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Abstract. We develop a new cohomology theory in characteristic
p>0, the so called F-gauge cohomology, a cohomology with values in
the category of so-called F-gauges, which refines the crystalline coho-
mology. We mainly discuss the theory for smooth projective varieties
over perfect fields of characteristic p. We also compare our theory
with other existing structures like the F-zips of Moonen and Wedhorn
and the displays of Langer and Zink.
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1 Introduction

Let k be a field, ks a separable closure of k and Gk = Gal(ks/k). Let X
be a proper and smooth variety over k. This defines a morphism of topoi
π : Xét → (Spec k)ét. Let l be a prime number and F be any finite l-torsion
abelian sheaf over (Spec k)ét, such as Z/lnZ or µln (with n ∈ N), then, for any
j ∈ N, F = Rjπ∗π

∗F is again a finite abelian sheaf over (Spec k)ét. To know F
amounts to the same as knowing its Galois module, that is the finite abelian
group F(ks) (the fiber of F at the geometric point ks) with its natural linear
and discret action of Gk.
If l is different from the characteristic of k, this gives rises to a nice theory, the
étale l-adic cohomology which has many useful applications.

†The author passed away on 29. Januar 2019.

The editors would like to thank E. Lau for helping with the final version of the

manuscript.
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Assume now k is a perfect field of characteristic p > 0 and l = p. Then the étale
topology is not fine enough for many applications. For instance, the restriction
of µpn to the small étale site of k is just the trivial sheaf. If we now view π as
a morphism for the fppf topology

π : Xflat → (Spec k)flat

then F = R1π∗π
∗µpn is a finite commutative group scheme over k. To know F

amounts to the same as knowing its Dieudonné module, an elementary object
whose definition involves some linear algebra.
Now R1π∗π

∗µpn is a good object to consider. We could also consider
R1π∗π

∗
Z/pnZ but it would be too small for some applications. Too small

as well would be the sheaves Rjπ∗π
∗µpn for j > 1. Roughly speaking we want

to introduce some sheaves of p-torsion, the Sr
n (for n, r ∈ N (we shall have

S0
n = Z/pnZ and S1

n = µpn) and to consider the Rjπ∗π
∗Sr

n. They will be-
long to a nice class of p-torsion sheaves which are classified by their Dieudonné
modules (elementary objects generalizing the classical Dieudonné modules).
Technically,
i) we will have to use a topology which is weaker than the flat topology but
also stronger than the étale topology,
ii) the generalized Diedonné modules give more complicated objects, so-called
gauges, or rather ϕ-(or Frobenius-)gauges.

The aim of this paper is to give the definition of these ϕ-gauges, relate them
to previous constructions like Dieudonné modules, F -zips, or displays, and to
define a cohomology theory with values in ϕ-gauges, which refines crystalline
cohomology. For examples and applications we will rather concentrate on the
case of varieties over fields.

In following papers we will construct and discuss the functors between ϕ-gauges
and certain p-torsion sheaves for the syntomic cohomology, will develop a rel-
ative theory, and will discuss relations with p-adic Hodge theory over discrete
valuation rings.

Remark: Let K be a field of characteristic 0, complete with respect to a discrete
valuation, with perfect residue field k of characteristic p. Let K be an algebraic
closure ofK and GK = Gal(K/K). Let V be a crystalline representation of GK

with non negative Hodge-Tate weights and T aGK -stable Zp-lattice of V . Then
V/T may be viewed in a natural way as one of the fibers of a sheaf Γ for the
syntomic-étale topology over Spec OK (for instance, if the Hodge-Tate weights
are 0 and 1 this is a Barsotti-Tate group (or p-divisible group) over OK . This Γ
has a special fiber Γk and, roughly speaking the kernel of the multiplication
by pn on Γk is one of these nice p-torsion sheaves that we are constructing.
Somehow, the theory we develop here is the special fiber of classical p-adic
Hodge theory.
One application we expect from this theory is to deformation of Galois repre-
sentations coming from algebraic geometry. As we just said, these may often
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be extended in a natural way to a p-adic sheaf for the syntomic-étale topology.
The knowledge of the p-adic sheaf is equivalent to the knowledge of the Galois
representation. But when we take sub-quotients killed by a power of p, this is
no more true in general and it may be wise to look at the deformations of the
sheaves rather than just at the deformations of the Galois representations. In
the case of Barsotti-Tate groups, this idea has already been used by Kisin [Ki].
A long time ago, just after our joint work on p-adic Hodge theory, William
Messing and one of us (JMF) started to think about this kind of things. What
follows is just a continuation of this old work which has never been completed
and we want to thank Bill heartily for the old and new discussions we had with
him on that.

This paper is organized as follows: In section 1, we introduce the notion of
gauges, ϕ-modules, and ϕ-gauges, which are the basic objects from linear al-
gebra which give rise to the notion of generalized Dieudonné modules. In
section 2, we study how these structures arise from (virtual) W -crystals, where
W = W (k) is the ring of Witt vectors for a perfect field of characteristic p,
and we discuss properties of the new category in this case. In sections 3 and
4 we consider arbitrary schemes in positive characteristic and show that our
theory contains and extends the theories of F -zips and displays. In sections 5
and 6 we discuss the different Grothendieck topologies that we are going to use
and their basic properties. In section 7 we recall the definitions and properties
of the syntomic sheaves of rings Ocris

n and we explain how one can use these
rings to get a gauge of rings G, also called the universal gauge, which is central
for our theory. In section 8 we define the gauge cohomology (cohomology the-
ory with values in the category of gauges) which is a refinement of crystalline
cohomology, and we give some first properties.

2 Graded objects, gauges, ϕ-modules, ϕ-gauges, and ϕ-rings

2.1 Graded objects and p-gauges

By a graded object in an abelian category A we mean a Z-graded object, which
is just a collection A = (An) of objects indexed by Z. If direct sums exist in A,
we may also think of the direct sum ⊕nA

n. A morphism f : A→ B of graded
objects of degree d is a collection of morphisms fn : An → Bn+d. A morphism
of graded objects is a morphism of degree 0. Graded objects in A form again
an abelian category.

Fix a prime p. A p-gauge in A is a graded object M in A together with a
morphism f of degree 1 and a morphism v of degree −1

. . . ⇄ M r−1
f

⇄
v
M r

f

⇄
v
M r+1

⇄ . . .

with fv = p = vf . Morphisms of p-gauges are morphisms α of graded object
which are compatible with f and v (i.e., αf = fα and αv = vα).
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If, for example, A is the category of modules over a ring, then a p-gauge is
simply a module over the commutative graded ring D(R) = R[f, v]/(fv − p),
where R[f, v] is the free graded ring generated by f in degree 1 and v in degree
−1.

For −∞ ≤ a ≤ b ≤ ∞ we say that the p-gauge (M, f, v) is concentrated in the
interval [a, b], if v is an isomorphism to the left of Ma and f is an isomorphism
to the right of M b. If a and b are finite, then such a p-gauge is just determined
by the finite diagram

Ma
⇄ . . . ⇄ M r−1

f

⇄
v
M r

f

⇄
v
M r+1

⇄ . . . ⇄ M b ,

because everything is determined outside the interval [a, b].

Call a p-gauge over a ring R (i.e., in the category of R-modules) of finite type,
if it is finitely generated as a module over D(R) = R[f, v]/(fv − p).

Lemma 2.1.1. Let R be a noetherian ring, and let M be a p-gauge of R-modules.
Then the following conditions are equivalent.

(a) M is of finite type.

(b) Each M r is finitely generated as an R-module, and M is concentrated in
a finite interval (i.e., f : M r → M r+1 is an isomorphism for r >> 0 and
v : M r →M r−1 is an isomorphism for r << 0).

Proof. (Compare the positively graded case in [GW], Lemma 13.10.) Assume
(a) and let m1, . . . ,mr be generators of M , without restriction each mi ho-
mogenous of degree di ∈ Z, say. Let dmin be the minimum of the di, and let
dmax be their maximum. Then every element of Mn is a R-linear combination
of the elements in the set

Sn = { fami | a ≥ 0, n = a+ di } ∪ { v
bmi | b ≥ 0, n = di − b } .

(Note that fv = p = vf .) Since

dmin − n ≤ b = di − n ≤ dmax − n and n− dmax ≤ a− di ≤ n− dmin ,

these are finitely many elements, which shows the first claim in (a).
For the second claim we first note that f : Mn → Mn+1 is surjective for
n ≥ dmax. In fact, for the elements vbmi with n + 1 = di − b and b ≥ 0
in the generating set Sn+1 above we would have di − b = n + 1 ≥ dmax + 1,
i.e., di ≥ dmax + 1, a contradiction. Hence these elements do not appear.
Moreover, for the elements fami with a+ di = n+1 ≥ dmax +1 we must have
a ≥ dmax − di + 1 ≥ 1.

Next, for d = dmax the sequence of surjections Md
f
։Md+1

f
։Md+2

f
։ . . .

becomes stationary, because R is noetherian and all M i are finitely generated.
Thus f : Mn → Mn+1 is bijective for n >> 0. In a similar (dual) way one
proves that v : Mn+1 →Mn is an isomorphism for n << 0.
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The converse implication from (b) to (a) is easier: If M is concentrated in the
finite interval [a, b], and F is a finite generating set for the R-module Ma ⊕
Ma+1 ⊕ . . . ⊕M b−1 ⊕M b, then F is a generating set for the graded D(R)-
module M .

In the following we will always fix a prime p and will omit it in the notation. Of
course we could make a more general definition and replace the multiplication
by p by any natural transformation t : idA → idA.

2.2 ϕ-modules and ϕ-gauges

For any gauge (M, f, v) in A we define

M+∞ = lim
−→

r 7→+∞

M r and M−∞ = lim
−→

r 7→−∞

M r ,

where the transition morphisms are given by the morphisms f and the mor-
phisms v, respectively, and where these objects either exist as direct limits in
A or as objects in the Ind-category of A.

Now let σ : A → A be some endomorphism of A. A ϕ-module (with respect to
σ) is a gauge (M, f, v) together with a morphisms

ϕ : σ(M+∞) −→M−∞ .

Morphisms of ϕ-modules are morphisms α of gauges which are compatible
with ϕ (i.e., for the morphisms α+∞ and α−∞ induced by α on the limit terms
one has ϕσ(α+∞) = α−∞ϕ). A ϕ-gauge is a ϕ-module for which ϕ is an
isomorphism. If the formation of inductive limits is exact, then it is easy to see
that the ϕ-modules form an abelian category if σ is right-exact, and that the
category of ϕ-gauges is abelian if σ is exact.

2.3 Tensor products of graded modules and gauges

To fix ideas let T be a topos. Assume that T is the topos of sheaves over C for
the topology E.
If F is a sheaf of sets (or groups, or ...), a global section of F s a collection
(sU )U∈ObC such that, for any morphism f : V → U of C, we have f−1(sU ) = sV .
The global sections of F form a set (resp. a group,...) Γ(F). If C has a final
object S, we have Γ(F) = F(S).
Below we will consider groups, rings, modules in T , but for simplicity, we will
omit T and do as if we were just using plain groups, rings, modules (which
would correspond to the trivial topos), by thinking of local sections,.... at least
when the extension of the things considered to the general setting is completely
straightforward. In the whole paper, a graded ring is a commutative graded
ring with grading indexed by Z.
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Let R = ⊕r∈ZR
r be such a graded ring . A graded R-module is an R-module M

together with a decomposition M = ⊕r∈ZM
r of M into a direct sum of abelian

groups such that, if r, s ∈ Z, λ ∈ Rr and x ∈M s, then λx ∈M r+s. The graded
R-modules form a Γ(R0)-linear abelian category.
Let M and N be two graded R-modules. For r ∈ Z, set (M ⊗R0 N)r =
⊕i+j=rM

i⊗R0 N j. Let Lr be the sub-group of (M ⊗R0 N)r (locally) generated
by the λx ⊗ y − x ⊗ λy, for λ ∈ Ri, x ∈ M j, y ∈ Nk and i + j + k = r. We
have M ⊗R0 N = ⊕r∈Z(M ⊗R0 N)r and

M ⊗R N = ⊕r∈Z(M ⊗R N)r with (M ⊗R N)r = (M ⊗R0 N)r/Lr

This endows M ⊗R N with a structure of graded R-module. In this way,
graded-R-modules form a tensor category.
If M is a graded R-module, for any i ∈ Z,the i-th Tate twist of M is the
graded R-module whose underlying R-Module is M and with M(i)r = M r+i.
The functor M 7→ M(1), from the category of graded R-Modules to itself, is
an equivalence of categories, with M 7→ M(−1) as a quasi-inverse. We have
M(0) = M , M(i+ j) = M(i)(j) (∀i, j ∈ Z) and M(i) = R(i)⊗R M .
A free graded R-module of rank 1 is a graded R-module isomorphic to an R(i),
for some i ∈ Z. A graded R-module M is called free if it can be written as a
direct sum of free R-modules of rank 1. For any graded R-module M there is
a canonical bijection

Hom(R(i),M)
∼
−→Γ(M−i) ,

sending a morphism R(i) → M to the image of 1 ∈ Γ(R(i)−i) = R. Thus
an R-Module can be written as a quotient of a free graded R-module if and
only if it is generated by global sections (this is always the case, if the topos is
trivial !).
If R is a graded ring, and I ⊂ R is a graded ideal, i.e., generated by homo-
geneous elements, then R/I is naturally a graded ring. We can apply this
to the category of gauges: if R0 is a ring (in T ), then the category of R0-
gauges in T is equivalent to the category of graded D(R0)-modules, where
D(R0) = R0[f, v]/(fv− p) is the graded ring (in T ) defined similarly as in sec-
tion 1.1. Therefore there is a natural tensor product M ⊗N of R0-gauges M
and N in T , defined as the tensor product M ⊗D(R0) N .
One easily sees that, for R0-gauges M and N , one has canonical isomorphisms

(M⊗D(R0)N)+∞ ∼= M+∞⊗R0
N+∞ and (M⊗D(R0)N)−∞ ∼= M−∞⊗R0

N−∞ .

As a consequence, if σ is an endomorphism of the category of R0-modules, and
is a tensor morphism, there is a canonical tensor product on the category of
ϕ-modules of R0-modules with respect to σ, by endowing M × N with the
following ϕ:

σ(M+∞ ⊗R0
M+∞) ∼= σ(M+∞)⊗R0

σ(M+∞)
ϕM⊗ϕN
−→ M−∞ ⊗R0

N−∞ .

Obviously, this respects the subcategory of ϕ-gauges.
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2.4 ϕ-rings, and ϕ-modules and ϕ-gauges over them

We need a certain generalization of the considerations in the previous section.
As there, we consider objects (rings, modules, etc.) in some topos T , and
suppress the mentioning of T . Consider a triple (R, f, v) where R = ⊕n∈ZR

n

is a Z-graded commutative ring (in T ) with f ∈ Γ(R1) and v ∈ Γ(R−1). Set

R+∞ = R/(f − 1) and R−∞ = R/(v − 1)

Observe that we may identify these two rings, as R0-modules, to the direct
limits

R+∞ = lim
−→

r 7→+∞

Rr and R−∞ = lim
−→

r 7→−∞

Rr

(the transition maps being given by multiplication by f (resp v).
We define a ϕ-ring as a quadruple (R, f, v, ϕ) with (R, f, v) as above and

ϕ : R+∞ −→ R−∞

a morphism of rings. If this is an isomorphism, we call (R, f, v, ϕ) a perfect
ϕ-ring.

Let R = (R, f, v, ϕ) a ϕ-ring. If M is a graded R-module, we may consider
the R+∞-module M+∞ = R+∞ ⊗R M = M/(f − 1)M and the R−∞-Module
M−∞ = R−∞ ⊗R M = M/(v − 1)M . Observe that, as R0-modules, we also
have the identifications

M+∞ = lim
−→

r 7→+∞

M r and M−∞ = lim
−→

r 7→−∞

M r

A ϕ-R-module is a pair (M,ϕ) where M is a graded R-module and

ϕ : M+∞ −→M−∞

is a morphism of groups such that ϕ(λx) = ϕ(λ)ϕ(x) for λ ∈ R+∞ and x ∈
M+∞.
A ϕ-R-gauge is a ϕ-R-module (M,ϕM ) such that the canonical morphism of
R−∞-modules

ϕ′
M : R−∞

ϕR
⊗

R+∞

M+∞ −→M−∞

induced by ϕM is an isomorphism. If (R,ϕR) is a perfect ϕ-ring, this holds if
and only if ϕM is an isomorphism.
With obvious definitions of morphisms, the graded R-modules and the ϕ-R-
modules are abelian categories with enough injectives. As a full sub-category
of the category of ϕ-R-modules, the category of ϕ-R-gauges is stable under
direct sums and direct factors. If R is a perfect ϕ-ring, it is also stable under
kernels and cokernels and therefore also abelian (here we use the exactness of
the formation of M+∞ and M−∞).
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If M and N are two ϕ-R-modules, we have

(M⊗RN)+∞ = M+∞⊗R+∞N+∞ and (M⊗RN)−∞ = M−∞⊗R−∞N−∞ .

Therefore, the morphism ϕ⊗ϕ endowsM⊗RN with a structure of ϕ-R-Module
(which is a ϕ-R-gauge if M and N are ϕ-R-gauges). With this tensor product,
ϕ-R-modules and ϕ-R-gauges become tensor categories.
For any graded R-module M and any i ∈ Z, we have M(i)+∞ = M+∞ and
M(i)−∞ = M−∞. This allows us to extend the definition of Tate twists to
ϕ-R-modules and ϕ-R-gauges in an obvious way.

3 Gauges over a perfect field

3.1 Preliminaries

Assume R is a graded ring with f ∈ R1 and v ∈ R−1 such that R = R0[f, v].

If fv is not a zero divisor in R0, the natural maps R0 → R+∞ and R0 → R−∞

are isomorphisms and to give a map ϕ : R+∞ → R−∞ such that (R, f, v, ϕ) is
a perfect ϕ-ring is the same as giving an automorphism ϕ of the ring R0.
If moreover fv is invertible in R0, the correspondence M 7→ M0 induces an
equivalence between the category of graded R-modules and the category of R0-
modules. Let R0[ϕ] the (non-commutative if ϕ 6= idR0) ring generated by R0

and an element ϕ, with the relation that ϕλ = ϕ(λ).ϕ, for λ ∈ R0. Similarly, let
R0[ϕ, ϕ−1] the ring generated over R0[ϕ] by an element ϕ−1 with the relations
ϕ.ϕ−1 = ϕ−1ϕ = 1 and λϕ−1 = ϕ−1ϕ(λ) for λ ∈ R0. The previous equivalence
of categories induces an equivalence between
– ϕ-R-modules and left R0[ϕ]-modules,
– ϕ-R-gauges and left R0[ϕ, ϕ−1]-modules.
In these equivalences, the tensor product becomes the tensor product over R0.

The situation is slightly more complicated when fv is not invertible. This is the
situation for our generalized Dieudonné modules : We chose a perfect field k of
characteristic p and we let W = W (k) be the ring of Witt vectors over k and,
for any n ∈ N, we let Wn = Wn(k) = W/pn be the ring of n-th truncated Witt
vectors. To cover both cases, we write Wn for n ∈ N∪ {∞}, where W∞ := W .
Then Wn-gauges, i.e., gauges of Wn-modules, are simply graded modules over
the ring Dn = Dn(k) = Wn[f, v]/(fv − p).

We turn Dn into a perfect ϕ-ring by taking for ϕ the absolute Frobenius σ :
D+∞

n = Wn −→Wn = D−∞, which is an isomorphism by perfectness of k.
Hence a ϕ-Wn-module is a Wn-gauge (M, f, v) together with a group homo-
morphism ϕ : M+∞ →M−∞ which is semi-linear with respect to the absolute
Frobenius σ on Wn.
We say that a Wn-gauge or ϕ-Wn-gauge M is of finite type, if the associated
Dn-module is finitely generated. As we have seen in section 2.1, M is then
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concentrated in a finite interval [a, b] and is just given by the finite diagram of
finitely generated Wn-modules

Ma
⇄ . . . ⇄ M r−1

f

⇄
v
M r

f

⇄
v
M r+1

⇄ . . . ⇄ M b ,

such that fv = vf = p (For r > b , we use the multiplication by f b−r to identify
M b toM r. Similarly, for r < a, we use multiplication by va−r to identify Ma to
M r). The structure of a ϕ-module is obtained by adding a σ-semi-linear map
ϕ : M b → Ma (because, we have canonical identifications M+∞ = M b and
M−∞ = Ma). The ϕ-module M will be a ϕ-gauge if and only if ϕ : M b →Ma

is bijective.

Let G
[a,b]
ft (Wn) be the category of finite-type Wn-gauges which are concentrated

in [a, b]. If M is an object of G
[a,b]
ft (Wn) and N an object of G

[a′,b′]
ft (Wn), then

M ⊗ N is an object of G
[a+a′,b+b′]
ft (Wn). If M is an object of G

[a,b]
ft (Wn) and

i ∈ Z, then M(i) is an object of G
[a−i,b−i]
ft (Wn).

3.2 The standard construction: p-divisibility of Frobenius

The idea of gauges is related to the following construction, going back to ideas
of Mazur and Kato. Let B be the fraction field of W .
Let D be an isocrystal over k, i.e., a finite dimensional B-vector space with
a σ-semi-linear isomorphism φ : D → D, and let M be a lattice in D, i.e., a
finitely generated W -submodule with M ⊗W B ∼= D. We call such object a
virtual crystal over k (and a crystal if φ(M) ⊂M). For r ∈ Z define

M r = {m ∈M | φ(m) ∈ prM } ,

let f : M r →M r+1 be the multiplication by p, and let v : M r+1 →M r be the
inclusion. Then (M ·, f, v) is a Wn-gauge. Moreover, by finite generation of M
one has integers a ≤ b with pbM ⊆ φ(M) ⊆ paM . The last inclusion implies
that M ⊂Ma and hence the inclusions M r ⊂M ⊂Ma ⊂M are isomorphisms
for r ≤ a. The first inclusion implies that M r = pr−bM b for r ≥ b. In fact,
if x ∈ M r, i.e., φ(x) = pry = pr−bpby with y ∈ M , then pby = φ(z) with
z ∈ M . This implies φ(x) = φ(pr−bz) and hence x = pr−bz, where z ∈ M b.
We conclude that the gauge is concentrated in the interval [a, b].
Moreover, we get a canonical structure of a ϕ-W -gauge. In fact, we have natural
σ-semi-linear homomorphisms

ϕr : M r →M = M−∞ ,

by sending x ∈ M r to p−rφ(x). These are compatible (ϕr+1(fx) =
p−r−1ϕ(px) = p−rϕ(x) = ϕr(x)) and thus define a σ-semi-linear morphism

ϕ : M+∞ = lim
−→

r 7→+∞

M r −→M−∞ ,

which is easily seen to be an isomorphism. Moreover, one sees
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Theorem 3.2.1. The above construction gives a fully faithful embedding of
categories

( virtual crystals (D,φ,M) over k) −→

( finite type ϕ-W -gauges with free components ) .

Now we want to characterize the essential image of this functor. If (M, f, v) is
a gauge, then we let

fr : M
r −→M+∞ and vr : M r −→M−∞

be the canonical morphisms into the respective inductive limits. We introduce
the following definitions, which will also be of use later.

Definition 3.2.2. Let A be an Fp-linear abelian category. A gauge (M, f, v)
in A is called

(a) strict, if the morphism

(fr, vr) : M
r −→M+∞ ⊕M−∞

is a monomorphism for all r ∈ Z,

(b) quasi-rigid, if the sequence

M r f
−→M r+1 v

−→M r f
−→M r+1

is exact for all r ∈ Z,

(c) rigid, if M is strict and quasi-rigid.

We note that, in general, the notion of (quasi-)rigidity makes sense only if the
objects are annihilated by p, since vf = p = vf .

Lemma 3.2.3. Let M be a quasi-rigid gauge, and assume that one M s has finite
length. Then all M r have finite length and have the same length.

Proof. For the morphisms f (r) : M r → M r+1 and v(r+1) : M r+1 → M r we
have exact sequences

0→ im(v(r+1)) →֒M r
f
։ im(f (r))→ 0;

0→ im(f (r)) →֒M r+1 v
։ im(v(r+1))→ 0 .

This implies that M r and M r+1 have the same length, hence the claim.

Now we consider gauges over a field k of characteristic p > 0. We have the
following Nakayama-type lemma:

Lemma 3.2.4. Let M be a gauge of finite type over k. If M/(f, v)M = 0,
then M = 0. As a consequence, if m1, . . . ,mr are homogeneous elements in M
whose residue classes generate M/(f, v) as a k-vector space, then these elements
generate M (as a D(k) = k[f, v]/(fv)-module).
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Proof. Assume that M/(f, v)M = 0 and let m ∈ M s for some s. Then there
exist elements m1

s−1 ∈M s−1 and m2
s+1 ∈M s+1 with m = fm1

s−1+vm2
s+1. By

induction, and noting that fv = vf = p = 0, for each n > 0 we get elements
m1

s−n ∈M s−n and m2
s+n ∈M s+n with

m = fnm1
s−n + vnm2

s+n .

We see that m = 0, since f = 0 on M s−n for n >> 0 and v = 0 on M s+n

for n >> 0, because v is an isomorphism on M r for r << 0 and f is an
isomorphism on M r for r >> 0, and fv = vf = 0. The second claim follows in
a standard way, by looking atM/N , whereN is the sub-D(k)-module generated
by m1, . . . ,mr.

We derive from this the following criterion.

Lemma 3.2.5. Let M be a k-gauge of finite type. Then the following are equiv-
alent.

(a) M is free.

(b) M is rigid.

(c) The maps M r/v
f
−→M r+1/v and M r/f

v
←−M r+1/f are injective for all

r.

Here we have used the short notation M r/v for (M/(v))r or, explicitly,
M r/vM r+1; similarly for M r/f .

Proof. Obviously, (b) holds for the free gauge k = k(0) (see the definition in
section 2.3), i.e., the module M = D = k[f, v]/(fv), where M/v is a free k[f ]-
module and M/f is a free k[v]-module. In fact, this gauge corresponds to the
diagram

. . .
0

⇄
id

k
0

⇄
id

k
id

⇄
0
k

id

⇄
0
. . . ,

where the middle k is placed in degree 0. One immediately sees strictness
(ker(v)∩ker(f) = 0) and quasi-rigidity (ker(f) = im(v) and ker(v) = im(f)) at
all places. Thus (b) holds for gauges k(i) by degree shifting, and for arbitrary
free gauges by taking sums.

On the other hand, (b) implies (c). In fact, for the injectivity of

M r/v
f
→M r+1/v assume that f(x) = v(y) =: a for x ∈ M r and y ∈ M r+2.

By rigidity we have 0 = ker(v) ∩ ker(f) = im(f) ∩ im(v), so that a = 0. Since
ker(f) = im(v), f(x) = 0 implies x ∈ im(v) as claimed. The injectivity of

M r+1/f
v
→M r/f follows dually: If v(y) = f(x), then y ∈ ker(v) = im(f).

We also note that (c) immediately implies that M is quasi-rigid: We have a

factorization M r/v
f
→M r+1

։ M r+1/v, so that (c) implies ker(f) = im(v).
Similarly, (c) implies ker(v) = im(f).
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Finally we show that (c) implies (a). We may assume that M is concentrated
in the finite interval [a, b], and then (c) gives a sequence of injections of finite-
dimensional k-vector spaces

. . .→ 0→Ma/v →֒Ma+1/v →֒ . . . →֒M b/v = M b f
→
∼
M b+1 f

→
∼
. . .

Note that M r−1 v
←M r is an isomorphism for r ≤ a, and that M r v

←M r+1

is zero for r ≥ b, because the map f in the other direction is bijective, and
fv = p = 0. Now take a k basisma

1 , . . .m
a
da

ofMa/v, a k-basisma+1
1 , . . . ,ma+1

da+1

of (Ma+1/v)/f(Ma/v) = Ma+1/(v, f) etc. up to a k-basismb
1, . . . ofM

b/(f, b),
and lift these elements to elements m̂a

1 , . . . m̂
a
da
, m̂a+1

1 , . . . in Ma, Ma+1 etc.
Then the universal property of the free gauges k(i) (see section 2.3) gives a
morphism of k-gauges

g : F =

b
⊕

i=a

k(−i)di −→M

mapping the canonical elements of k(−i)i to the elements m̂i
1, . . . , m̂

i
di
. Since

this map is surjective modulo (f, v), it is surjective by lemma 3.2.4. Moreover,
by construction the map F b → M b/v = M b is bijective: both spaces have
dimension d = da + . . . + db. But, as remarked above, (c) implies that M is
quasi-rigid, so that each M r has dimension d, and the same is true for each F r.
Therefore the surjective map g is an isomorphism, and we have shown (a).

We draw the following consequences for W (k)-gauges for a perfect field k.

Corollary 3.2.6. Let k be a perfect field of characteristic p > 0, and let M
be gauge of finite type over W = W (k). If M/(p, f, v)M = 0, then M = 0.
Consequently, M is generated by homogeneous elements m1, . . . ,mr if and only
if their residue classes generate M/(p, f, v)M .

Proof. This follows from lemma 3.2.4 by the usual Nakayama lemma for the
local ring W , because the components M s of M are finitely generated W -
modules.

Next we characterize free W -gauges of finite type. Obviously, their components
are free W -modules. But this condition does not suffice.

Theorem 3.2.7. Let M be a W -gauge of finite type with free components. Then
the following conditions are equivalent.

(a) M is a free W -gauge.

(b) N = M/pM is a free k-gauge.

(c) The map M r/v
f
−→M r+1/v is injective for all r.

(d) The map M r+1/f
v
−→M r/f is injective for all r.
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Proof. (a) trivially implies (b), but (b) also implies (a): Assume N = M/pM
is free, say isomorphic to ⊕ik(i)

di . By the universal property of free gauges (=
free modules over D(k) and D(W ), respectively) we can lift the isomorphism
modulo p to a morphism F = ⊕iW (i)di → M , which is surjective by corol-
lary 3.2.6. Since this map is an isomorphism modulo p, and all components are
free W -modules, it is an isomorphism.
Next we remark that the maps in (c) and (d) can be identified with the maps

N r/v
f
−→N r+1/v and N r+1/f

v
−→N r/f ,

respectively, because pM is contained in both fM and vM , by the equality
fv = vf = p.
Therefore (b) is equivalent to the conjunction of (c) and (d), by Lemma 3.2.5.
But (c) and (d) are in fact equivalent in our situation: Assume (c). To show
the injectivity in (d) let y ∈ M r+1 with v(y) = f(x), where x ∈ M r−1. Then
(c) implies x = v(z) with z ∈ M r. We get v(y) = f(v(z)) = v(f(z), and
hence that y = f(z), because v is injective (fv = p, and M is torsion-free as
W -module). A similar reasoning shows that also (d) implies (c), again since M
is a torsion-free W -module. Therefore properties (a) to (d) are equivalent.

Corollary 3.2.8. A W -gauge of finite type M is free if and only if it comes
from a virtual crystal over k, i.e., is the underlying gauge of a ϕ-W -gauge in
the essential image of the functor in theorem 3.2.1.

Proof. Assume that M comes from the virtual k-crystal (D,φ, L). Then M
has free components, and we show condition (c) in theorem 3.2.7. We have

M r = { x ∈ L | φ(x) ∈ prL } , f(x) = px , and v(x) = x ,

by definition. Now let x ∈ M r with f(x) = v(y) for y ∈ M r+2. Then, by
definition, we have x, y ∈ L satisfying φ(x) = prz with z ∈ L and φ(y) = pr+2t
with t ∈ L, and px = y. Then pr+1z = pφ(x) = φ(px) = φ(y) = pr+2t
and hence z = pt, since L is torsion-free. This implies φ(x) = pr+1t, i.e.,
x ∈ vM r+2. Conversely we show that any free W -gauge arises from a virtual
crystal. By considering sums in both categories, we may consider the case
M = W (i) for some i ∈ Z. But this gauge arises from the virtual crystal
(B, φ,W ) where φ(b) = p−iσ(b).

We can now strengthen this result and characterize the image of the functor in
theorem 3.2.1.

Theorem 3.2.9. A ϕ-W -gauge (M, f, v, ϕ) of finite type comes from a virtual
crystal over k, i.e., lies in the essential image of the functor in theorem 3.2.1,
if and only if the underlying gauge is a free W -gauge.

Proof. One direction follows from corollary 3.2.8. For the other direction as-
sume that (M, f, v) is free. Assume that M is concentrated in the finite interval
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[a, b]. The functor in theorem 3.2.1 is compatible with twists: If φ is multiplied
by pi, then the associated gauge M is replaced by M(−i). Therefore we may
assume that a = 0. Then the ϕ-W -gauge corresponds to the finite diagram

M0
f

⇄
v
. . .

f

⇄
v
M r−1

f

⇄
v
M r

f

⇄
v
M r+1

f

⇄
v
. . .

f

⇄
v
M b ,

together with a σ-semi-linear isomorphism

ϕ : M+∞ = M b ∼
−→M0 = M−∞ .

All maps f and v are injective, because fv = vf = p. Let L = M0, and define
the σ-linear endomorphism

φ = ϕ ◦ f b : L = M0 fb

−→M b ϕ
−→
∼

M0 = L .

Then (L,ϕ) is a crystal over k, and we claim that the associated ϕ-W -gauge is
canonically isomorphic to (M, f, v, ϕ). In fact, first we claim that, for 0 ≤ r ≤ b,
the injective map vr : M r → L has the image Lr = { x ∈ L | φ(x) ∈ prL }.
First of all, we have φ(vrx) = ϕ(f bvrx) = ϕ(prf b−rx) ∈ prL. Conversely, by
the assumption and criterion (c) in theorem 3.2.7, all maps

M0/vM1 f
−→M1/vM2 f

−→M2/vM3 f
−→ . . .

are injective. If now x ∈ L = M0 with φ(x) = ϕ(f bx) = pry with y ∈ L, then
f bx = prϕ−1y = f rvrϕ−1y and hence f b−rx = vrϕ−1y by injectivity of f .
By the sequence of injective maps above this implies inductively x = vx1 with
x1 ∈ M1, hence f b−rvx1 = vrϕ−1y, hence f b−rx1 = vr−1ϕ−1y by injectivity
of v on M , hence x1 = vx2 with x2 ∈ M2 etc. and inductively x = vrxr with
xr ∈M r. Thus we have Lr = vrM r as claimed.
Identifying Lr with M r via vr the maps v become inclusions, and the maps f
become multiplication by p, because fv = p. Finally one sees that the map
ϕ : M b −→ M0 identifies with p−bφ : Lb −→ L0, sending y to p−bφ(y) as in
the construction of the ϕ-gauge associated to (L, φ).

Corollary 3.2.10. The functor in theorem 3.2.1 induces an equivalence of
categories

( virtual crystals (D,φ,M) over k) −→

( finite type free ϕ-W -gauges (M, f, v, ϕ)) ,

where we call a ϕ-W -gauge free if the underlying gauge is free.

Remark 3.2.11 Let M be a W -gauge of finite type with free components.
If M is concentrated in a point, i.e., in an interval [a, a], then it is obviously
free, viz., isomorphic to W (−a)d for some d. If M is concentrated in an interval
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of length 1, it is free as well. For this we use criterion (c) from theorem 3.2.7.
If M is represented by

Ma
f

⇄
v
Ma+1 ,

we only have to show the injectivity of f : Ma/vMa+1 → Ma+1/vMa+2; the
injectivity at the other places is clear. But the image of v : Ma+2 → Ma+1 is
pMa+1, and if x ∈ Ma and fx = vy = pz = fvz with z ∈ Ma+1, then x = vz
by injectivity of f .

But already if M is concentrated in an interval of length 2, M is not in general
free. A counterexample is the W -gauge

N
p

⇄
⊃
pN

p

⇄
=
pN ,

for any free W -module N 6= 0, since here N/v = N/p → pN/v = 0 is not
injective.

3.3 Gauges and Dieudonné modules.

A Dieudonné-module of finite type over k is a W -module of finite type M
endowed with two additive endomorphisms F and V such that

FV = V F = p and F (λx) = σ(λ)Fx , V (σ(λ)x) = λV x (∀λ ∈ W, ∀x ∈M)

With an obvious definition of morphisms, Dieudonné modules of finite type
over k form a Zp-linear abelian category Dieud(k).

Let M be an object of the category ϕ-G
[−1,0]
ft (W ) of finite-type ϕ-W -gauges

which are concentrated in [−1, 0]. To give M is the same as giving
(M−1,M0, f, v, ϕ) where M−1 and M0 are W -modules of finite type, f :
M−1 → M0 and v : M0 → M−1 are W -linear maps such that fv = pidM0

and vf = pidM−1 and ϕ : M0 → M−1 is a bijective ϕ-linear map. We define
F, V : M−1 → M−1 by F = ϕf and V = vϕ−1. This turns M−1 into a
Dieudonné module of finite type over k. In this way, we get a functor

ϕ-G
[−1,0]
ft (W ) −→ Dieud(k) ,

which is an equivalence of categories.

Dieudonné-modules arise from p-divisible groups over k or from the first crys-
talline cohomology of smooth projective varieties X over k. By the theory
of the de Rham-Witt complex, the i-th crystalline cohomology of X gets the
structure of what could be called a ‘Dieudonné-module of weight i’: a finitely
generated W -module M together with a σ-linear endomorphism F and a σ−1-
linear endomorphism V such that FV = V F = pi. Such a structure can also
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be obtained by a ϕ-gauge with free components which is concentrated in an
interval of length i,

Ma
⇄ . . . ⇄ M r−1

f

⇄
v
M r

f

⇄
v
M r+1

⇄ . . . ⇄ Ma+i ϕ
−→
∼

Ma ,

by letting M = Ma, F = ϕf i, and V = viϕ−1. This gives a functor

G
[a,a+i]
ft (W ) −→ Dieudi(k) ,

where Dieudi(k) is the category of Dieudonné-modules of weight i, whose mor-
phisms are linear maps compatible with F and V . However, for i > 1 this
functor is no longer an equivalence of categories, because it forgets all informa-
tion concerning the modules Ma+1, . . . ,Ma+i−1.

One aim of this paper is to establish a canonical cohomology theory giving
ϕ-W -gauges of finite type Hi

g(X/W )• for each i, concentrated in the interval
[0, i], whose associated Dieudonné-module of weight i is the i-th crystalline
cohomology Hi

cris(X/W ). This new cohomology theory thus refines the crys-
talline cohomology.

3.4 Effective, coeffective modules and truncations

We say that a gauge M over Wn = Wn(k) (for 1 ≤ n ≤ ∞) is effective
(resp. coeffective) if v : M r → M r−1 is an isomorphism for r ≤ 0 (resp.
f : M r →M r+1 is an isomorphism for r ≥ 0).
For any object M of Gft(Wn), M(i) is effective for i << 0 and coeffective for
i >> 0.
To any Wn-gauge M , we may associate the co-effective Wn-gauge M≤0 defined
as follows: we have M r

≤0 = M r for r < 0 and M r
≤0 = M0 for r ∈ N, with

fx = x if x ∈M r
≤0 and r ≥ 0 and vx = px if x ∈M r

≤0 and r > 0.
If M is of finite type, so is M≤0 and we may view M 7→M≤0 as a functor from

Gft(Wn) to the full sub-category G≤0
ft (Wn) of coeffective gauges of finite type,

which is a right adjoint of the inclusion functor. We observe that the obvious
map M≤0 →M is not in general injective.
For any Wn-gauge M , the natural maps M0 → (M≤0)

+∞ and (M≤0)
−∞ →

M−∞ are isomorphisms. Therefore, we may also view M 7→M≤0 as a functor
from the category ϕ-Mft(Wn) of ϕ-Wn-modules of finite type to the full sub-

category ϕ-M≤0
ft (Wn) of coeffective ϕ-Wn-modules, by defining ϕ : M+∞

≤0 →

M−∞
≤0 as the compositum ϕ0 of the natural map M0 →M+∞ with the original

ϕ.
Again this functor is a right adjoint of the inclusion functor. We observe that,
when M is a ϕ-gauge, M≤0 is not always a ϕ-gauge.

4 Zariski-gauges and F -zips over schemes of characteristic p

Let S be a scheme of characteristic p.
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4.1 Zariski-gauges and Zariski-ϕ-gauges

The ϕ-ring associated to S in the Zariski topology is defined as the commutative
ring (in this topology) D(S) = OS [f, v]/(fv) together with the ring morphism
ϕ : D(S)+∞ = OS −→ OS = D(S)−∞ which is given by the absolute Frobenius
F = FS on OS (which is the identity on S and the map x 7→ xp on the sections.
Note that this is only an isomorphism if S is a perfect scheme, so D(S) is not
in general a perfect ϕ-ring.

A Zariski gauge M over S is a D(S)-module, which is obviously just a gauge
in the category of O-modules. It is called coherent if it is locally of finite
presentation over D(S). Hence, if S is noetherian, it is coherent if and only
if M is concentrated in a finite interval and each component M r is a coherent
OS-module.

In accordance with the definitions in section 2.4, a Zariski ϕ-module (M,ϕ) is
a Zariski gauge M together with an OS-linear morphism

ϕ : (M+∞)(p) = OS Fr⊗OS
M+∞ −→M−∞ .

Here N (p) = OS Fr⊗OS
N is the usual Frobenius twist (twist with the absolute

Frobenius Fr) of anOS-moduleN . Since this operation is a right exact functor,
the ϕ-OS-modules form an abelian category, see section 2.4. A ϕ-module is a
ϕ-gauge if ϕ is an isomorphism. They form a subcategory which is closed under
direct sums and direct factors.

4.2 The relationship with F -zips

An F -zip over S is defined as a locally free coherent OS-module M together
with

(a) A descending filtration C = (Ci)i∈Z onM(p) by locally direct summands,

(b) An increasing filtration D = (Di)i∈Z onM by locally direct summands,

(c) a family (ϕi)i∈Z of OS-linear isomorphisms ϕi : C
i/Ci+1 ∼

−→Di/Di−1.

A morphism of F -zips (M, C,D) → (M′, C′, D) is an OS-linear morphism
M−→M′ respecting the filtrations. (This is the modified definition in [Wed],
improving the original definition of Moonen and Wedhorn [MW]. If S is perfect,
then both definitions are equivalent.)

Then one has the following result.

Theorem 4.2.1. (see [Schn]) There is a canonical full embedding of categories

(F -zips over S ) −→ (ϕ-OS-gauges ) .

The essential image consist of the ϕ-OS-gauges which are rigid, coherent, and
have locally free components.
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5 Zariski-gauges and displays over schemes of characteristic p

Langer and Zink defined the notion of a display over a ring R of positive
characteristic. Let W (R) be the ring of Witt vectors for R, and let I(R) =
VW (R), the image of the Verschiebung V on W (R). Then a predisplay consists
of the following data:

1) A chain of morphisms of W (R)-modules

. . . −→ Pi+1
ιi−→Pi −→ . . . −→ P1

ι0−→P0 ,

2) For each i ≥ 0 a W (R)-linear map

αi : IR ⊗W (R) Pi −→ Pi+1 ,

3) For each i ≥ 0 a Frobenius-linear map

Fi : Pi −→ P0 .

These are required to satisfy the following conditions: The composition ιi ◦ αi

is the multiplication IR ⊗ Pi −→ Pi, and one has

Fi+1(αi(V (η)⊗ x)) = ηFix, for η ∈ IR, x ∈ Pi .

Predisplays form an abelian category, in an obvious way.
Finally, a predisplay is called a display of degree d if there are finitely generated
projective W (R)-modules L0, . . . , Ld such that

Pi = (I ⊗ L0)⊕ . . .⊕ (I ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld ,

and such that the structural maps ιi, αi and Fi come from Frobenius-linear
maps

Φi : Li −→ L0 ⊕ . . .⊕ Ld

with the property that ⊕iΦi is a Frobenius-linear automorphism of L0⊕. . .⊕Ld.
(See [LZ] Definition 2.5 for the precise prescription how to get a predisplay out
of these data). These data are not part of the datum of a display, only the
existence matters. Thus the displays form a full subcategory of the category
of predisplays.
Then one has the following result.

Theorem 5.0.1. (see [Wid]) Let R be a perfect ring. There is a fully faithful
embedding of categories

( predisplays over R ) −→ (ϕ-W (R)-modules ) ,

which maps the category of displays to the category of ϕ-W (R)-modules for
which ϕ is an epimorphism.
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6 Topologies

Recall that a morphism of schemes is said to be syntomic if it is flat and locally
a complete intersection (which implies that it is locally of finite type).
We say that a morphism Spec B → Spec A of affine schemes of characteristic p
is an extraction of p-th root if one may write B = A[t]/(tp−a), for some a ∈ A.
We say that a morphism X → Y of Fp-schemes is a p-root-morphism (resp. is
quiet1) if locally for the Zariski topology (resp. for the étale topology), it may
be written as a successive extractions of p-th roots.
In characteristic p, we have the following inclusions :

open immersions ⊂ étale morphisms ⊂ flat morphisms
∩ ∩ ∪

p-morphisms ⊂ quiet morphisms ⊂ syntomic morphims

A ring A of characteristic p is perfect if the Frobenius ϕ : A → A, a 7→ ap is
bijective. A scheme of characteristic p is perfect if OX is a sheaf of perfect
rings.

Lemma 6.0.1. Let A be a noetherian ring of characteristic p. Then the following
holds.
(1) If ϕ : A→ A is surjective, then A is perfect.
(2) The subring Aper = ∩nϕn(A) is a perfect ring.

Proof. Consider the ideals A(pn) = { a ∈ A | ap
n

= 0 }. Since A is noetherian,
the ascending sequence A(p) ⊆ A(p2) ⊆ A(p3) . . . becomes stationary. Assume
that the union of all these ideals is equal to A(pN ) for some N ≥ 1, say.
(1): Assume that ϕ is surjective and that a ∈ A with ap = 0. Then there exists

an element b ∈ A with bp
N

= a. Hence bp
N+1

= ap = 0 and thus 0 = bp
N

= a.
(2): Let x ∈ Aper. Then there exist elements xN , xN+1, xN+2, . . . in A such
that

x = xpN+1

N = xpN+2

N+1 = xpN+3

N+2 = . . .

This implies (xN − xp
N+1)

pN+1

= 0 and hence (xN − xp
N+1)

pN

= 0, i.e., xpN

N =

(xpN

N+1)
p. Setting yi = xpN

i for i ≥ N , we similarly get yi = ypi+1 for all i ≥ N ,
so that yN ∈ Aper and x = ypN . Hence ϕ is surjective on Aper. If now a ∈ Aper

with ap = 0, we have an element b ∈ Aper with a = bp
N

, and we conclude as
before, arguing inside A, that a = 0.

As a consequence, if X is a locally noetherian scheme of characteristic p, there
is a unique morphism X → Xper with a perfect scheme Xper such that any
morphism X → Y with Y perfect factors uniquely through Xper. We say that
a scheme X of characteristic p is absolutely syntomic if it is locally noetherian
and if the morphism X → Xper is syntomic.

1quiet abbreviates quasi-étale
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(We do not know wether or not X locally noetherian implies Xper locally
noetherian, but we do not care).

A field k of characteristic p is absolutely syntomic if and only if k is perfect.
If Y is absolutely syntomic and if X → Y is syntomic, X is absolutely syntomic.

We denote by C the full subcategory of the category of schemes of characteris-
tic p whose objects are absolutely syntomic schemes.

In this paper, an admissible class of morphisms of C is a class of syntomic mor-
phisms of C containing all the open immersions and stable under composition
and base change. A p-admissible class of morphisms of C is an admissible class
containing the extractions of p-th roots.

For any admissible class E, call CE the site whose underlying category is C,
with surjective families of E-morphisms (that is of morphisms of C belonging
to E) as coverings.

We set E =Zar (resp. p, ét, quiet, synt) for the class of open immersions (resp.
p-morphisms, étale morphisms, quiet morphisms, syntomic morphisms).

Let X be any object of C. For any admissible class E of morphisms of C, we call
CX,E the site whose underlying category is the full subcategory of X-schemes
Y → X such that Y is an object of C, with surjective families of E-morphisms
as covering. The corresponding sheaves shall be called sheaves (over C) for the
E-topology.

If moreoverX is noetherian, we callXquiet the site whose underlying category is
the full subcategory of X-schemes Y → X such that the structural morphism
is quiet of finite type, with finite surjective families of quiet morphisms as
coverings.

Remarks 6.0.2: Let k be a field of characteristic p such that the extension
k/ϕ(k) is finite.

(1) If k is not perfect, kquiet = kquiet is the smallest Grothendieck topology able
to deal with all finite extensions of k. More precisely:

i) any finite extension of k is a quiet k-algebra,

ii) if X → k is a quiet morphism of finite type, there is a surjective quiet
morphism of finite type U → X , such that U = Spec (k1 ⊗k ⊗k2 ⊗k . . .⊗k kd)
with k1, k2, . . . , kd finite fields extensions of k.

(2) If k is perfect, the functor which associates to any finite commutative group
scheme over k the sheaf it defines on kquiet induces an equivalence of categories
between the category of finite and flat commutative group schemes over k and
the category of abelian groups over kquiet which are representable. This is due
to the fact that any finite commutative group scheme over k is quiet. Observe
that we have a similar statement for fields of characteristic 0 and the étale
topology.
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7 The rings Ocris
n and the ϕ-rings Gn

We continue to call a ring object in a topos T simply a ring in T , or a ring
over C with respect to the topology E if the topos given by the category C and
the topology E.

7.1 The p-adic ring Ocris = (On)n

A p-adic ring R in a fixed topos T consists of giving, for each n ∈ N a commu-
tative ring Rn in T , together with an isomorphism Rn+1/p

n ≃ Rn. A p-adic
ring R in T is flat if Rn is flat over Z/pn, for all n ∈ N, i.e., if the sequence

Rn
p
−→Rn

pn−1

−−→Rn

is exact. In this case, for m,n ∈ N, we have exact sequences

0→ Rn → Rn+m
pn

−−→Rn+m → Rn → 0 ,

and, in particular, exact sequences

0→ Rn → Rn+m → Rm → 0 .

Let T = (C, E) be a ringed topos with C as in section 6, a topology E, and
the structural sheaf of rings O, defined by O(X) = OX(X) for a scheme X
in C. For n ∈ N, a Z/pn -divided power thickening of O (for the E-topology) is
a triple (G, θ, γ) where G is a Z/pn-ring on CE , θ : G → O is an epimorphism of
rings and γ is a divided power structure on the kernel of θ such that, for any
object U of C, any x ∈ G(U) and any m ∈ N, we have γm(px) = (pm/m!)xm.
The Z/pn-divided power thickenings of O for the E-topology form, in an obvi-
ous way, a category. For E = p, this category has an initial object that we call
Ocris

n . This can be shown
- either by working on the crystalline site and showing that

X 7→ Ocris
n (X) := H0((X → Spec Wn(OXper

))crys, structural sheaf)

is a solution of the universal problem,
- or by constructing Ocris

n directly as the syntomic sheaf associated to the
presheaf

X 7→WDP
n (X) ,

the divided power envelope of the ring of Witt vectors of X (see [FM]).

Moreover, for any admissible class E, Ocris
n is also a sheaf for the E-topology.

Therefore, if E is p-admissible, Ocris
n is also an initial object of the category of

Z/pnZ-divided power thickenings of O for the E-topology.
Under the same assumption on E, the natural morphism Ocris

n+1/p
n → Ocris

n is
an isomorphism and the p-adic Ring Ocris = (Ocris

n )n∈N is flat [FM], i.e., we
have natural exact sequences for all n and m

0 −→ Ocris
n −→ Ocris

n+m −→ O
cris
m −→ 0 .
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The Frobenius ϕ : a 7→ ap is an endomorphism of the structural Ring O. By
functoriality, it induces an endomorphism of Ocris

n , that we still denote by ϕ.
This is also an endomorphism of Ocris, i.e. the projection Ocris

n+1 → Ocris
n

commutes with ϕ.
If A is a perfect (noetherian) ring of characteristic p, we have Ocris

n (A) =
Wn(A), with the usual Frobenius.

7.2 The ϕ-Ring G

For each n ∈ N, we want to define a ϕ-ring Gn, such that the Gn form a p-adic
ϕ-ring G = (Gn)n∈N.
Morally, we get it by the standard construction introduced in section 3.2, from
the p-adic ring Ocris = (Ocris

n ) and the Frobenius ϕ : Ocris → Ocris on it, by
defining

Gr = ker(Ocris ϕ
−→Ocris −→ Ocris/pr) = “{ x ∈ Ocris | ϕ(x) ∈ prOcris }” .

This makes perfect sense in the setting of pro-objects, and then gives rise to
the objects Grn = Gr/pn which are essentially constant pro-objects.
For a more elementary and direct approach we proceed as follows. For all n
we set G0n = Ocris

n , and the sub-ring ⊕r≤0Grn is the ring of polynomials in an
indeterminate, called v, with coefficients in Ocris

n and v is in degree −1. In
other words, for any object U of C and any integer r ≤ 0, Grn(U) is the free
Ocris

n (U)-module of rank one generated by v−r.
If r ≥ 0 and m ∈ N with m ≥ r, set

Ĝrm = ker(Ocris
m

ϕ
−→Ocris

m
proj
−−→Ocris

m /pr = Ocris
r ) ,

so this is the sub-sheaf whose sections x are such that ϕ(x) is locally (for the
p-topology) divisible by pr. For any m ≥ n+ r we define

Grn = Ĝrm/pn .

It is easily seen that this definition is independent of the choice of m ≥ n+ r,
and that this definition agrees with the previous definition G0n = Ocris

n for r = 0.
If U is an object of C, if m, r ∈ N with m ≥ r and if x ∈ Ĝrm(U), y ∈ Ĝsm(U),
then xy ∈ Ĝr+s

m (U). By going to the quotient this gives a map Grn×G
s
n → G

r+s
n

which define the multiplication on the sub-ring ⊕n∈NGrn.
To complete the definition of the multiplication on Gn, it is enough to define
the multiplication by v : Grn → G

r−1
n for r ≥ 1. It is induced by the inclusion

Ĝrm ⊂ Ĝ
r−1
m , via passing to the quotients modulo pn. In this way Gn becomes a

graded ring.
To get the structure of ϕ-ring, we have to introduce f, v and ϕ. We have
already defined the global section v ∈ Gn

−1(Fp). For all m ∈ N, we have
Ocris

m (Fp) = Z/pmZ. For n ∈ N and m ≥ n + 1, the image of p belongs to
Gm,1(Fp) and we call f its image in G1n(Fp). Observe that fv = p.
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The natural morphism Ocris
n = G0n → G

−∞
n is an isomorphism of rings and we

use it to identify G−∞
n with Ocris

n .
Finally we define ϕ. Let n, r ∈ N, let U be an object of C and x ∈ Grn(U). If
we choose an integer m ≥ n+ r, we may find a covering V of U , a lifting y of x
in Ĝrm(V ), a covering W of V and z ∈ Ocris

m (W ) such that ϕ(y) = prz. The
image ϕr(x) of z in Ocris

n (W ) is independent of the choices made and belongs to
Ocris

n (U). In this way we have ϕr : Grn → O
cris
n such that “ϕr(x) = ϕ(x)/pr ”.

Obviously, we have ϕr+1(fx) = ϕr(x), therefore the morphisms ϕr define a
map

ϕ : lim
−→
r∈N,f

Grn = G∞n → O
cris
n = G−∞

n

One sees that ϕ is a morphism of rings; this corresponds to the equality

“ϕ(x)/pr · ϕ(y)/ps = ϕ(xy)/pr+s ”

for sections x ∈ Ĝrm and y ∈ Ĝsm and the ring endomorphism ϕ of Ocris
m .

Theorem 7.2.1. For each n ≥ 1, the map

ϕ : G+∞
n → G−∞

n

is an isomorphism of rings.

In other words, Gn is a perfect ϕ-ring. The proof of this theorem is given in
sections 7.3–7.5 below.
Here we note the following properties.

Lemma 7.2.2. The following holds for the gauges Gn.
(i) One has natural isomorphisms Gn+1/p

n → Gn for all n, i.e., (Gn)n is a
p-adic ring.
(ii) The p-adic ring G = (Gn)n∈N is flat.
(ii) The gauge G1 is rigid.

Proof. Morally, all statements are proved in the same way as for the standard
construction in section 3, and could be proved by noting that Ocris is a flat
(= “torsion-free”) p-adic ring. But for concreteness we give a proof by the
above explicit construction. We argue with local sections, i.e., all statements
hold after possible passing to some cover. Moreover, we constantly use that
the flatness of Ocris implies the exactness of the sequence

Ocris
m

pm−i

−→ Ocris
m

pi

−→Ocris
m

for all i ≤ m. Recall that Grn = Ĝrm/pn for some fixed m >> 0 (m ≥ n + r
suffices), where Ĝrm = {x ∈ Ocris

m | ϕ(x) ∈ prOcris
m }. Unless specified explicitly,

we calculate inside Ocris
m .

(i): This is trivial: (Ĝrm/pn+1)/pn = Ĝrm/pn.

Documenta Mathematica 26 (2021) 65–101



88 J.-M. Fontaine, U. Jannsen

(ii): For each i ≤ n and m ≥ n+ r we show the exactness of

Ĝrm/pn
pn−i

−→ Ĝrm/pn
pi

−→Ĝrm/pn

as follows: If x ∈ Ĝrm and pix = pny with y ∈ Ĝrm, then we have pi(x−pn−iy) =
0 and hence x − pn−iy = pm−iz with z ∈ Ocris

m by flatness of Ocris. Thus
x = pn−i(y + pm−nz) with y, pm−nz ∈ Ĝrm (note that m− n ≥ r).

(iii): Recall that v and f are induced by the inclusion Ĝrm →֒ Ĝ
r−1
m and the p-

multiplication Ĝrm
p
→Ĝrm, respectively. First we show quasi-rigidity. If x ∈ Ĝrm

and x = py for y ∈ Ĝr−1
m , then [x] = f [y] for the class [x] of x in Gr1 and

the class [y] of y in Gr−1
1 . On the other hand, if x ∈ Ĝrm with px = pz

for z ∈ Ĝr+1
m , then p(x − z) = 0 and hence x − z = pm−1t with t ∈ Ocris

m .
Thus x = z + pm−1t ∈ Ĝr+1

1 for m ≥ r + 2, i.e., [x] = v[x]. Now we show

strictness. Let x ∈ Ĝrm with f [x] = 0 = v[x]. This means that x = py with
y ∈ Ĝr−1

m and px = pz with z ∈ Ĝr+1
m . This implies pz = px = p2y, hence

p2ϕ(y) = pϕ(z) = pr+2t for some t ∈ Ocris
m . This implies p2(ϕ(y) − prt) = 0

and thus ϕ(y) − prt = pm−2u for some u ∈ Ocris
m by flatness of Ocris. We

conclude y ∈ Ĝrm for m ≥ r + 2 and therefore [x] = [py] = 0.

7.3 The structure of a (generalized) F -zip on Ocris
1

Let T = (C, E,O) be a ringed topos with the category C, an admissible topology
E, and the structure ring O as in section 7.1.
An effective generalized F -zip (over O) is an O-moduleM together with
– a decreasing filtration (F rM)r∈N by sub-O-modules indexed by N such that
F 0M =M and ∩r∈NF

rM = 0,
– an increasing filtration (FrM)r≥−1 by sub-O-modules indexed by the natural
integers r ≥ −1 such that F−1M = 0 and ∪r∈NFrM =M,
– for all r ∈ N, an isomorphism

ϕr : F rM/F r+1M
∼
−→FrM/Fr−1M

of abelian sheaves which is semi-linear with respect to the absolute Frobenius.

Remark 7.3.1 Assume that E is p-admissible. Then the absolute Frobe-
nius Fr is an epimorphism on O, and it follows that the associated morphism

(F rM/F r+1M)(p) = O Fr⊗O (F rM/F r+1M) −→ FrM/Fr−1M

is an isomorphism. This ties this definition with the definition in section 4.2.

We shall now define such a structure on Ocris
1 (with O the structural sheaf). We

define Fr = FrO
cris
1 = im(ϕr) for ϕr : Gr1 → O

cris
1 and F r = F rOcris

1 = im(vr)
for vr : Gr1 → O

cris
1 .
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Proposition 7.3.2. There are canonical exact sequences for all r ≥ 1

0 −→ Fr −→ G
r+1
1

v
−→Gr1

ϕr
−→Fr −→ 0

0 −→ F r −→ Gr−1
1

f
−→Gr1

vr

−→F r −→ 0 .

Proof. For the first sequence we claim that there is an exact sequence

0→ Ĝr+1
r+2 →֒ Ĝ

r
r+2

ϕr
→Ocris

1 ,

where the morphism on the right is the composition Ĝrr+2 ։ Gr1
ϕr
→Ocris

1 . In

fact, if x ∈ Ĝrr+2, so that ϕ(x) = pry with y ∈ Ocris
r+2 , then ϕr([x]) = [y] ∈

Ocris
r+2/p = Ocris

1 for the corresponding classes modulo p. If ϕr([x]) = 0, then

y = py′ with y′ ∈ Ocris
r+2. This implies ϕ(x) = pr+1y′ and hence x ∈ Ĝr+1

r+2 .
Applying now the snake lemma to the multiplication by p on the exact sequence

0→ Ĝr+1
r+2 →֒ Ĝ

r
r+2

ϕr
→Fr → 0 ,

we get an exact sequence

Ĝrr+2[p]→ Fr → G
r+1
1 →֒ Gr1

ϕr
→Fr → 0 ,

where A[p] means the p-torsion subsheaf of a sheaf A. But the map on the left is
zero: If x ∈ Ĝrr+2 with px = 0, then x = pr+1u for some u ∈ Ocris

r+2 by flatness of
Ocris. Then ϕ(x) = pr+1ϕ(u), and by definition, ϕr([x]) = [pϕ(u)] = 0 ∈ Ocris

1 .

For the second sequence we claim that we have an exact sequence

pĜr−1
r+1 →֒ Ĝ

r
r+1

vr

→Ocris
1 ,

where the morphism on the right is the composition Ĝrr+1 ։ Gr1
vr

→Ocris
1 . In

fact, if x ∈ Ĝrr+1, so that ϕ(x) = pry with y ∈ Ocris
r+1, and x = pz with

z ∈ Ocris
r+1 , then pry = ϕ(x) = pϕ(z), hence p(ϕ(z) − pr−1y) = 0, so that

ϕ(z) − pr−1y = prt with t ∈ Ocris
r+1 . This implies z ∈ Ĝr−1

r+1 , hence the claim,
because x = pz. Applying the snake lemma to the multiplication by p to the
exact sequence

0→ pĜr−1
r+1 → Ĝ

r
r+1

vr

→F r → 0 ,

we get an exact sequence

Ĝrr+1[p]→ F r → (pĜr−1
r+1 )/p→ G

r
1

vr

→F r → 0 .

Now we claim that the first map is the zero map. In fact, if x ∈ Ĝrr+1 with
px = 0, then x = pry with y ∈ Ocris

r+1 by flatness of Ocris. Hence x is mapped
to zero in Ocris

1 .
Moreover we claim that the exact sequence

0→ Ĝr−1
r+1 [p]→ Ĝ

r−1
r+1

p
→ pĜr−1

r+1 → 0

Documenta Mathematica 26 (2021) 65–101



90 J.-M. Fontaine, U. Jannsen

taken modulo p induces an isomorphism

Gr−1
1 = Ĝr−1

r+1/p
∼
→(pĜr−1

r+1 )/p .

In fact, for this it suffices to show that the induced morphism (Ĝr−1
r+1 [p])/p →

(Ĝr−1
r+1 )/p is zero. But if x ∈ Ĝ

r−1
r+1 [p], then px = 0, so that x = prt with t ∈ Ocris

r+1

by flatness of Ocris. Then x = py with y = pr−1t ∈ Gr−1
r+1 as claimed.

Both claims together imply the second exact sequence in the proposition.

Proposition 7.3.3. (Cartier isomorphism) The subsheaves Fr = FrOcris
1 form

an increasing filtration of Ocris
1 (i.e., Fr ⊆ Fr+1), and the subsheaves F r =

F rOcris
1 form a decreasing filtration of Ocris

1 (i.e., F r+1 ⊆ F r). For each r ≥ 0,
the morphism ϕr : Gr1 → im(ϕr) = Fr induces an isomorphism

ϕr : F r/F r+1 ∼
−→Fr/Fr−1 .

Proof. The first two claims are clear. For the third look at the diagram with
exact rows

Gr+1
1

v
−→ Gr1

ϕr
−→ Fr −→ 0

‖

Gr−1
1

f
−→ Gr1

vr

−→ F r −→ 0

.

Since ϕrf = ϕr−1 the diagram induces an epimorphism

ϕ′
r : F r −→ Fr/Fr−1 .

Explicitly: If x ∈ F r, and x = vry for y ∈ Gr1 , let ϕ
′
r(x) be the class of ϕr(y),

which is well-defined modulo Fr−1, because the kernel of vr is the image of f .
The kernel of this morphism is F r+1: If ϕ′

r(x) = ϕr(y) = ϕr−1(z) = ϕr(fz),
then ϕr(y − fz) = 0, so that y − fz = vt with t ∈ Gr+1

1 by the exactness of
the upper row. But then x = vry = vrfz + vr+1t = vr+1t ∈ F r+1, because
vf = 0.

From Proposition 7.3.2 we already obtain one half of Theorem 7.2.1.

Corollary 7.3.4. The morphism ϕ : G+∞
1 −→ G−∞

1 is injective.

Proof. In view of Lemma 7.2.2 we may assume that n = 1. Let x ∈ G+∞
1 with

ϕ(x) = 0. Suppose x is the image of an element xr under fr : Gr1 → G
+∞
1 .

Then ϕr(xr) = 0. By the first sequence in 7.3.2, we have xr = vxr+1. But
then fxr = fvxr+1 = pxr+1 = 0, which implies x = frxr = 0.

To obtain the fact that ∪rFr = Ocris
1 (which gives the surjectivity of ϕ above

and hence the second half of Theorem 7.2.1), and that ∩rF
r = 0, we need some

explicit calculations.
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7.4 Some calculations for the universal F -zip

We first observe that we have a morphism of rings

f : O → Ocris
1 .

In fact, if X is an object of C and if a ∈ O(X), one may find a quiet covering
Y → X such that a is the image of some b ∈ Ocris

1 (Y ) and f(a) = bp is
independent of the choice of b and belongs to Ocris

1 (X).

The kernel F̃ 1Ocris
1 (often called J

[1]
1 ) of the canonical epimorphism Ocris

1 → O

is a dived power Ideal and, for all r ∈ N, we set F̃ rOcris
1 = J

[r]
1 , the r-th divided

power of F̃ 1Ocris
1 = J

[1]
1 . We set I = J

[1]
1 /J

[2]
1 and call it the cotangent space.

We denote GrOcris
1 the abelian sheaf F̃ rOcris

1 /F̃ r+1Ocris
1 = J

[r]
1 /J

[r+1]
1 (hence

G0Ocris
1 = O and G1Ocris

1 = I). On each GrOcris
1 , we have two different

structures of O-Modules :
– the naive structure which comes from the fact that J

[r+1]
1 ⊂ J

[r]
1 are sub-O-

modules of Ocris
1 ,

– the nice structure which comes from the fact that J
[r+1]
1 ⊂ J

[r]
1 are sub-Ocris

1 -

modules of Ocris
1 , but that J

[1]
1 .J

[r]
1 ⊂ J

[r+1]
1 and Ocris

1 /J
[1]
1 = O.

If λ is a local section of O and a a local section of F rOcris
1 , λ.naivea = λp.nicea.

In what follows, we will always consider J
[r]
1 /J

[r+1]
1 as a O-module via the nice

structure (but we have to keep in mind that, in the structure of F -zip, it is the
naive structure which matters).

If A is a ring, A < θ1, θ2, . . . , θd > is the divided power algebra in the indeter-
minates θ1, θ2, . . . , θd with coefficients in A. If t belongs to some divided power
ideal in some Z(p)-algebra, and if m = qp+ r, with q, r ∈ N and r < p, we have

γm(t) = cmtrγq(γp(t)) with cm = q!(p!)q

m! a unit in Z(p). The following result is
the key for many explicit computations with Ocris

1 :

Proposition 7.4.1. Let k be a perfect ring of characteristic p > 0, let A be a
smooth k-algebra, t1, t2, . . . , td ∈ A a regular sequence, A = A/(tp1, t

p
2, . . . , t

p
d)

and ti the image of ti in A. The unique homomorphism of divided power A-
algebras

A < θ1, θ2, . . . , θd >−→ Ocris
1 (A)

sending θi to γp(f(ti)) is an isomorphism. Moreover
i) For any m = qp + r with q, r ∈ N, r < p, set γm(ti) = cmt

r
i γq(θi).

For any r ∈ N, J
[r]
1 (A) is the image of the sub-A-module generated by the

γm1
(t1)γm2

(t2) . . . γmd
(td) for Σmi ≥ r.

ii) Let I be the ideal of A generated by the ti and let A = A/I. The A-module

quotient J
[r]
1 (A)/J

[r+1]
1 (A) is annihilated by I and is a free A-module with the

images of the elements

γm1
(t1)γm2

(t2) . . . γmd
(td) for Σmi = r
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as a basis.
iii) The natural map J

[r]
1 (A)/J

[r+1]
1 (A)→ (J

[r]
1 /J

[r+1]
1 )(A) is injective and, for

the nice structure, (J
[r]
1 /J

[r+1]
1 )(A) is a free A-module with the images of the

elements
γm1

(t1)γm2
(t2) . . . γmd

(td) for Σmi = r

as a basis.
iv) Let ρ be an endomorphism of the k-algebra A such that one can find
λ1, λ2, . . . , λd ∈ A with ρ(ti) = λiti). Then the endomorphism induced
by ρ on A < θ1, θ2, . . . , θd > (by functoriality and the isomorphism A <
θ1, θ2, . . . , θd >≃ Ocris

1 (A)) is compatible with the divided power structure and
sends θi to λp

i θi.

We start with a lemma:

Lemma 7.4.2. Let A′ be a k-algebra, t1, t2, . . . , td ∈ A′ a regular squence and
A′ = A′/(tp1, t

p
2, . . . , t

p
d). Let D′ the divided power envelope of A′ with respect

to the ideal generate by the ti’s and ξ : A′ → D′ the structural map. Then:
i) each tpi belongs to the kernel of ξ (and therefore D′ may be viewed as an
A′-algebra),
ii) the unique homomorphism of divided power A′-algebras

η : A′ < θ1, θ2, . . . , θd >→ D′

sending θi to γp(ti) is an isomorphism.

Proof of the lemma: We have tpi = p!γp(ti) = 0, which proves (i).
As an A′-algebra, D′ is generated by the Πγmi

(ti). But, if mi = pqi + ri with
qi, ri ∈ N and ri < p, we have

Πγmi
(ti) = Πcmi

Πtrii Πγmi
(γp(ti))

hence D′ is also generated by the Πγmi
(γp(ti)) and η is surjective.

For m ∈ N, let J [m] the m-th divided power of the structural divided power

ideal of D′, let I the ideal of A′ generated by the ti’s and A
′
= A′/I. As

the ti’s form a regular sequence, I/I2 is a free A
′
-module with the image of

the ti’s as a basis and the canonical map Γm
A

′(I/I2) → J [m]/J [m+1] is an

isomorphism, where Γr
A

′(M) denotes the r-th divided power of an A
′
-module

M [Be] I, 3.4.4. If J
[m]
1 denote the inverse image under η of J [m], we see that,

for all m, the induced map J
[m]
1 /J

[m+1]
1 → J [m]/J [m+1] is an isomorphism.

As ∩m∈NJ
[m]
1 = 0, the map η is injective. �

Proof of proposition 7.4.1 Let A′ = A, but viewed as an A-algebra via the
absolute Frobenius, that we use to identify A to a sub-ring of A′. Therefore,
any element of A has a unique p-th root in A′ and, for an b ∈ A′, we have
bp ∈ A. We denote by t′i the element ti viewed as an element of A′, hence
(t′i)

p = ti.
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As A is smooth, A′ is a syntomic A-algebra and t1, t2, . . . , td is still a regular
sequence in A′. The map ϕ : A′ → A sending b to bp is an isomorphism and the
compositum ϕ with the projection onto A is surjective, with kernel the ideal
generated by the ti’s. As A′ is smooth, if D′ is as in the lemma, we have an
exact sequence

0→ Ocris
1 (A)→ D′ → D′ ⊗A′ Ω1

A′/k

which, granted to the previous lemma, can be rewritten as

0→ Ocris
1 (A)→ A′ < θ1, θ2, . . . , θd >→ A′ < θ1, θ2, . . . , θd > ⊗A′Ω1

A′/k

with θi mapping to γp((t
′
i)

p). Therefore, we have dθi = γp−1((t
′
i)

p).p(t′i)
p−1 =

0. For m = (m1,m2, . . . ,md) ∈ N
d set γm(θ) = Πγmi

(θi). We have also
dγm(θ) = 0, for all m.
But A′ < θ1, θ2, . . . , θd > is a free A′-module with basis the γm(θ)’s. If
∑

amγm(θ) ∈ A′ < θ1, θ2, . . . , θd >, we have d(
∑

amγm(θ)) =
∑

damγm(θ). It
is easy to check that we have Ω1

A′/k = A′ ⊗A′ Ω1
A′/k and that the sequence

0→ A→ A′ → Ω1
A′/k

is exact. This proves that the map

A < θ1, θ2, . . . , θd >→Ocris
1 (A)

is an isomorphism.
The proof of (i) and (ii) and (iv) are straightforward. Let us prove (iii).
We have to understand the sheaf F associated to the presheaf P : X 7→

J
[r]
1 (X)/J

[r+1]
1 (X). It is enough to consider the restriction of the functor P

to the objects X of C of the form X = Spec A, with A as in the proposition.
Let M be the set of the m = {m1,m2, . . . ,md} ∈ N

d such that
∑

mi = r. For
any such m, let γm the image of Πγmi

(ti) in P (A) and γ̃m its image in F (A).
Checking carefully, we see that the map P (A) → F (A) is A-linear if F (A) is
equipped with the naive structure. We may express this fact as follows: Let
A1 the image of ϕ : A → A. The absolute Frobenius induces an isomorphism
f : A → A1 and we may use it to view P (A) as a free A1-module. Now the
map P (A) → F (A) is A1-linear when we endow F (A) with the A1-structure
coming from the inclusion A1 ⊂ A and the nice structure of A-module on F (A).
Therefore, if we set P ′(A) = A ⊗A1

P (A), we have a natural A-linear map
P ′(A)→ F (A) and what we want to prove is that this map is an isomorphism.
Because there are enough algebras of this kind, it makes sense to speak of the
sheaf associated to the presheaf A → P ′(A) and all what we have to prove is
that this presheaf is a sheaf. We are easily reduced to checking that, if B is
any faithfully flat A-algebra of the type A[x1, x2, . . . , xr]/(u1, u2, . . . , un) with
u1, u2, . . . , un ∈ A[x1, x2, . . . , xr] a sequence which is transverse regular with
respect to A, then the sequence

0→ P ′(A)→ P ′(B)
→
→

P ′(B ⊗A B)
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is exact. Replacing B with a covering if necessary, we may assume that ui = vpi
and the vpi ’s are transverse regular as well. Set B = A[x1, x2, . . . , xr] and
C = B⊗AB = A[x1, x2, . . . , xr, y1, y2, . . . , yr] if we set xi = xi⊗1 and yi = 1⊗xi.
If for 1 ≤ i ≤ n, we choose a lifting td+i of vi in B and if, for 1 ≤ i ≤ n, we set
td+i = td+i⊗1 and td+n+i = 1⊗td+i, The sequence (ti)1≤i≤d (resp. (ti)1≤i≤d+n,
(ti)1≤i≤d+2n) is regular in A (resp. B, resp. C) and

A = A/((tpi )1≤i≤d) , B = B/((tpi )1≤i≤d+n) , B ⊗A B = C/((tpi )1≤i≤d+2n)

Let M (resp. N , resp. L) the set of the m = (mi)1≤i≤d (resp. (mi)1≤i≤d+n,
resp. (mi)1≤i≤d+2n) such that

∑

mi = r and, for m ∈ M (resp. N , L), let
γm(t) the image of Πγmi

(ti) in P ′(A) (resp. P ′(B), P ′(B⊗AB)). These γm(t)
form a basis respectively of the free A-module P ′(A), the free B-module P ′(B),
the free B⊗AB-module P ′(B⊗AB) and we are reduced to prove the exactness
of the sequence

0→ ⊕m∈MAγm(t)→ ⊕m∈NBγm(t)
→
→
⊕m∈L B ⊗A Bγm(t)

This is easily reduced to the exactness of

0→ A→ B → B ⊗A B

which comes from the fact that B is faithfully flat over A. �

Call J the kernel of the absolute Frobenius ϕ on O (hence, with the usual
notations J = αp).

Proposition 7.4.3. We have a commutative diagram of abelian sheaves

0 → J → O
ϕ
→ O → 0

↓


y f ‖

0 → J
[1]
1 → Ocris

1 → O → 0

whose lines are exact and whose vertical arrows are monomorphisms.

Proof. The commutativity of the diagram is clear. We already know that the
second line is exact. As our topology allows us to extract p-th roots, the
Frobenius is an epimorphism and the first line is also exact. We are left to
check that f is a monomorhism. As we can always cover any object X of C
by affine k-schemes Y = Spec A, with A as in the previous proposition, we
are reduced to check the injectivity of A→ Ocris

1 (A) which is a consequence of
that proposition.

If A is a commutative ring andM is an A-module, we may consider the symmet-
ric algebra SymAM = ⊕r∈NSym

r
AM and the divided power algebra ΓAM =

⊕r∈NΓ
r
AM . They are graded algebras, with grading indexed by N. For r ∈ N,

Γr
AM is the sub-A-module of ΓAM generated by the γr1(x1)γr2(x2) . . . γrd(xd)

with r1, r2, . . . , rd ∈ N satisfying Σri = r and x1, x2, . . . , xd ∈M . This extends
to rings and modules in a topos.
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Proposition 7.4.4. We have ∩r∈NJ
[r]
1 = 0 Moreover, for any r ∈ N, the

obvious map

Γr
OI → J

[r]
1 /J

[r+1]
1

is an isomorphism of O-modules.

Proof. From proposition 7.4.1, we see that for any k-algebra A satisfying

the condition of 7.4.1, we have ∩r∈NJ
[r]
1 (A) = 0 and the map Γr

OI(A) →

(J
[r]
1 /J

[r+1]
1 )(A) is an isomorphism. The proposition therefore follows from the

fact that any object X of C has a covering by affine k-schemes Y = Spec A,
with A of this kind.

In view of proposition 7.4.3, we may use f to regard O as a sub-ring of
Ocris

1 and J as a sub O-Module of Ocris
1 . For any r ∈ N, we call F̃rOcris

1

the sub-O-module of Ocris
1 generated locally by the elements of the form

γpr1(x1)γpr2(x2) . . . γprd(xd) with r1, r2, . . . , rd ∈ N satisfying Σri ≤ r and

x1, x2, . . . , xd ∈ J . We have F̃0Ocris
1 = O and we set F̃−1Ocris

1 = 0.
The next theorem gives the second construction for the structure of F -zip on
Ocris

1 :

Theorem 7.4.5. i) We have ∪r∈NF̃rOcris
1 = Ocris

1 .
ii) (Cartier isomorphism, second version) Let r ∈ N. There is a unique mor-
phism of O-modules

fr : J
[r]
1 /J

[r+1]
1 → F̃rO

cris
1 /F̃r−1O

cris
1

such that, if r1, r2, . . . , rd ∈ N satisfies Σri = r and if x1, x2, . . . , xd ∈
J1, then fr sends the image of γr1(x1)γr2(x2) . . . γrd(xd) to the image of
(−1)rγpr1(x1)γpr2(x2) . . . γprd(xd).
Moreover fr is an isomorphism.

Proof. Again, it is enough to prove the corresponding assertion for the sections
of these sheaves with values in A for any k-algebra A of the kind considered in
proposition 7.4.1.
We use the notation of that proposition. Then J(A) is the A-module generated
by the ti. For m1,m2, . . . ,md ∈ N, we have

γpm1
(t1)γpm2

(t2) . . . γpmd
(td) = cm1,m2,...,md

γm1
(θ1)γm2

(θ2) . . . γmd
(θd)

with cm1,m2,...,md
= Π (pmi)!

mi!(p!)mi
, a unit of Z(p). Hence, F̃rOcris

1 (A) is the free

A-module with basis the γm1
(θ1)γm2

(θ2) . . . γmd
(θd) with Σmi ≤ r and the first

assertion is clear. We see also that the A-module F̃rOcris
1 (A)/F̃r−1Ocris

1 (A) is
free with the images of the γm1

(θ1)γm2
(θ2) . . . γmd

(θd) (or, equivalently of the
γpm1

(t1)γpm2
(t2) . . . γpmd

(td)) for Σm1 = r as a basis.
Let x, y ∈ J(A). For all m ∈ N, we have γpm(x + y) = Σi+j=mγpi(x)γpj(y) +

e(x, y) with e(x, y) ∈ F̃m−1Ocris
1 (A). From that and from the fact that if a ∈
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F̃mOcris
1 (A) and b ∈ F̃nOcris

1 (A), then xy ∈ F̃n+mOcris
1 (A), we deduce the fact

that fr is well defined. The A-module (J
[r]
1 /J

[r+1]
1 )(A) is free with the images

of the γm1
(t1)γm2

(t2) . . . γmd
(td) for

∑

mi = r as a basis. As the A-linear map
fr sends the basis onto a basis of the free A-module F̃rOcris

1 (A)/F̃r−1Ocris
1 (A),

fr is bijective.

Remarks 7.4.6 - i) The reason for the sign (−1)r is that we want fr to
be “morally” the Frobenius divided out by pr. In characteristic 0, we have
γm(xp) = pmumγpm(x), with um ∈ Z(p), congruent to (−1)m mod p.

ii) We may say that Ocris
1 is a ring object in the category of F -zips, i.e this is

a ring, which is a O-Algebra and for r, s ∈ N, we have F̃ rOcris
1 × F̃ sOcris

1 ⊂
F̃ r+sOcris

1 and F̃rOcris
1 × F̃sOcris

1 ⊂ F̃r+sOcris
1 .

7.5 End of the proof of theorem 7.2.1 and of the construction of the structure
of an F -zip on Ocris

1

By the flatness of the p-adic ring G it suffices to show theorem 7.2.1 for n = 1.

First it follows inductively from theorem 7.4.5 (ii) and remark 7.4 (i) that for
all r ∈ N we have

F̃r = Fr and F̃ r = F r

(for the rings considered in the previous section): The start of the induction is
the fact that we have F 0 = Ocris

1 = F̃ 0 by definition, and that the Frobenius

ϕ = ϕ0 : Ocris
1 −→ Ocris

1 has image F0Ocris
1 = O

f
→֒Ocris

1 and kernel J
[1]
1 . We

conclude that F0 = O = F̃0 and F 1 = ker(ϕ) = F̃ 1. Then, by remark 7.4 (i)
the map fr in theorem 7.4.5 (ii) can be identified with the map induced by ϕr,
which gives the induction steps. In fact, if Fs = F̃s for s ≤ r − 1 and F s = F̃ s

for s ≤ r, then the two exact sequences

0 −→ F r+1 −→ F r ϕr
−→Fr/Fr−1 −→ 0

0 −→ F̃ r+1 −→ F̃ r ϕr
−→ F̃r/F̃r−1 −→ 0

imply that Fs = F̃s for s ≤ r and F s = F̃ s for s ≤ r + 1.

This now shows that ∩rF r = 0 (by proposition 7.4.4) and that ∪rFr = Ocris
1

(by theorem 7.4.5 (i)), showing the surjectivity in theorem 7.2.1, and the re-
maining property of F -zips.

8 ϕ-gauge-cohomology - a refinement of crystalline cohomology

Let k be a perfect field of characteristic p, let Wn = Wn(k) for n ∈ N, and
let X be a syntomic variety over k.

Documenta Mathematica 26 (2021) 65–101



Frobenius Gauges and p-Torsion Sheaves 97

8.1 The definition of gauge-cohomology

We define the i-th ϕ-gauge cohomology of level n of X by

Hi
g(X,Wn) = Hi

syn(X,Gn)

This is a ϕ-Wn-gauge by transport of structure: We let Hi
g(X,Wn)

r :=

Hi
syn(X,Grn), and let the structural maps

Hi
g(X,Wn)

r
f

⇄
v
Hi

g(X,Wn)
r+1

be induced by the morphisms

Grn
f

⇄
v
Gr+1
n .

Moreover, the σ-linear map of Wn-modules

ϕ : Hi
g(X,Wn)

+∞ = lim
−→

r 7→+∞,f

Hi
g(X,Wn)

r −→

lim
−→

r 7→−∞,v

Hi
g(X,Wn) = Hi

g(X,Wn)
−∞

is induced by the isomorphism ϕ : G+∞
n −→ G−∞

n , i.e., the isomorphisms

lim
−→

r 7→+∞,f

Hi
syn(X,Grn)

∼= Hi
syn(X,G+∞

n )
ϕ
−→

∼H
i
syn(X,G−∞

n ) ∼= lim
−→

r 7→−∞,v

Hi
syn(X,Grn)

where the outer isomorphisms come from the commuting of cohomology with
limits.

We note that

Hi
g(X,Wn)

−∞ = Hi
syn(X,G−∞) = Hi

syn(X,Ocris) ∼= Hi
cris(X/Wn)

by the comparison theorem of Fontaine and Messing [FM]. In this way, we
achieved the refinement of crystalline cohomology announced in section 3.3.
We note also that

Hi
g(X,Wn)

r−1 v
←−
∼

Hi
g(X,Wn)

r

is an isomorphism for r ≤ 0, because this holds for Gr−1
n

v
←Grn. Hence the

gauge Hi
g(X,Wn) is effective (concentrated in degrees ≥ 0), and we have

Hi
g(X,Wn)

−∞ = Hi
g(X,Wn)

0 = Hi
cris(X/Wn).
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8.2 The de Rham gauge of a variety X over k

We denote by C
(p)
b (OX) the following category:

– An object is a bounded complex

(C
·
) . . .→ Cn−1 → Cn dn

−→Cn+1 → . . .

of OX -modules of finite type, whose differentials (which are additive) are Op
X -

linear (i.e., satisfy dn(apx) = apdnx for any n ∈ Z, any local section a of OX

and x of Cn for any n ∈ Z).
– A morphism α : C· → D· is a collection of OX -linear maps αn : Cn → Dn,
for n ∈ Z, such that the diagram

. . . → Cn−1 → Cn → Cn+1 → . . .
↓ ↓ ↓

. . . → Dn−1 → Dn → Dn+1 → . . .

is commutative.
This is an abelian (Op

X -linear) category.

Because k is perfect, we have Ω1
X/k = Ω1

X := Ω1
X/Z. The de Rham complex

(Ω·X) OX → Ω1
X → . . .→ Ωn−1

X → Ωn
X → Ωn+1

X → . . .

is an object of the above category (We adopt the following convention: if a
complex C

·
starts with a given term on the left, this term is in degree 0 and

Cn = 0 for n < 0).

The restriction of scalars via the absolute Frobenius σ : OX → OX defines an
additive, exact and faithful functor from C

(p)
b (OX) to itself: If C· is an object of

C
(p)
b (OX), we let (σC)n =σ (C

n) and take the same differentials. In other words,

the underlying complex of sheaves of abelian groups is C·, but we change the
structure of OX -module on each Cn : the multiplication of a local section x of

σC
n by a local section a of OX is the multiplication of x by ap in Cn.

Let us recall that, for any integer n ∈ N, the Cartier isomorphism is an iso-
morphism of sheaves of abelian groups

c : Hn(ΩX
·)→ Ωn

X

satisfying c(apα) = ac(α) for a (resp. α) any local section of OX (resp.
Hn(ΩX

·
)). It is characterized by the fact that, if a0, a1, . . . , an are local

sections of OX , then c−1(a0da1 ∧ . . . ∧ dan) is the image of the closed form
ap0a

p−1
1 ap−1

2 . . . ap−1
n da1 ∧ da2 ∧ . . . ∧ dan.

We can also regard c as an OX -linear morphism

σH
n(ΩX

·)→ Ωn
X .
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If ZΩn
X denotes the kernel of d : Ωn

X → Ωn+1
X , the map c induces an exact

sequence of sheaves of OX -modules

σΩ
n−1
X

d
−→ σZΩn

X
c
−→ Ωn

X → 0 .

We observe that the fact that d(ap)ω = apdω (for a local section of OX and ω
local section of Ωn

X) implies that σZΩn
X is in fact a sub OX -module of σΩ

n
X .

We are now ready to construct the de Rham ϕ-gauge G1(X) = (G1
·(X), f, v, ϕ)

of X , which is a ϕ-gauge in C
(p)
b (OX):

– For r < 0, Gr
1(X) is the de Rham complex Ω

·
X :

OX
d
→ Ω1

X
d
→ . . .→ Ωn−1

X
d
→ Ωn

X
d
→ Ωn+1

X
d
→ . . .

– for r ≥ 0, Gr
1(X) is the complex

σOX
d
→σΩ

1
X

d
→ . . .

d
→σΩ

r−1
X

d
→σZΩr

X
dc
−→Ωr+1

X
d
→ . . .

d
→ Ωn

X
d
→ . . .

– the map f : Gr
1(X)→ Gr+1

1 (X) is 0 for r < 0 and is, for r ≥ 0,

σOX

d
→ · · ·σΩ

r−1

X

d
→ σZΩ

r

X

dc
−→ Ω

r+1

X

d
→ Ω

r+2

X

d
→ Ω

r+3

X
· · ·







y

‖







y

‖







y

incl







y

0







y

0







y

0

σOX

d
→ · · ·σΩ

r−1

X

d
→ σΩ

r

X

d
→ σZΩ

r+1

X

dc
−→ Ω

r+2

X

d
→ Ω

r+3

X
· · ·

– the map v : Gr+1
1 (X)→ Gr

1(X) is the identity for r < −1 and is, for r ≥ −1,

σOX

d
→ · · ·σΩ

r−1

X

d
→ σZΩ

r

X

dc
−→ Ω

r+1

X

d
→ Ω

r+2

X

d
→ Ω

r+3

X
· · ·

x







0

x







0

x







0

x







c

x







‖

x







‖

σOX

d
→ · · ·σΩ

r−1

X

d
→ σΩ

r

X

d
→ σZΩ

r+1

X

dc
−→ Ω

r+2

X

d
→ Ω

r+3

X
· · ·

Clearly vf = fv = 0, hence we have a gauge. We see also that for all r ∈ Z,
the map (f, v) : Gr

1(X) → Gr+1
1 (X) ⊕ Gr−1

1 (X) is injective. Hence we have a
strict gauge.
Because c : ZσOX → OX is an isomorphism, v−1 is an isomorphism, hence we
have an effective gauge.
–If d is the dimension of X , we have

Gr
1(X) =σΩX

·
for r ≥ d

(for r = d, because σZΩd
X =σ Ωd

X) and f : Gr
1(X) → Gr+1

1 (X) is an isomor-
phism if r ≥ d.
Hence, we have a gauge concentrated in the interval [0, d], with G−∞

1 (X) = ΩX
·

and G+∞
1 (X) =σΩX ·. We define the isomorphism

ϕ : G+∞
1 (X)→σG

−∞
1 (X)

as the identity on σΩX
·
, which finishes the definition of the de Rham ϕ-gauge

G1(X).
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Theorem 8.2.1. Let α : Xsyn −→ XZar be the morphism of sites coming from
the fact that the Zariski topology is coarser than the syntomic cohomology.
There is a canonical isomorphism

Rα∗G1
∼
−→G1 .

Proof. This follows via the same methods proving the Fontaine-Messing iso-
morphism

Hi
syn(X,Ocris

1 ) ∼= Hi
cris(X/k) = Hi

dR(X/k) ,

using canonical isomorphisms following from results of Berthelot [Be]

Rα∗I
[r]
1
∼= Ω≥r

X ,

where the complex on the right is obtained by naive truncation, i.e., is the
upper part, starting with Ωr

X , of the de Rham complex.

Corollary 8.2.2. Let X be a proper variety over k. Then the following holds.

(a) The gauge cohomology Hi
g(X,Wn) is of finite type and is concentrated in

the interval [0, i], and it vanishes for i ≥ 2d.

(b) One has Hi
g(X,Wn)

0 = Hi
cris(X/Wn).

(c) If X is smooth, proper, and irreducible of pure dimension d, then the
Poincaré duality for crystalline cohomology extends to a perfect duality of ϕ-
Wn-gauges

Hi
g(X,Wn)×H2d−i

g (X,Wn) −→ H2d
g (X,Wn)

∼
−→Wn(−d) .

Here the Wn-gauge Wn(−d) extends to a ϕ-Wn-gauge by defining

ϕ : Wn(−d)
+∞ = Wn →Wn = Wn(−d)

−∞

as the Frobenius σ on Wn, which is σ-linear.

Proof. All questions are easily reduced to the case n = 1. But by theorem
8.2.1, we have Hi

g(X,W1) = Hi
Zar(X,Gr

1), and thus the claim follows from
classical Serre duality, and the explicit shape of the de Rham gauge G1(X)
defined above.
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