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Abstract. We develop the concept of weak tracial Rokhlin property
for finite group actions on simple (not necessarily unital) C*-algebras
and study its properties systematically. In particular, we show that
this property is stable under restriction to invariant hereditary C*-
algebras, minimal tensor products, and direct limits of actions. Some
of these results are new even in the unital case and answer open ques-
tions asked by N.C. Phillips in full generality. We present several
examples of finite group actions with the weak tracial Rokhlin prop-
erty on simple stably projectionless C*-algebras. We prove that if
α : G → Aut(A) is an action of a finite group G on a simple C*-
algebra A with tracial rank zero and α has the weak tracial Rokhlin
property, then the crossed product A⋊α G and the fixed point alge-
bra Aα are simple with tracial rank zero. This extends a result of
N.C. Phillips to the nonunital case. We use the machinery of Cuntz
subequivalence to work in this nonunital setting.
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1 Introduction

The Rokhlin property for actions on C*-algebras appeared in [20, 8, 31, 32].
Izumi gave a modern definition of the Rokhlin property for finite group ac-
tions on unital C*-algebras [23, 24]. This property is useful to understand the
structure of the crossed product of C*-algebras and properties passing from
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the underlying algebra to the crossed product [40]. However, actions with
the Rokhlin property are rare and many C*-algebras admit no finite group
actions with the Rokhlin property. Indeed, the Rokhlin property imposes se-
vere K-theoretical obstructions on C*-algebras. Phillips introduced the tracial
Rokhlin property for finite group actions on simple unital C*-algebras [43] with
the purpose of proving that every simple higher dimensional noncommutative
torus is an AT algebra [41], and proving that certain crossed products of such
algebras by finite cyclic groups are AF algebras [13] (see [39] for Z actions with
this property). The tracial Rokhlin property is generic in many cases (see [44]
and [51, Chapter 4]), and also can be used to study properties passing from
the underlying algebra to the crossed product [43, 13, 3].
Weak versions of the tracial Rokhlin property in which one uses orthogonal
positive contractions instead of orthogonal projections were studied for actions
on simple unital C*-algebras with few projections [44, 36, 21, 51, 16, 52] (see
Definition 3.7). As an example, the flip action on the Jiang-Su algebra Z ∼=
Z ⊗ Z has the weak tracial Rokhlin property but it does not have the tracial
Rokhlin property [21].
The Rokhlin property was extended to the case of actions on nonunital C*-
algebras [37, 49, 17], and there are actions with the Rokhlin property on stably
projectionless C*-algebras, in particular on the Razak-Jacelon algebra W [37].
However, there has been no work on extending the (weak) tracial Rokhlin
property to the simple nonunital case. (As far as we know, a suitable definition
of the tracial Rokhlin property for actions on nonsimple C*-algebras is not
known.) Moreover, actions on simple nonunital C*-algebras naturally appear,
for instance, the restriction of an action on a simple unital C*-algebra to an
invariant nonunital hereditary subalgebra (see Proposition 4.2). Also, there
are many examples of finite group actions on simple nonunital C*-algebras
without the Rokhlin property, which have the weak tracial Rokhlin property
(see Example 3.12). In fact, the problem of finding the right definition of the
tracial Rokhlin property for actions on simple nonunital C*-algebras was asked
by Phillips [42]. This motivated us to investigate the weak tracial Rokhlin
property for finite group actions on simple C*-algebras. We give the following
definition:

Definition 1.1. Let α : G → Aut(A) be an action of a finite group G on a
simple C*-algebra A. We say that α has the weak tracial Rokhlin property if
for every ε > 0, every finite subset F ⊆ A, and all positive elements x, y ∈ A
with ‖x‖ = 1, there exists a family of orthogonal positive contractions (fg)g∈G

in A such that, with f =
∑

g∈G fg, the following hold:

1. ‖fga− afg‖ < ε for all a ∈ F and all g ∈ G;

2. ‖αg(fh)− fgh‖ < ε for all g, h ∈ G;

3. (y2 − yfy − ε)+ -A x;

4. ‖fxf‖ > 1− ε.
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We say that α has the tracial Rokhlin property if we can arrange (fg)g∈G above
to be mutually orthogonal projections.

It turns out that our definition of the tracial Rokhlin property extends Phillips’s
definition of the tracial Rokhlin property [43, Definition 1.2] to the nonunital
simple case. We recall that in Phillips’s definition of the tracial Rokhlin prop-
erty for finite group actions on simple unital C*-algebras, Condition (3) is
formulated as follows:

(3)′ 1− f -A x (or equivalently, 1− f is Murray von Neumann equivalent to
a projection in the hereditary subalgebra generated by x),

where (fg)g∈G is a family of orthogonal projections in A. Phillips in [42] asked
for a correct analogue of Condition (3)′ in the simple nonunital case. Condi-
tion (3) in Definition 1.1 contains our main idea for a suitable notion of the weak
tracial Rokhlin property (as well as tracial Rokhlin property) in the nonunital
case. This condition—which may seem strange at the first glance—says that
1− f is small with respect to the Cuntz subequivalence relation. The rationale
behind this condition is that since y ∈ A+ is arbitrary, we can take it to be
arbitrarily large (that is, close to 1) and so y2 − yfy = y(1 − f)y is close to
1− f . The ε gap in this condition is a technical condition needed, for example,
when applying a key lemma in the Cuntz semigroup (Lemma 2.2).
The following result can be considered as a generalization of [46, Theorem 1.9]
to the nonunital case (see Theorem 3.11).

Theorem 1.2. Let A be a simple C*-algebra with tracial rank zero, and let
α : G → Aut(A) be an action of a finite group G on A. If α has the weak
tracial Rokhlin property then it has the tracial Rokhlin property.

Phillips in [42, Problem 3.2] asked whether there is a reasonable formulation
of the tracial Rokhlin property for finite group actions on simple unital C*-
algebras in terms of the central sequence algebra. We give an answer to this
question in the not necessarily unital simple case. Indeed, it turns out that if
moreover A is separable and one works with the central sequence algebra A∞,
then Condition (3) can be replaced by y2 − yfy -A∞

x (see Proposition 3.10).
We prove that an action with the weak tracial Rokhlin property is pointwise
outer (Proposition 3.2), and hence the resulting crossed product is simple.
Moreover, we prove several permanence properties for finite group actions with
the weak tracial Rokhlin property on simple C*-algebras, for example, passing
to restriction to invariant hereditary C*-algebras, minimal tensor products,
and direct limits of actions. In particular, the following result concerning tensor
products gives an affirmative answer to a question of Phillips [42, Problem 3.18]
(see Theorems 4.5 and 4.6).

Theorem 1.3. Let α : G→ Aut(A) and β : G→ Aut(B) be actions of a finite
group G on simple C*-algebras A and B. If α has the weak tracial Rokhlin
property then so does α⊗ β : G→ Aut(A⊗minB). If α has the tracial Rokhlin
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property then so does α⊗β : G→ Aut(A⊗minB) whenever Bβ has an approx-
imate identity (not necessarily increasing) consisting of projections.

Phillips proved that the crossed product of a simple unital C*-algebras with
tracial rank zero by a finite group action with the tracial Rokhlin property, is
again simple with tracial rank zero [43]. The following theorem generalizes this
result to the nonunital case (see Theorem 5.2).

Theorem 1.4. Let A be a simple C*-algebra with tracial rank zero and let α
be an action of a finite group G on A with the weak tracial Rokhlin property.
Then the crossed product A ⋊α G and the fixed point algebra Aα are simple
C*-algebras with tracial rank zero.

The preservation of some other classes of simple C*-algebras under taking
crossed products by finite group actions with the (weak) tracial Rokhlin prop-
erty is given in Section 5 (and in [1] and [19]).
To prove Theorem 1.4, we need to work with simple nonunital C*-algebras
with tracial rank zero. Recall that Lin in [34] first gave the definition of tracial
rank for unital C*-algebras and then he defined the tracial rank of a nonunital
C*-algebra to be the tracial rank of its minimal unitization. However, working
with the unitization of C*-algebras is not always convenient. Moreover, the
unitization of a simple nonunital C*-algebra is not simple and so one can not
use techniques which are applicable only to simple C*-algebras. To deal with
this difficulty, we develop an approach which unifies the concept of tracial rank
zero for both unital and nonunital simple C*-algebras; see Theorem A.6. This
approach helps us to study crossed products of simple nonunital C*-algebras
with tracial rank zero by finite group actions with the weak tracial Rokhlin
property. We also need some results about simple nonunital C*-algebras with
tracial rank zero, such as Morita invariance and having real rank zero and
stable rank one (the last two results in the simple unital case are proved in
[34]). We did not find any reference proving these results (in the nonunital
case), however, they may be known to some researchers. So we prove them in
Appendix A.

2 Cuntz subequivalence

In this section, we recall some results on Cuntz subequivalence and provide
some lemmas which will be used in the subsequent sections. We refer the
reader to [2] and [45] for more information about Cuntz subequivalence.

Notation 2.1. We use the following notation in this paper.

1. For a C*-algebra A, A+ denotes the positive cone of A. Also, A+ denotes
the forced unitization of A (adding a new identity even if A is unital),
while A∼ = A if A is unital and A∼ = A+ if A is nonunital.

2. If p and q are projections in a C*-algebra A, then we write p ∼MvN q if
p is Murray-von Neumann equivalent to q.
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3. If E and F are subsets of a C*-algebraA and ε > 0, then we write E ⊆ε F
if for every a ∈ E there is b ∈ F such that ‖a− b‖ < ε.

4. We write K = K(ℓ2) and Mn =Mn(C).

5. Let A be a C*-algebra. For a, b ∈ A+, we say that a is Cuntz subequivalent
to b in A and we write a -A b, if there is a sequence (vn)n∈N in A such
that ‖a − vnbv

∗
n‖ → 0. We write a ∼A b if both a -A b and b -A a.

If a, b ∈ (A ⊗ K)+, we write a -A b if a is Cuntz subequivalent to b in
A⊗K. [a] stands for the Cuntz equivalence class of a.

6. Let a be a positive element in a C*-algebra A and let ε > 0. Let
fε : [0,∞) → [0,∞) be defined by fε = 0 on [0, ε] and fε(λ) = λ − ε
on (ε,∞). We denote (a− ε)+ = fε(a).

7. We use the notation Zn for the group Z/nZ. Moreover, N denotes the
set of natural numbers not including zero.

The following key lemma will be used several times throughout the paper.

Lemma 2.2 ([29], Lemma 2.2). Let A be a C*-algebra, let a, b ∈ A+, and let
ε > 0. If ‖a−b‖ < ε then there is a contraction d ∈ A such that (a−ε)+ = dbd∗.
In particular, (a− ε)+ -A b.

In the preceding lemma, if instead of ‖a− b‖ < ε we assume that ‖a− b‖ ≤ ε,
then again we get (a− ε)+ -A b. In fact, for any δ > 0 we have ‖a− b‖ < ε+ δ
and so (a− ε− δ)+ -A b. Letting δ → 0, we get (a− ε)+ -A b.
We need the following lemma to work with Condition (3) in Definition 3.1.

Lemma 2.3 ([1]). Let A be a C*-algebra, let x ∈ A be a nonzero element, and
let b ∈ A+. Then for any ε > 0,

(xbx∗ − ε)+ -A x
(

b − ε/‖x‖2
)

+
x∗.

In particular, if ‖x‖ ≤ 1 then (xbx∗ − ε)+ -A x(b − ε)+x
∗ -A (b− ε)+.

Proof. We have

‖xbx∗ − x
(

b− ε/‖x‖2
)

+
x∗‖ ≤ ‖x‖2‖b−

(

b− ε/‖x‖2
)

+
‖ ≤ ‖x‖2 ε

‖x‖2 = ε.

Using the remark following Lemma 2.2, we get

(xbx∗ − ε)+ -A x
(

b − ε/‖x‖2
)

+
x∗.

If ‖x‖ ≤ 1 then ε
‖x‖2 ≥ ε and so (xbx∗ − ε)+ -A x(b − ε)+x

∗ -A (b− ε)+.

The following lemma is well-know. (It follows from [29, Lemmas 2.2 and 2.4(i)].)
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Lemma 2.4. Let A be a C*-algebra, let a, b ∈ A+, and let δ > 0. If a -A (b−δ)+
then there exists a bounded sequence (vn) in A such that ‖a− vnbv

∗
n‖ → 0. We

can take this sequence such that ‖vn‖ ≤ ‖a‖ 1

2 δ−
1

2 for every n ∈ N.

The following lemma is known and follows from [2, Lemmas 2.18 and 2.19].

Lemma 2.5. Let A be a C*-algebra, let a ∈ A+, and let p ∈ A be a projection.
The following statements are equivalent:

1. p -A a;

2. there exists v ∈ A such that p = vav∗;

3. p ∼MvN q in A for some projection q in aAa.

Note that the statements in Lemma 2.5 are also equivalent to [p] ≤ [a] in the
sense of [34, Definition 2.2] (see Appendix A).
In general, there is no upper bound for the norm of v in the previous lemma,
unless there is a gap between p and a; see the following lemma (which may be
considered as a special case of [29, Lemma 2.4]).

Lemma 2.6. Let A be a C*-algebra, let a ∈ A+, let ε > 0, and let p ∈ A be a
projection. If p -A (a − ε)+, then there exists v ∈ A such that p = vav∗ and

‖v‖ ≤ ε−
1

2 .

Proof. By Lemma 2.5, there exists w ∈ A such that p = w(a − ε)+w
∗. Then

[29, Lemma 2.4(i)] implies that there is v ∈ A such that p = vav∗ and ‖v‖ ≤
ε−

1

2 .

Part (1) of the following lemma is a variant of [29, Lemma 2.4]. We shall use
this lemma in the proof of Lemma 3.9.

Lemma 2.7. Let A be a C*-algebra, let a, b ∈ A+, and let ε > 0.

1. If a = x(b − ε)+ for some x ∈ A, then a = yb for some y ∈ A with
‖y‖ ≤ ε−1‖a‖.

2. If a ∈ A(b − ε)+ then there is a sequence (vn) in A such that ‖a−vnb‖ → 0
and ‖vn‖ ≤ ε−1(‖a‖+ 1

n ) for all n ∈ N.

Proof. We define continuous functions fε, gε : [0,∞) → [0,∞) for ε > 0 as in
[29, Lemma 2.4], that is,

fε(t) =







√

t− ε

t
t ≥ ε

0 t < ε

and gε(t) =







1

t
t ≥ ε

ε−2t t < ε.

Then tfε(t)
2 = (t − ε)+ and fε(t)

2 = (t − ε)+gε(t). Thus bfε(b)
2 = (b − ε)+

and fε(b)
2 = (b− ε)+gε(b). Note that ‖gε(b)‖ ≤ ε−1.
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To prove (1), put y = xfε(b)
2. Then yb = xfε(b)

2b = x(b − ε)+ = a. Also,

yy∗ = xfε(b)
4x∗ = x(b− ε)2+gε(b)

2x∗ ≤ ‖gε(b)2‖x(b − ε)2+x
∗ ≤ ε−2aa∗.

Thus ‖y‖ ≤ ε−1‖a‖.
For (2), let a ∈ A(b − ε)+ and fix n ∈ N. Then there is wn ∈ A such that
‖a − wn(b − ε)+‖ < 1

n . Put an = wn(b − ε)+. Thus ‖an‖ ≤ ‖a‖ + 1
n . By

(1) there is vn ∈ A such that an = vnb and ‖vn‖ ≤ ε−1(‖a‖ + 1
n ). Then

‖a− vnb‖ = ‖a− an‖ < 1
n , and so ‖a− vnb‖ → 0.

3 The weak tracial Rokhlin property

In this section, we define the weak tracial Rokhlin property (as well as the
tracial Rokhlin property) for finite group actions on simple not necessarily
unital C*-algebras. We show that the weak tracial Rokhlin property implies
pointwise outerness and so the resulting crossed product is simple. Then we
compare it with other notions of the weak tracial Rokhlin property for actions
on simple unital C*-algebras. Moreover, we show that the Rokhlin property in
the sense of [49, Definition 3.2] implies the weak tracial Rokhlin property for
actions on simple C*-algebras.

Definition 3.1. Let α : G → Aut(A) be an action of a finite group G on a
simple C*-algebra A. We say that α has the weak tracial Rokhlin property if
for every ε > 0, every finite subset F ⊆ A, and all positive elements x, y ∈ A
with ‖x‖ = 1, there exists a family of orthogonal positive contractions (fg)g∈G

in A such that, with f =
∑

g∈G fg, the following hold:

1. ‖fga− afg‖ < ε for all a ∈ F and all g ∈ G;

2. ‖αg(fh)− fgh‖ < ε for all g, h ∈ G;

3. (y2 − yfy − ε)+ -A x;

4. ‖fxf‖ > 1− ε.

We say that α has the tracial Rokhlin property if we can arrange (fg)g∈G above
to be mutually orthogonal projections.

An action α : G→ Aut(A) is called pointwise outer if for any g ∈ G \ {1}, the
automorphism αg is outer, that is, it is not of the form Ad(u) for any unitary u
in the multiplier algebra of A.

Proposition 3.2. Let α be an action of a finite group G on a simple C*-
algebra A. If α has the weak tracial Rokhlin property then α is pointwise outer.

Proof. The idea of the proof is similar to that of [49, Proposition 3.2]. How-
ever, we need Condition (4) in Definition 3.1 instead of Condition (iii) in [49,
Definition 3.2], and so we need more estimates. Suppose to the contrary that
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there are g0 ∈ G \ {1} and a unitary u in the multiplier algebra of A such that
αg0 = Ad(u). Set n = card(G). Choose ε with 0 < ε < 1 such that

√
1− ε− nε

n
> 0 and

(
√
1− ε− nε

n

)2

− 4ε > 0.

By [33, Lemma 2.5.11] (with f(t) = t
1

2 there), there is δ > 0 such that if

x, y ∈ A are positive contractions with ‖xy − yx‖ < δ then ‖x 1

2 y − yx
1

2 ‖ < ε.
We may assume that δ < ε. Choose a positive element b ∈ Aα with ‖b‖ = 1.
Applying Definition 3.1 with F = {b, bu∗}, with δ in place of ε, with b in place
of x, and with y = 0, we obtain a family of orthogonal positive contractions
(fg)g∈G in A such that

1. ‖fgb− bfg‖ < δ and ‖fgbu∗ − bu∗fg‖ < δ for all g ∈ G;

2. ‖αg(fh)− fgh‖ < δ for all g, h ∈ G;

3. ‖fbf‖ > 1− δ where f =
∑

g∈G fg.

Using (1) and (2) we have (1 denotes the neutral element of G):
∥

∥

∥fb
1

2 −
∑

g∈G

αg(f1b
1

2 )
∥

∥

∥ =
∥

∥

∥

∑

g∈G

fgb
1

2 −
∑

g∈G

αg(f1)b
1

2

∥

∥

∥

≤
∑

g∈G

‖fg − αg(f1)‖ < nδ.

Thus, using (3) at the third step we get

nδ > ‖fb 1

2 ‖ −
∑

g∈G

‖αg(f1b
1

2 )‖ = ‖fbf‖ 1

2 − n‖f1b
1

2 ‖ >
√
1− δ − n‖f1b

1

2 ‖.

Hence,

‖f1b
1

2 ‖ >
√
1− δ − nδ

n
>

√
1− ε− nε

n
. (1)

By (1), ‖f1b− bf1‖ < δ and so ‖f
1

2

1 b− bf
1

2

1 ‖ < ε. Thus,

‖f1b− f
1

2

1 bf
1

2

1 ‖ ≤ ‖f
1

2

1 b− bf
1

2

1 ‖ < ε. (2)

Similarly, since ‖fgb− bfg‖ < δ we have

‖fg0b− f
1

2

g0bf
1

2

g0‖ < ε. (3)

Note that f
1

2

g0bf
1

2

g0 ⊥ f
1

2

1 bf
1

2

1 and thus by (1) we have

‖f
1

2

g0bf
1

2

g0 − f
1

2

1 bf
1

2

1 ‖ ≥ ‖f
1

2

1 bf
1

2

1 ‖ = ‖f
1

2

1 b
1

2 ‖2 ≥ ‖f1b
1

2 ‖2 >
(
√
1− ε− nε

n

)2

.

(4)
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Moreover, using (1) we have

‖uf1bu∗ − bf1‖ = ‖uf1bu∗ − αg0(b)f1‖ (5)

= ‖uf1bu∗ − ubu∗f1‖
≤ ‖f1bu∗ − bu∗f1‖ < δ.

Finally, using (2), (2), (3), (4), and (5) we obtain

‖αg0(f1b)− uf1bu
∗‖ ≥ ‖f

1

2

g0bf
1

2

g0 − f
1

2

1 bf
1

2

1 ‖ − ‖f
1

2

g0bf
1

2

g0 − fg0b‖

− ‖fg0b− αg0(f1b)‖ − ‖uf1bu∗ − bf1‖ − ‖bf1 − f
1

2

1 bf
1

2

1 ‖

>

(
√
1− ε− nε

n

)2

− ε− 2δ − ε

>

(
√
1− ε− nε

n

)2

− 4ε > 0,

which is a contradiction. This shows that α is pointwise outer.

Corollary 3.3. Let α be an action of a finite group G on a simple C*-
algebra A. If α has the weak tracial Rokhlin property, then A⋊α G is simple,
and hence the fixed point algebra Aα is isomorphic to a full corner of A⋊α G.

Proof. It follows from [30, Theorem 3.1] and Proposition 3.2 that A ⋊α G is
simple. By [48], there exists a projection p in the multiplier algebra of A⋊α G
such that Aα ∼= p(A ⋊α G)p. Since A ⋊α G is simple, p(A ⋊α G)p is a full
corner.

The following lemma shows that if the property stated in Definition 3.1 holds
for some y ∈ A+ (and every x, F, ε there), then it also holds for any z ∈ A+

which is “smaller” than y (that is, for any positive z in yAy). (Note that
Ay ∩A+ = yA ∩ A+ = yAy ∩ A+.)

Lemma 3.4. Let α : G→ Aut(A) be an action of a finite group G on a simple
C*-algebra A. Let x ∈ A+ with ‖x‖ = 1. Suppose that a positive element y ∈ A
has the following property: for every ε > 0 and every finite subset F ⊆ A there
exists a family of orthogonal positive contractions (fg)g∈G in A such that, with
f =

∑

g∈G fg, the following hold:

1. ‖fga− afg‖ < ε for all a ∈ F and all g ∈ G;

2. ‖αg(fh)− fgh‖ < ε for all g, h ∈ G;

3. (y2 − yfy − ε)+ -A x;

4. ‖fxf‖ > 1− ε.

Then every positive element z ∈ Ay also has the same property. Moreover, the
statement holds if we replace “orthogonal positive contractions” with “orthogo-
nal projections.”
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Proof. The idea of the proof is similar to the argument given in the proof of [1,
Lemma 3.5]. Let z ∈ Ay be a positive element, and let a finite subset F ⊆ A,
ε > 0, and an element x ∈ A+ with ‖x‖ = 1 be given. Let δ be such that

0 < δ < min
{

1, ε
4(2‖z‖+1)

}

. Since z ∈ Ay, there exists a nonzero element

w ∈ A such that ‖z−wy‖ < δ. Choose η > 0 such that η < min{ε, ε
2‖w‖2 }. By

assumption, there exists a family of orthogonal positive contractions (fg)g∈G

in A such that, with f =
∑

g∈G fg, the following hold:

5. ‖fga− afg‖ < η for all a ∈ F and all g ∈ G;

6. ‖αg(fh)− fgh‖ < η for all g, h ∈ G;

7. (y2 − yfy − η)+ -A x;

8. ‖fxf‖ > 1− η.

Since η < ε, (5), (6), and (8) also hold for ε in place of η. It remains to show
that (z2 − zfz − ε)+ -A x. To see this, first by Lemma 2.3 at the first step
and by (7) at the last step, we have

(

wy2w∗ − wyfyw∗ − ε/2
)

+
-A w

(

y2 − yfy − ε

2‖w‖2
)

+

w∗

-A

(

y2 − yfy − ε

2‖w‖2
)

+

-A (y2 − yfy − η)+ -A x.

On the other hand, we have

∥

∥z2 − zfz−
(

wy2w∗ − wyfyw∗ − ε
2

)

+

∥

∥

≤ ‖z2 − zfz − (wy2w∗ − wyfyw∗)‖+ ε
2

≤ ‖z2 − wyz‖+ ‖wyz − wy2w∗‖+ ‖zfz − wyfz‖
+ ‖wyfz − wyfyw∗‖+ ε

2

≤ δ(2‖z‖+ 2‖wy‖) + ε
2

≤ δ(4‖z‖+ 2δ) + ε
2 ≤ δ(4‖z‖+ 2) + ε

2 < ε.

Therefore, by Lemma 2.2, (z2− zfz− ε)+ -A

(

wy2w∗ − wyfyw∗ − ε
2

)

+
-A x,

as desired. This finishes the proof.

Remark 3.5. Let α : G→ Aut(A) be an action of a finite group G on a simple
C*-algebra A.

1. If A is σ-unital then α has the (weak) tracial Rokhlin property if some
strictly positive element y in A has the property stated in Definition 3.1.
This follows from Lemma 3.4 and A = yAy = Ay.
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2. In Definition 3.1, it is enough to take y in a norm dense subset of A+.
Moreover, if (ei)i∈I is a approximate identity for A, it is enough to take y
from the set {ei : i ∈ I}. This follows from Lemma 3.4 and the fact that
the set

{

y ∈ A+ : y ∈ Aei for some i ∈ I
}

is norm dense in A+.

3. In Definition 3.1, if moreover A is purely infinite then Condition (3) is
automatic. Also, if A is finite then Condition (4) is redundant (this is
proved in [1], however, we do not need it here).

4. If moreover A is unital, then α has the tracial Rokhlin property (in the
sense of Definition 3.1) if and only if the conditions of Definition 3.1 hold
only for y = 1 (and every ε, F, x as in that definition). This implies that
our definition of the tracial Rokhlin property and [43, Definition 1.2] are
equivalent in the unital case.

The Rokhlin property for finite group actions on arbitrary C*-algebras has been
introduced in [49].

Proposition 3.6. Let A be a simple C*-algebra and let α : G→ Aut(A) be an
action of a finite group G on A. If α has the Rokhlin property in the sense of
Definition 3.2 of [49], then it has the weak tracial Rokhlin property.

Proof. Let α have the Rokhlin property in the sense of Definition 3.2 of [49].
Let x, y ∈ A+ with ‖x‖ = 1, let F ⊆ A be a finite subset, and let ε > 0. We
may assume that y 6= 0 and x, y ∈ F . Also, by Lemma 3.4, we may further
assume that ‖y‖ ≤ 1. Since α has the Rokhlin property, there exists a family
of orthogonal positive contractions (fg)g∈G in A such that, with f =

∑

g∈G fg,
we have:

1. ‖αg(fh)− fgh‖ < ε
2 for all g, h ∈ G;

2. ‖fga− afg‖ < ε
2 for all g ∈ G and all a ∈ F ;

3. ‖fa− a‖ < ε
2 for all a ∈ F .

Then, Conditions (1) and (2) in Definition 3.1 are satisfied (by (1) and (2)
above). Since y ∈ F , by (3) we have

‖y2 − yfy‖ ≤ ‖y − yf‖ < ε/2 < ε.

Thus (y2 − yfy− ε)+ = 0 -A x. Hence, Condition (3) in Definition 3.1 is also
satisfied. To prove Condition (4), by (3) and that x ∈ F we have

‖fxf − x‖ ≤ ‖fxf − xf‖+ ‖xf − x‖ ≤ ‖fx− x‖+ ‖xf − x‖ < ε.

Thus ‖fxf‖ > ‖x‖ − ε = 1 − ε, and so Condition (4) in Definition 3.1 holds.
Therefore, α has the weak tracial Rokhlin property.
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There are several weaker versions of the tracial Rokhlin property for actions on
simple unital C*-algebras. In the sequel, we compare them with our definition
of the weak tracial Rokhlin property given in Definition 3.1. First we recall the
following definition for the convenience of the reader. (See [16, Definition 2.2]
for an equivalent definition.)

Definition 3.7 (see [15]). Let α : G→ Aut(A) be an action of a finite group G
on a simple unital C*-algebra A. Then α has the weak tracial Rokhlin property
if for every ε > 0, every finite subset F ⊆ A, and every positive element x ∈ A
with ‖x‖ = 1, there exists a family of orthogonal positive contractions (fg)g∈G

in A such that, with f =
∑

g∈G fg, the following hold:

1. ‖fga− afg‖ < ε for all a ∈ F and all g ∈ G;

2. ‖αg(fh)− fgh‖ < ε for all g, h ∈ G;

3. 1− f -A x;

4. ‖fxf‖ > 1− ε.

Proposition 3.8. Let α : G → Aut(A) be an action of a finite group G on a
simple unital C*-algebra A. The following statements are equivalent:

(a) α has the weak tracial Rokhlin property in the sense of Definition 3.7;

(b) α has the weak tracial Rokhlin property in the sense of Definition 3.1.

Proof. The implication (a)⇒(b) follows from Remark 3.5(1) (which implies that
it is enough to take y = 1 in Definition 3.1) and the fact that (1− f − ε)+ -A

1− f .

To show (b)⇒(a), one may take small cut-downs of fg’s in Definition 3.1 to
get the desired Cuntz-subequivalence. We give an alternative proof using the
functional calculus for order zero maps. Let F , x, and ε be as in Definition 3.7.
We will find orthogonal positive contractions (fg)g∈G in A satisfying (1)–(4)
of Definition 3.7. We may assume that F is contained in the closed unit ball
of A. Set n = card(G). Choose δ with 0 < δ < ε

2n+1 . Applying Definition 3.1
with δ in place of ε, with y = 1, and with x, F as given, there are orthogonal
positive contractions (eg)g∈G in A such that, with e =

∑

g∈G eg, the following
hold:

1. ‖ega− aeg‖ < δ for all a ∈ F and all g ∈ G;

2. ‖αg(eh)− egh‖ < δ for all g, h ∈ G;

3. (1− e− δ)+ -A x;

4. ‖exe‖ > 1− δ.
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We define a c.p.c. order zero map φ : C(G) → A by φ(ξ) =
∑

g∈G ξ(g)eg. Then
φ(1) = e. Let η : [0, 1] → [0, 1] be the continuous function defined by

η(λ) =

{

(1− δ)−1λ 0 ≤ λ ≤ 1− δ,

1 1− δ < λ ≤ 1.

The graph of η is the following:

11 − δ

1

η

Using the functional calculus for c.p.c. order zero maps ([53, Corollary 4.2]), we
define ψ = η(φ). Thus ψ : C(G) → A is a c.p.c. order zero map. Similar to the
argument given in the proof of [4, Lemma 2.8], we see that ‖ψ(z)−φ(z)‖ ≤ δ‖z‖
for all z ∈ C(G) with ‖z‖ = 1, and that

1− ψ(1) = 1
1−δ (1− φ(1)− δ)+ ∼A (1− φ(1)− δ)+ -A x.

For any g ∈ G, set fg = ψ(χ{g}). Thus, (fg)g∈G is a family of orthogonal
positive contractions in A and we have

5. ‖fg − eg‖ ≤ δ for all g ∈ G.

Moreover, with f =
∑

g∈G fg, we have 1− f = 1 − ψ(1) -A x, which is (3) in
Definition 3.7. Using (5), it is easy to see that Conditions (1), (2), and (4) in
Definition 3.7 follow from (1), (2), and (4) above, respectively.

In the following lemma, we give a (seemingly) stronger equivalent definition
of the (weak) tracial Rokhlin property for finite group actions on simple C*-
algebras. This lemma says that we can take two different unknowns x, z in
Conditions (3) and (4) of Definition 3.1 instead of x. The idea of the proof of
this lemma will be used also in a number of places later.

Lemma 3.9. Let α : G → Aut(A) be an action of a finite group G on a sim-
ple C*-algebra A. Then α has the weak tracial Rokhlin property (respectively,
tracial Rokhlin property) if and only if the following holds. For every ε > 0,
every finite subset F ⊆ A, and all positive elements x, y, z ∈ A with x 6= 0
and ‖z‖ = 1, there exists a family of orthogonal positive contractions (respec-
tively, orthogonal projections) (fg)g∈G in A such that, with f =

∑

g∈G fg, the
following hold:

1. ‖fga− afg‖ < ε for all a ∈ F and all g ∈ G;
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2. ‖αg(fh)− fgh‖ < ε for all g, h ∈ G;

3. (y2 − yfy − ε)+ -A x;

4. ‖fzf‖ > 1− ε.

Proof. We prove only the case of the weak tracial Rokhlin property since the
proof for the tracial Rokhlin property is similar. The backward implication
is obvious. For the forward implication, let α have the weak tracial Rokhlin
property and let ε, F, x, y, z be as in the statement. We may assume that F is
contained in the closed unit ball of A. Let n = card(G). Choose δ such that
0 < δ < 1 and

(

δ

2− δ
(1 − ε

2 )

)2

> 1− ε.

Put z1 = (z1/2 − δ)+. Since A is simple, [45, Lemma 2.6] implies that there
is a positive element d ∈ z1Az1 such that d -A x and ‖d‖ = 1. Applying
Definition 3.1 with y and F as given, with ε

2 in place of ε, and with d in place
of x, there exist orthogonal positive contractions (fg)g∈G in A such that, with
f =

∑

g∈G fg, the following hold:

5. ‖fga− afg‖ < ε
2 for all a ∈ F and all g ∈ G;

6. ‖αg(fh)− fgh‖ < ε
2 for all g, h ∈ G;

7. (y2 − yfy − ε
2 )+ -A d;

8. ‖fdf‖ > 1− ε
2 .

Clearly, (1), (2), and (3) follow from (5), (6), and (7), respectively. To see (4),

first note that have d ∈ z1Az1 ⊆ Az1 = A(z1/2 − δ)+. Thus by Lemma 2.7
there exists a sequence (vn)n∈N in A such that ‖vnz1/2 − d‖ → 0 and ‖vn‖ ≤
(‖d‖+ 1

n )δ
−1 = (1 + 1

n )δ
−1. Then ‖fvnz

1

2 f − fdf‖ → 0. Since ‖fdf‖ > 1 − ε
2

and δ < 1, there is n ∈ N such that ‖fvnx
1

2 f‖ > 1− ε
2 and 1

n < 1− δ. Hence,

1− ε
2 < ‖fvnz

1

2 f‖ ≤ ‖z 1

2 f‖ · ‖vn‖ ≤ ‖z 1

2 f‖(1 + 1
n )δ

−1 ≤ ‖z 1

2 f‖(2− δ)δ−1.

Thus,

‖fzf‖ = ‖z 1

2 f‖2 >
(

δ

2− δ
(1 − ε

2 )

)2

> 1− ε.

This completes the proof.

Phillips in [42, Problem 3.2] asked whether there is a reasonable formulation
of the tracial Rokhlin property for finite group actions on simple unital C*-
algebras in terms of the central sequence algebra. We give an answer to this
question in the not necessarily unital simple case in the following proposition.
For a C*-algebra A, we write

A∞ = ℓ∞(N, A)/c0(N, A).
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We consider the elements of A in A∞ as the equivalence classes of constant
sequences. We denote by A∞ ∩ A′ the relative commutant of A in A∞. Also,
π∞ : ℓ∞(N, A) → A∞ denotes the quotient map. If α : G → Aut(A) is an
action, then we denote by α∞ the induced action of G on A∞.

Proposition 3.10. Let α : G→ Aut(A) be an action of a finite group G on a
simple separable C*-algebra A. Then α has the weak tracial Rokhlin property
(respectively, tracial Rokhlin property) if and only if for every x, y, z ∈ A+ with
x 6= 0, there exists a family of orthogonal positive contractions (respectively,
orthogonal projections) (fg)g∈G in A∞ ∩ A′ such that, with f =

∑

g∈G fg, the
following hold:

1. (α∞)g(fh) = fgh for all g, h ∈ G;

2. y2 − yfy -A∞
x;

3. ‖fzf‖ = ‖z‖.

If moreover A is unital, then Condition (2) can replaced by 1− f -A∞
x.

Proof. We prove only the case of the weak tracial Rokhlin property since the
proof for the tracial Rokhlin property is essentially the same.
Assume that α has the weak tracial Rokhlin property. Let x, y, z ∈ A+ with
x 6= 0. We may assume that ‖x‖ = 1 and z 6= 0. Let {a1, a2, . . .} be a
norm dense countable subset of the closed unit ball of A. For n ∈ N, set
Fn = {a1, . . . , an}. Applying Lemma 3.9 with (x − 1

2 )+ in place of x, with
z/‖z‖ in place of z, with Fn in place of F , and with 1

n in place of ε, we obtain
mutually orthogonal positive contractions (f(g,n))g∈G in A satisfying (1)–(4) in
Lemma 3.9. Let fg ∈ A∞ denote the equivalence class of (f(g,n))n∈N. Then
(fg)g∈G is a family of orthogonal positive contractions in A∞ ∩ A′. It is easy
to see that Conditions (1) and (3) in the statement hold. To see (2), put
hn =

∑

g∈G f(g,n). Then f =
∑

g∈G fg is the equivalence class of (hn)n∈N in

A∞ and (y2−yhny− 1
n )+ -A (x− 1

2 )+. By Lemma 2.4, there is vn ∈ A such that
‖(y2−yhny− 1

n )+−vnxv∗n‖ < 1
n and ‖vn‖ ≤ 2‖y‖. Hence ‖y2−yhny−vnxv∗n‖ <

2
n . Let v be the equivalence class of (vn)n∈N in A∞. (Note that (vn)n∈N is a
bounded sequence.) Then y2 − yfy = vxv∗ -A∞

x.
Using Lemma 2.2 and [33, Lemma 2.5.12], the other implication follows.
If moreover A is unital and we replace Condition (2) by 1 − f -A∞

x, then
the forward implication follows by taking y = 1 in the preceding argument.
The backward implication follows from the previous case and the fact that
y2 − yfy = y(1− f)y -A∞

1− f .

The following theorem says that for finite group actions on simple C*-algebras
with tracial rank zero, the weak tracial Rokhlin property coincides with the
tracial Rokhlin property. Similar results were proved in [46, Theorem 1.9] and
[52, Theorem 2.7] for the unital case. In the proof of these results the tracial
state space was used as an ingredient. However, in our nonunital setting, we
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use techniques from Cuntz subequivalence in the proof of the following theorem
instead of using traces.
We use the following fact (which is easy to prove) in the proof of the following
theorem. If A is a C*-algebra with real rank zero and B is a finite dimensional
C*-subalgebra of A, then both A∞ and A ∩ B′ have real rank zero (see [12,
Theorem 4.10(iv)]).

Theorem 3.11. Let A be a simple C*-algebra with tracial rank zero, and let
α : G→ Aut(A) be an action of a finite group G on A. If α has the weak tracial
Rokhlin property then it has the tracial Rokhlin property.

Proof. Suppose that α has the weak tracial Rokhlin property. We have to
show that for every finite subset F ⊆ A, every ε > 0, and all positive elements
x, y ∈ A with ‖x‖ = 1, there exists a family of orthogonal projections (pg)g∈G

in A such that, with p =
∑

g∈G pg, the following hold:

1. ‖pga− apg‖ < ε for all a ∈ F and all g ∈ G;

2. ‖αg(ph)− pgh‖ < ε for all g, h ∈ G;

3. (y2 − ypy − ε)+ -A x;

4. ‖pxp‖ > 1− ε.

Set n = card(G). Choose δ > 0 with δ < min(ε/8, ε/2(n+ 1)). Without loss
of generality, we can assume that x, y ∈ F , that F is contained in the closed
unit ball of A, and that αg(F ) = F , for any g ∈ G. We may further assume
that y ∈ Aα (by Remark 3.5(2) since A has an approximate identity contained
in Aα). We claim that there exists z ∈ A+ \ {0} such that

5. z ⊕⊕

g∈G αg(z) -A x.

In fact, by [45, Lemma 2.1], there is z1 ∈ A+ \ {0} such that z1 ⊗ 1n+1 -A x.
Then by [45, Lemma 2.4], there is z ∈ A+ \ {0} such that z -A αg(z1) for
all g ∈ G. We may assume that ‖z‖ = 1. Hence, z ⊕

⊕

g∈G αg(z) -A

z1 ⊗ 1n+1 -A x. This proves (5).
Since A has tracial rank zero, we can apply Theorem A.6 to find a finite di-
mensional C*-subalgebra B of A such that, with q = 1B, the following hold:

6. ‖qa− aq‖ < δ for all a ∈ F ;

7. qAq ⊆δ B;

8. (y2 − yqy − δ)+ -A z;

9. ‖qxq‖ > 1− δ.

Set E = F ∪B, and let B0 be a finite subset of B with span(B0) = B. Since α
has the weak tracial Rokhlin property, arguing as in the proof of Proposi-
tion 3.10 with z in place of x, with y as given, and with qxq in place of z (using
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F∪B0 in place of F when applying Lemma 3.9 in the proof of Proposition 3.10),
there are orthogonal positive contractions (fg)g∈G in A∞∩(F ∪B0)

′ = A∞∩E′

such that, with f =
∑

g∈G fg, we have

10. (α∞)g(fh) = fgh for all g, h ∈ G;

11. y2 − yfy -A∞
z;

12. ‖fqxqf‖ = ‖qxq‖ > 1− δ (by (9)).

Note that ‖fqxqf‖ = max{‖fgqxqfg‖ : g ∈ G‖}. Hence, by (12), there exists
g0 ∈ G such that

‖fg0qxqfg0‖ > 1− δ. (6)

Put D = A∞ ∩B′. Note that A∞ ∩ E′ ⊆ D and that D has real rank zero by
the remark preceding this theorem. In particular, the hereditary subalgebra
qfg0Dfg0q of D has real rank zero. Thus there is a projection r1 ∈ qfg0Dfg0q
such that

‖r1qfg0 − qfg0‖ < δ and ‖r1qfg0r1 − qfg0‖ < δ.

Since r1 ≤ q, we get

‖r1fg0 − qfg0‖ < δ and ‖r1fg0r1 − qfg0‖ < δ. (7)

Put rg = αg(r1) for every g ∈ G \ {1}, and r =
∑

g∈G rg. Thus (rg)g∈G

is a family of projections in A∞. Since r1 ∈ fg0Dfg0 ⊆ fg0A∞fg0 , we have
rg ∈ fgg0A∞fgg0 , and so rgrh = 0 when g 6= h; that is, (rg)g∈G is a family of
orthogonal projections in A∞. We show that

13. ‖rga− arg‖ < ε/2 for all a ∈ F and all g ∈ G,

14. (α∞)g(rh) = rgh for all g, h ∈ G,

15. (y2 − yry − ε/2)+ -A∞
x, and

16. ‖rxr‖ > 1− ε/2.

Observe that (14) follows from the definition of rg. For (13), let a ∈ F . By
(7), there is b ∈ B such that ‖qaq − b‖ < δ. Using this at the third step, and
(6) at the fourth step, we get

‖r1a− ar1‖ = ‖qr1qa− aqr1q‖
≤ ‖qr1qa− qr1qaq‖+ ‖qr1qaq − qaqr1q‖+ ‖qaqr1q − aqr1q‖
≤ ‖qr1‖ · ‖qa− qaq‖+ 2δ + ‖qaq − aq‖ · ‖r1q‖
≤ 4δ < ε/2.
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Thus ‖rga− arg‖ < ε/2, for all a ∈ F and all g ∈ G. Now, using (14) and that
αg(F ) = F , for all g ∈ G, we get (13). To see (15), first by (7) at the fifth step
(also recall that y ∈ Aα and fg ∈ A∞ ∩ E′), we get

∥

∥

∥(y2 − yrfry)−
[

(y2 − yfy) +
∑

g∈G

f1/2
gg0 αg((y

2 − yqy − δ)+)f
1/2
gg0

]∥

∥

∥

≤
∥

∥

∥yfy − yrfry −
∑

g∈G

f1/2
gg0 αg(y

2 − yqy)f1/2
gg0

∥

∥

∥+ δ

≤
∥

∥

∥yfy −
∑

g∈G

f1/2
gg0 y

2f1/2
gg0

∥

∥

∥

+
∥

∥

∥yrfry −
∑

g∈G

yf1/2
gg0 αg(q)f

1/2
gg0 y

∥

∥

∥+ δ (8)

=
∥

∥

∥

∑

g∈G

yrgfgg0rgy −
∑

g∈G

yαg(q)fgg0y
∥

∥

∥+ δ

≤ ‖y2‖ ·
∥

∥

∥

∑

g∈G

αg(r1fg0r1)− αg(qfg0)
∥

∥

∥+ δ

≤ nδ + δ = (n+ 1)δ < ε/2.

On the other hand, yrfry ≤ yry and so y2 − yry ≤ y2 − yrfry. Then [45,
Lemma 1.7] implies that (y2 − yry− ε/2)+ -A∞

(y2 − yrfry − ε/2)+. By this
at the first step, by (8) at the second step, by (8) and (11) at the third step,
and by (5) at the fifth step, we get

(y2 − yry − ε/2)+ -A∞
(y2 − yrfry − ε/2)+

-A∞
(y2 − yfy) +

∑

g∈G

f1/2
gg0 αg((y

2 − yqy − δ)+)f
1/2
gg0

-A∞
z ⊕

∑

g∈G

f1/2
gg0 αg(z)f

1/2
gg0

-A∞
z ⊕

⊕

g∈G

αg(z)

-A∞
x,

which is (15). To prove (16), by (7) at the sixth step and by (6) at the seventh
step, we calculate

‖rxr‖ = ‖rx1/2‖2 = ‖x1/2rx1/2‖
≥ ‖x1/2r1x1/2‖ = ‖r1xr1‖
≥ ‖r1fg0r1xr1fg0r1‖
≥ ‖fg0qxqfg0‖ − 2δ

> 1− 3δ > 1− ε/2.
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This completes the proof of (13)–(16).
For each g ∈ G, let (rg,k)k∈N ∈ ℓ∞(A) be a representing sequence for rg, that
is, π∞(rg,1, rg,2, · · · ) = rg. Since rg is a projection, we can assume that rg,k is
also a projection for all g ∈ G and all k ∈ N.
Choose η > 0 such that if a1, . . . , an are positive contractions in A where
‖a2i − ai‖ < η and ‖aiaj‖ < η for all i, j = 1, . . . , n with i 6= j, then there are
mutually orthogonal projections p1, . . . , pn in A such that ‖ai− pi‖ < ε/4n for
all i = 1, . . . , n.
It follows from (15) that there is v ∈ A∞ such that ‖(y2−yry−ε/2)+−vxv∗‖ <
ε/4, and so

‖y2 − yry − vxv∗‖ < 3ε/4. (9)

Let (vk)k∈N be a representing sequence for v. We can choose k large enough
such that ‖rg,krh,k‖ < η for all g, h ∈ G with g 6= h (since rgrh = 0), and that
the following hold (by (13), (14), (16), and (9)):

17. ‖arg,k − rg,ka‖ < ε/2 for all g ∈ G and all a ∈ F ;

18. ‖αg(rh,k)− rgh,k‖ < ε/2 for all g, h ∈ G;

19. ‖y2 − yrky − vkxv
∗
k‖ < 3ε/4, where rk =

∑

g∈G rg,k;

20. ‖rkxrk‖ > 1− ε/2.

By the choice of η, there are orthogonal projections (pg)g∈G in A such that
‖rg,k − pg‖ < ε/4n for all g ∈ G. Since ‖rg,k − pg‖ < ε/4, (17) implies (1),
and (18) implies (2). Put p =

∑

g∈G pg. Then ‖rk − p‖ ≤ ∑

g∈G ‖rg,k − pg‖ <
ε/4. Then by (19), we have ‖y2 − ypy − vkxv

∗
k‖ < 3ε/4 + ε/4 = ε and so

(y2 − ypy − ε)+ -A x, which is (3). Finally, (20) implies that ‖pxp‖ > 1 − ε,
which is (4). This finishes proof.

We present a list of examples of finite group actions with the (weak) tracial
Rokhlin property on simple nonunital C*-algebras. These examples are mainly
based on the results of [1] (and Theorems 4.5 and 4.6 below). We refer the
reader to [1] for the proofs.

Example 3.12. In the following, W denotes the Razak-Jacelon algebra [25]
and Sm denotes the group of all permutations of {1, 2, . . . ,m}, for m ∈ N.

1. Let A =
⊗∞

k=1M3 be the UHF algebra of type 3∞ and let B be a simple
C*-algebra. Define α : Z2 → Aut(A) by

α =

∞
⊗

k=1

Ad





1 0 0
0 1 0
0 0 −1



 .

Then the action α⊗ id : Z2 → Aut(A⊗B) has the weak tracial Rokhlin
property, by Theorem 4.5 and the the fact α has the tracial Rokhlin
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property. (See [46, Proposition 2.5] and [18, Example 10.3.23 and Re-
mark 10.4.9] for details about α.) In particular, if we take B = W , then
M3∞⊗W ∼= W is stably projectionless and α⊗idW : Z2 → Aut(M3∞⊗W)
has the weak tracial Rokhlin property but not the tracial Rokhlin prop-
erty since M3∞ ⊗W does not have any nonzero projections. (We do not
know whether this action has the Rokhlin property.)

2. Let A be a nonelementary simple C*-algebra with tracial rank zero and let
m ∈ N \ {1}. Then the permutation action β : Sm → Aut(A⊗m) has the
the tracial Rokhlin property [1]. Here, A⊗m denotes the minimal tensor
product of m copies of A. This result is similar to [21, Example 5.10]
which states that the permutation action of Sm on Z⊗m ∼= Z has the
generalized tracial Rokhlin property. It is not clear that the action β
does not have the Rokhlin property. It may depend on A. For example,
if either K0(A) = Z or K1(A) = Z, then β does not have the Rokhlin
property (by [37, Corollary 3.10]).

3. The flip action on Z ⊗Z ∼= Z has the weak tracial Rokhlin property [21,
Example 5.10] but not the Rokhlin property. For a nonunital example, if
we take A = Z⊗K then the flip action on A⊗A ∼= A has the weak tracial
Rokhlin property (by a result of [1] and that A is tracially Z-absorbing).
This action does not have the Rokhlin property, by [37, Corollary 3.10]
since K0(A) = Z. We do not know whether this action has the tracial
Rokhlin property.

4. Let A be a simple Z-absorbing C*-algebra. Then for every finite non-
trivial group G there is an action α : G → Aut(A) with the weak tracial
Rokhlin property. This follows essentially from the fact that G embeds
into some Sm and that the permutation action of Sm on Z⊗m ∼= Z has
the weak tracial Rokhlin property. (One also needs Theorem 4.5 and
Proposition 4.1). If moreover, A is separable with either K0(A) = Z

or K1(A) = Z, then α does not have the Rokhlin property [37, Corol-
lary 3.10].

5. Let α be Blackadar’s action of Z2 on M2∞ (see [5, Section 5] and [46,
Example 3.1]). Then α does not have the Rokhlin property but it has
the tracial Rokhlin property [46, Proposition 3.4]. Now consider the ac-
tion α ⊗ id : Z2 → M2∞ ⊗ K. Then α ⊗ id has the weak tracial Rokhlin
property (by Theorem 4.5) and so the tracial Rokhlin property (by The-
orem 3.11). However, α⊗ id does not have the Rokhlin property (by [49,
Theorem 3.2(ii)]).

4 Permanence properties

The purpose of this section is to study the behavior of the (weak) tracial
Rokhlin property for finite group actions on simple C*-algebras under restric-
tion to subgroups, invariant hereditary subalgebras, direct limits, and tensor
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products of actions. The following proposition is a nonunital version of [13,
Lemma 5.6].

Proposition 4.1. Let α : G → Aut(A) be an action of a finite group G on a
simple C*-algebra A with the (weak) tracial Rokhlin property. If H is a subgroup
of G, then the restriction of α to H also has the (weak) tracial Rokhlin property.

Proof. The proof is similar to the unital case. The main idea is the following.
Let T be a set of right coset representations for H in G. If (fg)g∈G is a suitable
family of Rokhlin elements satisfying Definition 3.1 for the action of G on A,
then we set eh =

∑

t∈T fht for any h ∈ H . Then (eh)h∈H is a family of Rokhlin
elements for the action of H on A.

Next, we show that the weak tracial Rokhlin property is preserved by passing
to invariant hereditary subalgebras.

Proposition 4.2. Let A be a simple C*-algebra and let α : G → Aut(A) be
an action of a finite group G on A. Let B be an α-invariant hereditary C*-
subalgebra of A and let β : G → Aut(B) be the restriction of α to B. If α
has the weak tracial Rokhlin property then so does β. If α has the tracial
Rokhlin property, then so does β whenever B have an approximate identity
(not necessarily increasing) consisting of projections in the fixed point algebra.

Proof. Suppose that α has the weak tracial Rokhlin property, and let we are
give a finite set F ⊆ B, ε > 0, and x, y ∈ B+ with ‖x‖ = 1. We can assume
that x, y ∈ F and that F is contained in the closed unit ball of B. Without
loss of generality ε < 1. Set n = card(G). By [33, Lemma 2.5.12], there is
δ > 0 such that if (eg)g∈G is a family of positive contractions in B satisfying
‖egeh‖ < 2δ for all g, h ∈ G with g 6= h, then there are orthogonal positive
contractions (fg)g∈G in B such that ‖fg − eg‖ < ε

4n for any g ∈ G. We may
assume that δ < ε

28n .
Since any approximate identity for Bβ is also an approximate identity for B,
we can choose a positive contraction b ∈ Bβ such that

‖ab− a‖ < δ and ‖ba− a‖ < δ, (10)

for any a ∈ F . We set z = bxb and w = byb. So by (10) we have

‖z − x‖ < 2δ and ‖w − y‖ < 2δ. (11)

Applying Definition 3.1 to α with F ∪ {b} in place of F , with z/‖z‖ in place
of x, with w in place of y, and with δ in place of ε, we obtain orthogonal positive
contractions (rg)g∈G in A such that, with r =

∑

g∈G rg, the following hold:

1. ‖rga− arg‖ < δ for all a ∈ F ∪ {b} and all g ∈ G;

2. ‖αg(rh)− rgh‖ < δ for all g, h ∈ G;

3. (w2 − wrw − δ)+ -A z;
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4. ‖rzr‖ > ‖z‖(1− δ).

We put eg = brgb for any g ∈ G, and e =
∑

g∈G eg. For any g, h ∈ G with
g 6= h, using (1) and that rgrh = 0 at the third step, we have

‖egeh‖ = ‖brgb2rhb‖ ≤ ‖rgb2rh‖ < 2δ.

Hence by the choice of δ there are orthogonal positive contractions (fg)g∈G in
B such that ‖fg − eg‖ < ε

4n for any g ∈ G. We set f =
∑

g∈G fg. Then we
have

‖fg − eg‖ < ε
4 and ‖f − e‖ < ε

4 . (12)

In particular, ‖e‖ < ‖f‖ + ε
4 < 2. We show that the family (fg)g∈G satisfies

the conditions of Definition 3.1 for the action β : G→ Aut(B), that is, we will
show that the following hold:

5. ‖fga− afg‖ < ε for all a ∈ F and all g ∈ G;

6. ‖βg(fh)− fgh‖ < ε for all g, h ∈ G;

7. (y2 − yfy − ε)+ -B x;

8. ‖fxf‖ > 1− ε.

To see (5), using (12), (10), and (1), for any a ∈ F and any g ∈ G we get

‖fga− afg‖ ≤ ‖fga− ega‖+ ‖ega− brgab‖+ ‖brgab− bargb‖
+ ‖bargb− aeg‖+ ‖aeg − afg‖

< ε
4 + 2δ + δ + 2δ + ε

4 < ε.

To prove (6), using (12) and (2), for any g, h ∈ G we have

‖βg(fh)− fgh‖ ≤ ‖αg(fh)− αg(eh)‖ + ‖bαg(rh)b − brghb‖+ ‖egh − fgh‖
< ε

4 + δ + ε
4 < ε.

To see (7), first using (11) at the second step and using (10) and (12) at the
fifth step, we obtain

∥

∥(y2 − yfy)− (w2 − wrw − δ)+
∥

∥ ≤ δ + ‖y2 − w2‖+ ‖yfy − wrw‖
< δ + 4δ + ‖yfy − byeyb‖
≤ 5δ + ‖yfy − byfy‖+ ‖byfy− byey‖
+ ‖byey − byeyb‖

< 5δ + ‖y − by‖+ ‖f − e‖+ ‖e‖ · ‖y − yb‖
< 5δ + δ + ε

4 + 2δ = 8δ + ε
4 <

ε
3 + ε

4 < ε.

Now, using Lemma 2.2 and (3), we get

(y2 − yfy − ε)+ -A (w2 − wrw − δ)+ -A z -A x.
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Since B is a hereditary subalgebra of A, we get (y2 − yfy − ε)+ -B x, which
is (7). To show (8), first by (11) we have ‖z‖ > 1− 2δ, and so by (4) we get

‖rzr‖ > ‖z‖(1− δ) > (1− 2δ)(1− δ) > 1− 3δ. (13)

Second, using (10) at the third step, using (1) at the fourth and fifth steps,
and using (13) at the seventh step, we obtain

‖exe‖ = ‖brbxbrb‖ (14)

≥ ‖brxrb‖ − ‖br(bxb− x)rb‖
> ‖brxrb‖ − 2δ

> ‖rbxrb‖ − nδ − 2δ

> ‖rbxbr‖ − 2nδ − 2δ

= ‖rzr‖ − (2n+ 2)δ

> 1− 3δ − (2n+ 2)δ

= 1− (2n+ 5)δ ≥ 1− ε
4 .

Then using (12) at the third step and using (14) at the fourth step, we get

‖fxf‖ ≥ ‖exe‖ − ‖exe− exf‖ − ‖exf − fxf‖
≥ ‖exe‖ − ‖e‖ · ‖e− f‖ − ‖e− f‖
> ‖exe‖ − 3ε

4

> 1− ε
4 − 3ε

4 = 1− ε,

which is (8). This completes the proof of (5)–(8), and shows that β : G →
Aut(B) has the weak tracial Rokhlin property.
The proof of the second part of the statement about the tracial Rokhlin prop-
erty is similar to the proof of the first part.

Proposition 4.3. Let G be a finite group. Let
(

(G,Ai, α
(i))i∈I , (ϕj,i)i≤j

)

be
a direct system of simple G-algebras. Let A be the direct limit of the Ai and
let α : G→ Aut(A) be the direct limit of the α(i). If α(i) has the (weak) tracial
Rokhlin property for each i, then so does α.

Proof. The statement follows essentially from the following fact. If α : G →
Aut(A) is an action of G on a simple C*-algebra A such that for every finite
set F ⊆ A and every ε > 0 there is an α-invariant simple C*-subalgebra B of A
such that F ⊆ε B and the restriction of α to B has the (weak) tracial Rokhlin
property, then α : G→ Aut(A) has the (weak) tracial Rokhlin property.

Phillips posed the following problem for actions on simple unital C*-algebras.

Problem 4.4 ([42], Problem 3.18). Let A and B be infinite dimensional sim-
ple unital C*-algebras, and let α : G → Aut(A) be an action with the tracial
Rokhlin property and β : G → Aut(B) be an arbitrary action. Does it follow
that α⊗ β : G→ Aut(A⊗min B) has the tracial Rokhlin property?
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There are some partial solutions to this problem. Lemma 3.9 of [43] is the very
special case B = Mn and β is inner. If A has tracial rank zero and B has
tracial rank at most one, then by [42, Proposition 3.19], α⊗ β has the tracial
Rokhlin property. Moreover, it follows from [51, Proposition 2.4.6] that this
problem has an affirmative answer provided that A⊗minB has Property (SP).
The following two results are more general solutions to this problem in the not
necessarily unital simple case.

Theorem 4.5. Let α : G→ Aut(A) and β : G→ Aut(B) be actions of a finite
group G on simple C*-algebras A and B. If α has the weak tracial Rokhlin
property then so does α⊗ β : G→ Aut(A⊗min B).

Proof. Suppose that we are given a finite set F ⊆ A ⊗min B, ε > 0, and
x, y ∈ (A ⊗min B)+ with ‖x‖ = 1. Set D = A ⊗min B. We shall find a
family of orthogonal positive contractions (fg)g∈G in A⊗minB such that, with
f =

∑

g∈G fg, the following hold:

1. ‖fga− afg‖ < ε for all a ∈ F and all g ∈ G;

2. ‖αg(fh)− fgh‖ < ε for all g, h ∈ G;

3. (y2 − yfy − ε)+ -D x;

4. ‖fxf‖ > 1− ε.

We may assume that there exist c1, . . . , cm in A and d1, . . . , dm in B such that
F = {ci⊗di | 1 ≤ i ≤ m} and that ‖ci‖, ‖di‖ ≤ 1 for all 1 ≤ i ≤ m. By Part (2)
of Remark 3.5, we may assume that y = y1⊗y2 for some y1 ∈ A+ and y2 ∈ B+

with ‖y1‖, ‖y2‖ ≤ 1. Choose δ such that 0 < δ < ε
3 and

(

(1− δ)2 − 4δ − δ2
)

>

1−ε. There exists δ1 such that 1
2 < δ1 < 1 and

(

(1− δ)2 − 4δ − δ2
)

δ21 > 1−ε.
Put z = (x−δ1)+. It follows from Kirchberg’s Slice Lemma ([47, Lemma 4.1.9])
that there are elements x1 ∈ A+ and x2 ∈ B+ such that x1 ⊗ x2 -D z and
that ‖x1‖ = ‖x2‖ = 1. By Lemma 2.4, there exists w ∈ A ⊗min B such that

‖wxw∗ − x1 ⊗ x2‖ < δ2 and ‖w‖ ≤ δ
−1/2
1 < δ−1

1 . Thus there is v ∈ A ⊗min B

where v =
∑k

i=1 vi ⊗ wi for some vi ∈ A and wi ∈ B, i = 1, . . . , k, such that

5. ‖vxv∗ − x1 ⊗ x2‖ < δ2 and ‖v‖ < δ−1
1 .

Put E = {ci | 1 ≤ i ≤ m} ∪ {vi | 1 ≤ i ≤ k}. By [28, Proposition 2.7(v)], there
is n ∈ N such that

6. (y22 − δ)+ -B x2 ⊗ 1n.

By Proposition 3.2, α is pointwise outer, and so A is not elementary. It follows
from [7, Corollary IV.1.2.6] that A is not of Type I. Now, [45, Lemma 2.4]
implies that there is a nonzero element x0 ∈ A+ such that

7. x0 ⊗ 1n -A x1.

Documenta Mathematica 25 (2020) 2507–2552



The Weak Tracial Rokhlin Property 2531

Put M = 1+
∑k

i=1 ‖vi‖+
∑k

i=1 ‖wi‖. Choose η > 0 such that η < δ
2Mkcard(G) .

Applying Lemma 3.9 to the action α with E in place of F , with η in place
of ε, with x0 in place of x, with y1 in place of y, and with x1 in place of z,
we obtain a family of orthogonal positive contractions (rg)g∈G in A such that,
with r =

∑

g∈G rg, the following hold:

8. ‖rgc− crg‖ < η for all c ∈ E and all g ∈ G;

9. ‖αg(rh)− rgh‖ < η for all g, h ∈ G;

10. (y21 − y1ry1 − η)+ -A x0;

11. ‖rx1r‖ > 1− η.

On the other hand, since B has an approximate identity contained in Bβ , we
can choose a positive contraction s ∈ Bβ such that

12. ‖y2sy2 − y22‖ < η, ‖[s, di]‖ < η for all 1 ≤ i ≤ m, ‖[s, wj ]‖ < η for all
1 ≤ j ≤ k, and ‖sx2s‖ > 1− η.

Put fg = rg ⊗ s for all g ∈ G, and put f =
∑

g∈G fg. Then (fg)g∈G is a family
of mutually orthogonal positive contractions in A⊗minB. We show that (1)–(4)
hold. For (1), let 1 ≤ i ≤ m. Then by (8) and (12) we have

‖[fg, ci ⊗ di]‖ = ‖[rg ⊗ s, ci ⊗ di]‖
= ‖(rgci)⊗ (sdi)− (cirg)⊗ (dis)‖
≤ ‖[rg, ci]⊗ (sdi)‖+ ‖(cirg)[s, di]‖
< η + η < 2δ < ε.

Part (2) follows from (9). To prove (3), first using (12) at the third step we
have

‖
(

y2 − yfy
)

−
(

y21 − y1ry1 − η
)

+
⊗
(

y22 − δ
)

+
‖

≤ ‖
(

y21 ⊗ y22
)

− (y1ry1)⊗ (y2sy2)−
(

y21 − y1ry1
)

⊗ y22‖+ η + δ

= ‖ (y1ry1)⊗
(

y2sy2 − y22
)

‖+ 2δ

< δ + 2δ < ε.

Then by Lemma 2.2 at the first step, by (6) and (10) at the second step, and
by (7) at the fourth step, we get

(

y2 − yfy − ε
)

+
-D

(

y21 − y1ry1 − η
)

+
⊗
(

y22 − δ
)

+

-D x0 ⊗ (x2 ⊗ 1n)

∼D (x0 ⊗ 1n)⊗ x2

-D x1 ⊗ x2 -D z -D x,
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which is (3). To prove (4), first by (8) and (12) we have

‖fv − vf‖ =

∥

∥

∥

∥

∥

k
∑

i=1

(rvi)⊗ (swi)−
k
∑

i=1

(vir)⊗ (wis)

∥

∥

∥

∥

∥

≤
k
∑

i=1

‖(rvi − vir) ⊗ (swi)‖+
k

∑

i=1

‖(vir)⊗ (swi − wis)‖

≤M

k
∑

i=1

∑

g∈G

‖rgvi − virg‖+M

k
∑

i=1

‖swi − wis‖

< Mk card(G)η +Mkη ≤ 2Mk card(G)η < δ.

Also, by (11) and (12) we get

‖f(x1 ⊗ x2)f‖ = ‖(rx1r)⊗ (sx2s)‖ = ‖rx1r‖ · ‖sx2s‖
> (1− δ)(1 − η) > (1− δ)2.

Then by using these two latter inequalities and (5) we calculate

(1− δ)2 < ‖f(x1 ⊗ x2)f‖
≤ ‖fvxv∗f‖+ ‖f(vxv∗ − x1 ⊗ x2)f‖
< ‖vfxv∗f‖+ ‖(fv − vf)xv∗f‖+ δ2

≤ ‖vfxfv∗‖+ ‖vfx(v∗f − fv∗)‖+ δ‖v‖+ δ2

≤ ‖v‖2‖fxf‖+ δ‖v‖+ δ‖v‖+ δ2

≤ δ−2
1 ‖fxf‖+ 2δδ−1

1 + δ2

< δ−2
1 ‖fxf‖+ 4δ + δ2.

Therefore, by the choice of δ1 we obtain

‖fxf‖ >
(

(1− δ)2 − 4δ − δ2
)

δ21 > 1− ε

which is (4). This completes the proof.

The proof of the following result is similar to that of the preceding theorem.

Theorem 4.6. Let α : G → Aut(A) and β : G → Aut(B) be actions of a
finite group G on simple C*-algebras A and B. Let α have the tracial Rokhlin
property and let Bβ have an approximate identity (not necessarily increasing)
consisting of projections. Then the action α⊗ β : G→ Aut(A⊗min B) has the
tracial Rokhlin property. In particular, Problem 4.4 has an affirmative answer.

The following corollary follows from Theorems 4.5 and 4.6 by taking B = Mn

and β to be the trivial action.
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Corollary 4.7. Let α : G→ Aut(A) be an action of a finite group G with the
(weak) tracial Rokhlin property on a simple C*-algebra A. Then the induced
action of G on Mn(A) has the (weak) tracial Rokhlin property for any n ∈ N.

The following result gives a criterion for the nonunital tracial Rokhlin property
in terms of the unital tracial Rokhlin property in the case that the underlying
algebra has “enough” projections.

Proposition 4.8. Let α : G → Aut(A) be an action of a finite group G on a
simple C*-algebra A. Suppose that A has an approximate identity (not neces-
sarily increasing) (pi)i∈I consisting of projections such that each pi is in Aα.
Then α has the tracial Rokhlin property if and only if the restriction of α to
piApi has the tracial Rokhlin property for every i ∈ I.

Proof. The “if” part follows from Proposition 4.3, and the “only if” part follows
from the second part of Proposition 4.2.

5 Crossed products

The main goal of this section is to show that some classes of simple C*-algebras
are closed under taking crossed products and fixed point algebras by actions of
finite groups with the tracial Rokhlin property. In particular, this is true for
the class of simple C*-algebras with tracial rank zero. This extends a result
of Phillips ([43, Theorem 2.6]) to the nonunital case and is evidence that our
definition of the (weak) tracial Rokhlin property on simple C*-algebras is the
right one.
The following proposition is essential in the sequel.

Proposition 5.1. Let G be a finite group and let C be a class of simple C*-
algebras with the following properties:

1. if A is a simple C*-algebra and p ∈ A is a nonzero projection, then A ∈ C
if and only if pAp ∈ C (in particular, this is the case if C is closed under
Morita equivalence);

2. if A ∈ C is unital and α is an action of G on A with the tracial Rokhlin
property then A⋊α G ∈ C;

3. if A ∈ C and B is a C*-algebra with A ∼= B, then B ∈ C.

Then C is closed under taking crossed products and fixed point algebras by ac-
tions of G with the tracial Rokhlin property (and hence (2) above holds without
the assumption that A is unital).

Proof. Let C be a class of simple C*-algebras as in the statement. Let A ∈ C
and let α : G → Aut(A) be an action with the tracial Rokhlin property. We
show that A ⋊α G ∈ C. We may assume that A is nonzero. First note that
there exists a nonzero projection p in Aα. In fact, if (pg)g∈G is a family of
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Rokhlin projections for a given ε according to Definition 3.1 and if q =
∑

g∈G pg,
then ‖E(q) − q‖ < ε card(G), where E : A → Aα is the canonical conditional
expectation. Using functional calculus within Aα gives a projection p ∈ Aα

arbitrarily close to E(q). So, p is arbitrary close to q, and hence it is nonzero.
Let α : G → Aut(pAp) be the restriction of α to pAp. Now, the second part
of Proposition 4.2 implies that β has the tracial Rokhlin property. By Con-
dition (1), pAp ∈ C. Thus, by Condition (2), pAp ⋊β G ∈ C. Observe that
pAp⋊β G ∼= p(A⋊αG)p. In fact, the map ϕ : pAp⋊β G→ p(A⋊αG)p defined
by ϕ(

∑

g∈G bgug) =
∑

g∈G bgδg where bg ∈ pAp for all g ∈ G, is easily seen to
be a surjective ∗-isomorphism. Thus, by Condition (3), p(A⋊α G)p ∈ C. Now
Condition (1) implies that A⋊α G ∈ C. Also, Aα ∈ C, by Condition (1).

In the following theorem, we extend Phillips’s result [43, Theorem 2.6] to the
nonunital case.

Theorem 5.2. Let A be a simple C*-algebra with tracial rank zero and let α
be an action of a finite group G on A with the weak tracial Rokhlin property.
Then the crossed product A ⋊α G and the fixed point algebra Aα are simple
C*-algebras with tracial rank zero.

Proof. It follows from Theorem 3.11 that α in fact has the tracial Rokhlin
property. Let C denote the class of simple C*-algebras with tracial rank zero.
By Theorem A.24, C satisfies Condition (1) in Proposition 5.1. Also, by [43,
Theorem 2.6], C satisfies Condition (2) in Proposition 5.1. (Note that the
assumption of separability is unnecessary in [43, Theorem 2.6].) Clearly, C
satisfies Condition (3) in Proposition 5.1. Thus Proposition 5.1 yields the first
part of the statement about the crossed product.
The second part of the statement about the fixed point algebra follows from
Corollary 3.3 which says that Aα is isomorphic to a full corner of A⋊αG, and
Theorem A.24 which implies that the tracial rank zero is passed to corners.

The following corollary is immediate from Example 3.12(2) and Theorem 5.2.

Corollary 5.3. Let A be a simple nonelementary C*-algebra with tracial rank
zero and let β : Sm → A⊗m be the permutation action, where m ≥ 2. Then the
crossed product A⊗m ⋊β Sm is a simple C*-algebra with tracial rank zero.

Theorem 5.4. The class of simple separable nuclear Z-absorbing C*-algebras
is preserved under taking crossed products and fixed point algebras by finite
group actions with the tracial Rokhlin property.

Proof. Let C denote the class of simple separable nuclear Z-absorbing C*-
algebras. By [50, Corollary 3.2], Z-stability is preserved under Morita equiva-
lence in the class of separable C*-algebras. Moreover, by [22, Theorem 3.15],
nuclearity is preserved under Morita equivalence. Thus the class C satisfies
(1) in Proposition 5.1. On the other hand, [21, Corollary 5.7] implies that the
class C also satisfies (2) in Proposition 5.1. Therefore, by Proposition 5.1 the
class C is preserved under taking crossed products by finite group actions of
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with the tracial Rokhlin property. The corresponding result about Aα holds
by noting that Aα is a full corner of A⋊α G.

Remark 5.5. There are some other classes of simple C*-algebras which are
preserved under taking crossed products and fixed point algebras by finite group
actions with the weak tracial Rokhlin property. For example, the class of simple
purely infinite C*-algebras (by [26, Theorem 3]), the class of simple C*-algebras
with Property (SP) (by the nonunital version of [27, Theorem 4.2]), and the
class of simple tracially Z-absorbing C*-algebras [1].

A C*-algebras with tracial rank zero

We begin this section with recalling the definition of tracial rank zero for C*-
algebras from [34]. Then, we give a characterization of tracial rank zero which
unifies the definitions for the simple unital and simple nonunital cases (The-
orem A.6). The main advantage of this definition is to avoid working with
the unitization of simple C*-algebras. In particular, we are able to show that
having tracial rank zero is preserved under Morita equivalence in the class of
simple C*-algebras.

A.1 Preliminaries

In this subsection we present some notation and results which will be used in
the sequel. Also, the statement of the main theorem of this appendix (Theo-
rem A.6) is given at the end of this subsection. The proof of this theorem will
be given after Lemma A.19.

Notation A.1. We recall some notation from [34] for the convenience of the
reader. We remark that, instead of notation [a] ≤ [b] used in [34], we will adopt
the notation a -s b from [38, Definition 2.1].

1. We denote by I(0) the class of all finite dimensional C*-algebras.

2. Let σ1, σ2 be real numbers with 0 < σ1 < σ2 ≤ 1. Define a continuous
function fσ2

σ1
: [0,∞) → [0, 1] by

fσ2

σ1
(t) =











0 0 ≤ t < σ1,

linear σ1 ≤ t < σ2,

1 t ≥ σ2.

3. Let a and b be positive elements in a C*-algebra A. We say that a is
Blackadar subequivalent to b and we write a -s b if there exists x ∈ A
such that x∗x = a and xx∗ ∈ bAb. Note that, a -s b is equivalent to the
relation [a] ≤ [b] which is used in [34, Definition 2.2] (see [38, Section 4]).
Let n be a positive integer. We write a -s,n b if there are n mutually
orthogonal positive elements b1, . . . , bn ∈ bAb such that a -s bi for all
i = 1, . . . , n.
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Remark A.2. Observe that if p is a projection in a C*-algebra A and a ∈ A+,
then p -s a if and only if p -A a (see Lemma 2.5).

Definition A.3 (see [34], Definition 3.1). A unital C*-algebra A is said to
have tracial rank zero if for any ε > 0, any finite subset F ⊆ A containing a
nonzero element b ≥ 0, any σ1, σ2, σ3, σ4 with 0 < σ3 < σ4 < σ1 < σ2 < 1,
and any integer n > 0, there exist a nonzero projection p ∈ A and a finite
dimensional C*-subalgebra E ⊆ A with 1B = p, such that

1. ‖pa− ap‖ < ε for all a ∈ F ;

2. pFp ⊆ε B;

3. 1− p -s,n p and fσ2

σ1
((1− p)b(1− p)) -s,n f

σ4

σ3
(pbp).

If A has tracial rank zero, we will write TR(A) = 0. A nonunital C*-algebra
A is said to have TR(A) = 0 if TR(A∼) = 0.

Note that in [34], for any nonnegative integer k, the notion of a C*-algebra
with tracial rank k is introduced. Lin also introduced a weaker version of the
tracial rank zero as follows.

Definition A.4 (see [34], Definition 3.4). Let A be a unital C*-algebra. We
write TRw(A) = 0 if for any ε > 0, any finite subset F ⊆ A containing a
nonzero element b ≥ 0, any integer n > 0, and any full element x ∈ A+, there
exist a nonzero projection p ∈ A and a finite dimensional C*-subalgebra E ⊆ A
with 1B = p, such that

(1) ‖pa− ap‖ < ε for all a ∈ F ;

(2) pFp ⊆ε B and ‖pbp‖ ≥ ‖b‖ − ε;

(3) 1− p -s,n p and 1− p -s x.

If A is nonunital we write TRw(A) = 0 if TRw(A
∼) = 0. Observe that for any

C*-algebra A, TRw(A) = 0 if and only if A is TAF in the sense of [35].
Note that in Definition A.4, we may omit the assumption that b is positive. In
fact, if b is not positive we may assume that ‖b‖ = 1 and then use b∗b instead
of b.
The following theorem follows from [34, Theorem 6.13 and Remark 6.12].

Theorem A.5. Let A be a simple unital C*-algebra. Then the following state-
ments are equivalent:

(a) TR(A) = 0;

(b) TRw(A) = 0;

(c) for every finite set F ⊆ A, every ε > 0, and every nonzero positive
element x ∈ A, there is a nonzero C*-subalgebra B ⊆ A with B ∈ I(0)

such that, with p = 1B, the following hold:
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(1) ‖pa− ap‖ < ε for all a ∈ F ;

(2) pFp ⊆ε B;

(3) 1− p -A x.

Moreover, TRw(A) = 0 if and only if TR(A) = 0.

The following is the main result of the appendix.

Theorem A.6. Let A be a simple C*-algebra. Then A has tracial rank zero if
and only if it has an approximate identity (not necessarily increasing) consisting
of projections and for any finite set F ⊆ A, any x, y ∈ A+ with x 6= 0, and any
ε > 0, there exists a finite dimensional C*-sublagebra E ⊆ A such that, with
p = 1E, the following hold:

(1) ‖pa− ap‖ < ε for all a ∈ F ;

(2) pFp ⊆ε E;

(3) (y2 − ypy − ε)+ -A x;

(4) ‖pxp‖ > ‖x‖ − ε.

The proof of this theorem needs some preparation and will be presented after
Lemma A.19. Note that Theorem A.6 unifies the definitions of tracial rank
zero for simple unital and simple nonunital cases.

A.2 C*-algebras with Property (T0)

To prove Theorem A.6, in this subsection we define Property (T0) and study
some of its properties.

Definition A.7. Let A be a simple C*-algebra. We say that A has Prop-
erty (T0) if A has an approximate identity (not necessarily increasing) consist-
ing of projections and for all positive elements x, y ∈ A with x 6= 0, every finite
set F ⊆ A, and every ε > 0, there is a finite dimensional C*-subalgebra E ⊆ A
such that, with p = 1E , the following hold:

1. ‖pa− ap‖ < ε for all a ∈ F ;

2. pFp ⊆ε E;

3. (y2 − ypy − ε)+ -A x;

4. ‖pxp‖ > ‖x‖ − ε.

We need the following lemma in the sequel. The proof is very similar to that
of Lemma 3.4 and so it is omitted.

Documenta Mathematica 25 (2020) 2507–2552



2538 M. Forough, N. Golestani

Lemma A.8. Let A be a C*-algebra and let x ∈ A+ \{0}. Suppose that y ∈ A+

has the following property. For any finite set F ⊆ A and any ε > 0 there exist
a projection p ∈ A and a finite dimensional C*-subalgebra E ⊆ A with unit p
such that the following hold:

1. ‖pa− ap‖ < ε for all a ∈ F ;

2. pFp ⊆ε E;

3. (y2 − ypy − ε)+ -A x;

4. ‖pxp‖ > ‖x‖ − ε.

Then every positive element z ∈ Ay also has the same property.

The following proposition shows the relation between Property (T0) and tracial
rank zero for simple unital C*-algebras.

Proposition A.9. Let A be a simple unital C*-algebra. The following state-
ments are equivalent:

1. A is has Property (T0);

2. TR(A) = 0;

3. TRw(A) = 0;

4. for any x, y, ε, F as in Definition A.7 there is a nonzero finite dimensional
C*-subalgebra E ⊆ A such that (1), (2), and (3) in Definition A.7 hold.

Proof. By Theorem A.5 we have (2)⇔(3). The implication (1)⇒(4) is obvious.
Moreover, (4)⇒(3) follows from Theorem A.5 by applying (4) with y = 1 and
using the fact that for any positive number ε < 1,

(1 − p− ε)+ = (1− ε)(1− p) ∼A (1− p). (15)

To see (3)⇒(1), note that (3) together with (15) imply that Definition A.7 is
satisfied for y = 1. Now by Lemma A.8, Definition A.7 is satisfied for every
y ∈ A+. Therefore, (1) holds.

We need the following lemma in the proof of Proposition A.11.

Lemma A.10. Let A be a simple C*-algebra with Property (T0). Then every
unital hereditary C*-subalgebra of A also has Property (T0).

Proof. Let B = qAq be a unital hereditary C*-subalgebra of A where q is a
projection of A. Let F ⊆ B be a finite subset, let x, y ∈ B+ with x 6= 0, and
let ε > 0. We may assume that F ∪ {x, y} is contained in the closed unit ball
of B. Put G = F ∪ {q}. Choose δ > 0 with δ < min{ 1

6 ,
ε
43}. Since A has

Property (T0), there is a subalgebra E ⊆ A in I(0) such that, with p = 1E , the
following hold:
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1. ‖pa− ap‖ < δ for all a ∈ F ;

2. pGp ⊆δ E;

3. (y2 − ypy − δ)+ -A x;

4. ‖pxp‖ > ‖x‖ − δ.

Then by (1) we have

‖(qpq)2 − qpq‖ = ‖qpqpq − qppq‖ ≤ ‖qpq − pq‖ < δ.

Thus by [33, Lemma 2.5.5] (note that the assumption ‖a‖ ≥ 1
2 is unnecessary

in the statement of that lemma), there is a projection q1 ∈ B such that:

5. ‖q1 − qpq‖ < 2δ.

By (2) there is c ∈ E such that ‖qpq−c‖ < δ. Then ‖q1−c‖ < 3δ. Thus by [33,
Lemma 2.5.4] (note that the assumption that a is self-adjoint is unnecessary in
the statement of that lemma), there is a projection e ∈ E such that:

6. ‖q1 − e‖ < 6δ.

Hence by [33, Lemma 2.5.1], there is a unitary u ∈ A∼ such that:

7. u∗eu = q1 and ‖u− 1A∼‖ < 12δ.

Put D = u∗eEeu. Then D is in I(0) and D = q1u
∗Euq1 ⊆ qAq = B. Also,

1D = u∗eu = q1. We show that:

8. ‖q1a− aq1‖ < ε for all a ∈ F ;

9. q1Fq1 ⊆ε D;

10. (y2 − yq1y − ε)+ -B x;

11. ‖q1xq1‖ > ‖x‖ − ε.

By (1) and (5) we have ‖q1 − pq‖ ≤ ‖q1 − qpq‖+ ‖qpq − pq‖ < 3δ. Thus,

12. ‖q1 − pq‖ = ‖q1 − qp‖ < 3δ.

To see (8), by (1) and (12) for all a ∈ F we have

‖q1a− aq1‖ ≤ ‖q1a− pqa‖+ ‖pa− ap‖+ ‖aqp− aq1‖ < 7δ < ε.

To show (9) let a ∈ F . By (2) there is b ∈ E such that ‖pap − b‖ < δ. Put
d = u∗ebeu ∈ D. Then by (6), (7), and (12) we have:

‖q1aq1 − d‖ ≤ ‖q1aq1 − eq1aq1e‖+ ‖eq1aq1e− epqaqpe‖
+ ‖epape− ebe‖+ ‖ebe− d‖

< 12δ + 6δ + δ + 24δ = 43δ < ε.
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To see (11), by (12) at the first step and by (4) at the third step we get

‖q1xq1‖ ≥ ‖pqxqp‖ − 6δ = ‖pxp‖ − 6δ > ‖x‖ − 7δ > ‖x‖ − ε.

To prove (10), first by (12) we have

‖(y2 − ypy − δ)+ − (y2 − yq1y)‖ ≤ δ + ‖(y2 − ypy)− (y2 − yq1y)‖
= δ + ‖ypqy − yq1y‖ < 4δ < ε.

Therefore, by Lemma 2.2, we get (y2 − yq1y − ε)+ -A (y2 − ypy − δ)+ -A x.
Since B is hereditary in A, we obtain (y2 − yq1y − ε)+ -B x. This completes
the proof of (8)–(11), showing that B has Property (T0).

To compare Property (T0) with tracial rank zero for simple not necessarily
unital C*-algebras, we need the following result.

Proposition A.11. Let A be a simple nonunital C*-algebra. Then A has
Property (T0) if and only if the following holds. For every ε > 0, every n ∈ N,
every nonzero positive element x ∈ A∼, every finite subset F ⊆ A∼ which
contains a nonzero positive element x1, and every σi, 1 ≤ i ≤ 4, with 0 < σ3 <
σ4 < σ1 < σ2 < 1, there exists a finite dimensional C*-subalgebra E ⊆ A such
that, with p = 1E, the following hold:

1. ‖pa− ap‖ < ε for all a ∈ F ;

2. pFp ⊆ε E and ‖px1p‖ ≥ ‖x1‖ − ε;

3. 1− p -A x and 1− p -s,n p;

4. fσ2

σ1
((1 − p)x1(1− p)) -s,n f

σ4

σ3
(px1p).

Proof. To prove the forward implication let A be a simple nonuintal C*-algebra
with Property (T0). By Definition A.7, there is a net (pi)i∈I of projections in
A which is a (not necessarily increasing) approximate identity for A. For any
y ∈ A∼ we have

‖y‖ = lim
i→∞

‖piypi‖. (16)

In fact, write y = λ+ a where λ ∈ C and a ∈ A. Since A is not unital we have
‖y‖ = sup{‖yb‖ : b ∈ A with ‖b‖ ≤ 1}. Let δ > 0. Then there is b ∈ A with
‖b‖ ≤ 1 such that ‖yb‖ > ‖y‖ − δ. Note that piypib = λpib + piapib which
tends to λb+ ab = yb. Thus there is j ∈ I such that ‖piypib‖ > ‖y‖ − δ for all
i ≥ j. Then for every i ≥ j we have

‖y‖ − δ < ‖piypib‖ ≤ ‖piypi‖ ≤ ‖y‖,

and so (16) holds.
Next, let ε, n, F , x1, and x be as in the statement. Write F = {x1, . . . , xm}
and xj = λj + aj where λj ∈ C and aj ∈ A for all 1 ≤ j ≤ m. Choose
d3, d4 with σ4 < d3 < d4 < σ1. By [34, Lemma 2.6], there exists η > 0 such
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that if a, b ∈ A∼ are positive elements with ‖a‖, ‖b‖ ≤ ‖x1‖ and ‖a − b‖ < η
then [fd4

d3
(a)] ≤ [fσ4

σ3
(b)]. (Note that in [34, Lemma 2.6] it is assumed that

‖a‖, ‖b‖ ≤ 1 but the proof of this lemma works for any upper bound M > 0
instead of 1.) Choose δ with 0 < δ < min{ ε

4 ,
η
3}. By the previous remark and

that (pi)i∈I is an approximate identity for A, there is i ∈ I such that, with
a′j = piajpi, the following hold:

5. ‖pix1pi‖ > ‖x1‖ − δ;

6. ‖ajpi − aj‖ < δ and ‖piaj − aj‖ < δ for all 1 ≤ j ≤ m;

7. ‖a′j − aj‖ < δ for all 1 ≤ j ≤ m;

8. pixpi 6= 0.

Set G = {a′j | 1 ≤ j ≤ m}. By Lemma A.10, B = piApi has Property (T0)
and hence TR(B) ≤ k by Proposition A.9. Then, by [34, Theorem 5.6], there
is a C*-subalgebra D ⊆ B with D ∈ I(0) such that, with q = 1D, the following
hold:

9. ‖qa′j − a′jq‖ < δ for all 1 ≤ j ≤ m;

10. qGq ⊆δ D and ‖qb1q‖ ≥ ‖b1‖ − δ where b1 = pix1pi;

11. pi − q -B pixpi, and pi − q -s,n q.

12. fσ2

σ1
((pi − q)b1(pi − q)) -s,n f

d4

d3
(qb1q).

Put E = C(1−pi)+D and p = 1−pi+q which is the unit of E (here 1 denotes
the unit of A∼). Then E ∈ I(0). Now we show that (1)–(4) in the statement
hold. To see (1), by (7) and (9), for all 1 ≤ j ≤ m we have

‖pxj − xjp‖ = ‖paj − ajp‖ ≤ ‖paj − pa′j‖+ ‖pa′j − a′jp‖+ ‖a′jp− ajp‖
< 2δ + ‖qa′j − a′jq‖ < 3δ < ε.

To see (2), fix 1 ≤ j ≤ m. By (10) there is d ∈ D such that ‖qa′jq − d‖ < δ.
Put e = λjp+ d ∈ E. Then by (6) at the fifth step we have

‖pxjp− e‖ = ‖pajp− d‖ ≤ ‖qa′jq − d‖+ ‖pajp− qa′jq‖
< δ + ‖(1− pi)aj(1 − pi) + (1− pi)ajq + qaj(1− pi)‖
< δ + 2‖aj − piaj‖+ ‖aj − ajpi‖ < 4δ < ε.

For the second part of (2), by (6) at the third step, by (10) at the fifth step,
and by (5) at the sixth step we get

‖px1p‖ ≥ ‖(1− pi)x1(1− pi) + qx1q‖ − ‖(1− pi)x1q‖ − ‖qx1(1− pi)‖
= max {‖(1− pi)x1(1− pi)‖, ‖qx1q‖} − ‖(1− pi)a1q‖ − ‖qa1(1 − pi)‖
> ‖qx1q‖ − 2δ = ‖qpix1piq‖ − 2δ

≥ ‖pix1pi‖ − 3δ > ‖x1‖ − 4δ > ‖x1‖ − ε.
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To prove (3), note that 1− p = pi − q. Thus by (11), 1 − p -s,n q -s p. Also,
we have 1− p = pi − q -A pixpi -A x.
To see (4), first note that

(pi − q)b1(pi − q)) = (pi − q)x1(pi − q)) = (1− p)x1(1− p)).

Thus by (12), fσ2

σ1
((1 − p)x1(1 − p)) -s,n f

d4

d3
(qb1q) = fd4

d3
(qx1q). So to prove

(4) it is enough to show that

fd4

d3
(qx1q) -s f

σ4

σ3
(px1p). (17)

For this, first by (6) we have (recall that x1 = λ1 + a1):

‖px1p− (qx1q + λ1(1 − pi))‖
= ‖(1− pi)x1q + qx1(1 − pi) + (1− pi)x1(1 − pi)− λ1(1− pi)‖
= ‖(1− pi)a1q + qa1(1− pi) + (1− pi)a1(1− pi)‖
< 3δ < η.

On the other hand, we have ‖px1p‖ ≤ ‖x1‖ and

‖qx1q + λ1(1− pi)‖ = max{‖qx1q‖, ‖λ1(1− pi)‖} ≤ ‖x1‖.

Thus, by the choice of η, we get

fd4

d3
(qx1q + λ1(1− pi)) -s f

σ4

σ3
(px1p). (18)

Also, since qx1q ⊥ λ1(1− pi) and f
d4

d3
(0) = 0 we have

fd4

d3
(qx1q + λ1(1− pi)) = fd4

d3
(qx1q) + fd4

d3
(λ1(1− pi)),

and hence,
fd4

d3
(qx1q) -s f

d4

d3
(qx1q + λ1(1− pi)). (19)

Combining (18) and (19), we get (17), and hence (4) follows.
Now we prove the backward implication. Suppose that the condition of the
statement holds (we do not use (4) in the proof). We show that A has
Property (T0). Note that this condition is stronger than the definition of
TRw(A

∼) = 0 (that is, A∼ is TAF), since it is not assumed that x ∈ (A∼)+
is full. Observe that in [35, Proposition 2.7] the assumption that a ∈ (A∼)+
is full is not used in the proof of both parts. Now let ε > 0, let x, y ∈ A+,
and let F ⊆ A be as in Definition A.7. By Lemma A.8 we may assume that
‖y‖ ≤ 1. Then by (the proof of) [35, Proposition 2.7] with x in place of x1,
with F = F ∪ {x, y}, with ε

3 in place of ε, and with x in place of a, we obtain
two orthogonal projections p1, p2 ∈ A and a finite dimensional C*-subalgebra
E ⊆ A such that p1 = 1E and that the following hold:

13. ‖pia− api‖ < ε
3 for all a ∈ F and i = 1, 2;
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14. p1Fp1 ⊆ ε

3
E, ‖p1xp1‖ ≥ ‖x‖− ε

3 , and ‖(p1 + p2)a− a‖ < ε
3 for all a ∈ F ;

15. p2 -A x.

By (13) and (14), the finite dimensional C*-subalgebra E ⊆ A with unit p1
satisfies (1), (2), and (4) in Definition A.7. To see (3), first by (13) and (14)
we get

‖y2 − yp1y − yp2y‖ ≤ ‖y2 − y2p1 − y2p2‖+ ‖y2p1 − yp1y‖+ ‖y2p2 − yp2y‖
≤ ‖y‖(‖y − y(p1 + p2)‖+ ‖yp1 − p1y‖+ ‖yp2 − p2y‖)
<
ε

3
+
ε

3
+
ε

3
= ε.

Then by (15) and Lemma 2.2 we have (y2 − yp1y − ε)+ -A yp2y -A p2 -A x.
Therefore, A has Property (T0), as desired. (Note that (14) also implies that
A has an approximate identity consisting of projections.)

Observe that Proposition A.11 holds also for any simple unital C*-algebra A
(note that in this case A∼ = A according to our convention). This follows from
Proposition A.9 and [34, Theorem 5.6].

Remark A.12. Let A be a simple nonunital C*-algebra. Then A has Prop-
erty (T0) (equivalently, TR(A) = 0 by Theorem A.6) if and only if Condi-
tions (1)–(3) in Proposition A.11 hold (because Condition (4) is not used in
the proof of the converse of Proposition A.11). Thus the only difference between
the notion of having Property (T0) (equivalently, TR(A) = 0) and TRw(A) = 0
is that in the definition of TRw(A) = 0 (Definition A.4) it is required that the
nonzero positive element x ∈ A∼ is full.

Now, we can prove one direction of Theorem A.6.

Proposition A.13. Let A be a simple C*-algebra with Property (T0). Then
TR(A) = 0.

Proof. If A is a simple unital C*-algebra then A has Property (T0) if and only
if TR(A) = 0, by Proposition A.9. Let A be a simple nonunital C*-algebra
with Property (T0). Then Proposition A.11 and Definition A.3 imply that
TR(A) = 0, as desired.

A.3 Permanence properties

In this subsection we study some permanence properties of Property (T0), and
we give the proof of Theorem A.6. We begin with the following proposition
which shows that if a simple C*-algebra has the local Property (T0) then it
has Property (T0).

Proposition A.14. Let A be a simple C*-algebra with the following prop-
erty: for every ε > 0 and every finite subset F ⊆ A there exists a simple
C*-subalgebra B of A with Property (T0) such that F ⊆ε B. Then A has
Property (T0).
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Proof. Let A be a simple C*-algebra with the property in the statement. Ob-
serve that A has an approximate identity (not necessarily increasing) consisting
of projections. Let x, y, ε, and F be as in Definition A.7. We may assume
that ε < 1 and ‖x‖ = 1. Also, by Lemma A.8 we may assume that ‖y‖ < 1

2 .
Write F = {f1, . . . , fm}. Choose δ > 0 such that δ < ε

4 and (2 + δ)δ < ε
12 . Set

F̃ = F ∪{x 1

2 , y
1

2 }. By assumption there is a simple C*-subalgebra B of A with

Property (T0) such that F̃ ⊆δ B. Thus there is b ∈ B such that ‖x 1

2 − b‖ < δ.
Then

‖b∗b− x‖ ≤ ‖b∗b− b∗x
1

2 ‖+ ‖b∗x 1

2 − x‖ (20)

≤ ‖b‖δ + ‖x 1

2 ‖δ
≤ (‖x 1

2 ‖+ δ + ‖x 1

2 ‖)δ < ε
12 .

Also, there exists c ∈ B such that ‖y 1

2 − c‖ < δ. Similarly, we have ‖c∗c− y‖ <
ε
12 . Set w = c∗c. So ‖w‖ < 1. Also set d = (b∗b − ε

12 )+. Note that d 6= 0
since ‖b∗b‖ > 1 − ε

12 >
1
2 and ε

12 < 1
2 . Moreover, there exist b1, . . . , bm ∈ B

such that ‖bi − fi‖ < δ for all i = 1, . . . ,m. Put D = {b1, . . . , bm}. Since B
has Property (T0), by Definition A.7 there is a subalgebra E ⊆ B in I(0) such
that, with p = 1E, the following hold:

1. ‖pbi − bip‖ < δ for all i = 1, . . . ,m;

2. pDp ⊆δ E;

3. (w2 − wpw − δ)+ -B d;

4. ‖pdp‖ > ‖d‖ − δ.

Now we verify Conditions (1)–(4) in Definition A.7 for the given F, x, y, ε. For
Condition (1), using (1) above and ‖bi − fi‖ < δ we have

‖pfi − fip‖ ≤ ‖pfi − pbi‖+ ‖pbi − bip‖+ ‖bip− fip‖ < 3δ < ε.

To see Condition (2), fix 1 ≤ i ≤ m. By (2) above there is e ∈ E such that
‖pbip− e‖ < δ. Then we have

‖pfip− e‖ ≤ ‖pfip− pbip‖+ ‖pbip− e‖ < 2δ < ε.

To show Condition (4) in Definition A.7, using (4) at the second step and (20)
at the fourth step we get

‖pxp‖ ≥ ‖pdp‖ − ‖p(x− d)p‖
> ‖d‖ − δ − ε

12

> ‖b∗b‖ − ε
12 − ε

4 − ε
12

> ‖x‖ − ε
12 − ε

2 > ‖x‖ − ε.
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To prove Condition (3) in Definition A.7, first using the inequalities ‖w− y‖ <
ε
12 and ‖w‖ < 1, we obtain

‖(w2 − wpw − δ)+ − (y2 − ypy)‖
≤ ‖(w2 − wpw − δ)+ − (w2 − wpw)‖
+ ‖(w2 − wpw) − (y2 − ypy)‖
≤ δ + ‖w2 − y2‖+ ‖wpw − wpy‖+ ‖wpy − ypy‖
≤ ε

4 + ε
6 + ε

12 + ε
12 < ε.

Therefore, by (3) and Lemma 2.2, (y2 − ypy − ε)+ -A (w2 − wpw − δ)+ -A

d -A x. This finishes the proof.

The preceding proposition implies that the class of simple C*-algebras with
Property (T0) is closed under taking arbitrary inductive limits.
The following characterization of Property (T0) is essential in the following.

Proposition A.15. Let A be a simple C*-algebra. Then A has Property (T0)
if and only if there exists an approximate identity (not necessarily increasing)
consisting of projections (pi)i∈I for A such that TR(piApi) = 0 for all i ∈ I.

Proof. The forward implication follows from Definition A.7, Lemma A.10, and
Proposition A.13. For the backward implication, let (pi)i∈I be as in the state-
ment. Then Proposition A.9 implies that each piApi is a simple C*-algebra
with Property (T0). Let F ⊆ A be a finite subset and let ε > 0. Since (pi)i∈I

is an approximate identity, there exists i ∈ I such that F ⊆ε piApi. Applying
Proposition A.14, we conclude that A has Property (T0).

With the preceding characterization of Property (T0), we can obtain more
properties of simple C*-algebras with Property (T0).

Theorem A.16. Let A be a simple C*-algebra with Property (T0). Then A
has real rank zero and stable rank one.

Proof. Let A be a nonzero simple C*-algebra with Property (T0). Propo-
sition A.15 implies the existence of a nonzero projection p ∈ A such that
TR(pAp) = 0. Thus, by [34, Theorem 7.1], pAp has real rank zero. Since
A is simple, pAp is a full corner of A and so pAp is Morita equivalent to A.
Then by [11, Theorem 3.8], A has also real rank zero. To see that A has stable
rank one, first note that [34, Theorem 6.9] and [34, Theorem 6.13] imply that
tsr(pAp) = 1. Moreover, by [6, Corollary 4.6], tsr(A) ≤ tsr(pAp). Hence, A
has stable rank one.

Proposition A.17. Let A be a simple C*-algebra with Property (T0) and let
B be a hereditary C*-subalgebra of A. Then B has Property (T0) if and only
if it has an approximate identity (not necessarily increasing) consisting of pro-
jections.
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Proof. The forward implication follows from Definition A.7. For the backward
implication let A be a simple C*-algebra with Property (T0) and let B be a
hereditary C*-subalgebra of A which contains an approximate identity con-
sisting of projections (pi)i∈I . For each i ∈ I we have piBpi = piApi which
has Property (T0) by Lemma A.10. Therefore, Proposition A.9 and Proposi-
tion A.15 imply that B has Property (T0).

Corollary A.18. Let A be a simple C*-algebra. The following are equivalent:

1. A has Property (T0);

2. xAx has Property (T0) for all x ∈ A+;

3. A has real rank zero and TR(pAp) = 0 for all projections p ∈ A.

Proof. (1)⇒(2): This follows from Proposition A.17 and the fact that xAx has
real rank zero (by Theorem A.16). (2)⇒(3): Suppose that (2) holds. Then by
Theorem A.16, xAx has real rank zero, for all x ∈ A+. It follows that A has
real rank zero. The second part of (3) follows from Proposition A.13. Finally,
the implication (3)⇒(1) follows from Proposition A.15.

Lemma A.19. Let A be a simple C*-algebra with Property (T0). Then Mn(A)
has Property (T0) for all n ∈ N.

Proof. By Definition A.7, A has an approximate identity (pi)i∈I consisting of
projections. Put qi = diag(pi, . . . , pi) ∈Mn(A). Then (qi)i∈I is an approximate
identity consisting of projections forMn(A). Lemma A.10 and Proposition A.9
yield that TR(piApi) = 0. Thus qiMn(A)qi = Mn(piApi) has tracial rank
zero, by [34, Theorem 5.8]. Hence, Proposition A.15 implies that Mn(A) has
Property (T0).

Now, we are in a position to prove Theorem A.6.

Proof of Theorem A.6. The backward implication follows from Proposi-
tion A.13. For the other direction, let A be a simple C*-algebra with
TR(A) = 0. We may assume that A is nonunital since the unital case
follows from Proposition A.9. As TR(A) = 0, [34, Corollary 5.7] im-
plies that TRw(A) = 0 (recall that, by definition, TR(A) = TR(A∼) and
TRw(A) = TRw(A

∼)). Thus, A is TAF in the sense of [35]. Now by [35,
Corollary 2.8], A has an approximate identity (pi)i∈I (not necessarily in-
creasing) consisting of projections. (Note that the separability assumption is
unnecessary in [35, Corollary 2.8].) Then it follows from [34, Theorem 5.3]
that TR(piApi) = 0 for all i ∈ I. Hence, Proposition A.15 implies that A has
Property (T0).

Remark A.20. In view of Definition A.7, Theorem A.6 says that a simple
C*-algebra A has tracial rank zero if and only if it has Property (T0).
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Theorem A.6 enables us to prove some permanence properties of simple C*-
algebras of tracial rank zero which are not necessarily σ-unital.

Corollary A.21 (compare with [34], Proposition 4.8). Let A be a simple C*-
algebra which is an inductive limit of simple C*-algebras of tracial rank zero.
Then A has tracial rank zero.

Proof. This follows from Theorem A.6 and the remark after Proposition A.14.

The following corollary was proved by Lin in the unital case. More precisely,
Part (1) in the simple unital case follows from [34, Theorem 7.1] and [33,
Theorem 3.6.11]. Part (2) is proved in [34, Theorem 5.8] in the unital not
necessarily simple case. Part (3) in the case of a unital hereditary subalgebra
follows from [34, Theorem 5.3]. We deal with the nonunital case.

Corollary A.22. Let A be a simple C*-algebra with tracial rank zero. Then
the following hold:

1. A has real rank zero and stable rank one;

2. TR(Mn(A)) = 0 for all n ∈ N;

3. if B is a hereditary C*-subalgebra of A then TR(B) = 0.

Proof. Part (1) follows from Theorems A.16 and A.6. Also, Part (2) follows
from Lemma A.19 and Theorem A.6. Finally, Part (3) follows from Part (1),
Proposition A.17, and Theorem A.6.

A.4 Morita equivalence

In this subsection, we prove that the class of simple C*-algebras with tracial
rank zero is closed under Morita equivalence (note that we do not assume any
separability condition). This result was used in the proof of Theorem 5.2.

Proposition A.23. Let A be a simple C*-algebra. Then A has Property (T0)
if and only if A⊗K has Property (T0).

Proof. The forward implication follows from Lemma A.19, the remark after
Proposition A.14, and the fact that A⊗ K is isomorphic to an inductive limit
lim−→Mn(A). The backward implication follows from Corollary A.22(3) and The-
orem A.6.

Theorem A.24. Let A be a nonzero simple C*-algebra. The following state-
ment are equivalent:

1. TR(A) = 0;

2. A is Morita equivalent to a simple unital C*-algebra B with TR(B) = 0;

Documenta Mathematica 25 (2020) 2507–2552



2548 M. Forough, N. Golestani

3. TR(pAp) = 0 for some (any) nonzero projection p ∈ A.

In particular, the class of simple C*algebras with tracial rank zero is closed
under Morita equivalence.

Proof. The implication (1)⇒(3) follows from Part (3) of Corollary A.22. Also,
(3)⇒(2) is obvious. For (2)⇒(1), let B be a simple unital C*-algebra with
TR(B) = 0 such that B is Morita equivalent to A. By Part (1) of Corol-
lary A.22 we have RR(B) = 0. By [11, Theorem 3.8], having real rank zero is
preserved under Morita equivalence, hence we get RR(A) = 0. In particular,
A has an approximate identity (not necessarily increasing) consisting of pro-
jections (pi)i∈I . For each i ∈ I, the simple unital C*-algebra piApi is Morita
equivalent to A, and so it is Morita equivalent to B. Since both piApi and
B are unital, they are stably isomorphic (by [10]). Thus by Proposition A.23,
piApi has Property (T0). Hence, Propositions A.9 and A.15 imply that A has
Property (T0). Now, Theorem A.6 yields that TR(A) = 0.
The equivalence of Parts (1) and (2) implies that the class of simple C*algebras
with tracial rank zero is closed under Morita equivalence.

As an application of the preceding theorem, we give the following result.

Corollary A.25. Let α : G → Aut(A) be an action of a second countable
compact group G on a simple separable unital C*-algebra A with tracial rank
zero. Suppose that α has the Rokhlin property in the sense of [14]. Then the
crossed product A⋊α G is a simple C*-algebra with tracial rank zero.

The proof is mainly based on [14, Theorem 4.5] in which a similar result is
obtained for the fixed point algebra. Note that the fixed point algebra is unital,
and so the original definition of tracial rank for unital C*-algebras can be
applied. However, when G is infinite, the crossed product is never unital. The
Morita invariance of tracial rank zero for simple C*-algebras enables us to deal
with this difficulty.

Proof of Corollary A.25. By [14, Theorem 4.5], the fixed point algebra Aα is
a simple C*-algebra with tracial rank zero. Also, by [14, Proposition 2.7],
the fixed point algebra and the crossed product are Morita equivalent. Thus,
Theorem A.24 implies that the crossed product A ⋊α G is also simple with
tracial rank zero.
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