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ABSTRACT. Let f be a normalized cuspidal eigen-newform of level
coprime to p with a,(f) = 0. We formulate both integral signed
Iwasawa main conjectures and analytic Iwasawa main conjectures at-
tached to the symmetric square motive of f twisted by an auxiliary
Dirichlet character. We show that the Beilinson-Flach elements at-
tached to the symmetric square motive factorize into integral signed
Beilinson—Flach elements, giving evidence towards the existence of a
rank-two Euler system predicted by Perrin-Riou. We use these in-
tegral elements to prove one inclusion in the integral and analytic
Iwasawa main conjectures.
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1 INTRODUCTION

1.1 DBACKGROUND
Throughout this article, we fix an odd prime p > 7 and embeddings to : Q—C
and ¢, : Q — C,. Let f be a normalised, cuspidal eigen-newform of weight

k+2,level N and nebentype €¢;. We assume that pt N, p > k+1 and a,(f) = 0.
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2 K. BUYUKBODUK, A. LEI, G. VENKAT

We shall write =« for the roots of the Hecke polynomial X2 + € (p)p**! of f
at p.

Let L/Q be a number field containing the Hecke field Ky := Q({an(f)}n>1)
of f as well as o®. Let p be a prime in L above p. We denote by E the
completion of L at p. Let O denote the ring of integers of E. We fix a Galois-
stable O-lattice Ry inside Deligne’s E-linear representation Wy of Gg. Let
I' = Gal(Q(pp)/Q). We write Ap(T") = OJ[I']] for the Iwasawa algebra on I'.
We have the decomposition I' = T'yops X I'1, where I'top5 is a finite group of order
p—1and 'y = Gal(Q(pp=)/Q(1p)). We fix a topological generator « of I'y,
which in turn determines an isomorphism I'y & Z,,. Also, let Q/Q denote the
cyclotomic Z,-extension of Q. For any Z,-module M, we denote its Pontryagin
dual Homes(M,Qy/Z,) by MVY.

In [BLLV19], we studied the cyclotomic Iwasawa theory of the Rankin-Selberg
convolution of two modular forms f and g that are non-ordinary at p, making
use of the Beilinson—Flach Euler systems constructed by Loeffler and Zerbes in
[LZ16]. In this paper, we concentrate on the case where f = g and a,(f) = 0.
The results we obtain in this set-up do not rely on the conjectural existence
of a rank-two Euler system, as some of our main results in [BLLV19] do. Our
treatment naturally goes through the study of the symmetric square motive
Sym? f. This extends the work of Loeffler and Zerbes [L.Z19] in the ordinary
case (which we briefly summarize in Section 1.3 below).

Let us put Wy := Hom(W;, E) and endow it with the contragredient Galois
action. For A\, u € {£+a} and an integer m that is coprime to p, recall from
[LZ16] the Beilinson—Flach elements

BF,’};” c Hl(@(,um)a Wi W}‘(l) @ He k1 (I)")

where Hg ;+1(I') denotes the set of E-valued tempered distributions of order
k+1onI and /HE,]H_l(F)L = HE,k—i-l(F) Ao (D) Ao(F)L (here, Ao(r)b de-
notes the free rank-one Ap(I')-module on which Gg acts via the inverse of the
canonical character Gg — I" < Ap(I')*). Consider the decomposition

* * 2 * 2 *
Wi @ Wj =Sym* Wi o \ ;. (1.1)

In Section 2.1, we explain that the twist of the Beilinson—Flach classes by an
even Dirichlet character x take values in the corresponding twist Sym? W}‘ (1+
X)- This equips us with a non-integral collection of cohomology classes that ver-
ify a close variant of the Euler system distribution relation. The non-integrality
of these classes is the source of main difficulty in the non-ordinary set-up. The
main task we carry out here is to obtain an integral collection which we may
plug into the Euler system machinery.

This goal has been partially achieved in [BLLV19], employing ideas from signed
Iwasawa theory (expanding on [BL21] where the semi-ordinary case is treated)
and taking inspiration from Perrin-Riou’s theory of higher-rank Euler systems.
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The theory of higher-rank Euler systems suggests a signed factorization of the
four collections of Beilinson—Flach elements (see Theorem A below for the shape
of this factorization). However, the interpolative properties of Beilinson—Flach
classes cover only half of the critical range for the symmetric square motive and
as a result, the standard techniques only enable us to prove a weaker form of
this factorization (and resulting in still non-integral collections of cohomology
classes). We develop a new method (see Sections 4.3 and 5.5 below) which
allows us to improve this factorization statement to cover the full critical range.

1.2 MAIN RESULTS

Our first result in this paper is the existence of integral Beilinson—Flach Euler
systems in the current set-up under suitable hypotheses. This proves [BLLV19,
Conjecture 5.3.1] in this particular setting.

Given a Dirichlet character ¢ of conductor Ny, we let R, denote the collection
of square-free products of primes which are coprime to p/N N, For any prime ¢,
let Q(¢) denote the unique abelian p-extension in Q(u¢). For an element r =
ly---Ls € Ry, we define Q(r) to be the compositum of the (linearly disjoint)
fields Q(¢1), -+ ,Q(¢s). We also set A, = Gal(Q(r)/Q) and note that A, =
Ag, X -+ xX Ay,. For a factor ¢ of r, we shall think of A, both as a subgroup
and as a quotient of A, through this identification. We finally let A, denote
the ring O[[A, x T].

We fix forever an even Dirichlet character x whose conductor [V, is coprime to
Np. For m € N, (where the set of integers N, is given in Definition 3.2.8),
we let BFf;#X € Hi,(Q(m),W; @ Wi(1 + x)®@Hg r1(T)") denote the natural
image of the Beilinson—Flach elements defined in [LZ16] (see Definition 2.1.2
below). We write Lgeom(SmefA ® x~1,s) for the geometric p-adic L-function

attached Sym?fy ® x~' defined as in (2.1). Until the end of this article, we
assume that the following non-vanishing condition holds true:

(NV) Lgeom(SmefA ®@x~1,7) # 0 for every even integer k +2 < j < 2k + 2.
We further consider the following hypotheses.

(V1) There exists u € (Z/NN,Z)* such that eyx ™! (u) # £1 (mod p) and x(u)
is a square modulo p.

(U2) erx~1(p) # £1 and ¢(N)¢(N,) is coprime to p, where ¢ is Euler’s totient
function.

(¥3) The prime p over p in Ky has degree 1 and im(x) C Z,;.

(Im) im (Gg — Aut(Ry ® Qp)) contains a conjugate of SLa(Z,,).
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REMARK 1.2.1. The main results of this paper all rely on the hypothesis (NV).
1t follows from Corollary 2.2.5 below that if we assume (V2), then (NV)would
follow from a generalization of Dasgupta’s factorization result in [Das16] to
the non-ordinary setting. This is the subject of Arlandini’s forthcoming work,
which we record as Theorem 2.2.3 below. With Arlandini’s work, we will be
able to remove the condition (NV) on our results.

THEOREM A (Corollary 4.3.4, Proposition 4.3.5). Suppose that x verifies the
hypotheses (V1) and (VU3). Assume also that (NV) and (IM) hold true. Then
for every m € NX, there exist

BF ,BF,, ,BF;, BF; € H. (Q(m),W;®@W;(l+Xx))

m,x? m,x? m,x?

that verify Fuler system distribution relations and such that

1)
11 1 1 BF&,% log,, 2(k+2 BF},
a2 a2 —a2 —a2 BF_ a)ﬁ*a _ 1ng( 2)k+2 BF;L X
20 —20 0 0 BF; log!), | BF, .

0 0 —2a 2« BF ?‘a log( l)c ) BFO
+

Here, 1ogi’2(,€112 and 1og1(i,)chl are some explicit functions defined in Section 4.
Furthermore, there exists an integer C independent of m such that

C x BF* € H[ (Q(m), R} ® R}(1+ X))

for all four choices of & € {+,—,®,0}.

Under our assumption that x is even, the final assertion in the statement of
Theorem A can be recast in the following form:

COROLLARY 1.2.2 (Corollary 4.3.6). In the setting of Theorem A, the signed
classes
C x BF}

C xBF,, , C xBF;, |

m,x’

are elements of Hllw((@(m),Sym R;}(l +X)). Furthermore, BF; .~ = 0 for
all m.

m,x’?

In particular, each one of the four collections {C' x BF } where & €
{+,—, e, 0}, form a (rank-one) Euler system for Sym? Rf(1+x). In order to ap-
ply the Euler system machinery, we need to ensure that at least one of the Euler
systems in Corollary 1.2.2 is non-trivial. In order to do this, it suffices to prove
that one of the four non-integral classes {BF%O;(,BF_Q’_O‘ BF., " BE,,
are non-trivial.

To achieve this, we appeal to the reciprocity laws of Leoffler and Zerbes in
[LZ16], which enable us to reduce the required non-vanishing to the non-
triviality of the Rankin-Selberg p-adic L-functions associated to f ® f ® x.
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Note that the motive associated to f ® f ® x does not possess any critical val-
ues and as a result, one may not appeal to non-vanishing statements on complex
L-values to deduce the required non-triviality. However, Arlandini’s work in
progress (extending Dasgupta’s result [Das16, Theorem 1] in the p-ordinary
case) shows that the p-adic L-functions in question factors as a product of the
symmetric square p-adic L-function and a Kubota—Leopoldt p-adic L-function.
The required non-triviality easily follows from generic non-vanishing statements
for symmetric square L-values; see Section 2.2 for details.

Let us set 7' := Sym? R;Z(l + x) to ease our notation. Our running hypothesis
ap(f) = 0 yields a Gg,-equivariant decomposition

T=R,0R;,.

Exploiting this decomposition, we define signed Coleman maps as in [Leil2].
More precisely, we define Ap(T")-morphisms

COI* : Hllw(@P(:u’P‘x’)v T) - AO (F)

for & € {+, —, e} in Section 4.2. For each & = (&, &) € {(+,—), (+,9),(—, o)},
we define the doubly signed Beilinson—Flach p-adic L-function in Section 4.4,
by setting

Le = Col* o resp(BF?X) e ApT).

Still using the signed Coleman maps alluded to above, we define also doubly
signed Selmer groups which we denote by Sels (7 (1)/Q(up=)) (where & is as
above). This allows us to formulate Doubly Signed Iwasawa Main Conjecture
(Conjecture 4.4.3 below), relating L& and Selg (T (1)/Q(pp=))".

The following is one of our main results towards the Iwasawa main conjectures
for non-ordinary symmetric squares. For a given integer j, we let e_,; denote the
idempotent attached to the character w’ (where w is the Teichmiiller character).

THEOREM B (Theorem 4.4.5). Suppose that the Dirichlet character x verifies
the hypotheses (V1), (V2) and (¥3). Assume also that (NV) and (IM) hold

true.

i) For all even j € {k+2,...,2k+2}, there exists & € {(+,—), (+,9),(—, )}
such that e,; L& # 0.

i) For j and & as in i), the A(T'1)-module Selg (T (1)/Q(up=))" is torsion.
iii) For j and & as in i),
chara(r,) (epiSels (T (1)/Q(up=))") | (ewiles)

as ideals of A(T'1) @ Qy .
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Theorem B has consequences towards the Pottharst-style (analytic) Iwasawa
main conjectures for non-ordinary symmetric squares. Let A € {+a}. The
(p,T')-module attached to the A-eigenspace in the Dieudonné module of Wy
gives rise to a Pottharst-style analytic Selmer group I;TIQW(Q, V, Di) (see §5.6
for details). We prove the following partial result towards the analytic main
conjecture relating it to the geometric p-adic L-function Lgeom(Sme Hexh).

THEOREM C (Theorem 5.6.8). Suppose that the Dirichlet character x verifies
the hypotheses (V1), (U2) and (¥3). Assume also that (NV) and (IM) hold

true. For j and & = {&, M} as in Theorem B i), chary (ewjﬁfw(Q,V, D;))
divides

char(echokerCol*) € L%eom(Sme Hexhs) Ly NN, (x tep,s—k—1)-H.

Here, H := ligm Hem('1) and Ly NN, (x"'es) is the Kubota-Leopoldt p-adic
L-function attached to the Dirichlet character x !

primes dividing NN, removed.

ef, with Euler factors at

REMARK 1.2.3. In [BL19], we build on the results of the present article to
prove the existence of a mon-trivial rank-2 Euler system, whose non-triviality
is ensured by the non-vanishing of certain L-values.

1.3 REVIEW OF EARLIER RELATED WORK

In this section, we compare the results in the present article to previous related
work.

We first recall the main results of [LZ19]. Let g be a normalized cuspidal new
eigenform of level Ny, weight k, + 2 and nebentype ¢,. Assume that p { N,
and p is an ordinary prime for g, i.e. ap(g) is a p-adic unit under our fixed
embeddings. Let a4 be the unit root of the Hecke polynomial of g at p.

For a Dirichlet character x as in the previous section, we let
BF%, = BF0 € Hiy, (Q(m), Wy @ Wy (1 +x))

denote the y-twisted Beilinson-Flach element attached to the Rankin—Selberg
convolution ga, ® go, of the ordinary p-stabilization of g with itself. It follows
from [LZ19, Corollary 4.1.3] (see also Proposition 2.1.3 below) that BF}? €
H{, (Q(m),Sym? W5 (1+ x)). Furthermore, [LZ19, Theorem 4.1.6] shows that
the collection of classes {BF%: },,cn;, give rise to an (integral) Euler system

for Sym? W1+ x)-

X

In order to verify that the aforementioned Euler system is non-trivial, Loeffler
and Zerbes make use of the explicit reciprocity laws for the Beilinson—Flach
elements (c.f. [KLZ17], Theorem B) and Dasgupta’s factorization formula in
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[Das16]. According to [LZ19, Theorem 4.2.5], the image of the localization of
BF{ at p under the Perrin-Riou regulator map is a non-zero scalar multiple
of the product

Lp(Sym2g @x ' s) Ly NN, (X tegy 5 — kg — 1),

where L,D(Sym2 g®x 1, 8) is the (bounded) symmetric square p-adic L-function
of Schmidt. The final main result in [LZ19] is a one-sided inclusion in the
Iwasawa main conjecture for (twists of) p-ordinary symmetric square motives
(cf. [LZ19], Theorem 5.4.2). Theorem C stated above is the non-ordinary ana-
logue of this result where Pottharst-style analytic Selmer groups appear as the
non-ordinary counterparts of Greenberg’s Selmer groups in the ordinary case.

As we have remarked in the earlier portions of this introduction, we prove The-
orem C through the doubly-signed Iwasawa main conjectures, which are the
subject of Theorem B and require the (integral) signed Beilinson—Flach Eu-
ler systems as an input. In the non-ordinary case, Loeffler and Zerbes [LZ16]
constructed four families of Beilinson—Flach classes, depending on the choices
of p-stabilizations in the Rankin—Selberg product. While these classes are no
longer integral, it is predicted that there exists an integral rank-2 Euler system,
whose rank reduction via the Perrin-Riou functionals gives rise to all four col-
lections of unbounded Beilinson-Flach classes (see [BLLV19, Conjecture 3.5.1]
for a precise formulation of this prediction). On generalizing the plus and mi-
nus Iwasawa theory for modular forms (as developed in [Kob03, Pol03, Leill])
to the Rankin—Selberg setting, we may decompose the non-integral Perrin-Riou
functionals into integral signed functionals (see §4 for details). The existence
of an integral rank-2 Euler system would then give the factorization of the
non-integral Beilinson—Flach classes into integral signed classes, as stated in
Theorem A above (we refer the reader to [BLLV19, Conjecture 5.3.1], where
the existence of such integral classes is discussed for more general Rankin—
Selberg products).

The main task in the present article is to obtain integral signed Beilinson—
Flach classes building on our earlier joint work [BLLV19] with LoefHler, where
we have obtained a partial decomposition of the non-integral Beilinson-Flach
classes. More precisely, Theorem 5.4.1 in op.cit. exploits the interpolative
properties of the Beilinson-Flach classes at the twists W} @ W}‘(l +x—j) with
j=1,2,...,k+1 to show that certain linear combinations of these classes are
divisible by twists of Pollack’s plus and minus logarithms (see Lemma 4.3.1
below).

This divisibility originating from the interpolative properties of Beilinson—Flach
classes alone does not give integral classes in the setting of symmetric squares,
because the denominators of the non-integral classes are bigger than those of the
said plus and minus logarithms. In order to establish Theorem A, it is necessary
to study the images of Beilinson-Flach classes for the twists Wi @ Wy (1+x—7)
with j =k + 2,...,2k + 2, which is outside the geometric range. In this non-
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geometric range, a direct comparison of Beilinson—Flach classes (for different
p-stabilizations) is no longer possible.

The main technical component of the current paper (presented in Section 5)
relies on the theory of (¢,T')-modules, Selmer complexes and reciprocity laws
satisfied by Beilinson—Flach classes to study the properties of these classes
outside the geometric range. In particular, we show that the characteristic
ideals of certain analytic Selmer groups are coprime to the factors of logarithmic
functions corresponding to the twists in the non-geometric range. This allows
us to prove [BLLV19, Conjecture 3.5.1] up to a controlled error term and in
turn, deduce Theorem A. This refinement is the novel technical development in
the present work, which is in contrast to previous works (for example, [Wan14,
Sprl6, BL21]) where it suffices to exploit interpolative properties to obtain
signed integral classes.
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2 BEILINSON—FLACH ELEMENTS FOR SYMMETRIC SQUARES

2.1 TWwISTED BEILINSON—FLACH ELEMENTS

For \,p € {£a}, ¢ > 1 coprime to 6Np, m > 1 coprime to pe, and
a€(Z/mZL)* x L, let

BENH € HYQpm), W} @ Wi @ Hp j1(T)")
be the Beilinson-Flach element constructed in [LZ16, Theorem 5.4.2].

REMARK 2.1.1. Note that BFXM are built out of “non-p-stabilized classes”

(denoted by BFI Gy [LZ16]), which are defined over E. The p-stabilized

mp”,a j
FI9Il multiplied by (Au)~

ploy/ A\ (where oy, is the Frobenius at p) depending on whether r >0 orr =0
respectively. They are therefore still defined over E since A € E by assump-
tion.

T

Beilinson—Flach classes are given by B or 1 —
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We shall take a = 1 throughout and omit it from the notation. Let x be
a Dirichlet character of conductor N,, which we assume to be prime to p.
Enlarging the number field L if necessary, we assume that y takes values in F.
Let R, denote the set of positive square-free integers prime to 6p/NN,. For
m € Ry, we may consider x as a continuous character of Gal(Q(pmn, p=)/Q) =
(Z/mNyp>Z)*.

DEFINITION 2.1.2. For all m € R, we define the Beilinson—Flach class twisted
by the character x

BF)E € HY(Q(m), W} @ Wi(1+X) ® Hprs1(T)")
by setting it as the image of CBF,);;“ under

H! (Q(MmNX), W; ® W; (9 /HE,k_H(F)L)
= HY(Q(pmn, ), Wi @ Wi(1+ x) @ Hpxe1(T)")

COr,

= H'(Q(m), W} @ Wi(1+x) ® Hpr (D)),
where the first isomorphism is the natural twisting map given by x.

ProrosiTiON 2.1.3. We have the dichotomy

BEM o H'(Q(m), Sym? Wil +x) @ Here (D)) if x(—1) = +1;
M\ HY QM) NP WL+ X) @ Hpea (D)) if x(—1) = —1.

Moreover, CBF;\n’f‘X + CBF%:\X €

HY(Q(m), Sym® Wi(1+x) ® Hprea (D)) if x(=1) = +1;
Hl(@(m)a/\2 W;(l +X)®HE,]€+1(F)L) zfx(_l) = -1,

and BF )" — BF% €

HNQ(m), A W7 (1+x) @ Hp per (D) if x(—=1) = +1;
HY(Q(m), Sym® W (1+X) © Hp (D)) if x(=1) = ~L.

Proof. The proof of [LZ19, Corollary 4.1.3] goes through verbatim. O

For the rest of the article, we shall fix an even Dirichlet character x of conductor
Ny, which is assumed to be coprime to p. We note that we will not solely work
with Beilinson—Flach classes twisted by x but by a range of Dirichlet characters.
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2.2 IMPRIMITIVE L-FUNCTIONS AND p-ADIC L-FUNCTIONS

In this section, we introduce the geometric p-adic L-function mentioned in the
hypothesis (NV) in the introduction. Furthermore, we discuss the validity of
the hypothesis (NV) and its consequence on the non-vanishing of the Beilinson—
Flach elements introduced in §2.1.

For A € {xa}, let fx be the p-stabilization at A\. Let (F,er) be the Cole-
man family, defined over some affinoid disc U in the weight space W, passing
through fx. For any affinoid V, we let A(V') denote the ring of rigid analytic
functions on V. Loeffler and Zerbes in [LZ16, Definition 9.1.1] define a three-
variable geometric p-adic L-function, L&*™(F, F@x ') € A(U x U x W). On
restricting L&™(F, F @ x ') to the image of U x WU x U x W induced
by the diagonal embedding A : U — U x U, we will henceforth treat it as an
element of A(U x W).

DEFINITION 2.2.1. Let L, nn, (X 'er) € A(W) denote the Kubota—Leopoldt p-
adic L-function that interpolates the values of the Dirichlet L-series Ly, (—)
with the BEuler factors at primes dividing NN, removed. We define the
geometric symmetric square p-adic L-function L%eom(Sme F®x1) €
Frac(A(U x W)) by setting

Lgeom(F, F @ x~)(k,0)
Ly nn, (X er)(o =K +1)

eom 2 - R
Ly (Sym* F @ x ) (k,0) =

In particular, on restricting this definition to (k +2,s) € U x W, we have

LE™(fx, fr@x 1, s)

L™ (Sym?fy @ x 1, 8) = :
P ( y fA X ) Lp7NNX(X_1€f,S _ k _ 1)

(2.1)

We remark that our ad hoc definition (2.1) of the p-adic L-function
L%eom(Sme fr®x71, s) is based on the Artin-formalism and reflects the de-
composition

2
WiWrex = (Sym*W;ex™ ') @ (/\ Wy ®x1) . (2.2)

The following (forthcoming) result of Arlandini, which extends [Das16, Theo-
rem 1] to our case of interest, relates Lgeom(Sym2fA ®x~!,s) to the complex
L-values and serves as a justification as to why Lgeom(Sme fr®xl,s) de-
serves to be called a p-adic L-function. Before stating Arlandini’s result, we
first introduce the following notation.

DEFINITION 2.2.2. For x as above, we let L'™P(Sym?f @ x,s) denote the im-
primitive L-function given as in [LZ16, Definition 2.1.3].

THEOREM 2.2.3 (Arlandini, forthcoming). We have L%eom(Sym2f ®x 1) €
A(U x W) and it verifies the following interpolation property.
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NON-ORDINARY SYMMETRIC SQUARES 11

i) Let 1 < j <k+1 be an odd integer. Then

(=1 F LR (Sym? f e x ! )
92k+4;a p (27m')j*k*17rk+1<f, f> ’

eom 2 —1 N
Lo (Sym” F @ x~ ) (k+2,5) =

where a = 0 if k is even and a =1 if k is odd. The Euler factor £,(j) is given
by

1= X@A) A+ X @A) = X )N (2.3)
it) Let k+2 < j <2k+2 be an even integer. Then
eom 2 -1 - (j —k— 1)|.7' . Limp(smef @ X_laj)
Lg (Sym F® X )(k + 2).7) = 92j+1 5}/’(]) 7T2j7k71<f, f> )
where the Buler factor £,(s) is given by
1 =P XA+ XA A =X )N (24)

The imprimitive L-values that appear on the right-hand side of the interpola-
tion formulae in part (ii) has the following non-vanishing property.

THEOREM 2.2.4 (Gelbart—Jacquet [GJ78], Jacquet—Shalika [JS77], Schmidt
[Sch88]). Suppose that f has minimal level among its twists by Dirichlet char-
acters. Then for every integer j > k + 2, we have

L™P(Sym®f @ x ', j) # 0.

Proof. The primitive L-function L(Sym?f® x~', s) is non-zero at integers j >
k + 2 since the Euler product defining these L-functions converges absolutely
in that range. Considering the Gelbart—Jacquet lift of Symfc to GL3 as given
in [GJ78, §3] and making use of a non-vanishing result for GL,, automorphic
L-functions due to Jacquet and Shalika [JS77, Theorem (1.3)], it follows that
L(Sym?f @ x~ 1,k +2) # 0 as well.

The desired non-vanishing for L'™P(Sym?f ® x~!, j) for j > k + 2 now follows
from [Sch88, Lemmas 1.5 and 1.6]. More specifically, our hypothesis that f has
minimal level among its twists by Dirichlet characters implies that the quotient
L™P(Sym?f @ x 1, 5)/L(Sym?f @ x 1, 5) is an entire function with zeroes only
on the line Re(s) = k + 1. The result follows. O

One immediate consequence of Theorems 2.2.3 and 2.2.4 is the following result
on the existence of exceptional zeros and the non-vanishing of the geometric
p-adic L-function of Sym? f.

COROLLARY  2.2.5  (Exceptional Zeroes). The p-adic L-function
L%eom(SmefA ®@ x~1,8) has an exceptional zero at s if and only if
esx t(p) = £l and s = k+ 1 or s = k+ 2. In particular, if we assume
(Usy), then L%eom(Sym2fA ® x~1,s) is non-vanishing for all even integers
k+2<s<2k+2.
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12 K. BUYUKBODUK, A. LEI, G. VENKAT

Proof. By weight considerations, the interpolation factors (2.3) and (2.4) can-
not vanish unless j = k + 1 or j = k + 2. Since A2 = —e¢(p)p**!, we have

—1 2
X (p)A -
& = 1Fx Hp)es(p)

and hence the Euler factor &,(k + 1) vanishes only when ey '(p) = =+1.
Similarly, &,(k +2) = 0 only when esx '(p) = £1. The second part of the
corollary follows from Theorems 2.2.4 and 2.2.3(ii). O

We now explain the link between the geometric p-adic L-functions and
Beilinson—Flach elements. Let

L: Hllw(Qp, Sym2 W;(l +x)) = HE,k+1 ) ® DcriS(Sym2 W;(l +x))

denote the Perrin-Riou regulator map as given in [LLZ11, §3.1] and [LZ14,
Appendix BJ.

PROPOSITION 2.2.6. Let &f, o € ]D)cris(Sme Wy ® x 1) be the vector chosen as
in [LZ19, Definition 4.2.4]. We then have,

<‘C(CBF1\:;)a€fA,X>
= (F1)(E — P )OO GG L a9 x )
= (1@~ (e ()G Ol
X L%eom(SmefA @x L, s) Ly NN, (x tep,s—k—1).

Proof. This is the same as [LZ19, Theorem 4.2.5]. O

LEMMA 2.2.7. For all even integers j € {k + 2,...,2k + 2}, there is
a choice of ¢ > 1 coprime to 6NNyp for which the product (c* —
c2j*2k’2)(2(c)e;Q(c))prNNX (xtep,j —k —1) is non-zero whenever x~*¢} #
1orj#k+2.

Proof. This follows from [LZ19, Proposition 4.3.1]. O

REMARK 2.2.8. Since we assume that the conductor N, of x is coprime to N,
it follows that X_Qe? = 1 only when both x and €y have order dividing 2. Our
hypothesis (V1) rules out this possibility.

COROLLARY 2.2.9. Assume that (Us) holds true and either that X_Qe?c #1 or
j # k+2. Then for all even integers k+2 < j < 2k+2, the image of CBFi‘,’;‘ mn
HY(Q,, Sym® Wi (14 x)(=3)) is non-zero. In particular, if (V1) and (V2) hold
true, then the class resp(cBFi\:;) € H{, (Qp(pp), Sym? Wi(1+ x)) is non-zero.
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Proof. By Proposition 2.2.6 and Lemma 2.2.7, we only have to verify the non-
vanishing of the quantity Lgeom(Sme fr®x~ 1 ). This is immediate from
Corollary 2.2.5. O

REMARK 2.2.10.

i) When j =k+2 is even and if xes is quadratic but non-trivial, then neither

can we dispense off with the factor (c® — c2j—2k_2x2(c)e;2(c)), nor can we use

it to cancel a pole in the p-adic L-series (since no such pole exists).

it) By Lemma 2.2.7, we may choose the auziliary integer ¢ for which
(c? — cQj_Qk_Qx%;Q(c)) is non-zero for k +2 < j < 2k 4 2 assuming (V).
For the rest of the paper, we fix such a value and dispense with the factor c
from the notation.

We now proceed to show the non-triviality of the classes BF?; M for A e {xa}
using anti-symmetry relations in slight variations of Proposition 2.2.6.

COROLLARY 2.2.11. The class resp(BFi\:;)‘) € H}, (Qp(pp), Sym? Wi(1+x))

1S MON-zero.

Proof. Let vg x € Deris(Wy) be the p-eigenvector as chosen in [BLLV19, Section
3.5]. Also set

Ox = GIXTH vpa @ v,
Uy = G(Xﬁl) VFAQUF N E Dcris(Wf X Wf & Xﬁl) .
By [BLLV19, Theorem 3.6.5], we have

<E(BF?Z§), UA,fA,x> = *<£(BF?’;A>’ ”“*X>

Af logéll)ﬁrl eom -1
= Skt pren(p ey hs), o (25)
where Ay is a non-zero constant independent of A and log‘;l,)C 41 Is a non-zero

logarithmic function (see (4.3) below for an explicit description of this function).

We have seen in the proof of Corollary 2.2.9 that L™ (fx, fA® x ™!, s) is non-

zero. Hence, (2.5) tells us that resp(cBFi‘,’;’\) € HL,(Qu(pp), Sym® Wi (1 + x))
is non-zero. O

3 STRUCTURE OF ELEMENTARY SELMER MODULES

Our main objective in this section is to prove Theorem 3.3.4, where we de-
termine the structure of certain Iwasawa theoretic Selmer groups. The main
ingredient is the horizontal Beilinson—Flach Euler system, which we use to
obtain our key technical input (Theorem 3.2.12) in the proof of Theorem 3.3.4.
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14 K. BUYUKBODUK, A. LEI, G. VENKAT
3.1 SET-UP

Throughout Section 3, we fix an even Dirichlet character i of conductor Ny,
co-prime to p. Enlarging L if necessary, we shall assume that ¢ may be realized
over L. We will take ¢ to be xv, where x is the character fixed in Section 2.1
whereas v is some Dirichlet character of conductor prime to pN N, and p-power
order.

We shall assume the validity of the following big image hypothesis throughout
Section 3:

(Im) im (Gg — Aut(Ry ® Qp)) contains a conjugate of SLa(Z,,).
We will consider the following conditions on 1 and f:

(V1) There exists u € (Z/NNyZ)* such that efp = (u) # +1 (mod p) and 1 (u)
is a square modulo p.

(W) ey (p) # £1.
LEMMA 3.1.1. Suppose that x satisfies the hypothesis (V1) and also that

(U2) erx~1(p) # £1 and ¢(N)p(Ny) is coprime to p, where ¢ is Euler’s totient
Sfunction.

Then the conditions (V1) and (V)) hold true for any ¢ = xv where v is a
Dirichlet character of conductor prime to NN, and p-power order.

Proof. Let u be an integer satisfying (V) with ¢) = x and that v = 1 mod N,
(such u exists by the Chinese remainder theorem). The chosen u will verify
(¥1) with ¢ = yv. We now check (0}) for ¢ = yv. If it was the contrary,
we would then have that e;x~!(p) = Zv(p). This would mean that either
erx t(p) or —esx ! (p) is a p-power root of unity, contradicting (¥5). O

We end this subsection with a general definition. Recall that Ap(T')* is the free
Ao (T')-module of rank one on which Gg acts via the inverse of the canonical
character Gg - I — Ap(T")*.

DEFINITION 3.1.2. Let K be any number field.

i) Given an arbitrary free O-module M of finite rank that is endowed with
a continuous G -action unramified outside a finite set of places of K, we let
Fean denote the canonical Selmer structure on M (or M ®z, Qp), given as in
[MRO0/, Definition 3.2.1].

i) We let F},, denote the dual Selmer structure on MY (1) (or on (M ®z,
Qp)*(1)), defined as in Section 2.3 of loc. cit.
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NON-ORDINARY SYMMETRIC SQUARES 15

iii) We write Fean for the Selmer structure on M := M ® Ao (T")*, denoted by
Fa in Section 5.3 of loc. cit. and let F,, denote the Selmer structure Fy of

can
loc. cit. on the Galois representation MY (1).

REMARK 3.1.3. For K and M as above, we have

Hy,

can

(K,M) = H'(K,M)

by [MR0/, Lemma 5.3.1]. This in turn means that Hy. (K,MY (1)) consists
of classes which are locally trivial everywhere.

3.2 TWISTS OF THE SYMMETRIC AND THE ALTERNATING SQUARES

In this subsection, we shall introduce various twists of the symmetric and alter-
nating square representations associated to f, and study their Galois theoretic
properties.

DEFINITION 3.2.1. Recall the even Dirichlet character v, so that the character
Xeyc® 18 odd, where Xcyc 15 the p-adic cyclotomic character.

i) We set Ty = SmeR}(l) ® 1, so that Tj(1) = Sym’R; @1,
it) Choose an arbitrary integer j € [k + 2,2k + 2] and put
Ty;=Tp(—j) ®w =Sym*R}(1 — j) ® wiyp

where w is the Teichmiiller character). We remark that the character 27w’
( Xeye

s always odd.

iii) We finally set
2 . , , ‘
Xyj=\Ri(1-j) @/ = O(k+2—j)@west)

and observe that the character xg,’f_jwjefz/) is even.

PROPOSITION 3.2.2. Suppose that 1 satisfies (V1) and (V). Then there exists
T € G with the following properties:

o T acts trivially on fipe.
o Ty /(T —1)Ty ; is free of rank one.

o 7 —1 acts invertibly on X7 ;(1).

Proof. This is exactly [L.Z19, Proposition 5.2.1], where we set ¢w’ in place of
their . o
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16 K. BUYUKBODUK, A. LEI, G. VENKAT
3.2.1 SELMER GROUPS OF THE ALTERNATING SQUARES

Our task in Section 3.2.1 is to prove that the Selmer groups for the twists Xy ;
of the alternating square vanishes.

PROPOSITION 3.2.3. Hy (Q, Xy ;) = 0.

Proof. We first prove the case when ;7 = k 4+ 2. We remark that already
this much will be sufficient for our purposes. In this situation, Xy z42 =
O(e 1w 2) and the conclusion follows from the validity of Leopoldt’s Conjec-
ture for abelian number fields and the fact that e w**? is even.

Suppose now that j > k + 3. To ease notation, we set n = wk+26fw and
k+2-jy=k=2+7  Notice that 7 is an even character and p is a character
of I'. Furthermore, we have an isomorphism

Xy =20mep.

which, together with the twisting theorems of [Rub00, Section 6], control theo-
rem for the canonical Selmer structure on Xy, ; and the truth of the Main Con-
jectures for abelian fields, reduces the desired vanishing of the Selmer group to
the verification that

L (w<k+1>—jn, kt2— j) £0.

By the functional equation for Dirichlet L-series, this is equivalent to the re-
quirement that

o L(w=FDp=1 5k —1)+#0, and

k+2—j
e I'(s) is holomorphic at s = w, where a =

2
(0,1}

(—1)k7 1
2

The first of these conditions is clear since j — k — 1 > 2 is in the range of
absolute convergence, whereas the second follows since a and k + 2 — j have
opposite parity. O

COROLLARY 3.2.4. H'(Q, Xy ; ® Ao(I')") = 0.

Proof. This follows from Proposition 3.2.3 and Nakayama’s lemma, since we
have an injection

HYQ,Xy; @ Ao(D))r — Hr,, (Q,Xy;) = 0.

can
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REMARK 3.2.5. One might give a direct proof of Corollary 3.2.4, without relying
on the Iwasawa main conjectures (and using our assumptions (V1) and (¥4) on
). We first note that since the character p above factors through T, it suffices
to prove that

HY(Q,0(n) ® Ao(I)") =0

forn = wk+2€f’(/} also as above. Since n is an even character, it follows from the
weak Leopoldt conjecture for abelian fields (which we know to hold true) that
the Ao (T)-module H(Q,O(n) ® Ao(T)") is torsion. Notice further that the
character m does not factor through the group T' under our running hypotheses
and hence the module H'(Q, O(n) @ Ap(T')") is torsion-free. The proof follows.

3.2.2 SELMER GROUPS OF THE SYMMETRIC SQUARES

Our main objective in this subsection is to prove Corollary 3.2.15, where we
determine the ranks of the canonical Selmer groups associated to the twists of
the symmetric square representations. The key technical input is provided by
Theorem 3.2.12, where we utilize the horizontal Beilinson—Flach Euler system.
We first introduce the twisted Galois representations we shall study.

DEFINITION 3.2.6. For any even Dirichlet character 1 as in Definition 3.2.1
and integer j € [k + 2,2k + 2], we set Vi ; = Ty ; @z, Qp. We also put
T; =T, ,; and V; =V, ;, where x is the even Dirichlet character we have fized
in Section 1.2.

Until the end of Section 3.2.2, we fix ¢ and j as in Definition 3.2.6.

COROLLARY 3.2.7. For each r € Ry, we have

Hzr (Q(r),W; @ Wil —j)®wv)=Hr_ (Q(r),Vy;)-
Proof. For W := M ® Q, as in Definiton 3.1.2, let us write fcan‘w for the
canonical Selmer structure on W to emphasize the dependence on W. Set

Yy, = Xy ; ® Qp and observe that we have
fcan‘Vw,jGBYw,j = fcan‘vw’j S fcan|yw’j

where the direct sum of Selmer structures on the respective direct sum of
Galois representations is defined in the obvious manner. This in turn implies
(cf. [MRO4, Remark 3.1.4]) that

Hy,, QW;@W;(1-j)ewy)=Hr, (QV;) e Hr, (QYy,)

can

The asserted identification follows on applying Proposition 3.2.3 with ¢ re-
placed by 1v, as v runs through the characters of A, (note that since p is odd
and A, is a p-group, all characters v on A, are necessarily even, which allows
us to apply Proposition 3.2.3). O
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18 K. BUYUKBODUK, A. LEI, G. VENKAT

DEFINITION 3.2.8. Let P, denote the set of primes £ 1 pN N,, for which we have

e /=1 mod p,
o T ;/(Froby — 1)T}, ; is a free O-module of rank one,

e Frob, — 1 is bijective on X} ;(1).

We let N, denote the set of square-free products of integers in Py.

REMARK 3.2.9. Since we insist that £ = 1 mod p in Definition 3.2.8, the re-
maining conditions hold true for one j if and only if they hold for every j. This
Justifies our choice to denote this set of primes by Py.

REMARK 3.2.10. Let T\ ; denote the residual representation of T ; and let

Q(TX_J, Wp) denote the number field that is given as the fized field of ker(Gg —

Aut(Ty ; ® 1p)). Then any prime ¢ whose Frobenius in Gal(Q(Ty ;, ptp)/Q) is
conjugate to the image of T given as in Proposition 3.2.2 verifies the require-
ments of Definition 3.2.8. In particular, Py has infinite cardinality.

LEMMA 3.2.11. For each r € R, and integer j as above we have
H%(Q(r)Qs, Ty) = 0.

Proof. If on the contrary T® ¢ H%(Q(r)Qw, Ty,;) Were a rank-one Gg-stable
O-subquotient of Ty ;, then Gg would act on T via XeycOV where s € Z, 0 is
a character of p-power conductor and order, and v is a character of conductor
dividing r € R,. Since N, > 1 is prime to Npr by choice and SmeR} is
unramified outside Np, a subquotient 7(°) with these properties could not
exist. O

THEOREM 3.2.12. Let x be an even Dirichlet character that satisfies (V1) and
(U5) and let j € [k + 2,2k + 2] be an arbitrary integer. Then for each r € Ny,
there exist two cohomology classes

dy®,d = € HY(Q(r), Vi)
with the following properties:

i) d, dem e Hy (Q(r), Vyj) -

i1) There exists a constant D (that does not depend on r) such that
Ddy®, Ddy=* € H'(Q(r), Ty,;) -
iti) For vl € Py and p € {o, —a} we have
corg(re) () (dyd") = Po(t 7By ") - 7t

where Py(X) is the Buler polynomial for L(Sym®f @ wix, s) at £ and Fry is the
arithmetic Frobenius.
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iv) The classes dy"“,dy" " € H}Can (Q,Vy,;) are linearly independent.

Proof. This is essentially Theorem 8.1.4 of [LZ16] (which we combine with ideas
from [L.Z19]) and we shall only explain why the line of reasoning in loc. cit. is
sufficient to validate our theorem.

We first construct classes ¢+ € H(Q(r), WieWi(l-j)® w’x) as in the
proof of Theorem 8.1.4 [LZ16] (the twisting with the appropriate characters
may be carried out as in Definition 2.1.2 above). We shall construct d*
using ¢, To avert any potential confusion, we remark that in place of the
twist 1 — j we consider here, Loeffler and Zerbes in [LZ16] write —j.

Notice that although the Assumption 3.5.6 of op. cit. does not hold in our case
of interest, we still have

H(Q(r)Qoo, Wf @ Wi(1 - j) ®w’x) =0 (3.1)

thanks to our running hypothesis on y. Indeed, as we have observed as part
of Remark 3.2.5, the Dirichlet character n = w**2e £x (that we have defined in
the proof of Proposition 3.2.3) does not factor through I'. Since the conductor
of efx is prime 7 (and non-trivial), it follows that H°(Q(r)Quc, Xy.;) = O.
Lemma 3.3.3 shows that H%(Q(r)Q,Ty,;) = 0 as well. These two vanishing
results conclude the proof of (3.1).

Thanks to (3.1), the proof of [LZ16, Theorem 3.5.9] goes through verbatim
and allows one to obtain the interpolated Beilinson-Flach elements along a
Coleman family. The desired classes ¢+ are obtained on specializing these
interpolated classes and modifying them slightly (as in the proof of 8.1.4(iii),
that in turn relies on the argument in [LLZ14, §7.3]) in order to ensure that
they verify the correct Euler system distribution relation). We remark that we
work over the fields Q(r) (resp., Qo) here instead of the full cyclotomic fields
Q(pr) (resp., Q(upe)) as Loeffler and Zerbes in loc. cit. does. This is sufficient
for our purposes.

The classes ¢+ verify the conclusion of [LZ16, Theorem 8.1.4(i)], for the
same reason that these classes extend in the cyclotomic direction and therefore
Proposition 2.4.4 in op. cit. applies. In other words, we infer that

cf’i”‘ c H}

can

(Q(r), W @ Wi (1 —j) ®w’X).

We now explain how to define d2*% using ¢***. We follow [L.Z19, proof of
Theorem 5.3.3]. For each prime ¢ € P, such that r/¢ € N,, we let p, € A,
denote the unique class that maps to the pair (o¢,1) under the canonical iso-
morphism A, = A,/ x Ag. As in op.cit., notice that ¢, is congruent to 1

modulo the radical of the ring O[A,] and hence
1= e =M OFr, !t € O[A]*.
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We now define d®** to be the image of

[T e R Y) 7 et e BE | (QQ), W} @ Wi(1— ) @ wix)

can
Lr

under the identification of Corollary 3.2.7. These cohomology classes verify (i)
by definition.

In order to check the validity of (ii), we note that Proposition 2.4.7 of [LZ16]
applies thanks to (3.1) and as in the proof of Theorem 8.1.4(ii) in op. cit., it
yields the desired integrality result.

We now prove (iii). Let Q¢(X) denote the Euler polynomial for L(f® f ®w/x).
For r¢ € N, the classes c®* enjoy the distribution property

corgrey/a (") = QeI Fr; 1) - e E
Since we have
Qe(LFr, ") = (1 — FF IO Fr, Y - P(07Fr, )

thanks to the decomposition (2.2), the proof of (iii) follows by our definition of
the classes d*.

We remark that d{"** = ¢"** by definition and (iv) is equivalent to the
assertion of Corollary 5.2.4 below. O

THEOREM 3.2.13. Fizr € N, and let v be a Dirichlet character of conductor r.
Set 1 = xv. Suppose that f and x verify the hypotheses (IM), (V1) and (¥3).
Then,

dimg H}:can (Qa Vw,j) =2,
H}:c*an (@7 V’(Z,](]‘)) =0.

Proof. We start with the observation that H°(Q,, Ty ;) = 0 due to weight
considerations. Notice further that dimpg V@; ;= 2. It therefore follows from
[MRO4, Theorem 5.2.15] that

dimg Hx

can

(Q, Vyp,j) — dimp Hr. (Q,Vy (1)) =2.

As aresult, the two assertions in the statement of our theorem are in fact equiv-
alent and the latter follows from Theorem 3.2.12 (the existence of a non-trivial
horizontal Euler system) and [Rub00, Theorem 2.2.3] (whose assumptions are
modified via [Rub00, §9.1], by replacing the condition (ii) in the statement of
[Rub00, Theorem 2.2.3] with (i)’ in §9.1 of loc.cit. so as to cover our case). [

COROLLARY 3.2.14. In the setting of Theorem 38.2.13, the O-module
Hy (Q,Ty ;) is free of rank 2.

can
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Proof. After Theorem 3.2.13, we only need to prove that H}Can (Q,Ty,;) is

torsion-free. This follows from the fact that H°(Q, Ty ;) = 0 under our running
hypotheses. O

COROLLARY 3.2.15. In the setting of Theorem 3.2.13, we have
ranko Hy_ (Q(r), T;) = 2|A,],

for each r € N. Furthermore, the module Hy. (Q(r), Ty (1)) has finite car-
dinality.

Proof. For each character v of A,., we infer from Theorem 3.2.13 (applied with
the character ¢ = yv) that dim H}Can (Q,Wyu;) = 2|A,| and the first assertion
follows by Shapiro’s Lemma. The second assertion is an immediate consequence
of the first and global duality. O

3.3 STRUCTURE OF IWASAWA THEORETIC SELMER GROUPS

We shall rely on results in Section 3.2.2 to prove our main result (Theo-
rem 3.3.4) of Section 3, where we describe the structures of certain Iwasawa
theoretic Selmer groups.

We recall that T := Ty o = Sym? Ri(1+x). Set T; := T; ® Ao(I')* and
recall that we have Hx  (Q,T;) = H'(Q, T;) by [MR04, Lemma 5.3.1]. When

7 = 0, we shall drop j from the notation and simply write T in place of Ty =
T® Ao (F)L

COROLLARY 3.3.1. In the setting of Theorem 3.2.18, the Ao(T')-module
Hy. (Q(r), T} (1)) is cotorsion and the Ao(T)-module H*(Q(r),T;) has rank
2|A| for each r € N.

Proof. The first assertion follows from the control theorem [MRO04, Lemma
3.5.3]

can

(£, @), TY (1)) = H, (@), T} (1)
and Corollary 3.2.15.

Let us write x(T;, r) for the global Euler-Poincaré characteristic for the canon-
ical Selmer structure Fe,, over the totally real field Q(r). Then,

x(T;,r) = ranky, () (H}—m“ (@,']Tj)) — rankp , (1) (H}—;_dn (Q(r),']TJV(l))V)
= ranky (1) (Hl(@, ']Tj))

where the first equality follows from the definition of the Euler-Poincaré char-
acteristic and the vanishing of H°(Q(r),T;), whereas the second from the first
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and [MR04, Lemma 5.3.1]. On the other hand, it follows from the global
Euler-Poincaré characteristic computation in [Nek06, Theorem 7.8.6] that

x(T;,r) =[Q(r) : Q] rankoTj_,

where we rely on the fact that the number field Q(r) is totally real. Since
rankoTj_ = rankpT~ = 2, the proof of our second assertion follows. O

COROLLARY 3.3.2. In the setting of Theorem 3.2.13, the Ao(T)-module
HY(Q(r), T) has rank 2|A,| for every r € Ny.

Proof. This follows from Corollary 3.3.1 on noticing that
HY(Q(r), T) — HY(Q(r), T;) ® xZyew ™.
O

LEMMA 3.3.3. The Ao(T)-module H(Q(r), T) is torsion-free for every r € N,.
Proof. This is immediate from Lemma 3.2.11. O

We recall that A, = O[[A, x T'], where A, = Gal(Q(r)/Q).
THEOREM 3.3.4. In the setting of Theorem 3.2.13, the A,.-module H'(Q(r), T)
is free of rank 2 for every r € N,.

Proof. We have a natural injection

HYQ(r), T)/ (A, w ™ Xlye(V)y = 1) = Hy,,

(Q,T3),

where A, C O[A,] is the augmentation ideal. It follows from Nakayama’s
lemma and Corollary 3.2.14 that the A,-module H!(Q(r), T) may be generated
by at most 2 elements. Let {c1, ca} be any set of such generators. To prove our
theorem, it suffices to check that ¢; and ¢y do not admit a non-trivial A,-linear
relation.

Assume the contrary and suppose that there is a non-trivial relation
aic) +ascs =0, aj,as € AT. (32)

Write 2 = {dc; : § € A,,j = 1,2}. Notice that # generates H'(Q(r),T) as a
Ao (T)-module and

|%| = 2|AT| = dimFrac(Ao(F)) (Hl(@(r), T) ®AO(F) FI‘aC(Ao(F))) 5 (33)

where the final equality is Corollary 3.3.2. The equation (3.2) may be rewritten

Z()\‘S’l -0)er + Z(}\&Q -(S)Cg =0 (3.4)
5

)
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with A5 ; € Ao(T). Since H'(Q(r), T) is Apo(I')-torsion-free by Lemma 3.3.3,
we have a canonical injection

L Hl(@(r), T) — Hl(Q(r),T) ® Ao (T) Frac(Ao(T))

and furthermore, as a Frac(Ao(T))-vector space, H'(Q(r),T) ®aq(r)
Frac(Ao(T')) is generated by the set «(%). It follows from the relation
(3.4) that

dimprac(ao ) (H(Q(r), T) ®aor) Frac(Ao(I))) < [u(B)] — 1 =2|A,| -1

which contradicts (3.3) and concludes our proof. O

4 SIGNED IWASAWA THEORY

In this section, we shall generalize the construction of plus and minus Coleman
maps of Kobayashi [Kob03] to the representation W @ Wy (14 x). The kernels
of these maps are then served to define local Selmer conditions at p, which in
turn are used to define the so-called doubly signed Selmer groups. The local
theory we develop here is also used to factorize the Beilinson—Flach elements in
Section 2.1 into bounded elements and to define bounded p-adic L-functions,
generalizing the work of Pollack [Pol03] on one single modular form. Conjec-
ture 4.4.3 relates these p-adic L-functions to the doubly signed Selmer groups,
which is a form of the Iwasawa main conjecture in the spirit of Kobayashi’s
work on supersingular elliptic curves in [Kob03]. We prove one inclusion of the
conjecture in Theorem 4.4.5 using the bounded Beilinson-Flach elements we
obtain in §4.3.

We recall here that Pollack’s plus and minus logarithms are defined as follows.
Let Xcyc denote the cyclotomic character on I' and recall that v is a fixed
topological generator of I';. For an integer r > 1, we define

’l“l oo(I)Qn

10g;r H H chc Y)7) ,
1ng_r H H p2n—1 chc 7)7)

Recall from [Pol03] that logiT € Hg,r/2('), where Hp . /o(I') denotes the set of

E-valued tempered distributions of order /2 on T". (in fact, logp - O(logr/ ).
We shall also write

log,,., = [ [ 1o, (xe:(71)7) € Har(T).
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If n is an integer, we write
Twy, : He,rT) = He(T) (4.1)
for the E-linear map induced by o +— xg,.(o)o for all o € T'. Observe that
Tw_ylog, . =log’ ., /log, ., ?=0,+. (4.2)
As a shorthand, we set
log;:(rl) = Tw_ Ing?),r = log‘;w_‘_l/log‘;1 , 1=10,=+. (4.3)
It follows from (4.2) that

Tw_,log, ) =logh ") /logh D, 7 =10, . (4.4)

T p,n 0

4.1 LOCAL THEORY

We study a decomposition of the local representation R ® R f|G@pa which relies
crucially on our assumption that a,(f) = 0. This decomposition allows us to
relate the local representation to the setting studied in [Leill]. This relation
will be exploited to define the signed Coleman maps in §4.2.

Let D be the Dieudonné module of Wy|g, . Recall that

2 <0,
dim Fil'D={1 1<i<k+1,
0 i>k+2.

Recall that we have assumed the Fontaine—Laffaille condition p > k + 1 holds.
On combing the Wach module basis in [BL.Z04, §3] with the construction of inte-
gral Dieudonné module in [Ber04, §IV], there is an O-lattice Dy,is(R ) inside D,
which is generated by w,p~*p(w), where w is an O-basis of Fil* Deris(Ry),
which we fix from now on. (See also [LLZ17, Lemma 3.1] for a similar basis.)

LEMMA 4.1.1. The filtered p-module Sym? D is decomposable into Dy @ Do,
where D; is of dimension i for bothi=1,2.

Proof. The filtration of Sym? D is given by:

Sym? D i<0,

Fili sym? p = | W Eww @) +ow)@w) 1<i<k+l,
(w® w) k+2<i<2k+2,
0 i>2k+ 3.
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We define

D1 = (w® p(w) + p(w) ® w);
Dy = (wRw, p(w) @ p(w)).

The fact that p?(w) = a?w implies that both Dy and Dy are stable under .
Furthermore, they both respect the filtration of Sym? D. Hence, they are both
filtered p-modules as required. O

COROLLARY 4.1.2. The Gq,-representation Sym? Wf|G@p splits into Wy @ Wa,
where W; is of dimension i.

Proof. This follows from the correspondence between Gg,-representations and
filtered p-modules of Fontaine [Fon79, Théoreme 3.6.5]. See also [PRI8, §2.2]
where a similar decomposition when Wy comes from the Tate module of a
p-supersingular elliptic curves was studied. o

REMARK 4.1.3. We note that this decomposition was exploited in [Leil2] in
the CM case. In fact, this decomposition holds as Gg-representations (not just
G, -representations) when f is of CM type.

For i = 1,2, we define the lattice R; = W; N Sym? R¢ inside W;. In particular,
we have the decomposition of Gg,-representations

Sym® Ryla,, = R1 & Ra.

We also have the integral Dieudonné modules De,is(R1) and De,is(R2). Further-
more, Deis(R1) is generated by p~* 1 (w ® p(w) + p(w) @w), whereas Deyis(R2)
is generated by w ® w and p~ 22 (w) ® p(w).

Let x be a fixed Dirichlet character as in Section 2.1. In particular, yx is
unramified at p. We have the following isomorphisms of filtered modules

_ Qv
DcriS(Wf ® Wf(X 1)) — DcriS(Wf ® Wf)a
_ Qv
DcriS(Rf ® Ry (x 1)) — DcriS(Rf ® Ry),

where {v,} is an O-basis of De,is(O(x)). Consequently, the local representa-
tion Sym? Wf(X71)|GQp splits into Wy , @ Ws y as in Corollary 4.1.2. Similarly,
we have the integral counterpart

Sym? Rf(X71)|G@p =R, ® Ray.

We can see from the proof of Lemma 4.1.1 that the Hodge-Tate weight of Wy
is —1 — k, whereas those of W5, are 0 and —2 — 2k. Furthermore, the filtration
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on Dgyis(Wa,y) is given by

. ]D)Cris(WQ,X) v S 0;
Fil' Deyis(Wa,x) = { (wW@w @ vy—1) 1< <2k+2,
0 1> 2k + 3.

By duality, we have the decompositions of Gg,-representations
WioWi(x) =W, oWy, oWy, , R;}@R;(x)=R;,®R] ,®R; ., (4.5)

where Wy, = A’ Wi(x) and Rj, = A’ R3(x). Furthermore, Ry, and Rj
are rank-one representations of the form O(¢; + k + 1), for some unramified
characters ¢; on Gg, sending p to £e;x(p) respectively. In particular, they
both have a single Hodge-Tate weight, namely k + 1. For the representation
W3, we have the filtration

Dews(Wg,) i< —2k—2,
Fil’ ID)CTiS(WQfX) =0 {Wewev) —-2k-1<i<0,
0 i>1,

for some basis w’ that generates the O-module Fil° ]D)cris(R’J'Z). Note that
{w',p(w')} is an O-basis of Deris(R}), which implies that Deis(R5 ) is gen-
erated by w’ @ W’ ® vy and (W) @ p(W') ® vy.

Let F/Q, be a finite unramified extension. Given a crystalline E-linear repre-
sentation W of Gr whose Hodge-Tate weights are all non-negative, we write

Lwr: Hy(F,W) = F@Hg (1) @ Deyis (W)

for the Perrin-Riou regulator map (cf. [LLZ11, §3.1] and [LZ14, Appendix B]).
Here, r denotes the largest slope of ¢ on Deg,is(1W). We now study the images
of the Perrin-Riou maps for the direct summands in (4.5).

LEMMA 4.1.4. Let W = Wy, or Wi, and F/Q, a finite unramified extension.
For all z € HL (F,W), we have

ACW,F(Z) S 1ng,k+1 F® A@(F) X ]D)Cﬁs(W).
Let R=Rj, or Rj,. If z € H} (F,R), then

Lw,r(z) €log, 111 OF @ Ao(T') @ Deris(R),
where Deis(R) is the O-lattice inside Deyis(W) as defined in [Ber04, §IV].
Proof. Since k > 0, we have the identification

H;, (F,R) =Np(R)"~!
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where Np(R) = Of ®z, Ng, (R) denotes the Wach module of R over F' for
R = R, or Ry, (see [LZ14, §2.7]). Similarly, we may identify HL (F,W)
with NF(W)wzl.

We recall that the construction of Ly r can be realized as
1— ¢ Np(W)¥=! — (¢"Np(W))"~".

The right-hand side is contained inside F' ® (Bxg@p)wzo ® Deyis(W), which in

turn is isomorphic to F' ® U,Hg,,»(I') ® Deris(W) via the Mellin transforms.

The image of Np(R)¥=! under 1 — ¢ lies inside (¢*Ng, (R))w:O, which is a
free O ® Ao(T')-module generated by (1 + 7)p(n) for some O ® Aép—basis n

of Ng, (R) by [LLZ10, Theorem 3.5]. By [Ber04, proof of Proposition V.2.3],
v:=n mod 7 is a basis of D¢ys(R). Furthermore, [Ber04, Proposition 111.2.1]
tells us that n and (t/7)**1v agree up to a unit in B:;gy(@p. But since both v and

n are defined integrally, the aforementioned unit is in fact defined over Aéﬁp.
Consequently, if z € Np(R)¥=!, we have (1 —¢)(x) € p(t/7)" Or @ (A&p)wzov.
On taking Mellin transform, this lies inside log,, ;. ; Or ® Ao(I")v by [LLZ10,
Theorem 5.4] and [LLZ17, Theorem 2.1]. O

LEMMA 4.1.5. Let F/Q, be a finite unramified extension. There exist Ao(T')-
homomorphisms

Lip: Hi(F, W5, ) = log, oy F® Ao(T)
such that for all z € H{, (F,W5 ),

Lw; r(2) =Ly p(2)w @ @ v+ Lo p(2)p(w') ® p(w') @ vy.
Furthermore, if z € H} (F, R3 ), then Ly p(z) € Ingj:E,2k+2 Or @ Ao(T).
Proof. Recall that w' ® W' ® v, is a basis of Fil’ Deris (W3 ) and its image
under ¢ is, up to a unit, equal to ¢(w') ® p(w’) ® vy. These two elements of
Dcris(W;X) give rise to two maps

Ein : Hllw(F, W;X) — F® HE7k+1(F)

as given by [LLZ10, (18)] (see also the construction in [Leill], §3.2). These two
maps then decompose Ly r in a manner as explained in [LLZ11, §5A] (note
that our maps here differ from those given in op.cit. by units). This proves
the first assertion of the lemma.

For the integrality statement, we may argue as in Lemma 4.1.4 on using the
Wach module basis of Ng, (13, ) as given in [Ber04, §A] and [LLZ10, §5.2]. O
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Let w’ be a fixed basis of Fil° ]D)criS(R;) as above. The eigenvalues of ¢ on
Dcris(W}‘) are ié and we have the eigenvectors

1
vy = (W) + Xw/, (4.6)

for A = £a. Then, the four @-eigenvectors vy ® v, ® v, decompose ]D)criS(W}‘ ®
W]f(x)) into a direct sum of one-dimensional subspaces. This in turn allows us
to decompose the Perrin-Riou map as follows.

DEFINITION 4.1.6. For any finite unramified extension F' of Q,, we define
Lio ta,r,Lor and Le F to be the unique Ao(I')-morphisms from Hy., (F, Wi®
Wi(x)) to F @ Hp x+1(T') satisfying the equation

Lwiawior(2) = Y Laur(2)va @ v, @ vy
A pefa,—a}

= Lo p(2)o + Leo p(2)ve + L4 p(2)w' @ W ® vy
+ Lo p(2)p(w) ® p(w) @ vy,

for all z € HY, (F,W; @ W;(x)), where
Vo =w ® (W) ®vy —pW)®w v, € Deris (R 5, )5
Ve =w' ® (W) ® vy + (W) @w @ vy € Daris(R] ),
and L+ r are defined as in Lemma 4.1.5.

LEMMA 4.1.7. Let F/Q, be a finite unramified extension. For all z €
Hi, (F, Ry @ R}(x)), we have

1 1 1 1 Loor(2) 10gé2k+2
o> o2 —o? —a? Lo -arF(2) log

a,—a, D,2k+2 | ) Ao (D).
20 —2a 0 0 Lo —a,F(2) © log,, 111 r®4o(T)
0 0 —2a 200 E—a,oz,F(z) 1ng,k+l

Proof. We have the change of basis matrix

p(w') @ p(w') 1 1 1 1 Vo @ Vg
w W —1/4 o2 a2 —a? —-a? Vg @ V_q
W) dw +w @eW) | 200 —2a 0 0 Vo @ V_q
W) ®w —uw @ pw) 0 0 —2a 2« V_q ® Vg
Hence, our result follows from Lemmas 4.1.4 and 4.1.5. O

We finish this subsection by introducing certain projection maps on global
cohomology groups based on the local maps that we have defined above.
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DEFINITION 4.1.8. For any number field K which is unramified at all primes
above p and given an element

2
z=unhne \H (KWW @Ao()")
as well as A\, p € {+a}, we define

Pryu(2) = Lo (vesp(21))z2 — L i,k (resp(22)) 21
€ Hllw(Kﬂ W; ® W; (X))®HE,k+1(F)7
where res, : H'(K,W; @ Wi(x) ® Ao(T)") = @, H' (K, W} @ Wi(x) ®
Ao(I')") is defined by the local restriction maps and Ly, i is the shorthand for

the sum X, Lx 1.k, -

PROPOSITION 4.1.9. For K and z € N> HY(K, R} ® R3(x) ® Ao(T")") as in
Definition 4.1.8, the product

1 1 1 1 Py o(2)
a? a? —a? —a? Pr_, —o(2)
20 —2a O 0 Pry _o(2)
0 0 —2a 2 Pr_y o(2)
belongs to
108?;3:,2“2
Dpake2 | HI(K, R} @ Rj(x) © Ao(T)").
1ng,k+1
10gp,k+1
Proof. This follows immediately from Lemma 4.1.7. O

REMARK 4.1.10. We may define similar maps on the Tate twists of W;@W f(x)
as follows. We have the local maps

Hy, (F, W5 @ Wi(x +4)) — Hy (F,W] @ Wi (x))
Ly u Tw;
2 Hp k1 (D) = Hp g (T).
We can then define the semi-local map

Hi, (Q(m), Wi @ Wi (x +j)) — Hp k(D)

and the projection map

/\QH%W(@(mL Wi @Wi(x+4)) — Hyy(Q(m), W; @ Wi (x+5)@H e k1 (T)

for every integer j and m € N, as in Definition 4.1.8. We shall denote the
resulting maps by Eg\]) m and prE\j) respectively. When the dependence on j is
clear from the context, we shall drop the superscript (j) from the notation.
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4.2 SIGNED COLEMAN MAPS AND SELMER CONDITIONS

Let F' be a finite unramified extension of @Q,. Recall that we have set 1" :=
SmeR}(l) ®xand V := SmeW}‘(l) ® x. As in Remark 4.1.10, we define the
twisted version of the maps £+ r in Lemma 4.1.5 as well as L, r and L, F in
Definition 4.1.6. The twisted maps are denoted by Lf(,ll)? Given any element
z € HE (F,V), we have

£$7)F(z) € 1ogi’2(,€112 F ® Ap(T) and Esl}(z) S 1og;%,)c+1 F @ Ao((T).

Furthermore, if z € H{ (F,T), then

£$7)F(z) € logi’Q(kll_Q Or ® Ap(T") and E?}(z) € log‘g,)wr1 Or ® Ap(T)

(thanks to Lemmas 4.1.4 and 4.1.5). We now define the signed Coleman maps
as follows.

DEFINITION 4.2.1. For & € {4, —, o}, we let 1og: denote 103;72(212; log];’Q(li)r2

and logz(:,)v_i_1 respectively. We define the signed Coleman maps Col';: by setting
Col® : HE (F,T) — O @ Ao(T')

z—> L',:)F(z)/ logg' .

Let 7 be a character on I'tors. We may identify e, Ao (I") with the power series
ring O[[X]], where X is given by v — 1 and ~ is a topological generator of T';.
The images of the plus and minus Coleman maps for Q, can be described as
follows:

ProPOSITION 4.2.2. For n as above, enIm(Colafp) s pseudo-isomorphic to

Hjesni (X =Xy (7) = 1)Zy @ O[[X]], where SSZ is some subset of {1,2,...,2k+
2}.

Proof. This follows from [LLZ11, Corollary 4.15]. O

DEFINITION 4.2.3. Following [Kob03, Leil1], we define the signed Selmer con-
ditions

HY, &(F,T) = ker(Col®).
for & € {4, —,o}. Further, if j is any integer, we define H11W7*(F,T(j)) to be
the natural image of H11W7*(F, T) under the twisting morphism H{ (F,T) —
Hllw(Fa T(j))

Fix an integer m € N,. We may combine the signed Coleman maps Col&m)u
for primes v of Q(m) above p to obtain

& _ *
Colyy, = @y|pColy,y,y,
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on HH(Q(m),, T)= D, , H'(Q(m),, T) (recall that T = T ® Ap(I')"). When
m = 1, we will write Col® in place of Col®.

For & € {+, —, o}, we define the (compact) signed Selmer group H}* (Q(m),T)
by setting

b (@0m). T) = ker ( Q). T) —» %) |

4.3 SIGNED BEILINSON—FLACH CLASSES

We now give the proof of Theorem A stated in the introduction modulo Theo-
rem 4.3.3, which we shall prove in §5.5. We note that Theorem 4.3.3 below is the
key technical ingredient in the construction of signed Beilinson—Flach classes
attached to symmetric squares in the non-ordinary setting. It crucially sup-
plements earlier ideas in this direction by addressing the lack of a “sufficiently
large range of interpolation” to compensate the growth of denominators.

For A\, u € {£a} and m € N,, let BF;\n’f‘X be the Beilinson—Flach element from
§2.1. Via [LZ16, Proposition 2.4.5], we make the following identification:
HY(Q(m),W; @ Wi(1+x) ® Hp 1 (D))
= Ho e (D) & Hy (Qm), Wy @ Wi (L+x).  (47)
Let us write
BF ! =Y FMz,

where STFM € Hpip(D) and {z} is some fixed Ap(D)-basis of
HL (Q(m), Wi @Wi(1+Xx)). We recall from [BL21, §3.1] that if 1 <j < k+1
and 6 is a Dirichlet character of conductor p™ > 1, then

FMM(70) = (M) " Cnyig

for some constant c,;; that is independent of A and p. This property is
crucially used in the proof of [BLLV19, Theorem 5.4.1], which can be recast in
our current setting in the following explicit manner:

LEMMA 4.3.1. There exists BF « € HHQ(m), W;@W;(1+x)@HEe k1 (T)"),
A\ p € {+a} such that

( ) —~ O,
1 1 1 1 BF % logy L Blia X
o> o2 —o? —ao? BF_O"_a _ logp ’k(_i_)l BF,,
2 —2a 0 0 BFO" | 10eW BFa’ a
gp k+1
0 0o -2 2 BF_O‘ e AN
(0% (0% m,x (1) BF
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REMARK 4.3.2. On comparing denominators, we see that

BF,, .BF .. €Mp gi1)2(0) & Hiy, (Q(m), Wi @ Wi(1+ X)),

a,—a —~ —o,x

BFm,X 7BFm,X € Hllw(Q(m)v Wf* ® Wf*(l + X))

under the identification (4.7). We shall show in Theorem /.3.3 that the

elements ],3\]/5‘16; and ]/3\;5‘:10; are further divisible by Tw_k_llog:;’k(i)l and

Tw_j— 110g;’k(}r)1, respectively. Recall from (4.4) that we have the equality
log,, k(_ﬂ Tw_j—1log, ,k(i)l = 1ogj’2(kl_)i_2. This in turn allows us to define the
bounded Beilinson—Flach classes described in Theorem A in the introduction.

THEOREM 4.3.3. Suppose that the Dirichlet character x verifies the condi-
tions (V1) and (Vs). Assume also that (NV) and (IM) hold true. Let
H = UsoHpe,r(T1). Form € Ny and n € ﬁm, we write e, for the cor-
responding idempotent. For all four choices of A\,p € {ta}, there exist
em € QplAn] ® Frac(H) and z, € N\ HL,(Q(m), Wi @ Wi(1 + x)) (both
of which depend only on m and not on the choice of the pair X\, p) satisfying
the following properties.

i) BF’\’“ = dcm X pry ,(2m), where § € {+} is determined according to A =
da?.

it) For each n € ﬁm, the element ¢, := epcy, € Frac(H) is non-zero.

iii) For each n € ﬁm, we write ¢, = dyn/hy,, where d,, h, € H are coprime.
1
Ing 2k+2

)

Then, hy is coprime to
logp bl

The proof of this theorem requires the theory of (¢,I')-modules and Selmer
complexes. It will be presented in Section 5.5.

COROLLARY 4.3.4. In the setting of Theorem 4.3.3, there exist

BF;, .BF,  .BF;,  BF; =€ H{ (Q(m),W;®W;(l+x))

m,x’ m,x’ m,x’
such that
+.(1)
1 1 1 1 BFY log,, 2§k+2 BF
o’ o? —a? —a? BF :‘)ifaa _ 1ng( 2)k+2 BF; X (48)
200 —2x 0 0 BF logp k1 BF.

0 0 —2a 2« BF ?‘a 1og( l)c ) BFO
+

Proof. The assertion concerning the bottom two rows of (4.8) is a direct con-
sequence of Lemma 4.3.1 (see also the discussion in Remark 4.3.2). We shall
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prove the divisibility on the first row; that for the second row can be proved in
a similar fashion.

It follows from the second row of the factorization given in Proposition 4.1.9
and Theorem 4.3.3(iii) that

(pra,oz + pr—a,—oz - pra,—oz - pr—a,a)(cmzm)
1Og+72(k1:<)|*2 -~
%HE,(k+1)/2(F) ® Hi,(Q(m), Wi Wi(l+x)).

log, i1

Therefore, if we write

BF%S + BF,% % + BFS * + BF,%" = > Fz,
where F; € g 11(T) and {2;} is a Ao (T)-basis of H{, (Q(m), W;@W;(1+x)),

+,(1)
08y 2k12

+,(1)
1ng,k+1

more, Lemma 4.3.1 says that all the F;’s are also divisible by 1og:’k(}r)1. The
conclusion follows from growth order considerations. O

then Theorem 4.3.3(i) tells us that each F; is divisible by . Further-

PROPOSITION 4.3.5. In the setting of Theorem 4.5.3, there exists an integer C
independent of m such that

C x BF* € . (Q(m), R} ® R}(1+ X))
for all four choices of & € {+,—,®,0}.
Proof. Let A\, € {£a} and fix m. Note that p—i‘ﬁ—l is a p-adic unit given that
0p(N) = wp(n) = (k +1)/2. Write 2} € HYQ(m)(yr), W} © WH(L+ X))

for the image of the Iwasawa theoretic Beilinson-Flach class BF;}#X. Then by
[LZ16, Theorem 8.1.4(ii)]

Co x pIT € HY(Q(m)(uyr), R} © R}(1+ X))

for some integer Cy that is independent of r, m, A and pu.

Let BF*® be any one of the four linear combinations of Belinson-Flach classes
on the left-hand side of (4.8) and expand BF* with respect to the basis {z;} of
Hi, (Q(m), Wi@W i (1+x)), say BF* =" F;z;. Let log® be the corresponding
logarithm on the right-hand side of (4.8). Then,

o log* | F; for all i;

e F;=O(log,™);
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e For all » > 1, we have p~(k+1

m and the choice of &.

)"||F;|,, is bounded independently of i, r,

Here p, = p~ /7" (#=1) and || ®]]p, is the sup-norm on power series as defined
in [BL21, §2.1]. Consequently ||F;/log® ||,. is bounded independently of 4, 7,
m and the choice of &. Hence, BF* / log"' are bounded classes as required. [

Recall that 7' := Sym® R}(1 + x) and T := T ® Ao ()"

COROLLARY 4.3.6. In the setting of Theorem 4.3.3 and for & € {+,—, o}, we
have

C x BF* e H'(Q(m),T), BF;, =0,
where we consider H'(Q(m), T) as a subgroup of Hy, (Q(m), R}®@R}(14x)) via
the decomposition of Ggm)-representations Ry @ R} (1+x) = T'® A’ R (1+x).

Proof. The first part of the corollary follows from Proposition 2.1.3, Corol-
lary 4.3.4 and Proposition 4.3.5. For the second part of the corollary, note
that

BF;, , = (BF, % — BF;,"%)/2a

Under our assumption on the parity of the Dirichlet character x, we show that
Ap A
BF,5 = BF,.~

for any choices of A\, u € {£a} in Section 5.5. In particular, see Remark 5.5.2.
Thus, on taking A = —p = «, this shows that BFme = 0, as required. O

We now show that the bounded Beilinson—Flach classes satisfy the Selmer con-
ditions we defined in §4.2. This allows us to apply the Euler system machinery
to obtain one inclusion of Conjecture 4.4.3 (see Theorem 4.4.5). For the rest
of the section, we assume that the character x verifies (V1) and (¥53). Suppose
also that (IM) holds true. We also fix an integer m € N,. Let us recall the
following “geometric” property of the unbounded Beilinson—Flach classes.
PROPOSITION 4.3.7. For an integer j € [—k,0] and A\, u € {£a}, the natural
image of locy, (BF;’&’U)) in HY(Q(m)(ppr)p, WF @ Wi (14 j + x)) belongs to
the Bloch-Kato subgroup H{ (Q(m)(pipr)p, Wi @ Wi (14 j + x)).

Proof. This is [KLZ17, Proposition 3.3.3], since H{ = H]} in this case (see

[LZ16, Proposition 8.1.3]). O

PROPOSITION 4.3.8. Let & € {+,—, 0} and v a prime of Q(m) above p. Then
res, (BF#LX) € ker Colg(m)v, where res, denotes the localization map

Hiy (Q(m), Wi @ Wi (1 +x)) = Hiy, (Q(m)o, W§ @ W (1 + x).
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Proof. We shall only consider the “& = +” case. The other two cases can be
proved similarly. Let us set F' = Q(m), and write

Z 1= Tes, (BFTO‘n’C;( +BF, %7 + BFL Y + BFT_nO‘;(a) )

Proposition 4.3.7 tells us that the image of z in H'(F(upr), W; @ W7 (1+ x))
belongs to the Bloch-Kato subspace H} (F(p,r), Wi @ W} (14 X)) for all 7 > 0.
By the interpolative properties of Perrin-Riou’s map, this implies that

Lw:ows(11x),#(2) € F @ Hp ® Deris(Wf @ Wi(1 4 X))

vanishes at all finite characters on I'. Let E(il)F be the morphism given in §4.2.
Then, both KE:,)F(Z) and E(_l)F(z) vanish at all finite characters of T'.

By an abuse of notation, we shall denote ES:?F (respectively Col}.) composed
with the projection map W7 @ W;(x) — W3 (1 + x) by the same symbol.
Note that

2
ES:’)F (z) = (1og;’2(,il2) Colf. oloc,, (BF:;VX) .

Therefore, ColJ},C oloc, (BF:;VX) vanishes at infinitely many finite characters of I'

(the ones that do not vanish at log;;’Q(;iQ). This forces Colj; o loc, (BF}, ) to

vanish, as required.

COROLLARY 4.3.9. We have C' x BF} € HE (Q(um),T) for & € {+,—, o}

Proof. This follows immediately from Proposition 4.3.8 and Corollary 4.3.6. [

4.4 DOUBLY SIGNED MAIN CONJECTURES

Recall that T := SmeR’J'Z(l +x) and T =T ®A*. We now define doubly signed
compact and discrete Selmer groups as well as doubly signed p-adic L-functions
in the spirit of [BLLV19].

DEFINITION 4.4.1. Let S denote the set of pairs {(+,—),(+,e),(—,e)}. For
S = (%, M) €8, we define the following objects

e A compact Selmer group H§(Q,T), given by

H'(Qyp,T)
ker (Col"‘) N ker (Col*)

HE(Q,T) :=ker | H'(Q,T) —
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o A discrete Selmer group Sels (T (1)/Q(ppe)), given by the kernel of the
restriction map

HY (Qppe=), TV (1)) —
1 )u, TV (1))
HHl ];[ 1 ,up )U,Tv(l)),

vlp f

;_n

where v Tuns through all primes of Q(up), and for v | p the local condi-
tion H& (Q(ppe)w, TV (1)) is the orthogonal complement of ker (Col"') N

ker (Col‘) under the local Tate pairing.

o In the setting of Theorem 4.3.3, we define the doubly-signed p-adic L-
function by setting

Le := Col® ores, (BF:X) € C7'Ao(T).

REMARK 4.4.2. Interchanging the roles of & and # has the effect of multiplying
Le by —1. This is the content of [BLLV19, Proposition 5.3.4] (see Proposi-
tion 5.6.3 below for its incarnation in our setting). Since we are only interested
in the ideal generated by Lg, the ambiguity of sign is not an issue for us.

We are now in a position to formulate a doubly-signed Iwasawa main conjecture
for the symmetric square representation of a non-p-ordinary eigenform.

CONJECTURE 4.4.3. For every &S € S and every character n of I'yors, the module
enSels (TV(1)/Q(ppe)) is A(I'1)-cotorsion and

chary, ry) (enSels (T (1)/Q(pp=))") = (enLes)

as ideals of A(T'1) ® Qp, with equality away from the support of coker(Col*®)
and coker(Col®).

PROPOSITION 4.4.4. Suppose we are in the setting of Theorem 4.53.3. Then
there exists a choice of & € S such that e; L& # 0.

Proof. By Lemma 4.1.7 and Definition 4.2.1, we have

(D) -
11 1 1 51& LF log,, 12(k+2 Col
o o —a? = E_m_a,F B 10g:2(k+2 Col+( )
20 —2a 0 0 £ log!!) ., Col*(2)
0 0 —2a 2« E(—lgl,a,F 1og(1,)€+1 Col®

(1) +:(1) 1

lo lo lo
LW (2) = 7&42“2 Col™ (2) + Lj 282 o1t (2) + Lﬁ EXLCol® (2)
’ 10 0
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Similarly, Corollary 4.3.4 gives

+,(1) ,(1) 1)
BF&—o — lo 08, ok4+2 BF+ 1 gp,2k:+2 lo 108y k41 BFO

4 402 Lx 4o

By Corollary 4.3.6, we know that BFy = 0. Hence, K,(ll)a(BFfX_a) is an
Hp k41(D)-linear combination of the terms Col® o resp(BF:X) for (&, ®) € S.
By (2.5), we know that £, (BF{’, “) is a non-zero multiple of the geometric

p-adic L-function and hence is non-zero. We conclude that there exists at least
one & = (&, &) € S such that Col® o resp(BFfX) is non-zero. O

We can now give the proof of Theorem B.

THEOREM 4.4.5. Suppose that the hypotheses (¥1)—(¥3), (NV) and (Im)
hold true. Then for every j € {k + 2,...,2k + 2} even and & € S
that wvalidates the conclusion of Proposition 4.4.4, the w’-isotypic component
ewiSels (TV (1) /Q(pp=)) is Ao(T'1)-cotorsion and we have

chary g (ry) (ews Sels (T(1)/Q(up=))") | (ewiLes)

as tdeals of Ap(T'1) ® Qp.

Proof. This theorem follows from the same proof of [BLLV19, Theorem 6.2.4],
using the (rank-one) locally restricted Euler system machinery we have defined
above. The quadruple sign & = {(A,0), (e,0)} used therein corresponds to
our double sign & = (&, #) € S. The additional hypothesis (¥3) ensures the
big image condition on 7T in order to apply the Euler system machinery holds
(ct. [LZ19, §5.2]). O

5 (¢,T')-MODULES AND ANALYTIC MAIN CONJECTURES

Our main goal in this section is to give proofs of Theorem 3.2.12(iv), Theo-
rem 4.3.3 and Corollary 4.3.6. These results are crucial for the construction of
bounded Beilinson—Flach classes as well as to translate our results on the signed
Iwasawa main conjectures into the analytic language of Pottharst [Pot13] and
Benois [Benl15].

Fix once and for all an integer € N, as in Definition 3.2.8, where the Dirichlet
character x is given as in Section 3 verlfymg (¥) and (¥2). Fix also a character

ve AT and set 1 := yv. As in Section 3, we also fix an integer j in the interval
[k+2,2k+2]. Recall that V, ; denotes SmeWf* (1—j) ®wp, which sits inside

Wy =WiWi(l-j)® Quwiyp = </\Wf 1—7) wj1/1>69V¢1j.
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For notational simplicity, we write ¥ = Vy; @ w™7 and #y = Wy ; @ w™J
throughout this section.

We shall make use of the identification (which arises from the inflation-
restriction sequence)

HE (K8, Wy ) — Hiy, (K, W)

(and likewise, for the representations 7y and Vy ;) for any abelian extension
K of Q that contains p,, where A = Gal(Q(y,,)/Q) and K* denotes the fixed
field of A.

5.1 LOCAL PREPARATION

In this subsection, we introduce the p-adic Hodge-theoretic objects that we
shall rely on in the proofs of Theorem 3.2.12(iv) and Theorem 4.3.3. We also
prove Lemma 5.1.5, which is a statement on local classes and will serve as a
key ingredient in the proof of Theorem 3.2.12(iv).

We fix a generator {g(,)}n of Hm fipn =: Zp(1). Recall from Corollary 4.1.2

the Gg,-subrepresentations Wy and Ws of Sym2Wf. We define for i = 1,2 the
Dieudonné module
D; :=Deis (W (1 —j) @)

We also set
2 )
Dy := Dexis (/\ Wi(l-j)® 1/1) :
In particular, this gives the decompositions
Dcris(Ww) :DO@Dl@DQa Dcris(A//w) :Dl@DQ-

The crystalline Frobenius ¢ acts on Dy by ay; = p/"'(p)/a® =
—pj_k_QGJ?lz/J(p), whereas it acts on Dy by —ay ; = pj_k_Qeglz/J(p). Recall
from (4.6) the p-eigenvectors vy, € ID)CTiS(W;). If we fix a non-zero vector
Vjp € Dais(E(L — j) ® ¢), we have the following ¢-eigenvectors in Deyis(#y):
W4 + 1= Vta @ Via @ V. We can check that

e Dy =span{w;_ —w_4},
e Dy =span{wiy —w__},
e Dy =span{wi+ +w__,wi_ +w_4}.

DEFINITION 5.1.1. Given A € {£a}, we let 0 : Qf — E* denote the character
that is given by dx(p) = 1/A and 6(u) = 1 for u € Z);. We also wrile 6y ; :
Q) — E* for the character which is given by by j(x) = |x|, 7' ~76y () where
dy(p) =~ (p) and dy(u) = 1.
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For each @p-eigenspace DcriS(W}‘)W:U)‘ of DcriS(W}‘) (where A = +a as above),

there is a unique rank-one (¢, I')-submodule Dy C Dy := Djig(W]f), which is
of the form Rpg(dx), where Rg is the Robba ring over E (see [Benl4, §2.2]).
More precisely, Dy is the free Rp—module generated by an element ey € D)
for which we have

QO(SA) = 5A(p) cEX T(e)\) = 5A(chc(7_)) * e\ (VT S F) .
We also set Dy, ; to be Rg(dy ;) and define

Dy =Dy ®Dy; = DL (Wil —j)®9), Dy =Dy @Dy,

rig

In what follows, the following (i, I')-subquotients (all of which are necessarily

crystalline) of D! (#) will play a crucial role. Let A, u € {+a}.

rig

vig (W)
o DL (W) =Dy @Dy,
o DI (W) )n0 = DL, (#y) /DL, (#y)*e.
o DL (#) ja = D /Dy) @Dy j € DE(Hy) jxo-
o DL (W)t = (D) @Dy + Dy @ D,) @Dy .
o Dl (W) = Dl (#y) | Dl ().

Let D = Djig(Wwﬁ or Djig(Ww)? be one of the (¢, I')-modules above. We write
Deyis(#y)2 (or Dcris(Ww)?) for the corresponding Dieudonné module D,i5(D),
where Deyis(—) denotes the functor defined in [Nakl7, §2, P.341]. We write

0/),0 for the natural projection map
D/)\,o : Dcris(Ww) — Dcris(Ww)/A,o .

We also have the following canonical short exact sequence:

« N
0— Dcris(Ww)/)\# a—> Dcris(Ww)/)\,o LL) Dcris(Ww)A’“’_ — 0. (5.1)

A )

LEMMA 5.1.2. ker(dy ) = (Deris(#) j30)° 5

Proof. Note that Deyis(#4)/a,, is one dimensional over E. By comparing the

action of ¢, we see that it is isomorphic to Deis(D_x ® D, ;) as ¢-modules.

The proof now follows from the exact sequence (5.1), as the image of 9* may be

P p)
W

on ]D)Cﬁs(%w)/)\’o. D

identified with the (one dimensional) -eigenspace for the ¢-action
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Given an integer m € {1,---,p — 1}, we let [m] € Q) denote its Teichmiiller
lift. We also let Tr; : Q,(pp)* " — Q, denote the twisted trace map induced
by
1
— ) [Py~ 1.
p= 1 r=1

DEFINITION 5.1.3. For any crystalline G, -representation or a (p,I')-module
D, we denote the composition of the arrows

& ]D)cris (D) Tﬁl Dcris(D) (52)

-

HY(Qy (1), D) 225 Q@ (1)

by w™9 o exp*. Here, exp* is the dual exponential map given in [Naki7, §3,
P.360]." More generally, if 0 is a character of T',, :== I'/T?" that does not factor
through T'y,_1 (where n is a positive integer), we may define a map

wo exp” Hl(@p(ﬂp")aD)WﬂH — Deris (D)

starting off with the map w=70 : Q,[A x Fn]w7j9 — Q, and identifying it (via
the generator €,y of ppn ) with a twisted trace map Qp(ppn) — Qp.

DEFINITION 5.1.4. Given a finite extension K of Qp and a crystalline G-
representation V, we set

HYK,V):= H (K,V)/H}K,V)

and call it the singular quotient of H'(K,V). For each positive integer n, we
further set

res/g : H' (Q(upn), V) — Hy(Qp(ppn), V)
(the singular projection) to denote the composition of the arrows

resy

HI(Q(MP")’ V) — Hl(Qp(MP")’ V) — H;(Qp(ﬂp")v V),
where s is the natural projection map.

LEMMA 5.1.5. Let x,y € Hl((@p(,up),Ww)“’fj be two classes with non-trivial
singular projection (meaning that their images in HX(Qp(up), #y) under the
map s given in Definition 5.1.4 are non-trivial) such that

_pi e

i 0/)\,o ow™ o eXp*(-T) € (Dcris(Ww)/)\,o)w o? ’

__piT et

LI ow™ o exp*(y) € (Dcris(Ww)p\’o)(’D a

INote that once we identify Qp(up) with Qp[A] via the generator (1) of pp, the map Tr;

agrees with the map w™7 : Qp [A]"Jﬂ — Qp, which justifies the notation we have chosen for
the composition (5.2).
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Then the classes s(x) and s(y) are linearly independent over E in

Hsl(@p(ﬂp),ww)-

Proof. This is clear, as the images of x and y under the dual exponential map
(that factors through the singular quotient) composed with the map v, o ow™d
fall within different eigenspaces. o

5.2 LINEAR INDEPENDENCE OF BEILINSON—FLACH CLASSES

We are now ready to complete the proof of Theorem 3.2.12(iv), which follows
as an immediate consequence of Corollary 5.2.4 to Theorem 5.2.2 below. The-
orem 5.2.2 concerns the p-local images of the Beilinson—Flach elements and its
proof relies on the criterion on linear independence established in Lemma 5.1.5
above.

For A,u € {£a}, the Beilinson-Flach classes BFi‘;: € HYQ(r),W; @
Wil + x) @ Hpr+1(T)") from §2.1 give rise to the classes in BF:};“’U) €
HL (Q(up), #yp @ Hi ki1 (T)"). We let bfM* € HY(Q(up), #y)* " denote the

25 (5)

images of BF:}} under the composition

Hiy (Q 74 ® Hpa1(D)") — HY(Qlup), #y) — H Qi) #)”
REMARK 5.2.1. The classes ¢}* € H'(Q, Wy ;) that we have considered in the

proof of Theorem 3.2.12 maps to the class bf™ under the canonical isomor-
phism

HYQ,Wyj) — HY(Qlup), )~

THEOREM 5.2.2. The classes res/f(bf)"“) and res/f(bf/\’f“) are linearly inde-
pendent in HY(Q,(up), 7/11,)‘*’7] .

Proof. By Lemmas 5.1.2 and 5.1.5 , the theorem will follow once we verify the
following two properties.

(i) 900w o exp?;/g(l) ores,(bfM*) € ker(dy ) for p € {a, —a}.

(i) res,(bfM*) and res,(bf* ) are non-trivial.
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The property (i) is immediate by the commutativity of the following diagram

H},(Qp, DLy (#0))* ——— HL(Q, DY ()7 )

rig rig

l |

ot (Qp(1p), Djig(Ww))wij — Hl(@p(ﬂp)a Djig(Ww))\’u’_)Wﬁ

w’oexp*t leoexp*

/X, — _
]D)cris (qu) ]D)cris (D;r‘-ig(Ww)/\”u7 )

together with the fact that BF:}J’” () belongs to the kernel of the top horizontal
arrow by [LZ16, Theorem 7.1.2]. We now prove property (ii) by arguing as in
the proof of Theorem 8.2.1(v) in [LZ16].

To ease notation, we let Hi (X) (resp., H'(X)) denote H{ (Q,, X) (resp.,
HY(Qp(pp), X)) in the following commutative diagram:

—j a/>\,c

Hi (W @ Hepa (D)) =5 HE (DL, (74) 50)* T <—Hi (Dl (#4) o)

rig

| : |

2/x,0

H' (W) ——— H (D}, (W) 50)° " <—H" (DL, (W) ja)”

wjoexp*l wjoexp*l/ leoexp*

Desis (W) —————————— Dexis(#y) 3,0 <—————Dexis(#y)

—3J

/o

We remind the reader that for the étale (¢, I')-module Djig(Ww), we have identi-
fied its cohomology with the cohomology of #;, in order to define the horizontal
arrows on the left.

It follows from Theorem 7.1.2 in op. cit. that the image

0/)\10 o resy (BF;’#’(]-)) S Hllw(@p, DIig(Ww)/)\ﬁo)w

-

of the Iwasawa theoretic Beilinson—Flach class in fact falls in the image of

H}(Qp, DL (W) o) HE Qo DY (W) 1,0)*

-

We let diy, € HL, (Q,, Djig(Ww)/Ayu)wfj denote the unique element that maps

Ash,(5)

t0 050 © res,(BEF ). The commutative diagram above shows that

/3,0 0 TES) (bfk’”) = a(dry)

It therefore suffices to prove that a(dry) is non-trivial. Theorem 7.1.5 of op. cit.
reduces this to verifying that L,(f, f,w™7,j) # 0. Observe that in place of the
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variable j in op. cit., we have used j — 1 and furthermore, we have projected
to the w™/-eigenspaces. As a result, the relevant p-adic L-value in the current
work is L, (f, f,,w™7, ) in place of L,(f, f,1+ j) in op.cit. The desired non-
vanishing of the p-adic L-value now follows from the hypothesis (NV). O

REMARK 5.2.3. The attentive reader will realize that we could have in fact
worked over the fields Q(pyn) in place of Q(u,) above and considered the w76
invariants (for characters of Ty, :==T/ IP" where n is an arbitrary non-negative
integer). The same proof would apply and prove for p € {a, —a} that

__ Tl

/500 w70 o exp* ores, (bfi’“) € (]D)cris(qu)/A,o)W_ A ,
where bf M € Hj (Q(upn),Ww)“’ije is the image of BFl)/‘J’”’(j) and the mor-
phism w70 o exp* is given as in Definition 5.1.3. This allows us to conclude
that the classes res/f(bfi’“) and res/f(bf,);ﬁ“) are linearly independent.

The following corollary follows immediately from Remark 5.2.1 and Theo-
rem 5.2.2.

COROLLARY 5.2.4. The classes ¢}, ¢} ™" € Hy (Q,Wy,;) are linearly inde-

pendent.

5.3 ANALYTIC SELMER GROUPS

Based on the local analysis in Section 5.1, we introduce in this subsection the
(, T')-modules associated to the twists of the symmetric square representations,
as well as their triangulations. With these objects in hand, we then define the
Pottharst-style Selmer groups in our current setting. Proposition 5.3.7 below
explains the relation of these Selmer groups to Bloch-Kato Selmer groups as
well as determines their size, relying chiefly on Theorem 5.2.2.

Recall from §5.1 the decompositions
Do @ D1 @ Dy = Deris(#yp) D Deris(Yy) = D1 ® Do

of filtered p-modules. We fix throughout this section a choice of A\, u € {£a}.
We define the (@, I')-modules ID):ZO C ID):Z by setting

DT = Df

P rig

D:ZO =D\ ®RD,® Dwﬁj.

(#)M+ N DL, (7)

rig

LEMMA 5.3.1. The crystalline (p,T)-submodule ID):Z C Djig(”//w) is a saturated
(¢, T)-submodule of rank 2. Likewise, the submodule ]D):Z’O C ]D)jz is saturated of
rank one.
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Proof. Notice that
Df = ker (D], (%) < Dfy,(#y) — D 0#)M ).
The first claim follows since
ex®@e_y—e, Qe_, €ker(Dy @Dy — Dy/Dy @ Dy/D,,)
if A = —pu, whereas
ex®@ey—e_rx®e_x Eker(Dy Dy — Dy/Dy @ Ds/D,,)

if A = pu, so that ]D):Z C D;fig(”//w). The second part follows from the exactness
of the following sequence of (¢, T')-modules:

0—>D1—Zo —>D$—>(Df/D/\ ®]D)f/D,\)®Dw,j — 0. (5.3)

O

DL (Dy) ifp=—-A\
LenmA 5.3.2. D} 1D}, (D1) :{ ng(D1) i .

rig 0 if =\

Proof. We have the identification of (¢, I")-modules

Df

rig(Dl) = RE(ea ey —€_q® efa) (24 quj'

When A\ = p, the conclusion follows from noting that
ea®eqg —€e_g Re_q & ker (]D)f ®Df — ]D)f/DA ®Df/]D)M) .
When A = —pu, it follows from

a®eq—€_q®e_q €ker (D @Dy — Dy/Dy @Dy/D,,) .

COROLLARY 5.3.3. Deyis (D)) N Fil Deyis () = 0.

Proof. As DcriS(D:;O) is one-dimensional over FE, its intersection with
FﬂODcris(”f/w) is either trivial or ID)CTiS(ID);ZO). Suppose that the latter holds.
Then, Dcris(ngo) is a p-stable subspace of C FilODcriS(”//w). But the unique
p-stable subspace of

Fil’Deris(%) = D1 ® Fil’Desis (D)

is Dy. Thus, Dcris(D:ZO) = D;. When )\ = p, this contradicts Lemma 5.3.2.
Therefore, the intersection is 0 as required. When A\ = —p, the same conclusion
follows from the fact that Djig(Dl) does not fit in the exact sequence (5.3)). O
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Corollary 5.3.3 tells us that the submodule ]D):;O C DIig(7/¢) is regular in the
sense of Benois and Perrin-Riou, cf. [Benl5, §2.1] for an elaboration on this

property.

DEFINITION 5.3.4. For each natural number n and O = ID):ZO or DL we let
S (Qupn), ¥4, D) denote the (analytic) Selmer complex, given as in [BB15,
Definition 2.4] (with the base field taken as Q(upn) in place of Q) and let
RI(Q(ppn), ¥y, D) denote the corresponding class in the derived category of
FE-vector spaces.

We also define, following [Benl15, §2.3], the Iwasawa theoretic (analytic) Selmer
complex Sp, (Q(upn ), ¥y, D) and the corresponding class R (Q(ppn ), ¥, D)
in the derived category of Hp(T'™)-modules (here, Hp(T'™) stands for
UrsoHe(T™) and T™ = Gal(Q(up-)/Q)).

For each natural number n we set
Hi(Q(ppn), ¥, D) := RUH(Q(ppn ), ¥, D) for ? = 0, Iw

and call them analytic Selmer groups.

We have the following control theorem in the context of analytic Selmer com-
plexes:

Rt (Q(ppr), 7, D) ®]l7:[E(F(n)) E — RT(Q(kpn), ¥, D) , (5.4)

where @ denotes the derived tensor product.

LEMMA 5.3.5. Let D be a (¢,I')-module over Rg such that H°(Qp, D) =
H?(Qp,, D) =0. Then H(Qy, D) is an E-vector space of dimension rankg , D.
Proof. This is an immediate consequence of Liu’s local Euler characteristic

formula proved in [Liu08]. O

DEFINITION 5.3.6. For any Dirichlet character n: Go — E*, we let E, denote
the one dimensional E-vector space on which Gg acts via 1.

PROPOSITION 5.3.7. Fix a non-negative integer n and let 8 be a character of
the quotient group I',,. Suppose at least one of the following two conditions

holds:

a) w0 is non-trivial.

b) If j = k+2, then egp~'(p) # £1.
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Then:
i) We have the following exact sequence:

0 — HY(Qupn ) V5, @)% — HE (QUupn ), ¥4)*

can

—s HY @y (), DY, (40)/0)°

where ® = ngo or D:Z.

ii) The Selmer group fll((@(upn),”//w,ﬂ):zo)“’fje is canonically isomor-
phic to the Bloch-Kato Selmer group H}(Q(Mpn),”//w)‘f_j‘g, whereas
H2(Q(ppn), ”//w,]]])jzo)‘fm is isomorphic to H{ (Q(pupn ), ”//J(l))‘*’ﬂe.

iii) The  Selmer group  HF(Q(upn), %)* "% is  trivial, — whereas
HY(Q(ppn), ”/@,]D)j;)“’ﬂe is one dimensional over E.

REMARK 5.3.8. We have checked in Lemma 3.1.1 that Condition (b) in the
statement of Proposition 5.3.7 holds true when we assume the validity of (¥s).

We recall that the hypothesis (Vq) is required to avoid exceptional zeros, see
Corollary 2.2.5.

Proof of Proposition 5.3.7.

i) This portion follows from the definition of the Selmer complex as a
mapping cone, once we verify that HO(QP(MPn),DLg(”f/lp)/@)“’ﬂe = 0.
When w™76 is non-trivial, it is a Dirichlet character ramified at p.
Since the Gq,-representation ¥y, is crystalline, the desired vanishing of
HO(Qyp(ppn), DIig(”//d,)/@)wﬂe follows. Thus, we are reduced to checking that

H°(Q,, D (#4)/D) = 0 assuming (b). Note that if HO(Q,, DL (¥,)/D) is

rig X rig
non-zero, then we necessarily have p’~1¢(p) = +a?, which can only hold if
j = k+2and epp~1(p) = £1 (recall that a®> = —e;(p)p**t1). Therefore,

the condition (b) implies the vanishing H®(Qy(upn ), DIig(”//qb)/@)‘fje =0, as
required.

ii) The first half of this portion is immediate by [Pot13, Proposition 3.7(3)].
The second assertion follows from global duality (Theorem 1.15 of op.cit.).
Note that the conditions of [Pot13, Proposition 3.7(3)] are valid thanks to
Lemma 5.3.2 and our hypotheses in this proposition.

iili) We follow the proof of [LZ16, Theorem 8.2.1] to prove the first assertion
in (iil). We start off with the following exact sequence:

0 — HEQ(upn), %) — HE (Qupn), %) °

can

res/g

S HN QU ) V)
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We have seen that the canonical Selmer group H: (Q(upm), %4)* "% is of

can

dimension 2 and moreover, the image of res ¢ is also two-dimensional thanks to
Theorem 5.2.2 and Remark 5.2.3. This proves that H} (Q(upn ), %4)* ¢ = 0.

We now prove the second assertion of (iii). On taking © = ]D):Z in the exact
sequence of part (i), we see that

dim BN (Q(ppn ), %5, D)0 + H' Q1 ), DY, (%))

rig
> dim H:  (Q(upn), %) 0 = 2.
Lemma 5.3.5 (applied with D = (Dfi,(#,)/D} ) @ D, (Euig-1) and K = Q)
tells us that

dim H'(Qy (1), Dy (#)/)° = dim H'(Q,, D) = 1.

rig
Therefore, )
dim H (@), ¥4, D)7 > 1. (5.5)
Now, consider the exact sequence
0 — H'(Q(ttpr), Y, DY) 0 — H (Q(ppr), ¥, DY) °
— HY(Q@p (), D /D)<
(which follows from the definitions of extended Selmer groups) shows that
dim 2 (Qupn ). ¥, )"
< dim B (Qupn ), %, D3°) " 4 H Q) D /DY)
= H'(Qp(pn), D /D)
=1,

where the first equality follows from (ii) combined with the vanishing of the
Bloch-Kato Selmer group H} (Q(upn), %)« "¢ (which is the first assertion of
(iii)), and the second equality follows from Lemma 5.3.5 applied with D =

(D$/ID):Z°) ® Djig(ije—l). Combining this with (5.5), the second assertion of
(iii) follows. O
COROLLARY 5.3.9. In the setting of Proposition 5.3.7, we have

7 w™ e

H2(Q(M;D")’A//1/HD$) =0.
Proof. The definition of the Selmer complex as a mapping cone gives rise to a
canonical surjection

gz(@(/‘p")a Ww’DJO)WﬂG - Eﬂ(Q(MP")’ A//waD;_)wﬂe

and the corollary follows from Proposition 5.3.7(ii)-(ii). O
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5.4 ZEROS OF CHARACTERISTIC IDEALS

The main goal of this subsection is to determine a locus where the generators of
the characteristic ideals of the Pottharst-style Iwasawa theoretic Selmer groups
do not have a zero. In particular, we prove Theorem 5.4.3. Corollary 5.4.4 to
this theorem plays a fundamental role in the proof of Theorem 4.3.3.

From now on, we assume that sy~ (p) # £1. We recall from Lemma 3.1.1
that this assumption holds for all ) = yv (where v is Dirichlet character of p-
power order and prime-to-p conductor) under the hypothesis (¥5). Throughout
this section, we continue to work with our fixed choice of A, u € {£a}.

LEMMA 54.1. Let D be a (p,T')-module of rank d over Rp such that
H(Qu(pp<), D) = H?*(Qp(pp<), D) = 0. Then H} (Qp, D) is a projective
Hpg(T)-module of rank d.

Proof. Only in this proof, we let 1 denote the left inverse for the Frobenius
operator ¢, and not a Dirichlet character v that is unramified at p. The proof of
the lemma follows from the fact that the complex Cy (D) is a perfect complex
of Hg(T)-modules, which may be represented by a single projective module
concentrated in degree 1 thanks to our running hypotheses. O

We recall that H := UpsoHE »(T1).

PROPOSITION 5.4.2. Let n be a positive integer and 0 a character of I'y. Then
Hi (Qppn), ”I@,D:Z)‘"ﬂe is a saturated rank one H-submodule of

Hiy (Qupn ), 7)° 7 @apry) H = Hi(Q, Vi @071 @ppry) H -

We remark that the isomorphism HL (Q(upn), %) " @ H = HL (Q,Vy; ®
6~1) ® H follows as a consequence of a formal twisting argument (cf. [Rub00],

§6).

Proof of Proposition 5.4.2. The definition of the Selmer complex as a mapping
cone (and the fact that Iwasawa cohomology classes are unramified) yields the
exact sequence

0 — Hi (Qupn), ¥4, D50 — H (Qupn), 74)* P @ H
— H}\ (Qu(ppn ), DY () /D)0 — HE(Q(pp ), Y, D)0
Since the H-module
H Q) Y4)° P @ H = HE(Q, Vg, @071 @ H

is free of rank 2 thanks to Theorem 3.3.4, it suffices to verify that
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(i) The H-module

i (Qp 1), D (70) /D)
= Hi, (@, (D}, (7)/DF) © Dl (Burg )

is projective of rank one, where the isomorphism follows from the version
of Shapiro’s Lemma in [KPX14, Lemma 2.3.5] in the context of (¢,T")-
modules and their cohomology;

(ii) The H-module H2 (Q(pn ), ¥y, ]D):Z)“’fje is torsion.

The assertion (i) follows from Lemma 5.4.1 thanks to our running hypotheses
on 1, so it remains to verify the assertion (ii). To do so, we first consider the
exact sequence

0 — HY(QUppn), ¥, D5°)* 0 — H(Quipr), ¥, D) °
— HYQp (), D /D)0 — HA(Q(ptpn ), ¥4, D)0
— H2(Qupn ), ¥, D)0 — 0 (5.6)

of E-vector spaces. By Proposition 5.3.7(ii)-(iii) and global duality, it follows
that

H*(Q(upn ), 75, D)0 2 HYQ(upn), 75 (1) = 0.
Hence, we deduce from (5.6) that

E’Q(Q(MP")’ Vs Dg)wﬂe =0.
The control theorem for Selmer complexes (5.4) yields an injection

(B Qi) 6. D)7 ) L, = Q) K DY)

I
which shows (thanks to the structure theory of coadmissible H-modules
in the sense of [ST03], given as in [Benlb, Proposition 3.6]) that
ﬁfw((@(ﬂpn),”f/@ﬂ)w“ﬂe does not have positive H-rank and this concludes
our proof. O

If M is a coadmissible torsion H-module in the sense of [ST03], we may define
its characteristic ideal chary (M) as in [HP16, §7.2.1]. Pottharst has shown
that the torsion H-module H2 (Q(u,), %, D)« is coadmissible (see [Benl5,
Proposition 3.10]) and we shall study its characteristic ideal. Recall that xcyc
denotes the cyclotomic character on I', the p™-cyclotomic polynomial is denoted
by ®,n and Tw,, is a twisting map defined as in (4.1). We define Twy, to be
the twisting map that acts as Tw,, on elements in I'; and the identity on ['tops.
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THEOREM 5.4.3. For any m € [k + 1,2k + 1] and any positive in-
teger n, the element Twj_pym—1Ppn(y) does not divide in H the ideal

chary (I:TIQW (Q(pp), Y, D$)“’7j) .

Proof. In order to ease our notation, we shall adopt the following convention
in this proof.

Convention. Let X be a twist of ¥ by a power of Xxc¢y.. We denote the
(¢, T')-submodule of Djig
It follows by the twisting formalism (cf. [Rub00, §6]) that

(X) that gives rise as a twist of ]D):b' also by Djp'.

chary, (H2,(Q(up), 7, D))

= Tw;yychary (B2,(Qup), 74— 1).DF) ).

Our assertion is therefore equivalent to the claim that charq.[ﬁfw (Qpp), V(5 —
1), ID);}:)“fl is not divisible by any linear factor of the product

Opr (Xeyr' (1)7) = [ [ (ke (™ (9)y = 1)

for any r € [k + 1,2k + 2] and any positive integer n, where n runs through
primitive characters of I';,_1.

Assume the contrary, so that there exists a positive integer n and an E-valued
primitive character 6 of T',,_; (after enlarging FE if necessary) such that

—m — 7 . w1t

(e (8™ ()7 = 1) | charw (HR(Qup), %G = 1)) (5.7)
for some m € [k + 1,2k + 1].
Set Y = Yyp(j —m —1) = SymZW;(fm) ® 1. Since

TW () (Xeye (VO™ (V)Y = 1) =07 ()7 — 1,
observe that the divisibility (5.7) is equivalent to the divisibility
~ . w*l
(07 () —1) | Twim (CharH H (Q(pp), Y (5 — 1), D) )
= chary (H2,(QUup) 746G = 1), D)% @ (xeye) ™)

= chary, (H2,(Q(1p), ¥, DT ")

where the equality on the second line is immediate from the definition of Tw )
and the one on the third line is a direct consequence of the twisting formalism.
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By the structure theory of admissible H-modules, this is equivalent to the
requirement that the quotient

—1-m

HZ,(Qp), Vs D) /(072 ()y — 1) HE (Qp), Y DY)

is a non-trivial E-vector space. Since the Iwasawa theoretic Selmer complex
has no cohomology in degree 3, we have the following canonical isomorphism
thanks to the control theorem for Selmer complexes:

(@) S BT [ (07 = 1) BRAQU): S DD

=5 BAQUupn ), Y, DY) (5.8)

Furthermore, since the element 71’%1 — 1 belongs to the ideal of H generated
by 6~1(v)y — 1, the natural surjection

—m

HZ(Qup), Y, D) —

ﬁfw(@(:u’ll)a 7/771’ DJ)Wilim/ (9_1(7)7 - 1) ﬁ?w(@(up)a 7/771; Djp_)

w*lfm

factors as

—m

A2, Qup) Fm D)0
(0=t (mv-1)

~ —1-m
HIQW(Q(:U‘P)7 41/’"747 D$)w

(5.8) /

H2(Qupn ) Yo D5 "
(6-1(mr-1)

This shows that the finite-dimensional E-vector space

H2 Q). Vs DY) " /(07 () = 1)
is non-zero. On the other hand, the exactness of the sequence

] w ™ 77 wolmm x0T (y)-1
0 — H*(Q(ppn), Vm, D) O —s HXQ(upn), Vins DY) RGN CRN

H* Q) Y D) — HA(QUpapr ), Yo, DF) (07 (y)y — 1)

shows that H2(Q(pn), Yim, ]D):Z)“’flfme is non-trivial as well. This contradicts
Corollary 5.3.9, which we apply with the choice j = m + 1. This shows that
the divisibility (5.7) is false and completes the proof. O

Recall that we have set V, := SmeW}‘(l + ).

COROLLARY 5.4.4. The characteristic ideal of the H-module ETIQW((@, Vi, ]D)j/;) is

. 1 1
prime to 1ogék)+3 /logl(cJZ2 .
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Proof. Note that we have

Chal"q.[ wa(@, qu) = TW(_j)ChaI‘HﬁIQW(Q, Vw X <chc>7j>
= TW(_j)ChaI‘HﬁIQW (Q, ’y/w ® wj)
= Twchary H7, (Qup), %),

where the final isomorphism is deduced from the version of Shapiro’s Lemma in
[KPX14, Lemma 2.3.5] in the context of (¢, I')-modules and their cohomology.
The assertion in the corollary follows from Theorem 5.4.3. O

Recall the positive integer » € R, and n € KT we have fixed at the start of
this section (so that ¢ = xn).

DEFINITION 5.4.5. We denote by hf?‘*“ € chary (ﬁfW(Q,Vw,D;Z)) any fixed

generator. We also set

RMH = Z enh;"fﬁ € HIA,],
neA,

where e, is the idempotent associated to 7.

5.5 PROOFS OF THEOREM 4.3.3 AND COROLLARY 4.3.6

Before we go into the technical details, we outline the key ideas in the proofs
of these two results. As explained in [BLLV19, Proposition 5.3.2], the proof
of the factorization in Corollary 4.3.4 would have been straightforward if the
Beilinson—Flach elements BFi‘;: belonged to the image of the Perrin-Riou pro-
jectors pry , (which were introduced in Definition 4.1.8). We unfortunately
do not know if that is indeed the case. However, Proposition 5.5.4 quantifies
the potential failure of this property, in terms of the characteristic ideal of a
certain Pottharst-style Selmer group, which we have already studied in Sec-
tion 5.4. Using our result on the support of this ideal (Corollary 5.4.4 above),
we can then define the sought after multiplier ¢,, € Qu[A;] ® Frac(#) as in
Definition 5.5.8, whose denominator is a generator of the characteristic ideal of
the said Pottharst-style Selmer group.

Recall that for our fixed Dirichlet character x, we have set W := W@ W7 (1+
x), V := Sym? Wi(1+x) and Vy = SmeW}‘(l + ). We remark that all the
Hodge-Tate weights of V' are positive. This fact is crucial for our purposes.

DEFINITION 5.5.1. Let r € R, and let n € KT be a character. We denote by
{Fy:}i the set of completions of Q(r) at primes above p. We let

20 HE(Q(r)p, V) — Q(r) © H ® Deris(V)
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denote the Perrin-Riou map whose restriction to H, (F, i, Vy) is the corre-
sponding twist of the morphism Ly , ., introduced in Definition 4.1.6. For

each n € AT and for ¥ = xn we write

2W

PR HY(Qp, Vyp) — M @ Deris(Vip)

for the n~'-component of f;lzr
As in §4.3, we have the Beilinson—Flach element

BFM € HL (Q(r), W) @ H C HL(Q(r),V) & H (5.9)
for each positive integer r € R,.

REMARK 5.5.2. The equality (%) in (5.9) follows from Corollary 3.2.4 applied
with ¢ = nx (where n runs through characters of A,.) and twisted by the char-
acter w Jchc of I'. We also have

j?“) jgﬂ)
ML @), V) T AT @) V)

for the restriction of the Perrin-Riou maps to the semi-local cohomology for the
symmetric square. This combined with (%) in turn implies that

)

(1)
N © T€Sp = &

HATO resy .

Moreover, it follows from Proposition 2.1.8 combined with Corollary 3.2.4
(which amounts to the vanishing for the Iwasawa cohomology for the odd twists
of the alternating square) that

Al A
Ban = BFT,X .

Based on these remarks, we may easily go back and forth between the cohomo-
logical invariants of V. and W.

We recall from Definition 4.1.8 the projectors

Pr u
A* HE(Q(r), W)
N H V) ——=H'(Q

DEFINITION 5.5.3. For h;;"‘ as in Definition 5.4.5, we set hy, := Hk,u h%"“ ceH

and define
he =Y ephy-r € H[A,].
nel,
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Note that h, and 1og$€)+2/ log,(;zl have no common factor thanks to Corol-
lary 5.4.4.

PROPOSITION 5.5.4. For any choice of A\, u € {a, —a}, we have
hHIA,] € L) o ves, (HL(Q(r), V)
for the image of H{, (Q,V) under the Perrin-Riou map.

Proof. Tt suffices to prove this for each isotypic component. Namely, once we
verify that
1 1
hoH C f/\(;n o resy(Hyy, (Q, Vi)

for each character n € AT with 1 = xn, the proof will follow.

By the definition of the Selmer complex as a mapping cone, we have the fol-
lowing exact sequence:

Hl (@ Vw)@?‘[ res ~

0 — == W 2 T2 T gl (Qp, D (V) /D) — HE(Q, Vi, D)
w ’ri [ Iw y Vb [
Hllw(QanaDq—Z) ¢
(5.10)

where we recall our convention that for twists ¥ of ¥, by a character of I" (such
as our representation V; here), we denote the (¢, I")-submodule of DIig(”//)
corresponding to ]D):Z also by ]D);Z. Recall also that the (¢, T')-submodule ]D):;
depends on our choice of the pair A, u. Observe further that the map gx(l;i "
factors as

3(1)
Hi (Qp, Vy) @ H e M (5.11)

T /

H},(Qy, DY (Vi) /DY)

by its very definition. As the Perrin-Riou map

sz(l)

A, 1,m : Hllw(Qp; V’zﬁ) QH — H

is surjective, the proof follows from the exact sequence (5.10) and the choice of
. O

THEOREM 5.5.5. h,BF}¥ € pr, , (HL (Q(r), V)@ H) .

Proof. We may once again prove this one character at a time: For each n € AT
and 1 = xn, we shall verify that

hnBFg’” epry, (HL(Q,Vy) @ H) .
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Here, BEM ¢ H}.(Q,Vy) ® H is the image of the class BFi’)‘(‘, on projection
to the nfq—isotypic component.
Recall that the H-module H} (Q,Vy) ® H is free of rank 2 thanks to Theo-
rem 3.3.4. We fix a basis {)1, Y2} of this module and observe that
e (FIL(Q(), V) © H) = spany, (41,0002 = 43,0209

The fact that

HL,(Q, Vy) ® H/HL(Q, Vi, D) < Hi (Qp, DY (Vi) /D)

rig
is torsion free implies that
YN HL,(Q,Vy,Df) =0
for some i € {1,2}. The exact sequence (5.10) and factorization (5.11) yields

the following containments:

spany, (02” (1)

A, 1M
=Dry, (Hllw(@(r)a V)®H)
C H},(Q,Vy, DY) (5.12)
= (Hiw(Q,Vy) @ H) /H - V.

A, 1M

o resy(W1)Va — 2L resp(yQ)yl)

Case 1. Y, € ﬁfw((@, Vw,]]])j/j). In this case, it follows from (5.12) applied with
1 = 2 that

X)Slﬁn o resy(d)c € NSV (Hllw(@(r), V)® H)
for every class c € I;Tllw (Q, Vy, ]D):Z); in particular, this holds true with the choice

c= BFg’“. The proof in this case is complete on noticing that

Prop. 5.5.4

H. 7V o res, (Hyw(Q,Vy) @ H) > hy,

Aom © resy(d2) = z

TN/

since Z)Elgn o resp(Y1) =0.

Case 2. Vs € ﬁfw((@, Vw,ID)jZ). The proof of Case 1 carries over.

Case 3. )1,)» €& ﬁllw(@,Vw,ID);Z). In this case, it follows from (5.12)
(applied with both choices of i € {1,2}) that

(Tlf/\(}zm o resp(Mh) + 7“2,,?)52177 o resp(yg)) c€pry, (Hllw((@(r), V)®@H)
for any r1,72 € H and any c € ﬁfw((@, Vi, ]D)j/j) Since we have
fﬁzmo res, (Hllw((@, Vi) ® H) = spany{fk(zmo res,(Q1), 02”/\(27”0 res,(V2)},
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this amounts to saying that

g(l)

o © TCSp (H,(Q,Vy) @ H) e Cpry, (Hi(Q(r), V) ©H) .

By Proposition 5.5.4,

hyc € fﬁin o res, (Hpy, (Q, Vy) @ H) c.

On taking ¢ to be BF,A]’“, the proof follows. O

DEFINITION 5.5.6. For a fized positive integer r € R, and each character

n € 8” let {V1,Ya} be a basis of HL, (Q,Vy). Let d;;"‘ € H be the unique
element with the property that

hnBF;"“ = d;\f# . (X)Elzn o resy (M) V2 — f)fljn o resp(yg)yl) .

Note that the existence of df;’” 1s guaranteed by Theorem 5.5.5 and the descrip-
tion of pry ,, (H,(Q(r),V) @ H) in (5.12).

PROPOSITION 5.5.7. The elements df;’” € H are independent of A, .

Proof. To ease notation, we fix 7 and drop it from the notation we use for the
Perrin-Riou maps. With a slight abuse, we shall also write fﬁi in place of

1 .
.Z)SBL o res, to ease our notation here.
,

Notice that we have
hy e (BEY!) = —hy ) (BEY) (5.13)
by the explicit reciprocity law for Beilinson—Flach elements. On the other hand,

hn) (BEYH) = e - (2000020 02) — 2000 2. )
(5.14)

and
he ) (BEY ) =y - (). 00)-2000%) — 2. 0220 00)
(5.15)
On comparing (5.13), (5.14) and (5.15), we conclude that dy* = df;’“* . The
proof follows using in addition the fact that df;*“ = dﬁ;v)‘, which we have thanks
to Proposition 2.1.3 and Remark 5.5.2. o

From now on, we let d;, € H denote d;;"‘ (which we have just seen is independent
of A and p).
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DEFINITION 5.5.8. We set ¢, := d,/hy, € Frac(H) and

cr = Z ency—1 € Qp[A,] ® Frac(H).
7]637‘

In the statement of Theorem 4.3.3, we may take ¢,, to be the element given in
Definition 5.5.8. This satisfies properties (i)-(iii) and Theorem 4.3.3 follows.

5.6 ANALYTIC MAIN CONJECTURES WITH p-ADIC L-FUNCTIONS

We prove in this subsection results towards Pottharst-style Iwasawa main con-
jectures (Conjecture 5.6.2). Our main result is a divisibility statement (The-
orem 5.6.8) in these Iwasawa main conjectures, which is based on the divisi-
bility in (5.17). This divisibility is deduced using the Euler system of integral
(doubly-signed) Beilinson-Flach elements (that we have constructed in Corol-
lary 4.3.6 of our main technical result Theorem 4.3.3). Using global duality
and the reciprocity laws for Beilinson—Flach elements, we give a bound on the
Pottharst-style Selmer groups in terms of p-adic Rankin—Selberg L-functions
(see Theorem 5.6.8).

Recall that V := SmeW;(l +x) and A\, p € {£a}.

DEFINITION 5.6.1. Let 8, : Q) — E* be the character defined by 6y (p) =
px ' (p) and 6y (u) == u for u € Z}. Let Dy denote the rank one (o, T)-module
RE(dy). We set

o D# = (D ® Dy + Dy ®D,) ©Dy N DL (V),
° D; ZZID))\®DX®]D)X‘

CONJECTURE 5.6.2 (Analytic Iwasawa main conjecture). For j € {k +
2,...,2k + 2} even, the H-module e,; HZ (Q,V, D;) is torsion and

chary, ewjﬁfw(@v V, Di\() = €wi L}g)eom(sme f)\ ® Xﬁl) M.

We will explain how our results in §4.4 on the signed Iwasawa main conjectures
lead to partial results towards Conjecture 5.6.2. To this end, we assume until
the end of this article that the hypotheses of Theorem 4.4.5 hold. Fix also an
even integer j € {k+2,...,2k+2} and & = (&, M) € S as in Proposition 4.4.4.

PROPOSITION 5.6.3. e,,; Col® o resp(BF:X) = —¢,;Col* o resp(BFfX) #0.
Proof. The proof of the asserted equality is identical to the proof of [BLLV19,
Proposition 5.3.4], on replacing reference to Theorem 3.9.1 in op. cit. by The-

orem 5.5.5 here (with » = 1). The non-vanishing follows immediately from our
choice of &. O
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Recall that the Ap(I'1)-module e ; H(Q,T) is free of rank two by Theo-
rem 3.3.4. We fix from now on a Ap(I'1)-basis of this module denoted by

{Cl,Cg}.

PROPOSITION 5.6.4. There exist non-zero elements D, E1,E2 € Ap(T'1) satisfy-
mng
D- eijFfX = &1(Col® o res,(c1)ca — Col® o res, (ca)c1),

D. eijFlfx = 52(001. ores,(c1)ce — Col® o res,(c2)cy) .
The first relation holds in e,; H}-* (Q,T) while the second holds in
€wi H}-“ (Qa T) .
Furthermore, D - chary (e, H*(Q,T)) divides £, - chary (ewj coker(Col‘Y’)).
Proof. The existence of the non-zero elements D, &; and & follows from the
fact that the Ap(T'1)-module e,,; Hjl_-? (Q, T) has rank one for 7 € {&, #}, which

is a consequence of the locally restricted Euler system machinery (used as in
the proof of Theorem 4.4.5).

The proof proceeds as in the proof of [BLLV19, Proposition 7.4.4]. We set
Hj4(Qy, T) := H'(Qp, T)/H, (Qp, T)
By the Poitou-Tate global duality, we have the following long exact sequence
0 — Hz, (Q,T)/(Ao () - BF,) — H'(Q,T)/(BFY

1,x°
Hj o (Qy, T)
res/*(BF:X)

BF?X)

— Selg (Q, TV (1))Y — H*(Q,T) — 0, (5.16)

where res,/ g denotes the composition

H'(Q,T) =% HY(Q,.T) — H/4(Qy, T).

The locally restricted Euler system machinery shows (see Theorem 4.4.5) that

euichary, (Sela(Q, TV (1))Y) ] chary (ewj HL,(Q,T) / Ao(T) - eijFfX) .
(5.17)

Combining (5.16) and (5.17), we deduce that

-1
chary (ewj H?*(Q, 'H‘)) (CharH (ewj coker(Col"‘)) e, Col* o resp(BFf’X)

‘ chary ( cw 1(Q.T) ) . (5.18)

Coi (BF;’jx, BFQX)
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We set
Col® ores,(c1)  Col® ores,(c;)
det o Col = det v P :
et Col(4, &) ¢ (Col‘ oresy(ta) Col® ores,(ca)
Note that
Col® o res, (e, BF:X) =D& det o Col(i, ). (5.19)
By Proposition 5.6.4, we have
eijl(@ T) -2
char ! =D “E1Erdet o Col(h, &). 5.20
" <ew (BF* ,BF*)) e (4. 4) (5:20)

Combining (5.18), (5.19) and (5.20), we deduce the stated divisibility
D - chary (eijQ(Q, T)) | &1 - chary (echoker(Col"‘)) .

O

We will now use the bounds for the characteristic ideal of e.,; H(Q, T) obtained
in Proposition 5.6.4 to bound characteristic ideals of analytic Selmer groups.

DEFINITION 5.6.5. Let a,bq, by € H\ {0} be elements satisfying
a- BFi‘Q =b (L',E\l)A oresy(c1)ca — Ef\lz\ oresy(c2)c1)
a- BFi‘:;A = bo (L',g\l)_A oresy(c1)cy — Eg\l,)_/\ oresy(ca)c1) .
LEMMA 5.6.6. & = & and by = by. Moreover, a&1 = b1D.
Proof. The first equality follows from Proposition 5.6.3 and the second from

Proposition 5.5.7. The final assertion is immediate by the definitions of
D, &1,a,b; and Theorem 5.5.5 (applied with r = 1). O

PROPOSITION 5.6.7. We have the following divisibility of H-ideals

b D chary (ewj }NIIQW(Q, V, D;\(A)) ‘

Coi Jag! LV, DA
a& chary(cokerCol"‘) chary < w(@Q " )) -

B
H - e,/ BF}7,

Proof. The proof follows very closely that of [BLLV19, Proposition 7.4.6]. Note
that we have the following five term exact sequence of H-modules

Cwi ﬁllw (Q’ V. D;\<7A) — Cwi Hllw (Qa V) QH
PWY A N —
H - ey BFl,X H - erBFLX +H- e“’jBFLX
eij/l)\,/\(Q;Da V)

A=A
res/,\)\(eijFLX )

0—

— e HE(Q, VD) — ey HE(Q, V) @aAH — 0,
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where H/l,\,,\(vaV) = H{,(Q,,V) @ H(T)/H}, (Qp, D)) and res;y y is the

composition
res/an  Hiy(QV) @ H = Hiy(Qp, V) @4 HT) = HJy (@, V).

By Proposition 5.6.4 and the surjectivity of E(Al))\ : H/lA 1 (Qp, V) — M, the
proof follows. O

We finally conclude with the following divisibility towards analytic main con-
jectures, which is Theorem C in the introduction.
THEOREM 5.6.8. In the setting of Theorem 4.4.5, we have
chary ewjﬁfw(Q,V, ]D);) ’
chary (e,,; cokerCol®) ewiLp NN, (X 'er) L%eom(Sme Hheox™)
as ideals of H.

Proof. We start off with the following four-term exact sequence induced by the
definition of corresponding Selmer complexes:

€wi ﬁllw (Q’ V’ Diy)\) Cui Hllw(@P’ D)A(y)\)/Hllw(@P7 ]D)i\()
} P 3 . P
H e, BFTY H - egiresy (BFT)
— e HE(Q, VD)) — e, HE, (Q,V,D3) — 0 (5.21)

where res;, is the composition of the arrows
Hllw(@v Vv ]D);’/W — Hllw(@Pv D;M\) - Hllw(@Pv D21A>/Hllw(va D;) .

We note that the first injection in (5.21) is a special case of Proposition 5.3.7(iii)
(which tells us that I;Tllw (Q,V,D}) = 0). The asserted divisibility now follows
on combining Proposition 5.6.7 and the last identity of Lemma 5.6.6, together
with the definition of the geometric p-adic L-function. O
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