Documenta Math. 2149

REPRESENTATION THEORY OF Disconnected Reductive Groups

Pramod N. Achar, William Hardesty, and Simon Riche

> Received: October 17, 2018 Revised: August 16, 2020

Communicated by Julia Pevtsova

ABSTRACT. We study three fundamental topics in the representation theory of disconnected algebraic groups whose identity component is reductive: (i) the classification of irreducible representations; (ii) the existence and properties of Weyl and dual Weyl modules; and (iii) the decomposition map relating representations in characteristic 0 and those in characteristic p (for groups defined over discrete valuation rings of mixed characteristic). For each of these topics, we obtain natural generalizations of the well-known results for connected reductive groups.

2020 Mathematics Subject Classification: 20G05, 17B10, 20C15 Keywords and Phrases: Disconnected reductive groups, Clifford theory

1 INTRODUCTION

Let G be a (possibly disconnected) affine algebraic group over an algebraically closed field \mathbb{R} , and let G° be its identity component. We call G a *(possibly)* disconnected reductive group if G is reductive. The goal of this paper is to extend a number of well-known foundational facts about connected reductive groups to the disconnected case.

Such groups occur naturally, even when one is primarily interested in *connected* reductive groups. Namely, for a connected reductive group H , the stabilizer H^x of a nilpotent element in the Lie algebra of H may be disconnected. Let H_{unip}^x be its unipotent element in the Lie algebra of H may be used inected. Let H_{unip} be its unipotent radical; then H^x/H_{unip}^x is a disconnected reductive group. The study of (the derived category of) coherent sheaves on the nilpotent cone $\mathcal N$ of H, and in particular of *perverse-coherent sheaves* on N , leads naturally to

questions about representations of H^x/H_{unip}^x . See [\[AHR\]](#page-27-0) for some questions of this form, and for some applications of the results of this paper. The present paper contains three main results:

- 1. We classify the irreducible representations of G in terms of those of G° , via an adaptation of Clifford theory (Theorem [2.16\)](#page-14-0).
- 2. Assuming that the characteristic of k does not divide $|G/G^{\circ}|$, we prove that the category of finite-dimensional G-modules has a natural structure of a highest-weight category (Theorem [3.7\)](#page-20-0).
- 3. Starting from a disconnected reductive group scheme over a strictly Henselian discrete valuation ring of mixed characteristic, one obtains a "decomposition map" relating the Grothendieck groups of representations in characteristic θ and in characteristic p . We prove that this map is an isomorphism.

These results are certainly not surprising, and some of them may be known to experts, but we are not aware of a reference that treats them in the detail and generality needed for the applications in [\[AHR\]](#page-27-0).

ACKNOWLEDGMENTS

We thank Jens Carsten Jantzen for a helpful conversation, and George Lusztig for sharing with us some unpublished notes on a topic related to the present paper. We are also grateful to Torsten Wedhorn for explaining to us how to both simplify and extend the generality of Section [4.](#page-20-1) P.A. was supported by NSF Grant Nos. DMS-1500890 and DMS-1802241. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 677147).

2 Classification of simple representations

In this section we consider (affine) algebraic groups over an arbitrary algebraically closed field k. Our goal is to describe the representation theory of a disconnected algebraic group G whose neutral connected component G° is reductive in terms of the representation theory of G° , via a kind of Clifford theory.

2.1 TWIST OF A REPRESENTATION BY AN AUTOMORPHISM

Let G be an algebraic group, φ : $G \stackrel{\sim}{\to} G$ an automorphism, and let $\pi = (V, \varrho)$ be a representation of G. Then we define the representation $\mathscr{P}\pi$ as the pair $(V, \varrho \circ \varphi^{-1})$. (Below, we will most of the time write V for π , and \mathscr{V} for $\mathscr{P}\pi$.) It is straightforward to check that if ψ : $G \stackrel{\sim}{\to} G$ is a second automorphism, then we have

$$
\psi(\varphi_{\pi}) = \psi \circ \varphi_{\pi}.\tag{1}
$$

If $f: \pi \to \pi'$ is a morphism of G-representations, then the same linear map defines a morphism of G-representations $\varphi_{\pi} \to \varphi_{\pi'}$, which will sometimes be denoted $\mathscr{S}f$.

LEMMA 2.1. Let $H \subset G$ be a subgroup, and (V, ρ) be a representation of H. *Then there exists a canonical isomorphism of* G*-modules*

$$
{}^{\varphi} \operatorname{Ind}_{H}^{G}(V, \varrho) \cong \operatorname{Ind}_{\varphi(H)}^{G}(V, \varrho \circ \varphi^{-1}).
$$

Proof. By definition, we have

$$
\operatorname{Ind}_{H}^{G}(V, \varrho) = \{ f : G \to V \mid \forall h \in H, f(gh) = \varrho(h^{-1})(f(g)) \},\
$$

$$
\operatorname{Ind}_{\varphi(H)}^{G}(V, \varrho \circ \varphi^{-1}) = \{ f : G \to V \mid \forall h \in \varphi(H), f(gh) = \varrho \circ \varphi^{-1}(h^{-1})(f(g)) \}.
$$

Here, in both cases the functions are assumed to be algebraic, and the G-action is defined by $(g \cdot f)(h) = f(g^{-1}h)$. We have a natural isomorphism of vector spaces

$$
\operatorname{Ind}_{H}^{G}(V, \varrho) \overset{\sim}{\to} \operatorname{Ind}_{\varphi(H)}^{G}(V, \varrho \circ \varphi^{-1})
$$

sending f to $f \circ \varphi^{-1}$. It is straightforward to check that this morphism is an isomorphism of G-modules from $\mathcal{P} \text{Ind}_{H}^{G}(V, \varrho)$ to $\text{Ind}_{\varphi(H)}^{G}(V, \varrho \circ \varphi^{-1}).$ \Box

Remark 2.2. More generally, if G' is another algebraic group and $\varphi : G \overset{\sim}{\to} G'$ is an isomorphism, for any G-module π we can consider the G' module $\mathscr{P}\pi$ defined as above. Then the same arguments as for Lemma [2.1](#page-2-0) show that we have ${}^{\varphi} \text{Ind}_{H}^{G}(\pi) \cong \text{Ind}_{\varphi(H)}^{G'}({}^{\varphi}\pi).$

In particular, assume that we are given an algebraic group G' and an embedding of G as a normal subgroup of G'. Then for any $g \in G'$, we have an automorphism ad(g) of G sending h to ghg^{-1} . In this setting, we will write ^gV for $\det(g)V$, and gf for $\det(g)f$. Then for $g, h \in G'$, since $\det(g) \circ \det(h) = \det(gh)$, [\(1\)](#page-1-0) translates to $^{g(h)}V$ = ^{gh}V .

The verification of the following lemma is straightforward.

LEMMA 2.3. Let (V, ϱ) be a representation of G. Then if $g \in G$, $\varrho(g^{-1})$ induces *an isomorphism* $V \stackrel{\sim}{\rightarrow} gV$.

2.2 Disconnected reductive groups

From now on we fix an algebraic group G whose identity component G° is reductive. We set $A := G/G^{\circ}$ (a finite group). The canonical quotient morphism $G \to A$ will be denoted ϖ .

Let T be the "universal maximal torus" of G° , i.e., the quotient $B/(B, B)$ for any Borel subgroup $B \subset G^{\circ}$. (Since all Borel subgroups in G° are G° -conjugate, and since $B = N_{G} \circ (B)$ acts trivially on $B/(B, B)$, the quotient $B/(B, B)$ does not depend on B, up to canonical isomorphism.) Let $\mathbf{X} = X^*(T)$ be its weight lattice. If $T' \subset B$ is any maximal torus, then the composition $T' \hookrightarrow B \twoheadrightarrow T$ is an isomorphism, and this lets us identify **X** with $X^*(T')$. The image in **X**

under this identification of the roots of (G, T') , and of the subset of positive roots (chosen as the opposite of the T' -weights on the Lie algebra of B), do not depend on the choice of T' ; so they define the canonical root system $\Phi \subset \mathbf{X}$ and the subset $\Phi^+ \subset \Phi$ of positive roots. Similar comments apply to coroots, so that we can define the dominant weights $X^+ \subset X$. We denote by W the Weyl group of T. (This group is well defined because $N_B(T') = T'$ for a maximal torus T' contained in a Borel subgroup B .) Given a weight $\lambda \in \mathbf{X}^+$, we denote by

$$
L(\lambda)
$$
, $\Delta(\lambda)$, $\nabla(\lambda)$

the irreducible, Weyl, and dual Weyl $G[°]$ -modules, respectively, corresponding to λ . Here $\nabla(\lambda)$ is defined as the induced module $\text{Ind}_{B}^{G^{\sigma}}(\mathbb{k}_{B}(\lambda))$ for some choice of Borel subgroup $B \subset G^{\circ}$, $L(\lambda)$ is the unique simple submodule of $\nabla(\lambda)$, and $\Delta(\lambda)$ is defined as $(\nabla(-w_0\lambda))^*$, where $w_0 \in W$ is the longest element. (These modules do not depend on the choice of B up to isomorphism thanks to Lemma [2.1](#page-2-0) and Lemma [2.3.](#page-2-1))

For any $g \in G$ and any Borel subgroup $B \subset G^{\circ}$, ad (g) induces an isomorphism $B/(B,B) \stackrel{\sim}{\rightarrow} gBg^{-1}/(gBg^{-1}, gBg^{-1})$. Since gBg^{-1} is also a Borel subgroup of G° , this defines an automorphism $\underline{\text{ad}}(g)$ of T. Explicitly, we can choose an $h \in G^{\circ}$ such that $gBg^{-1} = hBh^{-1}$, and then for any element $b(B, B) \in$ $B/(B, B) = T$, we set

$$
\underline{ad}(g)(b(B, B)) = h^{-1}gbg^{-1}h(B, B).
$$

It is straightforward to check that the right-hand side is independent of h. The fact that T is well defined translates to the property that $\underline{\mathrm{ad}}(g) = \mathrm{id}$ if $g \in G^{\circ}$, so that <u>ad</u> factors through a morphism $A \to Aut(T)$, which we will also denote by ad.

For $a \in A$ and $\lambda \in \mathbf{X}$, we set

$$
{}^{a}\lambda := \lambda \circ \underline{\text{ad}}(a^{-1}).\tag{2}
$$

This operation defines an action of A on **X**. Now let $g \in \varpi^{-1}(a) \subset G$, and let $T' \subset B$ be a maximal torus. There is an $h \in G^{\circ}$ such that $gT'g^{-1} = hT'h^{-1}$ and $gBg^{-1} = hBh^{-1}$. Then $h^{-1}g$ normalizes B and (B, B) . If x is a root vector for T' in the Lie algebra of (B, B) , say with root $\lambda \in -\Phi^+$, then $\text{Ad}(h^{-1}g)(x)$ is also a root vector with root ^a λ . This shows that the action of A on **X** preserves Φ^+ and Φ . Similar reasoning shows that it preserves X^+ . Moreover, Lemma [2.1](#page-2-0) implies that for any $\lambda \in \mathbf{X}^+$ and $q \in G$, we have canonical isomorphisms

$$
{}^{g}\Delta(\lambda) \cong \Delta({}^{\varpi(g)}\lambda), \quad {}^{g}L(\lambda) \cong L({}^{\varpi(g)}\lambda), \quad {}^{g}\nabla(\lambda) \cong \nabla({}^{\varpi(g)}\lambda). \tag{3}
$$

We will denote by $\text{Irr}(G^{\circ})$ the set of isomorphism classes of simple G° -modules. This set admits an action of G, where g acts via $[V] \mapsto [{}^gV]$. (Of course, this action factors through an action of A.) The constructions above provide a natural bijection $\mathbf{X}^{\perp} \overset{\sim}{\to} \text{Irr}(G^{\circ})$ (sending λ to the isomorphism class of $L(\lambda)$), which is A-equivariant in view of [\(3\)](#page-3-0).

Lemma 2.4. *Let* V *be an irreducible* G*-module. Then* V *is semisimple as a* G◦ *module. All of its irreducible* G° -submodules lie in a single G -orbit in $\text{Irr}(G^{\circ})$.

Proof. Choose an irreducible G° -submodule $M \subset V$, and choose a set of coset representatives g_1, \ldots, g_r for G° in G . The subspace

$$
\sum_{i=1}^r g_iM\subset V
$$

is stable under the action of G, so it must be all of V. Each summand g_iM is stable under G° , so there is a surjective map of G° -representations

$$
\bigoplus_{i=1}^r g_i M \to \sum_{i=1}^r g_i M = V.
$$

Now, $g_i M$ is isomorphic as a G° -module to ^{g_i}M ; in particular, each $g_i M$ is an irreducible G° -module, and $\bigoplus_{i} g_i M$ is semisimple. Thus, as a G° -module, V is a quotient of a semisimple module, all of whose summands lie in a single G-orbit of $\mathrm{Irr}(G^{\circ})$, so the same holds for V itself. \Box

2.3 The component group and induced representations

For each $a \in A = G/G^{\circ}$, let us choose, once and for all, a representative $u(a) \in G$. In the special case $a = 1_A$, we require that

$$
\iota(1_A) = 1_G.
$$

Given $a, b \in A$, the representative $\iota(ab)$ need not be equal to $\iota(a)\iota(b)$; but these elements lie in the same coset of G° . Explicitly, there is a unique element $\gamma(a, b) \in G^{\circ}$ such that

$$
\iota(a)\iota(b) = \iota(ab)\gamma(a,b).
$$

Our assumption on $\iota(1_A)$ implies that for any $a \in A$, we have

$$
\gamma(1_A, a) = \gamma(a, 1_A) = 1_G.
$$

By expanding $\iota(abc)$ in two ways, one finds that

$$
\gamma(ab,c) \cdot \mathrm{ad}(\iota(c)^{-1})(\gamma(a,b)) = \gamma(a,bc)\gamma(b,c). \tag{4}
$$

Now let V be a G° -module. By Lemma [2.3,](#page-2-1) for any $a, b \in A$ the action of $\gamma(a, b)$ defines an isomorphism of G° -modules

$$
^{\gamma(a,b)}V \overset{\sim}{\rightarrow} V.
$$

Twisting by $\iota(ab)$ we deduce an isomorphism

$$
\phi_{a,b}: \iota^{(a)\iota(b)}V \overset{\sim}{\to} \iota^{(ab)}V.
$$

We can use the maps ι and γ to explicitly describe representations of G that are induced from G° , as follows. Let us denote by $\mathbb{k}[A]$ the group algebra of A over \mathbb{k} . Let V be a G° -module, and consider the vector space

$$
\tilde{V} = \mathbb{k}[A] \otimes V = \bigoplus_{f \in A} \mathbb{k}f \otimes V.
$$
\n(5)

We now explain how to make \tilde{V} into a G-module. Note that every element of G can be written uniquely as $\iota(a)g$ for some $a \in A$ and $g \in G^{\circ}$. We put

$$
\iota(a)g \cdot (f \otimes v) = af \otimes \gamma(a,f) \cdot ad(\iota(f)^{-1})(g) \cdot v. \tag{6}
$$

Using [\(4\)](#page-4-0) one can check that this does indeed define an action of G on \tilde{V} .

Lemma 2.5. *The map*

$$
f \mapsto \sum_{a \in A} a \otimes f(\iota(a))
$$

defines an isomorphism of G-modules $\text{Ind}_{G^{\circ}}^{G}(V) \overset{\sim}{\rightarrow} \tilde{V}$.

Proof. It is clear that our map is an isomorphism of vector spaces, and that its inverse sends $a \otimes v$ to the function $f : G \to V$ such that $f(\iota(a)g) = g^{-1} \cdot v$ for $g \in G^{\circ}$ and $f(\iota(b)g) = 0$ for $g \in G^{\circ}$ and $b \in A \setminus \{a\}$. It is not difficult to check that this inverse map respects the G-actions, proving the proposition. \Box

In view of Lemma [2.5,](#page-5-0) it is clear that as G° -modules, we have

$$
\operatorname{Ind}_{G^{\circ}}^{G}(V) \cong \bigoplus_{f \in A} \iota^{(f)}V,\tag{7}
$$

as expected.

2.4 A twisted group algebra of a stabilizer

Let $\lambda \in \mathbf{X}^+$, and let $A^{\lambda} = \{a \in A \mid {}^a\lambda = \lambda\}$ be its stabilizer. We also set $G^{\lambda} := \varpi^{-1}(A^{\lambda})$. In view of [\(3\)](#page-3-0), we have

$$
G^{\lambda} = \{ g \in G \mid {}^{g}L(\lambda) \cong L(\lambda) \}. \tag{8}
$$

We fix a representative for the simple G° -module $L(\lambda)$ and, for each $a \in A^{\lambda}$, an isomorphism of G° -modules

$$
\theta_a: L(\lambda) \stackrel{\sim}{\to} {}^{\iota(a)}L(\lambda).
$$

In the special case that $a = 1_A$, we require that

$$
\theta_{1_A} = \mathrm{id}_{L(\lambda)}.
$$

Explicitly, these maps have the property that for any $q \in G^{\circ}$ and $v \in L(\lambda)$, we have

$$
\theta_a(g \cdot v) = \text{ad}(\iota(a)^{-1})(g) \cdot \theta_a(v),\tag{9}
$$

Figure 1: Isomorphisms of $L(\lambda)$ with $\iota(abc)L(\lambda)$

where on the right-hand side we consider the given action of G° on $L(\lambda)$. Now let $a, b \in A^{\lambda}$, and consider the diagram

This is *not* a commutative diagram. Rather, both θ_{ab} and $\phi_{a,b} \circ \iota^{(a)} \theta_b \circ \theta_a$ are isomorphisms of simple G° -modules, so they must be scalar multiples of one another. Let $\alpha(a, b) \in \mathbb{k}^{\times}$ be the scalar such that

$$
\phi_{a,b}{}^{\iota(a)}\theta_b\theta_a = \alpha(a,b) \cdot \theta_{ab}.
$$

Our assumptions on $\iota(1_A)$ and θ_{1_A} imply that for all $a \in A$, we have

$$
\alpha(1_A, a) = \alpha(a, 1_A) = 1.
$$

Given three elements $a, b, c \in A^{\lambda}$, we can form the diagram shown in Figure [1.](#page-6-0) The subdiagram consisting of straight arrows is commutative (by [\(4\)](#page-4-0), [\(9\)](#page-5-1) and the definitions), whereas each curved arrow introduces a scalar factor. Comparing the different scalars shows that

$$
\alpha(a,b)\alpha(ab,c) = \alpha(a,bc)\alpha(b,c).
$$

In other words, $\alpha : A^{\lambda} \times A^{\lambda} \to \mathbb{k}^{\times}$ is a 2-cocycle.

Let \mathscr{A}^{λ} be the twisted group algebra of A^{λ} determined by this cocycle. Explicitly, we define \mathscr{A}^{λ} to be the k-vector space spanned by symbols $\{\rho_a : a \in A^{\lambda}\}\$ with multiplication given by

$$
\rho_a \rho_b = \alpha(a, b) \rho_{ab}.
$$

This is a unital k-algebra, with unit ρ_{1_A} .

The algebra \mathscr{A}^{λ} can be described in more canonical terms as follows.

Proposition 2.6. *There exists a canonical isomorphism of* k*-algebras*

$$
\operatorname{End}_{G^{\lambda}}\left(\operatorname{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))\right) \cong (\mathscr{A}^{\lambda})^{\mathrm{op}}.
$$

Proof. We will work with the description of $\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))$ from Lemma [2.5](#page-5-0) (applied to the group G^{λ} : we identify it with $\mathbb{k}[A^{\lambda}] \otimes L(\lambda)$, where the action of G^{λ} is given by [\(6\)](#page-5-2).

We begin by equipping $\mathbb{k}[A^{\lambda}] \otimes L(\lambda)$ with the structure of a right \mathscr{A}^{λ} -module as follows: given $a, f \in A^{\lambda}$ and $v \in L(\lambda)$, we put

$$
(f \otimes v) \cdot \rho_a := (fa) \otimes \gamma(f, a) \cdot \theta_a(v). \tag{10}
$$

Let us check that this is indeed a right \mathscr{A}^{λ} -module structure:

$$
((f \otimes v) \cdot \rho_a) \cdot \rho_b = ((fa) \otimes \gamma(f, a) \cdot \theta_a(v)) \cdot \rho_b
$$

= $(fab) \otimes \gamma(fa, b) \cdot \theta_b(\gamma(f, a) \cdot \theta_a(v))$
= $(fab) \otimes \gamma(fa, b) \text{ad}(\iota(b)^{-1})(\gamma(f, a)) \cdot \theta_b(\theta_a(v))$
= $(fab) \otimes \gamma(f, ab)\gamma(a, b) \cdot \theta_b(\theta_a(v))$
= $(fab) \otimes \alpha(a, b)(\gamma(f, ab) \cdot \theta_{ab}(v))$
= $(f \otimes v) \cdot (\alpha(a, b)\rho_{ab}).$

(Here, the third equality relies on [\(9\)](#page-5-1), and the fourth one on [\(4\)](#page-4-0).) Next, we check that the right action of \mathscr{A}^{λ} commutes with the left action of G:

$$
\iota(a)g \cdot ((f \otimes v) \cdot \rho_b)
$$

= $\iota(a)g \cdot ((fb) \otimes \gamma(f, b) \cdot \theta_b(v))$
= $(afb) \otimes \gamma(a, fb)ad(\iota (fb)^{-1})(g)\gamma(f, b) \cdot \theta_b(v)$
= $(afb) \otimes \gamma(a, fb)\gamma(f, b)ad((\iota (fb)\gamma(f, b))^{-1})(g) \cdot \theta_b(v)$
= $(afb) \otimes \gamma(af, b)ad(\iota(b)^{-1})(\gamma(a, f))ad((\iota (f)\iota(b))^{-1})(g) \cdot \theta_b(v)$
= $(afb) \otimes \gamma(af, b)\theta_b(\gamma(a, f)ad(\iota(f)^{-1})(g) \cdot v)$
= $((af) \otimes \gamma(a, f)ad(\iota(f)^{-1})(g) \cdot v) \cdot \rho_b$
= $(\iota(a)g \cdot (f \otimes v)) \cdot \rho_b$.

As a consequence, the right \mathscr{A}^{λ} -action gives rise to an algebra homomorphism

$$
\varphi: (\mathscr{A}^{\lambda})^{\mathrm{op}} \to \mathrm{End}_{G^{\lambda}}(\Bbbk[A^{\lambda}] \otimes L(\lambda)).
$$

For each $a \in A^{\lambda}$, the operator $\varphi(\rho_a)$ permutes the direct summands $\Bbbk f \otimes L(\lambda) \subset$ $\Bbbk[A^{\lambda}] \otimes L(\lambda)$, as f runs over elements of A^{λ} . Moreover, distinct a's give rise to distinct permutations. It follows from this that the collection of linear operators $\{\varphi(\rho_a): a \in A^{\lambda}\}\$ is linearly independent. In other words, φ is injective. On the other hand, by adjunction, we have

$$
\dim \operatorname{End}_{G^{\lambda}}\left(\operatorname{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))\right) = \dim \operatorname{Hom}_{G^{\circ}}\left(\operatorname{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda)), L(\lambda)\right). \tag{11}
$$

Now, [\(7\)](#page-5-3) implies that as a G° -module, $\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))$ is isomorphic to a direct sum of $|A^{\lambda}|$ copies of $L(\lambda)$. So [\(11\)](#page-8-0) shows that

$$
\dim \mathop{\mathrm{End}}\nolimits_{G^{\lambda}}\bigl(\mathop{\mathrm{Ind}}\nolimits_{G^{\circ}}^{G^{\lambda}}(L(\lambda))\bigr) = |A^{\lambda}| = \dim \mathscr{A}^{\lambda}.
$$

Since φ is an injective map between k-vector spaces of the same dimension, it is also surjective, and hence an isomorphism. \Box

- *Remark* 2.7. 1. The G° -module $L(\lambda)$ is defined only up to isomorphism. But if $L'(\lambda)$ is another choice for this module, then an isomorphism $L(\lambda) \stackrel{\sim}{\to} L'(\lambda)$ is unique up to scalar (and exists). Hence the induced isomorphism $\text{End}_{G^{\lambda}}(\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))) \stackrel{\sim}{\rightarrow} \text{End}_{G^{\lambda}}(\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L'(\lambda)))$ does not depend on the choice of isomorphism. In other words, the algebra $\text{End}_{G^{\lambda}}(\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda)))$ is completely canonical, i.e. does not depend on any choice.
	- 2. Once the G° -module $L(\lambda)$ is fixed, our description of the k-algebra \mathscr{A}^{λ} , and of its identification with $\text{End}_{G^{\lambda}}(\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda)))^{\text{op}}$ in Proposition [2.6,](#page-7-0) depend on the choice of the isomorphisms θ_a for $a \in A \setminus \{1\}$. However, if $\{\theta'_a: a\in A\smallsetminus \{1\}\}$ is another choice of such isomorphisms, and $\{\rho'_a: a\in A\}$ A} is the basis of the corresponding algebra $({\mathscr A}')^{\lambda}$, then for any $a \in A$ there exists a unique $t_a \in \mathbb{k}^\times$ such that $\theta'_a = t_a \theta_a$. It is easy to check that the assignment $\rho'_a \mapsto t_{a}\rho_a$ defines an algebra isomorphism $(\mathscr{A}')^{\lambda} \stackrel{\sim}{\rightarrow} \mathscr{A}^{\lambda}$ which commutes with the identifications provided by Proposition [2.6.](#page-7-0)
	- 3. If, instead of using Lemma [2.5](#page-5-0) to describe the G^{λ} -module $\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda)),$ we describe it in terms of algebraic functions $\phi: G^{\lambda} \to L(\lambda)$ satisfying $\phi(gh) = h^{-1} \cdot \phi(g)$ for $h \in G^{\circ}$, then the right action of \mathscr{A}^{λ} on this module satisfies $(\phi \cdot \rho_a)(g) = \theta_a \circ \phi(g_i(a)^{-1}).$
- 2.5 SIMPLE G^{λ} -MODULES WHOSE RESTRICTION TO G° is a direct sum of copies of $L(\lambda)$

We continue with the setting of §[2.4,](#page-5-4) and in particular with our fixed $\lambda \in \mathbf{X}^+$. If E is a finite-dimensional left \mathscr{A}^{λ} -module, we define a G^{λ} -action on the kvector space $E \otimes L(\lambda)$ by

$$
\iota(a)g \cdot (u \otimes v) = \rho_a u \otimes \theta_a^{-1}(gv) \qquad \text{for } a \in A^{\lambda} \text{ and } g \in G^{\circ}.
$$
 (12)

LEMMA 2.8. *The rule* [\(12\)](#page-8-1) *defines a structure of* G^{λ} -module on $E \otimes L(\lambda)$.

Proof. Note that

$$
\iota(a)g\iota(b)h = \iota(a)\iota(b)\mathrm{ad}(\iota(b)^{-1})(g)h = \iota(ab)(\gamma(a,b)\mathrm{ad}(\iota(b)^{-1})(g)h).
$$

We now have

$$
\iota(a)g \cdot (\iota(b)h \cdot (u \otimes v)) = \iota(a)g \cdot (\rho_b u \otimes \theta_b^{-1}(hv))
$$

= $\rho_a \rho_b u \otimes \theta_a^{-1}(g\theta_b^{-1}(hv))$
= $\alpha(a, b)\rho_{ab}u \otimes (\theta_b \circ \theta_a)^{-1}(\text{ad}(\iota(b)^{-1})(g)hv)$
= $\rho_{ab}u \otimes \theta_{ab}^{-1}(\gamma(a, b)\text{ad}(\iota(b)^{-1})(g)hv)$
= $(\iota(a)g\iota(b)h) \cdot (u \otimes v),$

proving the desired formula.

PROPOSITION 2.9. *The assignment* $E \mapsto E \otimes L(\lambda)$ *defines a bijection between the set of isomorphism classes of simple* \mathscr{A}^{λ} -modules and the set of isomor*phism classes of simple* G^λ *-modules whose restriction to* G◦ *is a direct sum of copies of* $L(\lambda)$ *.*

Proof. We will show that if V is a finite dimensional G^{λ} -module whose restriction to G° is a direct sum of copies of $L(\lambda)$, and if we set $E := \text{Hom}_{G^{\circ}}(L(\lambda), V)$, then E has a natural structure of a left \mathscr{A}^{λ} -module, and there exists an isomorphism of G^{λ} -modules

$$
\eta_{\lambda,E}:E\otimes L(\lambda)\stackrel{\sim}{\to} V.
$$

We define the \mathscr{A}^{λ} -action on E by

$$
(\rho_a \cdot f)(x) = \iota(a) \cdot f(\theta_a(x))
$$

for $f \in E = \text{Hom}_{G^{\circ}}(L(\lambda), V)$ and $x \in L(\lambda)$. (We leave it to the reader to check that $\rho_a \cdot f$ is a morphism of G° -modules.) To justify that this defines an \mathscr{A}^{λ} -module structure, we simply compute:

$$
(\rho_a \cdot (\rho_b \cdot f))(x) = \iota(a) \cdot (\rho_b \cdot f)(\theta_a(x))
$$

= $\iota(a) \cdot \iota(b) \cdot f(\theta_b \circ \theta_a(x))$
= $\iota(ab) \cdot \gamma(a, b) \cdot f(\theta_b \circ \theta_a(x))$
= $\iota(ab) \cdot f(\gamma(a, b) \cdot \theta_b \circ \theta_a(x))$
= $\alpha(a, b) \cdot \iota(ab) \cdot f(\theta_{ab}(x))$
= $((\alpha(a, b)\rho_{ab}) \cdot f)(x).$

Now there exists a canonical isomorphism of G° -modules

$$
\eta_{\lambda,E}: E\otimes L(\lambda)=\mathrm{Hom}_{G^{\circ}}(L(\lambda),V)\otimes L(\lambda)\stackrel{\sim}{\to} V,
$$

Documenta Mathematica 25 (2020) 2149–2177

 \Box

defined by $\eta_{\lambda,E}(f \otimes v) = f(v)$. Let us check that this morphism also commutes with the action of $\iota(A)$. By definition we have

$$
\iota(a)\cdot (f\otimes v)=(\rho_a\cdot f)\otimes \theta_a^{-1}(v)=\sigma(\iota(a))\circ f\circ \theta_a\otimes \theta_a^{-1}(v),
$$

where $\sigma: G^{\lambda} \to GL(V)$ is the morphism defining the G^{λ} -action. Hence

$$
\eta_{\lambda,E}(\iota(a)\cdot (f\otimes v))=\iota(a)\cdot f(v)=\iota(a)\cdot \eta_{\lambda,E}(f\otimes v),
$$

proving that $\eta_{\lambda,E}$ is an isomorphism of G^{λ} -modules. It is clear that the assignments

$$
-\otimes L(\lambda): E \mapsto E \otimes L(\lambda)
$$
 and $\text{Hom}_{G^{\circ}}(L(\lambda), -): V \mapsto \text{Hom}_{G^{\circ}}(L(\lambda), V)$

define functors from the category of finite-dimensional \mathscr{A}^{λ} -modules to the category of finite-dimensional G^{λ} -modules whose restriction to G° are isomorphic to a direct sum of copies of $L(\lambda)$, and from the category of finite-dimensional G^{λ} modules whose restriction to G° are isomorphic to a direct sum of copies of $L(\lambda)$ to the category of finite-dimensional \mathscr{A}^{λ} -modules respectively. It is straightforward to construct an isomorphism of functors $\text{Hom}_{G^{\circ}}(L(\lambda), -) \circ (- \otimes L(\lambda)) \stackrel{\sim}{\to}$ id, as well as an isomorphism $(-\otimes L(\lambda)) \circ \text{Hom}_{G^{\circ}}(L(\lambda), -) \stackrel{\sim}{\to}$ id defined by $\eta_{\lambda,-}$. Our functors are thus equivalences of categories, quasi-inverse to each other; hence they define bijections between the sets of isomorphism classes of simple objects in these categories. Г

Remark 2.10*.* As in Remark [2.7,](#page-8-2) it can be easily checked that the assignment $E \mapsto E \otimes L(\lambda)$ does not depend on the choice of the isomorphisms $\{\theta_a : a \in A\},$ in the sense that if $\{\theta'_a : a \in A\}$ is another choice of such isomorphisms, and if $({\mathscr A}')^{\lambda}$ is the corresponding algebra, then the identification $({\mathscr A}')^{\lambda} \stackrel{\sim}{\to} {\mathscr A}^{\lambda}$ considered in Remark [2.7](#page-8-2) defines a bijection between isomorphism classes of simple $(\mathscr{A}')^{\lambda}$ -modules and \mathscr{A}^{λ} -modules, which commutes with the operations $-\otimes L(\lambda)$. Of course, these constructions do not depend on the choice of $L(\lambda)$ in its isomorphism class either.

2.6 INDUCTION FROM G^{λ} to G

We continue with the setting of \S 2.4-[2.5.](#page-8-3) If E is a finite-dimensional \mathscr{A}^{λ} module, we now consider the G-module

$$
L(\lambda, E) := \mathrm{Ind}_{G^{\lambda}}^G (E \otimes L(\lambda)).
$$

LEMMA 2.11. If E is a simple \mathscr{A}^{λ} -module, then $L(\lambda, E)$ is a simple G-module.

Proof. Let $V \subset L(\lambda, E)$ be a simple G-submodule. For any simple G[°]-module L, let $[V : L]_{G}$ denote the multiplicity of L as a composition factor of V, regarded as a G° -module. The image of the embedding $V \hookrightarrow L(\lambda, E)$ under the isomorphism

$$
\mathrm{Hom}_G\big(V, L(\lambda, E)\big) = \mathrm{Hom}_G\big(V, \mathrm{Ind}_{G^\lambda}^G(E \otimes L(\lambda))\big) \cong \mathrm{Hom}_{G^\lambda}(V, E \otimes L(\lambda))
$$

given by Frobenius reciprocity provides a nonzero morphism of G^{λ} -modules $V \to E \otimes L(\lambda)$, which must be surjective since $E \otimes L(\lambda)$ is simple by Propo-sition [2.9.](#page-9-0) It follows that $[V: L(\lambda)]_{G} \ge \dim(E)$. Now, as in [\(7\)](#page-5-3), if g_1, \ldots, g_r are representatives in G of the cosets in G/G^{λ} , then as G° -modules we have

$$
L(\lambda, E) = \operatorname{Ind}_{G^{\lambda}}^{G}(E \otimes L(\lambda)) \cong \bigoplus_{i=1}^{r} {}^{g_i}L(\lambda)^{\oplus \dim(E)}.
$$

Since V is stable under the G-action, we have $[V: L(\lambda)]_{G} \circ = [V: {^{g_i}L(\lambda)}]_{G} \circ$ for all *i* (see Lemma [2.3\)](#page-2-1), and hence $[V : {}^{g_i}L(\lambda)]_{G^{\circ}} \ge \dim(E)$ for all *i*. This implies that $\dim(V) \ge \dim(\text{Ind}_{G^{\lambda}}^G(E \otimes L(\lambda))),$ so in fact $V = \text{Ind}_{G^{\lambda}}^G(E \otimes L(\lambda)),$ as desired.

2.7 Simple G-modules

We come back to the general setting of §[2.2.](#page-2-2) (In particular, the dominant weight λ is not fixed anymore.) We can now prove that the procedure explained in §§[2.4](#page-5-4)[–2.6](#page-10-0) allows us to construct *all* simple G-modules (up to isomorphism).

LEMMA 2.12. Let V be a simple G-module. Then there exists $\lambda \in \mathbf{X}^+$, a simple A λ *-module* E*, and an isomorphism of* G*-modules*

$$
V \stackrel{\sim}{\rightarrow} L(\lambda, E).
$$

Proof. Certainly there exists $\lambda \in \mathbf{X}^+$ and a surjection of G° -modules $V \rightarrow$ $L(\lambda)$. By Frobenius reciprocity we deduce a nonzero (hence injective) morphism of G-modules $V \hookrightarrow \text{Ind}_{G^{\circ}}^G(L(\lambda))$. So to conclude, it suffices to prove that all composition factors of $\text{Ind}_{G^{\circ}}^G(L(\lambda))$ are of the form $L(\lambda, E)$ (with E a simple \mathscr{A}^{λ} -module). However, we have

$$
\operatorname{Ind}_{G^{\circ}}^G(L(\lambda))\cong \operatorname{Ind}_{G^{\lambda}}^G\left(\operatorname{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))\right).
$$

The restriction of $\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))$ to G° is a direct sum of copies of $L(\lambda)$ by [\(7\)](#page-5-3) applied to G^{λ} . Therefore, all of its composition factors are of the form $E \otimes L(\lambda)$ with E a simple \mathscr{A}^{λ} -module by Proposition [2.9.](#page-9-0) Since the functor $\text{Ind}_{G^{\lambda}}^{G}$ is exact (by Lemma [2.5,](#page-5-0) or by [\[Ja,](#page-28-0) Corollary I.5.13]) and sends simple G^{λ} -modules of the form $E\otimes L(\lambda)$ to simple G-modules by Lemma [2.11,](#page-10-1) the claim follows. \Box

2.8 CONJUGATION

It now remains to understand when two modules of the form $L(\lambda, E)$ are isomorphic. For this, we need to analyze the relation between this construction applied to a dominant weight, and to a twist of this dominant weight by an element of A.

So, let $\lambda \in \mathbf{X}^+$, and $a \in A$. Then we have

$$
A^{^a\lambda} = aA^\lambda a^{-1}, \quad G^{^a\lambda} = \iota(a)G^\lambda \iota(a)^{-1},
$$

and we can choose as $L({}^a \lambda)$ the module $\iota^{(a)} L(\lambda)$, cf. [\(3\)](#page-3-0). Let us choose isomorphisms $\theta_b : L(\lambda) \stackrel{\sim}{\to} {}^{\iota(b)}L(\lambda)$ for all $b \in A^{\lambda}$. Again for $b \in A^{\lambda}$, we can consider the isomorphism

$$
\tilde{\theta}_{aba^{-1}}: L({}^a\lambda) = {}^{\iota(a)}L(\lambda) \xrightarrow{\theta_b} {}^{\iota(a)\iota(b)}L(\lambda) = {}^{\iota(a)\iota(b)\iota(a)^{-1}}({}^{\iota(a)}L(\lambda))
$$
\n
$$
= {}^{\iota(a)\iota(b)\iota(a)^{-1}}(L({}^a\lambda)) \xrightarrow{\iota(aba^{-1})^{-1}\iota(a)\iota(b)\iota(a)^{-1}\cdot(-)} {}^{\iota(aba^{-1})}L({}^a\lambda).
$$

(Here, the last isomorphism means the action of $\iota(aba^{-1})^{-1}\iota(a)\iota(b)\iota(a)^{-1}$ on $L({}^a\lambda)$, or in other words the action of $\iota(a)^{-1}\iota(aba^{-1})^{-1}\iota(a)\iota(b)$ on $L(\lambda)$.) The following claim can be checked directly from the definitions.

LEMMA 2.13. *For any* $b, c \in A^{\lambda}$, *we have*

$$
\gamma (aca^{-1},aba^{-1}) \circ \tilde{\theta}_{aba^{-1}} \circ \tilde{\theta}_{aca^{-1}} = \alpha(c,b) \cdot \tilde{\theta}_{acba^{-1}}
$$

(where here $\gamma (aca^{-1}, aba^{-1})$ means the action of this element on $L({}^a \lambda)$).

If \mathscr{A}^{λ} and its basis $\{\rho_b : b \in A^{\lambda}\}\$ are defined in terms of the isomorphisms $\{\theta_b : b \in A^{\lambda}\}\$ and if $\mathscr{A}^{\alpha\lambda}$ and its basis $\{\tilde{\rho}_b : b \in A^{\alpha\lambda}\}\$ are defined in terms of the isomorphisms $\{\tilde{\theta}_a : a \in A^{^a\lambda}\}\$, then Lemma [2.13](#page-12-0) allows us to compare the cocycles that arise in the definitions of \mathscr{A}^{λ} and $\mathscr{A}^{\alpha\lambda}$. More precisely, this lemma shows that the assignment $\rho_b \mapsto \tilde{\rho}_{aba^{-1}}$ defines an algebra isomorphism $\xi_\lambda^a : \mathscr{A}^\lambda \overset{\sim}{\to} \mathscr{A}^{a_\lambda}.$

The isomorphism ξ^a_λ can be described more canonically as follows. Recall that Proposition [2.6](#page-7-0) provides canonical identifications

$$
(\mathscr{A}^\lambda)^{\text{op}} \stackrel{\sim}{\to} \text{End}_{G^\lambda}\big(\text{Ind}_{G^\circ}^{G^\lambda}(L(\lambda))\big), \quad (\mathscr{A}^{^a\lambda})^{\text{op}} \stackrel{\sim}{\to} \text{End}_{G^\lambda}\big(\text{Ind}_{G^\circ}^{G^\lambda}(L({^a\lambda}))\big).
$$

One can check that under these identifications, the automorphism ξ^a_λ is given by the isomorphism

$$
\operatorname{End}_{G^{\lambda}}\left(\operatorname{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))\right)=\operatorname{End}_{G^{a_{\lambda}}}\left({}^{\iota(a)}\operatorname{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))\right)\stackrel{\sim}{\to} \operatorname{End}_{G^{a_{\lambda}}}\left(\operatorname{Ind}_{G^{\circ}}^{G^{a_{\lambda}}}(L({}^a\lambda))\right)
$$

(where we use the notation of Remark [2.2\)](#page-2-3).

The properties of these isomorphisms that we will need below are summarized in the following lemma.

LEMMA 2.14. *Let* $\lambda \in \mathbf{X}^+$.

- *1.* If $a, b \in A$, then we have $\xi_{\lambda}^{ab} = \xi_{\lambda}^a \circ \xi_{\lambda}^b$.
- 2. If $a \in A^{\lambda}$, then ξ_{λ}^{a} is an inner automorphism of \mathscr{A}^{λ} .

Proof. [\(1\)](#page-12-1) To simplify notation, we set $\mu := {}^{ab}\lambda$. Note that the simple G° modules of highest weight μ used in the definitions of ξ_{λ}^{ab} and $\xi_{\lambda}^{a} \circ \xi_{\lambda}^{b}$ are different: for the former we use the module $L_1(\mu) := \iota^{(ab)}L(\lambda)$, while for the

latter we use the module $L_2(\mu) := \iota^{(a)\iota(b)} L(\lambda)$. There exists a canonical isomorphism

$$
L_1(\mu) \stackrel{\sim}{\to} L_2(\mu),\tag{13}
$$

given by the action of $\gamma(a, b)^{-1}$ on $L(\lambda)$ (i.e. the inverse of the isomorphism denoted $\phi_{a,b}$ in §[2.3\)](#page-4-1).

Our algebras are all defined as endomorphisms of some induced module, which can be described in terms of functions with values in the vector space underlying the representation $L(\lambda)$. From this point of view, $\xi_{\lambda}^a \circ \xi_{\lambda}^b$ is conjugation by the isomorphism of vector spaces $\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda)) \overset{\sim}{\to} \text{Ind}_{G^{\circ}}^{G^{\mu}}(L_2(\mu))$ sending functions $G^{\lambda} \to L(\lambda)$ to functions $G^{\mu} \to L(\lambda)$ and given by $\phi \mapsto \phi(\iota(b)^{-1} \iota(a)^{-1}(-)\iota(a)\iota(b)),$ while ξ_{λ}^{ab} is conjugation by the isomorphism $\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda)) \stackrel{\sim}{\to} \text{Ind}_{G^{\circ}}^{G^{\mu}}(L_1(\mu))$ given by $\phi \mapsto \phi(\iota(ab)(-\iota(ab)^{-1}).$ Taking into account the isomorphism [\(13\)](#page-13-0), we have to check that conjugation by the isomorphism given by

$$
\phi \mapsto \gamma(a,b) \cdot \phi(\iota(b)^{-1}\iota(a)^{-1}(-)\iota(a)\iota(b)) \tag{14}
$$

(where $\gamma(a, b) \cdot (-)$ means the action of $\gamma(a, b) \in G^{\circ}$ on $L(\lambda)$) coincides with conjugation by the isomorphism given by

$$
\phi \mapsto \phi(\iota(ab)(-)\iota(ab)^{-1}).\tag{15}
$$

However, since $\gamma(a, b)$ belongs to G° , the functions ϕ we consider satisfy

$$
\gamma(a,b) \cdot \phi(\iota(b)^{-1}\iota(a)^{-1}(-)\iota(a)\iota(b)) = \phi(\iota(b)^{-1}\iota(a)^{-1}(-)\iota(a)\iota(b)\gamma(a,b)^{-1})
$$

=
$$
\phi(\iota(b)^{-1}\iota(a)^{-1}(-)\iota(ab)) = \phi(\gamma(a,b)^{-1}\iota(ab)^{-1}(-)\iota(ab)).
$$

Thus, the isomorphisms [\(14\)](#page-13-1) and [\(15\)](#page-13-2) do *not* coincide, but they differ only by the action of an element of G^{λ} (which, in fact, even belongs to G°) on Ind_{G°} $(L(\lambda))$. Therefore, conjugation by either [\(14\)](#page-13-1) or [\(15\)](#page-13-2) induces the *same* isomorphism of algebras $\text{End}_{G^{\lambda}}(\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda))) \stackrel{\sim}{\to} \text{End}_{G^{\mu}}(\text{Ind}_{G^{\circ}}^{G^{\mu}}(L_1(\mu))).$

[\(2\)](#page-12-2) By the comments preceding the statement, ξ_{λ}^{a} is conjugation by an isomorphism $\text{Ind}_{G^{\circ}}^{G^{\lambda}}(L(\lambda)) \stackrel{\sim}{\to} \text{Ind}_{G^{\circ}}^{G^{\alpha_{\lambda}}}(L({}^{\alpha}\lambda)).$ If $a \in A^{\lambda}$ then this isomorphism defines an invertible element of \mathscr{A}^{λ} , so that ξ_{λ}^{a} is indeed an inner automorphism.

Given $a \in A$ and $\lambda \in \mathbf{X}^+$, the isomorphism ξ^a_λ defines a bijection between the set of isomorphism classes of simple \mathscr{A}^{λ} -modules and the set of isomorphism classes of simple $\mathscr{A}^{a\lambda}$ -modules. From Lemma [2.14\(](#page-12-3)[1\)](#page-12-1) we see that this operation defines an action of the group A on the set of pairs (λ, E) where $\lambda \in \mathbf{X}^+$ and E is a simple \mathscr{A}^{λ} -module. Moreover, it follows from Lemma [2.14](#page-12-3)[\(2\)](#page-12-2) that the induced action of A^{λ} on the set of isomorphism classes of simple \mathscr{A}^{λ} -modules is trivial.

LEMMA 2.15. Let $\lambda \in \mathbf{X}^+$, and let E be a simple \mathscr{A}^{λ} -module. Let $a \in A$, and let E' be the simple $\mathscr{A}^{a\lambda}$ -module deduced from E *via the isomorphism* ξ^a_λ : $\mathscr{A}^\lambda \stackrel{\sim}{\rightarrow} \mathscr{A}^{a\lambda}$. Then there exists an isomorphism of G-modules

$$
L(\lambda, E) \stackrel{\sim}{\to} L({}^a \lambda, E').
$$

Proof. As above we choose for our simple G° -module of highest weight ${}^{a}\lambda$ the module ^{$\iota^{(a)}L(\lambda)$. Then conjugation by $\iota(a)$ induces an isomorphism $\widetilde{G}^{\lambda} \stackrel{\sim}{\to} \widetilde{G}^{a_{\lambda}},$} and using the notation of Remark [2.2](#page-2-3) we have as $G^{\alpha\lambda}$ -modules

$$
^{\iota(a)}(E\otimes L(\lambda))=E'\otimes L(^{a}\lambda).
$$

In view of Lemma [2.1](#page-2-0) we deduce an isomorphism of G-modules

$$
{}^{\iota(a)}\mathrm{Ind}_{G^\lambda}^G(E\otimes L(\lambda))\stackrel{\sim}{\to}\mathrm{Ind}_{G^{a_\lambda}}^G(E'\otimes L({}^a\lambda)).
$$

Now by Lemma [2.3](#page-2-1) the left-hand side is isomorphic to $L(\lambda, E)$, and the claim follows. \Box

2.9 CLASSIFICATION OF SIMPLE G-MODULES

We denote by $\mathrm{Irr}(G)$ the set of isomorphism classes of simple G-modules. Now we can finally state the main result of this section.

THEOREM 2.16. *The assignment* $(\lambda, E) \mapsto L(\lambda, E)$ *induces a bijection*

$$
\left\{ (\lambda, E) \mid \begin{array}{c} \lambda \in \mathbf{X}^+ \text{ and } E \text{ an isom. class} \\ \text{ of simple left } \mathscr{A}^\lambda\text{-modules} \end{array} \right\} \Big/ A \longleftrightarrow \text{Irr}(G).
$$

Proof. From Lemma [2.11,](#page-10-1) we see that the assignment $(\lambda, E) \mapsto L(\lambda, E)$ defines a map from the set of pairs (λ, E) as in the statement to the set Irr(G). By Lemma [2.15](#page-14-1) this map factors through a map

$$
\left\{ (\lambda, E) \middle| \begin{array}{c} \lambda \in \mathbf{X}^+ \text{ and } E \text{ an isom. class} \\ \text{ of simple left } \mathscr{A}^\lambda \text{-modules} \end{array} \right\} / A \to \text{Irr}(G).
$$

By Lemma [2.12,](#page-11-0) this latter map is surjective. Hence, all that remains is to prove that it is injective.

Let (λ, E) and (λ', E') be pairs as above. Let $V = L(\lambda, E)$ and $V' = L(\lambda', E'),$ and assume that $V \cong V'$. As a G° -representation, V is isomorphic to a direct sum of twists of $L(\lambda)$, and V' is isomorphic to a direct sum of twists of $L(\lambda')$ (see the proof of Lemma [2.11\)](#page-10-1). Hence $L(\lambda)$ and $L(\lambda')$ are twists of each other, which implies that λ and λ' are in the same A-orbit. Therefore, we can (and shall) assume that $\lambda = \lambda'$. Fix some isomorphism $V \stackrel{\sim}{\rightarrow} V'$, and consider the morphism of G^{λ} -modules $f: V \to E' \otimes L(\lambda)$ deduced by Frobenius reciprocity. If g_1, \ldots, g_r are representatives of the cosets in G/G^{λ} , with $g_1 = 1_G$, then we have an isomorphism of G° -modules

$$
\operatorname{Ind}_{G^{\lambda}}^{G}(E \otimes L(\lambda)) \cong \bigoplus_{i=1}^{r} {}^{g_{i}}L(\lambda) \otimes E.
$$

If $i \neq 1$, then ${}^{g_i}L(\lambda)$ is not isomorphic to $L(\lambda)$. Hence f is zero on the corresponding summand of $\text{Ind}_{G^{\lambda}}^G(E \otimes L(\lambda))$. We deduce that the composition

$$
E\otimes L(\lambda) \hookrightarrow \text{Ind}_{G^\lambda}^G(E\otimes L(\lambda)) \xrightarrow{f} E'\otimes L(\lambda),
$$

where the first morphism is again deduced from Frobenius reciprocity, is nonzero. But this morphism is a morphism of G^{λ} -modules. Since $L(\lambda, E)$ and $L(\lambda, E')$ are simple, it must be an isomorphism, and by Proposition [2.9](#page-9-0) this implies that $E \cong E'$ as \mathscr{A}^{λ} -modules. \Box

- *Remark* 2.17. 1. As explained above Lemma [2.15,](#page-14-1) for any $\lambda \in \mathbf{X}^+$ the action of A^{λ} on the set of isomorphism classes of irreducible \mathscr{A}^{λ} -modules is trivial. Hence if $\Lambda \subset \mathbf{X}^+$ is a set of representatives of the A-orbits in X^+ , the quotient considered in the statement of Theorem [2.16](#page-14-0) can be described more explicitly as the set of pairs (λ, E) where $\lambda \in \Lambda$ and E is an isomorphism class of simple \mathscr{A}^{λ} -modules.
	- 2. Assume that ι is a group morphism (so that G is isomorphic to the semidirect product $A \ltimes G^{\circ}$ and that moreover there exists a Borel subgroup $B \subset G^{\circ}$ such that $\iota(a)B\iota(a)^{-1} = B$ for any $a \in A$. Then if we define the standard and costandard $G[°]$ -modules using this Borel subgroup, the isomorphisms

$$
L^{(a)}\Delta(\lambda) \cong \Delta({}^a\lambda), \quad L^{(a)}\nabla(\lambda) \cong \nabla({}^a\lambda)
$$

(see [\(3\)](#page-3-0)) can be chosen in a canonical way. In fact, our assumptions imply that there exist unique B-stable lines in $\iota^{(a)}\Delta(\lambda)$ and $\Delta({}^a\lambda)$, and moreover that these lines coincide. Hence there exists a unique isomorphism of G-modules $\iota^{(a)}\Delta(\lambda) \stackrel{\sim}{\to} \Delta({}^a\lambda)$ which restricts to the identity on these B-stable lines. Similar comments apply to $\iota^{(a)}\nabla(\lambda)$ and $\nabla^{(a)}\lambda$.

In particular, the isomorphisms θ_a of §[2.4](#page-5-4) can be chosen in a canonical way. Then the cocycle α will be trivial, so that in this case \mathscr{A}^{λ} is canonically isomorphic to the group algebra $\mathbb{k}[A^{\lambda}].$

2.10 Semisimplicity

We finish this section with a criterion ensuring that the algebra \mathscr{A}^{λ} is semisimple unless p is small.

LEMMA 2.18. *Assume that* $p \nmid |A|$ *. If* V *is a simple* G° -module, then $\text{Ind}_{G^{\circ}}^{G}(V)$ *is a semisimple* G*-module.*

Proof. Let M be a G-submodule of $\text{Ind}_{G^{\circ}}^{G}(V)$, and let $N = \text{Ind}_{G^{\circ}}^{G}(V)/M$. We will show that the image c of the exact sequence $M \hookrightarrow \text{Ind}_{G^{\circ}}^{G^{\circ}}(V) \twoheadrightarrow N$ in $\text{Ext}_G^1(N,M)$ vanishes.

First we remark that for any two algebraic G -modules X, Y , the forgetful functor from $\text{Rep}(G)$ to $\text{Rep}(G^{\circ})$ induces an isomorphism

$$
\text{Hom}_G(X, Y) \overset{\sim}{\rightarrow} (\text{Hom}_{G^{\circ}}(X, Y))^{A}.
$$

Under our assumptions the functor $(-)^A$ is exact. On the other hand, it is easily checked that the restriction of any injective G -module to $G[°]$ is injective. Hence this isomorphism induces an isomorphism

$$
\text{Ext}^n_G(X,Y)\stackrel{\sim}{\to}\big(\text{Ext}^n_{G^\circ}(X,Y)\big)^A
$$

for any $n \geq 0$. We deduce in particular that the forgetful functor induces an injection

$$
\operatorname{Ext}^1_G(N,M) \hookrightarrow \operatorname{Ext}^1_{G^\circ}(N,M).
$$

Hence to prove that $c = 0$ it suffices to prove that the sequence $M \hookrightarrow$ $\text{Ind}_{G^{\circ}}^{G}(V) \rightarrow N$, considered as an exact sequence of G° -modules, splits. This fact is clear since $\text{Ind}_{G^{\circ}}^{G}(V)$ is semisimple as a G° -module, see [\(7\)](#page-5-3). Г

From this lemma (applied to the group A^{λ}) and Proposition [2.6](#page-7-0) we deduce the following.

LEMMA 2.19. If $p \nmid |A^{\lambda}|$, then the algebra \mathscr{A}^{λ} is semisimple (and in fact *isomorphic to a product of matrix algebras).*

3 Highest weight structure

Our goal in this section is to prove that if $p \nmid |A|$, then the category Rep(G) of finite-dimensional G-modules admits a natural structure of a highest weight category.

For the beginning of the section, we continue with the setting of §[2.2](#page-2-2) (not imposing any further assumption).

3.1 The order

If (λ, E) is a pair as in Theorem [2.16,](#page-14-0) we denote by $[\lambda, E]$ the corresponding A-orbit. We define a relation < on the set of such orbits as follows:

$$
[\lambda, E] < [\lambda', E'] \qquad \text{if} \qquad \text{for some } a \in A \text{, we have } \alpha \lambda < \lambda'. \tag{16}
$$

(Here, the order on **X** is the standard one, where $\lambda \leq \mu$ iff $\mu - \lambda$ is a sum of positive roots.)

Lemma 3.1. *The relation* < *is a partial order.*

Proof. Using the fact that for $a \in A$ and $\lambda, \mu \in \mathbf{X}$ such that $\lambda \leq \mu$ we have $a\lambda < a\mu$ (because the A-action is linear and preserves positive roots), one can

easily check that this relation is transitive. What remains to be seen is that there cannot exist classes $[\lambda, E], [\lambda', E']$ such that

$$
[\lambda, E] < [\lambda', E'] < [\lambda, E].
$$

However, in this case we have ${}^a\lambda < \lambda$ for some $a \in A$. Since a permutes the positive coroots of G° , then if we denote by $2\rho^{\vee}$ the sum of these coroots we must have $\langle {}^a \lambda, 2\rho^\vee \rangle = \langle \lambda, 2\rho^\vee \rangle$, hence $\langle \lambda - {}^a \lambda, 2\rho^\vee \rangle = 0$. On the other hand, by assumption $\lambda - \alpha \lambda$ is a nonzero sum of positive roots, so that its pairing with $2\rho^{\vee}$ cannot vanish. This provides the desired contradiction. \Box

3.2 Standard G-modules

Let $\lambda \in \mathbf{X}^+$. We will work in the setting of §§[2.3–](#page-4-1)[2.4,](#page-5-4) including, in particular, fixing a G° -module $L(\lambda)$, and notation such as ι , γ , θ , and α . We also fix a representative $\Delta(\lambda)$ for the Weyl module surjecting to $L(\lambda)$, and a surjection $\pi^{\lambda} : \Delta(\lambda) \to L(\lambda).$

Since $\text{End}_{G^{\circ}}(\Delta(\lambda)) = \mathbb{k} \cdot \text{id}$, from [\(3\)](#page-3-0) we see that for each $a \in A^{\lambda}$, there exists a unique isomorphism θ_a^{Δ} : $\Delta(\lambda) \stackrel{\sim}{\rightarrow} \iota^{(a)}\Delta(\lambda)$ such that the following diagram commutes:

$$
\Delta(\lambda) \xrightarrow{\theta_{a}^{\Delta}} \iota^{(a)} \Delta(\lambda)
$$

\$\downarrow\$

$$
L(\lambda) \xrightarrow{\theta_{a}} \iota^{(a)} L(\lambda).
$$

Moreover, this uniqueness implies that for any $a, b \in A^{\lambda}$, if we define $\phi_{a,b}^{\Delta}$: $\Delta(\lambda) \rightarrow \Delta(\lambda)$ as the action of $\gamma(a, b)$, then we have

$$
\phi_{a,b}^{\Delta} \theta_b^{\Delta} \theta_a^{\Delta} = \alpha(a,b)\theta_{ab}^{\Delta}.
$$
\n(17)

Remark 3.2. These considerations show that the subgroup $A^{\lambda} \subset A$ can be equivalently defined as consisting of the elements $a \in A$ such that $\iota^{(a)}\Delta(\lambda) \cong$ $\Delta(\lambda)$. The twisted group algebra \mathscr{A}^{λ} can also be defined in terms of a choice of isomorphisms $(\theta_a^{\Delta} : a \in A^{\lambda})$ instead of isomorphisms $(\theta_a : a \in A^{\lambda})$.

LEMMA 3.3. Let E be a finite-dimensional left \mathscr{A}^{λ} -module. The following rule *defines the structure of a* G^{λ} -module on the vector space $E \otimes \Delta(\lambda)$:

$$
\iota(a)g \cdot (u \otimes v) = \rho_a u \otimes (\theta_a^{\Delta})^{-1}(gv) \quad \text{for any } a \in A^{\lambda} \text{ and } g \in G^{\circ}.
$$

If E is simple, this G^{λ} -module has $E \otimes L(\lambda)$ as its unique irreducible quotient. *Moreover, all the* G° -composition factors of the kernel of the quotient map $E \otimes \Delta(\lambda) \rightarrow E \otimes L(\lambda)$ *are of the form* $L(\mu)$ *with* $\mu < \lambda$ *.*

Proof. We begin by noting that thanks to [\(17\)](#page-17-0), the calculation from Lemma [2.8](#page-9-1) can be repeated to show that the formula above does, indeed, define the structure of a G^{λ} -module on $E \otimes \Delta(\lambda)$. Moreover, the quotient map $\pi^{\lambda} : \Delta(\lambda) \rightarrow$ $L(\lambda)$ induces a surjective map of G^{λ} -modules

$$
\pi_E^{\lambda} := \mathrm{id}_E \otimes \pi : E \otimes \Delta(\lambda) \to E \otimes L(\lambda).
$$

Now, assume that E is simple. If we forget the G^{λ} -module structure and regard $E \otimes \Delta(\lambda)$ as just a G[°]-module, then it is clear that its unique maximal semisimple quotient can be identified with $E \otimes L(\lambda)$, and that the highest weights of the kernel of π_E^{λ} are $\lt \lambda$. Let M be the head of $E \otimes \Delta(\lambda)$ as a G^{λ} module. Since M must remain semisimple as a G° -module (by Lemma [2.4\)](#page-4-2), it cannot be larger than $E \otimes L(\lambda)$. In other words, $E \otimes L(\lambda)$ is the unique simple quotient of $E \otimes \Delta(\lambda)$. \Box

PROPOSITION 3.4. Let E be a simple \mathscr{A}^{λ} -module. The G-module

$$
\Delta(\lambda, E) := \mathrm{Ind}_{G^{\lambda}}^{G}(E \otimes \Delta(\lambda))
$$

 $admits L(\lambda, E)$ *as its unique irreducible quotient. Moreover, all the composition factors of the kernel of the quotient map* $\Delta(\lambda, E) \rightarrow L(\lambda, E)$ *are of the form* $L(\mu, E')$ with $[\mu, E'] < [\lambda, E]$.

Proof. The surjection $E \otimes \Delta(\lambda) \to E \otimes L(\lambda)$ from Lemma [3.3](#page-17-1) induces a surjection $\Delta(\lambda, E) \to L(\lambda, E)$ since the functor $\text{Ind}_{G^{\lambda}}^G$ is exact (see the proof of Lemma [2.12\)](#page-11-0). If g_1, \dots, g_r are representatives of the cosets in G/G^{λ} , then as G° -modules we have

$$
\Delta(\lambda, E) \cong \bigoplus_{i=1}^{r} E \otimes {}^{g_i} \Delta(\lambda), \quad L(\lambda, E) \cong \bigoplus_{i=1}^{r} E \otimes {}^{g_i} L(\lambda). \tag{18}
$$

Therefore, as in the proof of Lemma [2.12,](#page-11-0) $L(\lambda, E)$ is the head of $\Delta(\lambda, E)$ as a G° -module, hence also as a G -module.

If $L(\mu, E')$ is a G-composition factor of the kernel of the surjection $\Delta(\lambda, E) \rightarrow$ $L(\lambda, E)$, then some twist of $L(\mu)$ must be a G° -composition factor of the surjection $g_i\Delta(\lambda) \to g_iL(\lambda)$ for some *i*. Therefore μ is smaller than some twist of λ , and we deduce that $[\mu, E'] < [\lambda, E]$. \Box

3.3 Ext¹-VANISHING

The same proof as for Lemma [2.15](#page-14-1) shows that, up to isomorphism, $\Delta(\lambda, E)$ only depends on the orbit $[\lambda, E]$. The following lemma shows that this module is a "partial projective cover" of $L(\lambda, E)$ (under the assumption that $p \nmid |A|$).

LEMMA 3.5. *Assume that* $p \nmid |A|$ *. For any two pairs* (λ, E) *and* (μ, E') *, we have*

$$
\text{Ext}^1_G(\Delta(\lambda, E), L(\mu, E')) \neq 0 \quad \Rightarrow \quad [\mu, E'] > [\lambda, E].
$$

Proof. As in the proof of Lemma [2.18,](#page-15-0) we have a canonical isomorphism

$$
\mathrm{Ext}^1_G\big(\Delta(\lambda,E),L(\mu,E')\big) \cong \left(\mathrm{Ext}^1_{G^\circ}\big(\Delta(\lambda,E),L(\mu,E')\big)\right)^A
$$

.

If we assume that $\text{Ext}^1_G(\Delta(\lambda, E), L(\mu, E')) \neq 0$, then this isomorphism shows that we must also have $\text{Ext}^1_{G^{\circ}}(\Delta(\lambda, E), L(\mu, E')) \neq 0$. Using [\(18\)](#page-18-0), we deduce that for some $g, h \in G$ we have

$$
\operatorname{Ext}_{G^{\circ}}^{1}({}^{g}\Delta(\lambda), {}^{h}L(\mu)) \neq 0.
$$

This implies that $\overline{\varphi(h)}\mu > \overline{\varphi(g)}\lambda$, hence that $[\mu, E'] > [\lambda, E].$

3.4 Costandard G-modules

Fix again $\lambda \in \mathbf{X}^+$ and a simple \mathscr{A}^{λ} -module E. Then after fixing a costandard module $\nabla(\lambda)$ with socle $L(\lambda)$ and an embedding $L(\lambda) \hookrightarrow \nabla(\lambda)$, as in §[3.2](#page-17-2) the isomorphisms θ_a can be "lifted" to isomorphisms $\theta_a^{\nabla} : \nabla(\lambda) \overset{\sim}{\to} {}^{\iota(a)}\nabla(\lambda)$, which satisfy the appropriate analogue of (17) . Using these isomorphisms one can define a G^{λ} -module structure on $E \otimes \nabla(\lambda)$ by the same procedure as in Lemma [3.3.](#page-17-1) Then the same arguments as for Proposition [3.4](#page-18-1) show that $\nabla(\lambda, E) := \text{Ind}_{G^{\lambda}}^G(E \otimes \nabla(\lambda))$ admits $L(\lambda, E)$ as its unique simple submodule, and that all the composition factors of the injection $L(\lambda, E) \hookrightarrow \nabla(\lambda, E)$ are of the form $L(\mu, E')$ with $[\mu, E'] < [\lambda, E]$. Moreover, as in Lemma [3.5,](#page-18-2) if $p \nmid |A|$ we have

$$
\text{Ext}^1_G(L(\mu, E'), \nabla(\lambda, E)) \neq 0 \quad \Rightarrow \quad [\mu, E'] > [\lambda, E].
$$

LEMMA 3.6. *Assume that* $p \nmid |A|$ *, and let* (λ, E) *and* (μ, E') *be pairs as above. Then for any* $i > 0$ *we have*

$$
Ext_G^i(\Delta(\lambda, E), \nabla(\mu, E')) = 0.
$$

Moreover

$$
\operatorname{Hom}_G(\Delta(\lambda,E),\nabla(\mu,E'))=0
$$

unless $[\lambda, E] = [\mu, E'],$ *in which case this space is* 1*-dimensional.*

Proof. As in the proof of Lemma [2.18,](#page-15-0) for any $i > 0$ we have

$$
\mathrm{Ext}^i_G(\Delta(\lambda,E),\nabla(\mu,E')) \cong \left(\mathrm{Ext}^i_{G^\circ}(\Delta(\lambda,E),\nabla(\mu,E'))\right)^A.
$$

As G° -modules $\Delta(\lambda, E)$ is isomorphic to a direct sum of Weyl modules, and $\nabla(\mu, E')$ is isomorphic to a direct sum of induced modules. Hence, the righthand side vanishes unless $i = 0$, which proves the first claim.

For the second claim we remark that if $\text{Hom}_G(\Delta(\lambda, E), \nabla(\mu, E')) \neq 0$, then $L(\lambda, E)$ is a composition factor of $\nabla(\mu, E')$, so that $[\lambda, E] \leq [\mu, E']$, and $L(\mu, E')$ is a composition factor of $\Delta(\lambda, E)$, so that $[\mu, E'] \leq [\lambda, E]$. We deduce that $[\mu, E'] = [\lambda, E]$. Moreover, in this case any nonzero morphism in this space must be a multiple of the composition

$$
\Delta(\lambda, E) \to L(\lambda, E) \hookrightarrow \nabla(\lambda, E),
$$

which concludes the proof.

 \Box

3.5 Highest weight structure

Let $\mathscr C$ be a finite-length k-linear abelian category such that $\text{Hom}_{\mathscr C}(M, N)$ is finite-dimensional for any M, N in $\mathscr C$. Let $\mathscr S$ be the set of isomorphism classes of irreducible objects of \mathscr{C} . Assume that \mathscr{S} is equipped with a partial order \leq .

Documenta Mathematica 25 (2020) 2149–2177

 \Box

and that for each $s \in \mathscr{S}$ we have a fixed representative of the simple object L_s . Assume also we are given, for any $s \in \mathscr{S}$, objects Δ_s and ∇_s , and morphisms $\Delta_s \to L_s$ and $L_s \to \nabla_s$. For $\mathscr{T} \subset \mathscr{S}$, we denote by $\mathscr{C}_{\mathscr{T}}$ the Serre subcategory of C generated by the objects L_t for $t \in \mathcal{T}$. We write $\mathcal{C}_{\leq s}$ for $\mathcal{C}_{\{t \in \mathcal{S} \mid t \leq s\}}$, and similarly for $\mathscr{C}_{\leq s}$. Finally, recall that an *ideal* of \mathscr{S} is a subset $\mathscr{T} \subset \mathscr{S}$ such that if $t \in \mathcal{T}$ and $s \in \mathcal{S}$ are such that $s \leq t$, then $s \in \mathcal{T}$.

Recall that the category $\mathscr C$ (together with the above data) is said to be a *highest weight category* if the following conditions hold:

- 1. for any $s \in \mathscr{S}$, the set $\{t \in \mathscr{S} \mid t \leq s\}$ is finite;
- 2. for each $s \in \mathscr{S}$, we have $\text{End}_{\mathscr{C}}(L_s) = \mathbb{k}$;
- 3. for any $s \in \mathscr{S}$ and any ideal $\mathscr{T} \subset \mathscr{S}$ such that $s \in \mathscr{T}$ is maximal, $\Delta_s \to L_s$ is a projective cover in $\mathscr{C}_{\mathscr{T}}$ and $L_s \to \nabla_s$ is an injective envelope in $\mathscr{C}_{\mathscr{D}}$;
- 4. the kernel of $\Delta_s \to L_s$ and the cokernel of $L_s \to \nabla_s$ belong to $\mathscr{C}_{\leq s}$;
- 5. we have $\text{Ext}_{\mathscr{C}}^2(\Delta_s, \nabla_t) = 0$ for all $s, t \in \mathscr{S}$.

In this case, the poset (\mathscr{S}, \leq) is called the *weight poset* of \mathscr{C} . See [\[Ri,](#page-28-1) §7] for the basic properties of highest weight categories (following Cline–Parshall–Scott and Beĭlinson–Ginzburg–Soergel). We can finally state the main result of this section.

THEOREM 3.7. Assume that $p \nmid |A|$ *. The category* Rep(G)*, equipped with the poset*

$$
\left\{ (\lambda, E) \mid \begin{array}{c} \lambda \in \mathbf{X}^{+} \text{ and } E \text{ an isom. class} \\ \text{ of simple } \mathscr{A}^{\lambda}\text{-modules} \end{array} \right\} \Big/ A
$$

(with the order defined in [\(16\)](#page-16-0)*)* and the objects $\Delta(\lambda, E)$, $L(\lambda, E)$, $\nabla(\lambda, E)$, is *a highest weight category.*

Proof. The desired properties are verified in Theorem [2.16,](#page-14-0) Proposition [3.4](#page-18-1) and Lemma [3.5,](#page-18-2) their variants for costandard objects (see §[3.4\)](#page-19-0), and Lemma [3.6.](#page-19-1) \Box

4 Grothendieck groups

Our goal in this section is to prove a generalization of a result of Serre [\[Se\]](#page-28-2) providing a description of the Grothendieck group of any split connected reductive group over a strictly Henselian discrete valuation ring of mixed characteristic. (In [\[Se\]](#page-28-2), the author considers more general coefficients, but we will restrict to a setting which is sufficient for the application we have in mind; see [\[AHR\]](#page-27-0).)

4.1 SETTING

We will denote by \mathbb{O} a strictly Henselian discrete valuation ring. We denote its residue field by \mathbb{F} , and its fraction field by \mathbb{K} . Recall that \mathbb{F} is separably closed by definition. We also let $\overline{\mathbb{F}}$ and $\overline{\mathbb{K}}$ be algebraic closures of \mathbb{F} and \mathbb{K} , respectively. We will assume that K has characteristic 0, and that F has characteristic $p > 0$.

Lemma 4.1. *Any reductive group scheme over* O *(in the sense of [\[SGA3.3\]](#page-27-1)) is split.*

Proof. ^{[1](#page-21-0)} According to [\[SGA3.3,](#page-27-1) Exp. XXII, Corollaire 2.3], any reductive group scheme over $\mathbb O$ splits after base change along a suitable étale extension $\mathbb O \to \mathbb O'$. But because $\mathbb O$ is strictly Henselian, [\[EGA4.4,](#page-28-3) Proposition 18.8.1(c)] tells us that $\mathbb{O} \to \mathbb{O}'$ admits a section. It follows that any reductive group scheme over O is split. \Box

In this section we will consider an affine $\mathbb{O}_{\mathbb{P}_{\mathbb{C}}}$ group scheme G , a closed normal subgroup $G^{\circ} \subset G$, and we will denote by A the factor group of G by G° in the sense of $[Ja, §I.6.1]$ (i.e. of $[DG, III, §3, no.3]$). We will make the following assumptions:

- 1. G° is a reductive group scheme over \mathbb{O} (which is automatically split by Lemma 4.1 ;
- 2. A is the constant group scheme associated with a finite group A (in the sense of $[Ja, §I.8.5(a)]$, and moreover p does not divide $|A|$.

These assumptions have the following consequence.

Lemma 4.2. *The* O*-group scheme* G *is flat and of finite type.*

Proof. By $[DG, III, \S3, Proposition 2.5]$ (see also $[Ja, \S1.5.7]$), the morphism $G \rightarrow A$ is flat and of finite type. Since A is clearly flat and of finite type over \mathbb{O} , we deduce the same properties for G . 口

If k is one of $\mathbb{F}, \overline{\mathbb{F}}, \mathbb{K}$ or $\overline{\mathbb{K}},$ we set

$$
G_{\mathbb{k}} := \mathrm{Spec}(\mathbb{k}) \times_{\mathrm{Spec}(\mathbb{O})} G, \quad G_{\mathbb{k}}^{\circ} := \mathrm{Spec}(\mathbb{k}) \times_{\mathrm{Spec}(\mathbb{O})} G^{\circ}.
$$

Then by [\[Ja,](#page-28-0) Equation I.5.5(4)], the quotient $G_{\mathbb{k}}/G_{\mathbb{k}}^{\circ}$ is the constant k-group scheme associated with A; in other words G_k is an extension of the constant (hence smooth) k-group scheme associated with ${\bf A}$ by the smooth group scheme $G_{\mathbb{k}}^{\circ}$. In view of [\[Mi,](#page-28-4) Proposition 8.1] it follows that $G_{\mathbb{k}}$ is smooth, and then that G itself is smooth (see [\[SP,](#page-28-5) Tag 01V8]).

In particular, the groups $G_{\overline{\mathbb{F}}}$ and $G_{\overline{\mathbb{K}}}$ are algebraic groups (over $\mathbb F$ and $\mathbb K$) in the usual "naive" sense. Since $G_{\overline{\mathbb{F}}}$ is connected and **A** is finite, the latter group identifies with the group of components of $G_{\overline{\mathbb{F}}}$, and $G_{\overline{\mathbb{F}}}^{\circ}$ with the identity component of $G_{\mathbb{F}}$ (which justifies our notation). Similarly, **A** also identifies with the group of components of $G_{\overline{k}}$, and $G_{\overline{k}}^{\circ}$ is the identity component of $G_{\overline{k}}$.

¹This proof, which was communicated to us by Torsten Wedhorn, replaces a more complicated proof that appeared in a previous draft of this paper.

LEMMA 4.3. *The morphism* $G(\mathbb{O}) \to \mathbf{A}$ *induced by* ϖ *is surjective.*

Proof. We consider the commutative diagram

where the horizontal maps are induced by ϖ and the vertical ones by the quotient morphism $\mathbb{O} \to \mathbb{F}$. Here since \mathbb{O} and \mathbb{F} are integral domains the two groups in the right-hand column identify with A , and the right-hand vertical arrow is an isomorphism. On the other hand, the left-hand vertical arrow is surjective by $[EGA4.4, Théorème 18.5.17]$.

To finish the proof, it remains to show that $G(\mathbb{F}) \to A(\mathbb{F})$ is surjective. To do this, we consider the diagram

$$
G(\mathbb{F}) \longrightarrow A(\mathbb{F})
$$

$$
\downarrow \qquad \qquad \parallel
$$

$$
G(\overline{\mathbb{F}}) \longrightarrow A(\overline{\mathbb{F}}).
$$

Here the bottom horizontal arrow is surjective, and the right-hand vertical arrow is again an isomorphism. All the arrows commute with the Frobenius endomorphism, denoted by Fr. Since A is a constant group scheme, its Frobenius endomorphism is the identity map. Since $\overline{\mathbb{F}}$ is a purely inseparable extension of F, for any $g \in G(\overline{\mathbb{F}})$, there exists an integer $n \geq 1$ such that $\text{Fr}^n(g)$ lies in the image of $G(\mathbb{F})$. The result follows. \Box

Thanks to Lemma [4.3,](#page-22-0) we can (and will) choose a section $\iota : \mathbf{A} \to G(\mathbb{O})$ of the projection induced by ϖ . Of course, we cannot assume that ι is a group morphism in general; but we will at least assume that $\iota(1) = 1$. For simplicity, we will also denote by $\iota: A \to G$ the morphism of \mathbb{O} -group schemes defined by ι , i.e. the \mathbb{O} -scheme morphism associated with the algebra morphism $\mathcal{O}(G) \to \mathcal{O}(A) = \text{Fun}(\mathbf{A}, \mathbb{O})$ (where $\text{Fun}(\mathbf{A}, \mathbb{O})$ denotes the algebra of functions from **A** to $\circled{0}$) sending f to the map $a \mapsto \iota(a)(f)$. Base-changing to $\overline{\mathbb{F}}$ and to K, ι provides sections of the projections of $G_{\overline{\mathbb{F}}}$ and $G_{\overline{\mathbb{K}}}$ onto their respective groups of components.

Lemma 4.4. *The morphism*

$$
A\times G^\circ\to G
$$

defined by $(a, g) \mapsto \iota(a) \cdot g$ *is an isomorphism of* \mathbb{O} *-schemes.*

Proof. Consider the algebra morphism $\varphi : \mathcal{O}(G) \to \prod_{a \in \mathbf{A}} \mathcal{O}(G^{\circ})$ induced by our morphism; what we have to prove is that φ is an isomorphism. From the remarks preceding Lemma [4.3,](#page-22-0) we know that the algebra morphisms $\overline{\mathbb{F}} \otimes_{\mathbb{Q}} \varphi$

and $\overline{\mathbb{K}} \otimes_{\mathbb{O}} \varphi$ are isomorphisms; hence so are the morphisms $\mathbb{F} \otimes_{\mathbb{O}} \varphi$ and $\mathbb{K} \otimes_{\mathbb{O}} \varphi$. From the invertibility of $K \otimes_{\mathbb{Q}} \varphi$ and the fact that $\mathcal{O}(G)$ is flat (hence torsion free) we deduce that φ is injective.

Now we denote by C the cokernel of φ . To prove that $C = 0$ it suffices to prove $\prod_{a\in A} \mathcal{O}(G^{\circ})$ is finitely generated as an $\mathcal{O}(G)$ -module (because $\mathcal{O}(G^{\circ})$ is), so is that for any maximal ideal $\mathfrak{m} \subset \mathcal{O}(G)$ the localization $C_{\mathfrak{m}}$ vanishes. Then, since C, so that by Nakayama's lemma it suffices to prove that $C_{\mathfrak{m}}/\mathfrak{m}C_{\mathfrak{m}} = C/\mathfrak{m}C$ vanishes. Now the kernel of the composition $\mathbb{O} \to \mathcal{O}(G)/\mathfrak{m}$ is either $\{0\}$ or the unique maximal ideal $\mathfrak p$ in $\mathbb O$. In the latter case $C/\mathfrak m C$ is a quotient of $C/\mathfrak{p}C = C \otimes_{\mathbb{Q}} \mathbb{F}$, which vanishes since $\mathbb{F} \otimes_{\mathbb{Q}} \varphi$ is an isomorphism. In the former case, the morphism $\mathbb{O} \to \mathcal{O}(G)/\mathfrak{m}$ factors through a morphism $\mathbb{K} \to \mathcal{O}(G)/\mathfrak{m}$, and then $C/\mathfrak{m}C = C \otimes_{\mathcal{O}(G)} \mathcal{O}(G)/\mathfrak{m}$ is a quotient of

$$
C\otimes_{{\mathbb Q}}{\mathcal O}(G)/{\mathfrak m}=(C\otimes_{{\mathbb Q}}{\mathbb K})\otimes_{{\mathbb K}}{\mathcal O}(G)/{\mathfrak m},
$$

which vanishes since $\mathbb{K} \otimes_{\mathbb{Q}} \varphi$ is invertible.

4.2 STATEMENT

Let us consider the Grothendieck groups

$$
\mathsf K(G),\qquad \mathsf K(G_\mathbb K),\qquad \mathsf K(G_\mathbb F)
$$

of the categories of (algebraic) G-modules of finite type over \mathbb{O} , of finitedimensional (algebraic) $G_{\mathbb{K}}$ -modules, and of finite-dimensional (algebraic) $G_{\mathbb{F}}$ modules, respectively. We will also denote by $\mathsf{K}_{\text{pr}}(G)$ the Grothendieck group of the exact category of G-modules which are free of finite rank over O. Following [\[Se\]](#page-28-2) we consider the commutative diagram of natural morphisms of abelian groups

$$
\begin{array}{ccc}\n\mathsf{K}_{\mathrm{pr}}(G) & \xrightarrow{\sim} & \mathsf{K}(G) & \longrightarrow & \mathsf{K}(G_{\mathbb{K}}) \\
\searrow & & & \\
\searrow & & & \\
\mathsf{K}(G_{\mathbb{F}}) & & & \\
\end{array} \tag{19}
$$

 \Box

Here, on the upper line, the left horizontal map (which is induced by the natural inclusion of categories) is an isomorphism by [\[Se,](#page-28-2) Proposition 4]. The right horizontal map (induced by the exact functor $\mathbb{K} \otimes_{\mathbb{O}} (-)$) is surjective by [\[Se,](#page-28-2) Théorème 1]. The map from the top left-hand corner to the group on the bottom line is induced by the (exact) functor $\mathbb{F} \otimes_{\mathbb{Q}} (-)$. Finally, the map d_G is the "decomposition" morphism from [\[Se,](#page-28-2) Théorème 2]. The main result of this section is the following.

Theorem 4.5. *All the maps in* [\(19\)](#page-23-0) *are isomorphisms.*

According to [\[Se,](#page-28-2) Théorème 3], if d_G is surjective, then the right-hand morphism on the upper line is automatically an isomorphism. Thus, to prove Theorem [4.5,](#page-23-1) it is enough to prove that d_G is an isomorphism. This will be accomplished in §[4.5](#page-26-0) below.

4.3 LATTICES

Our starting point will be $[Se, Théor\`eme 5]$, which is applicable here thanks to Lemma [4.1.](#page-21-1) This result asserts that if we consider the diagram

$$
\begin{array}{ccc}\n\mathsf{K}_{\mathrm{pr}}(G^{\circ}) & \xrightarrow{\sim} & \mathsf{K}(G^{\circ}) & \xrightarrow{\sim} & \mathsf{K}(G^{\circ}_{\mathbb{K}}) \\
\hline\n\downarrow^{\mathsf{K}}(G^{\circ}_{\mathbb{F}}) & & \downarrow^{\mathsf{d}}_{G^{\circ}}\n\end{array} \tag{20}
$$

similar to [\(19\)](#page-23-0) but for the group G° , then the decomposition morphism $d_{G^{\circ}}$ is an isomorphism, so that all the maps in [\(20\)](#page-24-0) are isomorphisms. The main idea of the argument is as follows: first fix a split torus $T \subset G^{\circ}$ and set $\mathbf{X} := X^*(T)$. Then both $\mathsf{K}(G^{\circ}_{\mathbb{K}})$ and $\mathsf{K}(G^{\circ}_{\mathbb{F}})$ can be embedded in $\mathbb{Z}[\mathbf{X}]$ by taking characters, and $d_{G^{\circ}}$ is characterized by the property that it preserves characters.

Let us delve a bit further into the details of the behavior of d_{G °. Choosing a system of positive roots in the root system of (G^o, T) , we obtain a Borel subgroup $B \subset G^{\circ}$ containing T (chosen such that B is the negative Borel subgroup), and a subset $X^+ \subset X$ of dominant weights.

By the well-known representation theory of connected reductive groups over algebraically closed fields, both the set of isomorphism classes of simple $G^{\circ}_{\overline{\mathbb{K}}}$ modules and the set of isomorphism classes of simple $G^{\circ}_{\overline{\mathbb{F}}}$ modules are in bijection with X^+ . More concretely, if $\lambda \in X^+$ and if $L_{\overline{K}}(\lambda)$ is a simple $G^{\circ}_{\overline{K}}$ -module of highest weight λ , then there exists a simple $G^{\circ}_{\mathbb{K}}$ -module $L_{\mathbb{K}}(\lambda)$ and an isomorphism $\overline{\mathbb{K}} \otimes_{\mathbb{K}} L_{\mathbb{K}}(\lambda) \cong L_{\overline{\mathbb{K}}}(\lambda)$. Moreover, $L_{\mathbb{K}}(\lambda)$ is unique up to isomorphism (which justifies the notation), and every simple $G^{\circ}_{\mathbb{K}}$ -module is of this form. (See e.g. [\[Se,](#page-28-2) §3.6] or [\[Ja,](#page-28-0) Corollary II.2.9] for details.)

There is a similar description of simple G_F° -modules. Note also that the Weyl and dual Weyl G_F° -modules have obvious \mathbb{F} -versions, that will be denoted $\Delta_{\mathbb{F}}(\lambda)$ and $\nabla_{\mathbb{F}}(\lambda)$ respectively.

Next, if $V_0 \subset L_{\mathbb{K}}(\lambda)$ is a G° -stable \mathbb{O} -lattice, then the class of $\mathbb{F} \otimes_{\mathbb{O}} V_{\mathbb{O}}$ in $\mathsf{K}(G^{\circ}_{\mathbb{F}})$ coincides with the class of the Weyl module $\Delta_{\mathbb{F}}(\lambda)$ of highest weight λ (because $L_{\overline{K}}(\lambda)$ and $\Delta_{\overline{F}}(\lambda)$ have the same character). In fact, it is well known that the lattice $V_{\mathbb{O}}$ can be chosen in such a way that $\mathbb{F} \otimes_{\mathbb{O}} V_{\mathbb{O}} \cong \Delta_{\mathbb{F}}(\lambda)$ as $G_{\mathbb{F}}^{\circ}$ -modules. For each λ we will fix such a lattice, and denote it by $L_0(\lambda)$. To summarize, we have

$$
d_{G^{\circ}}([L_{\mathbb{K}}(\lambda)]) = [\Delta_{\mathbb{F}}(\lambda)].
$$

In the present setting, **A** is the group of components both of $G_{\overline{\mathbb{F}}}$ and of $G_{\overline{\mathbb{K}}}$. Identifying $T_{\overline{\mathbb{F}}}$ and $T_{\overline{\mathbb{K}}}$ with the universal maximal tori of $G_{\overline{\mathbb{F}}}^{\circ}$ and $G_{\overline{\mathbb{K}}}^{\circ}$ respectively (via the choice of Borel subgroups obtained from B by base change), we obtain two actions of **A** on $\mathbf{X} = X^*(T_{\overline{\mathbb{F}}}) = X^*(T_{\overline{\mathbb{K}}})$, see §[2.2.](#page-2-2) The description of this action involves the property that Borel subgroups are conjugate, which is not true over O; so it is not clear from the definition that they must coincide. In the next lemma we will show that they do at least coincide on X^+ .

LEMMA 4.6. *The two actions of* **A** *on* **X** *agree on* X^+ *.*

Proof. Let us provisionally denote the two actions of **A** on **X** by $\frac{1}{\mathbb{F}}$ and $\frac{1}{\mathbb{K}}$. Since **A** acts by algebraic group automorphisms on G° , this group acts on all the Grothendieck groups in [\(20\)](#page-24-0), and all the maps in this diagram are obviously **A**-equivariant. Now for $\lambda \in \mathbf{X}^+$ we have $a \cdot [L_{\mathbb{K}}(\lambda)] = [L_{\mathbb{K}}(a \cdot_{\overline{\mathbb{K}}} \lambda)]$, hence

$$
d_{G^{\circ}}(a \cdot [L_{\mathbb{K}}(\lambda)]) = [\Delta_{\mathbb{F}}(a \cdot_{\overline{\mathbb{K}}} \lambda)].
$$

On the other hand, we have $a \cdot [\Delta_{\mathbb{F}}(\lambda)] = [\Delta_{\mathbb{F}}(a \cdot_{\mathbb{F}} \lambda)]$. Since $d_{G^{\circ}}$ is **A**-equivariant, it follows that

$$
d_{G^{\circ}}(a \cdot [L_{\mathbb{K}}(\lambda)]) = a \cdot [\Delta_{\mathbb{F}}(\lambda)] = [\Delta_{\mathbb{F}}(a \cdot_{\overline{\mathbb{F}}}\lambda)]
$$

(see [\(3\)](#page-3-0)). We deduce that $[\Delta_{\mathbb{F}}(a \cdot \overline{\mathbb{K}} \lambda)] = [\Delta_{\mathbb{F}}(a \cdot \overline{\mathbb{F}} \lambda)],$ hence that $a \cdot \overline{\mathbb{K}} \lambda = a \cdot \overline{\mathbb{F}} \lambda.$

From now on we fix $\lambda \in \mathbf{X}^+$. It follows in particular from Lemma [4.6](#page-24-1) that the two possible definitions of the subgroup $\mathbf{A}^{\lambda} \subset \mathbf{A}$ (see §[2.4\)](#page-5-4) coincide.

LEMMA 4.7. *1. We have* $\text{End}_{G^{\circ}}(L_{\mathbb{O}}(\lambda)) = \mathbb{O}$.

2. For any $a \in \mathbf{A}^{\lambda}$, there exists an isomorphism of G° -modules

$$
{}^{\iota(a)}L_{\mathbb{O}}(\lambda) \cong L_{\mathbb{O}}(\lambda).
$$

Proof. We only explain the proof of [\(2\)](#page-25-0); the proof of [\(1\)](#page-25-1) is similar. Consider the object

$$
R\operatorname{Hom}_{G^{\circ}}(L_{\mathbb{O}}(\lambda), {}^{\iota(a)}L_{\mathbb{O}}(\lambda))
$$

of the derived category of O-modules. By [\[Ja,](#page-28-0) Lemma II.B.5 and its proof], this complex has bounded cohomology, and each of its cohomology objects is finitely generated. This implies that it is isomorphic (in the derived category of O-modules) to a finite direct sum of shifts of finitely generated O-modules. It follows from [\[MR,](#page-28-6) Proposition A.6 and Proposition A.8] that we have

$$
\overline{\mathbb{F}} \stackrel{L}{\otimes}_0 R \operatorname{Hom}_{G^{\circ}}(L_{{\mathbb{Q}}}(\lambda), {}^{\iota(a)}L_{{\mathbb{Q}}}(\lambda)) \cong R \operatorname{Hom}_{G^{\circ}_{\overline{\mathbb{F}}}}(\Delta_{\overline{\mathbb{F}}}(\lambda), \Delta_{\overline{\mathbb{F}}}(\lambda)),
$$

$$
\overline{\mathbb{K}} \stackrel{L}{\otimes}_0 R \operatorname{Hom}_{G^{\circ}}(L_{{\mathbb{Q}}}(\lambda), {}^{\iota(a)}L_{{\mathbb{Q}}}(\lambda)) \cong R \operatorname{Hom}_{G^{\circ}_{\overline{\mathbb{K}}}}(L_{\overline{\mathbb{K}}}(\lambda), L_{\overline{\mathbb{K}}}(\lambda)).
$$

Now we have $R\operatorname{Hom}_{G^{\circ}_{\overline{\mathbb{K}}}}(L_{\overline{\mathbb{K}}}(\lambda), L_{\overline{\mathbb{K}}}(\lambda)) \cong \overline{\mathbb{K}}$, so that $\operatorname{Hom}_{G^{\circ}}(L_{\mathbb{O}}(\lambda), {}^{\iota(a)}L_{\mathbb{O}}(\lambda))$ is a sum of $\mathbb O$ and a torsion module. But since $\text{Hom}_{G^{\circ}_{\overline{\mathbb F}}}(\Delta_{\overline{\mathbb F}}(\lambda), \Delta_{\overline{\mathbb F}}(\lambda)) = \mathbb F$, this torsion module is zero; in other words we have $\text{Hom}_{G^{\circ}}(L_{\mathbb{O}}(\lambda), \iota^{(a)}L_{\mathbb{O}}(\lambda)) \cong \mathbb{O}$. If $f: L_0(\lambda) \to {}^{\iota(a)}L_0(\lambda)$ is a generator of this rank-1 Q-module, the $G_{\mathbb{F}}$ -module morphism $\overline{\mathbb{F}} \otimes_{\mathbb{Q}} f$ is an isomorphism, so that f is also an isomorphism. \Box

4.4 Comparison of twisted group algebras

We continue with the setting of §[4.3](#page-24-2) (and in particular with our fixed $\lambda \in \mathbf{X}^+$). By Lemma [4.7](#page-25-2) we can choose, for any $a \in \mathbf{A}^{\lambda}$, an isomorphism $\theta_a: L_0(\lambda) \stackrel{\sim}{\rightarrow}$ $\iota^{(a)}L_0(\lambda)$. Then $\overline{\mathbb{K}} \otimes_0 \theta_a$ is an isomorphism from $L_{\overline{\mathbb{K}}}(\lambda)$ to $\iota^{(a)}L_{\overline{\mathbb{K}}}(\lambda)$, and for

 $a, b \in \mathbf{A}^{\lambda}$ the scalar $\alpha(a, b) \in \overline{\mathbb{K}}$ defined in §[2.4](#page-5-4) using these isomorphisms in fact belongs to \mathbb{O}^\times . In particular, if $\mathscr{A}_{\overline{\mathbb{K}}}^\lambda$ is the associated twisted group algebra (over $\overline{\mathbb{K}}$), then the $\mathbb{O}\text{-lattice } \mathscr{A}_{\mathbb{O}}^{\lambda} := \bigoplus_{a \in A^{\lambda}} \mathbb{O} \cdot \rho_a$ is an $\mathbb{O}\text{-subalgebra in } \mathscr{A}_{\overline{\mathbb{K}}}^{\lambda}$. On the other hand, $\overline{\mathbb{F}} \otimes_{\mathbb{O}} \theta_a$ is an isomorphism from $\Delta_{\overline{\mathbb{F}}}(\lambda)$ to $\iota^{(a)}\Delta_{\overline{\mathbb{F}}}(\lambda)$, and by Remark [3.2](#page-17-3) the algebra $\mathscr{A}_{\overline{\mathbb{F}}}^{\lambda}$ from §[2.4](#page-5-4) (now for the group $G_{\overline{\mathbb{F}}}$ and its simple module $L_{\mathbb{F}}(\lambda)$ can be described as the twisted group algebra of \mathbf{A}^{λ} defined by the cocyle sending (a, b) to the image of $\alpha(a, b)$ in $\overline{\mathbb{F}}$.

Summarizing, we have obtained an \overline{O} -algebra $\mathscr{A}_{\overline{O}}^{\lambda}$ which is free over \overline{O} and such that

$$
\overline{\mathbb{K}}\otimes_{{\mathbb O}}\mathscr{A}_{{\mathbb O}}^\lambda\cong\mathscr{A}_{\overline{\mathbb{K}}}^\lambda,\quad \overline{\mathbb{F}}\otimes_{{\mathbb O}}\mathscr{A}_{{\mathbb O}}^\lambda\cong\mathscr{A}_{\overline{\mathbb{F}}}^\lambda.
$$

From Lemma [2.19](#page-16-1) we know that $\mathscr{A}_{\overline{\mathbb{F}}}^{\lambda}$ and $\mathscr{A}_{\overline{\mathbb{K}}}^{\lambda}$ are products of matrix algebras (over $\overline{\mathbb{F}}$ and $\overline{\mathbb{K}}$ respectively). In fact, the same arguments show that $\mathscr{A}_{\mathbb{F}}^{\lambda}$:= $\mathbb{F} \otimes_{\mathbb{O}} \mathscr{A}_0^{\lambda}$ and $\mathscr{A}_{\mathbb{K}}^{\lambda} := \mathbb{K} \otimes_{\mathbb{O}} \mathscr{A}_0^{\lambda}$ are also products of matrix algebras (over \mathbb{F} and K respectively). Hence we are in the setting of Tits' deformation theorem (see e.g. [\[GP,](#page-27-3) Theorem 7.4.6]), and we deduce that we have a canonical bijection between the sets of isomorphism classes of simple $\mathscr{A}_{\mathbb{K}}^{\lambda}$ -modules and isomorphism classes of simple $\mathscr{A}_{\mathbb{F}}^{\lambda}$ -modules, which sends a simple module M to $\mathbb{F}\otimes_{\mathbb{O}} M_{\mathbb{O}}$, where $M_{\mathbb{O}}$ is any $\mathscr{A}_{\mathbb{O}}^{\lambda}$ -stable \mathbb{O} -lattice in M .

If E be a finite-dimensional $\mathscr{A}_{\mathbb{K}}^{\lambda}$ -module, the same procedure as in §[2.5](#page-8-3) allows us to define a $G_{\mathbb{K}}^{\lambda}$ -module structure on $E \otimes_{\mathbb{K}} L_{\mathbb{K}}(\lambda)$, where $G_{\mathbb{K}}^{\lambda}$ is the inverse image of \mathbf{A}^{λ} under the map $G_{\mathbb{K}} \to A$ induced by ϖ . Similarly, copying the definitions in Lemma [3.3](#page-17-1) and Proposition [3.4,](#page-18-1) if E' be a finite-dimensional $\mathscr{A}_{\mathbb{F}}^{\lambda}$. module, then we can consider the G_F -module $\Delta_F(\lambda, E')$, which is an F-form of $\Delta_{\overline{\mathbb{F}}}(\lambda,\overline{\mathbb{F}}\otimes_{\mathbb{F}} E').$

LEMMA 4.8. Let E be a simple $\mathscr{A}^\lambda_\mathbb{K}$ -module, and let \tilde{E} be the simple $\mathscr{A}^\lambda_\mathbb{F}$ -module *corresponding to* E *under the bijection above. Then we have*

$$
d_G([{\rm Ind}^{G_{\mathbb{K}}}_{G^\lambda_{\mathbb{K}}}(E \otimes_\mathbb{K} L_\mathbb{K}(\lambda))])=[\Delta_{\mathbb{F}}(\lambda,\tilde{E})].
$$

Proof. If $E_0 \subset E$ is an \mathscr{A}_0^{λ} -stable \mathbb{O} -lattice in E, then $E_0 \otimes_{\mathbb{O}} L_0(\lambda)$ has a natural structure of G^{λ} -module (where $G^{\lambda} = \varpi^{-1}(\mathbf{A}^{\lambda})$), and is a G^{λ} -stable ©-lattice in $E \otimes_{\mathbb{K}} L_{\mathbb{K}}(λ)$. Inducing to G, we deduce that $\text{Ind}_{G^{\lambda}}^G(E_0 \otimes_0 L_0(λ))$ is a G-stable $\mathbb{O}\text{-}$ lattice in $\text{Ind}_{G_K^\lambda}^{G_K}(E \otimes_K L_K(\lambda))$, whose modular reduction is $\Delta_{\mathbb{F}}(\lambda, \tilde{E}).$ \Box

4.5 INVERTIBILITY OF d_G

We can now prove that d_G is an isomorphism, which will finish the proof of Theorem [4.5.](#page-23-1)

In fact, for any $\lambda \in \mathbf{X}^+$, since $\mathscr{A}_{\mathbb{K}}^{\lambda}$ is a product of matrix algebras the assignment $E \mapsto \overline{\mathbb{K}} \otimes_{\mathbb{K}} E$ induces a bijection between the sets of isomorphism classes of simple modules for the algebras $\mathscr{A}_{\mathbb{K}}^{\lambda}$ and $\mathscr{A}_{\overline{\mathbb{K}}}^{\lambda}$ from §[4.4.](#page-25-3) Then, using Theorem [2.16](#page-14-0) and arguing as in [\[Se,](#page-28-2) §3.6], we see that the similar operation induces

a bijection between the sets of isomorphism classes of simple $G_{\mathbb{K}}$ -modules and of simple $G_{\overline{\mathbb{K}}}$ -modules.

The same construction gives a bijection between the sets of isomorphism classes of simple $G_{\mathbb{F}}$ -modules and of simple $G_{\mathbb{F}}$ -modules.

Let us now fix a subset $\Lambda \subset \mathbf{X}^+$ of representatives for the **A**-orbits on \mathbf{X}^+ . By the remarks above, the classes of the modules $\text{Ind}_{G^{\lambda}_{\mathbb{K}}}^{G_{\mathbb{K}}}(E \otimes L_{\mathbb{K}}(\lambda)),$ where (λ, E) runs over the pairs consisting of an element $\lambda \in \Lambda$ and a simple $\mathscr{A}_{\mathbb{K}}^{\lambda}$ module, form a basis of $\mathsf{K}(G_{\mathbb{K}})$ (see in particular Remark [2.17](#page-15-1)[\(1\)](#page-15-2)). In view of Lemma [4.8,](#page-26-1) Theorem [3.7,](#page-20-0) and the preceding paragraph, the image of this basis under d_G is a basis of $\mathsf{K}(G_F)$. Hence, d_G is indeed an isomorphism.

REFERENCES

- [AHR] P. Achar, W. Hardesty, and S. Riche, *Integral exotic sheaves and the modular Lusztig–Vogan bijection*, preprint [arXiv:1810.06851.](https://arxiv.org/abs/1810.06851)
- [DG] M. Demazure and P. Gabriel, *Groupes alg´ebriques. Tome I : Géométrie algébrique, généralités, groupes commutatifs*, with an appendix *Corps de classes local* by M. Hazewinkel, Masson & Cie, North-Holland Publishing Co., 1970.
- [SGA3.1] M. Demazure, A. Grothendieck et al., *Sch´emas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes.* Séminaire de Géométrie Algébrique du Bois Marie 1962–64. A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J.-P. Serre. Revised and annotated edition of the 1970 French original. Edited by Philippe Gille and Patrick Polo. Documents Mathématiques 7, Société Mathématique de France, 2011.
- [SGA3.2] M. Demazure, A. Grothendieck et al., *Schémas en groupes II. Groupes de type multiplicatif, et structure des sch´emas en groupes g´en´eraux*, S´eminaire de G´eometrie Alg´ebrique du Bois-Marie 1962/64 (SGA 3), Lecture Notes in Math., vol. 152, Springer-Verlag, 1970.
- [SGA3.3] M. Demazure, A. Grothendieck et al., *Sch´emas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs.* Séminaire de Géométrie Algébrique du Bois Marie 1962–64. A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J.-P. Serre. Revised and annotated edition of the 1970 French original. Edited by Philippe Gille and Patrick Polo. Documents Mathématiques 8, Société Mathématique de France, 2011.
- [GP] M. Geck and G. Pfeiffer, *Characters of finite Coxeter groups and Iwahori–Hecke algebras*, London Mathematical Society Monographs. New Series, vol. 21, Oxford University Press, 2000.

- [EGA4.4] A. Grothendieck, *El´ements de g´eom´etrie alg´ebrique. IV. ´ Etude locale ´* des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 5–361.
- [Ja] J. C. Jantzen, *Representations of algebraic groups, second edition*, Mathematical surveys and monographs 107, Amer. Math. Soc., 2003.
- [MR] C. Mautner and S. Riche, *On the exotic t-structure in positive characteristic*, Int. Math. Res. Not. IMRN 2016, 5727–5774.
- [Mi] J. S. Milne, *Algebraic groups: The theory of group schemes of finite type over a field*, Cambridge Studies in Advanced Mathematics, no. 170, Cambridge University Press, 2017.
- [Ri] S. Riche, *Geometric Representation Theory in positive characteristic*, habilitation thesis, available at <https://tel.archives-ouvertes.fr/tel-01431526>.
- [Se] J.-P. Serre, *Groupes de Grothendieck des sch´emas en groupes r´eductifs d´eploy´es*, Publ. Math. I.H.E.S. 34 (1968), 37–52.
- [SP] The Stacks Project Authors, *Stacks project*, http://stacks.math.columbia.edu, 2018.

Pramod N. Achar Department of Mathematics Louisiana State University Baton Rouge, LA 70803 USA pramod@math.lsu.edu

William Hardesty School of Mathematics and Statistics F07 University of Sydney NSW 2006 Australia william.hardesty@sydney.edu.au

Simon Riche Université Clermont Auvergne CNRS, LMBP F-63000 Clermont-Ferrand France simon.riche@uca.fr

2178