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Abstract. Let F be a non-archimedean local field. In this paper we
explore genericity of irreducible smooth representations of GLn(F )
by restriction to a maximal compact subgroup K of GLn(F ). Let
(J, λ) be a Bushnell–Kutzko type for a Bernstein component Ω. The
work of Schneider–Zink gives an irreducibleK-representation σmin(λ),
which appears with multiplicity one in IndK

J λ. Let π be an irreducible
smooth representation of GLn(F ) in Ω. We prove that π is generic
if and only if σmin(λ) is contained in π, in which case it occurs with
multiplicity one.
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1 Introduction

We are concerned with the problem of understanding the genericity of irre-
ducible smooth representations of a general linear group over a p-adic field.
Let G be a reductive p-adic group. Recall that a smooth irreducible represen-
tation π of G is called generic if π appears in IndG

Uψ (i.e. admits a Whittaker
model), where Ind denotes induction and ψ is a nondegenerate character of a
maximal unipotent subgroup U of G.
We will start by recalling a few facts about the category of smooth represen-
tations. Let C be an algebraically closed field of characteristic zero. Let R(G)
be the category of all smooth C-representations of G. The Bernstein decom-
position ([Ber84]) expresses the category of smooth C-valued representations
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of G as the product of certain indecomposable full subcategories, called Bern-
stein components. Those components are parametrized by the inertial classes,
whose definition we now recall. Consider the set of pairs (M,ρ), withM a Levi
subgroup of G and ρ an irreducible supercuspidal representation of M . We
say that two pairs (M1, ρ1) and (M2, ρ2) are inertially equivalent if and only if
there are g ∈ G and an unramified character χ of M2 such that M2 =Mg

1 and
ρ2 ≃ ρg1 ⊗ χ, where Mg

1 := g−1M1g and ρg1(x) = ρ1(gxg
−1), for x ∈ Mg

1 . The
equivalence class of (M,ρ) will be denoted by [M,ρ]G, and is called an inertial
class. The set of inertial classes will be denoted by B(G).
We denote by iGP : R(M) −→ R(G) the normalized parabolic induction func-
tor, where P = MN is a parabolic subgroup of G with Levi subgroup M .
Let Ω := [M,ρ]G be an inertial equivalence class, where ρ is a supercuspidal
representation of M . To Ω we may associate a full subcategory RΩ(G) of
R(G), such that the representation (π, V ) is an object of RΩ(G) if and only
if every irreducible G-subquotient π0 of π appears as a composition factor of
iGP (ρ⊗ω) for ω some unramified character ofM and P some parabolic subgroup
of G with Levi factor M . The category RΩ(G) is called a Bernstein compo-
nent of R(G). According to [Ber84], the Bernstein decomposition is written as,
R(G) =

∏
Ω∈B(G) R

Ω(G). It follows that if we want to understand the category

R(G), it is enough to restrict our attention to the Bernstein components. This
can be done via the theory of types. This theory allows us to parametrize all
the irreducible representations of G up to inertial equivalence using irreducible
representations of compact open subgroups of G. Let J be a compact open
subgroup of G and let λ be an irreducible representation of J . We say that
(J, λ) is an Ω-type if, for (π, V ) a representation of G, the representation (π, V )
is an object of RΩ(G) if and only if V is generated by its λ-isotypical space V λ

as a G-representation.
Let F be a local non-archimedean field. For G = GLn(F ), types can be con-
structed (cf. [BK93], [BK98] and [BK99]) for every Bernstein component. The
simplest example of a type is (I, 1), where I is the standard Iwahori subgroup
of G and 1 is the trivial representation. In this case Ω = [T, 1]G, where T is the
subgroup of diagonal matrices and 1 denotes the trivial representation of T .
We will refer to this example as the Iwahori case.
Fix K a maximal compact subgroup of G = GLn(F ). Given a Bushnell–
Kutzko type (J, λ) with J contained in K, in [SZ99, section 6] (just above
Proposition 2) the authors define irreducible K-representations σP(λ), the so
called tempered types, where P belongs to some partially ordered set (cf. [SZ99,
section 2]), with order ≤. One has the decomposition :

IndK
J λ =

⊕

P

σP (λ)
⊕mP,λ , (1.1)

where the summation runs over the same partially ordered set as above. The
integers mP,λ are finite and we call mP,λ the multiplicity of σP (λ). Let
Pmax be the maximal element and let Pmin be the minimal one. Define
σmax(λ) := σPmax

(λ) and σmin(λ) := σPmin
(λ). Both K-representations
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σmax(λ) and σmin(λ) occur in IndKJ λ with multiplicity 1. In the Iwahori case
those representations have a very simple description. Indeed, σmin(λ) is the
inflation of the Steinberg representation of GLn(kF ) to K and σmax(λ) is the
trivial representation.
Having introduced the main notation of this paper we may now state our main
theorem:

Theorem 1.1. Let π be an irreducible representation in RΩ(G) and let (J, λ)
be the corresponding Bushnell–Kutzko type. We can associate to π an element
Pπ appearing in the decomposition (1.1). Then the following is equivalent:

1. π is generic.

2. π contains the tempered types σP′(λ) for all P ′ ≤ Pπ

3. π contains the minimal type σmin(λ).

And if the equivalent conditions are fulfilled then σmin(λ) will occur with mul-
tiplicity 1.

Theorem 1.1 shows that the representation σmin(λ) has a very special role.
One can wonder about other σP (λ)’s. There is a recent result by Jack Shotton
in that direction. He proves [Sho18, Thm.3.7] that by modifying the proof of
[SZ99, Proposition 2 Section 6] and [BC09, Proposition 6.5.3] in the tempered
case, one gets the same result in the generic case. In the author’s thesis the
result [Sho18, Thm.3.7] was proven independently but with a different method.
First using the theory of types of Bushnell–Kutzko, we reduce the statement
to the Iwahori case. Then, in the Iwahori case, we use the results of Rogawski
[Rog85] on modules over Iwahori–Hecke algebra. In this case the proof relies
on some easy combinatorics on partitions.
The multiplicity one statement can fail for other σP(λ)’s. For example, consider
the Iwahori case with n = 3, i.e. G = GL3(F ). Take π = iGB(1⊗χ1⊗χ2), where
B is the subgroup of G of upper triangular matrices, 1 the trivial character and
χ1, χ2 unramified characters such that χ1.χ

−1
2 6= |.|±1. Then, writing σ2,1 for

the summand of IndKI 1 corresponding to the partition (2, 1) (see section 2),
one can easily verify that dimHomK(σ2,1, π) = 2.
Let us observe that Theorem 1.1 can be also proven by considering Hecke
algebras. First we use one of the main results of [BK99], which asserts that
the Hecke algebra H(G, λ) is naturally isomorphic to a tensor product of affine
Hecke algebras of type A. Moreover it is shown in [BK93] that any Hecke
algebra of a simple type is isomorphic to an affine Hecke algebra of type A. In
this manner we can reduce the statement about irreducible representations of
general type to the Iwahori case.
Finally let us observe that to the best of our knowledge Theorem 1.1 and
[Sho18, Thm.3.7] do not have an analogue for all reductive groups, because
the crucial ingredient in the proofs is the tensor product decomposition of the
Hecke algebra H(G, λ) and the existence of types, proven by Bushnell–Kutzko
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in [BK99]. Indeed results of [BK93], [BK98] and [BK99] allow us to transfer the
general situation to the Iwahori case, where the proofs are simpler. However we
believe that those results should generalize easily to reductive groups with An

root system. It would be interesting to investigate the case of other reductive
groups.

Notation

For an arbitrary local non-archimedean field L, let OL be its ring of integers
and kL the residue field. We also choose a uniformizer ̟L ∈ OL. From now
on fix F a local non-archimedean field and G = GLn(F ).
Recall that all the representations have their coefficients in an algebraically
closed field C of characteristic zero. Assume that C has the same cardinality
as the complex numbers C. Fix an isomorphism ι : C → C. Let G̃ be some
p-adic group. A character χ : G̃ → C is defined by χ = ι−1(ι ◦ χ), where ι ◦ χ
is a character in a usual sense.
We are given an inertial class Ω = [M,ρ]G, where ρ is a supercuspidal repre-
sentation of M and an Ω-type (J, λ) with J ⊂ K a compact open subgroup
of G. Write ZΩ for the centre of the category RΩ(G). Recall that the centre of
a category is the ring of endomorphisms of the identity functor. For example
the centre of the category H(G, λ)-Mod is Z(H(G, λ)), where Z(H(G, λ)) is
the centre of the ring H(G, λ).
For an irreducible representation π of GLn(F ) a cuspidal support of π is a
pair (M,ρ) such that π is an irreducible subquotient of iGP (ρ), where M is
a Levi subgroup, P = MN a parabolic subgroup, and ρ an irreducible su-
percuspidal representation of M . The pair (M,ρ) can be chosen such that
M =

∏s

i=1GLri(F ) and ρ = ω1 ⊗ . . . ⊗ ωs, because it has no impact on
irreducible subquotients according to [BZ77, 4.1 and 4.7]. An inertial class
Ω = [

∏s

i=1GLri(F ), ω1 ⊗ . . .⊗ωs]G is called simple if ri = r and all factors ωi

belong to the same inertial equivalence class of supercuspidal representations.
Otherwise Ω is called semisimple. From now on we will say that (ω1, . . . , ωs) is
a cuspidal support of π. Furthermore, let us introduce the following notation:

ω1 × . . .× ωs := iGP (ω1 ⊗ . . .⊗ ωs) (1.2)

The representations of a Bernstein component can be seen as modules over
a Hecke algebra. For any types (J, λ) let Rλ(G) be the full subcategory of
R(G) such that (π, V ) is an object of Rλ(G) if and only if V is generated by
V λ (the λ-isotypical component of V ) as G-representation. Define H(G, λ) :=
H(G, J, λ) := EndG(c–Ind

G
J λ), the Hecke algebra of the type (J, λ). Then for

any Ω-type (J, λ), by [BK98, Theorem 4.2 (ii)], the functor:

Mλ : Rλ(G) → H(G, λ)-Mod

π 7→ HomJ(λ, π) = HomG(c–Ind
G
J λ, π)

is an equivalence of categories. Since (J, λ) is an Ω-type, we have RΩ(G) =
Rλ(G). The type (J, λ) is called simple(resp. semisimple) when the corre-
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sponding Ω is simple (resp. semisimple). The corresponding Hecke algebras
H(G, λ) are then isomorphic to affine Hecke algebras of type A or tensor prod-
uct of such Hecke algebras resp.([BK93], [BK99]).

A partition is a function P : Z≥1 → Z≥0 with finite support; we say that P

is a partition of an integer k :=
∑+∞

n=1 P (n).n. We may also represents a
partition P of k as a sequence (m1, . . . ,ml), with m1 ≥ . . . ≥ ml ≥ 0 and
m1+ . . .+ml = k, where one omits the zeroes from that list. Then P (n) is the
number of constituentsmi = n. Let (m′

1, . . . ,m
′
s), be the conjugate partition of

(m1, . . . ,ml), meaning that m′
i :=| {j : mj ≥ i} |. The integers m′

i are related
to P as follows, m′

s = P (s), m′
s−1 = P (s)+P (s−1),. . ., m′

1 = P (s)+. . .+P (1).
We define a partial ordering on the set P of partitions as follows. Following
the convention in [SZ99], we write λ = (λ1, . . . , λl) ≧ µ = (µ1, . . . , µl) if and

only if
∑j

i=1 λi ≤
∑j

i=1 µi for all integers j. The smallest partition of k for
this partial order is (k) and the biggest is (1, . . . , 1) (k times 1). This order
is the opposite of the usual dominance order on partitions ([Knu98, Chapter
5, Section 5.1.4]). For more information on partitions the reader may also
consult[Ful97] and [Mac15].

As in [SZ99, section 2], let C be a system of representatives for the irreducible
supercuspidal representations of any GLk(F ) (k ∈ Z≥1) up to unramified twist.
If ω ∈ C, is a representation of GLk(F ), write d(ω) := k.

A partition-valued function is a function P : C → P with finite support. Let
suppP be the support of P . The set of partition-valued functions is partially
ordered with respect to the partial ordering on partitions defined in the para-
graph above by setting P ≤ P ′ if and only if P(τ) ≤ P ′(τ), ∀τ ∈ C.

There is a natural map from the set of partition valued functions to the set of
Bernstein components given by:

P 7→ Ω(P) := [
∏

ω∈suppP

GLd(ω)(F )
∑

s∈Z≥1
sP(ω)(s)

,
⊗

ω∈suppP

ω
∑

s∈Z≥1
sP(ω)(s)

]G

If we are given a Bernstein component Ω and an Ω-type (J, λ) as above then,
the decomposition (1.1) reads more precisely:

IndKJ λ =
⊕

P:Ω(P)=Ω

σP (λ)
⊕mP,λ ,

where the summation runs over partition-valued functions P such that Ω(P) =
Ω. Among those partitions there is a unique minimal partition Pmin and also
a unique maximal partition Pmax, for the partial order ≤. In order to simplify
the notation let σmin(λ) := σPmin(λ). As an example consider the case when
Ω = [G, ρ]G. In this case, λ is a representation of K, and the decomposition
from above reads λ = λ, where there is only one partition valued function
supported on ρ given by the unique partition of the number 1. The other
extreme case is the Iwahori case, i.e Ω = [T, 1]G corresponding to (J, λ) = (I, 1).
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2 Types

2.1 Representations of general linear groups over a finite field

In this section we will recall definitions from [SZ99, section 4]. Let Gn :=
GLn(kF ) and let R(G) be the category of C-representations of Gn. Similarly
to the case of G-representations we have the notion of cuspidal support. Let
B(Gn) be the set of conjugacy classes [M,σ]n of pairs (M,σ), whereM is a Levi
subgroup of Gn and σ a cuspidal representation of M . To ν ∈ B(Gn) we may
associate a full subcategory Rν(Gn) of R(Gn), such that the representation
(π, V ) is an object of Rν(Gn) if and only if every irreducible constituent π0 of π

appears as a composition factor of IndGn

P
(σ), where (M,σ) represents an equiv-

alence class ν and P some parabolic subgroup of Gn with Levi factorM . Simi-
larly to the Bernstein decomposition, we also haveR(Gn) =

∏
ν∈B(Gn)

Rν(Gn).

Let C be a system of representatives of isomorphism classes of all the irreducible
cuspidal representations of any Gk, for k varying in the set of positive integers.
If σ is a representation of Gd, we write d(σ) = d. For any σ ∈ C and s ∈ Z≥1,
define:

st(σ, s)

to be the unique nondegenerate irreducible representation with cuspidal sup-
port (σ, . . . , σ) (s-times). A partition-valued function is a function P : C → P

with finite support, let d(P) :=
∑

(σ,s)∈C×Z≥1
P(σ)(s)sd(σ). For any partition

valued function P , define the nondegenerate representation:

st(P) :=
⊗

(σ,s)∈C×Z≥1

st(σ, s)⊗P(σ)(s)

of the Levi subgroup MP =
∏

(σ,s)∈C×Z≥1
G

×P(σ)(s)

sd(σ) of Gd(P).

There is a natural map from the set of partition valued functions to the set of
Bernstein components given by:

P 7→ ν(P) := [
∏

σ∈suppP

(Gd(σ))
∑

s∈Z≥1
sP(σ)(s)

,
⊗

σ∈suppP

σ
∑

s∈Z≥1
sP(σ)(s)

]n

Let πP denote the Gd(P)-representation obtained by parabolic induction from

st(P), i.e. πP = Ind
Gd(P)

P
(st(P)), where P is a standard parabolic with Levi

subgroup MP . Let ν ∈ B(Gn) and consider the set of partition valued func-
tions P such that ν(P) = ν. Among them there is a unique minimal element
Pmin and there is a unique maximal element Pmax. As a consequence of [SZ99,
Proposition, section 4], observe that:

1. For each P there exists a uniquely determined irreducible representation
σP of Gd(P) which occurs with multiplicity one in πP , but does not occur
in πP′ , for P ′ < P . In particular σP has the cuspidal support ν(σP ) :=
ν(P).
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2. All irreducible representations with cuspidal support ν are of the form
σP , with ν(σP ) = ν, for some partition valued function P .

3. σP occurs in πP′ if and only P ≤ P ′.

4. If σPmin
occurs in πP , then σPmin

has multiplicity one.

5. The definition of ≤ implies that

πPmax
= IndGn

P

⊗

σ∈suppPmax

σ
∑

s∈Z≥1
sPmax(σ)(s)

,

hence πPmax
contains all irreducible representations with cuspidal support

ν, and

IndGn

P

⊗

σ∈suppPmax

σ
∑

s∈Z≥1
sPmax(σ)(s)

=
⊕

P:ν(P)=ν

σ⊕mP

P , (2.1)

which is a finite field analogue of (1.1).

2.2 Representations of general linear groups over a non-

archimedean local field

The Bernstein decomposition of the category of smooth representations allows
us to restrict our attention to one Ω. From now on we will assume that Ω =
[M,ρ]G has been fixed, and all the smooth representations will be considered
as objects in RΩ(G).
Let us recall some facts about smooth representations of G = GLn(F ). We
know that any irreducible representation π is a Langlands quotient of the form
L(∆1, . . . ,∆r) (cf. [Zel80, Theorem 6.1]) such that, for i < j, the segment ∆i

does not precede ∆j (cf. [Zel80, section 4]).
According to [Zel80, Theorem 9.7] π = L(∆1, . . . ,∆r) is generic if and only if no
two segments ∆i are linked. In which case L(∆1, . . . ,∆r) = L(∆1)×. . .×L(∆r)
(notation (1.2)). In particular the essentially discrete series representations
L(∆) are generic.
We will now recall the definition of tempered types following the paper [SZ99].
First consider the case when Ω = [M,ρ]G is simple and correspondingly (J, λ)
is a simple type. Let Mn(F ) be all the n × n matrices with coefficients in F ,
and let E = F [β] be a finite field extension of F of degree dividing n, hence
E →֒ Mn(F ). Define R = n/[E : F ]. The type (J, λ) has the following form:
J is a compact open subgroup in G and λ = κ ⊗ σ with κ a β-extension and
σ the inflation of τ ⊗ . . . ⊗ τ (e-times), where τ a cuspidal representation of
GLf (kE), and we have R = ef .
Let B be the centralizer of β in Mn(F ). Fix a pair (Bmin,Bmax) of hereditary
OE-orders in B, such that Bmin ⊆ Bmax, where Bmin is minimal and Bmax

is maximal. With every hereditary OE order B (Bmin ⊆ B ⊆ Bmax) Bushnell
and Kutzko associate via [BK93, (3.1.14)] a compact open subgroup J(B) of
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A(B)×, where A(B) is the unique hereditary OF order inMn(F ) such that E×

normalizes A(B) and A(B) ∩B = B and they also associate via [BK93, (5.2)]
an irreducible representation κ(B) of the group J(B). Let Jmax := J(Bmax)
and κmax = κ(Bmax). Let rad(A(B)) be the Jacobson radical of A(B) and let
U1(A(B)) := 1 + rad(A(B)).
Define J1

max := U1(A(B)) ∩ Jmax, then Jmax/J
1
max ≃ GLR(kE), and the func-

tor

IndKJmax
(κmax ⊗ ·) : Rν(GLR(kE)) → Rλ(K)

σ 7→ IndKJmax
(κmax ⊗ σ)

,

is an equivalence of categories according the discussion above Proposition 11
in Section 5 [SZ99], where Rν(GLR(kE)) the full subcategory of all GLR(kE)-
representations whose irreducible constituents all have cuspidal support ν =
(τ, . . . , τ), e-times as above.
Then in the simple type case define σP(λ) := IndKJmax

(κmax ⊗ σP ) and

πP (λ) := IndKJmax
(κmax ⊗ πP), where σP and πP have been defined in sec-

tion 2.1. Since we are in the simple type case, the partition valued function P ,
which is supported on τ ∈ C, is naturally identified with a partition of e.
Let now V be a representation in the Bernstein Ω, then HomJ1

max
(κmax, V )

is naturally a Jmax/J
1
max-module. This observation allows us to define the

following functor:

RΩ(G) = Rλ(G) → Rν(GLR(kE))
V 7→ V (κmax) := HomJ1

max
(κmax, V )

.

More generally in the semisimple type case we have similar definitions. Let
(M,ρ) be a representative of Ω. Without loss of generality we may write
M =

∏s

i=1GLri(F )
×ei and ρ = ρ1 ⊗ . . . ⊗ ρs, with supersupidals ρi = ωi ⊗

. . .⊗ωi (ei times), where ωi is a supercuspidal representation of GLri(F ), and∑s

i=1 riei = n. Let M̃ =
∏s

i=1GLeiri(F ). Let Ωi = [GLri(F )
×ei , ρi]GLeiri

(F ).

The component Ωi in the category R(GLeiri(F )) has a simple type (J (i), λ(i)).
Following the discussion at the beginning of Section 6 in [SZ99], we may choose

a pair (J
(i)
0 , λ

(i)
0 ), satisfying J

(i)
0 ⊆ J (i) and IndJ

(i)

J
(i)
0

λ
(i)
0 = λ(i), in such a way that

(
∏s

i=1 J
(i)
0 ,

⊗s
i=1 λ

(i)
0 ) is a type of some Bernstein component in R(M̃). Let

(J, λ) be a G-cover of (
∏s

i=1 J
(i)
0 ,

⊗s
i=1 λ

(i)
0 ). Then (J, λ) is the corresponding

Bushnell–Kutzko type to Ω. Let K be a maximal compact subgroup of G
containing J . We have the following exact functor:

TK,λ : RΩ(G) = Rλ(G) → Rλ(K)
π 7→ K · πλ .

Let P be a partition valued function, and define Pi another partition valued
function supported on the equivalence class of ωi such that Pi(ωi) = P(ωi).
For any parabolic Q̃ with Levi factor M̃ the parabolic induction functor
iG
Q̃

: RΩ1×...Ωs(M̃) → RΩ(G) is an equivalence of categories and it induces
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the equivalence of categories JQ̃ : R⊗
s
i=1 λ

(i)
0
(K ∩ M̃) → Rλ(K). Via

the equivalence of categories JQ̃, define σP (λ) := JQ̃(
⊗s

i=1 σPi
(λ(i))) and

πP (λ) := JQ̃(
⊗s

i=1 πPi
(λ(i))).

By construction we have the decomposition M̃ ∩ K =
∏s

i=1K
(i), with K(i)

maximal compact subgroup of GLeiri(F ). There is the obvious product func-

tor
∏s

i=1 Rλ
(i)
0
(K(i))

⊗...⊗
−−−→ R⊗

s
i=1 λ

(i)
0
(K ∩ M̃). The functor R⊗

s
i=1 λ

(i)
0
(K ∩

M̃)
JQ̃

−−→ Rλ(K), induces an isomorphism

HomK(σP′ (λ), πP (λ)) ∼=

s⊗

i=1

HomK(i)(σP′
i
(λ

(i)
0 ), πPi

(λ
(i)
0 )),

where the partition Pi, P
′
i refers to the support ωi ∈ C. In particular we see

here that σP′(λ) occurs in πP(λ) with multiplicity one if and only if this is true
with respect to all the Pi, P

′
i.

With π = L(∆1, . . . ,∆r) we can associate the partition valued function Pπ =
P(∆1, . . . ,∆r), such that P(ωi) is the partition of ei collecting the lengths of
all the segments ∆j which are contained in the inertial class of ωi.

Lemma 2.1. Let K be a maximal compact subgroup of G containing J , then
TK,λ(L(∆1)× . . .× L(∆r)) ∼= πP(∆1,...,∆r)(λ).

Proof. We will begin by giving a proof in the simple type case. It follows
from [SZ99, Proposition 5.9], that (L(∆1)× . . .×L(∆r))(κmax) ∼= πP(∆1,...,∆r),
where πP(∆1,...,∆r) is an object of Rν(GLR(kE)). By computation [SZ99, p.

185], we have IndKJmax
(κmax ⊗ V (κmax)) = TK,λ(V ), then πP(∆1,...,∆r)(λ) =

IndKJmax
(κmax⊗πP(∆1,...,∆r))

∼= IndK
Jmax

(κmax⊗(L(∆1)×. . .×L(∆r))(κmax)) =
TK,λ(L(∆1)× . . .× L(∆r)).

For the semisimple type case use previous computation and [SZ99, Proposition
6.1]. We may always group together the segments that have the same supercus-
pidal representation ωi. Consider the representation π = L(∆1)× . . .× L(∆r)
and write it as π = L(∆1,1)× . . .× L(∆1,r1)× . . .× L(∆s,1)× . . .× L(∆s,rs),
where ∆i,j = (ωi ⊗ χi,j) ⊗ . . . ⊗ (ωi ⊗ χi,j ⊗ | det |ki,j−1) (1 ≤ j ≤ ri) are
the segments, χi,j are some unramified characters and ki,j are positive inte-
gers, and ωi (1 ≤ i ≤ s) are pairwise non-isomorphic supercuspidal repre-
sentations. Let πi := L(∆i,1) × . . . × L(∆i,ri), then π = π1 × . . . × πs. Re-

call that we have the decomposition M̃ ∩ K =
∏s

i=1K
(i). Then by [SZ99,

Proposition 6.1], we have TK,λ(π) = JQ̃(TK∩M̃,
⊗

s
i=1 λ

(i)
0
(π1 ⊗ . . . ⊗ πs)) =

JQ̃(TK(1),λ
(1)
0
(π1) ⊗ . . . ⊗ T

K(s),λ
(s)
0
(πs)) ∼= JQ̃(

⊗s

i=1 πPi
(λ(i))) = πPπ

(λ),

where Pπ = P(∆1,1, . . . ,∆1,r1 , . . . ,∆s,1, . . . ,∆s,rs) = P(∆1, . . . ,∆r).
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The following commutative diagram follows from [SZ99, Proposition 6.1]:

∏s

i=1 R
Ωi(GLeiri(F ))

⊗...⊗
//

∏
s
i=1 T

K(i),λ
(i)
0

��

RΩ1×...Ωs(M̃)
iG
Q̃

//

T
K∩M̃,

⊗s
i=1

λ
(i)
0

��

RΩ(G)

TK,λ

��∏s

i=1 Rλ
(i)
0
(K(i))

⊗...⊗
// R⊗

s
i=1 λ

(i)
0
(K ∩ M̃)

JQ̃
// Rλ(K),

(D)

where iG
Q̃

and JQ̃ are equivalences of categories.

Lemma 2.2. σP′(λ) occurs in πP(λ) if and only if P ′ ≤ P, and σP (λ) occurs
in πP(λ) always with multiplicity one. Moreover if σmin(λ) occurs in πP(λ),
then it always occurs with multiplicity one.

Proof. The first assertion follows from [Sho18, Corollary 6.22, Corollary 6.10]
and [SZ99, Proposition, section 4]. Indeed, [Sho18, Corollary 6.22, Corollary
6.10] show that dimHomK(σP′(λ), πP (λ)) is equal to the multiplicity of σP′

in πP . Then by [SZ99, Proposition, section 4], dimHomK(σP (λ), πP (λ)) = 1,
and σP′(λ) occurs in πP(λ) if and only if P ′ ≤ P . Furthermore, these results
allow us to compute dimHomK(σP′(λ), πP (λ)) as a product of the usual Kostka
numbers Kλµ, where λ and µ are two partitions. For the definition of Kostka
numbers Kλµ, we refer the reader to [Mac15, (6.4)] and [Sho18, Definition 6.2]
with a comment on Kostka numbers below it. In particular, we have:

dimHomK(σmin(λ), πP (λ)) =
∏

ω∈suppP

KPmin(ω)P(ω) =
∏

ω∈suppPmin

KPmin(ω)P(ω).

Therefore, in order to prove multiplicity one statement about σmin(λ), it is
enough to convince the reader thatK(n)(m1,...,mk) = 1, wherem1+. . .+mk = n.
But, K(n)(m1,...,mk) is by definition the number of ways to fill n boxes displayed
in one rows with mi copies of the integer i in the increasing order, such that
each integer goes only into one box.

Lemma 2.3. We have πPmax
(λ) ∼= IndKJ λ. In particular the multiplic-

ity of σP (λ) in IndKJ λ can be computed in terms of Kostka numbers, i.e.
dimHomK(σP (λ), Ind

K
J λ) =

∏
ω∈suppP KP(ω)Pmax(ω).

Proof. In the Iwahori case, we have IndKI 1 = (inflation of IndGn

B
1) = πPmax

(1),

where B is a Borel subgroup of Gn.
Now consider the simple type case. Let P be a parabolic subgroup of GLR(kE),

such that πPmax
= Ind

GLR(kE)

P
τ ⊗ . . . ⊗ τ . First observe that the inflation of

Ind
GLR(kE)

P
τ⊗. . .⊗τ is IndJmax

J σ. Recall that λ = κ⊗σ, then we have IndKJ (κ⊗

σ) = IndKJmax
IndJmax

J (κ⊗σ) = IndKJmax
IndJmax

J (κmax|J⊗σ) = IndK
Jmax

(κmax⊗
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(IndJmax

J σ)) = IndK
Jmax

(κmax ⊗ (Ind
GLR(kE)

P
τ ⊗ . . .⊗ τ)) = πPmax

(λ), where in
the third equality we have used the projection formula.
Finally in the semisimple type case we have the decomposition M̃ ∩
K =

∏s

i=1K
(i). It follows that: πPmax

(λ) = JQ̃(
⊗s

i=1 πPmax,i
(λ(i))) =

JQ̃(
⊗s

i=1 Ind
K(i)

J(i) λ(i)) = JQ̃(
⊗s

i=1 Ind
K(i)

J(i) Ind
J(i)

J
(i)
0

λ
(i)
0 ) =

JQ̃(
⊗s

i=1 Ind
K(i)

J
(i)
0

λ
(i)
0 ) ∼= JQ̃(Ind

M̃∩K
∏

s
i=1 J

(i)
0

⊗s

i=1 λ
(i)
0 ) = IndKJ λ.

The assertion about multiplicities follows from the proof of previous Lemma.

3 Generic representations

In this section we will use the results proven above to deduce our main theorem.
Let (M,ρ) be a representative of Ω, where M =

∏s
i=1GLri(F )

×ei and ρ =
ρ1 ⊗ . . . ⊗ ρs, with supersupidals ρi = ωi ⊗ . . . ⊗ ωi (ei times), where ωi is a
supercuspidal representation of GLri(F ), and

∑s
i=1 riei = n.

Theorem 3.1. Let π = L(∆1, . . . ,∆r) be an irreducible representation of G
belonging to the Bernstein component Ω and let (J, λ) be the corresponding
Bushnell–Kutzko type. Then the following is equivalent:

1. π is generic.

2. π contains the tempered types σP′(λ) for all P ′ ≤ P = P(∆1, . . . ,∆r) =
Pπ.

3. π contains the minimal type σmin(λ).

And if the equivalent conditions are fulfilled then σmin(λ) will occur with mul-
tiplicity 1.

Proof. Assume that π is generic. Then we have π = L(∆1, . . . ,∆r) = L(∆1)×
. . .× L(∆r) and therefore from Lemma 2.1 we see:

K · πλ = TK,λ(L(∆1)× . . .× L(∆r)) ∼= πP(λ)

and according to Lemma 2.2 this contains all the σP′(λ) for all P ′ ≤ P .
Conversely consider any irreducible π = L(∆1, . . . ,∆r) where Ω =
[
∏s

i=1GLri(F )
×ei , ρ1 ⊗ . . . ⊗ ρs]G, and ρi = ωi ⊗ . . . ⊗ ωi (ei times).

The cuspidal support of π consists of ei representations ωij , 1 ≤ j ≤ ei,
which are members of the inertial class of ωi, where 1 ≤ i ≤ s. Then π
is an irreducible subquotient of ω11 × . . . × ω1e1 × . . . × ωs1 × . . . × ωses ,
where each supercuspidal ωij is considered as segment of length 1. Now
we apply, the exact functor TK,λ. Then we see that TK,λ(π) occurs in
TK,λ(ω11 × . . . × ω1e1 × . . . × ωs1 × . . . × ωses)

∼= πPmax
(λ), where the last

equality follows from Lemma 2.1. But the irreducible representation σmin(λ)
occurs here with multiplicity 1, and we know already that it is contained in
the generic subquotient. Therefore if σmin(λ) occurs in TK,λ(π) then π must
be generic.
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The following lemma has been shown already in the Theorem 3.1, we only keep
it as a reference for [Pyv18]:

Lemma 3.2. We have dimHomK(σmin(λ), π) = 1, for π an irreducible generic
representation of G in Ω.
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