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Abstract. We describe the sl3 non-elliptic webs in terms of convex
sets in the affine building. Kuperberg defined the non-elliptic web
basis in his work on rank-2 spider categories. Fontaine, Kamnitzer,
Kuperberg showed that the sl3 non-elliptic webs are dual to CAT(0)
triangulated diskoids in the affine building. We show that each such
triangulated diskoid is the intersection of the min-convex and max-
convex hulls of a generic polygon in the building. Choosing a generic
polygon from each of the components of the Satake fiber produces
(the duals of) the non-elliptic web basis. The convex hulls in the
affine building were first introduced by Faltings and are related to
tropical convexity, as discussed in work by Joswig, Sturmfels, Yu and
by Zhang.
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1 Introduction

The representation theory of a Lie algebra or quantum group forms a piv-
otal tensor category that can be studied combinatorially via a diagrammatic
presentation by generating morphisms and relations. One can restrict to the
full subcategory with objects consisting of tensor products of the fundamental
representations of g, the entire representation category being recovered from
this subcategory by idempotent completion. The diagrammatic category cor-
responding to this full subcategory is called the spider category of g. The
morphisms are linear combinations of webs, which are directed, planar graphs
with trivalent interior vertices and univalent boundary vertices. They satisfy
certain relations, which were completely specified in the slm case in [CKM14].
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2414 T. Akhmejanov

In [Kup96], Kuperberg introduced the spider categories for rank-2 Lie algebras
and gave presentations for these categories. Spider categories can be used to
describe the invariant spaces Homg(C, V1 ⊗ · · · ⊗ Vn) ∼= Inv(V1 ⊗ · · · ⊗ Vn)
where each Vi is a fundamental representation of g. Furthermore, each hom-
space is equivalent to an invariant space due to the pivotal structure, and the
spider categories were originally defined in [Kup96] entirely in terms of invariant
spaces. From this perspective webs are thought of as embedded in a disk,
and linear combinations of webs with boundary corresponding to V1, . . . , Vn

represent invariant vectors. In this rank-2 setting, Kuperberg specified a basis
for each invariant space consisting of the non-elliptic webs (see §2). They are
the webs such that each interior face has at least 6 sides. We will be concerned
with the non-elliptic webs in the g = sl3 case.

Fontaine, Kamnitzer, Kuperberg [FKK13] showed that the sl3 non-elliptic webs
are dual to CAT(0) triangulated diskoids in the affine building. That is, since
webs are trivalent graphs with boundary vertices on a disk, each web is dual
to a triangulated polygon with edges labelled by the two fundamental weights
of sl3. If the web has multiple connected components, then certain boundary
vertices of the polygon are identified, resulting in a triangulated diskoid. The
non-elliptic property corresponds to the CAT(0) property of the triangulated
diskoid, which says that each interior vertex has degree at least 6 (see Figure 2).

This paper gives a description of these CAT(0) triangulated dual diskoids in
terms of convex sets in the affine building. To state the main theorem we briefly
introduce the A2 affine building and define the convex sets in the building
(precise definitions are given §3).
The A2 affine building ∆2 is an infinite simplicial complex of dimension 2.
A vertex in ∆2 is represented by a C[[t]]-lattice in C((t))3 (more precisely, a
homothety class of lattices where two lattices L,L′ are in the same class if
L′ = tkL for some integer k). Let [L] denote the class of the lattice L. Two
vertices of ∆2 are connected by an edge if there are lattice representatives L,L′

for their lattice classes such that tL ⊂ L′ ⊂ L. Three vertices form a simplex
if each pair forms an edge. There is an SL3-dominant-weight-valued metric on
the vertices of the building in the sense of Kapovich, Leeb, Milson [KLM08].
Let ω1 and ω2 be the two fundamental weights of SL3 and let Vωi

denote the
corresponding fundamental representation. Note that two vertices x1, x2 in ∆2

form an edge if and only if d(x1, x2) = ω1 or ω2.

The following notion of convexity in the affine building is originally due to Falt-
ings [Fal01]. Note that the intersection of two lattices is again a lattice. A set
of lattice classes is min-convex if it is closed under taking intersections. Then
define the convex hull minconv([L1], . . . , [Ln]) to be the smallest min-convex
set containing the lattice classes [L1], . . . , [Ln]. There is a dual notion of max-
convexity where intersection of lattices is replaced by taking their sum. Define
maxconv([L1], . . . , [Ln]) analogously. Joswig, Sturmfels, Yu [JSY07] gave an
algorithm for computing these convex hulls in terms of tropical convexity, which
was improved upon by Zhang [Zha18].
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Finally, define the following notation for the intersection of these two convex
hulls,

conv([L1], . . . , [Ln]) = minconv([L1], . . . , [Ln]) ∩maxconv([L1], . . . , [Ln]).

Let ~λ = (λ1, . . . , λn) be a sequence of fundamental weights. We will be inter-

ested in the space of polygon configurations Poly(~λ) consisting of n vertices
(x1, . . . , xn) in ∆2 such that d(xi, xi+1) = λi, d(xn, x1) = λn and x1 is the
class of the standard lattice C[[t]]3. This forms an algebraic variety, and by the
geometric Satake correspondence, which we briefly recall below in this intro-
duction (and in §4), the number of components of the polygon space is equal

to the dimension of Inv(~λ) = Inv(Vλ1 ⊗ · · · ⊗ Vλn).

Let P = (x1, . . . , xn) be a polygon representing a point of Poly(~λ). Although
conv(P ) denotes a set of vertices in the affine building, we will interpret it as
the induced subcomplex on those vertices. The main theorem is Theorem 18,
reproduced here.

Theorem. Let P be a generic point of a component of Poly(~λ), thought of as
a polygon in the affine building ∆2. Then conv(P ) is a CAT(0) triangulated
diskoid, that is, the dual of conv(P ) is a non-elliptic web. As P ranges over the

components of Poly(~λ), the duals of conv(P ) form the non-elliptic web basis

for the invariant space Inv(~λ).

The main combinatorial tool used in the proof is the cylindrical growth diagram
of [Spe14, Whi18, Akh17]. The definition is given in §4 together with the

result from [FK14, Akh17] that the components of Poly(~λ) can be described
combinatorially via growth diagrams. A polygon P is said to be generic if its
pairwise distances d(xi, xj) form a growth diagram.
Intuitively, the set of vertices minconv(P ) contains certain combinatorial
geodesics between pairs of vertices of P . The subcomplex it induces contains
the desired CAT(0) triangulation of P , but may also contain extra simplices.
The same holds for maxconv(P ). Taking the intersection of these two sets of
vertices induces a subcomplex that is exactly equal to the CAT(0) triangulation
of P . The reader may look ahead to the figures in Example 12.
The theorem can also be interpreted as giving a bijective map from components
of Poly(~λ) to non-elliptic webs: choose a generic point in the component, com-
pute conv(P ), and take the dual of this triangulated diskoid. However, we do
not explore computational procedures for computing these convex hulls in the
present paper, but refer the reader to [JSY07] and [Zha18]. Such a bijection
was already given in [FKK13, Thm 1.4], or more completely, we have the fol-
lowing objects in bijective correspondence for a fixed sequence of fundamental
weights ~λ.

• non-elliptic webs with boundary ~λ

• CAT(0) triangulated dual-diskoids with boundary ~λ
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• components of Poly(~λ)

Fontaine, Kamnitzer, Kuperberg also studied the relation between the non-
elliptic web basis and the Satake basis given by the components of Poly(~λ).
They showed that for each invariant space the transition matrix between
the bases is unitriangular. To briefly recall, the geometric Satake correspon-
dence of Lusztig [Lus83], Ginzburg [Gin95], Beilinson–Drinfeld [BD96], and
Mirković-Vilonen [MV07] describes the representation theory of G in terms of
the affine Grassmannian GrGL of the Langlands dual group GL (see §4 for
precise definitions). In the present case, G = SL3, G

L = PGL3, and GrGL =
PGL3(C((t)))/PGL3(C[[t]]). Note that, as a set, PGL3(C((t)))/PGL3(C[[t]])
is the set of homothety classes of lattices, equivalently the vertices of ∆2. Un-
der this correspondence, the invariant space Inv(Vλ1 ⊗ · · · ⊗Vλn) is isomorphic

to Htop(Poly(~λ)), the top Borel–Moore homology of the polygon configuration
space. The polygon space, also known as the Satake fiber, is a reducible vari-
ety whose top components in Borel–Moore homology form the Satake basis for
Inv(~λ).

The non-elliptic webs have the nice property that they are minimal with respect
to the number of interior vertices. In higher rank, there is no known method
for generating basis webs that is preserved under rotation and the resulting
webs minimal under some natural ordering. However, there are known ways
for generating bases, as given in [Fon12] and [CKM14] (see also [Wes12] and
[Hag18]). A better understanding of the connection to convexity may shed
light on good sets of bases in higher rank, which was one of the motivations for
establishing this interpretation in rank 2.

Part of the content of the main theorem is that conv(P ) contains a triangula-
tion of P at all. In fact, already in rank 3 there are generic polygons P such
that conv(P ) is trivial in the sense that conv(P ) = P . Hence, the subcom-
plex induced by conv(P ) does not contain a triangulation of P . Such polygon
configurations appear to be related to Morrison’s Kekulé relations [Mor07].

We remark that the propositions in §5 leading up to the proof of the main theo-
rem provide a growth algorithm that, given a row-strict semistandard rectangu-
lar tableau as input, produces a non-elliptic web. It follows from the geometric
results that this algorithm intertwines Schützenberger promotion on tableaux
and rotation of webs. A growth algorithm yielding non-elliptic webs was also
given by Kuperberg and Khovanov in [KK99]. That promotion on tableaux
corresponds to rotation of webs under the Khovanov–Kuperberg algorithm was
shown in [PPR09, Thm 2.5].

Finally, we mention in passing that the geometry of point configurations in
affine buildings is also related to higher laminations [FG06, Le16]. In [Le17],
Le described higher laminations as positive configurations of points and in-
terpreted the duality pairing of Fock–Goncharov in terms of length-minimal
weighted networks. See [Le16, Le17, LO17].

The paper is organized as follows. In §2 we define non-elliptic webs and tri-
angulated dual diskoids. In §3 we define the affine building, the convex sets,
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(a) Generators for the sl3 spider.
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(b) Relations for the sl3 spider.

Figure 1: Kuperberg’s presentation of the sl3 spider.

and prove a property of conv in this rank-2 setting. In §4 we define the
polygon configuration space of points in the building and recall the result in
[FK14, Akh17] that describes the components in terms of cylindrical growth
diagrams. In §5 we give a proof of the main theorem using the geometry of the
building, together with growth diagrams. It is the most involved section.
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2 A2 Webs

The A2 webs are defined as follows in [Kup96].

Definition 1. A web is a planar directed graph embedded in a disk (up to
isotopy) with no multiple edges such that

1. each interior vertex is trivalent with all adjacent edges either pointing
towards the vertex or away from the vertex

2. each vertex on the boundary of the disk is univalent.

A web is called non-elliptic if every internal face contains at least 6 sides.

Fix a sequence of fundamental weights ~λ = (λ1, . . . , λn). One can view the
spider category of sl3 as being generated by two types of trivalent vertices and
a directed strand, as shown in Figure 1a. It is a fact that any invariant vector
in the tensor product representation

Vλ1 ⊗ · · · ⊗ Vλn
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Figure 2: A non-elliptic web of type (1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2) and its trian-
gulated dual diskoid. The web has one interior face.

can be interpreted as a linear combination of webs with ith boundary vertex
incident to an edge pointing away from the boundary if λi = ω1 and towards
the boundary if λi = ω2. We say that the boundary or type of the web is ~λ. Any
web can be reduced to a linear combination of non-elliptic webs by applying
the reduction relations shown in Figure 1b. Hence, the non-elliptic webs with
boundary ~λ span the invariant space Inv(~λ) = Inv(Vλ1 ⊗· · ·⊗Vλn). Kuperberg

[Kup96] showed that the number of non-elliptic webs is equal to dim
(

Inv(~λ)
)

,

so they form a basis for the invariant space.

As mentioned in the introduction, there is a dual picture to webs, that of a
diskoid, as defined in [FKK13]. It is the graphical dual of a web considered
as a planar graph. More precisely, given a web, the dual graph has a vertex
for each connected component of the disk. Connect vertices corresponding to
neighboring components with a directed edge such that the direction is given by
rotating counterclockwise the direction of the corresponding web edge. A web
with n external vertices partitions the boundary of the disk into n arcs. Hence,
the result of the dualizing procedure can be thought of as a triangulated n-gon
with directed edges. Note that some of the n-gon vertices may be identified
if their corresponding arcs are contained in the same connected component of
the disk, resulting in a triangulated diskoid. See the example in Figure 2. A
diskoid is CAT(0) if every interior vertex has degree at least 6. Non-elliptic
webs correspond precisely to CAT(0) diskoids.

Consider a path from vertex x to vertex y in a diskoid that agrees with the
orientation on a of its edges and disagrees on b of its edges. The dominant-
weight-valued length of this path from x to y is defined to be aω1+ bω2. Paths
in the dual diskoid are dual to cut paths in the corresponding web as defined
in [Kup96].

3 The Affine Building

3.1 Definition of the Affine Building

Let ∆m denote the affine building of type Am. It is an infinite simplicial
complex of dimension m, which we now define (our reference is [Ron09, §9.2]).
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Consider the field of Laurent series K = C((t)). Let U = Km+1 be an (m+1)-
dimensional vector space over K. The field K has a discrete valuation with
uniformizer t. Its discrete valuation ring is the ring of power series O = C[[t]].
An O-lattice L is a finitely generated O-submodule of U such that the K-
span of L generates all of U . Equivalently, L is an O-lattice if it is closed under
multiplication by t, L is contained in t−kOm+1 for some large k, and L contains
tkOm+1 for some large k. Here Om+1 = spanO(e1, . . . , em+1) is the base lattice
where e1, . . . , em+1 is a basis of Km+1. Two lattices L,L′ are homothetic, or
equivalent, if L′ = tkL for some integer k. Let [L] denote the homothety class
of the lattice L.
The vertices of ∆m are the homothety classes of lattices. The edges are un-
ordered pairs of classes (x, y) such that for any lattice L in the class of x, there
exists a lattice L′ in the class of y such that tL ⊂ L′ ⊂ L. Then ∆m is the flag
complex defined on this 1-skeleton - that is, a set of vertices x1, . . . , xk+1 forms
a k-simplex if the xi are pairwise adjacent. For any simplex (x1, . . . , xk+1) one
can always find representatives Li of the xi such that

tL1 ⊂ Lk+1 ⊂ Lk ⊂ · · · ⊂ L2 ⊂ L1.

Note that L1/tL1 is a C-vector space of dimension m+ 1 containing the sub-
spaces Li/tL1. Hence the maximal simplices have m + 1 vertices, so ∆m is
m-dimensional.
There is a more axiomatic description of ∆m as follows (see [AB08, §4.1]).
The affine building ∆m is a simplicial complex that is a union of subcomplexes
called apartments satisfying the following.

• Each apartment is the affine Coxeter complex of type Am.

• For any two simplices σ, τ ∈ ∆m there exists an apartment containing
both.

• If two apartments contain a common simplex, then there is a simplicial
isomorphism between the two apartments that fixes all common points.

We will only be concerned with ∆2. In this case, each apartment is the
Euclidean plane triangulated by equilateral triangles, the vertices of which
form the SL3 integral weight lattice. Recall that the weight lattice of SL3

is Z
3/(1, 1, 1) (see Figure 3). A choice of basis v1, v2, v3 for K3 determines

an apartment whose vertices are precisely the classes corresponding to lattices
of the form spanO (t−µ1v1, t

−µ2v2, t
−µ3v3) where µ1, µ2, µ3 are integers (and

(µ1, µ2, µ3) can be thought of as an SL3-weight).
There is a dominant-weight-valued metric on the vertices of the building de-
fined as follows. Any two vertices x, y in ∆2 are contained in a common
apartment by the second bullet point above. Hence, we can choose a basis
v1, v2, v3 for K3 such that x is the class of spanO (v1, v2, v3) and y is the class
of spanO (t−µ1v1, t

−µ2v2, t
−µ3v3) for integers µ1 ≥ µ2 ≥ µ3. In other words,

µ = (µ1, µ2, µ3) is a dominant weight. Define the distance between x and y to
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minconv([L], [L′])

maxconv([L], [L′])[L]

[L′]

ω1-steps ω2-steps

Figure 3: A portion of the A2 weight lattice - a single apartment in ∆2.
The combinatorial geodesics forming a parallelogram between two vertices are
shown in bold. Arrows are depicted along the two geodesics consisting of ver-
tices in minconv and maxconv.

be d(x, y) = µ. It is well defined, in the sense that if w1, w2, w3 is any other ba-
sis such that x = spanO (w1, w2, w3) and y = spanO

(

t−λ1w1, t
−λ2w2, t

−λ3w3

)

for which λ1 ≥ λ2 ≥ λ3, then λ = µ. There is the usual partial order on
dominant weights, so that λ ≥ µ if λ−µ is a non-negative integer combination
of simple roots.

A combinatorial geodesic between x and y will mean any minimal path be-
tween x and y along the edges of ∆2. It is a fact that any apartment containing
both x and y also contains every combinatorial geodesic between x and y. In
any such apartment, the set of combinatorial geodesics span a parallelogram
(see Figure 3).

Although we will not need it, note that there is also a locally Euclidean distance
on ∆2 defined by taking the usual Euclidean distance in any apartment con-
taining two points p, q of the building. This makes the building into a CAT(0)
space [BT72]. The local Euclidean geodesic is the usual Euclidean line segment
passing through the parallelogram of combinatorial geodesics. See [AB08, §11,
12] for more details on this point of view.

Recall that the fundamental weights are ω1 = (1, 0, 0) and ω2 = (1, 1, 0).
A directed edge from x to y will be called an ω1-step (resp. ω2-step) if
d(x, y) = ω1 (resp. ω2). Note that d(x, y) = ω1 if and only if d(y, x) = ω2.
More generally, d(y, x) = d(x, y)∗ where the dual of a dominant weight λ is
λ∗ = (−λ3,−λ2,−λ1). For a dominant weight λ = aω1 + bω2, let |λ| = a + b
denote the number of steps in any combinatorial geodesic. This is the minimum
number of steps in a path from [L] to [L′] if d([L], [L′]) = λ.

We will often use the following fact. Given three distinct vertices x, y, z in the
building such that d(x, y) = ω1 and d = (y, z) = ω2 there exists a unique vertex
adjacent to all three x, y, z (likewise if d(x, y) = ω2 and d = (y, z) = ω1).
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3.2 Convex Sets

We now define convex sets in the affine building. See [JSY07, Zha18] for an
exposition of the following definitions, as well as their connection to tropical
convexity. The tropical geometry point of view is not used in the present paper.
There are two dual notions of convexity. For two lattices L,L′ their intersection
L∩L′ is again a lattice. Likewise, their sum L+L′ is a lattice. A set of lattice
classes is min-convex (resp. max-convex ) if it closed under taking intersections
(resp. sums) of a finite subset of lattice representatives. That is, a set X of
lattice classes is min-convex if for any finite set of lattice classes [L1], . . . , [Lk]
in X , the class [L1 ∩ · · · ∩ Lk] is in X . The min and max terminology comes
from the interpretation of the affine building in terms of additive norms on K3,
as mentioned in [JSY07, §2].

Definition 2. • Let minconv([L1], . . . , [Lk]) denote the min-convex hull
of [L1], . . . , [Lk]. It is the smallest min-convex set containing the lattice
classes [L1], . . . , [Lk].

• Let maxconv([L1], . . . , [Lk]) denote max-convex hull of [L1], . . . , [Lk].

• Let conv([L1], . . . , [Lk]) denote the intersection
minconv([L1], . . . , [Lk]) ∩ maxconv([L1], . . . , [Lk]) of the two convex
sets.

The min-convex hull of a finite number of lattice classes is finite, a result
attributed to Faltings [Fal01] in [KT06]. The following lemma and proof of the
following proposition appears in [Zha18, 2.11, 2.12].

Lemma 3. Let [L1], . . . , [Lk] be a collection of lattice classes. Then

minconv([L1], . . . , [Lk]) =
⋃

[L]∈minconv([L2],...,[Lk])

minconv([L1], [L]).

Proposition 4. Let [L1], . . . , [Lk] be lattice classes representing vertices in
∆m. The sets minconv([L1], . . . , [Lk]) and maxconv([L1], . . . , [Lk]) are finite.

Proof. For two lattices L1, L2 the set minconv([L1], [L2]) consists of classes
with representatives of the form L1 ∩ taL2. For large enough a we have L1 ⊇
taL2 and L1 ⊆ t−aL2, so minconv([L1], [L2]) is finite. The proposition follows
by induction together with the previous lemma.

Restrict to ∆2. Then minconv([L], [L′]) is the set of vertices on the combi-
natorial geodesic from [L] to [L′] consisting of ω2 steps followed by ω1 steps.
This path forms the upper boundary of the parallelogram in Figure 3. It is the
combinatorial geodesic from [L′] to [L] that also first takes ω2 steps followed
by ω1 steps, since ω∗

1 = ω2.
Similarly, maxconv([L], [L′]) is the set of vertices on the combinatorial
geodesic from [L] to [L′] (or from [L′] to [L]) consisting of ω1 steps followed
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by ω2 steps. It forms the lower boundary of the parallelogram in Figure 3.
Note that minconv([L], [L′]) and maxconv([L], [L′]) are equal if d([L], [L′])
is a multiple of ω1 or ω2. If this is not the case, then the term elbow ver-
tex will mean the terminal vertex of the last ω2 step (resp. ω1) along the
minconv([L], [L′]) geodesic (resp. maxconv([L], [L′])).

3.3 A Property of conv for Paths

Since we will be interested in paths in the affine building, and more specifically
polygons, we will need the following lemma and proposition.

Lemma 5. If P = {[L1], . . . , [Ln]} is a path in ∆2, then

minconv(P ) = ∪i6=j minconv([Li], [Lj]),

maxconv(P ) = ∪i6=j maxconv([Li], [Lj]).

Proof. Induct on the length of the path n. The base case n = 2 is trivial, so
suppose that n > 2 and that the result holds for paths of length less than n.
By induction minconv([L1], . . . , [Ln−1]) = ∪1≤i<j≤n−1 minconv([Li], [Lj]).
Then by Lemma 3

minconv([L1], . . . , [Ln]) =
⋃

[K]∈minconv([L1],...,[Ln−1])

minconv([K], [Ln])

=
⋃

[K]∈
⋃

minconv([Li],[Lj])

minconv([K], [Ln]).

=
⋃

1≤i<j≤n−1

minconv([Li], [Lj ], [Ln])

If i 6= 1, then minconv([Li], [Lj], [Ln]) is contained in

minconv([L2], . . . , [Ln]) =
⋃

2≤l<k≤n

minconv([Ll], [Lk])

where the equality is by induction. So it remains to show that for any fixed j
that minconv([L1], [Lj], [Ln]) is contained in ∪l 6=k minconv([Ll], [Lk]).
Let [L] be an element of minconv([L1], [Lj ], [Ln]), so that there are integers a
and b such that [L] = [L1∩ taLj ∩ tbLn]. Consider the set minconv([L1], [Ln])
as a path in the building. Then the vertex [L] lies on a pathminconv([K], [Lj])
for some [K] ∈ minconv([L1], [Ln]).
Consider the two 1-simplices ([L1], [L2]) and ([Ln], [Ln−1]), and let A be
an apartment containing both. Then A contains all of the combinatorial
geodesics between [L1] and [Ln], and hence also contains minconv([L1], [Ln]).
Let v1, v2, v3 be a basis defining A such that L1 = spanO(v1, v2, v3) and
Ln = spanO(t

−xv1, t
−yv2, v3) for integers x ≥ y ≥ 0. Then the path

minconv([L1], [Ln]) from [L1] to [Ln] is a sequence of y many ω2 steps fol-
lowed by x− y many ω1 steps.
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There are six possible configurations for [L2] and six for [Ln−1] in apartment
A relative to the path minconv([L1], [Ln]), as depicted in Figure 4. Note that
if [K] is contained in minconv([L2], [Ln]) (resp. minconv([L1], [Ln−1])), then
[L] is in minconv([L2], [Lj], [Ln]) (resp. minconv([L1], [Lj ], [Ln−1])), and the
result follows by induction.

If y = 0, then [K] is contained in minconv([L2], [Ln]) for any choice of [L2].
Similarly, if x− y = 0, then [K] is contained in minconv([L1], [Ln−1]). Hence,
we may assume that both y 6= 0 and x− y 6= 0.

For [K] to not be contained in minconv([L2], [Ln]) nor minconv([L1], [Ln−1])
we must have that [K] is the elbow vertex spanO (t−yv1, t

−yv2, v3) and [L2]
(resp. [Ln−1]) is one of spanO

(

t−1v1, v2, v3
)

or spanO
(

t−1v1, v2, t
−1v3

)

(resp.

spanO
(

t−x+1v1, t
−y+1v2, v3

)

or spanO
(

t−xv1t
−y+1, v2, v3

)

). Let a (resp. b)
denote the vertex adjacent to [K] that is on the geodesic from [K] to [L1]
(resp. [Ln]). Let c denote the vertex that is simultaneously adjacent to all
three [K], a, and b. See Figure 4.

Suppose that d([Lj ], [K]) = sω1 + tω2 for nonnegative integers s and t, so that
minconv([Lj], [K]) is a path from [Lj ] to [K] consisting of t many ω2 steps
followed by s many ω1 steps. Suppose that s = 0. Let e = (d, [K]) be the
last edge of the path minconv([Lj ], [K]), which is an ω2 step into [K]. If
d = a, then all of minconv([Lj], [K]) is contained in minconv([Lj ], [Ln]), and
in particular [L] ∈ minconv([Lj ], [Ln]) so the result follows. If d 6= a, then the
edges (d, [K]) and (a, [K]) can be placed in a common apartment from which
it can be seen that minconv([Lj ], [L1]) consists of the ω2 steps from [Lj] to
[K] followed by the ω1 steps from [K] to [L1]. Hence, minconv([Lj ], [K]), and
in particular [L], is contained in minconv([Lj ], [L1]).

Now suppose that s 6= 0, so that the final edge e = (d, [K]) of
minconv([Lj], [K]) is an ω1 step into the vertex [K]. Place e and (a, [K])
into a common apartment. If d and a are not adjacent vertices in the building,
then the geodesic from d to [L1] consists of ω1 steps, so minconv([Lj ], [K]) is
contained in minconv([Lj ], [L1]) and the result follows. Now suppose that d
and a are adjacent in the building. Suppose that d = c. Note that c is contained
in minconv([L2], [Ln]). Hence, [L] is contained in minconv([L2], [Lj ], [Ln]),
so the result follows by induction. If d 6= c, then the geodesic from d to [Ln]
contains the geodesic from [K] to [Ln], so minconv([Lj ], [K]) is contained in
minconv([Lj], [Ln]).

Suppose that d(v, v′) = sω1 + tω2 for two vertices v, v′ in the building and
nonnegative integers s and t. Then s and t are both nonzero if and only if
conv(v, v′) = {v, v′}. In this case, we say that conv(v, v′) is trivial. If s = 0 or
t = 0, then conv(v, v′) = minconv(v, v′) = maxconv(v, v′) is a straight-path
geodesic, in which case the parallelogram of geodesics is simply a line segment.
For a path P in the building the following proposition says that every vertex
in conv(P ) lies on a straight-path geodesic between two vertices of P .

Documenta Mathematica 25 (2020) 2413–2443



2424 T. Akhmejanov

[L2]

[L2]

[Ln−1] [Ln−1]
a

[K] b

c

Figure 4: An apartment containing the path minconv ([L1], [Ln]) and the 1-
simplices ([L1], [L2]) and ([Ln−1], [Ln]).

Proposition 6. If P = {[L1], . . . , [Ln]} is a path in ∆2, then

conv(P ) = ∪i6=j conv([Li], [Lj ]).

Proof. Suppose that [L] is an element of conv(P ), so that by Lemma 5 there are
indices i < j and k < l and integers x, y such that [L] = [Li∩txLj] = [Lk+tyLl].
As in the previous lemma, consider an apartment containing the 1-simplices
([Li], [Li+1]) and ([Lj], [Lj−1]) and the path minconv([Li], [Lj ]). If [L] is con-
tained in some minconv([Ls], [Lt]) that is a straight-path geodesic, then the
result follows, so suppose that minconv([Li], [Lj ]) has an elbow vertex [K]. If
[L] is not equal to [K], then [L] is contained in one of minconv([Li], [Lj−1])
or minconv([Li+1], [Lj]). By walking the i and j vertices towards each other,
since j − i bounds the number of steps in minconv([Li], [Lj ]), there are two
indices i′, j′ such that either minconv([Li′ ], [Lj′ ]) is a straight-path geodesic,
or that [L] is the elbow vertex. Rename i and j to be these indices. Likewise,
assume that [L] is the elbow vertex in maxconv([Lk], [Ll]).

Let a (resp. b) be the vertex adjacent to [L] on the geodesic from [Li] (resp.
[Lj ]) to [L]. Similarly, let c (resp. d) be the vertex adjacent to [L] on
the geodesic from [Lk] (resp. [Ll]) to [L]. If c is not adjacent to a, then
minconv([Lk], [Li]) is a straight-path geodesic passing through [L] consist-
ing of ω1 steps from [Lk] to [Li]. Likewise, if d is not adjacent to a, then
minconv([Ll], [Li]) is a straight-path geodesic passing through [L]. If both c
and d are adjacent to a, then they can’t both be adjacent to b. Say c is not
adjacent to b, in which case minconv([Lk], [Lj]) is a straight-path geodesic
passing through [L], consisting of ω1 steps from [Lk] to [Lj ].

4 Growth Diagrams and Polygon Configurations

In this section we define generic polygons in the affine building. Although we’re
interested in m = 2, we’ll state everything for general m.
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4.1 The Polygon Space

As mentioned in the introduction, the invariant space Inv(Vλ1 ⊗ · · · ⊗ Vλn)
has an interpretation in terms of the geometric Satake correspondence. The
geometric Satake correspondence describes the representation theory of G in
terms of perverse sheaves on the affine Grassmannian GrGL of the Langlands
dual group GL. The affine Grassmannian is an inductive limit of varieties and
can be identified with the quotient GrGL = GL(K)/GL(O).
In the present case, G = SLm+1, G

L = PGLm+1, and the affine Grassmannian

GrPGLm+1
= PGLm+1(K)/PGLm+1(O)

can be identified with the set of lattice classes as follows. Let e1, . . . , em+1 be
a basis of Km+1. Then PGLm+1(K) acts transitively on lattice classes, and
PGLm+1(O) stabilizes the class of the base lattice L0 = spanO(e1, . . . , em+1).
Hence, the affine Grassmannian can be thought of as the vertices of the build-
ing ∆m.
For a sequence of fundamental weights ~λ = (λ1, . . . , λn) define the polygon
configuration space as follows. Here L0 denotes the base lattice.

Poly(~λ) =

{

([L1] = [Ln+1], [L2], . . . , [Ln]) ∈ GrnPGLm+1
:
[L1] = [L0],

d([Li], [Li+1]) = λi

}

This forms an equidimensional, reducible variety, as shown by Haines in [Hai03,
Hai06]. It is also known as the Satake fiber. As a corollary of the geometric

Satake correspondence, the number of irreducible components of Poly(~λ) is

equal to the dimension of InvSLm+1
(~λ). We state this result here. We will

recall a combinatorial description of the components in terms of distances in
the next section. See [HS15, §4.3] for a proof of the following theorem.

Theorem 7 ([Lus83, Gin95, BD96, MV07]). Under the geometric Satake cor-
respondence, there is an isomorphism

(Vλ1 ⊗ · · · ⊗ Vλn)G
L
∼= Htop(Poly(~λ))

where Htop(Poly(~λ)) is the top Borel–Moore homology of Poly(~λ). Hence, the

set of top components of Poly(~λ) give a basis for (Vλ1 ⊗ · · ·Vλn)
G
.

4.2 The Growth Diagram Associated to a Generic Polygon

The main combinatorial tool that we will use in the proofs is that of growth
diagrams. In what follows we will identify partitions with their Young diagrams.
To define cylindrical growth diagrams consider the following staircase-shaped
set of lattice points indexed by pairs of integers (i, j). Here we consider (i, j)
to be the lattice point in the ith row and jth column with indices increasing
down and to the right as in matrix notation.

Stn = {(i, j) ∈ Z
2 | 1 ≤ i ≤ n+ 1, i ≤ j ≤ i+ n}
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Definition 8. Fix a rectangular partition π = (k, . . . , k) with m+ 1 rows. A
cylindrical growth diagram for SLm+1 of shape π is an assignment of partitions
γi,j , one for each (i, j) in Stn, such that

• the skew shapes of neighboring partitions γi,j/γi+1,j and γi,j/γi,j−1 are
vertical strips,

• γi,i is the empty partition for all i,

• γi,n+i = π for all i,

• and for each unit square the following local condition is satisfied.

γi+1,j+1 = sort(γi+1,j + γi,j+1 − γi,j) (1)

The type of a cylindrical growth diagram is (γ1,2, γ2,3, . . . , γn,n+1).

These diagrams were originally defined in [Spe14] and [Whi18], and studied in
the GLm+1 case in [Akh17]. See Example 12 below. Although not immediately
obvious from the definition, cylindrical growth diagrams are periodic in the
sense that γ1,j = γ1+n,j+n. As such, it is often convenient to extend the
diagram to an infinite staircase of width n where the index i can be arbitrary, for
fixed i the index j satisfies i ≤ j ≤ i+n, and the partition labels are extended
periodically γi,j = γi+n,j+n. If the partitions γi,i, . . . , γi,i+n along a row are
interpreted as row-strict semistandard tableaux, then the local condition is the
Bender–Knuth move, and successive rows are given by the promotion operator
on row-strict semistandard tableaux.
Note that the local condition can be used to fill in a partially labelled
growth diagram from the northwest to the southeast. In particular, any
row determines the entire diagram (using the periodicity property alluded
to). The southeastern vertex label γi+1,j+1 of a unit square is determined
by the other three labels. It is convenient to write the local condition as
γi+1,j+1 = sort(γi,j+1 − (γi,j − γi+1,j)), which can be interpreted as follows.
The partitions γi,j , γi+1,j differ by 1 in some subset of positions X . Subtract 1
from γi,j+1 in the same positions X . This may not be a dominant weight, so
sort it to make it dominant.
In what follows we will identify dominant SLm+1-weights with equivalence
classes of partitions containing at most m+ 1 parts. Since SLm+1-weights are
defined up to the all-ones vector (1, . . . , 1), partitions differing by a column of
height m+ 1 correspond to the same SLm+1-weight.
The following result relates the combinatorics of growth diagrams to the com-
ponents of Poly(~λ). It is implicit in the work of Fontaine and Kamnitzer [FK14]
and explained explicitly in the case of GLm+1 in [Akh17].

Theorem 9 ([FK14, Akh17]). Each component of Poly(~λ) contains an open
dense set of points P = ([L1], . . . , [Ln]) such that the distances d([Li], [Lj ]) do
not depend on P . There is a unique choice of representative partitions γi,j for
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the d([Li], [Lj]) such that they form a cylindrical growth diagram of type ~λ (here
the i, j indices in d([Li], [Lj]) should be taken modulo n). Furthermore, this is

a bijection between the components of Poly(~λ) and cylindrical growth diagrams

of type ~λ.

Let us now restrict to m = 2. For a dominant weight λ = aω1 + bω2 let
|λ| = a+b, and for a partition γ representing λ define |γ| = |λ|. If λ is a weight
and γ = (a, b, c) is a partition, we will often abuse notation and write λ+ γ to
mean the corresponding weight λ + (a, b, c). Likewise although ω1 and ω2 are
weights, we will often also think of them as the partitions (1, 0, 0) and (1, 1, 0).
Partitions should be thought of as specific representatives for weights, so that
one gets a growth diagram. We will also use ω3 to denote the partition (1, 1, 1),
which is a representative for the zero weight.

Definition 10. We will say that a polygon P = ([L1], . . . , [Ln]) in ∆2 is
generic if it lies in one of the open dense sets of Theorem 9. Equivalently, the
distances d([Li], [Lj]) form a cylindrical growth diagram (for the unique choice
of partition representatives γi,j).

Note that since d([Lj ], [Li]) = d([Li], [Lj ])
∗, any growth diagram is determined

by the triangle of partitions γi,j for indices 1 ≤ i ≤ n + 1 and i ≤ j ≤
n+1. In terms of partitions, this means that γj,i+n = γc

i,j , where γ
c
i,j is gotten

by rotating γi,j by 180 degrees, placing it in the bottom right corner of the
full rectangular Young diagram, and taking its complement in the rectangular
Young diagram.
For two adjacent entries of a growth diagram, define dif(γi,j , γi+1,j) to be the
indices of the rows in which the partitions differ. Hence it is a set of size 1
or 2. This set can be seen as labelling the edge between the vertices (i, j) and
(i+1, j) of the growth diagram, and likewise for the edge between vertices (i, j)
and (i, j + 1). We will need the following observation about growth diagrams.
Define the orders {1} < {2} < {3} and {1, 2} < {1, 3} < {2, 3} on size-1 and
size-2 subsets of {1, 2, 3} respectively.

Proposition 11. Let {γi,j}(i,j)∈Stn be a cylindrical growth diagram.

1. Suppose that γi,i+1 = ω1. Then

• dif(γi,i+1, γi+1,i+1) = {1},

• dif(γi,i+n, γi+1,i+n) = {3}, and

• dif(γi,j , γi+1,j) is a set of size 1 for all j and increases monotonically
from 1 to 3 as j increases from i+ 1 to i+ n.

2. Suppose that γi,i+1 = ω2. Then

• dif(γi,i+1, γi+1,i+1) = {1, 2},

• dif(γi,i+n, γi+1,i+n) = {2, 3}, and
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• dif(γi,j , γi+1,j) is a set of size 2 for all j and increases monotonically
from {1, 2} to {2, 3} as j increases from i+ 1 to i+ n.

Proof. We will prove part (a) with part (b) being similar. The first bullet point
follows since γi,i+1 = ω1 and γi+1,i+1 = ∅. For simplicity assume that i = 1.
The local condition can be written as γ2,j+1 = sort (γ1,j+1 − (γ1,j − γ2,j)). This
can be interpreted as subtracting one from γ1,j+1 in position dif(γ1,j , γ2,j) and
sorting to get γ2,j+1. Then dif(γ1,j+1, γ2,j+1) must also have size 1. The result-
ing index in dif(γ1,j+1, γ2,j+1) must be equal to or larger than dif(γ1,j , γ2,j).
This establishes the third bullet point. The second bullet point follows from
the third and because γ1,n+1 is a rectangle.

Example 12. Before beginning the proofs in the next section, we give an ex-
ample of a generic polygon. Consider the following cylindrical growth diagram
of type (ω1, ω2, ω1, ω2, ω1, ω2, ω1, ω2) and n = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 ∅

2 ∅

3 ∅

4 ∅

5 ∅

6 ∅

7 ∅

8 ∅

9 ∅

Let e1, e2, e3 be the standard basis for K3. A generic polygon in the compo-
nent corresponding to this diagram consists of the following eight lattice classes
where we list an O-basis for each lattice representative. Note that the corre-
sponding vertices in the building are not contained in a common apartment.

L1 = e1, e2, e3 L5 = t−1e1, t
−2e2, e3

L2 = t−1e1, e2, e3 L6 = t−1e1, t
−2e2, t

−2e1 + t−1e3

L3 = t−2e1, t
−1e2, e3 L7 = t−1e1, t

−1e2, t
−2e1 + t−2e2 + t−1e3

L4 = t−2e1, t
−2e2, e3 L8 = t−1e1 + t−1e2, e2, e3

By direct computation maxconv(P ) contains the additional lattice classes cor-
responding to the lattices with O-bases (e1, t

−1e2, e3), (t
−2e1, t

−1e2, t
−2e2 +

t−1e3), and (t−1e1, t
−1e2, e3). The vertices in minconv(P ), other than

those in P , have lattice representatives (t−1e1, t
−1e2, t

−2e1 + t−1e3), (t
−2e1 +

t−2e2, t
−1e2, e3) and (t−1e1, t

−1e2, e3). Note that the lattice class with repre-
sentative (t−1e1, t

−1e2, e3) is contained in both. It is the middle vertex of the
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 ∅

2 ∅

3 ∅

4 ∅

5 ∅

6 ∅

7 ∅

8 ∅

9 ∅

10 ∅

11 ∅

Figure 5: A growth diagram for a polygon containing a U-turn. Partitions
representing distances involving [L2] are shown in red.

octagon in the triangulation of P given by conv(P ) shown below.

maxconv(P ) minconv(P ) conv(P )

[L1]

[L2]

[L3]

[L4]

[L5]

[L6]

[L7]

[L8]

5 Proof of the Main Theorem

The proof of the main theorem will be by induction on n, the size of the generic
polygon P in ∆2. The idea is to make local changes to P , while keeping track
of the set conv. Two of the local changes immediately decrease the number
of vertices, which occur in the following situations. We say that a polygon
in ∆2 has a U-turn configuration at three consecutive vertices [L1], [L2], [L3]
if [L1] = [L3]. We say that a polygon has a sharp-corner configuration at
three consecutive vertices [L1], [L2], [L3] if [L1] and [L3] are adjacent vertices
in ∆2. We collect in the following propositions the effects of these local changes.
Each proposition states that altering the polygon preserves the growth diagram
condition and that conv(P ) changes in an expected way.

Proposition 13. Let P be a generic polygon in ∆2. If P contains a U-turn

Documenta Mathematica 25 (2020) 2413–2443



2430 T. Akhmejanov

1 2 3 4 5 6 7 8 9 10 11 12 13
1 ∅

2 ∅

3 ∅

4 ∅

5 ∅

6 ∅

7 ∅

Figure 6: The growth diagram resulting from the diagram in Figure 5 with the
red distances removed and corresponding entries identified as in the proof of
Proposition 13.

at [L1], [L2], [L3], then the polygon with [L2] removed and [L1] identified with
[L3] is a generic polygon. Furthermore, conv(P ) = conv(P \ [L2]) ∪ {[L2]}.

Proof. Let γij be the partitions representing the pairwise distances d([Li], [Lj])
in the growth diagram for P . Suppose that γ12 = ω1, γ23 = ω2, and γ13 = ω3,
the other case being similar. See Figure 5 for an example of such a growth
diagram. We must show that removing the vertex [L2] and identifying [L1] with
[L3] yields a generic polygon - that the corresponding pairwise distances yield
a valid cylindrical growth diagram. Removing the vertex [L2] corresponds to
removing the row entries γ2,j and column entries γi,2 from the growth diagram.
Identifying the vertices [L1] and [L3] does not change any of the distances
d([Li], [Lj]). Since [L1] = [L3], we have d([L1], [Lj ]) = d([L3], [Lj ]) for all valid
j, so that as partitions γ1,j and γ3,j differ by a full column. More specifically,
γ1,j = γ3,j + (1, 1, 1) for all valid j. Similarly, γi,n+1 + (1, 1, 1) = γi,n+3 for all
valid i.
Consider the triangle of partitions γi,j for indices 3 ≤ i ≤ n + 1 and n + 3 ≤
j ≤ n+ i. Remove a full column (1, 1, 1) from each partition in this triangle to
get the partitions γ′

i,j . This allows us to merge the columns γi,n+1 = γ′
i,n+3.

Similarly, merge the first and third rows. See Figure 5 and the resulting diagram
in Figure 6. The new diagram satisfies the local condition in every unit square
because the unit square came from the original diagram, or it came from one
in the original diagram whose partitions all decreased by a full column.
Now we show that conv(P ) = conv(P \[L2])∪{[L2]}. Since dif(γ13, γ23) = {3},
Proposition 11 implies that dif(γ1,j , γ2,j) = {3} for all j ≥ 3. Hence, for all j we
have |γ2,j | = |γ1,j |+1. That is, for all j the vertex [L1] = [L3] is strictly closer to
[Lj ] than [L2]. Placing the edge ([L1], [L2]) in a common apartment with [Lj ],
we see that any nontrivial conv([L2], [Lj ]) is equal to conv([L1], [Lj])∪{[L2]}.
Together with Proposition 6 the result follows.
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Proposition 14. Let P be a generic polygon in ∆2. If P contains a sharp
corner at [L1], [L2], [L3], then P with [L2] removed and [L1] connected to [L3]
is a generic polygon. Furthermore, conv(P ) = conv(P \ [L2]) ∪ {[L2]}.

Proof. As in the previous proof, let γij be the partitions representing the pair-
wise distances d([Li], [Lj]) in the growth diagram for P . Since there is a sharp
corner, suppose that γ1,2 = ω1, γ2,3 = ω1, and γ1,3 = ω2. The other case with
γ1,2 = ω2, γ2,3 = ω2, and γ1,3 = ω1 is similar. See Figure 7 for an example of
a growth diagram for this setup. We must show that removing the entries cor-
responding to distances involving [L2] yields a valid growth diagram since the
distances d([Li], [Lj]) for i 6= 2 and j 6= 2 are not affected when [L2] is removed.
Unlike the previous proposition, since the rows and columns corresponding to
[L1] and [L3] are not identified, we must check that γ1,i and γ3,i differ in a
vertical strip and that the new unit squares satisfy the local condition.
The differences in the third column across the first three rows are
dif(γ1,3, γ2,3) = {2} and dif(γ2,3, γ3,3) = {1}. Let l be the smallest index
such that dif(γ1,l, γ2,l) = {3}. This is the smallest index such γ1,l = (a, b, b)
for integers a ≥ b ≥ 0. Similarly, define k to be the smallest index such that
dif(γ2,k, γ3,k) 6= {1}. This is the smallest index such that γ2,k = (c, c, d) for
some integers c ≥ d ≥ 0. Note that l ≤ k because γ1,j and γ2,j differ by a box
in the second row for j < l, so γ2,k cannot possibly be of the form (c, c, d).
Note that dif(γ2,k, γ3,k) = {2}, i.e. the differences dif(γ2,j , γ3,j) across the
second and third rows cannot switch directly from {1} to {3} as the column
index j increases. Such a switch would require γ2,j to be of the form (a, a, a)
for some j, which is impossible since dif(γ1,j , γ2,j) = {2} or {3} for all j > 2.
Hence, the smallest index j for which dif(γ2,j , γ3,j) = {3} is j = n + 2, the
index of the column containing the last non-empty entry of the second row.
Hence, there are 3 portions of the diagram to analyze if l 6= k and 2 otherwise
(see Figure 7).
In either case, for all j < l, γ1,j and γ3,j differ by a vertical strip of size two,
more specifically dif(γ1,i, γ3,i) = {1, 2}. Hence, removing the entries γ2,j from
the diagram for j < l yields a portion of a new diagram that satisfies the local
rule in each new unit square.
Suppose that l 6= k. Then for each j such that l ≤ j < k, dif(γ1,j , γ3,j) = {1, 3}.

l k
∅

1 2 2 2 2 3 3 3 3 3 3 3 3
∅

1 1 1 1 1 1 1 2 2 2 2 2 3
∅

Figure 7: First three rows of a growth diagram for a polygon that contains a
sharp corner. The column indices l and k from the proof of Proposition 14 are
indicated.
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∅

12 12 12 12 13 13 13 23 23 23 23 23
∅

Figure 8: The growth diagram from Figure 7 with distances corresponding to
[L2] removed.

Hence, the local condition is satisfied for unit squares γ1,j−1, γ1,j, γ3,j−1, γ3,j for
all j in the range l < j < k. We must also check the local condition for the unit
square involving the four entries γ1,l−1, γ1,l, γ3,l−1, γ3,l. As mentioned above,
γ1,l = (a, b, b) for integers a, b. The integers a, b are not equal because a = b
would imply l = k. The weight γ3,l is (a−1, b, b−1), which we show agrees with
the local condition. Subtracting one from the entries dif(γ1,l−1, γ3,l−1) = {1, 2}
of γ1,l yields the weight (a− 1, b− 1, b). According to the local condition, and
since a 6= b, this is then sorted to get γ3,l = (a− 1, b, b− 1) as desired.
Now consider the unit square involving γ1,k−1, γ1,k, γ3,k−1, γ3,k, still assuming
l 6= k. We have that dif(γ1,k−1, γ3,k−1) = {1, 3} and dif(γ1,k, γ3,k) = {2, 3}. As
previously mentioned γ2,k = (c, c, d) where c 6= d because dif(γ1,k, γ2,k) = {3}.
Then γ1,k = (c, c, d+1) and γ3,k = (c, c−1, d). According to the local condition,
subtracting 1 in entries 1 and 3 yields the weight (c − 1, c, d), which sorts to
(c, c− 1, d) as desired.
Now suppose that l = k. This is only possible if γ1,l = (a, a, a) for some integer
a. This forces γ1,l−1 to be (a, a, a − 1) (γ1,l−1 = (a, a − 1, a− 1) would imply
l < k), γ3,l−1 = (a− 1, a− 1, a− 1), and γ3,l = (a, a− 1, a− 1), which satisfy
the local rule with dif(γ1,l−1, γ3,l−1) = {1, 2} and dif(γ1,l, γ3,l) = {2, 3}.
For j ≥ k in either case of l 6= k and l = k, dif(γ1,i, γ3,i) = {2, 3} and the local
condition is satisfied for all unit squares involving γ1,j and γ3,j for j ≥ k.
To see that conv(P ) = conv(P \ [L2]) ∪ {L2}, consider first j < k. Since
dif(γ2,j , γ3,j) = {1} and the first two parts of γ2,j cannot be equal for all j < k,
|γ2,j | = |γ3,j | + 1 for all j < k. Hence, for any non-trivial conv([L2], [Lj]),
it holds that conv([L2], [Lj]) = conv([L3], [Lj ]) ∪ {[L2]}. Likewise, for
j ≥ k, dif(γ1,j , γ2,j) = {3}, so |γ2,j | = |γ1,j | + 1 and conv([L2], [Lj ]) =
conv([L1], [Lj]) ∪ {[L2]} for any non-trivial conv([L2], [Lj]).

The previous two propositions allow for the elimination of U-turn configura-
tions and sharp-corner configurations from polygons. We will say that three
consecutive vertices [L1], [L2], [L3] in a path or polygon form an elbow if they
are all distinct and d([L1], [L2]) 6= d([L2], [L3]). The following lemma is an
exercise.

Lemma 15. Let P be a polygon in ∆2 that does not have any U-turn
configurations nor any sharp-corner configurations. Then there is a se-
quence of consecutive vertices [L1], . . . , [La] of P such that [L1], [L2], [L3] and
[La−2], [La−1], [La] are both elbow configurations, and a is the smallest in-
dex such that d([Lj−1], [Lj]) = d([Lj ], [Lj+1]) for all 3 ≤ j ≤ a − 2 and
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|d([L1], [La])| = |d([L1], [La−1])|. The sequence of vertices [L1], . . . , [La] can
be put in a common apartment.

For example, if d([L1], [L2]) = ω1 and d([L2], [L3]) = ω2, then d([L1], [Lj ]) =
ω1 + (j − 2)ω2 for 2 ≤ j < a and d([L1], [La]) = (a− 2)ω2. See Figure 11. We
will call the path [L1], . . . , [La] a double-elbow configuration.

Proposition 16. Let P be a generic polygon in ∆2. Suppose P contains
a double-elbow configuration at [L1], . . . , [La]. Let [L′

2] be the unique vertex
adjacent to [L1], [L2], [L3]. Then the polygon P ′ = ([L1], [L

′
2], [L3], . . . , [Ln]) is

generic. Furthermore, conv(P ) = conv(P ′) ∪ {[L2]}.

Proof. Let γij be the partitions representing the pairwise distances d([Li], [Lj])
in the growth diagram for P . Since there is an elbow configuration starting at
[L1], suppose that γ1,2 = ω1, γ2,3 = ω2, and γ1,3 = ω1 + ω2. See Figure 9 for
an example of the first three rows of a growth diagram with this setup. The
other case is similar.
Let [L′

2] be the unique vertex adjacent to [L1], [L2] and [L3]. We must show that
replacing the partitions γ2,j and γi,2 with partitions representing d([L′

2], [Lj])
and d([Li], [L

′
2]) yields a valid growth diagram. Note that the only entry

that changes in the first row is γ1,2 = d([L1], [L2]) = ω1, which becomes
d([L1], [L

′
2]) = ω2, and this new first row determines the entire new growth

diagram. We will show that partitions for d([L′
2], [Lj ]) are precisely the entries

of the second row of this new diagram. In what follows, we interpret ω1, ω2

as both weights and the partitions (1, 0, 0), (1, 1, 0) respectively. It should be
clear from context which is meant.
Suppose that the double-elbow configuration consists of a vertices
[L1], [L2], [L3], . . . , [La], so that

γ1,j = ω1 + (j − 2)ω2 for 2 ≤ j < a, γ1,a = (a− 2)ω2

γ2,j = (j − 2)ω2 for 3 ≤ j < a, γ2,a = ω1 + (a− 3)ω2

γ3,j = (j − 3)ω2 for 4 ≤ j < a, γ3,a = ω1 + (a− 4)ω2

See Figure 9 for an example of the first three rows of a growth diagram with
a = 6.

A B C D E
a = 6 b = 9 c = 12 d = 13

∅

1 1 1 1 2 2 2 2 2 2 3 3 3 3
∅

12 12 12 12 12 12 13 13 13 13 23 23 23 23
∅

Figure 9: First three rows of a growth diagram containing a double-elbow
configuration. The column indices a, b, c, d from the proof of Proposition 16
are shown for this example.
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A B C D E
a = 6 b = 9 c = 12 d = 13

∅

12 12 12 12 12 12 12 12 12 12 13 23 23 23
∅

1 1 1 2 2 2 3 3 3 3 3 3 3 3
∅

Figure 10: Example from Figure 9 with [L2] replaced by [L′
2].

[L1] [L2]

[L3]

[L4]

[L5]

[L6]

Figure 11: A double-elbow configuration.

For j such that 3 ≤ j < a the distances involving [L′
2] are d(L′

2, Lj) = ω1 +
(j − 3)ω2. Replace γ2,j with γ′

2,j = ω1 + (j − 3)ω2 and γ1,2 with ω2. Then
dif(γ1,j , γ

′
2,j) = {1, 2} for all 3 ≤ j < a, so the local condition is satisfied in each

unit square across the first two rows of the new diagram. The local condition
across the second and third rows is also satisfied for all unit squares involving
indices 3 ≤ j < a because dif(γ′

2,j , γ3,j) = {1} for all such j. See Figure 10 for
the first three rows of the diagram corresponding to the diagram from Figure 9
with [L2] replaced by [L′

2].

Divide P into subpaths A, B, C, D, E, where part A consists of the initial
subset {[L1], . . . , [La−1]} of P . Note that a is the smallest index such that
dif(γ1,a, γ2,a) = {2}. Let b be the smallest index such that dif(γ2,b, γ3,b) 6=
{1, 2}. Let c be the smallest index such that dif(γ1,c, γ2,c) = {3}, and d the
smallest index such that dif(γ2,d, γ3,d) = {2, 3}. We claim that a < b < c ≤ d
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and set

A = {[L1], . . . , [La−1]}

B = {[La], . . . , [Lb−1]}

C = {[Lb], . . . , [Lc−1]}

D = {[Lc], . . . , [Ld−1]}

E = {[Ld], . . . , [Ln]}.

Since γ1,a = (a − 2)ω2, γ2,a = ω1 + (a − 3)ω2, and γ3,a = ω1 + (a − 4)ω2, it
follows that dif(γ1,a, γ2,a) = {2} and dif(γ2,a, γ3,a) = {1, 2}, so a is strictly
smaller than b. To see that b is strictly less than c note that c is the smallest
index such that γ1,c = (x, y, y) for integers x, y with x ≥ y ≥ 0. This implies
that γ1,(c−1) = (z, y, y− 1) for z = x or z = x− 1 (the latter is only possible if
x > y). Since dif(γ1,c−1, γ2,c−1) = {2}, we have γ2,(c−1) = (z, y−1, y−1). This
implies that dif(γ2,(c−1), γ3,(c−1)) cannot be {1, 2}, so b < c. Now consider j
such that a ≤ j < c, i.e. the indices j such that dif(γ1,j , γ2,j) = {2}. Since d is
the smallest index such that dif(γ2,j , γ3,j) = {2, 3}, this requires γ2,d = (x, x, y)
for some integers x ≥ y ≥ 0. But this is impossible for any j in the range
a ≤ j < c because dif(γ1,j , γ2,j) = {2}, so c ≤ d. Note it is possible that c = d.

For each region we will show two things: 1) the local condition holds and
2) conv(P ) changes as expected, i.e. conv([L′

2], [Lj]) ⊂ conv(P ) and
conv([L2], [Lj]) ⊂ conv(P ′) ∪ {[L2]}. Note that both hold for subpath A.

Subpath B.

Local Condition: Consider region B consisting of the vertices [Lj] such
that a ≤ j < b for which dif(γ1,j , γ2,j) = {2} and dif(γ2,j , γ3,j) = {1, 2}.
The difference dif(γ2,j , γ3,j) = {1, 2} implies γ2,j = γ3,j + ω2, and similarly
dif(γ1,j , γ2,j) = {2} implies that γ2,j = γ1,j − ω2 + ω1. In particular |γ2,j | =
|γ3,j |+ 1 and |γ2,j | = |γ1,j |.
Place the edge ([L1], [L2]) and [Lj ] in a common apartment A containing the
parallelogram of combinatorial geodesics from [L2] to [Lj] (see Figure 12). Since
[L3] is strictly closer to [Lj] than [L2] it lies on this parallelogram (one ω2 step
from [L2]). Since any apartment containing [L1] and [L3] must contain all
of their combinatorial geodesics, A contains [L′

2], which has to be the other
vertex adjacent to [L2] in the parallelogram of geodesics from [L2] to [Lj ].
This implies that d(L′

2, Lj) = γ2,j − ω1 = γ1,j − ω2 = γ3,j + ω2 − ω1. Let γ′
2,j

be the corresponding partitions. This means that dif(γ1,j , γ
′
2,j) = {1, 2} and

dif(γ′
2,j , γ3,j) = {2} for all a ≤ j < b. Hence, the local condition is satisfied for

each unit square γ1,j−1, γ1,j, γ2,j−1, γ2,j for a < j < b, and for each unit square
across the second row, γ2,j−1, γ2,j , γ3,j−1, γ3,j for a < j < b.

Now consider the unit squares across columns a− 1, a. Since γ1,a = (a− 2)ω2,
γ1,a−1 = ω1+(a−3)ω2, d([L

′
2], [La]) = (a−3)ω2, d([L

′
2], [La−1]) = ω1+(a−2)ω2

the local condition is satisfied. For the square across the next two rows,
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[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

Figure 12: The general configuration for [Lj] in subpath B in the proof of
Proposition 16.

γ3,a = ω1 + (a− 4)ω2, γ3,a−1 = (a− 4)ω2, so the local condition is satisfied.

Effects on conv: Note that for all a ≤ j < b, the distance d([L2], [Lj ]) is
never of the form kω1 or kω2 for any k, so conv([L2], [Lj]) = {[L2], [Lj]}. On
the other hand, d([L′

2], [Lj ]) is a multiple of ω2 only when i = a, in which case
the straight-path geodesic from [L1] to [La] contains the straight-path geodesic
from [L′

2] to [La]. Hence, conv([L1], [La]) = conv([L′
2], [La]) ∪ {[L1]}.

Subpath C.

Local Condition: Consider region C consisting of the vertices [Lj] such that
b ≤ j < c, in which case dif(γ1,j , γ2,j) = {2} and dif(γ2,j , γ3,j) = {1, 3}. In
particular, γ1,j = γ3,j + (1, 1, 1). These differences imply that d([L1], [Lj]) =
d([L3], [Lj ]) and

d([L2], [Lj ]) = d([L1], [Lj ])− ω2 + ω1

= d([L3], [Lj ])− ω2 + ω1.

Let [Lj] be any vertex for b ≤ j < c. In this case, it may not be possible to place
[Lj ] in a common apartment with all three of [L1], [L2], [L3] simultaneously.
However, this is possible when d([L2], [Lj ]) = kω1 for some k, as is the case
when i = b or i = c− 1.

Consider first i = b, so that d([L2], [Lb]) = kω1 for some k, and d([L1], [Lb]) =
d([L3], [Lb]) = (k − 1)ω1 + ω2. Let K be the vertex adjacent to [L2] on the
straight-path geodesic from [L2] to [Lb]. Since |γ1,b| = |γ2,b| = |γ3,b|, and [L1]
and [L3] are adjacent to [L2], we have that ([L1], [L2],K) and ([L3], [L2],K)
are a pair of 2-simplices in the building. The two triangles can be put in a
common apartment, along with the geodesic from [L2] to [Lb]. This implies
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[L1] [L2]

K = [L′
2] [L3]

[Lb]

[L1] [L2]

K = [L′
2] [L3]

[Lb]

[L1] [L2]

K = [L′
2] [L3]

[Lb]

[L1] [L2]

K = [L′
2] [L3]

[Lb]

[L1] [L2]

K = [L′
2] [L3]

[Lb]

Figure 13: The straight-path geodesic from [L2] to [Lb].

[L1] [L2]

K
[L3]

[Lj]

[L1] [L2]

K
[L3]

[Lj]

[L1] [L2]

K
[L3]

[Lj]

[L1] [L2]

K
[L3]

[Lj]

[L1] [L2]

K
[L3]

[Lj]

[L1] [L2]

K
[L3]

[Lj]

[L1] [L2]

K
[L3]

[Lj]

[L1] [L2]

K ′ [L3]

[Lj]

[L1] [L2]

K ′ [L3]

[Lj]

[L1] [L2]

K ′ [L3]

[Lj]

[L1] [L2]

K ′ [L3]

[Lj]

[L1] [L2]

K ′ [L3]

[Lj]

[L1] [L2]

K ′ [L3]

[Lj]

[L1] [L2]

K ′ [L3]

[Lj]

Figure 14: Left: an apartment containing the edge ([L2], [L3]) and [Lj ]. Right:
an apartment containing the edge ([L1], [L2]) and [Lj ].

that K = [L′
2] and d([L′

2], [Lb]) = (k − 1)ω1. See Figure 13. The same setup
occurs when i = c− 1.

Now suppose that b < j < c − 1. Choose an apartment containing the edge
([L2], [L3]) and [Lj ], so that it must also contain the parallelogram of geodesics
between [L3] and [Lj ]. Since γ2,j = γ3,j − ω2 + ω1, [L2] is also adjacent to
the vertex K on the parallelogram that is an ω2 step from [L3] towards [Lj ].
By choosing an apartment containing the edge ([L1], [L2]) and [Lj ], similar
reasoning shows that [L2] is adjacent to the vertex K ′ on the parallelogram
of geodesics from [L1] to [Lj] that is an ω2 step from [L1] towards [Lj]. See
Figure 14.

But then K and K ′ are both adjacent to [L2] in the parallelogram of geodesics
from [L2] to [Lj ] and both are an ω1 step from [L2] towards [Lj ], so K = K ′.
Since there is a unique vertex adjacent to all three of [L1], [L2], [L3], it fol-
lows that K = [L′

2]. Hence, [L′
2] is on a combinatorial geodesic from each

of [L1], [L2], [L3] to [Lj ], and more specifically d([L′
2], [Lj ]) = γ2,j − ω1 =
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[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

Figure 15: Two views of an apartment containing all four of [L1], [L2], [L
′
2], [L3]

with [Lj ] receding out of the plane of the apartment.

γ3,j − ω2 = γ1,j − ω2. See Figure 15 where all of the solid lines appear in
a common apartment, but cannot necessarily be placed in a common apart-
ment with the dashed portion. The dashed portions can be viewed as receding
away from the plane (i.e. the yellow line segment can be viewed as a spine with
three flaps attached to it).
Hence, dif(γ1,j , γ

′
2,j) = {1, 2} and dif(γ′

2,j , γ3,j) = {3} for all b ≤ j < c, so
the local condition holds for each of the unit squares across columns with
indices in the range b ≤ j < c. Now consider the unit squares across the
columns b − 1 and b. Since dif(γ1,b, γ

′
2,b) = {1, 2} = dif(γ1,b−1, γ

′
2,b−1), the

local condition holds for the unit square with weights γ1,b−1, γ1,b, γ
′
2,b−1, and

γ′
2,b. We have that γ2,b = (x, y, y) for integers x > y, so that γ′

2,b = (x− 1, y, y)
and γ3,b = (x− 1, y, y− 1). Recall that dif(γ′

2,b−1, γ3,b−1) = {2}. Subtracting 1
from the second entry of γ′

2,b and a sorting yields γ3,b as desired.

Effects on conv: Note that for any i such that b ≤ j < c either
conv([L2], [Lj]) and conv([L′

2], [Lj ]) are both trivial, or d([L2], [Lj]) = kω1

and d([L′
2], [Lj]) = (k − 1)ω1 for some k, in which case conv([L2], [Lj]) =

conv([L′
2], [Lj]) ∪ {[L2]}.

Subpath D. Consider the subpath D consisting of vertices [Lj ] such that
c ≤ j < d. This region can be empty if c = d, which can only happen if
γ1,c = (x, x, x) for some natural number x. If c < d, then this case is analogous
to the subpath B case with the roles of [L1] and [L3] interchanged. We leave
the analysis to the reader.
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[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

[L1] [L2]

[L′
2] [L3]

[Lj ]

Figure 16: Left: the configuration for subpath D. Right: the configuration for
subpath E.

Subpath E.

Local Condition: Consider the final subpath E that begins with parti-
tions γ1,d = (x, x, y), γ2,d = (x, x, y − 1), γ3,d = (x, x − 1, y − 1) for x ≥ y.
Then d([L1], [Ld]) = kω2, d([L2], [Ld]) = (k + 1)ω2, and d([L3], [Ld]) =
(k + 1)ω2 + ω1 for some k. For any j such that d ≤ j, we have d([L2], [Lj ]) =
d([L1], [Lj ])+ω2 and d([L3], [Lj ]) = d([L2], [Lj])+ω1. In this case, all five ver-
tices [L1], [L2], [L

′
2], [L3] and [Lj ] can be placed in a common apartment giving

the configuration on the right of Figure 16.
Then replacing [L2] by [L′

2] gives the distance d([L′
2], [Lj ]) = d([L2], [Lj ]) −

ω2 + ω1, which implies that dif(γ1,j , γ
′
2,j) = {2, 3} and dif(γ′

2,j , γ3,j) = {3}.
The local rule is satisfied across each unit square, including at index i = d.

Effects on conv: Note that conv([L2], [Lj ]) is nontrivial only for indices
j such that γ2,j = (k + 1)ω2 and γ1,j = kω2 for some k, in which case
conv([L2], [Lj]) = conv([L1], [Lj ]) ∪ {[L2]}. Similarly, conv([L′

2], [Lj ]) is non-
trivial only when d([L′

2], [Lj ]) = kω1 and d([L1], [Lj ]) = (k − 1)ω1 for some k,
in which case conv([L′

2], [Lj]) = conv([L1], [Lj]) ∪ {[L′
2]}.

Theorem 17. Let P be a generic polygon. Then conv(P ) is a CAT(0) trian-
gulation of P in the affine building.

Proof. Induct on n, the number of vertices in P . If P contains a U -turn at
vertex i, then the polygon P ′ with vertex i removed and the i − 1, i + 1
vertices identified is generic by Proposition 13. By induction conv(P ′) is
a CAT(0) triangulation of P ′ in the building. Adding [Li] back in gives
conv(P ) = conv(P ′) ∪ {Li} by the second part of Proposition 13, and is
a CAT(0) triangulation of P . If P contains a sharp corner at vertex i, then
similarly apply Proposition 14 to show that conv(P ) = conv(P ′)∪{Li}, which
is a CAT(0) triangulation of P in the building.
Now suppose that P has no U-turns and no sharp corners. By Lemma 15, P
must contain a double-elbow configuration of some length a, which we may
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assume occurs at [L1], [L2], [L3], . . . , [La]. Let [L
′
2] be the unique vertex in the

building other than [L2] that is adjacent to both [L1] and [L3]. Then by Propo-
sition 16 the polygon with [L2] replaced by [L′

2] is generic, but has the same
number of vertices. It now has a double-elbow configuration at [L′

2], . . . , [La].
After a−2 applications of Proposition 16, the new generic polygon has a sharp
corner at [L′

a−2], [L
′
a−1], [La]. Let P ′ be the generic polygon with this sharp

corner removed, so that by induction conv(P ′) is a CAT(0) triangulation of P ′.
Then conv(P ) = conv(P ′) ∪ {[L2], [L3], . . . , [La−1]} by repeated application
of Proposition 16.
We claim that the resulting set conv(P ) is a CAT(0) triangulation. If it were
not, then an exterior vertex of conv(P ′) became an interior vertex when passing
to conv(P ), whose link contains fewer than 6 edges. However, this is impossible
in the affine building, hence conv(P ) is a CAT(0) triangulation.

The proof of the main theorem now follows easily.

Theorem 18. Let P1, . . . , Pd be d generic polygons, one from each
of the components of the polygon space Poly(~λ). Then the duals of

conv(P1), . . . , conv(Pd) form the non-elliptic web basis for Inv(~λ).

Proof. Each conv(Pk) is a CAT(0) diskoid by the previous theorem, so cor-
responds to a non-elliptic web. By induction and similar arguments as in the
preceding propositions, one can show that conv(Pk) contains a combinatorial
geodesic between any pair of vertices. Since the Pk are contained in different
components of Poly(~λ), any two Pk differ in at least one distance d([Li], [Lj])
for some i, j. Hence the conv(Pk) are distinct.
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[MV07] Ivan Mirković and Kari Vilonen, Geometric Langlands duality and
representations of algebraic groups over commutative rings, Ann. of
Math. (2) 166 (2007), no. 1, 95–143.

[PPR09] T. Kyle Petersen, Pavlo Pylyavskyy, and Brendon Rhoades, Promo-
tion and cyclic sieving via webs, J. Algebraic Combin. 30 (2009),
no. 1, 19–41. MR 2519848

[Ron09] Mark Ronan, Lectures on buildings, University of Chicago Press,
Chicago, IL, 2009, Updated and revised. MR 2560094

[Spe14] David Speyer, Schubert problems with respect to osculating flags of
stable rational curves, Algebr. Geom. 1 (2014), no. 1, 14–45. MR
3234112

[Wes12] Bruce Westbury,Web bases for the general linear groups, J. Algebraic
Combin. 35 (2012), no. 1, 93–107. MR 2873098

[Whi18] Noah White, The monodromy of real Bethe vectors for the Gaudin
model, J. Comb. Algebra 2 (2018), no. 3, 259–300. MR 3845719

Documenta Mathematica 25 (2020) 2413–2443



Non-Elliptic Webs and Convex Sets 2443

[Zha18] Leon Zhang, Computing convex hulls in the affine building of sld,
2018. arXiv:1811.08884 [math.CO]

Tair Akhmejanov
Department of Mathematics
University of California, Davis
One Shields Ave
Davis, CA 95616
USA
tair@math.ucdavis.edu

Documenta Mathematica 25 (2020) 2413–2443



2444

Documenta Mathematica 25 (2020)


