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Abstract. We investigate local-global compatibility for cuspidal
automorphic representations π for GL2 over CM fields that are regular
algebraic of weight 0. We prove that for a Dirichlet density one set
of primes l and any ι : Ql

∼
−→ C, the l-adic Galois representation

attached to π and ι has nontrivial monodromy at any v ∤ l in F at
which π is special.
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1 Introduction

Let π be a regular algebraic cuspidal automorphic representation of GLn over
a CM field F . Choose a prime l and an isomorphism ι : Ql

∼
−→ C. If π

is polarizable, then for any finite place v of F , the Galois representation rι(π)
attached to π and ι satisfies local-global compatibility at v [BLGGT14a, Car12,
Car14, HT01, Shi11, TY07]. The most subtle part is identifying the monodromy
operator, the proofs of which rely on finding a base change of rι(π) or its tensor
square in the cohomology of a Shimura variety.
When π is not polarizable, it should not be possible to find rι(π) itself in the
cohomology of a Shimura variety (for precise statements, see [JT20]). One
can hope to access the direct sum of rι(π) and a twist of its conjugate dual
via the cohomology of Shimura varieties, which is a basic starting point for
the construction of rι(π) by Harris–Lan–Talor–Thorne [HLTT16] as well as
the alternate construction by Scholze [Sch15]. These constructions use l-adic
interpolation, so are well suited to keeping track of characteristic polynomials,
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and local-global compatibility was proved up to semisimplification by Varma
[Var14] for all v ∤ l. But it doesn’t seem possible to understand the monodromy
operator in this way. We overcome this problem in almost all cases of rank 2
and weight 0:

Theorem 1.1. Suppose that F is a CM field and that π is a regular algebraic
cuspidal automorphic representation of GL2(AF ) of weight 0. There is a set
of primes l of Dirichlet density one such that for any ι : Ql

∼
−→ C, the l-adic

Galois representation rι(π) : GF → GL2(Ql) attached to π and ι satisfies

ιWD(rι(π)|GFv
)F-ss ∼= recFv

(πv|det|
−1/2),

for all finite places v ∤ l in F .

We prove a more technical result, Theorem 4.1 below, that applies to any
prime l and ι : Ql

∼
−→ C to which we can apply an automorphy lifting theorem.

The hypotheses necessary to apply the automorphy lifting theorem are known
to hold for a density one set of primes (see Lemma 2.9), but should hold for all
but finitely many (see Remark 2.10).

Method of proof

In light of Varma’s results, we need to prove that if v ∤ l is a finite place of
F at which π is special, then rι(π)|GFv

has nontrivial monodromy. Results
of a similar spirit were proved by one of us (J.N.) [New15] in the context of
Hilbert modular forms of partial weight one. In this situation, the Galois
representations are also constructed by congruences, and one cannot realize
these Hecke eigensystems in the Betti cohomology of a Shimura variety. The
proof relies on a p-adic version of Mazur’s principle [New13].
Another approach was developed by Luu [Luu15], relying on automorphy lifting
theorems. The basic idea in the context of GL2 is as follows. Assume that π
is a twist of the Steinberg representation at v. After a base change, we can
assume that π is an unramified twist of the Steinberg representation at v. Now
assume that the l-adic Galois representation rι(π) is unramified at v. Then
so is its residual representation rι(π), so we can hope to find a congruence to
an automorphic representation π1 such that π1 is unramified at v. One can
then apply automorphy lifting with the place v left out of the ramification set
to prove that rι(π) ∼= rι(π2) for some automorphic representation π2 that is
unramified at v. This contradicts strong multiplicity one.
The main ingredient needed to execute this strategy in the present context
is an automorphy lifting theorem of [ACC+18], recalled in Theorem 2.1 below.
However, there is still a subtlety that needs to be overcome: we need to produce
a congruence to the automorphic representation π1 that is unramified at v. In
the situations where the Galois representation in question does not appear in
the Betti cohomology of a Shimura variety, these congruences don’t always
exist, see [CV19, §7.4.1, §7.4.2] for examples of level lowering congruences to
torsion classes which do not have a characteristic 0 lift at the lower level. To
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get around this problem here, we use Taylor’s potential automorphy method
to first prove (see Theorem 3.9 for a more precise statement):

Theorem 1.2. Suppose that F is a CM field and l is an odd prime unramified
in F . Let ρ : GF → GL2(k) be a continuous representation with k/Fl finite
such that det(ρ) = ǫ−1

l and such that for each w|l, ρ|GFw
admits a crystalline

lift with all labelled Hodge–Tate weights equal to {0, 1}
Then there is a CM extension F ′/F such that ρ|GF ′

arises from a regular al-
gebraic weight 0 cuspidal automorphic representation π1 of GL2(AF ′ ) that we
can assume is unramified above our fixed v ∤ l in F .

Applying the automorphy lifting theorem, we deduce that rι(π)|GF ′
arises from

a cuspidal automorphic repesentation π2 of GL2(AF ′) that is unramified at all
places above v. We can no longer use multiplicity one, as this would require
knowing the base change of π to F ′ exists, and F ′/F may not be solvable.
However, by Varma’s results, we know the Frobenius eigenvalues of rι(π) at v
and thus at any place above v in F ′. This together with the fact that π2 is
unramified above v contradicts the genericity of π2.
Naturally, the automorphy lifting theorem we use contains several technical
assumptions, reflected in the statement of Theorem 4.1. These technical as-
sumptions should hold for all but finitely many primes l, but we do not know
how to prove this. Using results of Larsen [Lar95], one can show that they hold
on a density one set (see Lemma 2.9), resulting in Theorem 1.1.
Let us finally remark on the restriction to rank 2 and weight 0 in Theorems 1.1
and 4.1. These restrictions come from the combination of automorphy lift-
ing theorems and potential automorphy theorems available to us in the non-
polarizable case over CM fields. (There is also a simplification in rank 2 that
there are only two possible conjugacy classes for the monodromy operator, but
we do not believe that this is a serious issue.) Common to any potential auto-
morphy theorem is some moduli space of motives in which one realizes a fixed
mod l Galois representation. In [ACC+18, §7.2.5], a moduli space of elliptic
curves is used, and this could be used to prove a version Theorem 4.1 with
the additional assumption that the prime l splits completely in the coefficient
field Mπ of π. This in turn would yield a version of Theorem 1.1 valid for a
positive density set of primes l. In order to allow more general primes l in
Theorem 4.1 and obtain the density one set in Theorem 1.1, we use a moduli
space of Hilbert–Blumenthal abelian varieties, as in Taylor’s original work on
the subject [Tay03]. In either case, we are confined to rank 2, and since the
Fontaine–Laffaille automorphy lifting theorem that we use does not allow a
change of weight, we are also confined to weight 0.
Still working in rank 2, it seems possible to remove the weight 0 assumption
in Theorem 4.1 at the cost of imposing an ordinarity assumption on π at the
prime l by using the ordinary automorphy lifting theorem of [ACC+18], which
does allow change of weight. This is currently being investigated by Yuji Yang.
In higher rank, there are robust potential automorphy theorems in the polariz-
able case [HSBT10, BLGHT11, BLGGT14b] using the so-called Dwork family
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of motives. If theorems similar to these were proved in the non-polarizable case,
then we believe that the methods of this paper could be used to prove versions
of Theorem 1.1 and 4.1 in higher rank.

Notation

For a field F , we let F denote a separable closure and GF = Gal(F/F ) the
absolute Galois group. If F is a CM number field, then we write F+ for its
maximal totally real subfield. CM number fields are always assumed to be
imaginary.

Let F be a number field. If v a finite place of F , l is a prime, and
r : GFv

→ GL2(Ql) is a continuous representation, we let WD(r)F-ss be the
associated Frobenius semisimple Weil–Deligne representation. If ι : Ql

∼
−→ C

is an isomorphism of fields, we let ιWD(r)F-ss denote its extension of scalars
to C via ι. We write recFv

for the local Langlands correspondence of [HT01].

Let π be a regular algebraic cuspidal automorphic representation of GL2(AF ).
We say that π has weight 0 if it has the same infinitesimal character as the trivial
(algebraic) representation of ResF/Q GL2. We letMπ ⊂ C denote the coefficient
field of π; it is the fixed field of {σ ∈ Aut(C) : σπ∞ ∼= π∞}. If l is a prime and
ι : Ql

∼
−→ C is an isomorphism of fields, we let rι(π) : GF → GL2(Ql) be the

l-adic Galois representation attached to π and ι by Harris–Lan–Taylor–Thorne
[HLTT16]. It is characterized by the property that if p 6= l is a prime above
which π and F are unramified and v|p in F , then

ιWD(rι(π)|GFv
)F-ss ∼= recFv

(πv|det|
−1/2).

The isomorphism ι induces a prime λ|l in Mπ and an algebraic closureMπ,λ =
Ql of the completion Mπ,λ, and we also write rπ,λ : GF → GL2(Mλ) for rι(π)
in this case. Conversely, given λ|l in Mπ, an algebraic closure Mπ,λ of Mπ,λ,

and an isomorphism ι : Mπ,λ
∼
−→ C, we obtain rπ,λ = rι(π) by identifying

Mπ,λ with Ql.

We let ǫl denote the l-adic cyclotomic character. We normalize our Hodge–Tate
weights so that ǫl has all labelled Hodge–Tate weights equal to −1. We let ζl
denote a primitive lth root of unity.

Let F andM be number fields. If A is an abelian variety over F equipped with
an embedding of rings OM →֒ End(A) and l is a prime of M , then we let rA,l

denote the representation of GF on Tl(A)⊗OM,l
M l.
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2 Automorphy of compatible systems

The crucial ingredient we need for the results of this paper is the following au-
tomorphy lifting theorem over CM fields, which is a special case of [ACC+18,
Theorem 6.1.1] (the notions of enormous and decomposed generic will be re-
called after the statement of the theorem):

Theorem 2.1. Let F be a CM field and let ρ : GF → GL2(Ql) be a continuous
representation satisfying the following conditions:

1. ρ is unramified almost everywhere.

2. For each place v|l of F , the representation ρ|GFv
is crystalline with la-

belled Hodge–Tate weights all equal to {0, 1}. The prime l is unramified
in F .

3. ρ is decomposed generic and ρ|GF (ζl)
is absolutely irreducible with enor-

mous image. There exists σ ∈ GF −GF (ζl) such that ρ(σ) is a scalar. We
have l ≥ 5.

4. There exists a cuspidal automorphic representation π of GL2(AF ) satis-
fying the following conditions:

(a) π is regular algebraic of weight 0.

(b) There exists an isomorphism ι : Ql
∼
−→ C such that ρ ∼= rι(π).

(c) If v|l is a place of F , then πv is unramified.

Then ρ is automorphic: there exists a cuspidal automorphic representation Π
of GL2(AF ) of weight 0 such that ρ ∼= rι(Π). Moreover, if v is a finite place of
F and either v|l or both ρ and π are unramified at v, then Πv is unramified.

Let ρ : GF → GL2(Fl) be a continuous representation and let ad0 denote
the set of trace zero matrices in M2×2(Fl). The image H = ρ(GF ) of ρ is
called enormous if it satisfies the following (c.f [ACC+18, Definition 6.2.28 and
Lemma 6.2.29]):

1. H has no nontrivial l-power order quotient.

2. H0(H, ad0) = H1(H, ad0) = 0.

3. For any simple Fl[H ]-submodule W ⊆ ad0, there is a regular semisimple
h ∈ H such that Wh 6= 0.

We say a prime p 6= l is decomposed generic for ρ if it splits completely in F
and for any v|p in F , ρ is unramified at v and the eigenvalues αv, βv of ρ(Frobv)
satisfy αvβ

−1
v /∈ {1, p, p−1} (c.f. [ACC+18, Definition 2.2.4]). We say that ρ is

decomposed generic if there is a prime p 6= l that is decomposed generic for ρ.

Documenta Mathematica 25 (2020) 2487–2506



2492 P.B. Allen, J. Newton

Lemma 2.2. Let F be a number field and let ρ : GF → GL2(Fl) be a continuous
representation with l > 5. If ρ(GF ) ⊇ SL2(Fl), then ρ(GF (ζl)) is enormous.

Proof. By [GN16, Lemma 3.2.3], and since we have assumed that l > 5, it
suffices to show that ρ|GF (ζl)

is absolutely irreducible. This follows from the

assumption that ρ(GF ) ⊇ SL2(Fl) and the fact that SL2(Fl) is perfect when
l > 3.

Lemma 2.3. Let F/Q be a finite Galois extension and let ρ : GF → GL2(Fl)
be a continuous representation with l > 3. If ρ(GF ) ⊇ SL2(Fl), then ρ is
decomposed generic.

Proof. This is contained in the proof of [ACC+18, Lemma 7.1.5]. For the con-
venience of the reader, we give the details. It suffices to prove ρ is decomposed
generic after replacing F with some finite extension. Conjugating ρ if necessary,
[DDT97, Theorem 2.47(b)] implies that there is an extension F ′/F of degree
at most 2 such that ρ|GF ′

has projective image PSL2(k), for some finite k/Fl,

which is simple since l > 3. If F̃ ′ is the Galois closure of F ′/Q, then F̃ ′/F
is abelian since F/Q is Galois and F ′/F is abelian. We can thus replace F

with F̃ ′.

Let H/F be the extension cut out by the projective image of ρ and let H̃/H be
the Galois closure of H/Q. Since PSL2(k) is simple, Goursat’s lemma implies

that Gal(H̃/F ) ∼= PSL2(k)
n for some n ≥ 1. Fix a non-identity semisimple

g ∈ PSL2(k). By Chebotarev density, we can find a prime w of F such that

Frobw in Gal(H̃/F ) is (g, g, . . . , g). Moreover, we can assume that the residue
field at w is Fp with p 6= l unramified in F , since such primes have Dirichlet
density one in F . Since F/Q is Galois, p is totally split in F . Take v|p in F .
Since PSL2(k) is simple, the only normal subgroups of PSL2(k)

n are of the form
PSL2(k)

I for I ⊂ {1, . . . , n}, so Aut(PSL2(k)
n) = Aut(PSL2(k))

n ⋊ Sn, and
Aut(PSL2(k)) = PGL2(k) ⋊ Gal(k/Fl) by [Die80]. So the image of ρ(Frobv)
in PSL2(k) is τ(g) for some τ ∈ PGL2(k) ⋊ Gal(k/Fl). In particular, it is
semisimple and 6= 1, so ρ(Frobv) has distinct eigenvalues. As ζl ∈ F , ρ is
decomposed generic.

Lemma 2.4. Suppose l > 3, let F be a number field in which l is unramified
and let ρ : GF → GL2(Fl) be a continuous representation such that ρ(GF ) ⊇
SL2(Fl). Then there exists σ ∈ GF −GF (ζl) such that ρ(σ) is a scalar.

Proof. This is again contained in the proof of [ACC+18, Lemma 7.1.5], but
we give the details. By [DDT97, Theorem 2.47(b)], the image of ρ(GF ) in
PGL2(Fl) is conjugate to PSL2(k) or PGL2(k) for some finite subfield k ⊂ Fl.
This projective image is isomorphic to the image of ad ρ. Since l is unramified in
F , we have Gal(F (ζl)/F ) ∼= (Z/lZ)×. If l > 3, neither PSL2(k) nor PGL2(k)
admits (Z/lZ)× as a quotient, so we deduce that F (ζl) is not contained in

F
ker ad ρ

. This amounts to the existence of the desired element σ.
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2.5 Compatible systems

We follow the terminology of [ACC+18, §7.1]. For F a number field, a rank n
extremely weakly compatible system of Galois representations is a tuple

R = (M,S, {Qv(X)}, {rλ})

where

• M is a number field;

• S is a finite set of primes of F ;

• for each prime v /∈ S of F , Qv(X) ∈ M [X ] is a monic polynomial of
degree n;

• for each prime λ of M , rλ : GF → GLn(Mλ) is a continuous semisimple
representation such that for every prime v of F with v /∈ S and not divid-
ing the residual characteristic of λ, rλ is unramified at v and rλ(Frobv)
has characteristic polynomial Qv(X).

There are obvious notions of direct sums, duals, tensor products, inductions,
etc. for extremely weakly compatible systems. In particular, we have a rank one
extremely weakly compatible system detR obtained by taking determinants of
the rλ. By [Hen82], det(rλ) is de Rham for each λ, and for any embedding
τ : F →֒Mλ, HTτ (det(rλ)) is independent of λ.
We say R is irreducible if every rλ is irreducible (in the case of rank two, this
is equivalent to any one rλ being irreducible, see [ACC+18, Lemma 7.1.1]). We
say that R is strongly irreducible if R|GF ′

is irreducible for any finite extension
F ′/F . The following lemma is contained in [ACC+18, Lemma 7.1.3] (which
relies on a result of Larsen [Lar95]).

Lemma 2.6. Let F be a number field and let

R = (M,S, {Qv(X)}, {rλ})

be a strongly irreducible rank two extremely weakly compatible system. Then
there is a set L of rational primes with Dirichlet density one such that for all
l ∈ L and λ|l in M , the image of rλ contains a conjugate of SL2(Fl).

By the main theorem of [HLTT16] (together with [Var14], to get local–global
compatibility at all places where π is unramified), if π is a regular algebraic
cuspidal automorphic representation of GL2(AF ) with F a CM field, then we
have a rank two extremely weakly compatible system

Rπ = (Mπ, Sπ, {Qπ,v(X)}, {rπ,λ})

with

• Mπ ⊂ C the coefficient field of π;
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• Sπ the set of primes of F at which π is ramified;

• Qπ,v(X) is the characteristic polynomial of recFv
(πv|det|−1/2)(Frobv).

Lemma 2.7. Let F be a CM field and let π be a regular algebraic cuspidal
automorphic representation of GL2(AF ) of weight 0. If π is a twist of Steinberg
at some finite place of F , then Rπ is strongly irreducible.

Proof. It is well known that Rπ is irreducible. Since π has weight 0, there
is a finite order character χ : GF → M×

π such that det(rπ,λ) = χǫ−1
l for any

l and λ|l. It then follows from [ACC+18, Lemma 7.1.2] that either Rπ is
strongly irreducible or there is a quadratic extension K/F and an extremely
weakly compatible system X of characters of GK such that R = IndGF

GK
X .

In the latter case, the system X is the extremely weakly compatible system
associated to a Hecke character ψ : K×\A×

K → C×, and we deduce that π is
the automorphic induction of ψ. Such a π cannot be a twist of the Steinberg
representation at any finite place.

Theorem 2.8. Let F be a CM field and let π be a regular algebraic cuspidal
automorphic representation of GL2(AF ) of weight 0. Let λ|l be a prime of the
coefficient field Mπ ⊂ C of π, and let rπ,λ : GF → GL2(Mπ,λ) be the λ-adic
Galois representation attached to π. Assume that the residual representation
rπ,λ is absolutely irreducible and decomposed generic. Assume also that l is
unramified in F and lies under no prime at which π is ramified. Then for any
v|l in F , rπ,λ|GFv

is crystalline with all labelled Hodge–Tate weights equal to
{0, 1}.

Proof. The deduction of the theorem from [ACC+18, Theorem 4.5.1], is con-
tained in [ACC+18, Lemma 7.1.8]. We give a sketch. Fix v|l in F . We can
replace F with a finite solvable extension in which v splits completely. Doing
so, we may assume the following:

• F = F+F0 with F+ totally real and F0 an imaginary quadratic field in
which l splits.

• There are at least three places above l in F+, and letting v be the place
of F+ below v, there is v′ 6= v dividing l in F+ such that

∑

v′′ 6=v,v′

[F+
v′′ : Qp] >

1

2
[F+ : Qp].

Then rπ,λ is a Mλ-point of the Hecke algebra TS(K, 0) of [ACC+18, Theo-
rem 4.5.1] for appropriate choices of a finite set of primes S of F and a level
subgroup K ⊂ GL2(A

∞
F ), from which the theorem follows.

Lemma 2.9. Let F be a CM field, let π be a regular algebraic cuspidal automor-
phic representation of GL2(AF ) of weight 0, and let Mπ ⊂ C be its coefficient
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field. Assume that πv is a twist of the Steinberg representation at some finite
place v of F . Then there is a set L of rational primes with Dirichlet den-
sity one such that for all l ∈ L and all λ|l in Mπ, the Galois representation
rπ,λ : GF → GL2(Mλ) satisfies the following:

1. For each place v|l of F , the representation rπ,λ|GFv
is crystalline with

labelled Hodge–Tate weights all equal to {0, 1}. The prime l is unramified
in F .

2. rπ,λ is absolutely irreducible and decomposed generic. The image of
rπ,λ|GF (ζl)

is enormous. There exists σ ∈ GF −GF (ζl) such that rπ,λ(σ)
is a scalar. We have l ≥ 5.

Proof. Let R = (Mπ, Sπ, {Qπ,v}, {rπ,λ}) be the rank 2 extremely weakly com-

patible system attached to π. By Lemma 2.7, R is strongly irreducible. Let F̃
be the Galois closure of F/Q. By Lemmas 2.2, 2.3, 2.4, and Theorem 2.8, it suf-
fices to show that there is a Dirichlet density one set L of primes l, unramified
in F , such that for all l ∈ L and λ|l in Mπ, the following hold:

(a) rπ,λ(GF̃ ) contains a conjugate of SL2(Fl).

(b) l > 5 and lies under no prime at which π is ramified.

The restriction R|G
F̃
is again strongly irreducible, so Lemma 2.6 implies that

there is a Dirichlet density one set L′ of primes l such that rπ,λ(GF̃ ) contains
a conjugate of SL2(Fl) for any l ∈ L′ and λ|l in Mπ.
We obtain L by removing from L′ the finite set of primes l satisfying either
l ≤ 5, l ramifies in F , or l lies under a place at which π is ramified.

Remark 2.10. It should be apparent from the proof of Lemma 2.9 that the state-
ment could be improved from “Dirichlet density one” to “all but finitely many,”
provided one could prove that the image of rπ,λ contains a conjugate of SL2(Fl)
for all but finitely many places λ. This would imply a similar strengthening
of Theorem 1.1. In fact, it would suffice to know that rπ,λ|GF (ζl)

is absolutely
irreducible and decomposed generic for all but finitely many λ. Using the pu-
rity of rπ,λ (see [ACC+18, Corollary 7.1.12]), it is not hard to see that the
decomposed generic condition holds for all but finitely many λ, so the main
obstruction is showing residual irreducibility. This can be shown (see, for exam-
ple, the main theorem of [HL16]), provided we know that the representations
rπ,λ are crystalline with the correct Hodge–Tate weights (without assuming
residual irreducibility as in Theorem 2.8). Such a crystallinity result has been
proven by Mok [Mok14], under some technical hypotheses and using Arthur’s
classification for automorphic representations of GSp4 (see [Art04, GT19]).

3 Potential automorphy

We begin by recalling a theorem of Moret–Bailly [MB89]:
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Proposition 3.1. Let L be a totally real number field and let S1

∐
S2 be a finite

set of finite places of L. Suppose that X/L is a smooth, geometrically connected
variety. Suppose also that X(Lv) 6= ∅ for all real places v of L, that Ωv ⊂
X(Lnr

v ) is a non-empty open (for the v-topology) Gal(Lnr
v /Lv)-invariant subset

for the places v ∈ S1 and that Ωv ⊂ X(Lv) is a non-empty open Gal(Lv/Lv)-
invariant subset for the places v ∈ S2. Suppose finally that Lavoid/L is a finite
extension.
Then there is a finite Galois totally real extension L1/L and a point P ∈ X(L1)
such that

• L1/L is linearly disjoint from Lavoid/L

• every place v ∈ S1 is unramified in L1 and if w is a prime of L1 above v
then P ∈ Ωv ∩X(L1,w)

• if w is a prime of L1 above v ∈ S2 then P ∈ Ωv ∩X(L1,w).

Proof. Our precise statement is a special case of [HSBT10, Prop. 2.1].

We also recall a result on potential modularity of elliptic curves which is essen-
tially contained in [Tay06]:

Proposition 3.2. Suppose that E/Q is a non-CM elliptic curve, and that L
is a finite set of rational primes at which E has good reduction. Suppose also
that Lavoid

1 /Q is a finite extension.
Then we can find

• a finite Galois extension Lavoid
2 /Q linearly disjoint from Lavoid

1 over Q

and

• a finite totally real Galois extension Lsuffices/Q, unramified above L such
that Lsuffices is linearly disjoint from Lavoid

1 Lavoid
2 over Q

such that for any finite totally real extension L2/L
suffices which is linearly dis-

joint from Lavoid
2 over Q, there is a regular algebraic cuspidal automorphic

representation π of GL2(AL2) of weight 0 such that for every rational prime l
and any ι : Ql

∼= C we have

rι(π) ∼= r∨E,l|GL2
.

Moreover, π is unramified above any prime where E has good reduction.

Proof. Our precise statement is a special case of [ACC+18, Corollary 7.2.4].

3.3 HBAVs

Let M be a totally real number field and let S be a scheme. For an Abelian
scheme A/S equipped with a ring embedding ι : OM →֒ End(A/S) we denote
by (MA,M

+
A) the module MA of OM -linear, symmetric homomorphisms from

A to A∨, with its positive cone M+
A of polarizations.
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Definition 3.4. An M -HBAV over S is a pair (A, ι) as above, such that the
natural map A⊗OM

MA → A∨ is an isomorphism.
For a non-zero fractional ideal c ⊂ M , a c-polarization of an M -HBAV A is
an isomorphism j : c

∼
−→ MA of OM -modules with j(c+) = M+

A, where c+

denotes the totally positive elements of c.

Remark 3.5. When the fractional ideal c contains OM the map x 7→ x ⊗ 1
induces an isomorphism A/A[c−1] ∼= A ⊗OM

c. It follows that specifying a c-
polarization j of an M -HBAV A is equivalent to specifying a single OM -linear
polarization λ : A → A∨ with kernel A[c−1]. The polarization λ corresponds
to j(1). See [DP94, §2.6].

If (A, ι, j) is an M -HBAV equipped with a c-polarization and a is an ideal in
OM we obtain perfect OM/a-bilinear alternating pairings (see [DP94, §2.12])

A[a]×A[a] → (c−1D−1 ⊗ µNa)[a], (3.5.1)

with D ⊆ OM the different of M/Q and Na = |OM/a| the norm of a, and
isomorphisms

A[a]⊗OM
c → A[a]∨.

We refer to these alternating pairings as the Weil pairing for an HBAV with a
fixed c-polarization.
We will also use the following related construction. Let K be either F or its
completion at some prime. Let l be a prime of M of residual characteristic
l, and let r : GK → GL2(kl) be a continuous representation with det r = ǫl.
Letting Vr be the étale kl-vector space scheme overK defined by r, the standard
symplectic pairing on Vr is an OM -bilinear perfect pairing

Vr × Vr → (OM ⊗ µl)[l] (3.5.2)

that induces an isomorphism Vr ⊗ D−1 ∼= V ∨
r , with V ∨

r the Cartier dual
Hom(Vr ,Gm) of the group scheme Vr (which naturally inherits the structure of
kl-vector space scheme). If further l is unramified inM , then x 7→ x⊗1 defines
an isomorphism Vr ∼= Vr⊗D−1 and the symplectic pairing defines an canonical
isomorphism Vr ∼= V ∨

r .
If l is a prime of OM of residue characteristic l, then a divisible OM,l-module
over a scheme S will mean a l-divisible group G/S equipped with a ring homo-
morphism OM,l → EndS G.

Proposition 3.6. Let k be algebraically closed of characteristic l, let l be a
prime ofM lying over l. Let (G/k, λ) be a divisible OM,l-module of height 2[Ml :
Ql] equipped with an OM,l-linear symmetric isomorphism (i.e. a principal quasi-
polarization) λ : G ∼= G∨.
Let c ⊇ O be a fractional ideal of M such that l is coprime to c−1. Then
there exists an M -HBAV over k equipped with c-polarization (A, ι, j) and an
isomorphism i : A[l∞] ∼= G compatible with the OM,l actions on both sides such
that i∨ ◦ λ ◦ i = j(1).

Documenta Mathematica 25 (2020) 2487–2506



2498 P.B. Allen, J. Newton

Proof. The statement is essentially [Yu03, Thm. 7.4], we just need to take
a little care to ensure that our M -HBAV has a c-polarization. By [Yu03,
Thm. 7.3(1)] (see also [GO00, Cor. 5.4.12] and [Gor01] for the case with l
unramified in M , which will suffice for our applications) there is an M -HBAV
with c′-polarization (for some fractional ideal c′ of M) (A0, ι0, j0) such that
the isocrystals of A0[l

∞] and G (ignoring the polarization and the OM,l-action)
are isomorphic. We let b be an (integral) ideal of OM with [bc′] = [c] in the
narrow class group of M . Replacing A0 with A0/A0[b] we obtain a c-polarized
M -HBAV A0 such that the isocrystals of A0[l

∞] and G are isomorphic.

It follows from [Yu03, Cor. 3.7] that the quasi-polarized isocrystals with
OM,l-action arising from the two quasi-polarised divisible OM,l-modules
(A0[l

∞], ι0, j0(1)), (G, λ) are isomorphic. We can also fix choices of principally
quasi-polarized divisible OM,l′ -modules for places l 6= l′|l and demand that
A0[l

′∞] has quasi-polarized isocrystal isomorphic to these.

By Dieudonné theory, we have an OM -linear isogeny A0
π
→ A with kernel

contained in A0[l
n] for some n and a symmetric OM -linear isogeny λA : A →

A∨ with degree prime to l (since we ensure it induces our principal quasi-
polarizations on our fixed divisible OM,l′-modules for all places l′|l) such that
π∨ ◦ λA ◦ π = l2nj0(1), together with an isomorphism i : A[l∞] → G such that
i∨ ◦ λ ◦ i = λA. Since λA has degree prime to l and π has l-power degree,
it follows from the equation π∨ ◦ λA ◦ π = l2nj0(1) that λA is a polarization
with kernel A[c−1]. Applying Remark 3.5, we obtain the desired M -HBAV A
equipped with a c-polarization.

Remark 3.7. If we have c and G as in the above Proposition, the map x 7→
x ⊗ 1 induces an isomorphism G ∼= G ⊗OM,l

cl (it induces an isomorphism

from G/G[c−1
l ] to G ⊗OM,l

cl, and c−1 is coprime to l). The quasi-polarization
λ : G ∼= G∨ therefore corresponds to an isomorphism jG : G ⊗OM,l

cl ∼= G∨. The
condition that j(1) = i∨◦λ◦i implies that, under the isomorphism i : A[l∞] ∼= G,
jG is induced by the c-polarization j on A.

Lemma 3.8. Let l be an odd prime and let v and l be primes of F andM , respec-
tively, unramified over l. Let r : GFv

→ GL2(kl) be a continuous representation
such that:

• det r = ǫl,

• there is a crystalline lift r : GFv
→ GL2(O) (for a finite extension

O/OM,l) with labelled Hodge–Tate weights all equal to {−1, 0}.

Let Vr be the kl-vector space scheme over Fv underlying r. Then we can find
a divisible OM,l-module G defined over OFv

of height 2[OM,l : Zl] equipped
with a OM,l-linear symmetric isomorphism λ : G ∼= G∨, and an isomorphism
i : Vr ∼= G[l]Fv

such that i∨ ◦ λ[l]Fv
◦ i is the isomorphism Vr ∼= V ∨

r induced by
the standard symplectic pairing on Vr.

Documenta Mathematica 25 (2020) 2487–2506



Monodromy over CM Fields 2499

Proof. This follows from Fontaine–Laffaille theory [FL82]. First, since l is
unramified in Fv, the crystalline lift assumption implies that r is in the image
of the Fontaine–Laffaille functor: using the notation of loc. cit., there is a
kl-object M of MFf,2

tor such that the action of GFv
on US(M) is isomorphic

to r. By [CHT08, Lemma 2.4.1], we can find a lift r′ : GFv
→ GL2(OM,l) of

r such that for each n ≥ 1, there is an OM,l-object Mn ∈ MFf,2
tor such that

the action of GFv
on US(Mn) is isomorphic to r′ mod ln. (Loc. cit. uses a

covariant version of the functor US , but the proof shows that the Fontaine–
Laffaille modules can be deformed through Artinian thickenings, so carries
over unchanged.) Then r is crystalline with all labelled Hodge–Tate weights
equal to {−1, 0}, so det r′|IK = ǫl. Since det r = ǫl and l > 2, we can find
an unramified character ψ : GFv

→ 1 + lOM,l such that ψ2 = (det r′)ǫ−1
l and

r′′ := r′⊗ψ is a lift of r with determinant ǫl. Moreover, there are OM,l-objects

Nn of MFf,2
tor corresponding to ψ mod ln for each n ≥ 1, and the action of

GFv
on US(Mn ⊗ Nn) is given by r′ ⊗ ψ mod ln. Applying [FL82, §9.11 and

Proposition 9.12] to the collection {Mn ⊗Nn}n≥1, we obtain a divisible OM,l-
module G defined over OFv

such that the GFv
-action on the Tate module Tl(G)

is isomorphic to r′′. In particular, we have an isomorphism i : Vr ∼= G[l]Fv
=

G[l]Fv
of kl-vector space schemes over Fv.

It remains to produce λ. Since det r′′ = ǫl, letting T = O2
M,l with GFv

-action
by r′′, the standard symplectic pairing on T composed with the trace pairing
OM,l ⊗ OM,l → Zl gives an isomorphism T ∼= HomZl

(T,Zl(1)). This implies
Tl(G) ∼= Tl(G∨) compatibly with the OM,l-module structure. By a theorem
of Tate [Tat67, Theorem 4], we obtain a OM,l-linear symmetric isomorphism
λ : G ∼= G∨ such that i∨ ◦ λ[l]Fv

◦ i is the isomorphism Vr ∼= V ∨
r induced by the

standard symplectic pairing on Vr .

Theorem 3.9. Suppose F is a CM field, l is an odd prime which is unramified
in F and we have a continuous absolutely irreducible representation

ρ : GF → GL2(k)

with k/Fl finite such that:

• det ρ = ǫ−1
l

• For all v|l, ρ|GFv
has a crystalline lift ρv : GFv

→ GL2(O) (for a finite
extension O/W (k)) with labelled Hodge–Tate weights all equal to {0, 1}

Suppose moreover that F avoid/F is a finite extension. Then we can find a finite
CM extension F1/F , linearly disjoint from F avoid over F and with l unramified
in F1, a regular algebraic cuspidal automorphic representation π for GL2(AF1)
unramified at places above l and of weight 0, together with an isomorphism
ι : Ql

∼
−→ C such that (composing ρ with some embedding k →֒ Fl)

rι(π) ∼= ρ|GF1
.

If v0 ∤ l is a finite place of F+, then we can moreover find F1 and π as above
with π unramified above v0.
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Proof. We begin by choosing a totally real number field M together with a
prime l|l ofM such that l is unramified in M and kl is isomorphic to k. We fix
an isomorphism k ∼= kl and regard ρ as a representation with coefficients in kl.
Choose a non-CM elliptic curve E/Q with good reduction at l and the rational
prime q under v0. Choose a rational prime p 6= l such that

• p > 5 splits completely in FM ,

• SL2(Fp) ⊂ rE,p(GF ), E has good reduction at p and ρ is unramified at
places dividing p.

The second condition is satisfied by all but finitely many primes and the first
condition is satisfied by a positive density set of primes, so we can find such a
p. We fix a prime p|p of M .
Let V ∨

ρ denote the kl-vector space scheme over F underlying the dual rep-
resentation ρ∨ and fix the standard symplectic pairing on it, which ρ∨ will
preserve up to multiplier ǫl. We also have the kp ∼= Fp-vector space scheme
(E ⊗Z OM )[p] ∼= E[p] over F , which comes equipped with the Weil pairing.
Denoting the inverse different of M by D−1, we let Y be the scheme over F
classifying tuples (A, j, αρ, αE) where:

• A is an M -HBAV with D−1-polarization j

• αρ : A[l] → V ∨
ρ and αE : A[p] → E[p] are isomorphisms of vector space

schemes compatible with our fixed symplectic pairings on the right hand
sides and with the pairings (see (3.5.1)) A[l] × A[l] → (OM/l)(1) and
A[p]×A[p] → (OM/p)(1) on the left hand sides.

As in [Tay06], Y/F is a smooth, geometrically connected variety. We let X be
the restriction of scalars X = ResF/F+ Y , which is also smooth and geometri-
cally connected.
Now we apply Proposition 3.2 with L = {l, p} and Lavoid

1 the normal closure of

F avoidF
ker(ρ×rE,p)

overQ. We obtain a finite Galois extension Lavoid
2 /Q linearly

disjoint from Lavoid
1 over Q and a finite totally real Galois extension Lsuffices/Q

which is unramified above p and l and linearly disjoint from Lavoid
1 Lavoid

2 overQ.
We are going to apply Proposition 3.1 to X with the following input data:

• L = F+, S1 = {v̄|lp}, S2 = {v̄0}, Lavoid = Lavoid
1 Lavoid

2 Lsuffices

• for v̄|lp, Ωv̄ ⊂ X((F+
v̄ )nr) =

∏
v|v̄ Y (F nr

v ) is the subset given by Abelian
varieties A with good reduction at v

• Ωv̄0 ⊂ X(F+
v̄0) =

∏
v0|v̄0

Y (F v0) is the subset given by Abelian varieties
A with good reduction at v0.

We need to check that the various hypotheses of Proposition 3.1 are satisfied.
It is clear that X(F+

v̄ ) = Y (Fv) is non-empty for the real places v̄ of F+ (v
denotes the unique complex place of F extending v̄).

Documenta Mathematica 25 (2020) 2487–2506



Monodromy over CM Fields 2501

For v a place of F dividing p, we can find a positive integer f such that
ρ(Frobv)

−f and rE,l(Frobv)
f are trivial. We can then take A to be the base

change of E⊗ZOM to the unramified degree f extension of Fv, j to be induced
by the Weil pairing on E, αE to be the canonical identification (recall that p
splits completely inM) and αρ to be an isomorphism compatible with the Weil
pairing on A[l] and our fixed pairing on V ∨

ρ . This shows that for v̄|p, Ωv̄ is
non-empty. A similar argument applies to Ωv̄0 ; we can work over an extension
which trivialises ρ|GFv0

for v0|v̄0.

It remains to handle the case of v|l; we set K = Fv. By Lemma 3.8, we have a
divisible OM,l-module G over OK equipped with a principal quasi-polarization
λ : G ∼= G∨ such that the GK action on G[l]K is isomorphic to ρ∨ and λ induces
our fixed pairing on V ∨

ρ . We can work with an integral model Y/OK for YK ,
classifying tuples (A, j, αρ, αE), where now A/S (S an OK-scheme) is an M -
HBAV with D−1-polarization j and αρ : A[l] → G[l] is an isomorphism of vector
space schemes, compatible with the isomorphismsA[l] ∼= A[l]∨ induced by j (see
Remark 3.7) and λ : G[l] ∼= G[l]∨ and similarly for αE (E has good reduction at
l, so E[p] extends to a vector space scheme over OK equipped with a canonical
isomorphism E[p] ∼= E[p]∨). Now it suffices to show that Y(Onr

K ) is non-empty.
In fact, by Greenberg’s approximation theorem [Gre66, Corollary 2], it suffices
to show that Y(Ŏ) is non-empty, where Ŏ is the l-adic completion of Onr

K . It
follows from Proposition 3.6 that we have a D−1-polarized M -HBAV (A1, j)
over k = Onr

K /l with l-divisible module isomorphic to Gk and j(1) inducing our
fixed quasi-polarization on Gk. By Serre–Tate deformation theory, we can lift
A1 to an Abelian scheme Ã1 over Ŏ equipped with a D−1-polarization j̃ and
an isomorphism Ã1[l

∞]
∼
−→ GŎ under which j̃ corresponds to λ. In particular,

the induced isomorphism αρ : Ã1[l]
∼
−→ GŎ[l] is compatible with the (quasi-)

polarizations on both sides. This gives us the Ã1, j and αρ we need. We let
αE be an isomorphism (between two trivial vector space schemes) compatible
with the polarizations on each side. Now we have described a point of Y(Ŏ) as
desired.

We have checked the hypotheses of Proposition 3.1. So we obtain a finite Galois
totally real extension F+

0 /F
+, linearly disjoint from Lavoid

1 Lavoid
2 Lsuffices over

F+ (and in particular from F , so F0 := F+
0 F is a totally imaginary quadratic

extension of F+
0 ) and a point (A, j, αρ, αE) of X(F+

0 ) such that A has good
reduction above v̄0lp. Moreover, l and p are unramified in F0.

Finally, we set F1 = F+
0 L

sufficesF , a CM extension of F which is unramified
above p and l. Since F+

1 is linearly disjoint from Lavoid
2 over Q and contains

Lsuffices, Proposition 3.2 tells us that there is a regular algebraic conjugate
self-dual cuspidal automorphic representation σ of GL2(AF1) of weight 0 such
that rι(σ) ∼= r∨E,p|GF1

for all ι : Qp
∼
−→ C. Moreover we can assume that σ

is unramified above v̄0lp. Since F1 is linearly disjoint from Lavoid
1 over F , we

have SL2(Fp) ⊂ rE,p(GF1 ).

Fixing a choice of ι and applying Theorem 2.1, we deduce that we have a regular
algebraic cuspidal automorphic representation π of GL2(AF1), unramified at
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places above plv̄0 and of weight 0 such that r∨A,p
∼= rι(π). Our choice of ι

determines an embedding τ : M →֒ C by composing ι with M →֒ Mp = Qp.

We choose ιl : Ql
∼
−→ C so that the embedding ι−1

l ◦ τ induces the place l,
and denote the induced embedding Ml →֒ Ql by ιMl

. It follows that we have
rιl(π)

∼= ιMl
◦ r∨A,l, and we deduce the statement of the theorem since we have

an isomorphism αρ : A[l] ∼= V ∨
ρ .

4 Local–global compatibility

Theorem 4.1. Suppose that F is a CM field and that π is a regular algebraic
cuspidal automorphic representation of GL2(AF ) of weight 0, and let Mπ ⊂ C

be its coefficient field. Let λ|l be a prime of Mπ such that:

1. l ≥ 5, l is unramified in F , and lies under no prime at which π is ramified.

2. rπ,λ is decomposed generic, rπ,λ(GF (ζl)) is enormous, and there is a σ ∈
GF −GF (ζl) such that rπ,λ(σ) is scalar.

Then, for any ι :Mπ,λ
∼
−→ C and any finite v ∤ l in F , we have

ιWD(rπ,λ|GFv
)F-ss ∼= recFv

(πv|det|
−1/2).

Proof. Fix a prime p 6= l for which rπ,λ is decomposed generic. By the main
result of [Var14], to prove the theorem it suffices to show that if v ∤ l is a
finite place at which π is special, then rπ,λ has nontrivial monodromy at v. Fix

ι : Mπ,λ
∼
−→ C and let N be the monodromy operator for WD(rπ,λ|GFv

)F-ss.
To show N 6= 0, it suffices to do so after restriction to any finite extension.

In particular, making a solvable base change that is disjoint from F
ker(rπ,λ)

in
which l is unramified and p is totally split, we may assume that

• πv is an unramified twist of the Steinberg representation,

• rπ,λ is unramified at v and vc.

Now assume for a contradiction that N = 0. Then the main result of [Var14]
implies that rπ,λ|GFv

∼= χ ⊕ χǫl for an unramified character χ : GFv
→

M
×

π,λ. Now we apply Theorem 3.9 with F avoid equal to the Galois closure of

F
ker(rπ,λ)

(ζl)/Q, to obtain a CM Galois extension F1/F , linearly disjoint from
F avoid over F and with l unramified in F1, such that rπ,λ|GF1

is automorphic
(coming from a weight 0, unramified above v and l, automorphic representa-
tion). We now wish to apply Theorem 2.1. By our choice of F avoid, it is easy
to see that rπ,λ(GF1(ζl)) is enormous and that there is σ ∈ GF1 −GF1(ζl) such
that rπ,λ(σ) is scalar. We claim that rπ,λ|GF1

is also decomposed generic.

Let F̃ and F̃1 be the Galois closures of F/Q and F1/Q, respectively. Since

F avoid/Q is Galois and F avoid ∩ F1 = F , we have F avoid ∩ F̃1 = F̃ . Since p

is totally split in F , it is totally split in F̃ and the conjugacy class of Frobp
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in Gal(F avoid/Q) lies in Gal(F avoid/F̃ ). Using Chebotarev density, we choose

a prime q unramified in F avoidF̃1 such that Frobq ∈ Gal(F avoidF̃1/Q) lies in

Gal(F avoidF̃1/F̃ ) and corresponds to Frobp × 1 under the isomorphism

Gal(F avoidF̃1/F̃ ) ∼= Gal(F avoid/F̃ )×Gal(F̃1/F̃ ).

This q is decomposed generic for rπ,λ|GF1
.

By Theorem 2.8, rπ,λ|GF1
is crystalline with all labelled Hodge–Tate weights

equal to {0, 1} at all places above l in F1. The representation rπ,λ|GF1
thus

satisfies the assumptions of Theorem 2.1, and we obtain a regular algebraic cus-
pidal automorphic representation Π of GL2(AF1) such that rπ,λ|GF1

∼= rι(Π)
and with Πw unramified at all w|v in F1. Then for any w|v in F1, rι(Π)|GF1,w

∼=

χ|GF1,w
⊕ χ|GF1,w

ǫl, and Πw is an unramified principal series. By local-global

compatibility at unramified places [HLTT16, Var14], this contradicts the gener-
icity of Π.

Proof of Theorem 1.1. If π is everywhere potentially unramified, then this fol-
lows from the main result of [Var14], so we can assume that π is special at
some finite place of F . Theorem 1.1 then follows at once from Theorem 4.1
and Lemma 2.9.
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