )B(l)(I − P ) +O(t− l).

As (A(t) − A(t, l))S(t)Q = 0 we have also A(t)P (t) = 1
t−lP (t) +B(t, l)P (t) =

A(t, l)P (t).

6.3 Convexity and Jacobi field estimates

Another advantage of the operator Bλ is that Jacobi fields J with J(0) = 0 and
〈J ′(0), ċ(0)〉 = 0 along a geodesic c without conjugate points in [0, l2] can be
expressed in terms of Bλ. Let f : R → R be a smooth function with f(0) = 0,
f ′(0) = 1 and positive on (0, l2]. The idea is to compare A with the logarithmic

derivative of f . We put Ef = S
f , Bf = A− f ′

f I and Jf = J
f = EfJ

′(0). Then

Ef (0) = I, Jf (0) = J ′(0), E′
f = BfEf , J

′
f = BfJf and Bf (0) = − 1

2f
′′(0)I.
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The estimates in this section also provide estimates for the differential Ef of
the map Expλ, which will not be mentioned explicitly. We have (cf. [16, 1.8])

‖J(t)‖
f(t)

= ‖Jf (t)‖

= ‖Jf (0)‖ · exp
(

1

2
ln ‖Jf(t)‖2 −

1

2
ln ‖Jf (0)‖2

)

= ‖Jf (0)‖ · exp
(
∫ t

0

〈J ′
f (τ), Jf (τ)〉
‖Jf(τ)‖2

dτ

)

= ‖J ′(0)‖ · exp
(
∫ t

0

〈Bf (τ)
J(τ)

‖J(τ)‖ ,
J(τ)

‖J(τ)‖ 〉 dτ
)

(6.2)

=
‖J(t0)‖
f(t0)

· exp
(

−
∫ t0

t

〈Bf (τ)
J(τ)

‖J(τ)‖ ,
J(τ)

‖J(τ)‖〉 dτ
)

. (6.3)

If Bf ≤ 0 we conclude from (6.2) and (6.3) that ‖J‖/f is decreasing with

f(t)

f(t0)
‖J(t0)‖ ≤ ‖J(t)‖ ≤ f(t)‖J ′(0)‖ for 0 ≤ t ≤ t0.

If Bf ≥ 0 we get that ‖J‖/f is increasing with

f(t)‖J ′(0)‖ ≤ ‖J(t)‖ ≤ f(t)

f(t0)
‖J(t0)‖ for 0 ≤ t ≤ t0.

For other Jacobi field estimates a bound on the L1-norm for Bf is sufficient
(cf. [5, Theorem 3], [6, chapter 5.4], [9] and [10])). We define the integral

barrier function of Bf by bf (t0, t1) :=
∫ t1
t0

‖Bf(τ)‖ dτ for 0 ≤ t0 ≤ t1 ≤ l2 and

set bf (t) := bf (0, t). From equation (6.2) we get an upper and a lower bound
for the orthogonal Jacobi fields with J(0) = 0 in terms of this integral barrier
function. We have

f(t) · ‖J ′(0)‖ · exp (−bf(t)) ≤ ‖J(t)‖ ≤ f(t) · ‖J ′(0)‖ · exp (bf (t)) (6.4)

and

f(t)

f(t0)
· ‖J(t0)‖ · exp (−bf(t, t0)) ≤ ‖J(t)‖ ≤ f(t)

f(t0)
· ‖J(t0)‖ · exp (bf (t, t0)) .

(6.5)

Documenta Mathematica 25 (2020) 2241–2302



Comparison Theory 2279

The comparison of a Jacobi field with the associated affine parallel vector field
gives

‖J(t)− f(t)J ′(0)‖
= f(t) · ‖Jf (t)− Jf (0)‖

= f(t) ·
∥

∥

∥

∥

∫ t

0

Bf (τ)Jf (τ) dτ

∥

∥

∥

∥

≤ f(t) ·
∫ t

0

‖Bf (τ)‖ ‖Jf(τ)‖ dτ

≤ f(t) · ‖J ′(0)‖ ·
∫ t

0

‖Bf(τ)‖ exp
(
∫ τ

0

‖Bf(ϑ)‖ dϑ
)

dτ using (6.2)

= f(t) · ‖J ′(0)‖ ·
(

exp

(
∫ t

0

‖Bf (τ)‖ dτ
)

− 1

)

= f(t) · ‖J ′(0)‖ · (exp(bf (t))− 1) . (6.6)

For the angular velocity of a Jacobi field we have to consider

(

J
‖J‖

)′
=
(

Jf

‖Jf‖

)′
for all f as above

=
J′

f

‖Jf‖ − 〈J′

f ,Jf 〉
‖Jf‖2

Jf

‖Jf‖

=
(

Bf − 〈Bf
J

‖J‖ ,
J

‖J‖ 〉I
)

J
‖J‖

=
(

A− 〈A J
‖J‖ ,

J
‖J‖ 〉I

)

J
‖J‖ .

= By
J

‖J‖

with y = ‖J‖/‖J ′(0)‖. This follows from y′

y = 〈A J
‖J‖ ,

J
‖J‖ 〉. We conclude

∥

∥

∥

∥

(

J
‖J‖

)′
∥

∥

∥

∥

=
∥

∥

∥
By

J
‖J‖

∥

∥

∥

=

√

∥

∥

∥
Bf

J
‖J‖

∥

∥

∥

2

− 〈Bf
J

‖J‖ ,
J

‖J‖ 〉2

=

√

∥

∥

∥
Bf

J
‖J‖

∥

∥

∥

2

−
(

y′

y − f ′

f

)2

≤ ‖Bf‖ .

(6.7)
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From the law of cosines we get for the angle between the Jacobi field and the
corresponding parallel vector field X with X(0) = J ′(0)

2 sin

(

1

2
∠(J(t), J ′(0))

)

=
√

2− 2 cos∠(J(t), J ′(0))

=

∥

∥

∥

∥

J(t)

‖J(t)‖ − J ′(0)

‖J ′(0)‖

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

0

d

dτ

J(τ)

‖J(τ)‖ dτ
∥

∥

∥

∥

≤
∫ t

0

‖Bf(τ)‖ dτ = bf(t) for all f as above.

For a geodesic c : [0, l] → M without conjugate points the estimate from (6.2)
holds as long as Bf is defined. This may not be the entire interval [0, l]. One
can obtain estimates on [0, l] using A(t, l) along c. To explain the idea, we
simplify and take Euclidean geometry as comparison geometry. We have as
long as J 6= 0

‖J(t)‖
‖J′(0)‖ = t · exp

(
∫ t

0

〈J′(τ),J(τ)〉
〈J(τ),J(τ)〉 − 1

τ dτ

)

.

For t0 ∈ (0, l) one can use the equations

〈J′(τ),J(τ)〉
〈J(τ),J(τ)〉 − 1

τ = 〈B(τ) J(τ)
‖J(τ)‖ ,

J(τ)
‖J(τ)‖ 〉 for 0 ≤ τ ≤ t0

and

〈J′(τ),J(τ)〉
〈J(τ),J(τ)〉 − 1

τ = 〈(A(τ) −A(τ, l)) J(τ)
‖J(τ)‖ ,

J(τ)
‖J(τ)‖ 〉

+ 〈B(τ, l) J(τ)
‖J(τ)‖ ,

J(τ)
‖J(τ)‖ 〉+ 1

τ−l − 1
τ for t0 ≤ τ ≤ l

to get lower estimates for ‖J(t)‖ on [t0, l].
If J(l2) = 0, l2 > l, we have J(t) = S(t)J ′(0) = S(t, l2)J

′(l2) because both
terms solve the Jacobi equation with the same initial values at t = l2. It
follows that for all t, for which A(t) and A(t, l2) are defined, we have J ′(t) =
A(t)J(t) = A(t, l2)J(t). If c|[t0,l2] has no conjugate points we obtain

〈J′(τ),J(τ)〉
〈J(τ),J(τ)〉 − 1

τ = 〈B(τ, l2)
J(τ)

‖J(τ)‖ ,
J(τ)

‖J(τ)‖ 〉+ 1
τ−l2

− 1
τ for t0 ≤ τ ≤ l2.

This results in bounds for ‖J(t)‖ on the entire interval [0, l2]. l2 can be the
first conjugate point or may lie behind it.
We finish with an overview and a comparison of the possible estimates for Bf

under different assumptions due to the results in the previous sections.
Rauch’s first comparison theorem is a direct consequence of the first and second
row in Table 2. The comparison results due to the third row are also well known.
The last four rows allow us to get new estimates for Jacobi fields.
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Table 2: Overview of comparison results for Bf

conditions estimates and comparison functions

R ≤ Λ on [0, l2] Bf ≥ 0 with f = sΛ

R ≥ λ on [0, l2] Bf ≤ 0 with f = sλ

λ ≤ R ≤ Λ on [0, l2]

‖Bf‖ ≤ 1
2 (aλ − aΛ) ∈ O(t),

bf (t) ≤ 1
2 ln

(

sλ(t)
sΛ(t)

)

∈ O(t2)

as t→ 0 with f =
√
sλsΛ

R ≥ λ on [−l1, f0]
and c−|[−l1,f0]

without focal
points

Bf ≥ 0 with f(t) = sλ(0,−l1)
sλ(t,−l1)

sλ(t)

R ≥ λ on [−l1, l2], c|[−l1,l2]

without conjugate points
Bf ≥ 0 with f(t) = sλ(t) · exp

(

−
∫ t

0
δ(τ) dτ

)

‖Bf‖ ≤ 1
2δ ∈ O(1),

bf (t) ≤ 1
2

∫ t

0 δ(τ) dτ ∈ O(t) as t→ 0

with f(t) = sλ(t) · exp
(

− 1
2

∫ t

0 δ(τ) dτ
)

trR ≥ (n− 1)λ on [−l1, l]
and c−|[−l1,l]

without focal
points

Bf ≤ 0 with f(t) = t
(

sλ(t,−l1)
sλ(0,−l1)

)n−1

Bf ≥ 0 with f(t) =
∫ t

0

(

sλ(0,−l1)
sλ(τ,−l1)

)2(n−1)

dτ

trR ≥ (n−1)λ on [−l1, l2]
and c|[−l1,l2] without con-
jugate points

bf (t) ≤ (1 + 4e2βλ(t))βλ(t) ∈ O(
√
t) as t→ 0

with f(t) = sλ(t)

and βλ(t) =
√
n− 1

√

δ(t) sλ(t,−l1)
sλ(0,−l1)

√

sλ(t)

with δ(t) = aλ(t,−l1)− aλ(t, l2) =
∂
∂t ln

(

sλ(t,−l1)
−sλ(t,l2)

)

= sλ(−l1,l2)
sλ(t,−l1)sλ(t,l2)

The L1 estimates from Theorem 4 of B of type O(
√
t) in the last row as well as

the application to Jacobi field estimates due to (6.4) and (6.6) were announced
in [5]. This was applied in [9], [10], [21], [22], [23], [24] and [25].

To complete this section, we would like to mention that there are other
approaches that can be more suitable for Jacobi field estimates. LetX : R →M
be a vector field along a geodesic c with X 6= 0 on (0, l), l > 0. Define y = ‖X‖,
NX = X

‖X‖ , r := − 〈X′′,X〉
〈X,X〉 and a := 〈X′,X〉

〈X,X〉 = ‖X′‖
‖X‖ cos(∠(X ′, X)). Then for

the angular velocity N ′
X we have ‖N ′

X‖2 = ‖X′‖2

‖X‖2 sin2(∠(X ′, X)) and for y the

differential equations y′ = ay and y′′ + (r − ‖N ′
X‖2)y = 0 on (0, l).

These equations are used in [3, Theorem 5.6] to obtain lower estimates on ‖J‖
for a Jacobi field J , J(0) = 0, depending on both boundary values ‖J ′(0)‖ and
‖J(t0)‖ under bounded curvature assumption. They use inequalities on the
angular velocity of the normal field NJ = J

‖J‖ in combination with a maximum

principal. This estimate of the angular velocity goes beyond the one in (6.7).
As pointed out in [3], 〈RNJ , NJ〉 − ‖N ′

J‖2 can be interpreted as the intrinsic
sectional curvature of a ruled surface defined by NJ in M .
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In [28] the virtual Jacobi field X(t) := tS−1(t)v and

z(t) = ‖v‖2

y(t) = ‖v‖2

‖X(t)‖ = 〈S−1(t)S(t)v,v〉
‖X‖ = 〈S(t)v,NX(t)〉 ≤ ‖S(t)v‖

are discussed. From Section 6.2 we obtain X(t) = 1
t−l

tE−1(t)Qv+(I−Q)v in a
neighborhood of the first conjugate point t = l. Hence z is in t = l continuous.
Furthermore, the transverse Jacobi field equation in [29] as well as the original
techniques for Jacobi field estimates, the index form or the Sturm comparison
theorem, are useful for getting bounds under different hypotheses (see e.g. [17],
[18, Lemma 5.5], [26, Lemma 1.2]).

In [19, Lemma 2.1] the expression fJ ′ − f ′J = f(AJ − f ′

f J) = fBfJ =

f2BfJf = f2J ′
f is of main interest with the comparison function f(t) = t in

the context of bounded curvature ‖R‖ ≤ κ. The curvature tensor appears

explicitly in their estimates. They use ‖J(τ)‖
‖J′(0)‖ ≤ 1√

κ
for 0 ≤ τ < 1

2
√
κ
and

∣

∣

∣
1− ‖J′(t)‖

‖J′(0)‖

∣

∣

∣
≤ ‖J′(0)−J′(t)‖

‖J′(0)‖ = 1
‖J′(0)‖

∥

∥

∥

∥

−
∫ t

0

J ′′(τ) dτ

∥

∥

∥

∥

≤
∫ t

0

‖R(τ)‖ ‖J(τ)‖
‖J′(0)‖ dτ < 1 for small t

to get

‖J(t)− tJ ′(t)‖ =

∥

∥

∥

∥

−
∫ t

0

τJ ′′(τ) dτ

∥

∥

∥

∥

≤
∫ t

0

τ‖R(τ)‖‖J(τ)‖ dτ

≤ ‖J ′(t)‖
∫ t

0

τ‖R(τ)‖ ‖J(τ)‖
‖J′(0)‖ dτ

(

1−
∫ t

0

‖R(τ)‖ ‖J(τ)‖
‖J′(0)‖ dτ

)−1

.

From Theorem 6 we have with (6.4) a bound ‖J(t)− tJ ′(t)‖ = t‖B(t)J(t)‖ ≤
κ
3 t

3‖J ′(t)‖(1 + O(t)) or an estimate of order O(t2) with only
∫ t

0
‖R(τ)‖ dτ

bounded.

6.4 Ricci curvature and rigidity

We conclude from Theorem 1 some rigidity properties in the case of a given
lower bound on the Ricci curvature along a geodesic. The Riccati comparison
for the mean curvature follows directly from (3.15).

trBλ(t)

n− 1
=

trA(t)

n− 1
− aλ(t)

= −
∫ t

0

(

sλ(τ)

sλ(t)

)2 (
trR(τ)

n− 1
− λ(τ)

)

dτ

− 1

n− 1

∫ t

0

(

sλ(τ)

sλ(t)

)2

trB2
λ(τ) dτ (6.8)

≤ 0 if trR ≥ (n− 1)λ. (6.9)
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Equation (6.9) means that the first conjugate point of c appears before the
first conjugate point of the comparison curve cλ (Myers’ theorem). (6.8) has
another consequence. If Ric(c(t)) ≥ (n − 1)λ(t) and if the mean curvature of
the distance spheres of c(0) along c is identical to those along the comparison
curve cλ, i.e. trBλ = trA − (n − 1)aλ = 0, it follows that tr(B2

λ) = 0. We
conclude A = aλI and so R = −A′ −A2 = λI.

There are two well-known situations in Theorem 1 where this happens (cf. [12,
Theorem 1 and Theorem 2]). If λ(t) = 0 and c without conjugate points we
have

0 ≥ trBλ(t)

n− 1
≥ aλ(t, l2)− aλ(t,−l1) =

1

t− l2
− 1

t+ l1

l1,l2→∞−−−−−→ 0.

We deduce that, if Ric(ċ) ≥ 0 and c is without conjugate points then the
curvature tensor along c vanishes, i.e. Rċ = 0. This result fits well with Cheeger-
Gromoll’s splitting theorem.

If cλ(−l1) and cλ(l2) are conjugate along the comparison geodesic, Theorem 1
gives in the case of ric(ċ) ≥ λ > 0, λ ∈ R and l1 + l2 = π√

λ

0 ≥ trBλ(t)

n− 1
≥ sλ(−l1, l2)
sλ(t,−l1)sλ(t, l2)

=
snλ(l1 + l2)

snλ(t+ l1) snλ(l2 − t)
= 0.

We conclude that if Ric(ċ) ≥ λ > 0 and c : [0, π√
λ
] → M is a geodesic segment

that has, as with the comparison geodesic cλ, the first conjugate point at π√
λ
,

then the curvature tensor along c[−l1,l2] is given by Rċ = λI. This result fits
well with Cheng’s maximal diameter sphere theorem.

6.5 Ricci curvature and volume estimates

The volume form ω along a geodesic in polar coordinates can be expressed in
terms of Bf . We have

ω(t)

fn−1(t)
=

√

det(tS(t)S(t))

fn−1(t)
=

detS(t)

fn−1(t)
= detEf (t)

= exp

(
∫ t

0

d

dτ
(ln detEf )(τ) dτ

)

= exp

(

(n− 1)

∫ t

0

trBf (τ)

n− 1
dτ

)

. (6.10)

Bishop-Gromov’s volume comparison follows directly from (6.9). In the sit-
uation (2) of Theorem 1 we obtain a lower bound for trA

n−1 of type ctλ −δ
with a smooth non-negative function δ : [−l1, l2] → R. Put f(t) =

snλ(t) exp
(

−
∫ t

0
δ(τ) dτ

)

. Then
trBf

n−1 ≥ 0 and we get an increasing quotient

ω/fn−1. Using Corollary 1 this gives a lower volume estimate for balls.
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Theorem 7 (volume comparison, cf. [4]/Chapter 6, [6]/Chapter 5.2). Let
Mn be a complete Riemannian manifold with Ric(M) ≥ (n − 1)λ, λ ∈ R and
0 < i0 ≤ injRad(M). Then for p ∈M the quotient

R(r) =
Vol(B(p, r) ⊂M)

Vol(Sn−1)
∫ r

0
fn−1(τ) dτ

is increasing on [0, i0] with R(0) = 1.

f is defined by

f(t) :=

{

snλ(t) · exp
(

− 2 ctλ(
i0
2 ) t
)

for 0 ≤ t ≤ i0
2

snλ(i0 − t) · exp
(

− ctλ(
i0
2 ) i0

)

for i0
2 ≤ t ≤ i0.

This lower bound is not surprising because in n-dimensional Riemannian man-
ifolds M with injectivity radius bounded from below there exists a lower
bound for the volume of all balls of type Vol(B(p, r)) ≥ c(n)rn, p ∈ M ,
0 ≤ r ≤ injRad(M) and a constant c(n) depending only on n and not on
any curvature assumptions (cf. [8]).

6.6 Focal radius and convexity

The levels of an oriented distance function to a total geodesic hypersurface
orthogonal to a geodesic c form another hypersurface family Ht along c. The
focal radius used in Theorem 5 to get estimates for the principal curvature of
distance spheres normally ensures the existence of Ht in this context. In this
section we outline how the techniques developed in this article can be applied
to Ht. We also discuss the relations between the Weingarten map of Ht and
that of distance spheres (cf. [6, paragraphs 2.3, 3.3, 6.4]).

So let c : [−f1, f2] → M be a normal geodesic and H0 the
total geodesic hypersurface through c(0) orthogonal to ċ(0), i.e.
H0 := expc(0){w ∈ Tc(0)M |〈w, ċ(0)〉 = 0, ‖w‖ < ǫ} with ǫ > 0 small
enough. Let N be the normal vector field along H0 with N|c(0) = ċ(0). We
suppose that there are no focal points of c(0) along c and along the inverse
geodesic c−. Therefore there exists an ǫ > 0 such that Exp : H0×[−f1, f2] →M
defined by Exp(p, δ) := expp(δNp) is a local diffeomorphism and defines an
oriented distance function δ in a neighborhood of c. The levels of δ define a
family of hypersurfaces Ht := {exp(tNp) | p ∈ H0} = {δ ≡ t}. The Weingarten
map H of these levels along c are described by the Jacobi fields along c
with J ′(0) = 0 and 〈J(0), ċ(0)〉 = 0 by the equation J ′(t) = Hc(t)J(t). By
assumption, these Jacobi fields form a basis along c on [−f1, f2]. We start
listing properties of the shape operator H . Using the notation of Section 3 we

introduce H := C′C−1, hλ :=
c′λ
cλ

and Hλ := H − hλI. hλ = −λ snλ

csλ
in the

model space Mn
λ of constant curvature λ. We have

Hλ(t) = −
∫ t

0

c2λ(τ)

c2
λ
(t)

(R(τ) − λ(τ)I) dτ −
∫ t

0

c2λ(τ)

c2
λ
(t)
H2

λ(τ) dτ. (6.11)
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The Taylor series of H is given by

H(t) = −R(0)t− 1
2R

′(0)t2 +O(t3) = −
∫ t

0

R(τ) dτ − t3W (t)

with a positive semi-definite W and W (0) = 1
3R

2(0).

Table 3: Overview of comparison results for Hf = H − f ′

f I, f(0) = 1, hf (t) =
∫ t

0
‖Hf(τ)‖ dτ

conditions estimates and comparison functions

R ≤ Λ on [0, f2] Hf ≥ 0 with f = cΛ

R ≥ λ on [0, f2] Hf ≤ 0 with f = cλ

λ ≤ R ≤ Λ on [0, f2]

‖Hf‖ ≤ 1
2 (hλ − hΛ) ∈ O(t),

hf (t) ≤ 1
2 ln

(

cλ(t)
cΛ(t)

)

∈ O(t2)

with f =
√
cλcΛ as t→ 0

trR ≥ (n− 1)λ on [0, f2] trHf ≤ 0 with f = cλ

R ≥ λ on [0, f2] and c(0)
without focal point in [0, f2]

Hf ≥ 0 with f(t) = sλ(t,f2)
sλ(0,f2)

trR ≥ (n − 1)λ on [0, f2]
and c(0) without focal point
in [0, f2]

trHf ≥ 0 with f = sλ(t,f2)
sλ(0,f2)

hf (t) ≤
√
n− 1

√

cλ(f2)
sλ(f2,t)

√

sλ(t)

with f = cλ

trR ≥ (n− 1)λ on [0, f2] and
without any focal points in
c|[0,f2]

Hf ≥ 0 with f(t) =
(

sλ(t,f2)
sλ(0,f2)

)n−1

Hf ≤ 0 with f(t) =
(

sλ(0,f2)cλ(t)
sλ(t,f2)

)n−1

∥

∥

∥

∫ t

0
R(τ) dτ

∥

∥

∥
≤ Λ(t), Λ′ ≥ 0,

if Λ(0) = 0 suppose Λ′(0) > 0

‖H‖ ≤ Λ(t)
1−tΛ(t) for all t ∈ [0, t0) with the

unique t0 > 0 such that t0Λ(t0) = 1

For the proof of the Riccati comparison we suppose that R̃ is a curve in
Sym(n − 1,R) and that C̃ is the solution of C̃′′ + R̃C̃ = 0 with C̃(0) = I and
C̃′(0) = 0. Put H̃ = C̃′C̃−1. Let U be the solution of U ′ = 1

2 (H + H̃) · U
with U(0) = I and V the solution of V ′ = −V · 1

2 (H + H̃) with V (0) = I.
Then U and V are the inverse of each other because (V U)′ = V ′U + V U ′ =
−V 1

2 (H + H̃)U + V 1
2 (H + H̃)U = 0. From (tU(H − H̃)U)′ = −tU(R− R̃)U

we get

H(t)− H̃(t) = −
∫ t

0

tX(τ, t)(R(τ) − R̃(τ))X(τ, t) dτ

with X(τ, t) = U(τ)U−1(t) = U(τ)V (t). This integral equation expresses the
Riccati comparison (cf. [11, Theorem 1] ). If R ≤ Λ this gives H ≥ hΛ and the
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focal point comes later than in the model space. If R ≥ λ we have H ≤ hλ.
Taking the trace in (6.11) we get trH ≤ (n− 1)hλ if trR ≥ (n− 1)λ. It follows
under both lower curvature conditions that the focal point comes earlier than
in the model space. These are the first four well-known estimates for H in
Table 3.
The excess functions e−f1(p) = dc(−f1)(p) − δ(p) − f1 ≥ 0 and ef2(p) =
δ(p) + dc(f2)(p)− f2 ≥ 0 are convex. It follows for t ∈ (−f1, f2)

A−f1|c(t) ≥ Hc(t) ≥ −Af2|c(t). (6.12)

This means that bounds for H can be converted to bounds for A and vice
versa. In the model space of constant positive curvature λ these inequalities
are sharp. Here we can choose f1 = f2 = π

2
√
λ
and the distance spheres of the

pole and those of the great circle match. In the Euclidean space we also have
sharpness (f1, f2 → ∞) because the horospheres are flat hypersurfaces. In the
hyperbolic case, Ht is only bounded by the horospheres. From (6.12) we can
deduce some inequalities for H using estimates for A(t, f2) on (−f1, f2). We
get (see Table 3, row 5) with H(t)−A(t, f2) ≥ 0 on [−f1, f2) from the Riccati
comparison the lower bound

H(t) ≥ A(t, f2) ≥ aλ(t, f2) if R ≥ λ

and (see Table 3, row 6)

trH(t) ≥ trA(t, f2) ≥ (n− 1)aλ(t, f2) if trR ≥ (n− 1)λ.

Similar examples as in Section 7 (couple Λnδn = hλ(t) − aλ(t, f2) > 0 or
Λ2
nδ

3
n = 3

2 (hλ(t) − aλ(t, f2)) > 0) show that these two inequalities are sharp
in this context. In the case of a lower Ricci curvature assumption one cannot
expect bounded principal curvature but integral bounds for H as for B in
Theorem 4. Here the Cauchy-Schwarz inequality and the Riccati equation for
H give for 0 ≤ τ ≤ t < f2 (see Table 3, row 6)

∫ t

τ

‖Hλ(x)‖ dx ≤
(
∫ t

τ

1
c2
λ
(x)

dx

)1/2 (∫ t

τ

c2λ(x) trH
2
λ(x) dx

)1/2

=
√

sλ(t,τ)
cλ(t)cλ(τ)

(

c2λ(τ) trHλ(τ)− c2λ(t) trHλ(t)

−
∫ t

τ

c2λ(x)(trR(x)− (n− 1)λ(x)) dx

)1/2

≤
(

cλ(t)
cλ(τ)

)1/2√

− trHλ(t)
√

sλ(t, τ)

≤
(

cλ(t)
cλ(τ)

)1/2 √
n− 1

√

hλ(t)− aλ(t, f2)
√

sλ(t, τ)

=
√
n− 1

√

cλ(f2)
cλ(τ)sλ(f2,t)

√

sλ(t, τ).

(6.13)
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(6.13) is used in Jacobi field estimates. As in Section 6.4 this inequality also
implies two rigidity cases. If Ric(ċ) ≥ (n− 1)λ > 0, λ ∈ R and the focal point
of c comes at the point f2 = π

2
√
λ
, then the curvature tensor along c[0,f2] is

given by R = λI. If Ric(ċ) ≥ 0 and c is a ray without a focal point, we have
R[0,∞) = 0 (cf. [12, Lemma 6]).
If for every α ∈ [0, f2] no geodesic segment c[α,f2] has a focal point, then by
Lemma 2 we have A(t, f2) < 0 on [0, f2). With a lower Ricci curvature bound
this gives for the principal curvature of the parallel hypersurface family Ht (see
Table 3, row 7)

(n− 1)aλ(t, f2) ≤ H(t) ≤ (n− 1)(hλ(t)− aλ(t, f2)) on [0, f2) (6.14)

because

0 < H(t)−A(t, f2) ≤ trH(t)− trA(t, f2) ≤ (n− 1)(hλ(t)− aλ(t, f2))

and
(n− 1)aλ(t, f2) ≤ trA(t, f2) ≤ A(t, f2) < 0.

Under the assumptions of Theorem 5 the left side of (6.14) can be im-
proved by comparing H with A(t, t − f0). More precisely, we have
−(n− 1) ctλ(f0 − t) ≤ A(t, f0) ≤ H(t) ≤ A(t, t− f0) ≤ (n− 1) ctλ(f0). This
means that it is rather normal to control the principal curvature and not only
the mean curvature in case of a lower focal radius and Ricci curvature bound.
With (6.11) one gets an analogous statement like in Theorem 6 with the integral

curvature tensor
∫ t

0
R(τ) dτ (see Table 3, row 8). For an orthonormal basis

(Xi)2≤i≤n of parallel vector fields along c and orthogonal to ċ, the index form It
of the segement c[0,t] is given by −

∫ t

0 ri,j(τ) dτ . This means that for a variation

v(τ, s) := exp(sXi(τ)) the length function l(s) =
∫ t

0 ‖v̇(τ, s)‖ dτ not only has a
minimum in s = 0, i.e. l′(0) = 0, but l′′(0) = I(Xi, Xi) is bounded under this
integral curvature condition. From a geometric point of view it is not surprising
that H is bounded in this case. From (6.12) we obtain, with Theorem 6, that

bounds for the integral curvature tensor
∫ t

0 R(τ) dτ are equivalent to bounds

for the integral curvature tensor
∫ t

0 (
τ
t )

2R(τ) dτ .
We now apply bounds for H to estimate Jacobi fields. On the one hand,
Jacobi fields J 6= 0 orthogonal to ċ with J ′(0) = 0 describe H by the equation
J ′ = HJ . On the other hand, J can be expressed in terms of H by the relation

‖J(t)‖ = ‖C(t)J(0)‖

= ‖J(0)‖ exp
(

1
2 ln ‖C(t)

J(0)
‖J(0)‖‖

2
)

= ‖J(0)‖ exp
(
∫ t

0

〈H(τ) J(τ)
‖J(τ)‖ ,

J(τ)
‖J(τ)‖ 〉 dτ

)

= ‖J(t0)‖ exp
(

−
∫ t0

t

〈H(τ) J(τ)
‖J(τ)‖ ,

J(τ)
‖J(τ)‖〉 dτ

)

.

(6.15)
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Rauch’s second comparison theorem is a consequence of (6.15) and the Riccati
comparison forH . Equivalent estimates for these Jacobi fields like in Section 6.3
are possible. Let f : R → R be a smooth function with f(0) = 1 and positive

as long as J 6= 0. Put Hf = H − f ′

f I and Jf = J
f . Then ‖Jf‖ is decreasing if

Hf ≤ 0 and increasing if Hf ≥ 0.

Define the integral barrier function of Hf by hf (t0, t1) :=
∫ t1
t0

‖Hf (τ)‖ dτ for

0 ≤ t0 ≤ t1 < f2 and set hf (t) := hf (0, t). We have for 0 ≤ t0 ≤ t1 < f2

‖Jf (t0)‖ · exp (−hf(t1, t0)) ≤ ‖Jf (t1)‖ ≤ ‖Jf (t0)‖ · exp (hf (t1, t0)) . (6.16)

The comparison of a Jacobi field with the associated affine parallel vector field
gives

‖J(t)− f(t)J(0)‖ ≤ f(t) · ‖J(0)‖ · (exp(hf (t))− 1) .

For the angular velocity of this Jacobi field we have
∥

∥

∥

∥

(

J
‖J‖

)′
∥

∥

∥

∥

≤ ‖Hf‖ .

and for the angle between the Jacobi field and the corresponding parallel vector
field X with X(0) = J(0)

2 sin

(

1

2
∠(J(t), J(0))

)

≤ hf(t)

for all f as above.
We continue regarding the shape operator H of other points c(s) along c. We
define H(t, s) := ∂

∂tC(t, s)C
−1(t, s) for all (t, s) where C(t, s) is invertible.

Using the symmetry of H and ∂C
∂s (t, s) = −C(t)tS(s)R(s) + S(t)tC(s)R(s) =

S(t, s)R(s) we have

∂H
∂s (t, s) =

∂2C
∂s∂t (t, s) C

−1(t, s)− ∂C
∂t (t, s) C

−1 ∂C
∂s (t, s) C

−1(t, s)

= tC−1(t, s)
(

t C(t, s) ∂2C
∂s∂t (t, s)− ∂tC

∂t (t, s)
∂C
∂s (t, s)

)

C−1(t, s)

= tC−1(t, s)
(

tC(t, s)∂S∂t (t, s) R(s)− ∂tC
∂t (t, s)S(t, s) R(s)

)

C−1(t, s)

= tC−1(t, s)R(s)C−1(t, s).

(6.17)

It is not surprising that s 7→ H(t, s) is not increasing in general as for distance
spheres (see (3.8)). But for non-negative sectional curvature K ≥ 0 this result
can be interpreted geometrically as in Section 2.1. Indeed, Rauch’s second
comparison theorem shows that δ(expc(t)(w)) ≤ t where w ⊥ ċ(t) and small
enough. This means H(t) ≤ 0. Let δ−f1 be the oriented distance function of
the total geodesic hypersurface orthogonal to ċ(−f1). Then again with Rauch’s
second comparison theorem we have δ−f1 ≤ f1 + δ, which means H(t,−f1) ≤
H(t).
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Another application of the results of Table 3 are estimates for the eigenvalues of
the Hessian of the excess functions e−f1 and ef2 . As C is invertible on [−f1, f2],
one can express S(t, f), −f1 < f < f2, in terms of C by

S(t, f) = −C(t)
∫ f

t

C−1(τ)tC−1(τ) dτ tC(f).

This gives, with D(τ, t) = tC−1(τ) tC(t) for t ∈ (−f1, f2) like in Lemma 1

H(t)−A(t, f) =

(

∫ f

t

tD(τ, t)D(τ, t) dτ

)−1

> 0

Since we have

‖D(τ, t)v‖2 = ‖v‖2 exp
(

−2

∫ τ

t

〈H(x) D(x,t)v
‖D(x,t)v‖ ,

D(x,t)v
‖D(x,t)v‖ 〉 dx

)

for v ∈ Rn−1, estimates follow from Table 3. For example, if R ≥ λ on [−f1, f2]
then for t ∈ (−f1, f2) we have H(t) > A(t, f2) ≥ aλ(t, f2) and therefore for the
Hessian of the excess function H(t) − A(t, f) ≥ aλ(t, f2) − aλ(t, f) > 0 for
0 ≤ t < f < f2.
We finish with some remarks about the interaction of H and A. As long as A
is convex, the duality of A and H is given by the formulas (see [6, Lemma 6.4])

A−1(t) =

∫ t

0

C−1(x, t)tC−1(x, t) dx

= −
∫ t

0

∂
∂sA

−1(t, s) ds = A−1(t, 0)−A−1(t, t)

and

〈A−1(t)v, v〉 =
∫ t

0

exp

(

2

∫ t

τ

〈H(x, t)
tC−1(x,t)v

‖tC−1(x,t)v‖ ,
tC−1(x,t)v

‖tC−1(x,t)v‖〉 dx
)

dτ

=

∫ t

0

1
c2
λ
(τ,t)

exp

(

2

∫ t

τ

〈Hλ(x, t)
tC−1(x,t)v

‖tC−1(x,t)v‖ ,
tC−1(x,t)v

‖tC−1(x,t)v‖ 〉 dx
)

dτ

with v ∈ R
n−1, ‖v‖ = 1. This can be seen as in the proof of Lemma 1. Note

that A(t) = A(t)−H(t, t). Thus L1-barriers for H already give bounds for the
principal curvature of distance spheres

0 < aλ(t) · e−2
∫

t
0
‖Hλ(x,t)‖ dx ≤ A(t) ≤ aλ(t) · e2

∫
t
0
‖Hλ(x,t)‖ dx. (6.18)

With the estimate of type O(
√
t) as t→ 0 from (6.13), these inequalities (6.18)

do not describe the pole of A in t = 0 but are better than the elementary
estimates in (1.17). Nevertheless, we again obtain bounded comparison tensor
fields necessary for the proof of Theorem 5. Then (6.12) also implies bounded
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principal curvature for H . Applying these bounds again in (6.18) it follows
that we have

‖A(t)− aλ(t)I‖ ≤ 2aλ(t)

∫ t

0

‖Hλ(x, t)‖ dx · exp
(

2

∫ t

0

‖Hλ(x, t)‖ dx
)

= 2taλ(t)

∫ 1

0

‖Hλ(xt, t)‖ dx · exp
(

2 t

∫ 1

0

‖Hλ(xt, t)‖ dx
)

∈ O(1) as t→ 0

as long as A is strictly convex. This is the idea of the proof of Theorem 5 given
in [6].
Finally, we want to mention that the upper bound in (6.16) was also developed
for λ = 0 in [14] and was used there to get a local splitting theorem.

7 Sharpness of the results

The following three examples show that the results presented in Section 1
are optimal. The first two analytic examples show also the potentials and
the limitations of the Riccati equation and motivate a geometric example in
Section 7.3.
Assume that l1, l2 ∈ R are positive and that λ : [−l1, l2] → R is a continuous
function. We use the same notation as in Section 3 for the comparison functions.
The motivation for these examples is the following interaction: on the one hand,
high curvature will decrease the principal curvature of distance spheres and on
the other hand, this will lead earlier to conjugate or focal points. It is like
linear optics. For the first example one adds a biconvex lens at a point on the
ray and for the second example one puts in addition a biconcave lens behind
it.

7.1 One-dimensional analytic example of the Riccati equation

We start with the case of a lower curvature bound in a two-dimensional
Riemannian manifold and treat the lower bound on the Ricci curvature sepa-
rately in Section 7.2. We have thus only a one-dimensional Jacobi or Riccati
equation. Choose t ∈ (0, l2). Let δn > 0 be strictly monotonically decreasing
and Λn a strictly monotonically increasing sequence with limn→∞ δn = 0 and
limn→∞ Λn = ∞. We define a sequence of curvature tensors rn : [−l1, l2] → R

by

rn(τ) :=

{

Λn for τ ∈ [t− δn, t],

λ(t) else

and assume that rn ≥ λ. The idea is to increase the curvature only in a small
interval before t. For clarity reasons we define rn only piecewise continuously.
It is clear that a smooth example which has approximately the same properties
can also be constructed.
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The geodesic segment with the disturbed curvature rn should be without
conjugate points. This condition can be translated by aλ(t − δn,−l1) =
an(t−δn,−l1) > an(t−δn, t) = − ctΛn

(δn) and an(t,−l1) ≥ an(t, l2) = aλ(t, l2).
This follows from the Riccati comparison, which ensures that an(τ,−l1) >
an(τ, t) = − ctΛn

(t − τ) on [t − δn, t] and an(τ,−l1) ≥ aλ(τ, l2) on [t, l2]. So
there will be no singularity of an(t,−l1) in (−l1, l2). If we couple δn and Λn in
the way that δnΛn = aλ(t,−l1)− aλ(t, l2) > 0, Lemma 3 implies

an(t,−l1) =
aλ(t− δn,−l1)− Λnδn tg(Λnδ

2
n)

1 + aλ(t− δn,−l1)δn tg(Λnδ2n)

−−−−→
n→∞

aλ(t,−l1)− (aλ(t,−l1)− aλ(t, l2)) = aλ(t, l2).

This and limn→∞(− ctΛn
(δn)) = −∞ mean that asymptotically this condition

is fulfilled. We conclude that a geodesic segment without conjugate points and
a lower curvature bound does not allow us to get an upper curvature bound.
Note that −l1 is conjugated to l2 along the geodesic with modified curvature
rn if and only if an(t,−l1) = an(t, l2) = aλ(t, l2), which is approximately the
case. Furthermore, we have

an(t) =
aλ(t− δn)− Λnδn tg(Λnδ

2
n)

1 + aλ(t− δn)δn tg(Λnδ2n)
−−−−→
n→∞

aλ(t)− (aλ(t,−l1)− aλ(t, l2)).

This means that the estimate in Theorem 1 is sharp.
Along the inverse geodesic the point t has a focal point at fn < t if
an(t, fn) = 0. This is equivalent to aλ(t − δn, fn) = Λn tgΛn

(δn) =
Λnδn tg(Λnδ

2
n). So aλ(t, fn) ≈ aλ(t,−l1) − aλ(t, l2). If there are conjugate

points, a unique fn exists because s → aλ(t, s) is increasing. t − fn is then
the distance to the focal point. This confirms that a lower conjugate radius
bound in combination with a lower sectional curvature bound also implies a
lower focal radius bound (see Corollary 1) and that (1.21) is sharp.
We now consider the case of a convex background field. Supposing that
aλ(t,−l1) > 0 on (−l1, t], we also have convexity for the distance spheres
for the geodesic with modified curvature if an(t− δn,−l1) = aλ(t− δn,−l1) ≥
an(t − δn, t) = Λn tgΛ(δn) > 0. To fulfill this condition we couple δn and Λn

such that δnΛn = aλ(t,−l1) > 0. This gives an(t) −−−−→
n→∞

aλ(t)− aλ(t,−l1) and
an(t,−l1) −−−−→

n→∞
0. This shows that the comparison with a convex background

field in (4.6) is also optimal.

Lemma 3. Let κ ∈ R. Then tgκ(t) = snκ(t)
csκ(t)

= t tg(κt2) with a meromorphic

function tg : C\{π2(12 +k)
2, k ∈ N} → C that has for |z| < π2

4 the power series

tg(z) =

∞
∑

n=1

(−1)n−1
22n(22n − 1)

(2n)!
B2nz

n−1 = 1 +
z

3
+

2

15
z2 + . . .

Bn are the Bernoulli numbers.
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The function aκ = −κ snκ +a0 csκ
csκ +a0 snκ

is a solution of the Riccati equation

a′ + a2 + κ = 0 with aκ(0) = a0. For |κ|t2 < π2

4 we have

aκ(t) =
a0 − κ tgκ(t)

1 + a0 tgκ(t)
=
a0 − κ t tg(κt2)

1 + a0 t tg(κt2)
=
a0 − κ t − κ2 t3

3 − 2
15κ

3t5 g(κ t2)

1 + a0 t tg(κt2)

with a function g defined by the relation tg(z) = 1+ z
3+

2
15z

2g(z), g(0) = 1. For

λ ∈ R the solution aλ of a′ + a2 + λ = 0 with aλ(δ) = aκ(δ), δ > 0, |κ|δ2 < π2

4
is given by

aλ(δ + τ) =
a0 − κ tgκ(δ)− λ tgλ(τ) − a0λ tgλ(τ) tgκ(δ)

1 + a0(tgκ(δ) + tgλ(τ)) − κ tgκ(δ) tgλ(τ)

=
a0 − κδ − λτ − 1

3κ
2δ3 − 1

3λ
2τ3

1 + a0(δ tg(κδ2) + τ tg(λτ2))− κδτ tg(κδ2) tg(λτ2)

+
− 2

15κ
3δ5g(κδ2)− 2

15λ
3τ5g(λτ2)− a0λτδ tg(λτ

2) tg(κδ2)

1 + a0(δ tg(κδ2) + τ tg(λτ2))− κδτ tg(κδ2) tg(λτ2)

with τ ≥ 0, |λ|τ2 < π2

4 .

Proof. The proof is straightforward and the power series follows from the
Taylor series of the tangent and hyperbolic tangent functions. It is tan(z) =

−i tanh(iz) = z tg(z2) and hκ(t) =
cs′κ(t)
csκ(t)

= −κ snκ(t)
csκ(t)

= −κt tg(κt2).

7.2 Two-dimensional analytic example of the Riccati equation

For the example with a lower Ricci curvature bound, we consider only three-
dimensional Riemannian manifolds. This leads to a two-dimensional Jacobi
or Riccati equation along a geodesic. Let λn, Λn and δn strictly monotone
sequences with limn→∞ λn = −∞, limn→∞ Λn = ∞ and limn→∞ δn = 0. For
fixed t ∈ (0, l2) we define

Rn(τ) =











































(

Λn 0

0 λn

)

for τ ∈ [t− 2δn, t− δn]

(

λn 0

0 Λn

)

for τ ∈ (t− δn, t]

(

λ(τ) 0

0 λ(τ)

)

else.

The objective is to construct a sequence of diagonal piecewise continuous cur-
vature tensors Rn ∈ Sym(2,R) with trRn ≥ 2λ. Therefore the sequences
should be taken such that Λn + λn ≥ 2λ(τ) for all τ ∈ [t − 2δn, t]. Further-
more, Λn + λn should be bounded from above. For example, we can couple
Λn+λn = 2 · max{λ(τ)|τ ∈ [t− 2δ0, t]}. It is important that the two intervals
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[t− 2δn, t− δn] and [t− δn, t] are of the same size. So in one direction, we first
increase on half of an interval before t the curvature to infinity and then on
the second half to minus infinity. In the other direction we do it the other way
around. The idea is that the negative curvature compensates the positive cur-
vature to avoid conjugate points. In contrast to the one-dimensional example
this will lead to unbounded principal curvature.
To guarantee that there are not any conjugate points on [−l1, l2] we need the
following requirements: aλ(t−2δn,−l1)I = A(t−2δn,−l1) = An(t−2δn,−l1) >
An(t− 2δn, t− δn), An(t− δn,−l1) > An(t− δn, t) and An(t,−l1) ≥ An(t, l2) =
A(t, l2) = aλ(t, l2)I.
Coupling Λ2

nδ
3
n = 3

2 (aλ(t,−l1) − aλ(t, l2)) > 0 will give the required proper-
ties. We see that along a geodesic, a lower bound on the Ricci curvature and
on the conjugate radius does not imply bounded sectional curvature. Realize
that limn→∞ λ2nδ

3
n = 3

2 (aλ(t,−l1)− aλ(t, l2)), limn→∞ Λnδ
2
n = limn→∞ λnδ

2
n =

limn→∞ Λ3
nδ

5
n = limn→∞ λ3nδ

5
n = 0, limn→∞(Λn + λn)δn = 0, limn→∞ Λnδn =

∞ and limn→∞ λnδn = −∞. Using Lemma 3 we find limn→∞An(t,−l1) =
aλ(t, l2)I and limn→∞An(t) = aλ(t)I − (aλ(t,−l1)− aλ(t, l2))I. Therefore the
lower bound in Theorem 1 is optimal.
This example shows additionally that we cannot expect to control the principal
curvature in this case. In fact, we have for the non-zero components a00n and
a11n of An

a00n (t− δn, 0) =
aλ(t− 2δn)− Λnδn − Λ2

nδ
3
n

3 − 2
15Λ

3
nδ

5
ng(Λnδ

2
n)

1 + aλ(t− 2δn)δn tg(Λnδ2n)

and

a11n (t− δn, 0) =
aλ(t− 2δn)− λnδn − λ2

nδ
3
n

3 − 2
15λ

3
nδ

5
ng(λnδ

2
n)

1 + aλ(t− 2δn)δn tg(λnδ2n)
.

We see that neither a00n (t − δn, 0) nor a11n (t − δn, 0) is bounded. We get any
principal curvature as low in the first direction and as high in the second
direction as we want. However, the requirements to avoid conjugate points are
always satisfied.
Concerning the focal points in the first dimension we observe that fn

1 < t−2δn is
a focal point of t−δn along the inverse geodesic if and only if an(t−δn, fn

1 ) = 0.
This is equivalent to an(t − 2δn, f

n
1 ) = aλ(t − 2δn, f

n
1 ) = Λn tgΛn

(δn) =
Λnδn tg(Λnδ

2
n). For n→ ∞ the unique solution fn

1 comes ever closer to t− 2δn
so that the focal radius of the inverse geodesic goes to 0. The same holds for
the second dimension along the geodesic for the points where the focal point
fn
2 > t of t− δn is more and more closer to t. This means that a lower bound
on the Ricci curvature and on the conjugate radius along one geodesic does not
imply a lower focal radius bound.
Similarly to the one-dimensional example, for a pair f1, f2 with f1 < t < f2
and aλ(t, f1) = −aλ(t, f2) > 0, coupling Λnδn = aλ(t, f1) implies that the focal
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radius (approximately min{t− f1, f2 − t}) is bounded from below. In this case
we also get bounded principal curvature as stated in Theorem 5.

The idea for the two previous examples comes from the examples in [6, Chap-
ter 4]. There the comparison geometry was the Euclidean space (λ ≡ 0). rn is
then in the first analytic example an even function and in the second example
an odd function. Using these properties we determined the conjugate radius
for rn as in the following example in Section 7.3.

7.3 A sequence of surfaces of revolution

In this subsection we construct a sequence of surfaces of revolution embedded
in R

3 (cf. [4]) for which we can show some global geometric properties as
well. This geometric example has the analytic behavior of the one-dimensional
example of subsection 7.1 in the case of non-negative curvature. It gives a
better understanding of the interactions between curvature, injectivity radius,
conjugate radius or focal radius, and principal curvature of distance spheres.

The idea is to take a right circular cone and replace the apex with a spherical
cap (see Figure 5). The sequence can now be constructed by reducing the
radius r of the spherical part and by increasing the aperture 2α of the flat
cone such that the sequence converges to the Euclidean plane. In this way,

r

ρ

s0f0

θ

θ

α
δ, intrinsic radius of the cap

δ = θ · r → 0

apex

curvature of the cap: Λ = 1
r2 → ∞

dg(pole, focal point): f0 = θ · r + r · cot θ
= δ + 1

Λ ctΛ(δ)

s1 = r sin θ = snΛ(δ) → 0

s0 = r
sin θ = 1

Λ snΛ(δ) → f0

aperture: α = π
2 − θ → π

2

s1

ρ = r tan θ = tgΛ(δ) → 0

r cot θ = 1
Λ ctΛ(δ) → f0

couple θ
r = Λδ ≈ 1

f0

Figure 5: surface of revolution
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the constant positive curvature of the spherical cap Λ = 1
r2 will run to infinity

and the inscribed angle 2θ = π − 2α and the intrinsic diameter of the sphere
2δ = 2θr will run to zero. Without the cap, the cone’s lateral surface rolled
out in the plane is an unlimited circular sector of central angle 2π cos θ where
a circular sector of the same central angle and radius r tan θ is cut out. The
border circle of the cap has the length 2πr sin θ (see Figure 6). The idea

2πr sin θ = 2π snΛ(δ)

γ

r tan θ = tgΛ(δ)

γ = 2π cos θ = 2π csΛ(δ)

Figure 6: circular sector, the flat part of the surface of revolution rolled out in
the plane

is to couple θ and r such that the distance to the focal point of the apex
f0 = θ r + r cot θ = δ + 1

Λ ctΛ θ of a meridian, a geodesic through the pole,
will be constant. We will see that in this case the injectivity radius and the
conjugate radius of all surfaces of revolution are equal to 2f0, that the focal
radius equals f0

2 , and that the sequence converges in the Lipschitz distance to
the flat plane. As a consequence:

Theorem 8. The class of all complete Riemannian manifolds M with non-
negative curvature and injectivity radius injRad(M) (or conjugate radius
conjRad(M)) bounded from below by a fixed positive constant does not permit a
universal upper curvature bound. Furthermore, the lower bound for the Hessian
of the distance function dp of a point p ∈M from Corollary 1 is optimal. More
precisely, we have

1

dp(q)
− 4

injRad(M)
≤
〈

Hess dp|qv, v
〉

≤ 1

dp(q)
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for all q ∈ M with dp(q) ≤ injRad(M)
2 , v ∈ TqM , ‖v‖ = 1 and v

orthogonal to graddp|q. In addition, the lower bound for the focal radius

focalRad(M) ≥ conjRad(M)
4 from (1.6) is also optimal and the inequalities

1
4 injRad(M) ≤ convexRad(M) ≤ 1

2 injRad(M) are sharp. Moreover, injRad,
conjRad and focalRad are not continuous functions of the metric space of
Riemannian manifolds with the Lipschitz distance.

Just as in [17] or [18] we start defining a metric in R
2. Then we deduce the Levi-

Civita connection and the curvature. We continue with properties of geodesics
and calculate the conjugate, the injectivity, and the focal radius. Finally, we
show the isometry to an embedded surface of revolution in R3 and prove the
convergence in the Lipschitz topology to the flat plane.
Let κ : R → R be an even and a monotonically decreasing function on [0,∞)
and a smooth approximation of

κΛ,δ(t) :=

{

Λ |t| ≤ δ

0 else

with Λ > 0, δ > 0,
√
Λδ < π

2 such that κΛ,δ−δ2 ≤ κ ≤ κΛ,δ. Moreover let sκ be
the solution of s′′κ+κsκ = 0 with sκ(0) = 0 and s′κ(0) = 1. sκ is an odd function.
By Rauch’s first comparison theorem, sκ behaves like the solutions of the Jacobi
equation with the piecewise continuous curvature κΛ,δ. sκ is positive on (0,∞).

As κ ≥ 0, sκ(t)
t and s′κ are decreasing with 1 ≥ s′κ(t) ≥ s′κ(δ) ≈ csκ(δ) > 0.

In the Euclidean plane R2 a chart

ψ = (r, ϕ) : R
2\{(x, y) ∈ R

2 | y = 0 and x ≤ 0} → (0,∞)× (−π, π) ⊂ R
2

defined by the relation (x, y) = r(x, y)
(

cosϕ(x, y), sinϕ(x, y)
)

, the polar coor-

dinates, leads to a basis ( ∂
∂r ,

∂
∂ϕ ).

∂
∂r is the radial vector field

∂

∂r |(x,y)
=

x
√

x2 + y2
∂

∂x |(x,y)
+

y
√

x2 + y2
∂

∂y |(x,y)

which can be extended to R2\{0}. ∂
∂ϕ is the Killing vector field of the counter-

clockwise rotation about the origin

∂

∂ϕ |(x,y)
= −y ∂

∂x |(x,y)
+ x

∂

∂y |(x,y)

which can be extended to R2. We define the metric g by the following relations

g

(

∂

∂r
,
∂

∂r

)

= 1, g

(

∂

∂r
,
∂

∂ϕ

)

= 0, g

(

∂

∂ϕ
,
∂

∂ϕ

)

= s2κ(r),

i.e. g = dr2 + s2κ dϕ
2. g can be extended to a C2-tensor field in 0 ∈ R

2 by
g|0 = 〈, 〉eucl.
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This means that ∂
∂r ,

∂
∂ϕ is an orthogonal basis. For the Lie bracket we have

[ ∂
∂r ,

∂
∂ϕ ] = 0 because these vector fields are partial derivatives of a chart. The

rotations are isometries for g, and ∂
∂ϕ is the associated Killing vector field with

‖ ∂
∂ϕ‖g = sκ(r). The reflection at a line through zero is also an isometry for g.

The rays starting at zero are minimal and so the function r is the distance
function of the origin. The integral curves of gradg(r) =

∂
∂r , the meridians, are

therefore geodesics and ∂
∂r is autoparallel for g. Hence, 0 ∈ R2 is a pole. By the

Hopf-Rinow theorem the manifold is geodesically complete. As a consequence,
we get for the Levi-Civita connection the following defining relations

∇ ∂
∂r

∂
∂r = 0, ∇ ∂

∂r

∂
∂ϕ = ∇ ∂

∂ϕ

∂
∂r =

s′κ(r)
sκ(r)

∂
∂ϕ ,

∇ ∂
∂ϕ

∂
∂ϕ = −s′κ(r)sκ(r) ∂

∂r .

In addition, we have ∂
∂ϕ |(x,y)

= s2κ(r(x, y)) gradg ϕ|(x,y). We see that along a

meridian 1
sκ(r)

∂
∂ϕ is a parallel vector field orthogonal to that meridian. We de-

duce for the curvature K|(x,y) = 〈R( 1
sκ(r)

∂
∂ϕ ,

∂
∂r )

∂
∂r ,

1
sκ(r)

∂
∂ϕ 〉|(x,y) = κ(r(x, y)).

Furthermore Hessg r(v) =
s′κ
sκ
v where v is orthogonal to ∂

∂r . The distance

spheres of the pole with principal curvature aκ(r) =
s′κ
sκ

are always convex.

For a curve c : R → (R2\{0}, g) we have for the velocity ċ = (r◦ c)′ ∂
∂r |c+ω

∂
∂ϕ |c

with the radial velocity (r ◦ c)′ = g(ċ, ∂
∂r |c) and the angular velocity ω =

(ϕ ◦ c)′ = g(gradg ϕ|c), ċ) =
1

s2κ(r◦c)
g(ċ, ∂

∂ϕ |c
). c is a normal geodesic if and only

if we have

1 = ((r ◦ c)′)2 + s2κ(r ◦ c) ((ϕ ◦ c)′)2 , (‖ċ‖g = 1)

(r ◦ c)′′ = s′κ(r ◦ c)sκ(r ◦ c) ((ϕ ◦ c)′)2 (g(∇D ċ,
∂
∂r ) = 0)

and (Clairaut’s theorem) the angular momentum (g(∇D ċ,
∂
∂ϕ ) = 0)

g(ċ, ∂
∂ϕ |c

) = sκ(r ◦ c) cos(∠g(ċ,
∂
∂ϕ |c

)) = s2κ(r ◦ c)(ϕ ◦ c)′ = const

is constant. As sκ > 0 and s′κ > 0 we have that r ◦ c is strictly convex and
hence has some minimum r0. In particular, no circle of latitude is a geodesic.
c is a meridian if and only if the angular momentum is 0. Otherwise we can
suppose that r(c(t)) ≥ r(c(0)) = r0 > 0. c is then up to a parameter transfor-
mation identical to a geodesic starting tangentially at a circle of latitude with
radius r0 and has an angular momentum of sκ(r0).
To calculate the conjugate radius one only has to consider a meridian. To
deduce this, we define a variation of geodesics orthogonal to a meridian. So let
c : →R2 be the meridian c(s) = (0, s). The vector field 1

sκ(s)
∂
∂ϕ |c(s)

is parallel

along c and orthogonal to ċ. Put vs(t) := v(t, s) := expc(s)

(

t
sκ(s)

∂
∂ϕ |c(s)

)

.

Documenta Mathematica 25 (2020) 2241–2302



2298 R. Brocks

v0(t) = (−t, 0) is a meridian. For the variation vector field Js along each
geodesic vs we have Js(0) = ∂

∂r |(0,s) and J ′
s(0) = 0. As the curvature is

bounded from above by Λ it follows from Rauch’s second comparison theorem
that ‖Js(t)‖g ≥ csΛ(t) for 0 ≤ t ≤ δ < π

2
√
Λ
. Furthermore, the angle between

∂
∂r and Js is the same as the angle between v̇s and ∂

∂ϕ . For that reason, and
using Clairaut’s theorem we get

r(vs(t)) − r(v0(t)) =

∫ s

0

∂
∂s (r ◦ v)(t, σ) dσ

=

∫ s

0

g
(

∂
∂r |v(t,σ), Jσ(t)

)

dσ

=

∫ s

0

‖Jσ(t)‖g · g
(

v̇s(t, σ),
1

sκ(r(v(t,σ)))
∂
∂ϕ |v(t,σ)

)

dσ

=

∫ s

0

‖Jσ(t)‖g sκ(s)
sκ(r(v(t,σ)))

dσ

≥ sκ(s)
sκ(t+s)d(vs(t), c(t)) > 0.

As the curvature is decreasing and flat for r ≥ δ we have κ(c(t)) ≥ κ(vs(t)).
From Rauch’s first comparison theorem we conclude that the conjugate radius
of the surface of revolution equals the conjugate radius of a meridian. Let cκ
be the solution of c′′κ + κcκ = 0 with cκ(0) = 1 and c′κ(0) = 0. The first zero
of cκ is the distance f0 between the pole and its focal point along a meridian.
As κ is an even function, we have cκ(−f0) = cκ(f0) = 0. This means that
along a meridian c the points c(−f0) and c(f0) are conjugate points. Since

κ ≡ 0 for t ≥ δ we have that f0 = δ − cκ(δ)
c′κ(δ)

≈ δ + 1
Λ ctΛ(δ). This is also

the minimal distance between two conjugate points. To prove this we consider
sκ(t, s) := cκ(s)sκ(t)−sκ(s)cκ(t) the solution of the Jabobi field equation with
sκ(s, s) = 0 and ∂sκ

∂t (s, s) = 1. As sκ is an odd function and positive on (0,∞)
we can write

sκ(t, s) = sκ(t)sκ(s)(aκ(0, t)− aκ(0, s)).

a(s) = aκ(0, s) = − cκ(s)
sκ(s)

is the principal curvature of the distance spheres

of c(s) in the pole. We are looking for a pair (s, t) such that the principal
curvature of the distance spheres of c(s) and c(t) in the pole fit together. a is

an odd function, a′ = 1
s2κ

and a′′ = −2
s′κ
s3κ
. Therefore a is strongly concave

on (0,∞) and strongly convex on the interval (−∞, 0). For s < 0 there is at
most one positive conjugate point. For the distance conjRad(s) between two
conjugate points we have

conjRad(s) = a−1
|(0,∞)(a(s))− s.

This gives

conjRad′(s) =
s2κ(s+ conjRad(s))

s2κ(s)
− 1.
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Therefore the focal point of the pole is a minimum for the conjugate radius,
i.e. conjRad(R2, g) = 2f0.
To calculate the injectivity radius we define the open subsets U :=
{(x, y) ∈ R2 | r(x, y) > δ, ϕ(x, y) ∈ (−π, π)} ⊂ (R2, g) and V :=

{(x, y) ∈ R2 | r(x, y) > ρ, ϕ(x, y) ∈ (−α, α)} ⊂
(

R2, 〈, 〉eucl
)

with ρ = sκ(δ)
s′κ(δ)

,

α = πs′κ(δ) and observe that

φ : (U, g) → (V, 〈, 〉eucl)
φ(x, y) = (ρ− δ + r(x, y))

(

cos(απϕ(x, y)), sin(
α
πϕ(x, y))

)

is an isometry. This expresses the fact that the surface can be rolled out
in the plane as a circular sector where a circular sector of the same angle
α and finite radius ρ is cut out. We conclude that the injectivity radius is
at least as great as the radius of the largest circle which fits in the circular
sector. As the injectivity radius is a continuous function there is a p ∈ (R2, g)
with injRad(p) = injRad(R2, g). As there are no periodic geodesics we have
injRad(R2, g) = conjRad(R2, g) = 2f0.
The minimal distance to a focal point along the meridian is given, when starting
at distance δ from the pole going through the pole. The focal radius is given

by focalRad(M) = 2δ − cκ(2δ)
c′κ(2δ)

≈ 2δ + 1
Λ ctΛ(2δ) ≈ f0

2 .

It is straightforward to verify that χ : R2 → R3 with χ(0) = 0 and

χ(x, y) =

(

sκ(r(x, y))

r(x, y)
x,
sκ(r(x, y))

r(x, y)
y,

∫ r(x,y)

0

√

1− (s′κ)
2(τ) dτ

)

is an isometric embedding of (R2, g) in the Euclidean space R3. χ(R2, g) is
therefore obtained by rotating the curve

t 7→
(

sκ(t), 0,

∫ t

0

√

1− (s′κ)
2(τ)) dτ

)

≈







(

snΛ(t), 0,
1−csΛ(t)√

Λ

)

for 0 ≤ t ≤ δ
(

snΛ(δ) + csΛ(δ)(t− δ), 0, 1−csΛ(t)√
Λ

+
√
Λ snΛ(δ)(t− δ)

)

for δ ≤ t

around the z-axes. Finally we calculate the Lipschitz distance between (R2, g)
and the Euclidean plan. Therefore we note that for a curve γ : R → R2 not
passing through the origin we have

g(γ̇(t), γ̇(t)) =

〈

γ̇(t),
∂

∂r |γ(t)

〉2

eucl

+
s2κ
(

r(γ(t))
)

r4(γ(t))

〈

γ̇(t),
∂

∂ϕ |γ(t)

〉2

eucl

≤
〈

γ̇(t),
∂

∂r |γ(t)

〉2

eucl

+
1

r2(γ(t))

〈

γ̇(t),
∂

∂ϕ |γ(t)

〉2

eucl

= 〈γ̇(t), γ̇(t)〉eucl
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and

g(γ̇(t), γ̇(t)) ≥
〈

γ̇(t),
∂

∂r |γ(t)

〉2

eucl

+
s′κ(δ)

r2(γ(t))

〈

γ̇(t),
∂

∂ϕ |γ(t)

〉2

eucl

≥ s′κ
(

r(γ(t))
)

〈γ̇(t), γ̇(t)〉eucl .

The identity id : (R2, g) → (R2, 〈, 〉eucl) is therefore a Lipschitz function with

s′κ(δ)‖x− y‖ ≤ dg(x, y) ≤ ‖x− y‖.

For the Lipschitz distance we get

dL((R
2, g), (R2, 〈, 〉eucl)) ≤ − ln s′κ(δ) ≤ − ln csΛ(δ).

Proof. (of Theorem 8) For a given focal radius f0 it is sufficient to couple Λ
and δ such that δΛ = 1

f0
. The theorem is now a consequence of the analytic

example in Section 7.1.

If one couples Λn and δn such that Λnδn → 0 then the radius functions go to
infinity like in the Euclidean space. If Λnδn → ∞ then the radius functions are
not bounded from below.
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