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Abstract. Let A be an abelian variety defined over a number field F .
We prove a control theorem for the fine Selmer group of the abelian
variety A which essentially says that the kernel and cokernel of the
natural restriction maps in an arbitrarily given Zp-extension F∞/F
are finite and bounded. We emphasise that our result does not have
any constraints on the reduction of A and the ramification of F∞/F .
As a first consequence of the control theorem, we show that the fine
Tate-Shafarevich group over an arbitrary Zp-extension has trivial Λ-
corank. We then derive an asymptotic growth formula for the p-
torsion subgroup of the dual fine Selmer group in a Zp-extension.
However, as the fine Mordell-Weil group need not be p-divisible in
general, the fine Tate-Shafarevich group need not agree with the p-
torsion of the dual fine Selmer group, and so the asymptotic growth
formula for the dual fine Selmer groups do not carry over to the fine
Tate-Shafarevich groups. Nevertheless, we do provide certain suffi-
cient conditions, where one can obtain a precise asymptotic formula.
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1 Introduction

The essence of Iwasawa theory is to study arithmetic objects via their variations
in a tower of number fields. Such a study was initiated by Iwasawa, where he
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showed that for a given prime p, the growth of the Sylow p-subgroups of the
class groups in the tower of subfields of a Zp-extension exhibits a remarkable
regularity (see [16, 17]). Modelling after Iwasawa’s ideas, Mazur developed
an analogous approach towards studying the arithmetic of an abelian variety
via examining the variations of its p-primary Selmer groups in a Zp-extension
(see [34]). Recently, there have been great interest in the study of a certain
subgroup of the p-primary Selmer group, called the fine Selmer group (for
instances, see [6, 18, 28, 30, 31, 32, 45, 48]). In the fundamental paper of Coates-
Sujatha [6], they have examined this fine Selmer group in great depth and made
several conjectures on its structure. We should also mention that (as also noted
by Coates-Sujatha in [6]) before the foundational work of Coates-Sujatha, this
group has been studied in various guises (for instances, see [19, 21, 22, 38]).
Just as the classical p-primary Selmer group Selp(A/F ) sitting in the middle
of a short exact sequence

0 −→ A(F )⊗Zp
Qp/Zp −→ Selp(A/F ) −→X(A/F )[p∞] −→ 0,

with the Mordell-Weil group and the p-primary Tate-Shafarevich group by its
sides, the fine Selmer group Rp(A/F ) (see Section 3 for definition) sits in the
middle of the following analogous short exact sequence

0 −→Mp(A/F ) −→ Rp(A/F ) −→Жp(A/F ) −→ 0,

where Mp(A/F ) is the fine (p-)Mordell-Weil group and Жp(A/F ) is the fine
(p-)Tate-Shafarevich group in the sense of Wuthrich [49]. Here Mp(A/F ) is
defined to be the subgroup of A(F )⊗Qp/Zp consisting of those elements which
are mapped to zero in A(Fv)⊗Zp

Qp/Zp for all primes v above p. It is not dif-
ficult to show thatMp(A/F ) injects into Rp(A/F ). The fine Tate-Shafarevich
group Жp(A/F ) is then simply defined to be the cokernel of this injection, and
one can verify that Жp(A/F ) can be identified as a subgroup of X(A/F )[p∞]
(see [49, Section 2]; also see discussion below in Section 3). In particular,
we would expect that the fine Tate-Shafarevich group is finite in view of the
conjectural finiteness of X(A/F ). We also make a remark that will be fre-
quently mentioned throughout the paper, namely that, the fine Mordell-Weil
groupMp(A/F ) is not necessarily p-divisible (see [49, Section 7] for examples
of non-divisible fine Mordell-Weil groups).
As our prime p is fixed throughout, we shall omit the “p” in our

notations of the above arithmetic objects for the remainder of

the paper. We shall also always assume that the prime p is odd.

(See the end of the introductory section for some remarks on the case p = 2.)
In this paper, we are interested in studying the variation of the fine Selmer
groups and the fine Tate-Shafarevich groups of an abelian variety A in a Zp-
extension F∞. We write Γ = Gal(F∞/F ) and Zp[[Γ]] for the Iwasawa algebra
of Γ. For each n ≥ 0, Fn will denote the intermediate subfield of F∞ with
|Fn : F | = pn. We write R(A/F∞) for the fine Selmer group of A over F∞,
whose Pontryagin dual is denoted by Y (A/F∞). It is not difficult to show
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that this is a finitely generated Zp[[Γ]]-module (see Lemma 3.2). However,
it is unknown at present whether or not Y (A/F∞) is always Zp[[Γ]]-torsion,
although we believe that this is the case (see Conjecture Y in the body of the
paper).
We now state the following control theorem for fine Selmer groups.

Theorem 1.1 (Theorem 3.3). Let A be an abelian variety defined over a number
field F . Let F∞ be a Zp-extension of F and Fn the intermediate subfield of F∞

with |Fn : F | = pn. Then the restriction map

rn : R(A/Fn) −→ R(A/F∞)Gal(F∞/Fn)

has finite kernel and cokernel which are bounded independent of n.

For the classical p-primary Selmer groups, such a control theorem was estab-
lished by Mazur [34] under the assumption that the abelian variety has good
ordinary reduction at all primes of F above p. For an elliptic curve defined with
split multiplicative reduction at the prime p, one generally expects a control
theorem for the classical Selmer group but so far this is only known when the
said elliptic curve is defined over Q (see [13]). However, if the abelian vari-
ety in question has good supersingular reduction at some prime above p, it is
well-known that such a control theorem fails for the classical Selmer groups (see
[21, 43]). Our theorem here is saying that this is not an issue for the fine Selmer
groups. We should also mention that when A has good reduction at every prime
of F above p and F∞ is the cyclotomic Zp-extension, a control theorem for the
fine Selmer group has been established (for instances, see [21, 24, 25, 47, 48]).
Our result can therefore be seen as a generalization of these prior results, as we
do not have any constraints on the reduction of A and the Zp-extension F∞/F .
As a corollary, we show that Y (A/F∞) is Zp[[Γ]]-torsion whenever Y (A/F ) is
finite (see Corollary 3.5).
As one of the further applications of our control theorem, we establish the
following interesting phenomenon (see Proposition 4.1 for a more precise state-
ment).

Proposition 1.2 (Proposition 4.1). Let A be an abelian variety defined over
a number field F and F∞ a Zp-extension of F with intermediate subfield Fn.
Suppose further that Ж(A/Fn) is finite for every n. Then Ж(A/F∞) is a
cotorsion Zp[[Γ]]-module.

Note that the corresponding assertion for the p-primary Tate-Shafarevich group
is known to be false in general. Indeed, for an elliptic curve defined over Q

with supersingular reduction at the prime p, it has been long observed that its
p-primary Tate-Shafarevich group over the cyclotomic Zp-extension is a non-
cotorsion Zp[[Γ]]-module by a combination of results of Kato-Rohrlich [19, 42]
and Schneider [43] (also see [21, 22]).
We now come to the second theme of the paper concerning about the growth
of the fine Tate-Shafarevich groups in a Zp-extension. In preparation of sub-
sequent discussion, we introduce certain terminology. For a finitely gener-
ated Zp-module N , write e(N) for the power of p in the order of N [p∞], i.e.,
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∣

∣N [p∞]
∣

∣ = pe(N). Now, if M is a finitely generated Zp[[Γ]]-module M , we follow
Lee [23] in defining

G(M) := lim←−
n

(

MΓn
[p∞]

)

.

Note that G(M) is always a finitely generated torsion Zp[[Γ]]-module and has
the same µ-invariant as M (see Proposition 2.4). The Pontryagin dual of
the fine Selmer groups R(A/Fn) and R(A/F∞) are denoted by Y (A/Fn) and
Y (A/F∞) respectively.
We can now state the following which is an immediate consequence of our
control theorem.

Proposition 1.3 (Proposition 4.4). Let A be an abelian variety defined over
a number field F . Let F∞ be a Zp-extension of F and Fn the intermediate
subfield of F∞ with |Fn : F | = pn. Then we have

e
(

Y (A/Fn)
)

= µ
(

G
(

Y (A/F∞)
)

)

pn + λ
(

G
(

Y (A/F∞)
)

)

n+O(1).

Note that we do not assume the torsionness of the fine Selmer group in the
above proposition. In view of the above formula, it is natural to ask if one can
transfer the above growth formula to the fine Tate-Shafarevich groups as done
for the usual Tate-Shafarevich groups in [13, 23]. In these said works, a crucial
ingredient used is the p-divisibility of A(Fn)⊗Zp

Qp/Zp which is a consequence
from its definition. However, as already mentioned above, the fine Mordell-Weil
group needs not be p-divisible, and so the groups Ж(A/Fn) and Y (A/Fn)[p

∞]
may not agree in general. Therefore, the above asymptotic formula for the fine
Selmer groups does not carry over to the fine Tate-Shafarevich groups directly.
We do at the very least have the following general asymptotic lower bound and
upper bound.

Proposition 1.4 (Proposition 4.5). Let A be an abelian variety defined over
a number field F and F∞ a Zp-extension of F . Suppose further that Ж(A/Fn)
is finite for every intermediate subfield Fn. Then we have

µ
(

Ж(E/F∞)∨
)

pn+λ
(

Ж(E/F∞)∨
)

n+O(1) ≤ e
(

Ж(A/Fn)
)

≤ µ
(

G
(

Y (A/F∞)
)

)

pn + λ
(

G
(

Y (A/F∞)
)

)

n+O(1).

Naturally, one might ask whether one can have an exact asymptotic growth
formula under appropriate extra assumptions. The next theorem is the first of
which where we can establish an exact asymptotic formula under the additional
hypothesis that the Mordell-Weil group A(F∞) over the Zp-extension F∞ is
finitely generated.

Theorem 1.5 (Theorem 4.6). Let A be an abelian variety defined over a number
field F and F∞ a Zp-extension of F . Suppose that A(F∞) is a finitely generated
abelian group and that Ж(A/Fn) is finite for every n. Then we have

e
(

Ж(A/Fn)
)

= µ
(

Ж(A/F∞)∨
)

pn + λ
(

Ж(A/F∞)∨
)

n+ ν
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for n≫ 0.

For the cyclotomic Zp-extension F cyc of F , it has long been conjectured that
A(F cyc) is a finitely generated abelian group (see [13, 34]). Til today, this finite
generation conjecture has only been verified by the deep works of Kato [19] and
Rohrlich [42] under the assumptions that A is an elliptic curve defined over Q

and that F is an abelian extension of Q. Therefore, we do have a precise
asymptotic formula growth in this situation. This in particular recovers an
assertion of Wuthrich [49, Discussion before Conjecture 8.2] (also see [47]).
On the other hand, over an arbitrary Zp-extension, the group A(F∞) needs not
be finitely generated. Indeed, if A is an elliptic curve over Q and F∞ is the
anticyclotomic Zp-extension of an imaginary quadratic field F , then the group
A(F∞) is expected to be not finitely generated under a certain root number
condition (see [35, Growth Number Conjecture] and [26, Conjecture 1.2]). This
therefore brings us to the next theorem which provides us some criterion to
have a precise growth formula in the absence of the finite generation of A(F∞),
but under more restrictive assumptions on the reduction type of A and the
finiteness of the full (p-primary) Tate-Shafarevich groups.

Theorem 1.6 (Theorem 4.7). Let A be an abelian variety defined over a number
field F with potentially good ordinary reduction at all primes of F above p. Let
F∞ be a Zp-extension of F and suppose that X(A/Fn)[p

∞] is finite for every n.
Then we have

e
(

Ж(A/Fn)
)

= µ
(

Ж(A/F∞)∨
)

pn + λ
(

Ж(A/F∞)∨
)

n+ ν

for n≫ 0.

We say a little on the proofs of Theorems 4.6 and 4.7. The ingredients of the
proofs are our control theorem (Theorem 3.3), a description of the structure
of Ж(A/F∞)∨ via the G-functor of Lee (see Proposition 4.1) and an explicit
description of the structure of (A(F∞)⊗Zp

Qp/Zp)
∨ as elucidated in the work

of Lee [23]. Although at first viewing, Theorem 4.7 does not have any prior
hypothesis on the Mordell-Weil groups, we do made use of (a consequence
of) Lee’s explicit description for our eventual proof. We also mention that
our approach in proving Theorem 4.7 requires us to make use of the control
theorem of the classical Selmer group of the ordinary abelian variety A (but
we do not require this ordinarity hypothesis for the proof of Theorem 4.6).
We finally say something on the situation p = 2. If the number field F has no
real primes, then all the above mentioned results carry over. In the event that F
has at least one real prime, the situation is slightly trickier due to technical
cohomological considerations. Despite this, we are hopeful that some variant
of the results in this paper should hold for p = 2, although at this point of
writing, we are not able to pinpoint the exact variant as yet. However, we like
to mention that there are some recent interesting works [3, 20] on the Iwasawa
theory for (possibly non-cyclotomic) Z2-extensions. Naturally, one might ask if

Documenta Mathematica 25 (2020) 2445–2471



2450 M.F. Lim

the ideas in these works can be applied to study control theorem of fine Selmer
groups and growth of fine Tate-Shafarevich groups for the case p = 2. We hope
to revisit this in the near future.
We now give an outline of the paper. In Section 2, we collect several results on
Zp-modules and Λ-modules which will be required in our arithmetic discussion.
In Section 3, we introduce the fine Selmer groups, fine Mordell-Weil groups and
fine Tate-Shafarevich groups. The control theorem of the fine Selmer groups
will be established here. Section 4 is where we prove our asymptotic estimates
on the growth of the fine Tate-Shafarevich groups in a Zp-extension. In Sec-
tion 5, we specialize our theorem to certain specific Zp-extensions. In particular,
for the cyclotomic Zp-extension, we formalize a conjectural explicit growth of
the fine Tate-Shafarevich groups which was first proposed by Wuthrich [47, 49].
We also discuss some classes of non-cyclotomic Zp-extensions, where we can ob-
tain a precise growth formula of the fine Tate-Shafarevich groups. Along the
way, we propose several questions on some finer aspects of the growth of fine
Tate-Shafarevich groups in various Zp-extensions.
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2 Algebraic preliminaries

In this section, we recall certain algebraic preliminaries. If N is a Zp-module,
denote by N [pn] the submodule of N consisting of elements of N which are
annihilated by pn. We then write N [p∞] = ∪n≥1N [pn]. If N is finitely gen-
erated over Zp, we write e(N) for the power of p in the order of N [p∞], i.e.,
|N [p∞]| = pe(N).

2.1 Some useful lemmas

We begin with a useful lemma (compare with [23, Lemma 2.1.4(2)] and [27,
Lemma 2.1.3]).

Lemma 2.1. Let 0 −→ M −→ N −→ P −→ 0 be a short exact sequence of
finitely generated Zp-modules. Suppose that pj annihilates P [p∞]. Then we
have an exact sequence

0 −→M [p∞] −→ N [p∞] −→ P [p∞] −→Mf/p
j
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of abelian groups, where Mf := M/M [p∞]. In particular, if M is finite, we
have a short exact sequence

0 −→M [p∞] −→ N [p∞] −→ P [p∞] −→ 0

and an equality

e(N) = e(M) + e(P ).

Proof. By considering the long exact Tor-sequence of −⊗Zp
Qp/Zp, we obtain

an exact sequence

0 −→M [p∞] −→ N [p∞] −→ P [p∞]
δ−→M ⊗Qp/Zp.

Since pj annihilates P [p∞], the image of the map δ is contained in

(

M ⊗Qp/Zp

)

[pj ] =
(

Mf ⊗Qp/Zp

)

[pj ] = Mf/p
j.

This yields the exact sequence of the lemma. The remainder of the lemma is
immediate from this.

Occasionally, we need to analyze the p-torsion subgroups of the terms in an
exact sequence with at least four terms. The following lemma gives us some
leverage towards this.

Lemma 2.2. Let 0 −→M −→ N −→ P −→ Q be an exact sequence of finitely
generated Zp-modules, where M is finite. Then we have an exact sequence

0 −→M −→ N [p∞] −→ P [p∞] −→ Q[p∞]

of Zp-modules. In particular, we have

e(P ) ≤ e(N) + e(Q) and
∣

∣

∣
e(N)− e(P )

∣

∣

∣
≤ e(M) + e(Q).

Proof. Write U for the image of the map N −→ P . Then by Lemma 2.1 and
the finiteness of M , we have exact sequences

0 −→M −→ N [p∞] −→ U [p∞] −→ 0,

0 −→ U [p∞] −→ P [p∞] −→ Q[p∞].

Splicing the two exact sequences, we obtain the required exact sequence of the
lemma. The estimates in the lemma are immediate from this.

As we frequently need to consider inverse limits of modules, the next lemma
will come in handy for our subsequent discussion.
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Lemma 2.3. Let {Mn}, {Nn}, {Pn} and {Qn} be projective systems of finitely
generated Zp-modules such that for every n, there is an exact sequence

0 −→Mn −→ Nn −→ Pn −→ Qn

which is compatible with the transition maps of the projective systems. Suppose
further that each Mn is finite. Then we have an exact sequence

0 −→ lim←−
n

Mn −→ lim←−
n

Nn −→ lim←−
n

Pn −→ lim←−
n

Qn

of Zp-modules.

Proof. Write Un for the image of the map Nn −→ Pn. Then we have exact
sequences

0 −→ lim←−
n

Mn −→ lim←−
n

Nn −→ lim←−
n

Un −→ 0,

0 −→ lim←−
n

Un −→ lim←−
n

Pn −→ lim←−
n

Qn,

where the surjectivity of the rightmost map of the first sequence follows from
the fact that lim←−

n

1Mn = 0 by the finiteness of Mn. The required exact sequence

of the lemma then follows from splicing the above two exact sequences.

2.2 The functor G

Throughout the paper, we shall write Λ for the classical Iwasawa algebra Zp[[Γ]],
where Γ = Zp. For a finitely generated Λ-module M , we can attach Iwasawa
µ-invariant (denoted by µ(M)) and Iwasawa λ-invariant (denoted by λ(M)) to
it (see [37, Definition 5.3.9]).

Denote by Γn the unique subgroup of Γ of index pn. In [23], Lee introduced
the following functor on a Λ-module M which is defined by

G(M) := lim←−
n

(

MΓn
[p∞]

)

.

We shall record certain properties of this functor that will be required in our
discussion. For more details on the functor, we refer the readers to the pa-
per [23].

Proposition 2.4. Let M be a finitely generated Λ-module. Then the following
assertions are valid.

(1) G(M) is a torsion Λ-module.

(2) µ(G(M)) = µ(M).
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(3) G(M) = 0 if and only if there is a pseudo-isomorphism

M
∼−→ Λr ⊕

(

s
⊕

j=1

Λ/ξmj

)

,

where ξmj
is certain pmj -th cyclotomic polynomial.

(4) We have
e
(

MΓn

)

= µ
(

G(M)
)

pn + λ
(

G(M)
)

n+ ν

for n≫ 0.

Proof. Assertions (1)-(3) are immediate consequences of [23, Lemma A.2.9].
The final assertion is [23, Lemma 4.1.3].

We end with the following technical result which will be required for the esti-
mation of the growth of the fine Tate-Shafarevich groups.

Lemma 2.5. Let {Mn} be a projective system of Λ-modules with transition maps
Mn+1 −→Mn such that the action of Λ on Mn factors through Zp[Γ/Γn]. Write
M = lim←−

n

Mn. For each n, the natural map M −→Mn factors through MΓn
to

induce a map MΓn
−→Mn. Suppose that the following statements are valid.

(a) The kernel of the map MΓn
−→Mn is finite for each n.

(b) The cokernel of the map MΓn
−→Mn is finite and bounded independently

of n.

Then we have e(Mn) ≤ µ
(

G(M)
)

pn + λ
(

G(M)
)

n + O(1). Furthermore, we
have the following assertions.

(i) In the event that the kernel of the map MΓn
−→ Mn is also bounded

independently of n, we then have e(Mn) = µ
(

G(M)
)

pn + λ
(

G(M)
)

n +
O(1).

(ii) If G(M) = 0, then the quantity e(Mn) is bounded independently of n.

Proof. Denote by Cn (resp., Dn) the kernel (resp., cokernel) of the map
MΓn

−→ Mn. Since Cn is assumed to be finite, it follows from Lemma 2.2
that we have

e(Mn) ≤ e(MΓn
) + e(Dn).

The required estimate then follows from Proposition 2.4(4) and hypothesis
(b) of the proposition. Now, if G(M) = 0, then we see immediately that
e(Mn) = O(1). This establishes (ii). On the other hand, by Lemma 2.2 again,
we have

∣

∣e(Mn)− e(MΓn
)
∣

∣ ≤ e(Cn) + e(Dn).

Therefore, if the order of Cn is also bounded, it follows from the above that we
have e(Mn) = µ

(

G(M)
)

pn + λ
(

G(M)
)

n+O(1). This shows (i).
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Remark 2.6. Note that in assertion (ii) of Lemma 2.5, we do not a priori
require the hypothesis that the kernel of the map MΓn

−→ Mn is bounded
independently of n.

3 Fine Selmer groups over Zp-extension

3.1 General setup

We begin with some general remarks. Throughout, we let A denote an abelian
variety which is defined over a number field F . Let S be a finite set of primes
of F containing the primes above p, the bad reduction primes of A and the infi-
nite primes. We then write Sp for the set of primes in S lying above p. Denote
by FS the maximal algebraic extension of F which is unramified outside S. For
every extension L of F contained in FS , we write GS(L) = Gal(FS/L), and
denote by S(L) (resp., Sp(L)) the set of primes of L above S (resp., Sp).
Let L be a finite extension of F contained in FS . Then the fine Selmer group
of A over L is defined by

R(A/L) = ker



H1(GS(L), A[p
∞]) −→

⊕

v∈S(L)

H1(Lv, A[p
∞])



 .

At first viewing, it would seem that the fine Selmer group depends on the set S.
But we shall see that this is not so. In fact, recall that the (classical p-primary)
Selmer group Sel(A/L) is defined by the exact sequence

Sel(A/L) = ker



H1(GS(L), A[p
∞]) −→

⊕

v∈S(L)

H1(Lv, A)[p
∞]





and it is well-known that this definition is independent of the set S as long as
the set S contains all the primes above p and the bad reduction primes of A
(see [36, Chap. I, Corollary 6.6]). Furthermore, we have a short exact sequence

0 −→ A(L)⊗Zp
Qp/Zp −→ Sel(A/L) −→X(A/L)[p∞] −→ 0, (3.1.1)

where X(A/L) is the Tate-Shafarevich group.
The fine Selmer group and the classical Selmer group are related by the follow-
ing exact sequence.

Lemma 3.1. We have an exact sequence

0 −→ R(A/L) −→ Sel(A/L) −→
⊕

v∈Sp(L)

A(Lv)⊗Zp
Qp/Zp.

In particular, the definition of the fine Selmer group does not depend on the
choice of the set S.
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Proof. See [30, Lemma 4.1].

Following Wuthrich [49], the fine Mordell-Weil groupM(A/L) is defined by

M(A/L) = ker



A(L)⊗Zp
Qp/Zp −→

⊕

v∈Sp(L)

A(Lv)⊗Zp
Qp/Zp





and this fits into the following commutative diagram

0 //M(A/L)

��

// A(L)⊗Zp
Qp/Zp

��

//

⊕

v∈Sp(L)

A(Lv)⊗Zp
Qp/Zp

0 // R(A/L) // Sel(A/L) //

⊕

v∈Sp(L)

A(Lv)⊗Zp
Qp/Zp

(3.1.2)
with exact rows, where the leftmost vertical map is induced by the middle ver-
tical map. Following Wuthrich [49], the fine Tate-Shafarevich group Ж(A/L)
is then defined to be

Ж(A/L) = coker
(

M(A/L) −→ R(A/L)
)

.

Since the middle vertical map in diagram (3.1.2) is injective, so is the leftmost
vertical map. Therefore, applying the snake lemma to the diagram (3.1.2), we
obtain a short exact sequence

0 −→M(A/L) −→ R(A/L) −→Ж(A/L) −→ 0 (3.1.3)

with Ж(A/L) injecting into X(A/L).
Let F∞ be a Zp-extension of F , whose Galois group Gal(F∞/F ) is denoted
by Γ. If Γn denotes the unique subgroup of Γ of index pn, we write Fn

for the fixed field of Γn. The fine Selmer group of A over F∞ is defined to
be R(A/F∞) = lim−→

n

R(A/Fn) which comes naturally equipped with a Zp[[Γ]]-

module structure. The Zp[[Γ]]-modules M(A/F∞) and Ж(A/F∞) are simi-
larly defined by taking limit of the corresponding objects over the intermediate
subfields. We shall write Y (A/Fn) and Y (A/F∞) for the Pontryagin dual of
R(A/Fn) and R(A/F∞) respectively. We also write W (A/Fn) and W (A/F∞)
for the Pontryagin dual of M(A/Fn) and M(A/F∞) respectively. In particu-
lar, upon taking direct limit of the sequence (3.1.3) and following up by taking
Pontryagin dual, we obtain

0 −→Ж(A/F∞)∨ −→ Y (A/F∞) −→W (A/F∞) −→ 0. (3.1.4)

Lemma 3.2. The modules appearing in sequence (3.1.4) are finitely generated
over Λ.
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Proof. This is essentially well-known but for the convenience of the readers,
we sketch a proof here. Since the ring Λ is Noetherian, it suffices to show
that Y (A/F∞) is finitely generated over Λ, or equivalently, that R(A/F∞) is
cofinitely generated over Λ. As R(A/F cyc) is contained in H1(GS(F∞), A[p∞]),
we are reduced to showing that H1(GS(F∞), A[p∞]) is cofinitely generated
over Λ. By the topological Nakayama lemma [37, Proposition 5.3.10], it then
suffices to show that H1(GS(F∞), A[p∞])Γ is cofinitely generated over Zp. But
since Γ has cohomological dimension one, the restriction-inflation sequence
yields a surjection H1(GS(F ), A[p∞]) ։ H1(GS(F∞), A[p∞])Γ, and so we are
reduced to showing that H1(GS(F ), A[p∞]) is cofinitely generated over Zp. But
the latter is a standard consequence of [37, Proposition 8.3.20] (for instance,
see [29, Lemma 5.5]).

3.2 Control theorem for fine Selmer groups

Retaining the settings of the previous subsection, we now state the following.

Theorem 3.3. Let A be an abelian variety defined over a number field F . Let
F∞ be a Zp-extension of F . Denote by Fn the intermediate subfield of F∞/F
with index |Fn : F | = pn. Then the restriction map

rn : R(A/Fn) −→ R(A/F∞)Γn

has finite kernel and cokernel which are bounded independently of n.

Before proving the control theorem, we first establish the following lemma
which is also proven in [23, Lemma 2.0.1].

Lemma 3.4. Let A be an abelian variety defined over K, where K is a fi-
nite extension of either Q or Ql. Here l can be any prime (possibly = p).
Suppose that K∞ is a Zp-extension of K and Kn is the intermediate subfield
of K∞ with |Kn : K| = pn. Write Gn = Gal(K∞/Kn). Then the group
H1

(

Gn, A(K∞)[p∞]
)

is finite with order bounded independently of n.

Proof. We give a proof which is slightly different to that in [23, Lemma 2.0.1].

Write U :=
(

A(K∞)[p∞]
)∨

. Note that this is finitely generated over Zp with
a continuous action of G := Gal(K∞/K). In particular, U is torsion as a
Zp[[Gn]]-module for every n. Hence we have

0 = rankZp[[Gn]](U) = rankZp
UGn

− rankZp
UGn , (3.2.1)

where the second equality follows from [37, Proposition 5.3.20]. Now, observe
that

UGn
=

(

A(Kn)[p
∞]

)∨
,

and this is finite by the Mordell-Weil Theorem or Mattuck’s theorem accord-
ingly to K (and hence Kn) being a finite extension of Q or Ql. By (3.2.1), so is
UGn . In particular, we have UGn ⊆ U [p∞]. Since U is finitely generated over
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Zp, the groups UGn are therefore finite and bounded independently of n. But
UGn is precisely the Pontryagin dual of H1(Gn, A(K∞)[p∞]), and so we have
the conclusion of the lemma.

We can now give the proof of Theorem 3.3.

Proof of Theorem 3.3. Consider the following commutative diagram

0 // R(A/Fn)

rn

��

// H1
(

GS(Fn), A[p
∞]

)

hn

��

//

⊕

vn∈S(Fn)

H1(Fn,vn , A[p
∞])

gn=⊕gn,vn

��

0 // R(A/F∞)Γn // H1
(

GS(F∞), A[p∞]
)Γn

//

(

⊕

w∈S(F∞)

H1(F∞,w , A[p
∞])

)Γn

with exact rows. Since Γn has p-cohomological dimension 1, the
restriction-inflation sequence tells us that hn is surjective and that
kerhn = H1

(

Γn, A(F∞)[p∞]
)

. But the latter is finite with bounded or-
der by Lemma 3.4.
It therefore remains to show the finiteness and boundness of ker gn. For each
vn, fix a prime of F∞ above vn which is denoted by wn, and write v for the
prime of F below vn. Write Γwn

for the decomposition group of wn in Γ. By
the Shapiro’s lemma and the restriction-inflation sequence, we have

ker
(

⊕

vn∈S(Fn)

gn,vn

)

=
⊕

vn∈S(Fn)

H1
(

Γwn
, A(F∞,vn)[p

∞]
)

.

If v is a prime of F below wn such that v splits completely in F∞/F , then Γwn
=

0 and so one has H1
(

Γwn
, A(F∞,wn

)[p∞]
)

= 0. Thus, it remains to consider the
primes v ∈ S which does not split completely in F∞/F . Since S is a finite set,
the number of such possibly nonzero summands

⊕

H1
(

Γwn
, A(F∞,wn

)[p∞]
)

is
therefore finite and bounded independently of n. Hence it remains to show that
each H1

(

Γwn
, A(F∞,wn

)[p∞]
)

is finite and bounded independently for those
primes lying above v which do not decompose completely in F∞/F . But this
again follows from Lemma 3.4. Thus, the proof of the theorem is completed.

We record an immediate corollary of the control theorem.

Corollary 3.5. Let A be an abelian variety defined over a number field F .
Let F∞ be a Zp-extension of F . If Y (A/F ) is finite, then Y (A/F∞) is torsion
over Λ.

It seem plausible to make the following conjecture (also see [47]).

Conjecture Y. Let A be an abelian variety defined over a number field F .
Denote by F∞ a Zp-extension with intermediate subfield Fn of index |Fn : F | =
pn. Then Y (A/F∞) is torsion over Λ.
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In the event that E is an elliptic curve over Q with good reduction at p and F
is an abelian extension of Q, then Conjecture Y is valid for Y (E/F cyc) by a
theorem of Kato [19]. There are also some known cases for non-cyclotomic
Zp-extensions (see [3, 4, 20, 38, 41]).

4 Fine Tate-Shafarevich groups over Zp-extensions

In this section, we will study the variation of the fine Tate-Shafarevich groups
over a Zp-extension.

4.1 Torsionness of fine Tate-Shafarevich groups

We begin by examining the module structure of Ж(A/F∞)∨ and establishing
its torsionness. We emphasis that this result does not assume the validity of
Conjecture Y, and so it can be viewed as a partial evidence to Conjecture Y.

Proposition 4.1. Let A be an abelian variety defined over a number field F ,
and F∞ a Zp-extension of F . Write Fn for the intermediate subfield of F∞/F
with |Fn : F | = pn. Suppose further that Ж(A/Fn) is finite for every n. Then
we have the following short exact sequence

0 −→Ж(A/F∞)∨ −→ G
(

Y (A/F∞)
)

−→ G
(

W (A/F∞)
)

−→ 0

of Λ-modules. In particular, Ж(A/F∞) is a cotorsion Zp[[Γ]]-module.

Proof. The second assertion follows from the short exact sequence of the propo-
sition by Lemma 2.4(1). Therefore, it suffices to establish the said short exact
sequence. In view that Ж(A/Fn) is finite, we may apply Lemma 2.2 to the
dual of sequence (3.1.3) to obtain the following short exact sequence

0 −→Ж(A/Fn)
∨ −→ Y (A/Fn)[p

∞] −→W (A/Fn)[p
∞] −→ 0.

Upon taking inverse limit, we obtain the short exact sequence

0 −→Ж(A/F∞)∨ −→ lim←−
n

(

Y (A/Fn)[p
∞]

)

−→ lim←−
n

(

W (A/Fn)[p
∞]

)

−→ 0,

noting that lim←−
n

1Ж(A/Fn)
∨ = 0 by the finiteness assumption on Ж(A/Fn).

Hence we are now reduced to proving the isomorphisms

G
(

Y (A/F∞)
)

∼= lim←−
n

(

Y (A/Fn)[p
∞]

)

and
G
(

W (A/F∞)
)

∼= lim←−
n

(

W (A/Fn)[p
∞]

)

.

Now, consider the exact sequence

0 −→ (coker rn)
∨ −→ Y (A/F∞)Γn

−→ Y (A/Fn) −→ (ker rn)
∨ −→ 0.
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Since (coker rn)
∨ is finite by Theorem 3.3, it follows from Lemma 2.2 that we

have an exact sequence

0 −→ (coker rn)
∨ −→ Y (A/F∞)Γn

[p∞] −→ Y (A/Fn)[p
∞] −→ (ker rn)

∨.

By Lemma 2.3, this in turn yields the following exact sequence

0 −→ lim←−
n

(coker rn)
∨ −→ lim←−

n

(

Y (A/F∞)Γn
[p∞]

)

−→ lim←−
n

Y (A/Fn)[p
∞]

−→ lim←−
n

(ker rn)
∨. (4.1.1)

On the other hand, it follows from the definition of the restriction map

rn : R(A/Fn) −→ R(A/F∞)Γn

that one has lim−→
n

ker rn = lim−→
n

coker rn = 0 which in turn implies that

lim←−
n

(ker rn)
∨ = lim←−

n

(coker rn)
∨ = 0. Combining these observations with the

exact sequence (4.1.1), we obtain

G
(

Y (A/F∞)
)

∼= lim←−
n

(

Y (A/Fn)[p
∞]

)

,

as required. Now consider the following commutative diagram

0 //M(A/Fn)

tn

��

// R(A/Fn)

rn

��

// Ж(A/Fn)

zn

��

// 0

0 //M(A/F∞)Γn // R(A/F∞)Γn // Ж(A/F∞)Γn

with exact rows. Since Ж(A/Fn) is assumed to be finite for all n, so is ker zn.
Combining this with Theorem 3.3, we see that ker tn and coker tn are finite for
all n. We can now proceed similarly as above to conclude that

G
(

W (A/F∞)
)

∼= lim←−
n

(

W (A/Fn)[p
∞]

)

.

This completes the proof of the proposition.

Corollary 4.2. Retain the setting of Proposition 4.1. Suppose that Ж(A/Fn)

is finite for every n and that
(

A(F∞) ⊗Zp
Qp/Zp

)∨
is finitely generated over

Zp. Then we have G
(

W (A/F∞)
)

= 0 and an isomorphism

Ж(A/F∞)∨ ∼= G
(

Y (A/F∞)
)

of torsion Λ-modules.
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Proof. In view of the hypothesis, it follows from the result of Lee [23, Theorem
2.1.2] that we have an injection

(

A(F∞)⊗Zp
Qp/Zp

)∨ →֒
s

⊕

j=1

Λ/ξnj

with finite cokernel, where ξnj
is certain pnj th cyclotomic polynomials. Since

(

A(F∞) ⊗Zp
Qp/Zp

)∨
surjects onto W (A/F∞), we see that W (A/F∞) is also

pseudo-isomorphic to a direct summand of modules of the form Λ/ξnj
. It then

follows from Proposition 2.4(3) that G
(

W (A/F∞)
)

= 0. Putting this latter
observation into the short exact sequence of Proposition 4.1, we obtain the
conclusion of the corollary.

Remark 4.3. In proving G
(

(

A(F∞)⊗Zp
Qp/Zp)

)∨
)

= 0 in [23, Theorem 2.1.2],

a crucial observation used by Lee is that A(Fn)⊗Zp
Qp/Zp is p-divisible. Unfor-

tunately, this property may not hold for the fine Mordell-Weil groupM(A/Fn),
and so we cannot apply the approach there to prove G

(

W (A/F∞)
)

= 0 directly
and unconditionally.

4.2 Growth of fine Tate-Shafarevich groups

We give the following growth formula for the p-torsion subgroup of Y (A/Fn)
which is an immediate consequence of our control theorem. Note that this
result does not require the validity of Conjecture Y,

Proposition 4.4. Let A be an abelian variety defined over a number field F .
Let F∞ be a Zp-extension of F and Fn the intermediate subfield of F∞ with
|Fn : F | = pn. Then we have

e
(

Y (A/Fn)
)

= µ
(

G
(

Y (A/F∞)
)

)

pn + λ
(

G
(

Y (A/F∞)
)

)

n+O(1).

Proof. This is an immediate consequence of Lemma 2.5 and Theorem 3.3.

As mentioned in the introduction, the fine Mordell-Weil group M(A/Fn) is
not necessarily p-divisible, and so we may not have an equality Ж(A/Fn) =
Y (A/Fn)[p

∞] in general. Therefore, the growth formula in Proposition 4.4 does
not transfer directly to the fine Tate-Shafarevich groups.
We do at the very least have the following lower bound and upper bound for
the growth of the fine Tate-Shafarevich groups.

Proposition 4.5. Let A be an abelian variety defined over a number field F .
Let F∞ be a Zp-extension of F and Fn the intermediate subfield of F∞ with
|Fn : F | = pn. Suppose further that Ж(A/Fn) is finite for every n. Then we
have

µ
(

Ж(E/F∞)∨
)

pn+λ
(

Ж(E/F∞)∨
)

n+O(1) ≤ e
(

Ж(A/Fn)
)

≤ µ
(

G
(

Y (A/F∞)
)

)

pn + λ
(

G
(

Y (A/F∞)
)

)

n+O(1).
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Proof. As seen in the proof of Proposition 4.1, one has a short exact sequence

0 −→Ж(A/Fn)
∨ −→ Y (A/Fn)[p

∞] −→W (A/Fn)[p
∞] −→ 0

which in turn implies that

e
(

Ж(A/Fn)
)

= e
(

Ж(A/Fn)
∨
)

= e
(

Y (A/Fn)
)

− e
(

W (A/Fn)
)

.

By Proposition 4.4, we have

e
(

Y (A/Fn)
)

= µ
(

G
(

Y (A/F∞)
)

)

pn + λ
(

G
(

Y (A/F∞)
)

)

n+O(1).

On the other hand, it follows from Lemma 2.5 that

e
(

W (A/Fn)
)

≤ µ
(

G
(

W (A/F∞)
)

)

pn + λ
(

G
(

W (A/F∞)
)

)

n+O(1).

Combining these estimates and taking Proposition 4.1 into account, we obtain
the proposition.

It is naturally to ask whether one can derive a precise asymptotic formula for
the growth of the fine Tate-Shafarevich groups under appropriate extra as-
sumptions. The following two results (Theorems 4.6 and 4.7) provide sufficient
conditions for this.

Theorem 4.6. Let A be an abelian variety defined over a number field F . Let
F∞ be a Zp-extension of F and Fn the intermediate subfield of F∞/F with
|Fn : F | = pn. Suppose that A(F∞) is a finitely generated abelian group and
that Ж(A/Fn) is finite for each n. Then we have

e
(

Ж(A/Fn)
)

= µ
(

Ж(A/F∞)∨
)

pn + λ
(

Ж(A/F∞)∨
)

n+ ν

for n≫ 0.

Proof. As seen in the proof of Proposition 4.5, we have

e
(

Ж(A/Fn)
)

= e
(

Ж(A/Fn)
∨
)

= e
(

Y (A/Fn)
)

− e
(

W (A/Fn)
)

.

By Proposition 4.4 and Corollary 4.2, we have

e
(

Y (A/Fn)
)

= µ
(

Ж(A/F∞)∨
)

pn + λ
(

Ж(A/F∞)∨
)

n+ c

for n ≫ 0. It therefore remains to show that e
(

W (A/Fn)
)

is bounded
independently of n. As seen in the proof of Proposition 4.1, the module
W (A/F∞) = lim←−W (A/Fn) satisfies the hypothesis of Lemma 2.5. Therefore,
we may combine Corollary 4.2 with Lemma 2.5 to obtain the boundness of
e
(

W (A/Fn)
)

and this completes the proof of the theorem.
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Theorem 4.7. Let A be an abelian variety defined over a number field F with
potentially good ordinary reduction at all primes of F above p. Let F∞ be a Zp-
extension of F and Fn the intermediate subfield of F∞/F with |Fn : F | = pn.
Suppose that X(A/Fn)[p

∞] is finite for every n. Then we have

e
(

Ж(A/Fn)
)

= µ
(

Ж(A/F∞)∨
)

pn + λ
(

Ж(A/F∞)∨
)

n+ ν

for n≫ 0.

Proof. As seen in the proof of Theorem 4.6, we have

e
(

Ж(A/Fn)
)

= e
(

Ж(A/Fn)
∨
)

= e
(

Y (A/Fn)
)

− e
(

W (A/Fn)
)

.

By virtue of Propositions 4.1 and 4.4, we are reduced to showing that

e
(

W (A/Fn)
)

= µ
(

G
(

W (A/F∞)
)

)

pn + λ
(

G
(

W (A/F∞)
)

)

n+ d

for n ≫ 0. Now taking Lemma 2.5 into account, it suffices to show that the
kernel and cokernel of the map

tn :M(A/Fn) −→M(A/F∞)Γn

are finite and bounded independently of n. Since X(A/Fn) is assumed to be
finite for all n, so is Ж(A/Fn). Therefore, as seen in the proof of Proposition
4.1, we see that ker tn and coker tn is finite. It therefore remains to show that
they are bounded independently on n. Plainly, the kernel of tn is contained in
the kernel of

A(Fn)⊗Qp/Zp −→
(

A(F∞)⊗Qp/Zp

)Γn

which in turn is contained in the kernel of

H1(GS(Fn), A[p
∞]) −→ H1

(

GS(F∞), A[p∞]
)Γn

.

But this is finite and bounded independently of n by Lemma 3.4.
We now show that tn has finite cokernel which is bounded independently of n.
Consider the following commutative diagram

0 // A(Fn)⊗Zp
Qp/Zp

an

��

// Sel(A/Fn)

sn

��

// X(A/Fn)[p
∞]

��

// 0

0 //

(

A(F∞)⊗Zp
Qp/Zp

)Γn
// Sel(A/F∞)Γn //

(

X(A/F∞)[p∞]
)Γn

with exact rows. By hypothesis, the control theorem for the classical Selmer
group tells us that coker sn is finite for each n (cf. [14, Proposition 5.1]). Since
X(A/Fn)[p

∞] is finite by hypothesis, it follows that cokeran is finite for each n.
As observed by Lee [23, Lemma 4.2.4], the finiteness of cokeran in turn implies
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that they are automatically bounded independently of n. Now consider the
following commutative diagram

0 // M(A/Fn)

tn

��

// A(Fn)⊗Zp
Qp/Zp

an

��

//

⊕

vn∈Sp(Fn)

A(Fn,vn )⊗Zp
Qp/Zp

bn

��

0 // M(A/F∞)Γn //

(

A(F∞)⊗Zp
Qp/Zp

)Γn //

(

⊕

w∈Sp(F∞)

A(F∞,w) ⊗Zp
Qp/Zp

)Γn

with exact rows. In view of the boundedness of cokeran, it remains to show
that ker bn is finite and bounded independently of n. But ker bn is contained
in the kernel of the following map

⊕

vn∈Sp(Fn)

H1(Fn,vn , A[p
∞]) −→





⊕

w∈Sp(F∞)

H1(F∞,w , A[p
∞])





Γn

,

and we have seen that the latter is finite and bounded in the proof of Theorem
3.3. This completes the proof of the theorem.

We end the section with the natural question.

Question 1. Does one always have

e
(

Ж(A/Fn)
)

= µ
(

Ж(A/F∞)∨
)

pn + λ
(

Ж(A/F∞)∨
)

n+ ν

for n≫ 0?

In fact, we shall see in the next section that we do not have an answer even
restricting to a specific class of Zp-extensions.

5 Further comments

5.1 Cyclotomic Zp-extension

Write F cyc for the cyclotomic Zp-extension of F . It has been conjectured that
A(F cyc) is a finitely generated abelian group (see [13, 34]; also see [23, 25]).
Therefore, assuming this conjecture, one expects to have an asymptotic formula
for the fine Shafarevich groups by Theorem 4.7(i). We record the following
important case, where we do have such formula unconditionally.

Proposition 5.1. Let E be an elliptic curve defined over Q with good reduc-
tion at p, and F an abelian extension of Q. Denote by F cyc the cyclotomic
Zp-extension with intermediate subfield Fn of |Fn : F | = pn. Suppose that
Ж(E/Fn) is finite for all n. Then we have

e
(

Ж(E/Fn)
)

= µ
(

Ж(E/F cyc)∨
)

pn + λ
(

Ж(E/F cyc)∨
)

n+ ν

for n≫ 0.
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Proof. Under the hypothesis of the proposition, a well-known result of Kato
[19, Theorem 14.4] and Rohrlich [42] asserts that E(F cyc) is finitely generated.
The conclusion is then immediate from Theorem 4.6.

In a recent paper of Lei-Ponisnet [25], they have given a sufficient condition
for the finite generation of A(F cyc) for an abelian variety with good super-
singular reduction at all primes above p. Therefore, one can also obtain a
nice growth formula for the fine Tate-Shafarevich groups in their context. We
should mention that the conclusion of the proposition was also stated in [49,
Section 8] (but without a proof). Coates and Sujatha have further conjectured
that Y (A/F cyc) should be finitely generated over Zp (see [6, Conjecture A]).
In view of their conjecture, we expect Ж(A/F cyc)∨ to have trivial µ-invariant.
Therefore, it seems plausible to make the following conjecture.

Conjecture Z. Let A be an abelian variety defined over a number field F .
Denote by F cyc the cyclotomic Zp-extension with intermediate subfield Fn of
index |Fn : F | = pn. Suppose that Ж(A/Fn) is finite for all n. Then one has

e
(

Ж(A/Fn)
)

= λ
(

Ж(A/F cyc)∨
)

n+ ν

for n≫ 0.

The above conjecture was also stated in [49, Conjecture 8.2] for an elliptic curve
(also see [47]).

Remark 5.2. We mention some evidences on the conjecture.

(i) Suppose that E is an elliptic curve defined over Q and F is an abelian
extension of Q with E(F )[p] 6= 0, then it has been shown that Y (E/F cyc)
is finitely generated over Zp (cf. [6, Corollary 3.6]). Therefore, the above
conjecture is valid.

(ii) Suppose that A is an abelian variety with good ordinary reduction at all
primes above p and that Sel(A/F cyc)∨ is a torsion Λ-module with trivial
µ-invariant. Since (A(F cyc)⊗Zp

Qp/Zp)
∨ and Y (A/F cyc) are quotients of

Sel(A/F cyc)∨, we have that A(F cyc) is finitely generated and Y (A/F cyc)
has trivial µ-invariant. Therefore, the conjecture holds in this case.

Furthermore, if L is a finite p-extension of F , then Sel(A/Lcyc)∨ is also a
torsion Λ-module with trivial µ-invariant (cf. [15]), and so we also have
the validity of the conjecture for these extensions. Therefore, this can
provide many examples of where one has the validity of the conjecture.
For instance, for p = 5, and E is the elliptic curve y2 + y = x3 − x2. It is
well-known that Sel(E/Q(µ5)

cyc)∨ = 0 (see [7, Theorem 5.4]; we thank
the anonymous referee for reminding us of this fact). In particular, it is
a torsion Λ-module with trivial µ-invariant. Hence the same can be said
for Sel(E/Lcyc)∨ for any finite p-extension L of Q(µ5). Examples of such
L are Q(µ5i , 5

j1
√
m1, ..., 5

jr
√
mr) for i ≥ jk and mk a p-powerfree integer.
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(iii) Let E be an elliptic curve defined over Q with good supersingular re-
duction at p. The Pontryagin dual of the plus-minus Selmer groups
Sel±(E/Qcyc) in the sense of Kobayashi [21] (we refer readers therein
for the precise definitions of these groups) is Λ-torsion (see [21, Theo-
rem 1.2]). Furthermore, it is conjectured that these signed Selmer groups
have trivial µ-invariants (see discussion before [21, Corollary 10.10] and
[39]) and this have been numerical verified for many elliptic curves [40].
Therefore, these examples gives many cases where one has the growth
formula for the fine Tate-Shafarevich groups as conjectured.

Over the cyclotomic Zp-extension of Q, Wuthrich even questioned whether the
fine Tate-Shafarevich groups can have bounded growth (see [49, Question 8.3];
also see [5, 47]). We shall have little to say on this. But this naturally leads
us to the next question (we thank Christian Wuthrich for pointing this out)
which we have no answer at this point of writing.

Question 2. Does there exist an example of Ж(A/F cyc) being infinite?

5.2 Elliptic curves over certain Zp-extensions of an imaginary

quadratic field

In this subsection, we consider certain non-cyclotomic Zp-extensions. Through-
out the discussion here, p is taken to be a prime ≥ 5. Let E be an elliptic
curve defined over Q with good reduction at the prime p and F an imaginary
quadratic field of Q. We first recall the following conjecture of Mazur [35].

Growth Number Conjecture. (Mazur) The Mordell-Weil rank of E stays
bounded along any Zp-extension of F , unless the extension is anticyclotomic
and the root number is negative.

This conjecture was stated by Mazur in [35, Growth Number Conjecture] for
an ellptic curve with good ordinary reduction at p. A variant of this conjecture
was stated and studied in [26, Conjecture 1.2] for an elliptic curve with good
supersingular reduction at p. In view of this conjecture, one would expect
to have a precise growth formula for the fine Tate-Shafarevich groups over
infinitely many of such Zp-extensions. We are therefore led to the following
question, which is a special case of Question 1.

Question 3. Denote by F ac the anticyclotomic Zp-extension of the imaginary
quadratic field F and write Fn for the intermediate subfield of F ac with |Fn :
F | = pn. Does one always have

e
(

Ж(A/Fn)
)

= µ
(

Ж(A/F ac)∨
)

pn + λ
(

Ж(A/F ac)∨
)

n+ ν

for n≫ 0?

Now if the elliptic curve E has good ordinary reduction at p, then Theorem
4.7 applies (modulo finiteness of X(E/Fn)). Therefore, what remains is the
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case of an elliptic curve with supersingular reduction at p and when the root
number is negative. We do not have an answer to this and hope to revisit this
in a subsequent work.
For the remainder of the subsection, we mention some cases, where we have a
precise growth formula and raise some question on these cases. Clearly, if the
elliptic curve has good ordinary reduction at p, Theorem 4.7 applies to yield
the formula (assuming finiteness of X(E/Fn)). Therefore, our presentation
below will focus more from the point of view of Theorem 4.6. As a start, we
have the following observation.

Proposition 5.3. Let E be an elliptic curve of squarefree conductor N which
has good reduction at the prime p ≥ 5. Let F be an imaginary quadratic field
with discriminant coprime to pN . Write N = N+N− with N+ divisible only by
primes which are split in F/Q and N− divisible only by inert primes. Suppose
that N− has an odd number of prime divisor. Let F ac be the anticyclotomic
Zp-extension. Write Fn for the intermediate subfield of F ac with |Fn : F | = pn.
Suppose that Ж(E/Fn) is finite for all n. In the event that E has supersingular
reduction at p, assume further that p is split in F/Q and that each prime of F
above p is totally ramified in F ac/F . Then we have

e
(

Ж(E/Fn)
)

= λ
(

Ж(E/F ac)∨
)

n+ ν

for n≫ 0.

Proof. By the result of Pollack-Weston [41, Theorems 1.1 and 1.3] (also see
[46]), the dual Selmer group (resp., dual signed Selmer groups) of E over F ac

is torsion over Λ with trivial µ-invariants, when E has good ordinary reduction
at p (resp, good supersingular reduction at p). This yields the finite generation
of E(F ac) (also see [2, 8, 46]). Finally, as the fine Selmer group sits in every
Selmer groups, we also have the vanishing of the µ-invariant of Y (E/F ac).
Putting these information into Theorem 4.6, we have the asymptotic formula
as asserted.

We now consider a complementary situation of the preceding proposition. Sup-
pose that E is an elliptic curve of squarefree conductor N which has good
reduction at the prime p ≥ 5. Let F be an imaginary quadratic field with
discriminant coprime to pN and such that all the prime divisor of pN splits
completely in F/Q. Matar [33, Conjecture B] has conjectured that Y (E/F ac)
is finitely generated over Zp and provided some evidence to his conjecture [33,
Theorem 4.1].
In view of Proposition 5.3 and this conjecture of Matar, one might ask the
following question.

Question 4. Does one always have µ
(

Ж(E/F ac)∨
)

= 0?

We do not have an answer to our question at this point of writing. In fact, we
do not even have an answer to a modest variant of the above question. Before
stating this, we record the following.
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Proposition 5.4. Let E be an elliptic curve with complex multiplication given
by the ring of integers of an imaginary quadratic field F . Suppose that p is
a prime ≥ 5 which split completely in F/Q. Write Fn for the intermediate
subfield of F ac/F with |Fn : F | = pn. Suppose that either of the following
statements is valid.

(a) Ж(E/Fn) is finite for all n and that the root number of E/Q is +1.

(b) X(E/Fn) is finite for all n.

Then we have

e
(

Ж(E/Fn)
)

= µ
(

Ж(E/F ac)∨
)

pn + µ
(

Ж(E/F ac)∨
)

n+ ν

for n≫ 0.

Proof. Since the prime p splits completely in F/Q, E has good ordinary reduc-
tion at all primes above p. So the conclusion follows from Theorem 4.7 under
assumption (b). To see that one has the asserted growth formula under (a),
recall that under the root number hypothesis, a well-known theorem of Green-
berg [12, Theorem 3] asserts that E(F ac) is finitely generated, and so one can
apply Theorem 4.6.

We can now ask the following modest variant of Question 4.

Question 5. Retain the setting of Proposition 5.4. Does one have

µ
(

Ж(E/F ac)∨
)

= 0?

In the case of root number +1, the work of Finis [10] shows that the µ-invariant
of the anticyclotomic p-adic L-function can possibly be nonzero (We thank
Ming-Lun Hsieh for explaining this to us). In view of the anticyclotomic main
conjecture (for instance, see [1]), the Pontryagin dual of the classical Selmer
group may possibly have nonzero µ-invariant. However, since the fine Selmer
group is smaller than the Selmer group, this does not necessarily imply that the
fine Selmer group has non-trivial µ-invariant. For the case of the root number
being −1, we have even less information, since the classical Selmer group is
not cotorsion over Λ anymore (see [1]), and so it does not seem easy to extract
information on the structure of the dual fine Selmer group from the non-torsion
classical Selmer groups.

We end by mentioning another class of Zp-extensions of F coming from CM
elliptic curves.

Proposition 5.5. Let E be an elliptic curve with complex multiplication given
by the ring of integers of an imaginary quadratic field F . Suppose that p is a
prime ≥ 5 which split completely in F/Q, say p = pp̄, where p is a prime of F
above p. Let Fp∞ be the unique Zp-extension of F unramified outside p. Write
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Fn for the intermediate subfield of Fp∞/F with |Fn : F | = pn. Suppose that
Ж(E/Fn) is finite for all n. Then we have

e
(

Ж(E/Fn)
)

= λ
(

Ж(E/Fp∞)∨
)

n+ ν

for n≫ 0.

Proof. By a classical result of Coates [4, Theorem 16] (or see [9, Chap IV,
Corollary 1.8]), E(Fp∞) is a finitely generated abelian group. Furthermore, via
the results of Gillard [11] and Schneps [44], one can show that the dual strict
Selmer group of E over Fp∞ is torsion over Λ with trivial µ-invariant, which in
turn implies that the µ-invariant of Y (E/Fp∞) is trivial (see [32, Proposition
5.1] for details). Hence we may apply Theorem 4.6 to obtain the conclusion of
the proposition.
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