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Abstract. Let f be a normalized cuspidal eigen-newform of level
coprime to p with ap(f) = 0. We formulate both integral signed
Iwasawa main conjectures and analytic Iwasawa main conjectures at-
tached to the symmetric square motive of f twisted by an auxiliary
Dirichlet character. We show that the Beilinson–Flach elements at-
tached to the symmetric square motive factorize into integral signed
Beilinson–Flach elements, giving evidence towards the existence of a
rank-two Euler system predicted by Perrin-Riou. We use these in-
tegral elements to prove one inclusion in the integral and analytic
Iwasawa main conjectures.
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1 Introduction

1.1 Background

Throughout this article, we fix an odd prime p ≥ 7 and embeddings ι∞ : Q →֒ C
and ιp : Q →֒ Cp. Let f be a normalised, cuspidal eigen-newform of weight
k+2, level N and nebentype ǫf . We assume that p ∤ N , p > k+1 and ap(f) = 0.
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We shall write ±α for the roots of the Hecke polynomial X2 + ǫf (p)p
k+1 of f

at p.

Let L/Q be a number field containing the Hecke field Kf
..= Q({an(f)}n≥1)

of f as well as α2. Let p be a prime in L above p. We denote by E the
completion of L at p. Let O denote the ring of integers of E. We fix a Galois-
stable O-lattice Rf inside Deligne’s E-linear representation Wf of GQ. Let
Γ = Gal(Q(µp∞)/Q). We write ΛO(Γ) = O[[Γ]] for the Iwasawa algebra on Γ.
We have the decomposition Γ = Γtors×Γ1, where Γtors is a finite group of order
p − 1 and Γ1 = Gal(Q(µp∞)/Q(µp)). We fix a topological generator γ of Γ1,
which in turn determines an isomorphism Γ1

∼= Zp. Also, let Q∞/Q denote the
cyclotomic Zp-extension of Q. For any Zp-moduleM , we denote its Pontryagin
dual Homcts(M,Qp/Zp) by M

∨.

In [BLLV19], we studied the cyclotomic Iwasawa theory of the Rankin-Selberg
convolution of two modular forms f and g that are non-ordinary at p, making
use of the Beilinson–Flach Euler systems constructed by Loeffler and Zerbes in
[LZ16]. In this paper, we concentrate on the case where f = g and ap(f) = 0.
The results we obtain in this set-up do not rely on the conjectural existence
of a rank-two Euler system, as some of our main results in [BLLV19] do. Our
treatment naturally goes through the study of the symmetric square motive
Sym2 f . This extends the work of Loeffler and Zerbes [LZ19] in the ordinary
case (which we briefly summarize in Section 1.3 below).

Let us put W ∗
f := Hom(Wf , E) and endow it with the contragredient Galois

action. For λ, µ ∈ {±α} and an integer m that is coprime to p, recall from
[LZ16] the Beilinson–Flach elements

BFλ,µm ∈ H1(Q(µm),W ∗
f ⊗W

∗
f (1)⊗HE,k+1(Γ)

ι)

where HE,k+1(Γ) denotes the set of E-valued tempered distributions of order
k + 1 on Γ and HE,k+1(Γ)

ι = HE,k+1(Γ) ⊗ΛO(Γ) ΛO(Γ)
ι (here, ΛO(Γ)

ι de-
notes the free rank-one ΛO(Γ)-module on which GQ acts via the inverse of the
canonical character GQ ։ Γ →֒ ΛO(Γ)

×). Consider the decomposition

W ∗
f ⊗W

∗
f = Sym2W ∗

f ⊕
∧2

W ∗
f . (1.1)

In Section 2.1, we explain that the twist of the Beilinson–Flach classes by an
even Dirichlet character χ take values in the corresponding twist Sym2W ∗

f (1+
χ). This equips us with a non-integral collection of cohomology classes that ver-
ify a close variant of the Euler system distribution relation. The non-integrality
of these classes is the source of main difficulty in the non-ordinary set-up. The
main task we carry out here is to obtain an integral collection which we may
plug into the Euler system machinery.

This goal has been partially achieved in [BLLV19], employing ideas from signed
Iwasawa theory (expanding on [BL21] where the semi-ordinary case is treated)
and taking inspiration from Perrin-Riou’s theory of higher-rank Euler systems.
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The theory of higher-rank Euler systems suggests a signed factorization of the
four collections of Beilinson–Flach elements (see Theorem A below for the shape
of this factorization). However, the interpolative properties of Beilinson–Flach
classes cover only half of the critical range for the symmetric square motive and
as a result, the standard techniques only enable us to prove a weaker form of
this factorization (and resulting in still non-integral collections of cohomology
classes). We develop a new method (see Sections 4.3 and 5.5 below) which
allows us to improve this factorization statement to cover the full critical range.

1.2 Main results

Our first result in this paper is the existence of integral Beilinson–Flach Euler
systems in the current set-up under suitable hypotheses. This proves [BLLV19,
Conjecture 5.3.1] in this particular setting.

Given a Dirichlet character ψ of conductor Nψ, we let Rψ denote the collection
of square-free products of primes which are coprime to pNNψ. For any prime ℓ,
let Q(ℓ) denote the unique abelian p-extension in Q(µℓ). For an element r =
ℓ1 · · · ℓs ∈ Rψ, we define Q(r) to be the compositum of the (linearly disjoint)
fields Q(ℓ1), · · · ,Q(ℓs). We also set ∆r = Gal(Q(r)/Q) and note that ∆r =
∆ℓ1 × · · · ×∆ℓs . For a factor ℓ of r, we shall think of ∆ℓ both as a subgroup
and as a quotient of ∆r through this identification. We finally let Λr denote
the ring O[[∆r × Γ]].

We fix forever an even Dirichlet character χ whose conductor Nχ is coprime to
Np. For m ∈ Nχ (where the set of integers Nχ is given in Definition 3.2.8),

we let BFλ,µm,χ ∈ H
1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ)⊗HE,k+1(Γ)

ι) denote the natural
image of the Beilinson–Flach elements defined in [LZ16] (see Definition 2.1.2
below). We write Lgeom

p (Sym2fλ ⊗ χ−1, s) for the geometric p-adic L-function

attached Sym2fλ ⊗ χ−1 defined as in (2.1) . Until the end of this article, we
assume that the following non-vanishing condition holds true:

(NV) Lgeom
p (Sym2fλ ⊗ χ−1, j) 6= 0 for every even integer k + 2 ≤ j ≤ 2k + 2.

We further consider the following hypotheses.

(Ψ1) There exists u ∈ (Z/NNχZ)
× such that ǫfχ

−1(u) 6≡ ±1 (mod p) and χ(u)
is a square modulo p.

(Ψ2) ǫfχ
−1(p) 6= ±1 and φ(N)φ(Nχ) is coprime to p, where φ is Euler’s totient

function.

(Ψ3) The prime p over p in Kf has degree 1 and im(χ) ⊂ Z×
p .

(Im) im (GQ → Aut(Rf ⊗Qp)) contains a conjugate of SL2(Zp).
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Remark 1.2.1. The main results of this paper all rely on the hypothesis (NV).
It follows from Corollary 2.2.5 below that if we assume (Ψ2), then (NV)would
follow from a generalization of Dasgupta’s factorization result in [Das16] to
the non-ordinary setting. This is the subject of Arlandini’s forthcoming work,
which we record as Theorem 2.2.3 below. With Arlandini’s work, we will be
able to remove the condition (NV) on our results.

Theorem A (Corollary 4.3.4, Proposition 4.3.5). Suppose that χ verifies the
hypotheses (Ψ1) and (Ψ2). Assume also that (NV) and (Im) hold true. Then
for every m ∈ Nχ, there exist

BF+
m,χ,BF

−
m,χ,BF

•
m,χ,BF

◦
m,χ ∈ H

1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ))

that verify Euler system distribution relations and such that




1 1 1 1
α2 α2 −α2 −α2

2α −2α 0 0
0 0 −2α 2α







BFα,αm,χ
BF−α,−α

m,χ

BFα,−αm,χ

BF−α,α
m,χ


 =




log
+,(1)
p,2k+2 BF

+
m,χ

log
−,(1)
p,2k+2 BF

−
m,χ

log
(1)
p,k+1 BF

•
m,χ

log
(1)
p,k+1 BF

◦
m,χ



.

Here, log
±,(1)
p,2k+2 and log

(1)
p,k+1 are some explicit functions defined in Section 4.

Furthermore, there exists an integer C independent of m such that

C × BF♣
m,χ ∈ H

1
Iw(Q(m), R∗

f ⊗R
∗
f (1 + χ))

for all four choices of ♣ ∈ {+,−, •, ◦}.

Under our assumption that χ is even, the final assertion in the statement of
Theorem A can be recast in the following form:

Corollary 1.2.2 (Corollary 4.3.6). In the setting of Theorem A, the signed
classes

C × BF+
m,χ, C × BF−

m,χ, C × BF•
m,χ

are elements of H1
Iw(Q(m), Sym2R∗

f (1 + χ)). Furthermore, BF◦
m,χ = 0 for

all m.

In particular, each one of the four collections {C × BF♣
m,χ}, where ♣ ∈

{+,−, •, ◦}, form a (rank-one) Euler system for Sym2 R∗
f (1+χ). In order to ap-

ply the Euler system machinery, we need to ensure that at least one of the Euler
systems in Corollary 1.2.2 is non-trivial. In order to do this, it suffices to prove
that one of the four non-integral classes {BFα,αm,χ,BF

−α,−α
m,χ ,BFα,−αm,χ ,BF−α,α

m,χ }
are non-trivial.

To achieve this, we appeal to the reciprocity laws of Leoffler and Zerbes in
[LZ16], which enable us to reduce the required non-vanishing to the non-
triviality of the Rankin-Selberg p-adic L-functions associated to f ⊗ f ⊗ χ.
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Note that the motive associated to f ⊗ f ⊗χ does not possess any critical val-
ues and as a result, one may not appeal to non-vanishing statements on complex
L-values to deduce the required non-triviality. However, Arlandini’s work in
progress (extending Dasgupta’s result [Das16, Theorem 1] in the p-ordinary
case) shows that the p-adic L-functions in question factors as a product of the
symmetric square p-adic L-function and a Kubota–Leopoldt p-adic L-function.
The required non-triviality easily follows from generic non-vanishing statements
for symmetric square L-values; see Section 2.2 for details.

Let us set T := Sym2R∗
f (1 + χ) to ease our notation. Our running hypothesis

ap(f) = 0 yields a GQp -equivariant decomposition

T = R∗
1,χ ⊕R

∗
2,χ .

Exploiting this decomposition, we define signed Coleman maps as in [Lei12].
More precisely, we define ΛO(Γ)-morphisms

Col♣ : H1
Iw(Qp(µp∞), T )→ ΛO(Γ)

for ♣ ∈ {+,−, •} in Section 4.2. For each S = (♣,♠) ∈ {(+,−), (+, •), (−, •)},
we define the doubly signed Beilinson–Flach p-adic L-function in Section 4.4,
by setting

LS := Col♣ ◦ resp(BF
♠
1,χ) ∈ ΛE(Γ) .

Still using the signed Coleman maps alluded to above, we define also doubly
signed Selmer groups which we denote by SelS(T

∨(1)/Q(µp∞)) (where S is as
above). This allows us to formulate Doubly Signed Iwasawa Main Conjecture
(Conjecture 4.4.3 below), relating LS and SelS(T∨(1)/Q(µp∞))∨.

The following is one of our main results towards the Iwasawa main conjectures
for non-ordinary symmetric squares. For a given integer j, we let eωj denote the
idempotent attached to the character ωj (where ω is the Teichmüller character).

Theorem B (Theorem 4.4.5). Suppose that the Dirichlet character χ verifies
the hypotheses (Ψ1), (Ψ2) and (Ψ3). Assume also that (NV) and (Im) hold
true.

i) For all even j ∈ {k+2, . . . , 2k+2}, there exists S ∈ {(+,−), (+, •), (−, •)}
such that eωjLS 6= 0.

ii) For j and S as in i), the Λ(Γ1)-module SelS(T
∨(1)/Q(µp∞))∨ is torsion.

iii) For j and S as in i),

charΛ(Γ1) (eωjSelS(T∨(1)/Q(µp∞))∨)
∣∣ (eωjLS)

as ideals of Λ(Γ1)⊗Qp .
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Theorem B has consequences towards the Pottharst-style (analytic) Iwasawa
main conjectures for non-ordinary symmetric squares. Let λ ∈ {±α}. The
(ϕ,Γ)-module attached to the λ-eigenspace in the Dieudonné module of Wf

gives rise to a Pottharst-style analytic Selmer group H̃2
Iw(Q, V,D

λ
χ) (see §5.6

for details). We prove the following partial result towards the analytic main
conjecture relating it to the geometric p-adic L-function Lgeom

p (Sym2 fλ⊗χ
−1).

Theorem C (Theorem 5.6.8). Suppose that the Dirichlet character χ verifies
the hypotheses (Ψ1), (Ψ2) and (Ψ3). Assume also that (NV) and (Im) hold

true. For j and S = {♣,♠} as in Theorem B i), charH

(
eωjH̃

2
Iw(Q, V,D

λ
χ)
)

divides

char(eωjcokerCol
♣) eωjL

geom
p (Sym2 fλ ⊗ χ

−1, s)Lp,NNχ(χ
−1ǫf , s− k − 1) · H .

Here, H := lim
−→m

HE,m(Γ1) and Lp,NNχ(χ
−1ǫf ) is the Kubota-Leopoldt p-adic

L-function attached to the Dirichlet character χ−1ǫf , with Euler factors at
primes dividing NNχ removed.

Remark 1.2.3. In [BL19], we build on the results of the present article to
prove the existence of a non-trivial rank-2 Euler system, whose non-triviality
is ensured by the non-vanishing of certain L-values.

1.3 Review of earlier related work

In this section, we compare the results in the present article to previous related
work.

We first recall the main results of [LZ19]. Let g be a normalized cuspidal new
eigenform of level Ng, weight kg + 2 and nebentype ǫg. Assume that p ∤ Ng
and p is an ordinary prime for g, i.e. ap(g) is a p-adic unit under our fixed
embeddings. Let αg be the unit root of the Hecke polynomial of g at p.

For a Dirichlet character χ as in the previous section, we let

BFg,gm,χ
..= BFαg ,αgm,χ ∈ H1

Iw(Q(m),W ∗
g ⊗W

∗
g (1 + χ))

denote the χ-twisted Beilinson–Flach element attached to the Rankin–Selberg
convolution gαg ⊗ gαg of the ordinary p-stabilization of g with itself. It follows
from [LZ19, Corollary 4.1.3] (see also Proposition 2.1.3 below) that BFg,gm,χ ∈

H1
Iw(Q(m), Sym2W ∗

g (1 + χ)). Furthermore, [LZ19, Theorem 4.1.6] shows that
the collection of classes {BFg,gm,χ}m∈Nχ give rise to an (integral) Euler system

for Sym2W ∗
g (1 + χ).

In order to verify that the aforementioned Euler system is non-trivial, Loeffler
and Zerbes make use of the explicit reciprocity laws for the Beilinson–Flach
elements (c.f. [KLZ17], Theorem B) and Dasgupta’s factorization formula in
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[Das16]. According to [LZ19, Theorem 4.2.5], the image of the localization of
BFg,g1,χ at p under the Perrin–Riou regulator map is a non-zero scalar multiple
of the product

Lp(Sym
2g ⊗ χ−1, s)Lp,NNχ(χ

−1ǫg, s− kg − 1),

where Lp(Sym
2g⊗χ−1, s) is the (bounded) symmetric square p-adic L-function

of Schmidt. The final main result in [LZ19] is a one-sided inclusion in the
Iwasawa main conjecture for (twists of) p-ordinary symmetric square motives
(cf. [LZ19], Theorem 5.4.2). Theorem C stated above is the non-ordinary ana-
logue of this result where Pottharst-style analytic Selmer groups appear as the
non-ordinary counterparts of Greenberg’s Selmer groups in the ordinary case.

As we have remarked in the earlier portions of this introduction, we prove The-
orem C through the doubly-signed Iwasawa main conjectures, which are the
subject of Theorem B and require the (integral) signed Beilinson–Flach Eu-
ler systems as an input. In the non-ordinary case, Loeffler and Zerbes [LZ16]
constructed four families of Beilinson–Flach classes, depending on the choices
of p-stabilizations in the Rankin–Selberg product. While these classes are no
longer integral, it is predicted that there exists an integral rank-2 Euler system,
whose rank reduction via the Perrin-Riou functionals gives rise to all four col-
lections of unbounded Beilinson–Flach classes (see [BLLV19, Conjecture 3.5.1]
for a precise formulation of this prediction). On generalizing the plus and mi-
nus Iwasawa theory for modular forms (as developed in [Kob03, Pol03, Lei11])
to the Rankin–Selberg setting, we may decompose the non-integral Perrin-Riou
functionals into integral signed functionals (see §4 for details). The existence
of an integral rank-2 Euler system would then give the factorization of the
non-integral Beilinson–Flach classes into integral signed classes, as stated in
Theorem A above (we refer the reader to [BLLV19, Conjecture 5.3.1], where
the existence of such integral classes is discussed for more general Rankin–
Selberg products).

The main task in the present article is to obtain integral signed Beilinson–
Flach classes building on our earlier joint work [BLLV19] with Loeffler, where
we have obtained a partial decomposition of the non-integral Beilinson–Flach
classes. More precisely, Theorem 5.4.1 in op. cit. exploits the interpolative
properties of the Beilinson–Flach classes at the twistsW ∗

f ⊗W
∗
f (1+χ− j) with

j = 1, 2, . . . , k+1 to show that certain linear combinations of these classes are
divisible by twists of Pollack’s plus and minus logarithms (see Lemma 4.3.1
below).

This divisibility originating from the interpolative properties of Beilinson–Flach
classes alone does not give integral classes in the setting of symmetric squares,
because the denominators of the non-integral classes are bigger than those of the
said plus and minus logarithms. In order to establish Theorem A, it is necessary
to study the images of Beilinson–Flach classes for the twistsW ∗

f ⊗W
∗
f (1+χ−j)

with j = k + 2, . . . , 2k + 2, which is outside the geometric range. In this non-
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geometric range, a direct comparison of Beilinson–Flach classes (for different
p-stabilizations) is no longer possible.

The main technical component of the current paper (presented in Section 5)
relies on the theory of (ϕ,Γ)-modules, Selmer complexes and reciprocity laws
satisfied by Beilinson–Flach classes to study the properties of these classes
outside the geometric range. In particular, we show that the characteristic
ideals of certain analytic Selmer groups are coprime to the factors of logarithmic
functions corresponding to the twists in the non-geometric range. This allows
us to prove [BLLV19, Conjecture 3.5.1] up to a controlled error term and in
turn, deduce Theorem A. This refinement is the novel technical development in
the present work, which is in contrast to previous works (for example, [Wan14,
Spr16, BL21]) where it suffices to exploit interpolative properties to obtain
signed integral classes.
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2 Beilinson–Flach elements for symmetric squares

2.1 Twisted Beilinson–Flach elements

For λ, µ ∈ {±α}, c > 1 coprime to 6Np, m ≥ 1 coprime to pc, and
a∈(Z/mZ)× × Z×

p , let

cBF
λ,µ
m,a ∈ H

1(Q(µm),W ∗
f ⊗W

∗
f ⊗HE,k+1(Γ)

ι)

be the Beilinson–Flach element constructed in [LZ16, Theorem 5.4.2].

Remark 2.1.1. Note that cBF
λ,µ
m,a are built out of “non-p-stabilized classes”

(denoted by cBF
[f,g,j]
mpr ,a in [LZ16]), which are defined over E. The p-stabilized

Beilinson–Flach classes are given by cBF
[f,g,j]
mpr,a multiplied by (λµ)−r or 1 −

pjσp/λµ (where σp is the Frobenius at p) depending on whether r > 0 or r = 0
respectively. They are therefore still defined over E since λµ ∈ E by assump-
tion.

Documenta Mathematica 26 (2021) 1–63



Non-Ordinary Symmetric Squares 9

We shall take a = 1 throughout and omit it from the notation. Let χ be
a Dirichlet character of conductor Nχ, which we assume to be prime to p.
Enlarging the number field L if necessary, we assume that χ takes values in E.
Let Rχ denote the set of positive square-free integers prime to 6pNNχ. For
m ∈ Rχ, we may consider χ as a continuous character of Gal(Q(µmNχp∞)/Q) ∼=
(Z/mNχp

∞Z)×.

Definition 2.1.2. For all m ∈ Rχ, we define the Beilinson–Flach class twisted
by the character χ

cBF
λ,µ
m,χ ∈ H

1(Q(m),W ∗
f ⊗W

∗
f (1 + χ)⊗HE,k+1(Γ)

ι)

by setting it as the image of cBF
λ,µ
m under

H1(Q(µmNχ),W
∗
f ⊗W

∗
f ⊗HE,k+1(Γ)

ι)

∼= H1(Q(µmNχ),W
∗
f ⊗W

∗
f (1 + χ)⊗HE,k+1(Γ)

ι)
cor
−→ H1(Q(m),W ∗

f ⊗W
∗
f (1 + χ)⊗HE,k+1(Γ)

ι),

where the first isomorphism is the natural twisting map given by χ.

Proposition 2.1.3. We have the dichotomy

cBF
λ,λ
m,χ ∈

{
H1(Q(m), Sym2W ∗

f (1 + χ)⊗HE,k+1(Γ)
ι) if χ(−1) = +1;

H1(Q(m),
∧2

W ∗
f (1 + χ)⊗HE,k+1(Γ)

ι) if χ(−1) = −1.

Moreover, cBF
λ,µ
m,χ + cBF

µ,λ
m,χ ∈

{
H1(Q(m), Sym2W ∗

f (1 + χ)⊗HE,k+1(Γ)
ι) if χ(−1) = +1;

H1(Q(m),
∧2

W ∗
f (1 + χ)⊗HE,k+1(Γ)

ι) if χ(−1) = −1,

and cBF
λ,µ
m,χ − cBF

µ,λ
m,χ ∈

{
H1(Q(m),

∧2
W ∗
f (1 + χ)⊗HE,k+1(Γ)

ι) if χ(−1) = +1;

H1(Q(m), Sym2W ∗
f (1 + χ)⊗HE,k+1(Γ)

ι) if χ(−1) = −1.

Proof. The proof of [LZ19, Corollary 4.1.3] goes through verbatim.

For the rest of the article, we shall fix an even Dirichlet character χ of conductor
Nχ, which is assumed to be coprime to p. We note that we will not solely work
with Beilinson–Flach classes twisted by χ but by a range of Dirichlet characters.
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10 K. Büyükboduk, A. Lei, G. Venkat

2.2 Imprimitive L-functions and p-adic L-functions

In this section, we introduce the geometric p-adic L-function mentioned in the
hypothesis (NV) in the introduction. Furthermore, we discuss the validity of
the hypothesis (NV) and its consequence on the non-vanishing of the Beilinson–
Flach elements introduced in §2.1.

For λ ∈ {±α}, let fλ be the p-stabilization at λ. Let (F , ǫF) be the Cole-
man family, defined over some affinoid disc U in the weight space W , passing
through fλ. For any affinoid V , we let A(V ) denote the ring of rigid analytic
functions on V . Loeffler and Zerbes in [LZ16, Definition 9.1.1] define a three-
variable geometric p-adic L-function, Lgeom

p (F ,F⊗χ−1) ∈ A(U × U ×W). On
restricting Lgeom

p (F ,F ⊗ χ−1) to the image of U ×W→֒U × U ×W induced
by the diagonal embedding ∆ : U →֒ U × U , we will henceforth treat it as an
element of A(U ×W).

Definition 2.2.1. Let Lp,NNχ(χ
−1ǫF) ∈ A(W) denote the Kubota–Leopoldt p-

adic L-function that interpolates the values of the Dirichlet L-series LNNχ(−)
with the Euler factors at primes dividing NNχ removed. We define the
geometric symmetric square p-adic L-function Lgeom

p (Sym2 F ⊗ χ−1) ∈
Frac(A(U ×W)) by setting

Lgeom
p (Sym2 F ⊗ χ−1)(κ, σ) :=

Lgeom
p (F ,F ⊗ χ−1)(κ, σ)

Lp,NNχ(χ
−1ǫF)(σ − κ+ 1)

.

In particular, on restricting this definition to (k + 2, s) ∈ U ×W , we have

Lgeom
p (Sym2fλ ⊗ χ

−1, s) =
Lgeom
p (fλ, fλ ⊗ χ−1, s)

Lp,NNχ(χ
−1ǫf , s− k − 1)

. (2.1)

We remark that our ad hoc definition (2.1) of the p-adic L-function
Lgeom
p (Sym2fλ ⊗ χ−1, s) is based on the Artin-formalism and reflects the de-

composition

Wf ⊗Wf ⊗ χ
−1 =

(
Sym2W ∗

f ⊗ χ
−1
)
⊕

(∧2
Wf ⊗ χ

−1

)
. (2.2)

The following (forthcoming) result of Arlandini, which extends [Das16, Theo-
rem 1] to our case of interest, relates Lgeom

p (Sym2fλ ⊗ χ−1, s) to the complex

L-values and serves as a justification as to why Lgeom
p (Sym2fλ ⊗ χ−1, s) de-

serves to be called a p-adic L-function. Before stating Arlandini’s result, we
first introduce the following notation.

Definition 2.2.2. For χ as above, we let Limp(Sym2f ⊗ χ, s) denote the im-
primitive L-function given as in [LZ16, Definition 2.1.3].

Theorem 2.2.3 (Arlandini, forthcoming). We have Lgeom
p (Sym2 F ⊗ χ−1) ∈

A(U ×W) and it verifies the following interpolation property.
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i) Let 1 ≤ j ≤ k + 1 be an odd integer. Then

Lgeom
p (Sym2 F ⊗ χ−1)(k + 2, j) =

(−1)j−k−1j!

22k+4ia
Ep(j)

Limp(Sym2f ⊗ χ−1, j)

(2πi)j−k−1πk+1〈f, f〉
,

where a = 0 if k is even and a = 1 if k is odd. The Euler factor Ep(j) is given
by

(1− pj−1χ(p)λ−2)(1 + χ−1(p)λ2p−j)(1 − χ−1(p)λ2p−j) . (2.3)

ii) Let k + 2 ≤ j ≤ 2k + 2 be an even integer. Then

Lgeom
p (Sym2 F ⊗ χ−1)(k + 2, j) =

(j − k − 1)!j!

22j+1
E ′p(j)

Limp(Sym2f ⊗ χ−1, j)

π2j−k−1〈f, f〉
,

where the Euler factor E ′p(s) is given by

(1 − pj−1χ(p)λ−2)(1 + pj−1χ(p)λ−2)(1 − χ−1(p)λ2p−j) . (2.4)

The imprimitive L-values that appear on the right-hand side of the interpola-
tion formulae in part (ii) has the following non-vanishing property.

Theorem 2.2.4 (Gelbart–Jacquet [GJ78], Jacquet–Shalika [JS77], Schmidt
[Sch88]). Suppose that f has minimal level among its twists by Dirichlet char-
acters. Then for every integer j ≥ k + 2, we have

Limp(Sym2f ⊗ χ−1, j) 6= 0.

Proof. The primitive L-function L(Sym2f ⊗χ−1, s) is non-zero at integers j >
k + 2 since the Euler product defining these L-functions converges absolutely
in that range. Considering the Gelbart–Jacquet lift of Sym2

f to GL3 as given
in [GJ78, §3] and making use of a non-vanishing result for GLn automorphic
L-functions due to Jacquet and Shalika [JS77, Theorem (1.3)], it follows that
L(Sym2f ⊗ χ−1, k + 2) 6= 0 as well.

The desired non-vanishing for Limp(Sym2f ⊗ χ−1, j) for j ≥ k + 2 now follows
from [Sch88, Lemmas 1.5 and 1.6]. More specifically, our hypothesis that f has
minimal level among its twists by Dirichlet characters implies that the quotient
Limp(Sym2f ⊗χ−1, s)/L(Sym2f⊗χ−1, s) is an entire function with zeroes only
on the line Re(s) = k + 1. The result follows.

One immediate consequence of Theorems 2.2.3 and 2.2.4 is the following result
on the existence of exceptional zeros and the non-vanishing of the geometric
p-adic L-function of Sym2 fλ.

Corollary 2.2.5 (Exceptional Zeroes). The p-adic L-function
Lgeom
p (Sym2fλ ⊗ χ−1, s) has an exceptional zero at s if and only if

ǫfχ
−1(p) = ±1 and s = k + 1 or s = k + 2. In particular, if we assume

(Ψ2), then Lgeom
p (Sym2fλ ⊗ χ−1, s) is non-vanishing for all even integers

k + 2 ≤ s ≤ 2k + 2.
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Proof. By weight considerations, the interpolation factors (2.3) and (2.4) can-
not vanish unless j = k + 1 or j = k + 2. Since λ2 = −ǫf(p)pk+1, we have

1±
χ−1(p)λ2

pk+1
= 1∓ χ−1(p)ǫf (p)

and hence the Euler factor Ep(k + 1) vanishes only when ǫfχ
−1(p) = ±1.

Similarly, E ′p(k + 2) = 0 only when ǫfχ
−1(p) = ±1. The second part of the

corollary follows from Theorems 2.2.4 and 2.2.3(ii).

We now explain the link between the geometric p-adic L-functions and
Beilinson–Flach elements. Let

L : H1
Iw(Qp, Sym

2W ∗
f (1 + χ))→ HE,k+1(Γ)⊗ Dcris(Sym

2W ∗
f (1 + χ))

denote the Perrin-Riou regulator map as given in [LLZ11, §3.1] and [LZ14,
Appendix B].

Proposition 2.2.6. Let ξfλ,χ ∈ Dcris(Sym
2Wf ⊗χ−1) be the vector chosen as

in [LZ19, Definition 4.2.4]. We then have,

〈
L(cBF

λ,λ
1,χ), ξfλ,χ

〉

= (−1)s(c2 − c2s−2k−2χ2(c)ǫ−2
f (c))G(χ−1)2G(ǫ−1

f )2Lgeom
p (fλ, fλ ⊗ χ

−1, s)

= (−1)s(c2 − c2s−2k−2χ2(c)ǫ−2
f (c))G(χ−1)2G(ǫ−1

f )2

× Lgeom
p (Sym2fλ ⊗ χ

−1, s)Lp,NNχ(χ
−1ǫf , s− k − 1) .

Proof. This is the same as [LZ19, Theorem 4.2.5].

Lemma 2.2.7. For all even integers j ∈ {k + 2, . . . , 2k + 2}, there is
a choice of c > 1 coprime to 6NNχp for which the product (c2 −
c2j−2k−2χ2(c)ǫ−2

f (c))Lp,NNχ(χ
−1ǫf , j − k − 1) is non-zero whenever χ−2ǫ2f 6=

1 or j 6= k + 2.

Proof. This follows from [LZ19, Proposition 4.3.1].

Remark 2.2.8. Since we assume that the conductor Nχ of χ is coprime to N ,
it follows that χ−2ǫ2f = 1 only when both χ and ǫf have order dividing 2. Our
hypothesis (Ψ1) rules out this possibility.

Corollary 2.2.9. Assume that (Ψ2) holds true and either that χ−2ǫ2f 6= 1 or

j 6= k+2. Then for all even integers k+2 ≤ j ≤ 2k+2, the image of cBF
λ,λ
1,χ in

H1(Qp, Sym
2W ∗

f (1+χ)(−j)) is non-zero. In particular, if (Ψ1) and (Ψ2) hold

true, then the class resp(cBF
λ,λ
1,χ) ∈ H

1
Iw(Qp(µp), Sym

2W ∗
f (1 + χ)) is non-zero.
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Proof. By Proposition 2.2.6 and Lemma 2.2.7, we only have to verify the non-
vanishing of the quantity Lgeom

p (Sym2fλ ⊗ χ−1, j). This is immediate from
Corollary 2.2.5.

Remark 2.2.10.

i) When j = k+2 is even and if χǫf is quadratic but non-trivial, then neither
can we dispense off with the factor (c2 − c2j−2k−2χ2(c)ǫ−2

f (c)), nor can we use
it to cancel a pole in the p-adic L-series (since no such pole exists).

ii) By Lemma 2.2.7, we may choose the auxiliary integer c for which
(c2 − c2j−2k−2χ2ǫ−2

f (c)) is non-zero for k + 2 ≤ j ≤ 2k + 2 assuming (Ψ1).
For the rest of the paper, we fix such a value and dispense with the factor c
from the notation.

We now proceed to show the non-triviality of the classes BFλ,−λ1,χ for λ ∈ {±α}
using anti-symmetry relations in slight variations of Proposition 2.2.6.

Corollary 2.2.11. The class resp(BF
λ,−λ
1,χ ) ∈ H1

Iw(Qp(µp), Sym
2W ∗

f (1 + χ))
is non-zero.

Proof. Let vf,λ ∈ Dcris(Wf ) be the ϕ-eigenvector as chosen in [BLLV19, Section
3.5]. Also set

vλ,−λ,χ := G(χ−1) vf,λ ⊗ vf,−λ,

vλ,λ,χ := G(χ−1) vf,λ ⊗ vf,λ ∈ Dcris(Wf ⊗Wf ⊗ χ
−1) .

By [BLLV19, Theorem 3.6.5], we have
〈
L(BFλ,λ1,χ), vλ,−λ,χ

〉
= −

〈
L(BFλ,−λ1,χ ), vλ,λ,χ

〉

=
Af log

(1)
p,k+1

2λ
Lgeom
p (fλ, fλ ⊗ χ

−1, s), (2.5)

where Af is a non-zero constant independent of λ and log
(1)
p,k+1 is a non-zero

logarithmic function (see (4.3) below for an explicit description of this function).

We have seen in the proof of Corollary 2.2.9 that Lgeom
p (fλ, fλ⊗χ−1, s) is non-

zero. Hence, (2.5) tells us that resp(cBF
λ,−λ
1,χ ) ∈ H1

Iw(Qp(µp), Sym
2W ∗

f (1 +χ))
is non-zero.

3 Structure of elementary Selmer modules

Our main objective in this section is to prove Theorem 3.3.4, where we de-
termine the structure of certain Iwasawa theoretic Selmer groups. The main
ingredient is the horizontal Beilinson–Flach Euler system, which we use to
obtain our key technical input (Theorem 3.2.12) in the proof of Theorem 3.3.4.
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3.1 Set-up

Throughout Section 3, we fix an even Dirichlet character ψ of conductor Nψ
co-prime to p. Enlarging L if necessary, we shall assume that ψ may be realized
over L. We will take ψ to be χν, where χ is the character fixed in Section 2.1
whereas ν is some Dirichlet character of conductor prime to pNNχ and p-power
order.

We shall assume the validity of the following big image hypothesis throughout
Section 3:

(Im) im (GQ → Aut(Rf ⊗Qp)) contains a conjugate of SL2(Zp).

We will consider the following conditions on ψ and f :

(Ψ1) There exists u ∈ (Z/NNψZ)
× such that ǫfψ

−1(u) 6≡ ±1 (mod p) and ψ(u)
is a square modulo p.

(Ψ′
2) ǫfψ

−1(p) 6= ±1.

Lemma 3.1.1. Suppose that χ satisfies the hypothesis (Ψ1) and also that

(Ψ2) ǫfχ
−1(p) 6= ±1 and φ(N)φ(Nχ) is coprime to p, where φ is Euler’s totient

function.

Then the conditions (Ψ1) and (Ψ′
2) hold true for any ψ = χν where ν is a

Dirichlet character of conductor prime to NNχ and p-power order.

Proof. Let u be an integer satisfying (Ψ1) with ψ = χ and that u ≡ 1 mod Nν
(such u exists by the Chinese remainder theorem). The chosen u will verify
(Ψ1) with ψ = χν. We now check (Ψ′

2) for ψ = χν. If it was the contrary,
we would then have that ǫfχ

−1(p) = ±ν(p). This would mean that either
ǫfχ

−1(p) or −ǫfχ−1(p) is a p-power root of unity, contradicting (Ψ2).

We end this subsection with a general definition. Recall that ΛO(Γ)
ι is the free

ΛO(Γ)-module of rank one on which GQ acts via the inverse of the canonical
character GQ ։ Γ →֒ ΛO(Γ)

×.

Definition 3.1.2. Let K be any number field.

i) Given an arbitrary free O-module M of finite rank that is endowed with
a continuous GK-action unramified outside a finite set of places of K, we let
Fcan denote the canonical Selmer structure on M (or M ⊗Zp Qp), given as in
[MR04, Definition 3.2.1].

ii) We let F∗
can denote the dual Selmer structure on M∨(1) (or on (M ⊗Zp

Qp)
∗(1)), defined as in Section 2.3 of loc. cit.
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iii) We write Fcan for the Selmer structure on M :=M ⊗ΛO(Γ)
ι, denoted by

FΛ in Section 5.3 of loc. cit. and let F∗
can denote the Selmer structure F∗

Λ of
loc. cit. on the Galois representation M∨(1).

Remark 3.1.3. For K and M as above, we have

H1
Fcan

(K,M) = H1(K,M)

by [MR04, Lemma 5.3.1]. This in turn means that H1
F∗

can
(K,M∨(1)) consists

of classes which are locally trivial everywhere.

3.2 Twists of the symmetric and the alternating squares

In this subsection, we shall introduce various twists of the symmetric and alter-
nating square representations associated to f , and study their Galois theoretic
properties.

Definition 3.2.1. Recall the even Dirichlet character ψ, so that the character
χcycψ is odd, where χcyc is the p-adic cyclotomic character.

i) We set Tψ := Sym2R∗
f (1)⊗ ψ, so that T ∗

ψ(1) = Sym2Rf ⊗ ψ−1.

ii) Choose an arbitrary integer j ∈ [k + 2, 2k + 2] and put

Tψ,j := Tψ(−j)⊗ ω
j = Sym2R∗

f (1− j)⊗ ω
jψ

(where ω is the Teichmüller character). We remark that the character χ1−j
cyc ω

jψ
is always odd.

iii) We finally set

Xψ,j :=
∧2

R∗
f (1− j)⊗ ω

jψ ∼= O(k + 2− j)⊗ ωjǫfψ

and observe that the character χk+2−j
cyc ωjǫfψ is even.

Proposition 3.2.2. Suppose that ψ satisfies (Ψ1) and (Ψ′
2). Then there exists

τ ∈ GQ with the following properties:

• τ acts trivially on µp∞ .

• Tψ,j/(τ − 1)Tψ,j is free of rank one.

• τ − 1 acts invertibly on X∗
ψ,j(1).

Proof. This is exactly [LZ19, Proposition 5.2.1], where we set ψωj in place of
their ψ.
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16 K. Büyükboduk, A. Lei, G. Venkat

3.2.1 Selmer groups of the alternating squares

Our task in Section 3.2.1 is to prove that the Selmer groups for the twists Xψ,j

of the alternating square vanishes.

Proposition 3.2.3. H1
Fcan

(Q, Xψ,j) = 0.

Proof. We first prove the case when j = k + 2. We remark that already
this much will be sufficient for our purposes. In this situation, Xψ,k+2 =
O(ǫfψωk+2) and the conclusion follows from the validity of Leopoldt’s Conjec-
ture for abelian number fields and the fact that ǫfψω

k+2 is even.

Suppose now that j ≥ k + 3. To ease notation, we set η = ωk+2ǫfψ and
ρ := χk+2−j

cyc ω−k−2+j . Notice that η is an even character and ρ is a character
of Γ. Furthermore, we have an isomorphism

Xψ,j
∼= O(η) ⊗ ρ .

which, together with the twisting theorems of [Rub00, Section 6], control theo-
rem for the canonical Selmer structure on Xψ,j and the truth of the Main Con-
jectures for abelian fields, reduces the desired vanishing of the Selmer group to
the verification that

L
(
ω(k+1)−jη, k + 2− j

)
6= 0 .

By the functional equation for Dirichlet L-series, this is equivalent to the re-
quirement that

• L
(
ωj−(k+1)η−1, j − k − 1

)
6= 0, and

• Γ(s) is holomorphic at s =
k + 2− j + a

2
, where a =

(−1)k−j + 1

2
∈

{0, 1} .

The first of these conditions is clear since j − k − 1 ≥ 2 is in the range of
absolute convergence, whereas the second follows since a and k + 2 − j have
opposite parity.

Corollary 3.2.4. H1(Q, Xψ,j ⊗ ΛO(Γ)
ι) = 0.

Proof. This follows from Proposition 3.2.3 and Nakayama’s lemma, since we
have an injection

H1(Q, Xψ,j ⊗ ΛO(Γ)
ι)Γ →֒ H1

Fcan
(Q, Xψ,j) = 0.
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Remark 3.2.5. One might give a direct proof of Corollary 3.2.4, without relying
on the Iwasawa main conjectures (and using our assumptions (Ψ1) and (Ψ′

2) on
ψ). We first note that since the character ρ above factors through Γ, it suffices
to prove that

H1(Q,O(η)⊗ ΛO(Γ)
ι) = 0

for η = ωk+2ǫfψ also as above. Since η is an even character, it follows from the
weak Leopoldt conjecture for abelian fields (which we know to hold true) that
the ΛO(Γ)-module H1(Q,O(η) ⊗ ΛO(Γ)

ι) is torsion. Notice further that the
character η does not factor through the group Γ under our running hypotheses
and hence the module H1(Q,O(η)⊗ΛO(Γ)

ι) is torsion-free. The proof follows.

3.2.2 Selmer groups of the symmetric squares

Our main objective in this subsection is to prove Corollary 3.2.15, where we
determine the ranks of the canonical Selmer groups associated to the twists of
the symmetric square representations. The key technical input is provided by
Theorem 3.2.12, where we utilize the horizontal Beilinson–Flach Euler system.
We first introduce the twisted Galois representations we shall study.

Definition 3.2.6. For any even Dirichlet character ψ as in Definition 3.2.1
and integer j ∈ [k + 2, 2k + 2], we set Vψ,j := Tψ,j ⊗Zp Qp. We also put
Tj := Tχ,j and Vj = Vχ,j, where χ is the even Dirichlet character we have fixed
in Section 1.2.

Until the end of Section 3.2.2, we fix ψ and j as in Definition 3.2.6.

Corollary 3.2.7. For each r ∈ Rψ we have

H1
Fcan

(Q(r),W ∗
f ⊗W

∗
f (1 − j)⊗ ω

jψ) = H1
Fcan

(Q(r), Vψ,j) .

Proof. For W := M ⊗ Qp as in Definiton 3.1.2, let us write Fcan

∣∣
W

for the
canonical Selmer structure on W to emphasize the dependence on W . Set
Yψj := Xψ,j ⊗Qp and observe that we have

Fcan

∣∣
Vψ,j⊕Yψ,j

= Fcan

∣∣
Vψ,j
⊕Fcan

∣∣
Yψ,j

where the direct sum of Selmer structures on the respective direct sum of
Galois representations is defined in the obvious manner. This in turn implies
(cf. [MR04, Remark 3.1.4]) that

H1
Fcan

(Q,W ∗
f ⊗W

∗
f (1− j)⊗ ω

jψ) = H1
Fcan

(Q, Vψ,j)⊕H
1
Fcan

(Q, Yψ,j)

The asserted identification follows on applying Proposition 3.2.3 with ψ re-
placed by ψν, as ν runs through the characters of ∆r (note that since p is odd
and ∆r is a p-group, all characters ν on ∆r are necessarily even, which allows
us to apply Proposition 3.2.3).
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Definition 3.2.8. Let Pχ denote the set of primes ℓ ∤ pNNχ for which we have

• ℓ ≡ 1 mod p,

• Tχ,j/(Frobℓ − 1)Tχ,j is a free O-module of rank one,

• Frobℓ − 1 is bijective on X∗
χ,j(1).

We let Nχ denote the set of square-free products of integers in Pχ.

Remark 3.2.9. Since we insist that ℓ ≡ 1 mod p in Definition 3.2.8, the re-
maining conditions hold true for one j if and only if they hold for every j. This
justifies our choice to denote this set of primes by Pχ.

Remark 3.2.10. Let Tχ,j denote the residual representation of Tχ,j and let
Q(Tχ,j , µp) denote the number field that is given as the fixed field of ker(GQ →
Aut(Tχ,j ⊕ µp)). Then any prime ℓ whose Frobenius in Gal(Q(Tχ,j , µp)/Q) is
conjugate to the image of τ given as in Proposition 3.2.2 verifies the require-
ments of Definition 3.2.8. In particular, Pχ has infinite cardinality.

Lemma 3.2.11. For each r ∈ Rχ and integer j as above we have
H0(Q(r)Q∞, Tχ,j) = 0.

Proof. If on the contrary T (0) ⊂ H0(Q(r)Q∞, Tχ,j) were a rank-one GQ-stable
O-subquotient of Tχ,j , then GQ would act on T (0) via χscycθν where s ∈ Z, θ is
a character of p-power conductor and order, and ν is a character of conductor
dividing r ∈ Rχ. Since Nχ > 1 is prime to Npr by choice and Sym2R∗

f is

unramified outside Np, a subquotient T (0) with these properties could not
exist.

Theorem 3.2.12. Let χ be an even Dirichlet character that satisfies (Ψ1) and
(Ψ′

2) and let j ∈ [k + 2, 2k + 2] be an arbitrary integer. Then for each r ∈ Nχ,
there exist two cohomology classes

dα,αr , dα,−αr ∈ H1(Q(r), Vχ,j)

with the following properties:

i) dα,αr , dα,−αr ∈ H1
Fcan

(Q(r), Vχ,j) .

ii) There exists a constant D (that does not depend on r) such that

Ddα,αr , Ddα,−αr ∈ H1(Q(r), Tχ,j) .

iii) For rℓ ∈ Pψ and µ ∈ {α,−α} we have

corQ(rℓ)/Q(r) (d
α,µ
rℓ ) = Pℓ(ℓ

−jFr−1
ℓ ) · dα,µr

where Pℓ(X) is the Euler polynomial for L(Sym2f ⊗ωjχ, s) at ℓ and Frℓ is the
arithmetic Frobenius.
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iv) The classes dα,α1 , dα,−α1 ∈ H1
Fcan

(Q, Vχ,j) are linearly independent.

Proof. This is essentially Theorem 8.1.4 of [LZ16] (which we combine with ideas
from [LZ19]) and we shall only explain why the line of reasoning in loc. cit. is
sufficient to validate our theorem.

We first construct classes cα,±αr ∈ H1(Q(r),W ∗
f ⊗W

∗
f (1 − j)⊗ ω

jχ) as in the
proof of Theorem 8.1.4 [LZ16] (the twisting with the appropriate characters
may be carried out as in Definition 2.1.2 above). We shall construct dα,±αr

using cα,±αr . To avert any potential confusion, we remark that in place of the
twist 1− j we consider here, Loeffler and Zerbes in [LZ16] write −j.

Notice that although the Assumption 3.5.6 of op. cit. does not hold in our case
of interest, we still have

H0(Q(r)Q∞,W
∗
f ⊗W

∗
f (1 − j)⊗ ω

jχ) = 0 (3.1)

thanks to our running hypothesis on χ. Indeed, as we have observed as part
of Remark 3.2.5, the Dirichlet character η = ωk+2ǫfχ (that we have defined in
the proof of Proposition 3.2.3) does not factor through Γ. Since the conductor
of ǫfχ is prime r (and non-trivial), it follows that H0(Q(r)Q∞, Xψ,j) = 0.
Lemma 3.3.3 shows that H0(Q(r)Q∞, Tχ,j) = 0 as well. These two vanishing
results conclude the proof of (3.1).

Thanks to (3.1), the proof of [LZ16, Theorem 3.5.9] goes through verbatim
and allows one to obtain the interpolated Beilinson–Flach elements along a
Coleman family. The desired classes cα,±αr are obtained on specializing these
interpolated classes and modifying them slightly (as in the proof of 8.1.4(iii),
that in turn relies on the argument in [LLZ14, §7.3]) in order to ensure that
they verify the correct Euler system distribution relation). We remark that we
work over the fields Q(r) (resp., Q∞) here instead of the full cyclotomic fields
Q(µr) (resp., Q(µp∞)) as Loeffler and Zerbes in loc. cit. does. This is sufficient
for our purposes.

The classes cα,±αr verify the conclusion of [LZ16, Theorem 8.1.4(i)], for the
same reason that these classes extend in the cyclotomic direction and therefore
Proposition 2.4.4 in op. cit. applies. In other words, we infer that

cα,±αr ∈ H1
Fcan

(Q(r),W ∗
f ⊗W

∗
f (1− j)⊗ ω

jχ) .

We now explain how to define dα,±αr using cα,±αr . We follow [LZ19, proof of
Theorem 5.3.3]. For each prime ℓ ∈ Pχ such that r/ℓ ∈ Nχ, we let ϕℓ ∈ ∆r

denote the unique class that maps to the pair (σℓ, 1) under the canonical iso-
morphism ∆r

∼= ∆r/ℓ × ∆ℓ. As in op. cit., notice that ϕℓ is congruent to 1
modulo the radical of the ring O[∆r ] and hence

1− ℓk+1−jǫfχ
−1(ℓ)Fr−1

ℓ ∈ O[∆r ]
× .
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20 K. Büyükboduk, A. Lei, G. Venkat

We now define dα,±αr to be the image of

∏

ℓ|r

(
1− ℓk+1−jǫfχ

−1(ℓ)Fr−1
ℓ

)−1
cα,±αr ∈ H1

Fcan
(Q(r),W ∗

f ⊗W
∗
f (1− j)⊗ ω

jχ)

under the identification of Corollary 3.2.7. These cohomology classes verify (i)
by definition.

In order to check the validity of (ii), we note that Proposition 2.4.7 of [LZ16]
applies thanks to (3.1) and as in the proof of Theorem 8.1.4(ii) in op. cit., it
yields the desired integrality result.

We now prove (iii). Let Qℓ(X) denote the Euler polynomial for L(f⊗f⊗ωjχ).
For rℓ ∈ Nχ, the classes cα,±αr enjoy the distribution property

corQ(rℓ)/Q(r)

(
cα,±αrℓ

)
= Qℓ(ℓ

−jFr−1
ℓ ) · cα,±αr

Since we have

Qℓ(ℓ
−jFr−1

ℓ ) = (1− ℓk+1−jχ−1(ℓ)Fr−1
ℓ ) · Pℓ(ℓ

−jFr−1
ℓ )

thanks to the decomposition (2.2), the proof of (iii) follows by our definition of
the classes dα,±αr .

We remark that dα,±α1 = cα,±α1 by definition and (iv) is equivalent to the
assertion of Corollary 5.2.4 below.

Theorem 3.2.13. Fix r ∈ Nχ and let ν be a Dirichlet character of conductor r.
Set ψ = χν. Suppose that f and χ verify the hypotheses (Im), (Ψ1) and (Ψ2).
Then,

dimE H
1
Fcan

(Q, Vψ,j) = 2 ,

H1
F∗

can
(Q, V ∗

ψ,j(1)) = 0 .

Proof. We start with the observation that H0(Qp, Tψ,j) = 0 due to weight
considerations. Notice further that dimE V

−
ψ,j = 2. It therefore follows from

[MR04, Theorem 5.2.15] that

dimE H
1
Fcan

(Q, Vψ,j)− dimE H
1
F∗

can
(Q, V ∗

ψ,j(1)) = 2 .

As a result, the two assertions in the statement of our theorem are in fact equiv-
alent and the latter follows from Theorem 3.2.12 (the existence of a non-trivial
horizontal Euler system) and [Rub00, Theorem 2.2.3] (whose assumptions are
modified via [Rub00, §9.1], by replacing the condition (ii) in the statement of
[Rub00, Theorem 2.2.3] with (ii)′ in §9.1 of loc.cit. so as to cover our case).

Corollary 3.2.14. In the setting of Theorem 3.2.13, the O-module
H1

Fcan
(Q, Tψ,j) is free of rank 2.
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Proof. After Theorem 3.2.13, we only need to prove that H1
Fcan

(Q, Tψ,j) is

torsion-free. This follows from the fact that H0(Q, Tψ,j) = 0 under our running
hypotheses.

Corollary 3.2.15. In the setting of Theorem 3.2.13, we have

rankOH
1
Fcan

(Q(r), Tj) = 2|∆r| ,

for each r ∈ Nχ. Furthermore, the module H1
F∗

can
(Q(r), T∨

j (1)) has finite car-
dinality.

Proof. For each character ν of ∆r, we infer from Theorem 3.2.13 (applied with
the character ψ = χν) that dimH1

Fcan
(Q,Wχν,j) = 2|∆r| and the first assertion

follows by Shapiro’s Lemma. The second assertion is an immediate consequence
of the first and global duality.

3.3 Structure of Iwasawa theoretic Selmer groups

We shall rely on results in Section 3.2.2 to prove our main result (Theo-
rem 3.3.4) of Section 3, where we describe the structures of certain Iwasawa
theoretic Selmer groups.

We recall that T := Tχ,0 = Sym2R∗
f (1 + χ). Set Tj := Tj ⊗ ΛO(Γ)

ι and

recall that we have H1
Fcan

(Q,Tj) = H1(Q,Tj) by [MR04, Lemma 5.3.1]. When
j = 0, we shall drop j from the notation and simply write T in place of T0 =
T ⊗ ΛO(Γ)

ι.

Corollary 3.3.1. In the setting of Theorem 3.2.13, the ΛO(Γ)-module
H1

F∗
can

(Q(r),T∨
j (1)) is cotorsion and the ΛO(Γ)-module H1(Q(r),Tj) has rank

2|∆r| for each r ∈ Nχ.

Proof. The first assertion follows from the control theorem [MR04, Lemma
3.5.3] (

H1
F∗

can
(Q(r),T∨

j (1))
∨
)
Γ

∼
−→ H1

F∗
can

(Q(r), T∨
j (1))

∨

and Corollary 3.2.15.

Let us write χ(Tj , r) for the global Euler–Poincaré characteristic for the canon-
ical Selmer structure Fcan over the totally real field Q(r). Then,

χ(Tj , r) = rankΛO(Γ)

(
H1

Fcan
(Q,Tj)

)
− rankΛO(Γ)

(
H1

F∗
can

(Q(r),T∨
j (1))

∨
)

= rankΛO(Γ)

(
H1(Q,Tj)

)

where the first equality follows from the definition of the Euler–Poincaré char-
acteristic and the vanishing of H0(Q(r), T j), whereas the second from the first
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and [MR04, Lemma 5.3.1]. On the other hand, it follows from the global
Euler–Poincaré characteristic computation in [Nek06, Theorem 7.8.6] that

χ(Tj , r) = [Q(r) : Q] rankOT
−
j ,

where we rely on the fact that the number field Q(r) is totally real. Since
rankOT

−
j = rankOT

− = 2, the proof of our second assertion follows.

Corollary 3.3.2. In the setting of Theorem 3.2.13, the ΛO(Γ)-module
H1(Q(r),T) has rank 2|∆r| for every r ∈ Nχ.

Proof. This follows from Corollary 3.3.1 on noticing that

H1(Q(r),T)
∼
−→ H1(Q(r),Tj)⊗ χ

j
cycω

−j .

Lemma 3.3.3. The ΛO(Γ)-module H1(Q(r),T) is torsion-free for every r ∈ Nχ.

Proof. This is immediate from Lemma 3.2.11.

We recall that Λr = O[[∆r × Γ]], where ∆r = Gal(Q(r)/Q).

Theorem 3.3.4. In the setting of Theorem 3.2.13, the Λr-module H1(Q(r),T)
is free of rank 2 for every r ∈ Nχ.

Proof. We have a natural injection

H1(Q(r),T)/(Ar , ω
−jχjcyc(γ)γ − 1) →֒ H1

Fcan
(Q, Tj) ,

where Ar ⊂ O[∆r] is the augmentation ideal. It follows from Nakayama’s
lemma and Corollary 3.2.14 that the Λr-module H1(Q(r),T) may be generated
by at most 2 elements. Let {c1, c2} be any set of such generators. To prove our
theorem, it suffices to check that c1 and c2 do not admit a non-trivial Λr-linear
relation.

Assume the contrary and suppose that there is a non-trivial relation

α1c1 + α2c2 = 0, α1, α2 ∈ Λr . (3.2)

Write B = {δcj : δ ∈ ∆r, j = 1, 2}. Notice that B generates H1(Q(r),T) as a
ΛO(Γ)-module and

|B| = 2|∆r| = dimFrac(ΛO(Γ))

(
H1(Q(r),T) ⊗ΛO(Γ) Frac(ΛO(Γ))

)
, (3.3)

where the final equality is Corollary 3.3.2. The equation (3.2) may be rewritten
as ∑

δ

(λδ,1 · δ)c1 +
∑

δ

(λδ,2 · δ)c2 = 0 (3.4)
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with λδ,j ∈ ΛO(Γ). Since H1(Q(r),T) is ΛO(Γ)-torsion-free by Lemma 3.3.3,
we have a canonical injection

ι : H1(Q(r),T) →֒ H1(Q(r),T) ⊗ΛO(Γ) Frac(ΛO(Γ))

and furthermore, as a Frac(ΛO(Γ))-vector space, H1(Q(r),T) ⊗ΛO(Γ)

Frac(ΛO(Γ)) is generated by the set ι(B) . It follows from the relation
(3.4) that

dimFrac(ΛO(Γ))

(
H1(Q(r),T) ⊗ΛO(Γ) Frac(ΛO(Γ))

)
≤ |ι(B)| − 1 = 2|∆r| − 1,

which contradicts (3.3) and concludes our proof.

4 Signed Iwasawa theory

In this section, we shall generalize the construction of plus and minus Coleman
maps of Kobayashi [Kob03] to the representationW ∗

f ⊗W
∗
f (1+χ). The kernels

of these maps are then served to define local Selmer conditions at p, which in
turn are used to define the so-called doubly signed Selmer groups. The local
theory we develop here is also used to factorize the Beilinson–Flach elements in
Section 2.1 into bounded elements and to define bounded p-adic L-functions,
generalizing the work of Pollack [Pol03] on one single modular form. Conjec-
ture 4.4.3 relates these p-adic L-functions to the doubly signed Selmer groups,
which is a form of the Iwasawa main conjecture in the spirit of Kobayashi’s
work on supersingular elliptic curves in [Kob03]. We prove one inclusion of the
conjecture in Theorem 4.4.5 using the bounded Beilinson–Flach elements we
obtain in §4.3.

We recall here that Pollack’s plus and minus logarithms are defined as follows.
Let χcyc denote the cyclotomic character on Γ and recall that γ is a fixed
topological generator of Γ1. For an integer r ≥ 1, we define

log+p,r =

r−1∏

j=0

1

p

∞∏

n=1

Φp2n(χ
−j
cyc(γ)γ)

p
,

log−p,r =

r−1∏

j=0

1

p

∞∏

n=1

Φp2n−1(χ−j
cyc(γ)γ)

p
.

Recall from [Pol03] that log±p,r ∈ HE,r/2(Γ), where HE,r/2(Γ) denotes the set of

E-valued tempered distributions of order r/2 on Γ. (in fact, log±p,r ∼ O(log
r/2
p )).

We shall also write

logp,r =

r−1∏

j=0

logp(χ
−j
cyc(γ)γ) ∈ HE,r(Γ).
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If n is an integer, we write

Twn : HE,r(Γ)→ HE,r(Γ) (4.1)

for the E-linear map induced by σ 7→ χncyc(σ)σ for all σ ∈ Γ. Observe that

Tw−n log
?
p,r = log?p,r+n/log

?
p,n , ? = ∅,±. (4.2)

As a shorthand, we set

log?,(1)p,r
..= Tw−1 log

?
p,r = log?p,r+1/log

?
p,1 , ? = ∅,±. (4.3)

It follows from (4.2) that

Tw−n log
?,(1)
p,r = log

?,(1)
p,r+n/log

?,(1)
p,n , ? = ∅,±. (4.4)

4.1 Local theory

We study a decomposition of the local representation Rf ⊗Rf |GQp
, which relies

crucially on our assumption that ap(f) = 0. This decomposition allows us to
relate the local representation to the setting studied in [Lei11]. This relation
will be exploited to define the signed Coleman maps in §4.2.

Let D be the Dieudonné module of Wf |GQp
. Recall that

dimL FiliD =





2 i ≤ 0,

1 1 ≤ i ≤ k + 1,

0 i ≥ k + 2.

Recall that we have assumed the Fontaine–Laffaille condition p > k+1 holds.
On combing the Wach module basis in [BLZ04, §3] with the construction of inte-
gral Dieudonné module in [Ber04, §IV], there is an O-lattice Dcris(Rf ) inside D,
which is generated by ω, p−k−1ϕ(ω), where ω is an O-basis of Fil1 Dcris(Rf ),
which we fix from now on. (See also [LLZ17, Lemma 3.1] for a similar basis.)

Lemma 4.1.1. The filtered ϕ-module Sym2D is decomposable into D1 ⊕ D2,
where Di is of dimension i for both i = 1, 2.

Proof. The filtration of Sym2D is given by:

Fili Sym2D =





Sym2D i ≤ 0,

〈ω ⊗ ω, ω ⊗ ϕ(ω) + ϕ(ω)⊗ ω〉 1 ≤ i ≤ k + 1,

〈ω ⊗ ω〉 k + 2 ≤ i ≤ 2k + 2,

0 i ≥ 2k + 3.
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We define

D1 = 〈ω ⊗ ϕ(ω) + ϕ(ω)⊗ ω〉;

D2 = 〈ω ⊗ ω, ϕ(ω)⊗ ϕ(ω)〉.

The fact that ϕ2(ω) = α2ω implies that both D1 and D2 are stable under ϕ.
Furthermore, they both respect the filtration of Sym2D. Hence, they are both
filtered ϕ-modules as required.

Corollary 4.1.2. The GQp -representation Sym2Wf |GQp
splits into W1⊕W2,

where Wi is of dimension i.

Proof. This follows from the correspondence between GQp -representations and
filtered ϕ-modules of Fontaine [Fon79, Théorème 3.6.5]. See also [PR98, §2.2]
where a similar decomposition when Wf comes from the Tate module of a
p-supersingular elliptic curves was studied.

Remark 4.1.3. We note that this decomposition was exploited in [Lei12] in
the CM case. In fact, this decomposition holds as GQ-representations (not just
GQp -representations) when f is of CM type.

For i = 1, 2, we define the lattice Ri =Wi ∩ Sym
2Rf inside Wi. In particular,

we have the decomposition of GQp -representations

Sym2 Rf |GQp
= R1 ⊕R2.

We also have the integral Dieudonné modules Dcris(R1) and Dcris(R2). Further-
more, Dcris(R1) is generated by p−k−1(ω⊗ϕ(ω)+ϕ(ω)⊗ω), whereas Dcris(R2)
is generated by ω ⊗ ω and p−2k−2ϕ(ω)⊗ ϕ(ω).

Let χ be a fixed Dirichlet character as in Section 2.1. In particular, χ is
unramified at p. We have the following isomorphisms of filtered modules

Dcris(Wf ⊗Wf (χ
−1))

⊗vχ
−→ Dcris(Wf ⊗Wf ),

Dcris(Rf ⊗Rf (χ
−1))

⊗vχ
−→ Dcris(Rf ⊗Rf ),

where {vχ} is an O-basis of Dcris(O(χ)). Consequently, the local representa-
tion Sym2Wf (χ

−1)|GQp
splits intoW1,χ⊕W2,χ as in Corollary 4.1.2. Similarly,

we have the integral counterpart

Sym2 Rf (χ
−1)|GQp

= R1,χ ⊕R2,χ.

We can see from the proof of Lemma 4.1.1 that the Hodge-Tate weight of W1,χ

is −1−k, whereas those of W2,χ are 0 and −2−2k. Furthermore, the filtration
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on Dcris(W2,χ) is given by

FiliDcris(W2,χ) =





Dcris(W2,χ) i ≤ 0,

〈ω ⊗ ω ⊗ vχ−1 〉 1 ≤ i ≤ 2k + 2,

0 i ≥ 2k + 3.

By duality, we have the decompositions of GQp -representations

W ∗
f ⊗W

∗
f (χ) =W ∗

0,χ⊕W
∗
1,χ⊕W

∗
2,χ, R∗

f ⊗R
∗
f (χ) = R∗

0,χ⊕R
∗
1,χ⊕R

∗
2,χ, (4.5)

where W ∗
0,χ =

∧2
W ∗
f (χ) and R∗

0,χ =
∧2

R∗
f (χ). Furthermore, R∗

1,χ and R∗
0,χ

are rank-one representations of the form O(ψi + k + 1), for some unramified
characters ψi on GQp sending p to ±ǫfχ(p) respectively. In particular, they
both have a single Hodge-Tate weight, namely k + 1. For the representation
W ∗

2,χ, we have the filtration

FiliDcris(W
∗
2,χ) =





Dcris(W
∗
2,χ) i ≤ −2k − 2,

〈ω′ ⊗ ω′ ⊗ vχ〉 −2k − 1 ≤ i ≤ 0,

0 i ≥ 1,

for some basis ω′ that generates the O-module Fil0 Dcris(R
∗
f ). Note that

{ω′, ϕ(ω′)} is an O-basis of Dcris(R
∗
f ), which implies that Dcris(R

∗
2,χ) is gen-

erated by ω′ ⊗ ω′ ⊗ vχ and ϕ(ω′)⊗ ϕ(ω′)⊗ vχ.

Let F/Qp be a finite unramified extension. Given a crystalline E-linear repre-
sentation W of GF whose Hodge-Tate weights are all non-negative, we write

LW,F : H1
Iw(F,W )→ F ⊗HE,r(Γ)⊗ Dcris(W )

for the Perrin-Riou regulator map (cf. [LLZ11, §3.1] and [LZ14, Appendix B]).
Here, r denotes the largest slope of ϕ on Dcris(W ). We now study the images
of the Perrin-Riou maps for the direct summands in (4.5).

Lemma 4.1.4. Let W =W ∗
1,χ or W ∗

0,χ and F/Qp a finite unramified extension.
For all z ∈ H1

Iw(F,W ), we have

LW,F (z) ∈ logp,k+1 F ⊗ ΛO(Γ)⊗ Dcris(W ).

Let R = R∗
1,χ or R∗

0,χ. If z ∈ H1
Iw(F,R), then

LW,F (z) ∈ logp,k+1OF ⊗ ΛO(Γ)⊗ Dcris(R),

where Dcris(R) is the O-lattice inside Dcris(W ) as defined in [Ber04, §IV].

Proof. Since k ≥ 0, we have the identification

H1
Iw(F,R) = NF (R)

ψ=1
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where NF (R) = OF ⊗Zp NQp(R) denotes the Wach module of R over F for
R = R∗

1,χ or R∗
0,χ (see [LZ14, §2.7]). Similarly, we may identify H1

Iw(F,W )

with NF (W )ψ=1.

We recall that the construction of LW,F can be realized as

1− ϕ : NF (W )ψ=1 → (ϕ∗NF (W ))
ψ=0

.

The right-hand side is contained inside F ⊗ (B+
rig,Qp

)ψ=0 ⊗ Dcris(W ), which in

turn is isomorphic to F ⊗ ∪rHQp,r(Γ)⊗ Dcris(W ) via the Mellin transforms.

The image of NF (R)
ψ=1 under 1 − ϕ lies inside

(
ϕ∗NQp(R)

)ψ=0
, which is a

free OF ⊗ ΛO(Γ)-module generated by (1 + π)ϕ(n) for some O ⊗ A+
Qp

-basis n

of NQp(R) by [LLZ10, Theorem 3.5]. By [Ber04, proof of Proposition V.2.3],
v := n mod π is a basis of Dcris(R). Furthermore, [Ber04, Proposition III.2.1]
tells us that n and (t/π)k+1v agree up to a unit in B+

rig,Qp
. But since both v and

n are defined integrally, the aforementioned unit is in fact defined over A+
Qp

.

Consequently, if x ∈ NF (R)
ψ=1, we have (1−ϕ)(x) ∈ ϕ(t/π)rOF ⊗ (A+

Qp
)ψ=0v.

On taking Mellin transform, this lies inside logp,k+1OF ⊗ ΛO(Γ)v by [LLZ10,
Theorem 5.4] and [LLZ17, Theorem 2.1].

Lemma 4.1.5. Let F/Qp be a finite unramified extension. There exist ΛO(Γ)-
homomorphisms

L±,F : H1
Iw(F,W

∗
2,χ)→ log±p,2k+2 F ⊗ ΛO(Γ)

such that for all z ∈ H1
Iw(F,W

∗
2,χ),

LW∗
2,χ,F

(z) = L+,F (z)ω
′ ⊗ ω′ ⊗ vχ + L−,F (z)ϕ(ω

′)⊗ ϕ(ω′)⊗ vχ.

Furthermore, if z ∈ H1
Iw(F,R

∗
2,χ), then L±,F (z) ∈ log±p,2k+2OF ⊗ ΛO(Γ).

Proof. Recall that ω′ ⊗ ω′ ⊗ vχ is a basis of Fil0 Dcris(W
∗
2,χ) and its image

under ϕ is, up to a unit, equal to ϕ(ω′) ⊗ ϕ(ω′) ⊗ vχ. These two elements of
Dcris(W

∗
2,χ) give rise to two maps

L±,F : H1
Iw(F,W

∗
2,χ) −→ F ⊗HE,k+1(Γ)

as given by [LLZ10, (18)] (see also the construction in [Lei11], §3.2). These two
maps then decompose LW∗

2,χ ,F
in a manner as explained in [LLZ11, §5A] (note

that our maps here differ from those given in op. cit. by units). This proves
the first assertion of the lemma.

For the integrality statement, we may argue as in Lemma 4.1.4 on using the
Wach module basis of NQp(R

∗
2,χ) as given in [Ber04, §A] and [LLZ10, §5.2].
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Let ω′ be a fixed basis of Fil0 Dcris(R
∗
f ) as above. The eigenvalues of ϕ on

Dcris(W
∗
f ) are ±

1
α and we have the eigenvectors

vλ = ϕ(ω′) +
1

λ
ω′, (4.6)

for λ = ±α. Then, the four ϕ-eigenvectors vλ⊗vµ⊗vχ decompose Dcris(W
∗
f ⊗

W ∗
f (χ)) into a direct sum of one-dimensional subspaces. This in turn allows us

to decompose the Perrin-Riou map as follows.

Definition 4.1.6. For any finite unramified extension F of Qp, we define
L±α,±α,F ,L◦,F and L•,F to be the unique ΛO(Γ)-morphisms from H1

Iw(F,W
∗
f ⊗

W ∗
f (χ)) to F ⊗HE,k+1(Γ) satisfying the equation

LW∗
f ⊗W

∗
f (χ),F

(z) =
∑

λ,µ∈{α,−α}

Lλ,µ,F (z)vλ ⊗ vµ ⊗ vχ

= L◦,F (z)v◦ + L•,F (z)v• + L+,F (z)ω
′ ⊗ ω′ ⊗ vχ

+ L−,F (z)ϕ(ω
′)⊗ ϕ(ω′)⊗ vχ,

for all z ∈ H1
Iw(F,W

∗
f ⊗W

∗
f (χ)), where

v◦ = ω′ ⊗ ϕ(ω′)⊗ vχ − ϕ(ω
′)⊗ ω′ ⊗ vχ ∈ Dcris(R

∗
0,χ),

v• = ω′ ⊗ ϕ(ω′)⊗ vχ + ϕ(ω′)⊗ ω′ ⊗ vχ ∈ Dcris(R
∗
1,χ),

and L±,F are defined as in Lemma 4.1.5.

Lemma 4.1.7. Let F/Qp be a finite unramified extension. For all z ∈
H1

Iw(F,R
∗
f ⊗R

∗
f (χ)), we have




1 1 1 1
α2 α2 −α2 −α2

2α −2α 0 0
0 0 −2α 2α







Lα,α,F (z)
L−α,−α,F (z)
Lα,−α,F (z)
L−α,α,F (z)


 ∈




log−p,2k+2

log+p,2k+2

logp,k+1

logp,k+1


OF ⊗ ΛO(Γ).

Proof. We have the change of basis matrix




ϕ(ω′)⊗ ϕ(ω′)
ω′ ⊗ ω′

ϕ(ω′)⊗ ω′ + ω′ ⊗ ϕ(ω′)
ϕ(ω′)⊗ ω′ − ω′ ⊗ ϕ(ω′)


 = 1/4




1 1 1 1
α2 α2 −α2 −α2

2α −2α 0 0
0 0 −2α 2α







vα ⊗ vα
v−α ⊗ v−α
vα ⊗ v−α
v−α ⊗ vα


 .

Hence, our result follows from Lemmas 4.1.4 and 4.1.5.

We finish this subsection by introducing certain projection maps on global
cohomology groups based on the local maps that we have defined above.

Documenta Mathematica 26 (2021) 1–63



Non-Ordinary Symmetric Squares 29

Definition 4.1.8. For any number field K which is unramified at all primes
above p and given an element

z = z1 ∧ z2 ∈
∧2

H1(K,W ∗
f ⊗W

∗
f (χ)⊗ ΛO(Γ)

ι)

as well as λ, µ ∈ {±α}, we define

prλ,µ(z) = Lλ,µ,K(resp(z1))z2 − Lλ,µ,K(resp(z2))z1

∈ H1
Iw(K,W

∗
f ⊗W

∗
f (χ))⊗̂HE,k+1(Γ),

where resp : H1(K,W ∗
f ⊗W

∗
f (χ) ⊗ ΛO(Γ)

ι) →
⊕

v|pH
1(Kv,W

∗
f ⊗W

∗
f (χ) ⊗

ΛO(Γ)
ι) is defined by the local restriction maps and Lλ,µ,K is the shorthand for

the sum Σv|pLλ,µ,Kv .

Proposition 4.1.9. For K and z ∈
∧2

H1(K,R∗
f ⊗ R

∗
f (χ) ⊗ ΛO(Γ)

ι) as in
Definition 4.1.8, the product




1 1 1 1
α2 α2 −α2 −α2

2α −2α 0 0
0 0 −2α 2α







prα,α(z)
pr−α,−α(z)
prα,−α(z)
pr−α,α(z)




belongs to 


log−p,2k+2

log+p,2k+2

logp,k+1

logp,k+1


H1(K,R∗

f ⊗R
∗
f (χ)⊗ ΛO(Γ)

ι) .

Proof. This follows immediately from Lemma 4.1.7.

Remark 4.1.10. We may define similar maps on the Tate twists ofW ∗
f⊗W

∗
f (χ)

as follows. We have the local maps

H1
Iw(F,W

∗
f ⊗W

∗
f (χ+ j)) −→ H1

Iw(F,W
∗
f ⊗W

∗
f (χ))

Lλ,µ,F
−→ HE,k+1(Γ)

Twj
−→ HE,k+1(Γ).

We can then define the semi-local map

H1
Iw(Q(m),W ∗

f ⊗W
∗
f (χ+ j)) −→ HE,k+1(Γ)

and the projection map

∧2
H1

Iw(Q(m),W ∗
f ⊗W

∗
f (χ+ j)) −→ H1

Iw(Q(m),W ∗
f ⊗W

∗
f (χ+ j))⊗̂HE,k+1(Γ)

for every integer j and m ∈ Nχ as in Definition 4.1.8. We shall denote the

resulting maps by L
(j)
λ,µ,m and pr

(j)
λ,µ respectively. When the dependence on j is

clear from the context, we shall drop the superscript (j) from the notation.
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4.2 Signed Coleman maps and Selmer conditions

Let F be a finite unramified extension of Qp. Recall that we have set T :=
Sym2R∗

f (1)⊗χ and V := Sym2W ∗
f (1)⊗χ. As in Remark 4.1.10, we define the

twisted version of the maps L±,F in Lemma 4.1.5 as well as L•,F and L◦,F in

Definition 4.1.6. The twisted maps are denoted by L
(1)
?,F . Given any element

z ∈ H1
Iw(F, V ), we have

L
(1)
±,F (z) ∈ log

±,(1)
p,2k+2 F ⊗ ΛO(Γ) and L

(1)
•,F (z) ∈ log

(1)
p,k+1 F ⊗ ΛO(Γ).

Furthermore, if z ∈ H1
Iw(F, T ), then

L
(1)
±,F (z) ∈ log

±,(1)
p,2k+2OF ⊗ ΛO(Γ) and L

(1)
•,F (z) ∈ log

(1)
p,k+1OF ⊗ ΛO(Γ)

(thanks to Lemmas 4.1.4 and 4.1.5). We now define the signed Coleman maps
as follows.

Definition 4.2.1. For ♣ ∈ {+,−, •}, we let log♣p denote log
+,(1)
p,2k+2, log

−,(1)
p,2k+2

and log
(1)
p,k+1 respectively. We define the signed Coleman maps Col♣F by setting

Col♣F : H1
Iw(F, T ) −→ OF ⊗ ΛO(Γ)

z 7−→ L
(1)
♣,F (z)/ log

♣
p .

Let η be a character on Γtors. We may identify eηΛO(Γ) with the power series
ring O[[X ]], where X is given by γ − 1 and γ is a topological generator of Γ1.
The images of the plus and minus Coleman maps for Qp can be described as
follows:

Proposition 4.2.2. For η as above, eηIm(Col±Qp) is pseudo-isomorphic to∏
j∈S±

η
(X−χjcyc(γ)−1)Zp⊗O[[X ]], where S±

η is some subset of {1, 2, . . . , 2k+

2}.

Proof. This follows from [LLZ11, Corollary 4.15].

Definition 4.2.3. Following [Kob03, Lei11], we define the signed Selmer con-
ditions

H1
Iw,♣(F, T ) = ker(Col♣F ).

for ♣ ∈ {+,−, •}. Further, if j is any integer, we define H1
Iw,♣(F, T (j)) to be

the natural image of H1
Iw,♣(F, T ) under the twisting morphism H1

Iw(F, T ) →

H1
Iw(F, T (j)).

Fix an integer m ∈ Nχ. We may combine the signed Coleman maps Col♣Q(m)v

for primes v of Q(m) above p to obtain

Col♣m = ⊕v|pCol
♣
Q(m)v
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on H1(Q(m)p,T)=
⊕

v|pH
1(Q(m)v,T) (recall that T = T ⊗ ΛO(Γ)

ι). When

m = 1, we will write Col♣ in place of Col♣m.

For ♣ ∈ {+,−, •}, we define the (compact) signed Selmer group H1
F♣

(Q(m),T)
by setting

H1
F♣

(Q(m),T) := ker

(
H1(Q(m),T) −→

H1(Q(m)p,T)

ker(Col♣m)

)
.

4.3 Signed Beilinson–Flach classes

We now give the proof of Theorem A stated in the introduction modulo Theo-
rem 4.3.3, which we shall prove in §5.5. We note that Theorem 4.3.3 below is the
key technical ingredient in the construction of signed Beilinson–Flach classes
attached to symmetric squares in the non-ordinary setting. It crucially sup-
plements earlier ideas in this direction by addressing the lack of a “sufficiently
large range of interpolation” to compensate the growth of denominators.

For λ, µ ∈ {±α} and m ∈ Nχ, let BF
λ,µ
m,χ be the Beilinson–Flach element from

§2.1. Via [LZ16, Proposition 2.4.5], we make the following identification:

H1(Q(m),W ∗
f ⊗W

∗
f (1 + χ)⊗HE,k+1(Γ)

ι)

= HE,k+1(Γ) ⊗̂H
1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ)). (4.7)

Let us write
BFλ,µm,χ =

∑
Fλ,µi zi,

where
∑
Fλ,µi ∈ HE,k+1(Γ) and {zi} is some fixed ΛO(Γ)-basis of

H1
Iw(Q(m),W ∗

f ⊗W
∗
f (1+χ)). We recall from [BL21, §3.1] that if 1 ≤ j ≤ k+1

and θ is a Dirichlet character of conductor pn > 1, then

Fλ,µi (χjθ) = (λµ)−ncn,i,j

for some constant cn,i,j that is independent of λ and µ. This property is
crucially used in the proof of [BLLV19, Theorem 5.4.1], which can be recast in
our current setting in the following explicit manner:

Lemma 4.3.1. There exists B̃F
λ,µ

m,χ ∈ H
1(Q(m),W ∗

f ⊗W
∗
f (1+χ)⊗HE,k+1(Γ)

ι),
λ, µ ∈ {±α} such that




1 1 1 1
α2 α2 −α2 −α2

2α −2α 0 0
0 0 −2α 2α







BFα,αm,χ
BF−α,−α

m,χ

BFα,−αm,χ

BF−α,α
m,χ


 =




log
+,(1)
p,k+1 B̃F

α,α

m,χ

log
−,(1)
p,k+1 B̃F

−α,−α

m,χ

log
(1)
p,k+1 B̃F

α,−α

m,χ

log
(1)
p,k+1 B̃F

−α,α

m,χ



.
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Remark 4.3.2. On comparing denominators, we see that

B̃F
α,α

m,χ, B̃F
−α,−α

m,χ ∈ HE,(k+1)/2(Γ) ⊗̂H
1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ)),

B̃F
α,−α

m,χ , B̃F
−α,α

m,χ ∈ H
1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ))

under the identification (4.7). We shall show in Theorem 4.3.3 that the

elements B̃F
α,α

m,χ and B̃F
α,α

m,χ are further divisible by Tw−k−1 log
+,(1)
p,k+1 and

Tw−k−1 log
−,(1)
p,k+1, respectively. Recall from (4.4) that we have the equality

log
±,(1)
p,k+1 Tw−k−1 log

±,(1)
p,k+1 = log

±,(1)
p,2k+2. This in turn allows us to define the

bounded Beilinson–Flach classes described in Theorem A in the introduction.

Theorem 4.3.3. Suppose that the Dirichlet character χ verifies the condi-
tions (Ψ1) and (Ψ2). Assume also that (NV) and (Im) hold true. Let

H = ∪r≥0HE,r(Γ1). For m ∈ Nχ and η ∈ ∆̂m, we write eη for the cor-
responding idempotent. For all four choices of λ, µ ∈ {±α}, there exist

cm ∈ Qp[∆m] ⊗ Frac(H) and zm ∈
∧2

H1
Iw(Q(m),W ∗

f ⊗ W ∗
f (1 + χ)) (both

of which depend only on m and not on the choice of the pair λ, µ) satisfying
the following properties.

i) BFλ,µm,χ = δcm × prλ,µ(zm), where δ ∈ {±} is determined according to λµ =
δα2.

ii) For each η ∈ ∆̂m, the element cη := eηcm ∈ Frac(H) is non-zero.

iii) For each η ∈ ∆̂m, we write cη = dη/hη, where dη, hη ∈ H are coprime.

Then, hη is coprime to
log

(1)
p,2k+2

log
(1)
p,k+1

.

The proof of this theorem requires the theory of (ϕ,Γ)-modules and Selmer
complexes. It will be presented in Section 5.5.

Corollary 4.3.4. In the setting of Theorem 4.3.3, there exist

BF+
m,χ,BF

−
m,χ,BF

•
m,χ,BF

◦
m,χ ∈ H

1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ))

such that




1 1 1 1
α2 α2 −α2 −α2

2α −2α 0 0
0 0 −2α 2α







BFα,αm,χ
BF−α,−α

m,χ

BFα,−αm,χ

BF−α,α
m,χ


 =




log
+,(1)
p,2k+2 BF

+
m,χ

log
−,(1)
p,2k+2 BF

−
m,χ

log
(1)
p,k+1 BF

•
m,χ

log
(1)
p,k+1 BF

◦
m,χ



. (4.8)

Proof. The assertion concerning the bottom two rows of (4.8) is a direct con-
sequence of Lemma 4.3.1 (see also the discussion in Remark 4.3.2). We shall
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prove the divisibility on the first row; that for the second row can be proved in
a similar fashion.

It follows from the second row of the factorization given in Proposition 4.1.9
and Theorem 4.3.3(iii) that

(
prα,α + pr−α,−α − prα,−α − pr−α,α

)
(cmzm)

∈
log

+,(1)
p,2k+2

log
+,(1)
p,k+1

HE,(k+1)/2(Γ) ⊗̂H
1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ)).

Therefore, if we write

BFα,αm,χ + BF−α,−α
m,χ +BFα,−αm,χ +BF−α,α

m,χ =
∑

Fizi,

where Fi ∈ HE,k+1(Γ) and {zi} is a ΛO(Γ)-basis ofH
1
Iw(Q(m),W ∗

f ⊗W
∗
f (1+χ)),

then Theorem 4.3.3(i) tells us that each Fi is divisible by
log

+,(1)
p,2k+2

log
+,(1)
p,k+1

. Further-

more, Lemma 4.3.1 says that all the Fi’s are also divisible by log
+,(1)
p,k+1. The

conclusion follows from growth order considerations.

Proposition 4.3.5. In the setting of Theorem 4.3.3, there exists an integer C
independent of m such that

C × BF♣
m,χ ∈ H

1
Iw(Q(m), R∗

f ⊗R
∗
f (1 + χ))

for all four choices of ♣ ∈ {+,−, •, ◦}.

Proof. Let λ, µ ∈ {±α} and fix m. Note that λµ
pk+1 is a p-adic unit given that

vp(λ) = vp(µ) = (k + 1)/2. Write xλ,µr ∈ H1(Q(m)(µpr ),W
∗
f ⊗W

∗
f (1 + χ))

for the image of the Iwasawa theoretic Beilinson–Flach class BFλ,µm,χ. Then by
[LZ16, Theorem 8.1.4(ii)]

C0 × p
(k+1)rxλ,µr ∈ H1(Q(m)(µpr ), R

∗
f ⊗R

∗
f (1 + χ))

for some integer C0 that is independent of r, m, λ and µ.

Let BF♣ be any one of the four linear combinations of Belinson-Flach classes
on the left-hand side of (4.8) and expand BF♣ with respect to the basis {zi} of
H1

Iw(Q(m),W ∗
f⊗W

∗
f (1+χ)), say BF

♣ =
∑
Fizi. Let log

♣ be the corresponding
logarithm on the right-hand side of (4.8). Then,

• log♣ | Fi for all i;

• Fi = O(logk+1
p );
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• For all r ≥ 1, we have p−(k+1)r||Fi||ρr is bounded independently of i, r,
m and the choice of ♣.

Here ρr = p−1/pr−1(p−1) and || • ||ρr is the sup-norm on power series as defined

in [BL21, §2.1]. Consequently ||Fi/ log
♣ ||ρr is bounded independently of i, r,

m and the choice of ♣. Hence, BF♣/ log♣ are bounded classes as required.

Recall that T := Sym2R∗
f (1 + χ) and T := T ⊗ ΛO(Γ)

ι.

Corollary 4.3.6. In the setting of Theorem 4.3.3 and for ♣ ∈ {+,−, •}, we
have

C × BF♣
m,χ ∈ H

1(Q(m),T), BF◦
m,χ = 0,

where we consider H1(Q(m),T) as a subgroup of H1
Iw(Q(m), R∗

f⊗R
∗
f(1+χ)) via

the decomposition of GQ(m)-representations R
∗
f⊗R

∗
f (1+χ) = T⊕

∧2R∗
f (1+χ).

Proof. The first part of the corollary follows from Proposition 2.1.3, Corol-
lary 4.3.4 and Proposition 4.3.5. For the second part of the corollary, note
that

BF◦
m,χ = (BF−α,α

m,χ − BFα,−αm,χ )/2α

Under our assumption on the parity of the Dirichlet character χ, we show that

BFλ,µm,χ = BFµ,λm,χ

for any choices of λ, µ ∈ {±α} in Section 5.5. In particular, see Remark 5.5.2.
Thus, on taking λ = −µ = α, this shows that BF◦

m,χ = 0, as required.

We now show that the bounded Beilinson–Flach classes satisfy the Selmer con-
ditions we defined in §4.2. This allows us to apply the Euler system machinery
to obtain one inclusion of Conjecture 4.4.3 (see Theorem 4.4.5). For the rest
of the section, we assume that the character χ verifies (Ψ1) and (Ψ2). Suppose
also that (Im) holds true. We also fix an integer m ∈ Nχ. Let us recall the
following “geometric” property of the unbounded Beilinson–Flach classes.

Proposition 4.3.7. For an integer j ∈ [−k, 0] and λ, µ ∈ {±α}, the natural

image of locp

(
BFλ,µ,(j)m,χ

)
in H1(Q(m)(µpr )p,W

∗
f ⊗W

∗
f (1 + j + χ)) belongs to

the Bloch-Kato subgroup H1
f (Q(m)(µpr )p,W

∗
f ⊗W

∗
f (1 + j + χ)).

Proof. This is [KLZ17, Proposition 3.3.3], since H1
f = H1

g in this case (see
[LZ16, Proposition 8.1.3]).

Proposition 4.3.8. Let ♣ ∈ {+,−, •} and v a prime of Q(m) above p. Then

resv

(
BF♣

m,χ

)
∈ kerCol♣Q(m)v

, where resv denotes the localization map

H1
Iw(Q(m),W ∗

f ⊗W
∗
f (1 + χ))→ H1

Iw(Q(m)v,W
∗
f ⊗W

∗
f (1 + χ)).
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Proof. We shall only consider the “♣ = +” case. The other two cases can be
proved similarly. Let us set F = Q(m)v and write

z := resv
(
BFα,αm,χ +BF−α,−α

m,χ +BFα,−αm,χ +BF−α,α
m,χ

)
.

Proposition 4.3.7 tells us that the image of z in H1(F (µpr ),W
∗
f ⊗W

∗
f (1 + χ))

belongs to the Bloch-Kato subspace H1
f (F (µpr ),W

∗
f ⊗W

∗
f (1+χ)) for all r ≥ 0.

By the interpolative properties of Perrin-Riou’s map, this implies that

LW∗
f ⊗W

∗
f (1+χ),F

(z) ∈ F ⊗HE ⊗ Dcris(W
∗
f ⊗W

∗
f (1 + χ))

vanishes at all finite characters on Γ. Let L
(1)
±,F be the morphism given in §4.2.

Then, both L
(1)
+,F (z) and L

(1)
−,F (z) vanish at all finite characters of Γ.

By an abuse of notation, we shall denote L
(1)
+,F (respectively Col+F ) composed

with the projection map W ∗
f ⊗W

∗
f (χ) −→ W ∗

2 (1 + χ) by the same symbol.
Note that

L
(1)
+,F (z) =

(
log

+,(1)
p,2k+2

)2
Col+F ◦ locp

(
BF+

m,χ

)
.

Therefore, Col+F ◦ locp
(
BF+

m,χ

)
vanishes at infinitely many finite characters of Γ

(the ones that do not vanish at log
+,(1)
p,2k+2). This forces Col+F ◦ locp

(
BF+

m,χ

)
to

vanish, as required.

Corollary 4.3.9. We have C × BF♣
m,χ ∈ H

1
F♣

(Q(µm),T) for ♣ ∈ {+,−, •}.

Proof. This follows immediately from Proposition 4.3.8 and Corollary 4.3.6.

4.4 Doubly signed main conjectures

Recall that T := Sym2R∗
f (1+χ) and T = T ⊗Λι. We now define doubly signed

compact and discrete Selmer groups as well as doubly signed p-adic L-functions
in the spirit of [BLLV19].

Definition 4.4.1. Let S denote the set of pairs {(+,−), (+, •), (−, •)}. For
S = (♣,♠) ∈ S, we define the following objects

• A compact Selmer group H1
S
(Q,T), given by

H1
S(Q,T) := ker


H1(Q,T) −→

H1(Qp,T)

ker
(
Col♣

)
∩ ker

(
Col♠

)


 .
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• A discrete Selmer group SelS(T
∨(1)/Q(µp∞)), given by the kernel of the

restriction map

H1(Q(µp∞), T∨(1)) −→

∏

v|p

H1(Q(µp∞)v, T
∨(1))

H1
S
(Q(µp∞)v, T∨(1))

×
∏

v∤p

H1(Q(µp∞)v, T
∨(1))

H1
f (Q(µp∞)v, T∨(1))

,

where v runs through all primes of Q(µp∞), and for v | p the local condi-

tion H1
S
(Q(µp∞)v, T

∨(1)) is the orthogonal complement of ker
(
Col♣

)
∩

ker
(
Col♠

)
under the local Tate pairing.

• In the setting of Theorem 4.3.3, we define the doubly-signed p-adic L-
function by setting

LS := Col♣ ◦ resp
(
BF♠

1,χ

)
∈ C−1ΛO(Γ).

Remark 4.4.2. Interchanging the roles of ♣ and ♠ has the effect of multiplying
LS by −1. This is the content of [BLLV19, Proposition 5.3.4] (see Proposi-
tion 5.6.3 below for its incarnation in our setting). Since we are only interested
in the ideal generated by LS, the ambiguity of sign is not an issue for us.

We are now in a position to formulate a doubly-signed Iwasawa main conjecture
for the symmetric square representation of a non-p-ordinary eigenform.

Conjecture 4.4.3. For every S ∈ S and every character η of Γtors, the module
eηSelS(T∨(1)/Q(µp∞)) is Λ(Γ1)-cotorsion and

charΛO(Γ1) (eηSelS(T
∨(1)/Q(µp∞))∨) = (eηLS)

as ideals of Λ(Γ1) ⊗ Qp, with equality away from the support of coker(Col♣)

and coker(Col♠).

Proposition 4.4.4. Suppose we are in the setting of Theorem 4.3.3. Then
there exists a choice of S ∈ S such that eωjLS 6= 0.

Proof. By Lemma 4.1.7 and Definition 4.2.1, we have




1 1 1 1
α2 α2 −α2 −α2

2α −2α 0 0
0 0 −2α 2α







L
(1)
α,α,F

L
(1)
−α,−α,F

L
(1)
α,−α,F

L
(1)
−α,α,F


 =




log
−,(1)
p,2k+2 Col

−

log
+,(1)
p,2k+2 Col

+(z)

log
(1)
p,k+1 Col

•(z)

log
(1)
p,k+1 Col

◦



.

In particular,

L(1)α,α(z) =
log

−,(1)
p,2k+2

4
Col−(z) +

log
+,(1)
p,2k+2

4α2
Col+(z) +

log
(1)
p,k+1

4α
Col•(z) .
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Similarly, Corollary 4.3.4 gives

BFα,−α1,χ =
log

+,(1)
p,2k+2

4
BF+

1,χ −
log

−,(1)
p,2k+2

4α2
BF−

1,χ −
log

(1)
p,k+1

4α
BF◦

1,χ .

By Corollary 4.3.6, we know that BF◦
1,χ = 0. Hence, L

(1)
α,α(BF

α,−α
1,χ ) is an

HE,k+1(Γ)-linear combination of the terms Col♣ ◦ resp(BF
♠
1,χ) for (♣,♠) ∈ S.

By (2.5), we know that L
(1)
α,α(BF

α,−α
1,χ ) is a non-zero multiple of the geometric

p-adic L-function and hence is non-zero. We conclude that there exists at least
one S = (♣,♠) ∈ S such that Col♣ ◦ resp(BF

♠
1,χ) is non-zero.

We can now give the proof of Theorem B.

Theorem 4.4.5. Suppose that the hypotheses (Ψ1)–(Ψ3), (NV) and (Im)
hold true. Then for every j ∈ {k + 2, . . . , 2k + 2} even and S ∈ S
that validates the conclusion of Proposition 4.4.4, the ωj-isotypic component
eωjSelS(T∨(1)/Q(µp∞)) is ΛO(Γ1)-cotorsion and we have

charΛO(Γ1) (eωjSelS(T
∨(1)/Q(µp∞))∨)

∣∣ (eωjLS)

as ideals of ΛO(Γ1)⊗Qp.

Proof. This theorem follows from the same proof of [BLLV19, Theorem 6.2.4],
using the (rank-one) locally restricted Euler system machinery we have defined
above. The quadruple sign S = {(△,�), (•, ◦)} used therein corresponds to
our double sign S = (♣,♠) ∈ S. The additional hypothesis (Ψ3) ensures the
big image condition on T in order to apply the Euler system machinery holds
(cf. [LZ19, §5.2]).

5 (ϕ,Γ)-modules and analytic main conjectures

Our main goal in this section is to give proofs of Theorem 3.2.12(iv), Theo-
rem 4.3.3 and Corollary 4.3.6. These results are crucial for the construction of
bounded Beilinson–Flach classes as well as to translate our results on the signed
Iwasawa main conjectures into the analytic language of Pottharst [Pot13] and
Benois [Ben15].

Fix once and for all an integer r ∈ Nχ as in Definition 3.2.8, where the Dirichlet
character χ is given as in Section 3 verifying (Ψ1) and (Ψ2). Fix also a character

ν ∈ ∆̂r and set ψ := χν. As in Section 3, we also fix an integer j in the interval
[k+2, 2k+2]. Recall that Vψ,j denotes Sym

2W ∗
f (1− j)⊗ω

jψ, which sits inside

Wψ,j =W ∗
f ⊗W

∗
f (1 − j)⊗ ω

jψ =

(∧2
W ∗
f (1− j)⊗ ω

jψ

)
⊕ Vψ,j .

Documenta Mathematica 26 (2021) 1–63
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For notational simplicity, we write Vψ = Vψ,j ⊗ ω−j and Wψ = Wψ,j ⊗ ω−j

throughout this section.

We shall make use of the identification (which arises from the inflation-
restriction sequence)

H1
Iw(K

∆,Wψ,j)
∼
−→ H1

Iw(K,Wψ)
ω−j

(and likewise, for the representations Vψ and Vψ,j) for any abelian extension
K of Q that contains µp, where ∆ = Gal(Q(µp)/Q) and K∆ denotes the fixed
field of ∆.

5.1 Local preparation

In this subsection, we introduce the p-adic Hodge-theoretic objects that we
shall rely on in the proofs of Theorem 3.2.12(iv) and Theorem 4.3.3. We also
prove Lemma 5.1.5, which is a statement on local classes and will serve as a
key ingredient in the proof of Theorem 3.2.12(iv).

We fix a generator {ε(n)}n of lim
←−

µpn =: Zp(1). Recall from Corollary 4.1.2

the GQp -subrepresentationsW1 and W2 of Sym2Wf . We define for i = 1, 2 the
Dieudonné module

Di := Dcris (W
∗
i (1− j)⊗ ψ) .

We also set

D0 := Dcris

(∧2
W ∗
f (1− j)⊗ ψ

)
.

In particular, this gives the decompositions

Dcris(Wψ) = D0 ⊕D1 ⊕D2, Dcris(Vψ) = D1 ⊕D2 .

The crystalline Frobenius ϕ acts on D1 by αψ,j := pj−1ψ(p)/α2 =
−pj−k−2ǫ−1

f ψ(p), whereas it acts on D0 by −αψ,j = pj−k−2ǫ−1
f ψ(p). Recall

from (4.6) the ϕ-eigenvectors v±α ∈ Dcris(W
∗
f ). If we fix a non-zero vector

vj,ψ ∈ Dcris(E(1 − j) ⊗ ψ), we have the following ϕ-eigenvectors in Dcris(Wψ):
ω±,± := v±α ⊗ v±α ⊗ vj,ψ. We can check that

• D0 = span{ω+− − ω−+},

• D1 = span{ω++ − ω−−},

• D2 = span{ω++ + ω−−, ω+− + ω−+}.

Definition 5.1.1. Given λ ∈ {±α}, we let δλ : Q×
p → E× denote the character

that is given by δλ(p) = 1/λ and δ(u) = 1 for u ∈ Z×
p . We also write δψ,j :

Q×
p → E× for the character which is given by δψ,j(x) = |x|

1−j
p x1−jδψ(x) where

δψ(p) = ψ−1(p) and δψ(u) = 1.
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For each ϕ-eigenspace Dcris(W
∗
f )
ϕ=1/λ of Dcris(W

∗
f ) (where λ = ±α as above),

there is a unique rank-one (ϕ,Γ)-submodule Dλ ⊂ Df := D†
rig(W

∗
f ), which is

of the form RE(δλ), where RE is the Robba ring over E (see [Ben14, §2.2]).
More precisely, Dλ is the free RE−module generated by an element eλ ∈ Dλ
for which we have

ϕ(eλ) = δλ(p) · eλ , τ(eλ) = δλ(χcyc(τ)) · eλ (∀τ ∈ Γ) .

We also set Dψ,j to be RE(δψ,j) and define

Df,j := Df ⊗ Dψ,j ∼= D†
rig(W

∗
f (1 − j)⊗ ψ) , Dλ,j := Dλ ⊗ Dψ,j

In what follows, the following (ϕ,Γ)-subquotients (all of which are necessarily

crystalline) of D†
rig(Wψ) will play a crucial role. Let λ, µ ∈ {±α}.

• D†
rig(Wψ)

λ,µ := Dλ ⊗ Dµ,j .

• D†
rig(Wψ)

λ,◦ := Dλ ⊗ Df,j .

• D†
rig(Wψ)/λ,◦ := D†

rig(Wψ)/D
†
rig(Wψ)

λ,◦.

• D†
rig(Wψ)/λ,µ := (Df/Dλ)⊗ Dµ,j ⊂ D

†
rig(Wψ)/λ,◦.

• D†
rig(Wψ)

λ,µ,+ := (Dλ ⊗ Df + Df ⊗ Dµ)⊗ Dψ,j.

• D†
rig(Wψ)

λ,µ,− := D†
rig(Wψ)/D

†
rig(Wψ)

λ,µ,+.

Let D = D†
rig(Wψ)? or D

†
rig(Wψ)

? be one of the (ϕ,Γ)-modules above. We write

Dcris(Wψ)? (or Dcris(Wψ)
?) for the corresponding Dieudonné module Dcris(D),

where Dcris(−) denotes the functor defined in [Nak17, §2, P.341]. We write
d/λ,◦ for the natural projection map

d/λ,◦ : Dcris(Wψ) −→ Dcris(Wψ)/λ,◦ .

We also have the following canonical short exact sequence:

0 −→ Dcris(Wψ)/λ,µ
d
∗

−→ Dcris(Wψ)/λ,◦
d
−

λ,µ
−→ Dcris(Wψ)

λ,µ,− −→ 0. (5.1)

Lemma 5.1.2. ker(d−λ,µ) =
(
Dcris(Wψ)/λ,◦

)ϕ= pj−1ψ−1(p)
−λµ

Proof. Note that Dcris(Wψ)/λ,µ is one dimensional over E. By comparing the
action of ϕ, we see that it is isomorphic to Dcris(D−λ ⊗ Dµ,j) as ϕ-modules.
The proof now follows from the exact sequence (5.1), as the image of d∗ may be

identified with the (one dimensional)
pj−1ψ−1(p)

−λµ
-eigenspace for the ϕ-action

on Dcris(Wψ)/λ,◦.
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Given an integer m ∈ {1, · · · , p − 1}, we let [m] ∈ Q×
p denote its Teichmüller

lift. We also let Trj : Qp(µp)
ω−j

→ Qp denote the twisted trace map induced
by

1

p− 1

p−1∑

r=1

[r]jεr(1) 7→ 1 .

Definition 5.1.3. For any crystalline GQp -representation or a (ϕ,Γ)-module
D, we denote the composition of the arrows

H1(Qp(µp), D)ω
−j exp∗

−→ Qp(µp)
ω−j

⊗ Dcris(D)
Trj⊗1
−→ Dcris(D) (5.2)

by ω−j ◦ exp∗. Here, exp∗ is the dual exponential map given in [Nak17, §3,
P.360].1 More generally, if θ is a character of Γn := Γ/Γp

n

that does not factor
through Γn−1 (where n is a positive integer), we may define a map

ω−j ◦ exp∗ : H1(Qp(µpn), D)ω
−jθ −→ Dcris(D)

starting off with the map ω−jθ : Qp[∆× Γn]
ω−jθ → Qp and identifying it (via

the generator ε(n) of µpn) with a twisted trace map Qp(µpn)→ Qp.

Definition 5.1.4. Given a finite extension K of Qp and a crystalline GK-
representation V , we set

H1
s (K,V ) := H1(K,V )/H1

f (K,V )

and call it the singular quotient of H1(K,V ). For each positive integer n, we
further set

res/f : H
1(Q(µpn), V ) −→ H1

s (Qp(µpn), V )

(the singular projection) to denote the composition of the arrows

H1(Q(µpn), V )
resp
−→ H1(Qp(µpn), V )

s
−→ H1

s (Qp(µpn), V ) ,

where s is the natural projection map.

Lemma 5.1.5. Let x, y ∈ H1(Qp(µp),Wψ)
ω−j

be two classes with non-trivial
singular projection (meaning that their images in H1

s (Qp(µp),Wψ) under the
map s given in Definition 5.1.4 are non-trivial) such that

• d/λ,◦ ◦ ω
−j ◦ exp∗(x) ∈

(
Dcris(Wψ)/λ,◦

)ϕ=pj−1ψ−1(p)

α2 ,

• d/λ,◦ ◦ ω
−j ◦ exp∗(y) ∈

(
Dcris(Wψ)/λ,◦

)ϕ=−pj−1ψ−1(p)

α2 .

1Note that once we identify Qp(µp) with Qp[∆] via the generator ε(1) of µp, the map Trj

agrees with the map ω
−j : Qp[∆]ω

−j
→ Qp, which justifies the notation we have chosen for

the composition (5.2).
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Then the classes s(x) and s(y) are linearly independent over E in
H1
s (Qp(µp),Wψ).

Proof. This is clear, as the images of x and y under the dual exponential map
(that factors through the singular quotient) composed with the map d/λ,◦ ◦ω

−j

fall within different eigenspaces.

5.2 Linear independence of Beilinson–Flach classes

We are now ready to complete the proof of Theorem 3.2.12(iv), which follows
as an immediate consequence of Corollary 5.2.4 to Theorem 5.2.2 below. The-
orem 5.2.2 concerns the p-local images of the Beilinson–Flach elements and its
proof relies on the criterion on linear independence established in Lemma 5.1.5
above.

For λ, µ ∈ {±α}, the Beilinson–Flach classes BFλ,µr,χ ∈ H1(Q(r),W ∗
f ⊗

W ∗
f (1 + χ) ⊗ HE,k+1(Γ)

ι) from §2.1 give rise to the classes in BF
λ,µ,(j)
ψ ∈

H1
Iw(Q(µp),Wψ ⊗ HE,k+1(Γ)

ι). We let bf
λ,µ ∈ H1(Q(µp),Wψ)

ω−j

denote the

images of BF
λ,µ,(j)
ψ under the composition

H1
Iw(Q,Wψ ⊗HE,k+1(Γ)

ι) −→ H1(Q(µp),Wψ) −→ H1(Q(µp),Wψ)
ω−j

.

Remark 5.2.1. The classes cλ,µ1 ∈ H1(Q,Wψ,j) that we have considered in the

proof of Theorem 3.2.12 maps to the class bf
λ,µ under the canonical isomor-

phism

H1(Q,Wψ,j) −→ H1(Q(µp),Wψ)
ω−j

.

Theorem 5.2.2. The classes res/f(bf
λ,µ) and res/f(bf

λ,−µ) are linearly inde-

pendent in H1
s (Qp(µp),Wψ)

ω−j

.

Proof. By Lemmas 5.1.2 and 5.1.5 , the theorem will follow once we verify the
following two properties.

(i) d/λ,◦ ◦ ω
−j ◦ exp∗

W ∗
ψ (1) ◦ resp(bf

λ,µ) ∈ ker(d−λ,µ) for µ ∈ {α,−α}.

(ii) resp(bf
λ,µ) and resp(bf

λ,−µ) are non-trivial.
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The property (i) is immediate by the commutativity of the following diagram

H1
Iw(Qp, D

†
rig(Wψ))

ω−j
//

��

H1
Iw(Qp, D

†
rig(Wψ)

λ,µ,−)ω
−j

��

H1(Qp(µp), D
†
rig(Wψ))

ω−j
//

ω−j◦ exp∗

��

H1(Qp(µp), D
†
rig(Wψ)

λ,µ,−)ω
−j

ω−j◦ exp∗

��

Dcris(Wψ)
d/λ,µ,−

// Dcris(D
†
rig(Wψ)

λ,µ,−)

together with the fact that BF
λ,µ,(j)
ψ belongs to the kernel of the top horizontal

arrow by [LZ16, Theorem 7.1.2]. We now prove property (ii) by arguing as in
the proof of Theorem 8.2.1(v) in [LZ16].

To ease notation, we let H1
Iw(X) (resp., H1(X)) denote H1

Iw(Qp, X) (resp.,
H1(Qp(µp), X)) in the following commutative diagram:

H1
Iw(Wψ ⊗HE,k+1(Γ)

ι)ω
−j d/λ,◦

//

a

��

H1
Iw(D

†
rig(Wψ)/λ,◦)

ω−j

a

��

H1
Iw(D

†
rig(Wψ)/α,µ)

ω−j
?
_oo

a

��

H1(Wψ)
ω−j d/λ,◦

//

ω−j◦ exp∗

��

H1(D†
rig(Wψ)/λ,◦)

ω−j

ω−j◦ exp∗

��

H1(D†
rig(Wψ)/λ,µ)

ω−j
?
_oo

ω−j◦ exp∗

��
Dcris(Wψ) // Dcris(Wψ)/λ,◦ Dcris(Wψ)/α,µ?

_oo

We remind the reader that for the étale (ϕ,Γ)-moduleD†
rig(Wψ), we have identi-

fied its cohomology with the cohomology of Wψ in order to define the horizontal
arrows on the left.

It follows from Theorem 7.1.2 in op. cit. that the image

d/λ,◦ ◦ resp

(
BF

λ,µ,(j)
ψ

)
∈ H1

Iw(Qp, D
†
rig(Wψ)/λ,◦)

ω−j

of the Iwasawa theoretic Beilinson–Flach class in fact falls in the image of

H1
Iw(Qp, D

†
rig(Wψ)/λ,µ)

ω−j

→֒ H1
Iw(Qp, D

†
rig(Wψ)/λ,◦)

ω−j

.

We let dIw ∈ H1
Iw(Qp, D

†
rig(Wψ)/λ,µ)

ω−j

denote the unique element that maps

to d/λ,◦ ◦ resp(BF
λ,µ,(j)
ψ ). The commutative diagram above shows that

d/λ,◦ ◦ resp

(
bf

λ,µ
)
= a(dIw)

It therefore suffices to prove that a(dIw) is non-trivial. Theorem 7.1.5 of op. cit.
reduces this to verifying that Lp(f, f, ω

−j, j) 6= 0. Observe that in place of the
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variable j in op. cit., we have used j − 1 and furthermore, we have projected
to the ω−j-eigenspaces. As a result, the relevant p-adic L-value in the current
work is Lp(f, f, , ω

−j , j) in place of Lp(f, f, 1 + j) in op. cit. The desired non-
vanishing of the p-adic L-value now follows from the hypothesis (NV).

Remark 5.2.3. The attentive reader will realize that we could have in fact
worked over the fields Q(µpn) in place of Q(µp) above and considered the ω−jθ
invariants (for characters of Γn := Γ/Γp

n

, where n is an arbitrary non-negative
integer). The same proof would apply and prove for µ ∈ {α,−α} that

d/λ,◦ ◦ ω
−jθ ◦ exp∗ ◦ resp

(
bf

λ,µ
n

)
∈
(
Dcris(Wψ)/λ,◦

)ϕ=−pj−1ψ−1(p)
λµ ,

where bf
λ,µ
n ∈ H1

Fcan
(Q(µpn),Wψ)

ω−jθ is the image of BF
λ,µ,(j)
ψ and the mor-

phism ω−jθ ◦ exp∗ is given as in Definition 5.1.3. This allows us to conclude
that the classes res/f(bf

λ,µ
n ) and res/f(bf

λ,−µ
n ) are linearly independent.

The following corollary follows immediately from Remark 5.2.1 and Theo-
rem 5.2.2.

Corollary 5.2.4. The classes cλ,α1 , cλ,−α1 ∈ H1
Fcan

(Q,Wψ,j) are linearly inde-
pendent.

5.3 Analytic Selmer groups

Based on the local analysis in Section 5.1, we introduce in this subsection the
(ϕ,Γ)-modules associated to the twists of the symmetric square representations,
as well as their triangulations. With these objects in hand, we then define the
Pottharst-style Selmer groups in our current setting. Proposition 5.3.7 below
explains the relation of these Selmer groups to Bloch–Kato Selmer groups as
well as determines their size, relying chiefly on Theorem 5.2.2.

Recall from §5.1 the decompositions

D0 ⊕D1 ⊕D2 = Dcris(Wψ) ⊃ Dcris(Vψ) = D1 ⊕D2

of filtered ϕ-modules. We fix throughout this section a choice of λ, µ ∈ {±α}.
We define the (ϕ,Γ)-modules D+◦

ψ ⊂ D+
ψ by setting

D+
ψ := D†

rig(Wψ)
λ,µ,+ ∩D†

rig(Vψ) ,

D+◦
ψ := Dλ ⊗ Dλ ⊗ Dψ,j .

Lemma 5.3.1. The crystalline (ϕ,Γ)-submodule D+
ψ ⊂ D†

rig(Vψ) is a saturated

(ϕ,Γ)-submodule of rank 2. Likewise, the submodule D+,◦
ψ ⊂ D+

ψ is saturated of
rank one.
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Proof. Notice that

D+
ψ = ker

(
D†

rig(Vψ) →֒ D†
rig(Wψ) −→ D†

rig(Wψ)
λ,µ,−

)
.

The first claim follows since

eλ ⊗ e−λ − eµ ⊗ e−µ 6∈ ker (Df ⊗ Df −→ Df/Dλ ⊗ Df/Dµ)

if λ = −µ, whereas

eλ ⊗ eλ − e−λ ⊗ e−λ 6∈ ker (Df ⊗ Df −→ Df/Dλ ⊗ Df/Dµ)

if λ = µ, so that D+
ψ ( D†

rig(Vψ). The second part follows from the exactness
of the following sequence of (ϕ,Γ)-modules:

0 −→ D+◦
ψ −→ D+

ψ −→ (Df/Dλ ⊗ Df/Dλ)⊗ Dψ,j −→ 0 . (5.3)

Lemma 5.3.2. D+
ψ ∩D

†
rig(D1) =

{
D†

rig(D1) if µ = −λ

0 if µ = λ
.

Proof. We have the identification of (ϕ,Γ)-modules

D†
rig(D1) = RE(eα ⊗ eα − e−α ⊗ e−α)⊗ Dψ,j .

When λ = µ, the conclusion follows from noting that

eα ⊗ eα − e−α ⊗ e−α 6∈ ker (Df ⊗ Df −→ Df/Dλ ⊗ Df/Dµ) .

When λ = −µ, it follows from

eα ⊗ eα − e−α ⊗ e−α ∈ ker (Df ⊗ Df −→ Df/Dλ ⊗ Df/Dµ) .

Corollary 5.3.3. Dcris(D
+◦
ψ ) ∩ Fil0Dcris(Vψ) = 0.

Proof. As Dcris(D
+◦
ψ ) is one-dimensional over E, its intersection with

Fil0Dcris(Vψ) is either trivial or Dcris(D
+◦
ψ ). Suppose that the latter holds.

Then, Dcris(D
+◦
ψ ) is a ϕ-stable subspace of ⊂ Fil0Dcris(Vψ). But the unique

ϕ-stable subspace of

Fil0Dcris(Vψ) = D1 ⊕ Fil0Dcris(D2)

is D1. Thus, Dcris(D
+◦
ψ ) = D1 . When λ = µ, this contradicts Lemma 5.3.2.

Therefore, the intersection is 0 as required. When λ = −µ, the same conclusion
follows from the fact that D†

rig(D1) does not fit in the exact sequence (5.3)).
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Corollary 5.3.3 tells us that the submodule D+◦
ψ ⊂ D†

rig(Vψ) is regular in the
sense of Benois and Perrin-Riou, cf. [Ben15, §2.1] for an elaboration on this
property.

Definition 5.3.4. For each natural number n and D = D+◦
ψ or D+

ψ , we let
S•(Q(µpn),Vψ,D) denote the (analytic) Selmer complex, given as in [BB15,
Definition 2.4] (with the base field taken as Q(µpn) in place of Q) and let
RΓ(Q(µpn),Vψ,D) denote the corresponding class in the derived category of
E-vector spaces.

We also define, following [Ben15, §2.3], the Iwasawa theoretic (analytic) Selmer
complex S•

Iw(Q(µpn),Vψ,D) and the corresponding class RΓIw(Q(µpn),Vψ,D)
in the derived category of HE(Γ

(n))-modules (here, HE(Γ
(n)) stands for

∪r>0HE,r(Γ(n)) and Γ(n) := Gal(Q(µpn)/Q)).

For each natural number n we set

H̃i
?(Q(µpn),Vψ,D) := RΓi?(Q(µpn),Vψ,D) for ? = ∅, Iw

and call them analytic Selmer groups.

We have the following control theorem in the context of analytic Selmer com-
plexes:

RΓIw(Q(µpn),Vψ,D)⊗L
HE(Γ(n)) E

∼
−→ RΓ(Q(µpn),Vψ,D) , (5.4)

where ⊗L denotes the derived tensor product.

Lemma 5.3.5. Let D be a (ϕ,Γ)-module over RE such that H0(Qp, D) =
H2(Qp, D) = 0. Then H1(Qp, D) is an E-vector space of dimension rankRED.

Proof. This is an immediate consequence of Liu’s local Euler characteristic
formula proved in [Liu08].

Definition 5.3.6. For any Dirichlet character η : GQ → E×, we let Eη denote
the one dimensional E-vector space on which GQ acts via η.

Proposition 5.3.7. Fix a non-negative integer n and let θ be a character of
the quotient group Γn. Suppose at least one of the following two conditions
holds:

a) ω−jθ is non-trivial.

b) If j = k + 2, then ǫfψ
−1(p) 6= ±1.
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Then:

i) We have the following exact sequence:

0 −→ H̃1(Q(µpn),Vψ,D)ω
−jθ −→ H1

Fcan
(Q(µpn),Vψ)

ω−jθ

−→ H1(Qp(µpn), D
†
rig(Vψ)/D)

ω−jθ

where D = D+◦
ψ or D+

ψ .

ii) The Selmer group H̃1(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ is canonically isomor-

phic to the Bloch-Kato Selmer group H1
f (Q(µpn),Vψ)

ω−jθ, whereas

H̃2(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ is isomorphic to H1
f (Q(µpn),V

∗
ψ (1))

ω−jθ.

iii) The Selmer group H1
f (Q(µpn),Vψ)

ω−jθ is trivial, whereas

H̃1(Q(µpn),Vψ,D
+
ψ )
ω−jθ is one dimensional over E.

Remark 5.3.8. We have checked in Lemma 3.1.1 that Condition (b) in the
statement of Proposition 5.3.7 holds true when we assume the validity of (Ψ2).
We recall that the hypothesis (Ψ2) is required to avoid exceptional zeros, see
Corollary 2.2.5.

Proof of Proposition 5.3.7.

i) This portion follows from the definition of the Selmer complex as a

mapping cone, once we verify that H0(Qp(µpn), D
†
rig(Vψ)/D)ω

−jθ = 0.

When ω−jθ is non-trivial, it is a Dirichlet character ramified at p.
Since the GQp -representation Vψ is crystalline, the desired vanishing of

H0(Qp(µpn), D
†
rig(Vψ)/D)ω

−jθ follows. Thus, we are reduced to checking that

H0(Qp, D
†
rig(Vψ)/D) = 0 assuming (b). Note that if H0(Qp, D

†
rig(Vψ)/D) is

non-zero, then we necessarily have pj−1ψ(p) = ±α2, which can only hold if
j = k + 2 and ǫfψ

−1(p) = ±1 (recall that α2 = −ǫf (p)pk+1). Therefore,

the condition (b) implies the vanishing H0(Qp(µpn), D
†
rig(Vψ)/D)ω

−jθ = 0, as
required.

ii) The first half of this portion is immediate by [Pot13, Proposition 3.7(3)].
The second assertion follows from global duality (Theorem 1.15 of op. cit.).
Note that the conditions of [Pot13, Proposition 3.7(3)] are valid thanks to
Lemma 5.3.2 and our hypotheses in this proposition.

iii) We follow the proof of [LZ16, Theorem 8.2.1] to prove the first assertion
in (iii). We start off with the following exact sequence:

0→ H1
f (Q(µpn),Vψ)

ω−jθ −→ H1
Fcan

(Q(µpn),Vψ)
ω−jθ

res/f
−→ H1

s (Q(µpn),Vψ)
ω−jθ .
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We have seen that the canonical Selmer group H1
Fcan

(Q(µpn),Vψ)
ω−jθ is of

dimension 2 and moreover, the image of res/f is also two-dimensional thanks to

Theorem 5.2.2 and Remark 5.2.3. This proves that H1
f (Q(µpn),Vψ)

ω−jθ = 0.

We now prove the second assertion of (iii). On taking D = D+
ψ in the exact

sequence of part (i), we see that

dim H̃1(Q(µpn),Vψ,D)ω
−jθ +H1(Qp(µpn), D

†
rig(Vψ)/D)

ω−jθ

≥ dimH1
Fcan

(Q(µpn),Vψ)
ω−jθ = 2 .

Lemma 5.3.5 (applied with D =
(
D†

rig(Vψ)/D
+
ψ

)
⊗D†

rig(Eωjθ−1) and K = Qp)

tells us that

dimH1(Qp(µpn), D
†
rig(Vψ)/D)

ω−jθ
= dimH1(Qp, D) = 1 .

Therefore,

dim H̃1(Q(µpn),Vψ,D
+
ψ )
ω−jθ ≥ 1. (5.5)

Now, consider the exact sequence

0 −→ H̃1(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ −→ H̃1(Q(µpn),Vψ,D
+
ψ )
ω−jθ

−→ H1(Qp(µpn),D
+
ψ/D

+◦
ψ )ω

−jθ

(which follows from the definitions of extended Selmer groups) shows that

dim H̃1(Q(µpn),Vψ,D
+
ψ )
ω−jθ

≤ dim H̃1(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ +H1(Qp(µpn),D
+
ψ/D

+◦
ψ )ω

−jθ

= H1(Qp(µpn),D
+
ψ/D

+◦
ψ )ω

−jθ

= 1 ,

where the first equality follows from (ii) combined with the vanishing of the

Bloch-Kato Selmer group H1
f (Q(µpn),Vψ)

ω−jθ (which is the first assertion of
(iii)), and the second equality follows from Lemma 5.3.5 applied with D =(
D+
ψ/D

+◦
ψ

)
⊗D†

rig(Eωjθ−1). Combining this with (5.5), the second assertion of

(iii) follows.

Corollary 5.3.9. In the setting of Proposition 5.3.7, we have

H̃2(Q(µpn),Vψ,D
+
ψ )
ω−jθ = 0 .

Proof. The definition of the Selmer complex as a mapping cone gives rise to a
canonical surjection

H̃2(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ
։ H̃2(Q(µpn),Vψ,D

+
ψ )
ω−jθ

and the corollary follows from Proposition 5.3.7(ii)-(iii).
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5.4 Zeros of characteristic ideals

The main goal of this subsection is to determine a locus where the generators of
the characteristic ideals of the Pottharst-style Iwasawa theoretic Selmer groups
do not have a zero. In particular, we prove Theorem 5.4.3. Corollary 5.4.4 to
this theorem plays a fundamental role in the proof of Theorem 4.3.3.

From now on, we assume that ǫfψ
−1(p) 6= ±1. We recall from Lemma 3.1.1

that this assumption holds for all ψ = χν (where ν is Dirichlet character of p-
power order and prime-to-p conductor) under the hypothesis (Ψ2). Throughout
this section, we continue to work with our fixed choice of λ, µ ∈ {±α}.

Lemma 5.4.1. Let D be a (ϕ,Γ)-module of rank d over RE such that
H0(Qp(µp∞), D) = H2(Qp(µp∞), D) = 0. Then H1

Iw(Qp, D) is a projective
HE(Γ)-module of rank d.

Proof. Only in this proof, we let ψ denote the left inverse for the Frobenius
operator ϕ, and not a Dirichlet character ψ that is unramified at p. The proof of
the lemma follows from the fact that the complex C•

ψ(D) is a perfect complex
of HE(Γ)-modules, which may be represented by a single projective module
concentrated in degree 1 thanks to our running hypotheses.

We recall that H := ∪r>0HE,r(Γ1).

Proposition 5.4.2. Let n be a positive integer and θ a character of Γn. Then
H̃1

Iw(Q(µpn),Vψ,D
+
ψ )
ω−jθ is a saturated rank one H-submodule of

H1
Iw(Q(µpn),Vψ)

ω−jθ ⊗ΛO(Γ1) H
∼= H1

Iw(Q, Vψ,j ⊗ θ
−1)⊗ΛO(Γ1) H .

We remark that the isomorphism H1
Iw(Q(µpn),Vψ)

ω−jθ ⊗ H ∼= H1
Iw(Q, Vψ,j ⊗

θ−1)⊗H follows as a consequence of a formal twisting argument (cf. [Rub00],
§6).

Proof of Proposition 5.4.2. The definition of the Selmer complex as a mapping
cone (and the fact that Iwasawa cohomology classes are unramified) yields the
exact sequence

0 −→ H̃1
Iw(Q(µpn),Vψ,D

+
ψ )
ω−jθ −→ H1

Iw(Q(µpn),Vψ)
ω−jθ ⊗H

−→ H1
Iw(Qp(µpn), D

†
rig(Vψ)/D

+
ψ )
ω−jθ −→ H̃2

Iw(Q(µpn),Vψ,D
+
ψ )
ω−jθ .

Since the H-module

H1
Iw(Q(µpn),Vψ)

ω−jθ ⊗H ∼= H1
Iw(Q, Vψ,j ⊗ θ

−1)⊗H

is free of rank 2 thanks to Theorem 3.3.4, it suffices to verify that
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(i) The H-module

H1
Iw(Qp(µpn),D

†
rig(Vψ)/D

+
ψ )
ω−jθ

∼= H1
Iw

(
Qp, (D

†
rig(Vψ)/D

+
ψ )⊗D

†
rig(Eωjθ−1)

)

is projective of rank one, where the isomorphism follows from the version
of Shapiro’s Lemma in [KPX14, Lemma 2.3.5] in the context of (ϕ,Γ)-
modules and their cohomology;

(ii) The H-module H̃2
Iw(Q(µpn),Vψ,D

+
ψ )
ω−jθ is torsion.

The assertion (i) follows from Lemma 5.4.1 thanks to our running hypotheses
on ψ, so it remains to verify the assertion (ii). To do so, we first consider the
exact sequence

0 −→ H̃1(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ −→ H̃1(Q(µpn),Vψ,D
+
ψ )
ω−jθ

−→H1(Qp(µpn),D
+
ψ/D

+◦
ψ )ω

−jθ −→ H̃2(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ

−→ H̃2(Q(µpn),Vψ,D
+
ψ )
ω−jθ −→ 0 (5.6)

of E-vector spaces. By Proposition 5.3.7(ii)-(iii) and global duality, it follows
that

H̃2(Q(µpn),Vψ,D
+◦
ψ )ω

−jθ ∼= H1
f (Q(µpn),V

∗
ψ (1))

ω−jθ = 0.

Hence, we deduce from (5.6) that

H̃2(Q(µpn),Vψ,D
+
ψ )
ω−jθ = 0 .

The control theorem for Selmer complexes (5.4) yields an injection

(
H̃2

Iw(Q(µpn),Vψ,D
+
ψ )
ω−jθ

)
Γ(n)
→֒ H̃2(Q(µpn),Vψ,D

+
ψ )
ω−jθ,

which shows (thanks to the structure theory of coadmissible H-modules
in the sense of [ST03], given as in [Ben15, Proposition 3.6]) that

H̃2
Iw(Q(µpn),Vψ,D

+
ψ )
ω−jθ does not have positive H-rank and this concludes

our proof.

If M is a coadmissible torsion H-module in the sense of [ST03], we may define
its characteristic ideal charH(M) as in [HP16, §7.2.1]. Pottharst has shown

that the torsion H-module H̃2
Iw(Q(µp),Vψ,D

+
ψ )
ω−j

is coadmissible (see [Ben15,
Proposition 3.10]) and we shall study its characteristic ideal. Recall that χcyc

denotes the cyclotomic character on Γ, the pn-cyclotomic polynomial is denoted
by Φpn and Twn is a twisting map defined as in (4.1). We define Tw〈n〉 to be
the twisting map that acts as Twn on elements in Γ1 and the identity on Γtors.
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Theorem 5.4.3. For any m ∈ [k + 1, 2k + 1] and any positive in-
teger n, the element Twj−m−1Φpn(γ) does not divide in H the ideal

charH

(
H̃2

Iw(Q(µp),Vψ,D
+
ψ )
ω−j
)
.

Proof. In order to ease our notation, we shall adopt the following convention
in this proof.

Convention. Let X be a twist of Vψ by a power of χcyc. We denote the

(ϕ,Γ)-submodule of D†
rig(X) that gives rise as a twist of D+

ψ also by D+
ψ .

It follows by the twisting formalism (cf. [Rub00, §6]) that

charH

(
H̃2

Iw(Q(µp),Vψ,D
+
ψ )
ω−j
)

= Tw〈j−1〉charH

(
H̃2

Iw(Q(µp),Vψ(j − 1),D+
ψ )
ω−1
)
.

Our assertion is therefore equivalent to the claim that charHH̃
2
Iw(Q(µp),Vψ(j−

1),D+
ψ )
ω−1

is not divisible by any linear factor of the product

Φpn(χ
−m
cyc (γ)γ) :=

∏

η

(
χ−m
cyc (γ)η

−1(γ)γ − 1
)

for any r ∈ [k + 1, 2k + 2] and any positive integer n, where η runs through
primitive characters of Γn−1.

Assume the contrary, so that there exists a positive integer n and an E-valued
primitive character θ of Γn−1 (after enlarging E if necessary) such that

(χ−m
cyc (γ)θ

−1(γ)γ − 1)
∣∣ charH

(
H̃2

Iw(Q(µp),Vψ(j − 1),D+
ψ )
ω−1
)

(5.7)

for some m ∈ [k + 1, 2k + 1].

Set Vm := Vψ(j −m− 1) ∼= Sym2W ∗
f (−m)⊗ ψ. Since

Tw〈m〉

(
χ−m
cyc (γ)θ

−1(γ)γ − 1
)
= θ−1(γ)γ − 1,

observe that the divisibility (5.7) is equivalent to the divisibility

(
θ−1(γ)γ − 1

) ∣∣ Tw〈m〉

(
charH H̃2

Iw(Q(µp),Vψ(j − 1),D+
ψ )
ω−1
)

= charH

(
H̃2

Iw(Q(µp),Vψ(j − 1),D+
ψ )
ω−1

⊗ 〈χcyc〉
−m
)

= charH

(
H̃2

Iw(Q(µp),Vm,D
+
ψ )
ω−1−m

)
,

where the equality on the second line is immediate from the definition of Tw〈m〉

and the one on the third line is a direct consequence of the twisting formalism.
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By the structure theory of admissible H-modules, this is equivalent to the
requirement that the quotient

H̃2
Iw(Q(µp),Vm,D

+
ψ )
ω−1−m/ (

θ−1(γ)γ − 1
)
H̃2

Iw(Q(µp),Vm,D
+
ψ )
ω−1−m

is a non-trivial E-vector space. Since the Iwasawa theoretic Selmer complex
has no cohomology in degree 3, we have the following canonical isomorphism
thanks to the control theorem for Selmer complexes:

H̃2
Iw(Q(µp),Vm,D

+
ψ )
ω−1−m

/(
γp

n−1

− 1
)
H̃2

Iw(Q(µp),Vm,D
+
ψ )
ω−1−m

∼
−→ H̃2(Q(µpn),Vm,D

+
ψ )
ω−1−m

. (5.8)

Furthermore, since the element γp
n−1

− 1 belongs to the ideal of H generated
by θ−1(γ)γ − 1, the natural surjection

H̃2
Iw(Q(µp),Vm,D

+
ψ )
ω−1−m

−→

H̃2
Iw(Q(µp),Vm,D

+
ψ )
ω−1−m

/(
θ−1(γ)γ − 1

)
H̃2

Iw(Q(µp),Vm,D
+
ψ )
ω−1−m

factors as

H̃2
Iw(Q(µp),Vm,D+

ψ )
ω−1−m

// //

(5.8) **❚❚
❚❚

❚❚
❚❚

❚❚

H̃2
Iw(Q(µp),Vm,D

+
ψ
)ω

−1−m

(θ−1(γ)γ−1)
.

H̃2(Q(µpn ),Vm,D
+
ψ
)ω

−1−m

(θ−1(γ)γ−1)

55❥❥❥❥❥❥❥❥

This shows that the finite-dimensional E-vector space

H̃2(Q(µpn),Vm,D
+
ψ )
ω−1−m/(

θ−1(γ)γ − 1
)

is non-zero. On the other hand, the exactness of the sequence

0 −→ H̃2(Q(µpn),Vm,D
+
ψ )
ω−1−mθ −→ H̃2(Q(µpn),Vm,D

+
ψ )
ω−1−m ×(θ−1(γ)−1)

−−−−−−−−→

H̃2(Q(µpn),Vm,D
+
ψ )
ω−1−m

−→ H̃2(Q(µpn),Vm,D
+
ψ )
ω−1−m/(

θ−1(γ)γ − 1
)

shows that H̃2(Q(µpn),Vm,D
+
ψ )
ω−1−mθ is non-trivial as well. This contradicts

Corollary 5.3.9, which we apply with the choice j = m + 1. This shows that
the divisibility (5.7) is false and completes the proof.

Recall that we have set Vψ := Sym2W ∗
f (1 + ψ).

Corollary 5.4.4. The characteristic ideal of the H-module H̃2
Iw(Q, Vψ ,D

+
ψ ) is

prime to log
(1)
2k+3 / log

(1)
k+2 .
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Proof. Note that we have

charH H̃2
Iw(Q, Vψ) = Tw〈−j〉charHH̃

2
Iw(Q, Vψ ⊗ 〈χcyc〉

−j)

= Tw〈−j〉charHH̃
2
Iw(Q,Vψ ⊗ ω

j)

= Tw〈−j〉charHH̃
2
Iw(Q(µp),Vψ)

ω−j

,

where the final isomorphism is deduced from the version of Shapiro’s Lemma in
[KPX14, Lemma 2.3.5] in the context of (ϕ,Γ)-modules and their cohomology.
The assertion in the corollary follows from Theorem 5.4.3.

Recall the positive integer r ∈ Rχ and η ∈ ∆̂r we have fixed at the start of
this section (so that ψ = χη).

Definition 5.4.5. We denote by hλ,µη ∈ charH

(
H̃2

Iw(Q, Vψ,D
+
ψ )
)

any fixed

generator. We also set

hλ,µ :=
∑

η∈∆̂r

eηh
λ,µ
η−1 ∈ H[∆r],

where eη is the idempotent associated to η.

5.5 Proofs of Theorem 4.3.3 and Corollary 4.3.6

Before we go into the technical details, we outline the key ideas in the proofs
of these two results. As explained in [BLLV19, Proposition 5.3.2], the proof
of the factorization in Corollary 4.3.4 would have been straightforward if the
Beilinson–Flach elements BFλ,µr,χ belonged to the image of the Perrin-Riou pro-
jectors prλ,µ (which were introduced in Definition 4.1.8). We unfortunately
do not know if that is indeed the case. However, Proposition 5.5.4 quantifies
the potential failure of this property, in terms of the characteristic ideal of a
certain Pottharst-style Selmer group, which we have already studied in Sec-
tion 5.4. Using our result on the support of this ideal (Corollary 5.4.4 above),
we can then define the sought after multiplier cm ∈ Qp[∆r] ⊗ Frac(H) as in
Definition 5.5.8, whose denominator is a generator of the characteristic ideal of
the said Pottharst-style Selmer group.

Recall that for our fixed Dirichlet character χ, we have set W :=W ∗
f ⊗W

∗
f (1+

χ), V := Sym2W ∗
f (1 + χ) and Vψ := Sym2W ∗

f (1 + ψ). We remark that all the
Hodge-Tate weights of V are positive. This fact is crucial for our purposes.

Definition 5.5.1. Let r ∈ Rχ and let η ∈ ∆̂r be a character. We denote by
{Fr,i}i the set of completions of Q(r) at primes above p. We let

L
(1)
λ,µ,r : H

1
Iw(Q(r)p, V ) −→ Q(r) ⊗H⊗ Dcris(V )
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denote the Perrin-Riou map whose restriction to H1
Iw(Fr,i, Vψ) is the corre-

sponding twist of the morphism Lλ,µ,Fr,i introduced in Definition 4.1.6. For

each η ∈ ∆̂r and for ψ = χη we write

L
(1)
λ,µ,η : H1(Qp, Vψ) −→ H⊗ Dcris(Vψ)

for the η−1-component of L
(1)
λ,µ,r.

As in §4.3, we have the Beilinson–Flach element

BFλ,µr,χ ∈ H
1
Iw(Q(r),W ) ⊗H

(∗)
= H1

Iw(Q(r), V )⊗H (5.9)

for each positive integer r ∈ Rχ.

Remark 5.5.2. The equality (∗) in (5.9) follows from Corollary 3.2.4 applied
with ψ = ηχ (where η runs through characters of ∆r) and twisted by the char-
acter ω−jχjcyc of Γ. We also have

L
(1)
λ,µ,r

∣∣∣
H1

Iw(Q(r)p,V )
= L

(1)
µ,λ,r

∣∣∣
H1

Iw(Q(r)p,V )

for the restriction of the Perrin-Riou maps to the semi-local cohomology for the
symmetric square. This combined with (∗) in turn implies that

L
(1)
λ,µ,r ◦ resp = L

(1)
µ,λ,r ◦ resp .

Moreover, it follows from Proposition 2.1.3 combined with Corollary 3.2.4
(which amounts to the vanishing for the Iwasawa cohomology for the odd twists
of the alternating square) that

BFλ,µr,χ = BFµ,λr,χ .

Based on these remarks, we may easily go back and forth between the cohomo-
logical invariants of V and W .

We recall from Definition 4.1.8 the projectors

∧2
H1

Iw(Q(r),W )
prλ,µ

// H1(Q(r,W )

∧2
H1

Iw(Q(r), V ) // H1(Q(r, V )

Definition 5.5.3. For hλ,µη as in Definition 5.4.5, we set hη :=
∏
λ,µ h

λ,µ
η ∈ H

and define

hr :=
∑

η∈∆̂r

eηhη−1 ∈ H[∆r].
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Note that hη and log
(1)
2k+2 / log

(1)
k+1 have no common factor thanks to Corol-

lary 5.4.4.

Proposition 5.5.4. For any choice of λ, µ ∈ {α,−α}, we have

hrH[∆r] ⊂ L
(1)
λ,µ,r ◦ resp(H

1
Iw(Q(r), V ))

for the image of H1
Iw(Q, V ) under the Perrin-Riou map.

Proof. It suffices to prove this for each isotypic component. Namely, once we
verify that

hηH ⊂ L
(1)
λ,µ,η ◦ resp(H

1
Iw(Q, Vψ))

for each character η ∈ ∆̂r with ψ = χη, the proof will follow.

By the definition of the Selmer complex as a mapping cone, we have the fol-
lowing exact sequence:

0 −→
H1

Iw(Q, Vψ)⊗H

H̃1
Iw(Q, Vψ,D

+
ψ )

resp
−→ H1

Iw(Qp, D
†
rig(Vψ)/D

+
ψ ) −→ H̃2

Iw(Q, Vψ,D
+
ψ )

(5.10)
where we recall our convention that for twists V of Vψ by a character of Γ (such

as our representation Vψ here), we denote the (ϕ,Γ)-submodule of D†
rig(V )

corresponding to D+
ψ also by D+

ψ . Recall also that the (ϕ,Γ)-submodule D+
ψ

depends on our choice of the pair λ, µ. Observe further that the map L
(1)
λ,µ,η

factors as

H1
Iw(Qp, Vψ)⊗H

**❱❱❱
❱❱

❱❱
❱❱

L
(1)
λ,µ,η

// H

H1
Iw(Qp, D

†
rig(Vψ)/D

+
ψ )

66♠♠♠♠♠♠♠♠♠

(5.11)

by its very definition. As the Perrin-Riou map

L
(1)
λ,µ,η : H1

Iw(Qp, Vψ)⊗H −→ H

is surjective, the proof follows from the exact sequence (5.10) and the choice of
hη.

Theorem 5.5.5. hrBF
λ,µ
r,χ ∈ prλ,µ

(
H1

Iw(Q(r), V )⊗H
)
.

Proof. We may once again prove this one character at a time: For each η ∈ ∆̂r

and ψ = χη, we shall verify that

hηBF
λ,µ
η ∈ prλ,µ

(
H1

Iw(Q, Vψ)⊗H
)
.
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Here, BFλ,µη ∈ H1
Iw(Q, Vψ) ⊗H is the image of the class BFλ,µr,χ , on projection

to the η−1-isotypic component.

Recall that the H-module H1
Iw(Q, Vψ) ⊗ H is free of rank 2 thanks to Theo-

rem 3.3.4. We fix a basis {Y1,Y2} of this module and observe that

prλ,µ
(
H1

Iw(Q(r), V )⊗H
)
= spanH

(
L

(1)
λ,µ,η(Y1)Y2 −L

(1)
λ,µ,η(Y2)Y1

)
.

The fact that

H1
Iw(Q, Vψ)⊗H

/
H̃1

Iw(Q, Vψ,D
+
ψ ) →֒ H1

Iw(Qp, D
†
rig(Vψ)/D

+
ψ )

is torsion free implies that

H · Yi ∩ H̃
1
Iw(Q, Vψ,D

+
ψ ) = 0

for some i ∈ {1, 2}. The exact sequence (5.10) and factorization (5.11) yields
the following containments:

spanH

(
L

(1)
λ,µ,η ◦ resp(Y1)Y2 −L

(1)
λ,µ,η ◦ resp(Y2)Y1

)

= prλ,µ
(
H1

Iw(Q(r), V )⊗H
)

⊆ H̃1
Iw(Q, Vψ,D

+
ψ ) (5.12)

→֒
(
H1

Iw(Q, Vψ)⊗H
)
/H · Yi.

Case 1. Y1 ∈ H̃
1
Iw(Q, Vψ,D

+
ψ ). In this case, it follows from (5.12) applied with

i = 2 that
L

(1)
λ,µ,η ◦ resp(Y2)c ∈ prλ,µ

(
H1

Iw(Q(r), V )⊗H
)

for every class c ∈ H̃1
Iw(Q, Vψ ,D

+
ψ ); in particular, this holds true with the choice

c = BFλ,µη . The proof in this case is complete on noticing that

H ·L
(1)
λ,µ,η ◦ resp(Y2) = L

(1)
λ,µ,η ◦ resp

(
H1

Iw(Q, Vψ)⊗H
) Prop. 5.5.4

∋ hη

since L
(1)
λ,µ,η ◦ resp(Y1) = 0.

Case 2. Y2 ∈ H̃1
Iw(Q, Vψ,D

+
ψ ). The proof of Case 1 carries over.

Case 3. Y1,Y2 6∈ H̃1
Iw(Q, Vψ ,D

+
ψ ). In this case, it follows from (5.12)

(applied with both choices of i ∈ {1, 2}) that
(
r1L

(1)
λ,µ,η ◦ resp(Y1) + r2L

(1)
λ,µ,η ◦ resp(Y2)

)
c ∈ prλ,µ

(
H1

Iw(Q(r), V )⊗H
)

for any r1, r2 ∈ H and any c ∈ H̃1
Iw(Q, Vψ,D

+
ψ ). Since we have

L
(1)
λ,µ,η ◦ resp

(
H1

Iw(Q, Vψ)⊗H
)
= spanH{L

(1)
λ,µ,η ◦ resp(Y1) , L

(1)
λ,µ,η ◦ resp(Y2)},
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this amounts to saying that

L
(1)
λ,µ,η ◦ resp

(
H1

Iw(Q, Vψ)⊗H
)
c ⊂ prλ,µ

(
H1

Iw(Q(r), V )⊗H
)
.

By Proposition 5.5.4,

hηc ∈ L
(1)
λ,µ,η ◦ resp

(
H1

Iw(Q, Vψ)⊗H
)
c.

On taking c to be BFλ,µη , the proof follows.

Definition 5.5.6. For a fixed positive integer r ∈ Rχ and each character

η ∈ ∆̂r, let {Y1,Y2} be a basis of H1
Iw(Q, Vψ). Let dλ,µη ∈ H be the unique

element with the property that

hηBF
λ,µ
η = dλ,µη ·

(
L

(1)
λ,µ,η ◦ resp(Y1)Y2 −L

(1)
λ,µ,η ◦ resp(Y2)Y1

)
.

Note that the existence of dλ,µη is guaranteed by Theorem 5.5.5 and the descrip-

tion of prλ,µ
(
H1

Iw(Q(r), V )⊗H
)
in (5.12).

Proposition 5.5.7. The elements dλ,µη ∈ H are independent of λ, µ.

Proof. To ease notation, we fix η and drop it from the notation we use for the

Perrin-Riou maps. With a slight abuse, we shall also write L
(1)
λ,µ in place of

L
(1)
λ,µ ◦ resp to ease our notation here.

Notice that we have

hηL
(1)
λ,µ∗

(
BFλ,µη

)
= −hηL

(1)
λ,µ

(
BFλ,µ

∗

η

)
(5.13)

by the explicit reciprocity law for Beilinson–Flach elements. On the other hand,

hηL
(1)
λ,µ∗

(
BFλ,µη

)
= dλ,µη ·

(
L

(1)
λ,µ(Y1)L

(1)
λ,µ∗(Y2)−L

(1)
λ,µ(Y2)L

(1)
λ,µ∗(Y1)

)

(5.14)

and

hηL
(1)
λ,µ

(
BFλ,µ

∗

η

)
= dλ,µ

∗

η ·
(
L

(1)
λ,µ∗(Y1)L

(1)
λ,µ(Y2)−L

(1)
λ,µ∗(Y2)L

(1)
λ,µ(Y1)

)

(5.15)
On comparing (5.13), (5.14) and (5.15), we conclude that dλ,µη = dλ,µ

∗

η . The

proof follows using in addition the fact that dλ,µη = dµ,λη , which we have thanks
to Proposition 2.1.3 and Remark 5.5.2.

From now on, we let dη ∈ H denote dλ,µη (which we have just seen is independent
of λ and µ).
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Definition 5.5.8. We set cη := dη/hη ∈ Frac(H) and

cr =
∑

η∈∆̂r

eηcη−1 ∈ Qp[∆r]⊗ Frac(H).

In the statement of Theorem 4.3.3, we may take cm to be the element given in
Definition 5.5.8. This satisfies properties (i)-(iii) and Theorem 4.3.3 follows.

5.6 Analytic main conjectures with p-adic L-functions

We prove in this subsection results towards Pottharst-style Iwasawa main con-
jectures (Conjecture 5.6.2). Our main result is a divisibility statement (The-
orem 5.6.8) in these Iwasawa main conjectures, which is based on the divisi-
bility in (5.17). This divisibility is deduced using the Euler system of integral
(doubly-signed) Beilinson–Flach elements (that we have constructed in Corol-
lary 4.3.6 of our main technical result Theorem 4.3.3). Using global duality
and the reciprocity laws for Beilinson–Flach elements, we give a bound on the
Pottharst-style Selmer groups in terms of p-adic Rankin–Selberg L-functions
(see Theorem 5.6.8).

Recall that V := Sym2W ∗
f (1 + χ) and λ, µ ∈ {±α} .

Definition 5.6.1. Let δχ : Q×
p → E× be the character defined by δχ(p) :=

pχ−1(p) and δχ(u) := u for u ∈ Z×
p . Let Dχ denote the rank one (ϕ,Γ)-module

RE(δχ). We set

• Dλ,µχ := (Dλ ⊗ Df + Df ⊗ Dµ)⊗ Dχ ∩D
†
rig(V ),

• Dλχ := Dλ ⊗ Dλ ⊗ Dχ .

Conjecture 5.6.2 (Analytic Iwasawa main conjecture). For j ∈ {k +

2, . . . , 2k + 2} even, the H-module eωj H̃
2
Iw(Q, V,D

λ
χ) is torsion and

charH eωjH̃
2
Iw(Q, V,D

λ
χ) = eωjL

geom
p (Sym2 fλ ⊗ χ

−1) · H .

We will explain how our results in §4.4 on the signed Iwasawa main conjectures
lead to partial results towards Conjecture 5.6.2. To this end, we assume until
the end of this article that the hypotheses of Theorem 4.4.5 hold. Fix also an
even integer j ∈ {k+2, . . . , 2k+2} and S = (♣,♠) ∈ S as in Proposition 4.4.4.

Proposition 5.6.3. eωjCol
♣ ◦ resp(BF

♠
1,χ) = −eωjCol

♠ ◦ resp(BF
♣
1,χ) 6= 0 .

Proof. The proof of the asserted equality is identical to the proof of [BLLV19,
Proposition 5.3.4], on replacing reference to Theorem 3.9.1 in op. cit. by The-
orem 5.5.5 here (with r = 1). The non-vanishing follows immediately from our
choice of S.
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Recall that the ΛO(Γ1)-module eωjH
1(Q,T) is free of rank two by Theo-

rem 3.3.4. We fix from now on a ΛO(Γ1)-basis of this module denoted by
{c1, c2}.

Proposition 5.6.4. There exist non-zero elements D, E1, E2 ∈ ΛO(Γ1) satisfy-
ing

D · eωjBF
♣
1,χ = E1(Col

♣ ◦ resp(c1)c2 − Col♣ ◦ resp(c2)c1),

D · eωjBF
♠
1,χ = E2(Col

♠ ◦ resp(c1)c2 − Col♠ ◦ resp(c2)c1) .

The first relation holds in eωjH
1
F♣

(Q,T) while the second holds in

eωjH
1
F♠

(Q,T).

Furthermore, D · charH
(
eωjH

2(Q,T)
)
divides E1 · charH

(
eωjcoker(Col

♣)
)
.

Proof. The existence of the non-zero elements D, E1 and E2 follows from the
fact that the ΛO(Γ1)-module eωjH

1
F?
(Q,T) has rank one for ? ∈ {♣,♠}, which

is a consequence of the locally restricted Euler system machinery (used as in
the proof of Theorem 4.4.5).

The proof proceeds as in the proof of [BLLV19, Proposition 7.4.4]. We set

H1
/♣(Qp,T) := H1(Qp,T)/H

1
F♣

(Qp,T)

By the Poitou-Tate global duality, we have the following long exact sequence

0 −→ H1
F♣

(Q,T)/(ΛO(Γ) · BF
♣
1,χ) −→ H1(Q,T)/(BF♣

1,χ,BF
♠
1,χ)

−→
H1
/♣(Qp,T)

res/♣(BF
♠
1,χ)
−→ Sel♣(Q,T

∨(1))∨ −→ H2(Q,T) −→ 0, (5.16)

where res/♣ denotes the composition

H1(Q,T)
resp
−−→ H1(Qp,T) ։ H1

/♣(Qp,T).

The locally restricted Euler system machinery shows (see Theorem 4.4.5) that

eωjcharH (Sel♣(Q,T
∨(1))∨)

∣∣∣ charH
(
eωjH

1
F♣

(Q,T)
/
ΛO(Γ1) · eωjBF

♣
1,χ

)
.

(5.17)

Combining (5.16) and (5.17), we deduce that

charH
(
eωjH

2(Q,T)
) (

charH

(
eωjcoker(Col

♣
))−1

eωjCol
♣ ◦ resp(BF

♠
1,χ)

∣∣∣ charH
(

eωjH
1(Q,T)

eωj (BF
♣
1,χ,BF

♠
1,χ)

)
. (5.18)
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We set

det ◦ Col(♠,♣) := det

(
Col♠ ◦ resp(c1) Col♣ ◦ resp(c1)

Col♠ ◦ resp(c2) Col♣ ◦ resp(c2)

)
.

Note that
Col♣ ◦ resp(eωjBF

♠
1,χ) = D

−1E2 det ◦ Col(♠,♣). (5.19)

By Proposition 5.6.4, we have

charH

(
eωjH

1(Q,T)

eωj (BF
♣
1,χ,BF

♠
1,χ)

)
= D−2E1E2 det ◦ Col(♠,♣). (5.20)

Combining (5.18), (5.19) and (5.20), we deduce the stated divisibility

D · charH
(
eωjH

2(Q,T)
) ∣∣ E1 · charH

(
eωjcoker(Col

♣)
)
.

We will now use the bounds for the characteristic ideal of eωjH
2(Q,T) obtained

in Proposition 5.6.4 to bound characteristic ideals of analytic Selmer groups.

Definition 5.6.5. Let a, b1, b2 ∈ H \ {0} be elements satisfying

a · BFλ,λ1,χ = b1 (L
(1)
λ,λ ◦ resp(c1)c2 − L

(1)
λ,λ ◦ resp(c2)c1)

a · BFλ,−λ1,χ = b2 (L
(1)
λ,−λ ◦ resp(c1)c2 − L

(1)
λ,−λ ◦ resp(c2)c1) .

Lemma 5.6.6. E1 = E2 and b1 = b2. Moreover, aE1 = b1D.

Proof. The first equality follows from Proposition 5.6.3 and the second from
Proposition 5.5.7. The final assertion is immediate by the definitions of
D, E1, a, b1 and Theorem 5.5.5 (applied with r = 1).

Proposition 5.6.7. We have the following divisibility of H-ideals

bD charH

(
eωj H̃

2
Iw(Q, V,D

λ,λ
χ )

) ∣∣∣

a E1 charH(cokerCol♣) charH

(
eωj H̃

1
Iw(Q, V,D

λ,λ
χ )

H · eωjBF
λ,λ
1,χ

)
.

Proof. The proof follows very closely that of [BLLV19, Proposition 7.4.6]. Note
that we have the following five term exact sequence of H-modules

0 −→
eωjH̃

1
Iw(Q, V,D

λ,λ
χ )

H · eωjBF
λ,λ
1,χ

−→
eωjH

1
Iw(Q, V )⊗H

H · eωjBF
λ,λ
1,χ +H · eωjBF

λ,−λ
1,χ

−→

eωjH
1
/λ,λ(Qp, V )

res/λ,λ(eωjBF
λ,−λ
1,χ )

−→ eωj H̃
2
Iw(Q, V,D

λ,λ
χ ) −→ eωjH

2
Iw(Q, V )⊗ΛH −→ 0,
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where H1
/λ,λ(Qp, V ) := H1

Iw(Qp, V ) ⊗ H(Γ)
/
H1

Iw(Qp,D
λ,λ
χ ) and res/λ,λ is the

composition

res/λ,λ : H1
Iw(Q, V )⊗H

resp
−−→ H1

Iw(Qp, V )⊗Λ H(Γ) ։ H1
/λ,λ(Qp, V ) .

By Proposition 5.6.4 and the surjectivity of L
(1)
λ,λ : H1

/λ,λ(Qp, V ) −→ H, the
proof follows.

We finally conclude with the following divisibility towards analytic main con-
jectures, which is Theorem C in the introduction.

Theorem 5.6.8. In the setting of Theorem 4.4.5, we have

charH eωj H̃
2
Iw(Q, V,D

λ
χ)
∣∣

charH(eωjcokerCol
♣) eωjLp,NNχ(χ

−1ǫf ) L
geom
p (Sym2 fλ ⊗ χ

−1)

as ideals of H.

Proof. We start off with the following four-term exact sequence induced by the
definition of corresponding Selmer complexes:

0 −→
eωjH̃

1
Iw(Q, V,D

λ,λ
χ )

H · eωjBF
λ,λ
1,χ

−→
eωjH

1
Iw(Qp,D

λ,λ
χ )/H1

Iw(Qp,D
λ
χ)

H · eωj ressp(BF
λ,λ
1,χ)

−→ eωj H̃
2
Iw(Q, V,D

λ
χ) −→ eωjH̃

2
Iw(Q, V,D

λ,λ
χ ) −→ 0 (5.21)

where ressp is the composition of the arrows

H̃1
Iw(Q, V,D

λ,λ
χ ) −→ H1

Iw(Qp,D
λ,λ
χ ) ։ H1

Iw(Qp,D
λ,λ
χ )/H1

Iw(Qp,D
λ
χ) .

We note that the first injection in (5.21) is a special case of Proposition 5.3.7(iii)

(which tells us that H̃1
Iw(Q, V,D

λ
χ) = 0). The asserted divisibility now follows

on combining Proposition 5.6.7 and the last identity of Lemma 5.6.6, together
with the definition of the geometric p-adic L-function.
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11 (1978), no. 4, 471–542.

[HP16] Robert Harron and Jonathan Pottharst, Iwasawa theory for sym-
metric powers of CM modular forms at nonordinary primes, II, J.
Théor. Nombres Bordeaux 28 (2016), no. 3, 655–677.
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