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Abstract. We prove a number of property (T) permanence re-
sults for locally compact quantum groups under exact sequences and
the presence of invariant states, analogous to their classical versions.
Along the way we characterize the existence of invariant weights on
quantum homogeneous spaces of quotient type, and relate invariant
states for LCQG actions on von Neumann algebras to invariant vec-
tors in canonical unitary implementations, providing an application
to amenability. Finally, we introduce a notion of lattice in a locally
compact quantum group, noting examples provided by Drinfeld dou-
bles of compact quantum groups. We show that property (T) lifts
from a lattice to the ambient LCQG, just as it does classically, thus
obtaining new examples of non-classical, non-compact, non-discrete
LCQGs with property (T).
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1 Introduction

The axiomatization of locally compact quantum groups (or LCQGs for short)
has reached a stable state with the advent of [KV1, KV2, Kus2, Wor2, SW1,
MNW, SW2] (based on earlier work such as [BS]), making the field a rich
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source of examples, questions and problems pertaining to representation theory,
operator algebras, geometric group theory and affiliated subjects.
The present paper is motivated primarily by prior work on property (T)
for LCQGs. In various degrees of generality, in the quantum setting this
representation-theoretic rigidity property has been studied in a number of
sources: [PJ] for Kac algebras, [BCT] in the algebraic setting, [Fim, Kye, KyS]
for discrete quantum groups and finally [DFSW, DSV, BK] in full generality,
for LCQGs. A number of papers address the problem of constructing examples
of LCQGs with property (T), e.g. [Ara, FMP, VVal].
We are concerned here with the “hereditary” character of property (T), i.e. its
preservation under passing to appropriate subgroups, quotients, extensions, etc.
One familiar result is that for a short exact sequence

1 → H → G→ G/H → 1

of locally compact groups, G has property (T) if and only if both G/H and
the pair (G,H) do (see for instance [BdlHV, Exercise 1.8.12] or the somewhat
weaker version in [Zim, Lemma 7.4.1]). The corresponding result for discrete
quantum groups was proven in [BBCW], and we generalize it here in full for
arbitrary short exact sequences of LCQGs in Section 3.
Another celebrated classical result with deep ramifications is the equivalence,
for a locally compact group G, of property (T) for G and for any of its finite-
covolume closed subgroups H ≤ G, i.e. those for which the homogeneous space
G/H admits a finiteG-invariant regular Borel measure [BdlHV, Theorem 1.7.1].
This affords deducing property (T) for certain discrete groups realizable as
lattices (closed, discrete, finite-covolume subgroups) of Lie groups.
We prove an analog of this finite-covolume permanence result in Theorem 6.7
below: property (T) lifts from finite-covolume closed quantum subgroups.
Given that, by Theorem 6.6, a Kac-type discrete quantum group Ĝ is a lattice
in the Drinfeld double DG of the corresponding compact quantum group G,
this provides examples of non-discrete quantum groups DG with property (T).
Along the way towards the above-mentioned property (T) permanence state-
ments we prove a number of auxiliary results that we hope might have wider
applicability as general-purpose tools in dealing with restrictions of unitary
representations to closed quantum subgroups H ≤ G of LCQGs, and also with
invariance properties for measures on quantum homogeneous spaces G/H. The
unifying thread throughout is that of LCQG actions on von Neumann algebras,
with canonical unitary implementations and invariant weights / states playing
a central role in the discussion.
A more detailed, albeit brief summary of the contents of the paper follows.
In Section 2 we gather some of the requisite preliminary material on the struc-
ture of locally compact quantum groups.
The main result of Section 3 is Theorem 3.1, the analog of the classical result
stating that given a closed normal subgroup H E G of a locally compact group,
property (T) for G is equivalent to property (T) for the pair (G,H) and the
quotient G/H (see e.g. [BdlHV, Exercise 1.8.12]).
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In the process of proving that result we provide, in Proposition 3.10, a charac-
terization of unitary representations of G factoring through a quotient G/H for
normal H E G. Although relatively simple and unsurprising, we were not able
to find the remark in the literature; it would presumably be of some indepen-
dent interest in its own right.
In Section 4 we turn to invariant measures on homogeneous spaces G/H. For
LCQGs this translates to invariant normal semi-finite faithful weights on the
von Neumann algebra L∞(G/H). The main result of the section is Theorem 4.4,
where we prove the analog of the classical characterization of inclusions H ≤ G

for which G/H has a G-invariant measure: they are precisely those for which
the modular function of G restricts to the modular function of H [BdlHV,
Corollary B.1.7].
The invariant measure theme recurs in Section 5, where we prove in Theo-
rem 5.1 that given an action by a LCQG G on a von Neumann algebra N , a
normal state on N is invariant under the action if and only if the corresponding
vector is invariant under the canonical unitary implementation of the action.
This result was previously known to hold for discrete quantum groups [DSV,
Proposition 4.11]. It has some applications to characterizing a strong form of
amenability for unitary representations by means of invariant vectors, as we
discuss in Theorem 5.11.
Section 6 revolves around closed quantum subgroups H ≤ G of finite covol-
ume, that is, such that G/H admits a G-invariant normal state. We prove in
Theorem 6.1 that in this case, the unimodularity of H and G are equivalent.
We then define lattices of locally compact quantum groups as discrete closed
quantum subgroups of finite covolume (see Definition 6.5). By Theorem 6.6,
examples include the discrete “halves” of Drinfeld doubles of Kac-type compact
quantum groups. In Theorem 6.7 we obtain the quantum counterpart of the re-
sult that property (T) lifts along inclusions with finite covolume, and transfers
from lattices to the ambient LCQGs.

2 Preliminaries

All Hilbert spaces in the paper are complex, and the inner products are linear
in the left variable. For a Hilbert space H and ζ, η ∈ H, let ωζ,η ∈ B(H)∗ be
defined by B(H) ∋ T 7→ 〈Tζ, η〉, and set ωζ := ωζ,ζ . Representations of C∗-
algebras will always be assumed non-degenerate, and the units will be denoted
by 1 when they exist. The symbol ⊗ is reserved for the tensor product of Hilbert
spaces and maps, ⊗min stands for the minimal tensor product of C∗-algebras,
and ⊗ is designated for the normal tensor product of von Neumann algebras.
For a C∗-algebra A, write M(A) for its multiplier algebra. For C∗-algebras A
and B, a morphism from A to B is a ∗-homomorphism Φ : A → M(B) that
is non-degenerate, i.e., Φ(A)B is total in B. The set of all such morphisms is
denoted by Mor(A,B).
We assume familiarity with modular theory of von Neumann algebras [Str,
Tak1, Tak2], including the theory of operator-valued weights (originally [Haa1,
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Haa2]). The extended positive part of a von Neumann algebra M is denoted

by M̂+ or M^
+. For a normal semi-finite faithful (n.s.f.) weight ϕ on M , let

M+
ϕ := {x ∈M+ : ϕ(x) <∞}, Mϕ := spanM+

ϕ ,

Nϕ := {x ∈M : x∗x ∈ M+
ϕ},

and denote the GNS Hilbert space, GNS map, modular conjugation, modular
operator and modular automorphism group of ϕ by L2(M,ϕ), ηϕ, Jϕ, ∇ϕ and

(σϕt )t∈R
, respectively, and write Tϕ := Jϕ∇

1/2
ϕ .

Unless otherwise indicated, the following preliminaries on locally compact
quantum groups are taken from [KV1, KV2, Kus2]. They are far from being
exhaustive, and we refer to the original articles for more details.

Definition 2.1. A locally compact quantum group (in short, LCQG) is a pair
G = (M,∆) such that:

(1) M is a von Neumann algebra;

(2) ∆, called the co-multiplication of G, is a unital normal ∗-homomorphism
from M to M ⊗M that is co-associative: (∆⊗ id)∆ = (id⊗∆)∆;

(3) M admits n.s.f. weights ϕ, ψ, called the Haar weights, that are left and
right invariant, respectively, in the sense that

ϕ((ω ⊗ id)(∆(x))) = ϕ(x)ω(1) (∀x ∈ M+
ϕ , ω ∈M+

∗ ),

ψ((id⊗ ω)(∆(x))) = ψ(x)ω(1) (∀x ∈ M+
ψ , ω ∈M+

∗ ).

We set L∞(G) :=M , L1(G) :=M∗ and L2(G) := L2(M,ϕ).

The easiest example of LCQGs comes from locally compact groups G: indeed,
just take the usual L∞(G) with the co-multiplication ∆ : L∞(G) → L∞(G ×
G) ∼= L∞(G) ⊗ L∞(G) given by (∆(f))(s, t) := f(st) for f ∈ L∞(G) and
s, t ∈ G.
Every LCQG G has a dual LCQG, denoted by Ĝ. We will not explain here

how this duality works, but mention the double dual property: ̂̂
G = G, and the

fact that this duality extends Pontryagin’s duality for locally compact abelian
groups. Elements pertaining to the dual Ĝ will be decorated with a hat, e.g. ϕ̂.
Remark that we can and will identify L2(Ĝ) with L2(G). There exists a (mul-
tiplicative) unitary W ∈ L∞(G)⊗L∞(Ĝ), called the left regular representation
of G. It implements ∆ in the sense that ∆(x) =W ∗(1⊗x)W for all x ∈ L∞(G).
Furthermore, we have Ŵ = σ(W ∗), where σ is the flip automorphism.
There are also two C∗-algebraic “pictures” of a LCQG G. The set

C0(G) := {(id⊗ ω)(W ) : ω ∈ L1(Ĝ)}

is a WOT-dense C∗-subalgebra of L∞(G), called the reduced C∗-algebra
of G. Considering W as acting on L2(G) ⊗ L2(G), it belongs to both
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M(C0(G) ⊗min K(L2(G))) and M(C0(G) ⊗min C0(Ĝ)). Furthermore, ∆ re-
stricts to an element of Mor(C0(G),C0(G) ⊗min C0(G)). The unitary an-
tipode, as a ∗-anti-automorphism of either C0(G) or L∞(G), will be de-
noted by R. There is also the universal C∗-algebra Cu

0(G) of G with its
own co-multiplication ∆u ∈ Mor(Cu

0(G),Cu
0(G)⊗min Cu

0(G)). It admits a uni-
versality property related to representations; see below. The reducing mor-
phism, which is a surjective ∗-homomorphism Λ : Cu

0(G) → C0(G), sat-
isfies (Λ ⊗ Λ) ◦ ∆u = ∆|C0(G) ◦ Λ. There are also the universal version

V V∈ M(Cu
0(G) ⊗min Cu

0(Ĝ)), and the two semi-universal versions W,W, of
W . For instance, we have W ∈ M(Cu

0(G)⊗min C0(Ĝ)).
A unitary representation, or simply a representation, of a LCQG G on a Hilbert
space H is a unitary operator U ∈ L∞(G) ⊗ B(H) satisfying (∆ ⊗ id)(U) =
U13U23, where the subscript indicates tensor product leg numbering. In fact,
we automatically have U ∈ M(C0(G)⊗minK(H)). There is a bijection between
the representations of G and the representations of the C∗-algebra Cu

0(Ĝ) as-
sociating Φ ∈ Mor(Cu

0(Ĝ),K(H)) to (id⊗Φ)( W) ∈ M(C0(G)⊗minK(H)), for
a Hilbert space H. From the dual side, the left regular representation Ŵ of
Ĝ and the trivial representation 1 ∈ L∞(Ĝ) of Ĝ correspond to the reducing
morphism Λ and to the co-unit ǫ of G.
Let U, V be representations of a LCQG G on Hilbert spaces H,K, respectively.
The contragradient of U is the representation U := (R ⊗ ⊤)(U) of G on H,
where H is the (complex) conjugate Hilbert space of H and ⊤ : B(H) → B(H)
is the transpose map, defined by ⊤(x)(ξ) = x∗(ξ) for x ∈ B(H) and ξ ∈ H.
We can tensor U and V in two ways, yielding the following representations of
G on H ⊗K:

U ��������⊤ V := U12V13 and U ��������⊥ V := V13U12

(we warn the reader that the meaning of the notation ��������⊥ is not consistent

with the one in [Wor1]). We have U = U and U ��������⊤ V = U ��������⊥ V (identifying
H ⊗K ∼= H ⊗K).
Actions are of basic importance in this paper. A left (resp., right) action of a
LCQG G on a von Neumann N is an injective normal unital ∗-homomorphism
α : N → L∞(G) ⊗ N (resp., α : N → N ⊗ L∞(G)) such that (id ⊗ α)α =
(∆⊗ id)α (resp., (α⊗ id)α = (id⊗∆)α).
We require some material on homomorphisms between LCQGs from [Kus2,
Section 12], [MRW] and [DKSS, Subsection 1.3] (note the different conventions
regarding W being the left/right regular representation). For LCQGs G,H,
there is a 1-1 correspondence between the following classes of objects:

(1) strong quantum homomorphisms: elements π ∈ Mor(Cu
0(G),Cu

0(H)) that
intertwine the co-multiplications: (π ⊗ π) ◦∆u

G
= ∆u

H
◦ π;

(2) left quantum homomorphisms: elements ρl ∈ Mor(C0(G),C0(H) ⊗min

C0(G)) satisfying (id ⊗ ∆G) ◦ ρl = (ρl ⊗ id) ◦ ∆G and (∆H ⊗ id) ◦ ρl =
(id⊗ ρl) ◦ ρl;

Documenta Mathematica 25 (2020) 2553–2582



2558 M. Brannan, A. Chirvasitu, A. Viselter

(3) right quantum homomorphisms: elements ρr ∈ Mor(C0(G),C0(G) ⊗min

C0(H)) satisfying (∆G ⊗ id) ◦ ρr = (id ⊗ ρr) ◦∆G and (id ⊗∆H) ◦ ρr =
(ρr ⊗ id) ◦ ρr.

These objects describe a homomorphism from H to G. In fact, ρl, resp. ρr,
extends (uniquely) to a left, resp. right, action of H on the von Neumann
algebra L∞(G), and π, ρl, ρr are related to one another by the identities

ρl ◦ ΛG = ((ΛH ◦ π)⊗ ΛG) ◦∆
u
G, (2.1)

ρr ◦ ΛG = (ΛG ⊗ (ΛH ◦ π)) ◦∆u
G, (2.2)

ρl = (RH ⊗RG) ◦ σ ◦ ρr ◦RG (2.3)

(in particular, see [MRW, Theorem 5.3 equation (33) and Theorem 5.5 equation
(35)]). Every strong quantum homomorphism π ∈ Mor(Cu

0(G),Cu
0(H)) from H

to G has a dual strong quantum homomorphism π̂ ∈ Mor(Cu
0(Ĥ),Cu

0(Ĝ)) from
Ĝ to Ĥ, which satisfies

(π ⊗ id)(V VG) = (id⊗ π̂)(V VH). (2.4)

Another useful identity is
ǫH ◦ π = ǫG. (2.5)

The following definitions and results are from [DKSS]. Let again G,H be
LCQGs. We say that H is a closed quantum subgroup of G in the sense of
Woronowicz, resp. Vaes, if there exists a strong quantum homomorphism π from
H to G such that π(Cu

0(G)) = Cu
0(H), resp. if there exists a normal injective

∗-homomorphism γ : L∞(Ĥ) → L∞(Ĝ) intertwining the co-multiplications:
(γ ⊗ γ) ◦ ∆

Ĥ
= ∆

Ĝ
◦ γ. The latter condition implies the former, and the

associated strong quantum homomorphism π satisfies

γ|C0(Ĥ) ◦ ΛĤ
= Λ

Ĝ
◦ π̂. (2.6)

Let H be a closed quantum subgroup of a LCQG G in the sense of Woronowicz,
and denote by αl : L∞(G) → L∞(H) ⊗ L∞(G) the left action of H on L∞(G)
(the extension of the suitable map ρl above). The “L∞ algebra of the quantum
homogeneous space H\G” is the fixed-point von Neumann algebra L∞(H\G) :=
{x ∈ L∞(G) : αl(x) = 1⊗ x}. It is a right coideal, namely ∆G(L

∞(H\G)) ⊆
L∞(H\G) ⊗ L∞(G). Hence, ∆G restricts to a right action ∆H\G of G on
L∞(H\G). Similarly, there is a right action αr : L∞(G) → L∞(G)⊗L∞(H) of
H on L∞(G), and its fixed-point algebra is denoted by L∞(G/H).

3 Property (T) and exact sequences

The main result of this section is the following generalization of [BdlHV, Sec-
tion 1.7, pp. 63–64; see Exercise 1.8.12], which extends [BBCW, Proposition
4.13] from discrete to locally compact quantum groups. The required notions
will be introduced subsequently.
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Theorem 3.1. Let G be a LCQG and H E G a normal closed quantum sub-
group. Then G has property (T) if and only if both G/H and the pair (G,H)
have property (T).

The implication ‘ =⇒ ’ is not new, as will be explained below. Let us recall the
definition of normality of closed quantum subgroups. Let G be a LCQG and
H a closed quantum subgroup in the sense of Vaes with associated embedding
γ : L∞(Ĥ) → L∞(Ĝ).

Definition 3.2 ([VVai, Definition 2.10]). We say that H is normal in G if
W

Ĝ
(γ(L∞(Ĥ))⊗ 1)W ∗

Ĝ
⊆ γ(L∞(Ĥ))⊗B(L2(G)).

The following characterizations of normality will be used tacitly in the sequel.

Theorem 3.3 ([KasS, Section 4], originally [VVai, Theorem 2.11]). The fol-
lowing conditions are equivalent:

(1) H is normal in G;

(2) L∞(G/H) = L∞(H\G);

(3) ∆G(L
∞(G/H)) ⊆ L∞(G/H)⊗ L∞(G/H).

When these are satisfied, (L∞(G/H), (∆G)|L∞(G/H)) is a LCQG, which we de-
note by G/H.

By the last sentence in the theorem’s statement, the LCQG Ĝ/H naturally
becomes a closed quantum subgroup of Ĝ in the sense of Vaes.

3.1 Invariance, almost invariance and preservation

Let U be a representation of a LCQG G on a Hilbert space H with associated
morphism Φ ∈ Mor(Cu

0(Ĝ),K(H)). View U as acting on L2(G) ⊗ H when
appropriate.

Definition 3.4 ([DFSW, Section 3]).

(1) A vector ζ ∈ H is invariant under U if Φ(a)ζ = ǫ̂(a)ζ for all a ∈ Cu
0(Ĝ),

or, equivalently, if U(η⊗ζ) = η⊗ζ for all η ∈ L2(G). The closed subspace
of all such vectors in H is denoted by Inv(U).

(2) We say that U has almost-invariant vectors if there exists a net (ζi)i∈I

of unit vectors in H such that Φ(a)ζi − ǫ̂(a)ζi −−→
i∈I

0 for all a ∈ Cu
0(Ĝ),

or, equivalently, such that U(η ⊗ ζi)− η ⊗ ζi −−→
i∈I

0 for all η ∈ L2(G).

Definition 3.5. A closed subspace H0 of H is preserved by (or is globally
invariant under) U if the projection P of H onto H0 satisfies (1⊗P )U(1⊗P ) =
U(1⊗ P ).

Under the assumptions of the last definition, the operator U(1⊗P ) ∈ L∞(G)⊗
B(H0) is unitary, that is: U and 1 ⊗ P commute, by [BDS, Corollary 4.16],
and is thus a representation of G on H0, indeed—a sub-representation of U .
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3.2 Restrictions of representations

We first need some preliminaries on restricting representations to closed quan-
tum subgroups. Throughout this subsection we let G be a LCQG and
H be a closed quantum subgroup in the sense of Woronowicz. Let π ∈
Mor(Cu

0(G),Cu
0(H)) be the associated strong quantum homomorphism and

π̂ ∈ Mor(Cu
0(Ĥ),Cu

0(Ĝ)) be its dual. We use the notation from Section 2,
and in particular the actions αr, αl.

Definition 3.6. Let U be a representation of G on a Hilbert space H. Write

Φ ∈ Mor(Cu
0(Ĝ),K(H))

for the associated morphism.

(1) The restriction of U to H is the representation U |H of H on H whose
corresponding morphism is Φ ◦ π̂. Equivalently (by (2.4)),

U |H = (id⊗ (Φ ◦ π̂))( WH) = ((ΛH ◦ π)⊗ Φ)(V VG).

(2) The elements of Inv(U |H) will be called the H-invariant vectors of U .

(3) We say that U is trivial on H if U |H is the trivial representation of H on
H, namely the unit of L∞(H)⊗B(H); equivalently: Φ ◦ π̂ = ǫ

Ĥ
(·)1.

(4) Suppose that H ≤ G is normal. We say that U factors through G → G/H
if U ∈ L∞(G/H)⊗B(H).

Remark 3.7. A vector in H that is invariant under U is also invariant under
U |H; and a similar statement about almost-invariant vectors also holds. This
is because ǫ

Ĝ
◦ π̂ = ǫ

Ĥ
(see (2.5)).

Definition 3.8. The pair (G,H) is said to have property (T) if for every
representation of G with almost-invariant vectors, its restriction to H has a
non-zero invariant vector.

Evidently, G itself has property (T) [DFSW, Section 6] if and only if the pair
(G,G) has property (T); and in this case, the pair (G,K) has property (T) for
every closed quantum subgroup K of G.
For the rest of this subsection we fix U,H,Φ as in Definition 3.6.

Lemma 3.9. We have

(αl ⊗ id)(U) = (U |H)13U23 ∈ L∞(H)⊗ L∞(G)⊗B(H), (3.1)

(αr ⊗ id)(U) = U13(U |H)23 ∈ L∞(G)⊗ L∞(H)⊗B(H). (3.2)

Therefore, the representation U is trivial on H if and only if (αl⊗id)(U) = U23,
if and only if (αr ⊗ id)(U) = U13.
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Proof. The left hand side of (3.1) equals ((αl ◦ΛG)⊗Φ)(V VG), so by (2.1) it is
obtained by applying (ΛH ◦ π)⊗ΛG ⊗Φ to (∆u

G
⊗ id)(V V

G). Since the latter is
V V

G

13V V
G

23, we obtain equation (3.1). Equation (3.2) is proved similarly using
(2.2). The second statement readily follows.

Proposition 3.10. Suppose that H is normal in G, and write π̃ ∈

Mor(Cu
0(Ĝ),Cu

0(Ĝ/H)) for the strong quantum homomorphism associated to

Ĝ/H being a closed quantum subgroup of Ĝ. Then the following conditions are
equivalent:

(1) U is trivial on H;

(2) U factors through G/H;

(3) the representation Φ factors through π̃.

Proof. The equivalence (1) ⇐⇒ (2) is clear from the second assertion in
Lemma 3.9 and L∞(G/H) = L∞(H\G) being the fixed-point algebra of αl.
For the equivalence with (3) we need the following observation: applying (2.6)

to Ĝ/H ≤ Ĝ, in which case γ is just the inclusion map j : L∞(G/H) →֒ L∞(G),
gives that j ◦ ΛG/H = ΛG ◦ ̂̃π.

(3) =⇒ (2): let Φ′ ∈ Mor(Cu
0(Ĝ/H),K(H)) be such that Φ = Φ′ ◦ π̃. Then

using (2.4),

U = (ΛG ⊗ Φ)(V VG) = (ΛG ⊗ (Φ′ ◦ π̃))(V VG) = ((ΛG ◦ ̂̃π)⊗ Φ′)(V VG/H)

= ((j ◦ ΛG/H)⊗ Φ′)(V VG/H) ∈ L∞(G/H)⊗B(H),

proving that U factors through G/H.
(2) =⇒ (3): assume that U factors through G/H; in other words, it can be

seen as a representation of G/H. Let thus Φ′ ∈ Mor(Cu
0(Ĝ/H),K(H)) be the

associated representation of Cu
0(Ĝ/H). Then repeating the above computation

yields that U = (ΛG ⊗ (Φ′ ◦ π̃))(V VG). The uniqueness of Φ hence implies that
it equals Φ′ ◦ π̃.

Next, we consider the (global) invariance of the space of H-invariant vectors
under all of G when the former is normal in the latter.

Proposition 3.11. Suppose that H is normal in G. Then the closed subspace
Inv(U |H) of H consisting of all vectors invariant under U |H is preserved by U .

Proof. Let P be the projection onto Inv(U |H); its defining property is that it
is the largest projection in B(H) such that

U |H(1⊗ P ) = 1⊗ P

(see [DFSW, Proposition 3.4]). Our goal is to argue that (1⊗ P )U(1 ⊗ P ) =
U(1⊗ P ).
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By Lemma 3.9 equation (3.2) we have

(αr ⊗ id)(U(1⊗ P )) = U13(U |H)23(1⊗ 1⊗ P ) = U13(1⊗ 1⊗ P ).

This means that U(1 ⊗ P ) ∈ L∞(G/H) ⊗ B(H). Normality of H in G is
equivalent to L∞(G/H) = L∞(H\G). As a result, (αl ⊗ id)(U(1 ⊗ P )) =
U23(1⊗ 1⊗ P ). In combination with Lemma 3.9 equation (3.1), we obtain

(U |H)13U23(1⊗ 1⊗ P ) = U23(1⊗ 1⊗ P ).

Equivalently, writing U0 := U(1⊗ P ), for all ω ∈ L1(G) we have

U |H
(
1⊗ (ω ⊗ id)(U0)

)
= 1⊗ (ω ⊗ id)(U0),

hence P (ω ⊗ id)(U0) = (ω ⊗ id)(U0) by the definition of P . That is, (1 ⊗
P )U(1⊗ P ) = U(1⊗ P ), as desired.

We end this subsection with the following technical lemma, needed later.

Lemma 3.12. Suppose that the left action of G on L∞(G/H) has an invariant
normal state ω ∈ L∞(G/H)∗ (see Definition 4.1 below), and extend it to a
normal state of L∞(G) denoted by the same symbol. Let U be a representation
of G. Then for every ξ ∈ Inv(U |H) we have (ω ⊗ id)(U)ξ ∈ Inv(U).

Proof. From Lemma 3.9 and the assumption that ξ ∈ Inv(U |H) we have

((αr⊗id)(U))(Ξ⊗ξ) = U13(U |H)23(Ξ⊗ξ) = U13(Ξ⊗ξ) (∀Ξ ∈ L2(G)⊗L2(H)).

Consequently, for each η ∈ H we have αr ((id⊗ ωξ,η)(U)) = (id⊗ωξ,η)(U)⊗1,
i.e., (id⊗ ωξ,η)(U) ∈ L∞(G/H).
Since U is a representation of G, for all α, β ∈ L2(G) and η ∈ H we have

〈U [α⊗ (ω ⊗ id)(U)ξ] , β ⊗ η〉 = 〈((id⊗ ω ⊗ id)(U13U23)) (α ⊗ ξ), β ⊗ η〉

= 〈((id⊗ ω ⊗ id)((∆G ⊗ id)(U))) (α⊗ ξ), β ⊗ η〉

= 〈((id⊗ ω) ◦∆G)((id ⊗ ωξ,η)(U))α, β〉 .

Recall that ∆G/H : L∞(G/H) → L∞(G)⊗L∞(G/H) is the restriction of ∆G to
L∞(G/H), and that the invariance of ω means that (id ⊗ ω) ◦∆G/H = ω(·)1.
Hence, the above equals

〈
((id⊗ ω) ◦∆G/H)((id⊗ ωξ,η)(U))α, β

〉
= 〈ω((id⊗ ωξ,η)(U))α, β〉

= 〈α⊗ (ω ⊗ id)(U)ξ, β ⊗ η〉 ,

proving that (ω ⊗ id)(U)ξ ∈ Inv(U).
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3.3 Back to property (T)

With the above material in place we can now mimic the proof of [BBCW,
Proposition 4.13].

Proof of Theorem 3.1. ( =⇒ ): if G has property (T), then so does the pair

(G,H); and furthermore, since Ĝ/H is a closed quantum subgroup of Ĝ in
the sense of (Vaes, thus) Woronowicz, [CN, Corollary 3.7] implies that G/H
has property (T) (use (2.5)). Remark that this is a particular case of [DSV,
Theorem 5.7].
( ⇐= ): let U be a representation of G on a Hilbert space H that has almost-
invariant vectors. Proposition 3.11 then shows that Inv(U |H) is preserved by U .
Denoting the associated sub-representation of U by U0, we claim that it has
almost-invariant vectors.
To see this, note that any net (ξi)i∈I witnessing almost-invariant vectors of U
whose projections (ξ⊥i )i∈I on the orthogonal complement Inv(U |H)⊥ fails to
converge to zero would give rise to almost-invariant, and hence—because the
pair (G,H) has property (T)—non-zero H-invariant, vectors of U in Inv(U |H)⊥.
This would then contradict the fact that Inv(U |H) contains all such vectors.
Proposition 3.10 shows that the representation U0 of G factors through G/H,
and since the latter has property (T) the existence of almost-invariant vectors
for U0 entails the existence of a non-zero invariant vector for U0 as a represen-
tation of G/H, thus also as a representation of G, concluding the proof.

4 Invariant weights

Classically, if G is a locally compact group and H is a closed subgroup of G,
then the actionGy G/H admits a (strongly) quasi-invariant (Radon) measure
[Fol, Proposition 2.54 and Theorem 2.56], but not always an invariant measure.
In fact, quasi-invariant measures on G/H correspond to certain measures on G,
namely the ones that are equivalent to the left/right Haar measure with the
Radon–Nikodym derivative satisfying certain conditions [Bou, Chapter VII,
Section 2, Lemma 4, a ⇐⇒ c, and Lemma 5]. The existence of an invariant
measure on G/H is equivalent to the modular element of G restricting to that
of H [Fol, Theorem 2.49]. In this section we prove that this holds for LCQGs.
Assume that H is a closed quantum subgroup of a LCQG G in the sense of
Woronowicz. As Kustermans remarks in [Kus3, p. 417], every n.s.f. weight on
L∞(G/H) should be seen as playing the role of a quasi-invariant n.s.f. weight
(“measure”), because all n.s.f. weights on L∞(G) are “equivalent” to one
another—this is the essence of Connes’ cocycle Radon–Nikodym derivative—
and in particular to the Haar weights on G (compare [Bou, Chapter VII, Sec-
tion 2, Lemma 4, a ⇐⇒ c] again). To formalize the criterion for the existence of
an invariant n.s.f. weight for the action G y L∞(G/H), recall that the Radon–
Nikodym derivative [Vae2] of the right Haar weight with respect to the left
Haar weight of G is a generally unbounded, positive, self-adjoint operator δG
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affiliated with L∞(G), called the modular element. It has a universal version
δu
G

affiliated with the C∗-algebra Cu
0(G).

Definition 4.1. Let G be a LCQG, α be a left action of G on a von Neumann
algebra M and θ be a normal semi-finite weight on M . Consider the maps
(id⊗ θ) ◦ α and θ(·)1, both from M+ to L∞(G)^+. We say that θ is completely
invariant under α if these maps coincide. We say that θ is invariant under α
if they coincide on M+

θ ; equivalently, if for every x ∈ M+
θ and ω ∈ L1(G)+

we have θ ((ω ⊗ id)(α(x))) = θ(x)ω(1) (in particular, (ω ⊗ id)(α(x)) ∈ M+
θ ).

These invariance notions are defined similarly for right actions.

Remark 4.2. The definition of invariance (of unbounded weights) is a particular
case of [Vae3, Definition 2.3]. Complete invariance evidently implies invariance.
In certain cases these notions coincide, e.g. for the Haar weights of a LCQG,
see [KV2, Proposition 3.1].

Definition 4.3. Let H be a closed quantum subgroup of a LCQG G in the
sense of Woronowicz, and write π : Cu

0(G) → Cu
0(H) for the corresponding

strong quantum homomorphism. We say that δG restricts to δH if π((δu
G
)it) =

(δu
H
)it for all t ∈ R.

The next result, which is the main one of this section, extends the above-
mentioned classical result, as well as [KalKS, Proposition 5.1] and [KalKSS,
Lemma 3.1].

Theorem 4.4. Let H be a closed quantum subgroup of a LCQG G in the sense
of Vaes and

αr : L
∞(G) → L∞(G)⊗ L∞(H) (4.1)

the resulting right action of H on L∞(G). Then the following conditions are
equivalent:

(1) the left action of G on L∞(G/H) has a completely invariant n.s.f. weight;

(2) αr(δitG ) = δit
G
⊗ δit

H
for all t ∈ R;

(3) δG restricts to δH.

In that case, the invariant n.s.f. weight is unique up to scaling.

We make note of the following consequence.

Corollary 4.5. Let H be a closed quantum subgroup of a LCQG G in the
sense of Vaes, and suppose the left action of G on L∞(G/H) has a completely
invariant n.s.f. weight. If G is unimodular, then so is H.

Proof. This is immediate from Theorem 4.4: given condition (2), δit
G

= 1 for
all t implies the same for δH.

Documenta Mathematica 25 (2020) 2553–2582



Actions, Quotients and Lattices 2565

Suppose that H is a closed quantum subgroup of a LCQG G in the sense
of Vaes. By [KasKS, Theorem 5.2] (attributed there to [DeC, Proposition
3.12]), the right action αr of H on L∞(G) (see Section 2) is integrable in
the sense of [Kus3, Section 6]; see also [KasKS, Corollary 5.6]. Thus, the

function T := (id⊗ ϕH) ◦αr : L∞(G)+ → L∞(G)^+ is an n.s.f. operator-valued

weight from L∞(G) to L∞(G/H) under the canonical embedding of L∞(G/H)^+
inside L∞(G)^+ ([Vae3, Proposition 1.3], noting the different convention in the
definition of a (co-) representation; see [Kus3, Section 8, p. 452]). Therefore,
each n.s.f. weight θ on L∞(G/H) induces the n.s.f. weight θ◦T on L∞(G). These
weights are characterized by the next result, which generalizes the classical
correspondence alluded to above between quasi-invariant measures on G/H
and certain measures on G.

Theorem 4.6 ([Kus3, Propositions 8.6 and 8.7]). Let H be a closed quantum
subgroup of a LCQG G in the sense of Vaes. Use the notation of the pre-
vious paragraph. An n.s.f. weight φ on L∞(G) has the form θ ◦ T for some
n.s.f. weight θ on L∞(G/H) if and only if for all t ∈ R,

αr((Dφ : DψG)t) = (Dφ : DψG)t ⊗ δ−it
H
,

where (Dφ : DψG) is Connes’ cocycle derivative of φ with respect to ψG. In
that case, θ is unique.

In the proof of Theorem 4.4 we will use a few standard manipulations of
operator-valued weights, such as extending them (normally) to the extended
positive parts, composing and tensoring them, etc. Note that just like nor-
mal operator-valued weights, a positive normal linear map S from a von Neu-
mann algebra M to a von Neumann algebra N extends uniquely to a map
S : M̂+ → N̂+ that is normal in the sense that if (mi) is an increasing net in
M̂+ that converges (pointwise, on M+

∗ ) to m ∈ M̂+, then the increasing net
(Smi) converges to Sm.

Lemma 4.7. In the setting of Theorem 4.4, denote by T the canonical operator-
valued weight from L∞(G) to L∞(G/H). Recall that ∆G/H stands for the left
action of G on L∞(G/H).

(1) For every ω ∈ L1(G)+ we have (ω ⊗ id) ◦∆G/H ◦ T = T ◦ (ω ⊗ id) ◦∆G,

where in the left hand side we extend (ω ⊗ id) ◦∆G/H to L∞(G/H)^+.

(2) An n.s.f. weight θ on L∞(G/H) is completely invariant under ∆G/H if
and only if θ ◦ T is completely invariant under ∆G, if and only if θ ◦ T
equals ϕG up to scaling by a positive scalar.

Proof. In what follows we tacitly extend maps to the extended positive parts
of the respective von Neumann algebras as required for the statements to make
sense.
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(1) Writing again j for the inclusion map of L∞(G/H) in L∞(G) and recalling
that j ◦ T = (id⊗ ϕH) ◦ αr, for all ω ∈ L1(G)+ we have

j ◦ (ω ⊗ id) ◦∆G/H ◦ T

= (ω ⊗ id) ◦∆G ◦ j ◦ T = (ω ⊗ id) ◦∆G ◦ (id⊗ ϕH) ◦ αr

= (ω ⊗ id) ◦ (id⊗ id⊗ ϕH) ◦ (∆G ⊗ id) ◦ αr

= (ω ⊗ id) ◦ (id⊗ id⊗ ϕH) ◦ (id⊗ αr) ◦∆G

= (id⊗ ϕH) ◦ αr ◦ (ω ⊗ id) ◦∆G = j ◦ T ◦ (ω ⊗ id) ◦∆G

(the reader can easily justify equalities like ∆G ◦ (id ⊗ ϕH) = (id ⊗ id ⊗ ϕH) ◦

(∆G ⊗ id) as maps from (L∞(G)⊗ L∞(H))^
+ to (L∞(G)⊗ L∞(G))^

+). Thus,
(ω ⊗ id) ◦∆G/H ◦ T = T ◦ (ω ⊗ id) ◦∆G.
(2) Complete invariance of θ under ∆G/H means that (id ⊗ θ) ◦∆G/H = θ(·)1
as maps

L∞(G/H)+ → L∞(G)^+

or equivalently as maps L∞(G/H)^+ → L∞(G)^+. Since T maps L∞(G)^+ onto

L∞(G/H)^+ [Haa1, Proposition 2.5], that is equivalent to the equality

(id⊗ θ) ◦∆G/H ◦ T = (θ ◦ T )(·)1,

which is the same as

θ ◦ (ω ⊗ id) ◦∆G/H ◦ T = ω(1)θ ◦ T (∀ω ∈ L1(G)+).

By (1), this is equivalent to

θ ◦ T ◦ (ω ⊗ id) ◦∆G = ω(1)θ ◦ T (∀ω ∈ L1(G)+),

meaning that θ ◦ T is completely invariant under ∆G. From the uniqueness of
the left Haar weight of G (and Remark 4.2), this is equivalent to θ ◦ T being
equal to ϕG up to scaling by a positive scalar.

Proof of Theorem 4.4. The up-to-scaling uniqueness is already part of Theo-
rem 4.6.
By Lemma 4.7 (2), an n.s.f. weight θ on L∞(G/H) is completely invariant under
the left action ∆G/H of G on L∞(G/H) if and only if θ ◦ T equals ϕG up to
scaling. By Theorem 4.6, such θ exists if and only if

αr((DϕG : DψG)t) = (DϕG : DψG)t ⊗ δ−it
H

(∀t ∈ R),

and since (DψG : DϕG)t = ν
1

2
it2δit

G
for all t ∈ R, this is equivalent to

αr(δ
it
G ) = δitG ⊗ δitH (∀t ∈ R). (4.2)

This proves the equivalence of the first two conditions in Theorem 4.4.
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Denoting by π : Cu
0(G) → Cu

0(H) the strong quantum homomorphism that
corresponds to H being a closed quantum subgroup of G, we have αr|C0(G) ◦
ΛG = (ΛG⊗ΛHπ)◦∆u

G
as morphisms from Cu

0(G) to C0(G)⊗minC0(H) by (2.2).
Since for all t ∈ R we have (δu

G
)
it ∈ M(Cu

0(G)), ∆u
G
((δu

G
)
it
) = (δu

G
)
it ⊗ (δu

G
)
it

and ΛG((δ
u
G
)
it
) = δit

G
, condition (4.2) is equivalent to

δitG ⊗ ΛH

(
π((δuG)

it)
)
= δitG ⊗ δitH (∀t ∈ R),

that is,

ΛH

(
π((δuG)

it)
)
= δitH (∀t ∈ R).

That this is equivalent to π((δu
G
)
it
) = (δu

H
)
it for all t ∈ R (i.e. to δG restricting

to δH) follows from [Kus2, Result 6.1], because for every t ∈ R, both π((δu
G
)it)

and (δu
H
)
it are group-like unitaries in M(Cu

0(H)) (that is, 1-dimensional repre-
sentations of H in the universal sense), so they are equal if and only if applying
ΛH to them yields the same element, namely δit

H
(also compare the proof of

[Kus2, Proposition 10.1]).

Remark 4.8. If H is a closed quantum subgroup of a LCQG G in the sense
of Woronowicz, then every non-zero normal semi-finite weight θ on L∞(G/H)
that is completely invariant under the left action of G is necessarily faithful.
Indeed, if 0 6= x ∈ L∞(G/H)+, apply the right Haar weight ψG to the equality
(id⊗ θ)(∆G/H(x)) = θ(x)1. The left hand side equals ψG(x)θ(1) because ∆G/H

is the restriction of ∆G (use the complete right invariance of ψG). Since ψG is
faithful and θ is non-zero, we must have θ(x) > 0.
We will henceforth use this implicitly without further comment.

It is now a simple remark that the conditions in Theorem 4.4 hold for normal
H E G.

Corollary 4.9. If H E G is a normal closed quantum subgroup then the left
action of G on L∞(G/H) has a completely invariant n.s.f. weight, namely the
left Haar weight ϕG/H of G/H.

Proof. This follows from Lemma 4.7 (2) and, with T as in that lemma, the fact
that for normal subgroups the Weyl-type “disintegration” formula

ϕG/H ◦ T = ϕG

holds (up to scaling) by [CHK, Proposition 4.10].

In particular, Corollary 4.5 implies:

Corollary 4.10. Normal closed quantum subgroups of unimodular LCQGs
are again unimodular.
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5 The canonical implementation and invariant normal states

The next result extends [DSV, Proposition 4.11 (b)] from discrete to locally
compact quantum groups. Our proof strategy is very different.

Theorem 5.1. Let α be an action of a LCQG G on a von Neumann algebra N .
Let ρ ∈ N+

∗ . Then ρ is invariant under α if and only if the unique vector ζ
in the positive cone L2(N)+ such that ρ = ωζ is invariant under the canonical
unitary implementation [Vae3] of α.

In the following proofs we will work with left actions for convenience.

Lemma 5.2. Let α be an action of a LCQG G on a von Neumann algebra N .
If p ∈ N is a projection such that either α(p) ≥ 1⊗ p or α(p) ≤ 1⊗ p, then p
is a fixed point of α, that is, α(p) = 1⊗ p.

Proof. This is proved in [KasKS, Lemma 3.1 and Remark 3.2] in the case
that α is ergodic. The proof in the general case is just the same, removing
all references to ergodicity and changing the proof’s last line appropriately, as
we now explain. For convenience, we use the convention of [KasKS], so α is a
right action and α(p) ≤ p ⊗ 1. Write q := α(p) ∈ N ⊗ L∞(G). The proof of
[KasKS, Lemma 3.1] shows, without using ergodicity, that (id⊗∆)(q) = q⊗ 1

(see p. 3234 line 4 therein). So by the defining property of right actions,

(α ⊗ id)(α(p)) = (id⊗∆)(α(p)) = α(p)⊗ 1 = (α⊗ id)(p⊗ 1).

Injectivity of α⊗ id now implies that α(p) = p⊗ 1.

Lemma 5.3. Let α be an action of a LCQG G on a von Neumann algebra N .
If ρ ∈ N+

∗ is invariant under α, then p := supp(ρ) is a fixed point of α.

Proof. Note that if a, e are elements of a C∗-algebra with 0 ≤ a, ‖a‖ ≤ 1 and
e being a projection, then eae = e if and only if a ≥ e, because working in
some unitization, eae = e ⇐⇒ e(1 − a)e = 0 ⇐⇒ (1− a)1/2 e = 0 ⇐⇒
(1− a) e = 0 ⇐⇒ a ≥ a1/2ea1/2 = e (using the commutation of a, e).
We can assume that ρ is a state. From the α-invariance of ρ we get

(id⊗ ρ)(α(p)) = ρ(p)1 = (id⊗ ρ)(1⊗ p). (5.1)

If the positive element 1⊗ p− (1⊗ p)α(p)(1 ⊗ p) were non-zero, there would
exist ω ∈ N+

∗ such that (ω ⊗ id) (1⊗ p− (1⊗ p)α(p)(1⊗ p)) is a non-zero
element of pNp, thus (ω ⊗ ρ) (1⊗ p− (1⊗ p)α(p)(1⊗ p)) 6= 0, contradicting
(5.1). Thus (1⊗ p)α(p)(1⊗ p) = 1⊗ p, so that α(p) ≥ 1⊗ p by the preceding
paragraph. This entails that α(p) = 1⊗ p by Lemma 5.2.

The following lemma summarizes a few well-known facts from modular theory.
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Lemma 5.4. Let N be a von Neumann algebra, θ be an n.s.f. weight on N
and p be a projection in the centralizer of θ. Then on the reduced von Neu-
mann algebra pNp we have the reduced (n.s.f.) weight θp := θ|pNp. We have
pNθp = Nθ∩pNp = Nθp, the GNS Hilbert space L2(pNp, θp) naturally identifies

with the subspace ηθ(pNθp) of L2(N, θ), and upon making this identification,
the restriction ηθ |pNθp equals ηθp . Furthermore, the subspace ηθ(pNθp) of

L2(N, θ) is reducing for Tθ, and the part of Tθ on this subspace is precisely Tθp .

Proof. The reduced weight θp is clearly normal and faithful and Nθ ∩ pNp =
Nθp . Recall that Nθ and Mθ are bimodules over the algebra of σθ-entire
analytic elements. Since p is in the centralizer of θ, it is entire analytic, hence
θp is semi-finite and pNθp = Nθ ∩ pNp = Nθp . Furthermore, pNp is invariant
under σθ, and the restriction of σθ to pNp is precisely σθp by the modular
automorphism group uniqueness theorem, because θp is σθ|pNp-invariant and
θp satisfies the KMS-condition with respect to σθ|pNp (this argument is given
in [Con, Proof of Lemme 3.2.6] for when N is a factor, but this condition is not
required).
From this point one proceeds like in the relevant part of the proof of Takesaki’s
conditional expectation theorem (see, e.g., [Str, 10.2, pp. 130–131]). The closed
subspace ηθ(pNθp) of L2(N, θ) is invariant under pNp, and (ηθ(pNθp), ηθ |pNθp)
together with the identity representation is clearly a GNS construction for
(pNp, θp). Thus we can and will identify L2(pNp, θp) with ηθ(pNθp) and ηθp
with ηθ |pNθp. For all t ∈ R and x ∈ Nθp = pNθp,

∇it
θp ηθp(x) = ηθp(σ

θp
t (x)) = ηθ(σ

θ
t (x)) = ∇it

θ ηθ(x) = ∇it
θ ηθp(x).

That is to say, for each t ∈ R, ηθ(pNθp) is reducing for ∇it
θ and the restriction

equals ∇it
θp

. Equivalently, ηθ(pNθp) is reducing for ∇
1/2
θ and the restriction

equals ∇
1/2
θp

. Now, for x ∈ Nθp ∩ N ∗
θp

Tθp ηθp(x) = ηθp(x
∗) = ηθ(x

∗) = Tθ ηθ(x),

that is,
Jθp∇

1/2
θp

ηθp(x) = Jθ∇
1/2
θ ηθ(x) = Jθ∇

1/2
θp

ηθp(x).

So ηθ(pNθp) is also reducing for Jθ and the restriction equals Jθp . All in all,

ηθ(pNθp) is reducing for Tθ and the restriction equals Tθp .

Proof of Theorem 5.1. Denote the canonical unitary implementation of α by
Uα. Sufficiency is clear: if ζ ∈ L2(N) is invariant under Uα, then ωζ ∈ N∗ is
invariant under α.
Necessity: assume that a state ρ ∈ N∗ is invariant under α. Write p for the
support of ρ, let ρ′ be a normal semi-finite weight on N whose support is 1−p,
and set θ := ρ + ρ′. Then θ is an n.s.f. weight on N . We should prove that
the unit vector ηθ(p), which is the (unique) element ζ of L2(N, θ)+ such that
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ρ = ωζ, is invariant under Uα. The idea is to reduce the problem to the case
p = 1.
Let θ̃ be the n.s.f. weight on G α⋉N that is dual to θ [Vae3, Definition 3.1].
We use its GNS construction afforded by [Vae3, Definition 3.4 and Proposition
3.10], so the GNS Hilbert space into which ηθ̃ maps is L2(G) ⊗ L2(N, θ), and
we have

{(a⊗ 1)α(x) : a ∈ Nϕ̂, x ∈ Nθ} is a ∗-ultrastrong–norm core of ηθ̃ (5.2)

and
ηθ̃ ((a⊗ 1)α(x)) = ηϕ̂(a)⊗ ηθ(x) (∀a ∈ Nϕ̂, x ∈ Nθ). (5.3)

Note that 1 ⊗ p = α(p) ∈ G α⋉N belongs to the centralizer of θ̃, because p

belongs to the centralizer of θ, i.e.,
(
σθt

)
t∈R

fixes p, and σθ̃t ◦ α = α ◦ σθt for all
t ∈ R by [Vae3, Proposition 3.7].
We will use the description of Uα as (Jϕ̂ ⊗ Jθ)Jθ̃ (recall that up to unitary
equivalence, Uα does not depend on the chosen n.s.f. weight [Vae3, Proposition
4.1]). We have to show that

Uα(ξ ⊗ ηθ(p)) = ξ ⊗ ηθ(p) (∀ξ ∈ L2(G)). (5.4)

Since p belongs to the centralizer of θ and q := α(p) = 1 ⊗ p belongs to the
centralizer of θ̃, we can apply Lemma 5.4 to these cases. Note that the reduced
weight θp is the faithful normal state ρp. Denoting by αp := α|pNp : pNp →
L∞(G)⊗pNp the reduced action of G on pNp, the reader can check using [Vae3,

Lemma 3.3] that q(G α⋉N)q = G αp
⋉pNp and (θ̃)q = (̃θp) = (̃ρp), where (̃ρp)

is the dual weight of ρp constructed from αp and ρp like θ̃ was constructed from
α and θ. Recall that we view G α⋉N as acting standardly on L2(G)⊗L2(N, θ)

identified with L2(G α⋉N, θ̃) by (5.2) and (5.3). Observe that H := ηθ̃(qNθ̃q)

equals L2(G)⊗ ηθ(pNp) by (5.2) and (5.3) because p, q belong to the suitable
centralizers. Finally, note that the two natural ways of viewing q(G α⋉N)q as
acting standardly on H and the corresponding GNS maps agree.
We claim that H is a reducing subspace for Uα, and that the restriction is
precisely the canonical implementing unitary Uαp

of αp constructed from ρp.

Indeed, by Lemma 5.4, ηθ(pNp) is reducing for Jθ and the restriction is Jθp =
Jρp , and similarly, H is reducing for Jθ̃ and the restriction is J(θ̃)q = J

(̃ρp)
. So all

in all, H is reducing for (Jϕ̂⊗Jθ)Jθ̃ = Uα, and the restriction is (Jϕ̂⊗Jρp)J(̃ρp) =
Uαp

.
In conclusion, by passing to q(G α⋉N)q we transport the verification of the
claim to the case p = 1, so we can assume that θ is a faithful normal α-
invariant state. But in this case, the canonical unitary implementation Uα is
given by the simple formula

(ω ⊗ id)(U∗
α)ηθ(x) = ηθ((ω ⊗ id)(α(x))) (∀x ∈ N,ω ∈ L1(G)),

see the paragraph preceding [DSV, Definition 4.4]. Hence, ηθ(1) is invariant
under Uα.
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In the rest of this section we present several applications of Theorem 5.1.

Definition 5.5. Let H be a closed quantum subgroup of a LCQG G in the
sense of Woronowicz. The canonical unitary implementation of the left action
of G on L∞(G/H) will be called the quasi-regular representation of G/H.

We have the following immediate consequence of Theorem 5.1. Its classical
version is a consequence of [BdlHV, Theorem E.3.1] (take σ to be the trivial
representation there), as the induction of the trivial representation gives the
quasi-regular representation [BdlHV, Example E.1.8 (ii)].

Theorem 5.6. Let H be a closed quantum subgroup of a LCQG G in the sense
of Woronowicz. The left action of G on L∞(G/H) has an invariant normal
state if and only if the quasi-regular representation of G/H has a non-zero
invariant vector.

5.1 An application to amenability of representations and a re-
lated notion

Definition 5.7 ([BCT, BT, Ng, NV]). Let G be a LCQG. A representation U
of G on a Hilbert space H is left amenable if there is a state m of B(H) such
that

m [(ω ⊗ id) (U∗(1⊗ x)U)] = ω(1)m(x) (∀x ∈ B(H), ω ∈ L1(G)), (5.5)

in which case we say that m is a left-invariant mean of U ; equivalently, the
left action αU : B(H) → L∞(G) ⊗ B(H) of G on B(H) given by αU (x) :=
U∗(1 ⊗ x)U , x ∈ B(H), has an invariant mean. Right amenability is defined
similarly by replacing U by U∗.

Observe that U is left amenable if and only if U is right amenable.

Remark 5.8. Although in the above definition m is not assumed to be normal,
condition (5.5) can be abbreviated as

(id⊗m) [U∗(1⊗ x)U ] = m(x)1 (∀x ∈ B(H)),

where the slice map id ⊗m is as defined in [Neu]; see [NV, Lemma 2.2] for a
succinct account.

A possibly stronger notion of amenability involves almost-invariant vectors as
part (1) of the next result shows.

Proposition 5.9 ([BT]). Let G be a LCQG and U, V be representations of G.

(1) If V ��������⊤ U has almost-invariant vectors, then U is left amenable and V is
right amenable.

(2) If V ��������⊤ U has a non-zero invariant vector, then there exist a normal left-
invariant mean of U and a normal right-invariant mean of V .
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In both parts above, V ��������⊤ U can equivalently be replaced by its contragradient
V ��������⊤ U = V ��������⊥ U .

Proof. Assertion (1) is precisely [BT, Proposition 5.2 (4)]. The same argument
also gives (2). Indeed, if U, V are representations of G on H,K, respectively,
and the unit vector Ξ ∈ K ⊗ H is invariant under V ��������⊤ U , then ωΞ is clearly
a (normal) left- and right-invariant mean of V ��������⊤ U . Thus, the normal state
of B(H) given by B(H) ∋ x 7→ ωΞ(1 ⊗ x) is a left-invariant mean of U , and
the normal state of B(K) given by B(K) ∋ x 7→ ωΞ(x⊗ 1) is a right-invariant
mean of V .

We do not know in general whether the converse of (1) is true; this would imply
an affirmative answer to the famous amenability–co-amenability question. The
answer is positive in the classical case by Bekka [Bek], and also in the discrete
case:

Theorem 5.10 ([BCT, Theorem 9.5]). If U is a representation of a discrete
quantum group G, then U ��������⊤ U has almost-invariant vectors if (and only if) U
is left amenable.

We are ready to present the main result of this subsection.

Theorem 5.11. Let U be a representation of a LCQG G on a Hilbert space H.

(1) Consider the following conditions:

a. the representation U is left amenable: there exists a left-invariant
mean of U ;

b. the representation U ��������⊤ U has almost-invariant vectors.

Then (1)b =⇒ (1)a, and the converse holds if G is discrete.

(2) The following conditions are equivalent:

a. there exists a normal left-invariant mean of U ;

b. the representation U ��������⊤ U has a non-zero invariant vector.

The implications (1)b =⇒ (1)a and (2)b =⇒ (2)a hold by Proposition 5.9, so we
are interested only in the converse implications. The implication (1)a =⇒ (1)b
for discrete quantum groups is precisely Theorem 5.10, but the implication
(2)a =⇒ (2)b proved below is new. We will establish the last two implications
in a unified way. Remark that our proof of (1)a =⇒ (1)b is much simpler than
that of Theorem 5.10 in [BCT]. We require the following lemma; in the discrete
case it was given a different proof in [DSV, Lemma 4.13].

Lemma 5.12 ([Vae3, Proposition 4.2], see [Vae1, Corollary 2.6.3]). Let U be a
representation of a LCQG G on a Hilbert space H. Consider the left action
αU of G on B(H) defined in Definition 5.7. Then viewing B(H) as standardly
represented on H ⊗H, the canonical unitary implementation of αU is U ��������⊤ U .
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Proof of Theorem 5.11. We prove the implications (1)a =⇒ (1)b (assuming
that G is discrete) and (2)a =⇒ (2)b. Condition (1)a, respectively (2)a, means
that αU has an invariant state, respectively a normal invariant state. Therefore,
[DSV, Proposition 4.11 (a)], respectively Theorem 5.1, imply that the canonical
unitary implementation of αU , which is U ��������⊤ U by Lemma 5.12, has almost-
invariant vectors, respectively a non-zero invariant vector.

6 Finite-covolume closed quantum subgroups and lattices

In this section we apply the preceding material and discussion on invariant
weights to the study of closed quantum subgroups of finite covolume and lat-
tices.

6.1 Finite covolume and unimodularity

Classically, if a homogeneous space G/H of a locally compact group admits
a finite invariant measure then the unimodularity of H is equivalent to that
of G, i.e. Corollary 4.5 can be reversed when the invariant measure is finite.
This follows for instance from the proof of [BdlHV, Proposition B.2.2], which
applies to finite-covolumeH ≤ G in general (rather than just discrete H , as the
statement is phrased). In the present subsection we prove a quantum version
of this remark.

Theorem 6.1. Let G be a LCQG and H be a closed quantum subgroup in the
sense of Vaes such that the left action of G on L∞(G/H) admits an invariant
normal state. Then, H is unimodular if and only if G is.

Proof. Corollary 4.5 already deduces that H is unimodular if G is, so we are only
concerned with the opposite implication. We thus assume that H is unimodular
and seek to show that G is.
The existence of a (necessarily faithful) invariant normal state θ on L∞(G/H)
and the unimodularity of H imply, via Theorem 4.4, that the action (4.1)
satisfies

αr(δ
it
G ) = δitG ⊗ 1 (∀t ∈ R),

that is, δit
G
∈ L∞(G/H) for all t ∈ R.

By δG being group-like and the invariance of θ, we have

θ(δitG )δ
it
G = (id⊗ θ)(∆G/H(δ

it
G )) = θ(δitG )1 (∀t ∈ R).

Furthermore, θ is normal, so that θ(δit
G
) −−−→
t→0

θ(1) = 1. Therefore, there is a

neighborhood I of 0 in R such that for each t ∈ I we have θ(δit
G
) 6= 0, hence

δit
G
= 1. This implies that δG = 1, i.e., G is unimodular.

Remark 6.2. Another way to complete the above proof after showing that
δit
G

∈ L∞(G/H) for all t ∈ R is as follows. The von Neumann subalgebra
N of L∞(G) generated by the group-like unitaries δit

G
, t ∈ R is a Baaj–Vaes
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subalgebra in the sense of, say, [KasKS, Section 2.1] (terminology inspired by
[BV]): a von Neumann subalgebra invariant under

• the co-multiplication (because each δit
G

is group-like);

• the unitary antipode;

• the scaling group (these last two by, say, [KV1, Proposition 7.12]).

It follows from [BV, Proposition A.5] that (N,∆G|N ) is a LCQG K. The latter
is classical and abelian because N is abelian and K is co-commutative, and
in fact must be a subgroup of R because N is generated by a one-parameter
group of group-like unitaries. Furthermore, K must be compact: indeed, the
embedding

N ⊆ L∞(G/H)

ensures that the G-invariant state on the latter restricts to an invariant state
on N , which must thus be the left Haar state.
It follows that K is trivial, i.e. δit

G
= 1 for all t ∈ R. In short, G is unimodular.

Remark 6.3. Note that unimodularity does not necessarily lift from H ≤ G to
G when the invariant measure on G/H is infinite, even classically:
If G is the ax + b group of, say, [HR, Example 15.17 (g)] and H < G is the
(unimodular!) subgroup of translations x 7→ x + b isomorphic to (R,+), then
the modular function of G is given by (R\{0}) × R ∋ (a, b) 7→ |a|−1, thus it
restricts to that of H, and hence by Theorem 4.4 there is a necessarily infinite
G-invariant measure on G/H, even though G is not unimodular.

In particular, in the same spirit as Corollary 4.10, we have:

Corollary 6.4. Let H E G be a normal closed quantum subgroup such that
G/H is compact. Then, H is unimodular if and only if G is.

Proof. An immediate consequence of Theorem 6.1 and Corollary 4.9, the latter
arguing that the Haar state ϕG/H of G/H is G-invariant.

6.2 Lattices

We introduce lattices in LCQGs by direct analogy to the classical case discussed
in [BdlHV, Definition B.2.1].

Definition 6.5. Let G be a LCQG. A lattice in G is a discrete closed quantum
subgroup H ≤ G in the sense of Woronowicz such that the left action of G on
L∞(G/H) has a (necessarily faithful) invariant normal state.

Purely quantum examples arise from the general theory of Drinfeld doubles,
as introduced in [PW, Section 4] and studied amply afterwards, e.g. in [MNW,
DeCFY, Roy1, Roy2, Ara, MV]. Here we will follow [PW] (which uses the right
regular representation). The initial data to be fed into the general construction
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in [PW] is a compact quantum group G. The underlying C∗-algebra C0(DG)
of the Drinfeld double of G is a C∗-completion of the non-unital ∗-algebra

O(G)⊗ Cc(Ĝ), (6.1)

where O(G) ⊆ C(G) is the unique dense Hopf ∗-subalgebra and Cc(Ĝ) (stand-
ing for functions with compact support) is the algebraic direct sum of the matrix
algebras Mα, each dual to the coefficient matrix coalgebra Cα ⊆ O(G) of an
irreducible G-representation α.
How the construction leads to a LCQG in the sense of [KV1, KV2, Kus2]
is explained briefly in [DeCFY, Section 6]: (6.1) is a ∗-algebraic quantum
group [VD, DVD] and hence its reduced and universal analytic counterparts
are constructible as in [KVD, Kus1]. Alternatively, that is proved directly in
[MNW, Section 8] (C∗-algebraic setting) and in [BV] (von Neumann algebraic
setting). In fact, we have

C0(DG) ∼= C0(G)⊗min C0(Ĝ) and L∞(DG) ∼= L∞(G)⊗ L∞(Ĝ),

and DG is unimodular with hG ⊗ ψ
Ĝ

being the bi-invariant Haar weight on
DG, where hG := ϕG = ψG (see [PW, Theorem 4.2], [MNW, Section 8] or [BV,
Section 5]).
This general framework realizes both G and Ĝ as closed quantum subgroups
of DG in the sense of Woronowicz: this follows from [PW, Theorem 4.3 and
preceding discussion] using the construction of the universal face of DG by ap-
plying [Kus1] to (6.1). To elaborate, at the ∗-algebraic quantum group level of
(6.1), and thus also at the universal level, the strong quantum homomorphisms
realizing these two closed quantum subgroups are just the slice maps with re-
spect to the co-units ǫ

Ĝ
, ǫG at the suitable tensor legs, respectively. As a result,

the description of the co-multiplication given in [PW, equation (4.16)] together
with [PW, equations (4.10) and (4.11)] imply, using (2.2), that the right action
αr corresponding to the inclusion Ĝ ≤ DG is

αr = id⊗∆
Ĝ
: L∞(G)⊗ L∞(Ĝ) → L∞(G)⊗ L∞(Ĝ)⊗ L∞(Ĝ)

(as this holds on (6.1)). From this and the ergodicity of the co-multiplication
it follows that we have

L∞(DG/Ĝ) = L∞(G)⊗ C1 ∼= L∞(G). (6.2)

Furthermore, this description of αr and the left invariance of ϕ
Ĝ

make it clear

that αr is integrable. Consequently, [KasKS, Corollary 5.6] implies that Ĝ is
actually a closed quantum subgroup of DG in the sense of Vaes. A similar
reasoning works for G.
The following result explains how Drinfeld doubles of compact quantum groups
fit into the present context of studying (finite) invariant measures on homoge-
neous spaces.
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Theorem 6.6. Let G be a compact quantum group and DG its Drinfeld double,
as above. The following conditions are equivalent.

(1) G is of Kac type;

(2) Ĝ ≤ DG is a lattice in the sense of Definition 6.5;

(3) The left action of DG on L∞(DG/Ĝ) has a completely invariant
n.s.f. weight.

Proof. Item (2) is clearly formally stronger than (3), since the former asks that
the left action of DG on L∞(DG/Ĝ) admit a finite invariant n.s.f. weight.
To see that (3) =⇒ (1) recall that DG is always unimodular. It then follows
from Corollary 4.5 and (3) that Ĝ too is unimodular, equivalently: of Kac type,
being discrete. In turn, this implies that G is of Kac type.
It remains to argue that (1) =⇒ (2), i.e. that in the Kac case, the left action of
DG on L∞(DG/Ĝ) admits an invariant normal state. We will prove that the
Haar state hG of G satisfies this. Recalling the construction of [PW], we have

∆DG = (id⊗ (Ad(u) ◦ σ)⊗ id) ◦ (∆G ⊗∆
Ĝ
), (6.3)

where u ∈ M(C0(Ĝ)⊗minC0(G)) is the right regular representation of G. Since
G is of Kac type, we have

((id ⊗ h) ◦Ad(u))(1⊗ a) = h(a)1 (∀a ∈ L∞(G)); (6.4)

indeed, [Izu, Corollary 3.9] says that

((id⊗ h) ◦Ad(u∗))(1⊗ a) ∈ C1 (∀a ∈ L∞(G)),

which, by using the boundedness of R, R̂ and the identities h ◦ R = h and
(R̂ ⊗R)(u) = u, is seen to be equivalent to

((id⊗ h) ◦Ad(u))(1⊗ a) ∈ C1 (∀a ∈ L∞(G)),

and applying (the extension to M(C0(Ĝ)) = L∞(Ĝ) of) ǫ̂ now gives (6.4).
(Alternatively, (6.4) just follows from the computation in the proof of [Izu,
Corollary 3.9] by replacing the right regular representation with its adjoint.)
Combining (6.3), (6.4) and the invariance of h yields

((id⊗ id⊗ h⊗ id) ◦∆DG)(a⊗ 1)

= ((id⊗ id⊗ h⊗ id) ◦ (id⊗Ad(u)⊗ id))(∆G(a)13) = h(a)1
(∀a ∈ L∞(G)).

Remembering that left action of DG on L∞(DG/Ĝ) is just the restriction of
∆DG and using (6.2), we get the desired conclusion.
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6.3 Lattices and property (T)

Classically, it is well known that property (T) transfers between locally compact
groups and their finite-covolume closed subgroups, and in particular lattices:
see e.g. [BdlHV, Theorem 1.7.1]. In the quantum setup discussed here we first
prove the following quantum version of the (ii) =⇒ (i) implication of that
result, via what essentially amounts to a straightforward adaptation of the
proof (modulo some paraphrasing).

Theorem 6.7. Let H ≤ G be a closed quantum subgroup of a LCQG in the
sense of Woronowicz such that the left action of G on L∞(G/H) has an invari-
ant normal state. If H has property (T), then so does G.

Proof. Let U ∈ L∞(G)⊗B(H) be a representation of G with almost-invariant
vectors witnessed by a net (ζi)i∈I of unit vectors. Denote by P the projection
of H onto the subspace Inv(U |H) of H-invariant vectors.
The net (ζi)i∈I is also almost-invariant for the restriction U |H, and hence, since
H has property (T),

‖ζi − Pζi‖ → 0. (6.5)

Let ω be as in Lemma 3.12. Then

(ω ⊗ id)(U)Pζi (6.6)

belongs to Inv(U) for all i ∈ I. We will thus be done if we prove that it must
be non-zero for sufficiently large i.
To that end, note first that by (6.5) the vectors (6.6) are arbitrarily close in
norm to

(ω ⊗ id)(U)ζi (6.7)

for large i. In turn, because (ζi)i∈I is almost invariant, the vectors (6.7) get
arbitrarily close in norm to the unit vectors ζi.

In particular, we have:

Corollary 6.8. If a lattice in a LCQG G has property (T), then so does G.

Corollary 6.9. If G is a compact quantum group whose discrete dual has
property (T), then so does its Drinfeld double DG.

Proof. Discrete quantum groups with property (T) are automatically of Kac
type [Fim, Proposition 3.2], so we can combine Theorem 6.6 and Corollary 6.8
to get the result.

Note that Corollary 6.9 provides a new way to construct examples of non-
classical, non-compact, non-discrete LCQGs with property (T), which does not
rely on a deep representation-theoretical study such as in [Ara]. For instance,
the Drinfeld doubles of the compact duals of the discrete quantum groups that
were shown in [FMP, VVal] to have property (T) also have property (T).
The converse of Theorem 6.7 (which holds classically) is the subject of upcom-
ing work.
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