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Abstract. Local regularity results are obtained for the MHD equa-
tions using as global framework the setting of parabolic Morrey spaces.
Indeed, by assuming some local boundedness assumptions (in the
sense of parabolic Morrey spaces) for weak solutions of the MHD
equations it is possible to obtain a gain of regularity for such solu-
tions in the general setting of the Serrin regularity theory. This is the
first step of a wider program that aims to study both local and partial
regularity theories for the MHD equations.
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1 Introduction

In this article we study local regularity results for the incompressible 3D Mag-
netohydrodynamic (MHD) equations which are given by the following system:





∂t~u = ∆~u− (~u · ~∇)~u+ (~b · ~∇)~b − ~∇p+ ~f, div(~u) = 0,

∂t~b = ∆~b− (~u · ~∇)~b + (~b · ~∇)~u+ ~g, div(~b) = 0,

~u(0, x) = ~u0(x) and ~b(0, x) = ~b0(x), div(~u0) = 0, div(~b0) = 0,

(1)

where ~u,~b : [0, T ]× R
3 −→ R

3 are two divergence-free vector fields which rep-
resent the velocity and the magnetic field, respectively, and the scalar function
p : [0, T ]×R

3 −→ R stands for the pressure. The initial data ~u0,~b0 : R
3 −→ R

3

and the external forces ~f,~g : [0, T ]× R
3 −→ R

3 are given and for the external
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forces we will always assume that they belong to the space L2
tH

1
x.

The system (1) describes the motion of fluids under the presence of a magnetic
field and it is used to study many types of conducting fluids such as plasmas,
liquid metals or electrolytes. These general equations appear very naturally in
many applicative fields as geophysics [13] or astrophysics [16].

In this article we are mainly interested in a mathematical study of theses
equations. Indeed, if Ω ⊂ [0,+∞[×R

3 is a bounded set, we will say that the

couple (~u,~b) ∈ L∞
t L2

x ∩ L2
t Ḣ

1
x(Ω) satisfy the MHD equations (1) in the weak

sense if for all ~ϕ, ~φ ∈ D(Ω) such that div(~ϕ) = div(~φ) = 0, we have




〈∂t~u−∆~u+ (~u · ~∇)~u− (~b · ~∇)~b − ~f |~ϕ〉D′×D = 0,

〈∂t~b−∆~b+ (~u · ~∇)~b − (~b · ~∇)~u− ~g|~φ〉D′×D = 0,

note that if (~u,~b) are solutions of the previous system, then there exists a
pressure p such that (1) is fulfilled in D′.

It is clear that if the magnetic field ~b = 0, then the previous equations (1) are
reduced to the classical Navier-Stokes equations

∂t~u = ∆~u − (~u · ~∇)~u− ~∇p+ ~f, div(~u) = 0, (2)

for which some results related to regularity are available. Indeed, let us briefly
recall the Serrin regularity theory for the classical Navier-Stokes system:

Theorem 1 (local regularity, [15]). Let Q =]a, b[×B(x0, r0), with 0 < a < b,

x0 ∈ R
3 and 0 < r0. Let ~f ∈ L2

t Ḣ
k
x (Q) for some k ≥ 0, let ~u ∈ L∞

t L2
x(Q) ∩

L2
t Ḣ

1
x(Q) and p ∈ D′(Q); if we assume that ~u is a weak solution on Q of the

Navier-Stokes equations (2) then, if

~u ∈ L∞
t L∞

x (Q), (3)

we obtain that locally the regularity of ~u is given by the regularity of the
external force ~f : for every a < c < b and 0 < ρ < r0 we have that
~u ∈ L∞

(
]c, b[, Ḣk+1(B(x0, ρ))

)
∩ L2

(
]c, b[, Ḣk+2(B(x0, ρ))

)
. The points of

]0,+∞[×R
3 for which we have the condition (3) for some Q will be called

regular points.

Remark that no particular assumption is needed for the pressure p, which can
be a very general object and this fact is a very important feature of this theory.

Remark 1.1. Note that the assumption ~u ∈ L∞
t L∞

x (Q) stated in (3) can be

generalized. Serrin [15] proved that, if ~f ∈ L2
tH

1
x(Q) and if

~u ∈ L
p
tL

q
x(Q) with 2

p + 3
q < 1, (4)

then for every a < c < b and 0 < ρ < r0 we have that ~u ∈
L∞
t L∞

x (]c, b[×B(x0, ρ)).
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Important and significant efforts have been made to generalize even more
this hypothesis (3), see for example [17], [18] or [6]. In particular, parabolic
Morrey-Campanato spaces were used by O’Leary [10], see also [11], [12], to
generalize Serrin’s theorem and we will see how to exploit this framework for
the MHD equations (1).

It is worth mentioning here that another regularity theory is available for the
Navier-Stokes equations. Indeed, Caffarelli, Kohn and Nirenberg developed
in [3] a second approach, known as the partial regularity theory, which is
essentially based on energy estimates. Of course these two points of view
(local and partial) are quite different since they require different hypotheses1

and since the results obtained are obviously different, however -and this point
is important- a common treatment can be performed by using the framework
of parabolic Morrey spaces. See for example Kukavica [8] for generalization
of the Caffarelli-Kohn-Nirenberg theory in this parabolic setting. One special
feature of this common framework appears to be crucial when studying the
role of the pressure in the Caffarelli-Kohn-Nirenberg theory for the classical
Navier-Stokes equations, indeed, as it is shown in [4], the language of parabolic
Morrey spaces is a powerful tool which allows to mix, in a very specific sense,
these two regularity theories.

Although many studies concerning regularity are available for the MHD
equations (see for example [6], [7] or [9] and the references therein for a
generalization of Theorem 1 and Remark 1.1 to the MHD equations), tothe
best of our knowledge, a detailed treatment using parabolic Morrey spaces is
missing. Since this framework is important to improve the understanding of
the role of the pressure in these regularity theories, we find interesting to set
up in this article the first step of our approach -given by Theorem 2 below-
that will eventually lead usto a forthcoming work to define new classes of
solutions for the MHD equations (1).

The plan of the article is the following. In Section 2 we introduce some notation
and we present our main theorem while in Section 3 we recall some useful fact
about parabolic Morrey spaces. Finally, in Section 4 we detail the proof of all
the results stated before. Some classical but useful results are gathered in the
appendix.

2 Notation and presentation of the results

Before stating the main theorem of this article, we need to introduce some
notation related to parabolic Morrey spaces. It is worth noting here that the
use of these parabolic spaces is actually given by the underlying structure of

1In particular, for the Caffarelli-Kohn-Nirenberg theory some information is needed for

the pressure p, which is not the case for the Serrin theory.
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the MHD equations: indeed, in one hand we have that if (~u, p,~b) is a solution

of (1), then for λ > 0 the triplet λ~u(λ2t, λx), λ2p(λ2t, λx) and λ~b(λ2t, λx) is
still a solution of the MHD equations and this remark will lead us to a very
particular dilation structure. On the other hand, when studying existence for
these equations, we can see the system (1) as a nonlinear perturbation of the
heat equation and thus the properties of the heat kernel h(

√
t, x) must also to

be taken into account. It is thus natural to consider the homogeneous space
(R× R

3, d, µ) where d is the parabolic quasi-distance given by

d
(
(t, x), (s, y)

)
= |t− s| 12 + |x− y|, (5)

and where µ is the usual Lebesgue measure dµ = dtdx. Remark that the
homogeneous dimension is now Q = 5. See [5] for more details concerning the
general theory of homogeneous spaces.

Now for 1 < p ≤ q < +∞, parabolic Morrey spaces Mp,q
t,x are defined as the set

of measurable functions ~ϕ : R× R
3 −→ R

3 that belong to the space (Lp
tL

p
x)loc

such that ‖~ϕ‖Mp,q
t,x

< +∞ where

‖~ϕ‖Mp,q
t,x

= sup
x0∈R3,t0∈R,r>0

(
1

r5(1−
p
q )

∫

|t−t0|<r2

∫

B(x0,r)

|~ϕ(t, x)|pdxdt
) 1

p

. (6)

Note that we have M
p,p
t,x = L

p
tL

p
x. In Section 3 we will present some useful

properties of these spaces.

As we are interested in studying local regularity properties of the solutions
of the MHD equations (1), in what follows we will always consider here the
following subset of ]0,+∞[×R

3:

Ω =]a, b[×B(x0, r), with 0 < a < b < +∞, x0 ∈ R
3 and 0 < r < +∞. (7)

The main theorem of this article reads as follows.

Theorem 2. Let ~u0,~b0 : R
3 −→ R

3 such that ~u0,~b0 ∈ L2(R3) and

div(~u0) = div(~b0) = 0 be two initial data and consider two external forces
~f,~g : [0,+∞[×R

3 −→ R
3 such that ~f,~g ∈ L2([0,+∞[, Ḣ1(R3)).

Assume that p ∈ D′(Ω) and that ~u,~b : [0,+∞[×R
3 −→ R

3 are two vector fields
that belong to the space

L∞(]a, b[, L2(B(x0, r))) ∩ L2(]a, b[, Ḣ1(B(x0, r))), (8)

such that they satisfy the MHD equations (1) over the set Ω given in (7).

If moreover we have the following local hypotheses



1Ω~u ∈ M

p0,q0
t,x (R× R

3) with 2 < p0 ≤ q0, 5 < q0 < +∞

1Ω
~b ∈ M

p1,q1
t,x (R× R

3) with 2 < p1 ≤ q1, 5 < q1 < +∞,

(9)
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and p1 ≤ p0, q1 ≤ q0, then, for all α, β such that a < α < β < b and for all ρ
such that 0 < ρ < r, we have

~u ∈ Lq0(]α, β[, Lq0(B(x0, ρ))) and ~b ∈ Lq1(]α, β[, Lq1 (B(x0, ρ))).

Note that once we have this result -and observing that the parameters above
satisfy the condition (4)- we can thus apply Remark 1.1 to obtain that we actu-

ally have ~u,~b ∈ (L∞
t L∞

x )loc and then, by the Serrin theory stated in Theorem 1
in the context of the MHD equations [2], we will deduce local regularity for the
solutions of the MHD equations.Moreover, note that Theorem 2 generalizes to
the coupled setting of the MHD equations the result obtained by M. O’Leary
in [10] for the incompressible Navier-Stokes equations.

3 Useful properties of parabolic Morrey spaces

We state here some results that will be frequently used in the sequel. The first
one is just a consequence of Hölder’s inequality.

Lemma 3.1. If ~f,~g : R × R
3 −→ R

3 are two function that belong to the space
M

p,q
t,x (R× R

3) then we have the inequality

‖~f · ~g‖
M

p
2
,
q
2

t,x

≤ C‖~f‖Mp,q
t,x

‖~g‖Mp,q
t,x

.

Our next lemma explains the behaviour of parabolic Morrey spaces with respect
to localization in time and space.

Lemma 3.2. Let Ω be a bounded set of R× R
3 of the form given in (7). If we

have 1 < p0 ≤ p1, 1 < p0 ≤ q0 ≤ q1 < +∞ and if the function ~f : R×R
3 −→ R

3

belongs to the space M
p1,q1
t,x (R × R

3) then we have the following localization
property

‖1Ω
~f‖Mp0,q0

t,x
≤ C‖~f‖Mp1,q1

t,x
.

Let us now introduce, for 0 < α < 5, the parabolic Riesz potential Iα of a
locally integrable function ~f : R× R

3 −→ R
3 which is given by the expression

Iα(~f)(t, x) =
∫

R

∫

R3

1

(|t− s| 12 + |x− y|)5−α
~f(s, y)dy ds. (10)

As for the standard Riesz Potential in R
3, we have a corresponding boundedness

property:

Lemma 3.3 (Adams-Hedberg’s inequality). If 0 < α < 5
q , 1 < p ≤ q < +∞

and ~f ∈ M
p,q
t,x (R×R

3) then for λ = 1− αq
5 (which verifies 0 < λ < 1) we have

the inequality
‖Iα(~f)‖

M
p
λ

,
q
λ

t,x

≤ C‖~f‖Mp,q
t,x

.
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See [1] for a proof of this fact. From these general lemmas we will now deduce
two specific results that will be helpful in our computations.

Corollary 3.1. Let Ω be a bounded set of the form given in (7). If 2 < p ≤ q,

5 < q, and ~f ∈ M
p
2 ,

q
2

t,x (R× R
3), then we have

1) 1ΩI1(~f) ∈ M
p
λ , qλ
t,x (R× R

3), with λ = 1− q−5
5q (remark that 0 < λ < 1).

2) 1ΩI1(~f) ∈ M
σ,q
t,x (R×R

3), where σ = min( pλ , q) with the same λ as before.

Proof. For the first point, it is enough to notice that since 2 < p ≤ q and
5 < q ≤ 6 we have 2δ ≤ λ where λ = 1− q−5

5q and δ = 1 − q
10 . Thus, applying

Lemmas 3.2 and 3.3 we have:

‖1ΩI1(~f)‖
M

p
λ

,
q
λ

t,x

≤ C‖I1(~f)‖
M

p
2δ

,
q
2δ

t,x

≤ C‖~f‖
M

p
2
,
q
2

t,x

.

For the second point, since we have σ = min( pλ , q) ≤ p
λ and q < q

λ , by

Lemma 3.2 we can write ‖1ΩI1(~f)‖Mσ,q
t,x

≤ ‖1ΩI1(~f)‖
M

p
λ

,
q
λ

t,x

and it only re-

mains to apply the first point just proved.

Corollary 3.2. Let Ω be a bounded set of the form given in (7). If 2 < p ≤ q,

5 < q and ~f ∈ M
p
2 ,

q
2

t,x (R× R
3), then we have

1ΩI2(1Ω
~f) ∈ M

σ,q
t,x (R× R

3),

where σ = min( pλ , q) with λ = 1− q−5
5q .

Proof. Notice first that we cannot use Lemma 3.3 directly since we are dealing
here with the Riesz potential Iα with α = 2 > 5

q/2 . To overcome this gap

we will exploit the double localization of the function 1ΩI2(1Ω
~f). Indeed,

observing that σ = min( pλ , q) ≤ q, we can write by Lemma 3.2

‖1ΩI2(1Ω
~f)‖Mσ,q

t,x
≤ C‖1ΩI2(1Ω

~f)‖Mq,q
t,x

.

Consider now a parameter δ such that δ < 5
2 < q

2 and such that δ is close enough

to 5
2 so that we have δ

1−2δ/5 ≥ min( p
2 ,δ)

1−2δ/5 > q, thus we have by Lemma 3.2

‖1ΩI2(1Ω
~f)‖Mq,q

t,x
≤ C‖I2(1Ω

~f)‖
M

min(
p
2
,δ)

1−2δ/5
, δ
1−2δ/5

t,x

. Since now we do have the

condition 2 < 5
δ , by Lemma 3.3 we deduce the inequality

‖I2(1Ω
~f)‖

M

min(
p
2
,δ)

1−2δ/5
, δ
1−2δ/5

t,x

≤ C‖1Ω
~f‖

M
min(

p
2
,δ),δ

t,x

.

It is enough to remark that min(p2 , δ) ≤ p
2 and that δ ≤ q

2 to obtain

‖1Ω
~f‖

M
min(

p
2
,δ),δ

t,x

≤ C‖~f‖
M

p
2
,
q
2

t,x

and the Corollary 3.2 follows.
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4 Proof of Theorem 2

The first thing to do is to define our framework, thus from a general parabolic
ball Ω of the type (7) that will be fixed once and for all, we consider the two
following subsets:

Ω0 =]α, β[×B(x0, ρ) and Ω1 =

]
a+ α

2
,
b+ β

2

[
×B

(
x0,

r + ρ

2

)
, (11)

and remark that since 0 < a < α < β < b and 0 < ρ < r, we have the inclusion

Ω0 ⊂ Ω1 ⊂ Ω. (12)

Note in particular that the conclusion of Theorem 2 is given over the subset Ω0.

Observe also that since we are working in a local setting, due to the localization
property stated in Lemma 3.2 and with no loss of generality we may assume
in hypothesis (9) that we have 5 < q0, q1 < 6.

Once our framework is clear, in order to prove Theorem 2 we will use the
following strategy: we define two technical parameters 0 < λ0, λ1 < 1 such
that

λ0 = 1− q0 − 5

5q0
and λ1 = 1− q1 − 5

5q1
, (13)

and we prove that we have

1Ω0~u ∈ M
σ0,q0
t,x (R× R

3), 1Ω0
~b ∈ M

σ1,q1
t,x (R× R

3), (14)

where σ0 = min{ p0

λ0
, q0} and σ1 = min{ p1

λ1
, q1}. Now if (14) holds, then by

iteration we will be able to obtain

1Ω0~u ∈ M
q0,q0
t,x = L

q0
t Lq0

x , 1Ω0
~b ∈ M

q1,q1
t,x = L

q1
t Lq1

x , (15)

which is the conclusion of Theorem 2. Indeed, if we have at our dis-
posal estimates (14), theniterating the same arguments we will ob-

tain 1Ω0~u ∈ M
σ(0,1),q0
t,x (R × R

3), 1Ω0
~b ∈ M

σ(1,1),q1
t,x (R × R

3), where
σ(0,1) = min{σ0

λ0
, q0} = min{ p0

λ2
0
, q0} and σ(1,1) = min{σ1

λ1
, q1} = min{ p1

λ2
1
, q1},

then observing that we have lim
n→+∞

p0

λn
0

= +∞ and lim
n→+∞

p1

λn
1

= +∞, we

obtain (15).

Now, to prove (14) we introduce two test functions φ, ϕ : R × R
3 −→ R that

belong to the space C∞
0 (R× R

3) and such that

φ ≡ 1 on Ω0 and supp(φ) ⊂ Ω1, (16)

ϕ ≡ 1 on Ω1 and supp(ϕ) ⊂ Ω. (17)
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These functions satisfy two important facts: first we have φ(0, ·) = ϕ(0, ·) = 0
and second due to the inclusions stated in (12) we have the identity φϕ ≡ φ in
the whole space.

We define now ~U = φ~u and ~B = φ~b. As long as we are interested in the
behavior of ~u and ~b inside the set Ω0 and with the properties of the localization
functions φ and ϕ defined above, we can write

~U = ϕ

(
1

∆
∆(φ~u)

)
= ϕ

(
1

∆

(
φ∆~u − (∆φ)~u + 2

3∑

i=1

∂i
(
(∂iφ)~u

)
))

,

~B = ϕ

(
1

∆
∆(φ~b)

)
= ϕ

(
1

∆

(
φ∆~b − (∆φ)~b + 2

3∑

i=1

∂i
(
(∂iφ)~b

)
))

.

Thus, verifying (14) amounts to prove that ~U ∈ M
σ0,q0
t,x and ~B ∈ M

σ1,q1
t,x and for

this we will first study in the expressions above the terms where the Laplacian
does not act directly over the functions ~u and ~b. More precisely if we define
the quantities

~V = ϕ

(
1

∆
(φ∆~u)

)
and ~W = ϕ

(
1

∆
(φ∆~b)

)
, (18)

we will study in the next lemma the behavior of the quantities ~U−~V and ~B− ~W

and we will prove that locally they belong to the parabolic Morrey spaces we
are looking for.

Proposition 4.1. Under the notation (13), assume 5 < q0 < 6 and let σ0 =

min{ p0

λ0
, q0}, then we have 1Ω(~U − ~V ) ∈ M

σ0,q0
t,x (R × R

3). Symmetrically, if

5 < q1 < 6 and if σ1 = min{ p1

λ1
, q1} then we have 1Ω( ~B− ~W ) ∈ M

σ1,q1
t,x (R×R

3).

Proof of Proposition 4.1. We claim first that

~U− ~V = ϕ

(
1

∆

(
−(∆φ)~u + 2

3∑

i=1

∂i
(
(∂iφ)~u

)
))

∈ L∞(]0,+∞[, L6(R3)). (19)

Indeed, recall that ~u ∈ L∞(]a, b[, L2(B(x0, r))) hence ~u ∈
L∞(]a, b[, L

6
5 (B(x0, r))) and by definition of the test function φ we have

(∆φ)~u ∈ L∞(]0,+∞[, L
6
5 (R3)) thus, recalling that we have by duality the

embedding L
6
5 ⊂ Ḣ−1, we obtain

(∆φ)~u ∈ L∞(]0,+∞[, Ḣ−1(R3)).

Moreover, as ~u ∈ L∞(]a, b[, L2(B(x0, r))), for any 1 ≤ i ≤ 3, we have (∂iφ)~u ∈
L∞(]0,+∞[, L2(R3)), which results in

3∑

i=1

∂i
(
(∂iφ)~u

)
∈ L∞(]0,+∞[, Ḣ−1(R3)).
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With the two informations above, we get

ϕ

(
1

∆

(
−(∆φ)~u+ 2

3∑

i=1

∂i
(
(∂iφ)~u

)
))

∈ L∞(]0,+∞[, Ḣ1(R3)).

Hence, (19) is verified by the Sobolev embedding Ḣ1(R3) ⊂ L6(R3). Once we

have ~U − ~V ∈ L∞
t L6

x, by the assumption 5 < q0 < 6 and by the localization

property given in Lemma 3.2, we have 1Ω(~U − ~V ) ∈ L
q0
t Lq0

x = M
q0,q0
t,x and

this conclusion is enough for our purposes. However, let us note that, since
σ0 = min{ p0

λ0
, q0} < q0, the fact 1Ω(~U − ~V ) ∈ M

σ0,q0
t,x (R × R

3) also follows
from Lemma 3.2. To finish, remark now that as we have the information
~b ∈ L∞(]a, b[, L2(B(x0, r))) and σ1 = min{ p1

λ1
, q1} < q1 < 6, the proof of the

fact 1Ω( ~B − ~W ) ∈ M
σ1,q1
t,x (R× R

3) follows the same lines.

Once we have Proposition 4.1 for the differences ~U − ~V and ~B− ~W , it remains
to show that the quantities ~V and ~W defined in (18) belong to the parabolic
Morrey spaces Mσ0,q0

t,x and M
σ1,q1
t,x . For this we will use the equations satisfied

by these objects ~V and ~W , but these dynamics involve the pressure p for which
we do not have any information (recall that p ∈ D′) and we need to get rid of
this term, however, as we are working in a local setting we can not just apply
the Leray projector and it will be more convenient to work with the vorticity

~ω = ~∇ ∧ ~u,

and with the current
~ρ = ~∇ ∧~b,

and with the equations satisfied by these two variables, which do not involve
the pressure anymore: indeed if we apply the curl to the system (1) and since
~∇∧ ~∇p = 0 we will obtain the dynamics for ~ω and ~ρ where there is no pressure.

The link between the variables ~V , ~W defined in (18) above and the functions
~ω, ~ρ is given by the following property: if we localize properly the vorticity ~ω

and the current ~ρ, then due to the support properties of the localizing functions
and by Lemma 5.3 in the Appendix, we obtain (locally) the identities

~V = −ϕ

(
1

∆
(φ~∇ ∧ (ϕ~ω))

)
= −ϕ

(
1

∆
φ ~U

)
and

~W = −ϕ

(
1

∆
(φ~∇ ∧ (ϕ~ρ))

)
= −ϕ

(
1

∆
φ ~B
)
,

(20)

where ~U := ~∇ ∧ (ϕ~ω) and ~B := ~∇ ∧ (ϕ~ρ). Thus in order to study ~V and ~W

we shall first obtain some properties on the variables ~U and ~B since once we
obtain information them it will be easy to deduce information for ~V and ~W .
Note that the dynamics for ~U and ~B can be deduced from the initial system
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(1) by first apply the curl, by localizing with the function ϕ and by applying
the curl again, we thus obtain the two following equations:

∂t ~U = ∆~U

+ ~∇ ∧
[
ϕ(~∇ ∧ ~f) + (∂tϕ+∆ϕ)~ω − 2

3∑

i=1

∂i((∂iϕ)~ω)

+ϕ
(
~∇ ∧

(
− (~u · ~∇)~u + (~b · ~∇)~b

))
]

(21)

∂t ~B = ∆ ~B

+ ~∇ ∧
[
ϕ(~∇ ∧ ~g) + (∂tϕ+∆ϕ)~ρ− 2

3∑

i=1

∂i((∂iϕ)~ρ) (22)

+ϕ
(
~∇ ∧

(
− (~u · ~∇)~b + (~b · ~∇)~u

)) ]
.

Remark now that by the definition of the localization function ϕ, we have
~U(0, ·) = 0 and ~B(0, ·) = 0 and thus the variables ~U and ~B satisfy the following
parabolic equations:




∂t ~U = ∆~U + ~∇∧ ~R,

~U(0, ·) = 0,
and




∂t ~B = ∆ ~B + ~∇∧ ~V ,
~B(0, ·) = 0,

(23)

where

~R =
11∑

j=1

~Rj = ϕ(~∇ ∧ ~f)︸ ︷︷ ︸
(1)

+(∂tϕ+∆ϕ)~ω︸ ︷︷ ︸
(2)

− 2
3∑

i=1

∂i
(
(∂iϕ)~ω

)

︸ ︷︷ ︸
(3)

+
3∑

i=1

∂i(~∇ϕ ∧ (ui~u))

︸ ︷︷ ︸
(4)

+ ~∇∧
(

3∑

i=1

(∂iϕ)ui~u

)

︸ ︷︷ ︸
(5)

−
3∑

i=1

(~∇∂iϕ) ∧ (ui~u)

︸ ︷︷ ︸
(6)

− ~∇∧
(

3∑

i=1

∂i(ϕui~u)

)

︸ ︷︷ ︸
(7)

−
3∑

i=1

∂i(~∇ϕ ∧ (bi~b))

︸ ︷︷ ︸
(8)

− ~∇∧
(

3∑

i=1

(∂iϕ)bi~b

)

︸ ︷︷ ︸
(9)

+
3∑

i=1

(~∇∂iϕ) ∧ (bi~b)

︸ ︷︷ ︸
(10)

+ ~∇∧
(

3∑

i=1

∂i(ϕbi~b)

)

︸ ︷︷ ︸
(11)

(24)
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and

~V =

11∑

j=1

~Vj = ϕ(~∇ ∧ ~g) + (∂tϕ+∆ϕ)~ρ− 2

3∑

i=1

∂i
(
(∂iϕ)~ρ

)

+

3∑

i=1

∂i(~∇ϕ ∧ (ui
~b)) + ~∇∧

(
3∑

i=1

(∂iϕ)ui
~b

)
−

3∑

i=1

(~∇∂iϕ) ∧ (ui
~b)

− ~∇ ∧
(

3∑

i=1

∂i(ϕui
~b)

)
−

3∑

i=1

∂i(~∇ϕ ∧ (bi~u))− ~∇ ∧
(

3∑

i=1

(∂iϕ)bi~u

)

+

3∑

i=1

(~∇∂iϕ) ∧ (bi~u) + ~∇∧
(

3∑

i=1

∂i(ϕbi~u)

)
.

In the expressions of the quantities ~R and ~V given above we have systematically
decomposed the terms (~u · ~∇)~u, (~b · ~∇)~b, (~u · ~∇)~b and (~b · ~∇)~u of (21)by using
the identity in Lemma 5.4. In order to simplify the main part of our proof, we
put the proof of the Lemma 5.4 in the Appendix.

Now, using an integral representation we have that the solutions of equations
(23) can be written in the following form

~U =

∫ t

0

e(t−s)∆(~∇ ∧ ~R)(s, ·) ds =

11∑

j=1

~∇ ∧
∫ t

0

e(t−s)∆ ~Rj(s, ·) ds :=
11∑

j=1

~∇∧ ~Tj,

and

~B =

∫ t

0

e(t−s)∆(~∇ ∧ ~V)(s, ·) ds =

11∑

j=1

~∇ ∧
∫ t

0

e(t−s)∆~Vj(s, ·) ds :=
11∑

j=1

~∇∧ ~Xj ,

where we defined ~Tj =

∫ t

0

e(t−s)∆ ~Rj(s, ·) ds and ~Xj =

∫ t

0

e(t−s)∆~Vj(s, ·) ds.

With these expressions for the variables ~U and ~B, we remark that in order to
prove that ~V ∈ M

σ0,q0
t,x and ~W ∈ M

σ1,q1
t,x , due to the identification (20) we only

have to verify that for each ~Tj and ~Xj , with j = 1, ..., 11, we actually have

ϕ
( 1

∆

(
φ~∇∧ ~Tj

))
∈ M

σ0,q0
t,x (R×R

3) and ϕ
( 1

∆

(
φ~∇∧ ~Xj

))
∈ M

σ1,q1
t,x (R×R

3).

(25)
The rest of the paper is thus devoted to show (25) and for this we will treat
separately each ones of the previous terms: indeed Proposition 4.2 studies the
cases j = 1, 2, Proposition 4.3 treats the case j = 3 while Proposition 4.4 treats
the cases j = 4, 5, 6, 8, 9, 10, finally Proposition 4.5 studies the remaining cases,
i.e. j = 7, 11.
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Proposition 4.2. Under the above notation, for j = 1, 2 we have

ϕ

(
1

∆

(
φ~∇ ∧ ~Tj

))
∈ M

σ0,q0
t,x and ϕ

(
1

∆

(
φ~∇ ∧ ~Xj

))
∈ M

σ1,q1
t,x .

Proof of Proposition 4.2. Let us start with ~T1. By Lemma 3.2, since 5 < q0 < 6
and since σ0 = min{ p0

λ0
, q0} ≤ q0 and using the identification M

p,p
t,x = L

p
tL

p
x, we

can write
∥∥∥∥ϕ
(

1

∆

(
φ~∇ ∧ ~T1

))∥∥∥∥
M

σ0,q0
t,x

≤ C

∥∥∥∥ϕ
(

1

∆

(
φ~∇ ∧ ~T1

))∥∥∥∥
L6

tL
6
x

≤ C‖ϕ‖L∞
t L∞

x

∥∥∥∥
1

∆

(
φ~∇ ∧ ~T1

)∥∥∥∥
L6

tL
6
x

≤ C

∥∥∥∥
1

∆

(
φ~∇ ∧ ~T1

)∥∥∥∥
L6

t Ḣ
1
x

≤ C‖φ~∇ ∧ ~T1‖L6
t Ḣ

−1
x

,

where we used the embedding Ḣ1 ⊂ L6 and the properties of the negative
powers of the Laplacian. Now, by the definition of ~T1, using the embedding
L

6
5 ⊂ Ḣ−1 and the Hölder inequality with 5

6 = 1
3 + 1

2 , we write:

‖φ~∇∧ ~T1‖L6
tḢ

−1
x

≤ C‖φ~∇ ∧ ~T1‖L∞
t Ḣ−1

x
≤ C‖φ~∇ ∧ ~T1‖

L∞
t L

6
5
x

≤ Csup
t>0

∥∥∥∥φ~∇ ∧
∫ t

0

e(t−s)∆R1ds

∥∥∥∥
L

6
5

≤ C‖φ‖L∞
t L3

x
sup
t>0

∥∥∥∥∥

∫ t

0

e(t−s)∆(−∆)
1
2
(~∇ ∧R1)

(−∆)
1
2

ds

∥∥∥∥∥
L2

≤ C

∥∥∥∥∥
~∇∧R1

(−∆)
1
2

∥∥∥∥∥
L2

tL
2
x

= C
∥∥∥~∇ ∧R1

∥∥∥
L2

tḢ
−1
x

.

The last estimate follows from the general inequality

sup
t>0

∥∥∥∥
∫ t

0

e(t−s)∆(−∆)
1
2Fds

∥∥∥∥
L2

≤ C‖F‖L2
tL

2
x
,

see Lemma 5.2 in the Appendix. Remark now that since ~f ∈ L2
t Ḣ

1
x and due

to the properties of the localizing function ϕ, we actually have ~∇ ∧ ~R1 =
~∇ ∧ (ϕ(~∇ ∧ ~f)) ∈ L2

t Ḣ
−1
x since

‖~∇∧ ~R1‖L2
t Ḣ

−1
x

≤ C‖ϕ(~∇ ∧ ~f)‖L2
tL

2
x
≤ C‖~f‖L2

tḢ
1
x
< +∞,

which finally gives ϕ
(

1
∆

(
φ~∇ ∧ ~T1

))
∈ M

σ0,q0
t,x . For ~T2, in a similar fash-

ion, since we have by hypothesis ~u ∈ L∞
t L2

x ∩ L2
t Ḣ

1
x(]a, b[×B(x0, r)) we get
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~∇ ∧ ~R2 = ~∇ ∧
(
(∂tϕ+∆ϕ)(~∇ ∧ ~u)

)
∈ L2

t Ḣ
−1
x from which we deduce that

ϕ
(

1
∆

(
φ~∇ ∧ ~T2

))
∈ M

σ0,q0
t,x .

The estimates for ϕ
(

1
∆

(
φ~∇ ∧ ~Xj

))
follow the same lines.

Proposition 4.3. We have

ϕ

(
1

∆
(φ~∇ ∧ ~T3)

)
∈ M

σ0,q0
t,x and ϕ

(
1

∆
(φ~∇ ∧ ~X3)

)
∈ M

σ1,q1
t,x .

Proof of Proposition 4.3. We will detail the first term since the second term
that involves ~X3 follows the same computations. Indeed, following the same
ideas as previously we have

∥∥∥∥ϕ
(

1

∆
(φ~∇ ∧ ~T3)

)∥∥∥∥
M

σ0,q0
t,x

≤ C

∥∥∥∥ϕ
(

1

∆
(φ~∇ ∧ ~T3)

)∥∥∥∥
M6,6

t,x

≤ C

∥∥∥∥ϕ
(

1

∆
(φ~∇ ∧ ~T3)

)∥∥∥∥
L6

tL
6
x

.

Let us define now ~∇ ∧ ~T3 := ∆~Y3, where

~Y3 = −2

3∑

i=1

∫ t

0

e(t−s)∆ 1

∆
~∇ ∧ ∂i

(
(∂iϕ)~ω

)
(s, ·) ds.

Using the classical identity φ(∆~Y3) = ∆(φ~Y3) + (∆φ)~Y3 − 2
3∑

i=1

∂i((∂iφ)~Y3), we

obtain

ϕ
( 1

∆

(
φ~∇ ∧ ~T3

))
= ϕφ~Y3 + ϕ

1

∆

(
(∆φ)~Y3

)
− 2

3∑

i=1

ϕ
∂i

∆

(
(∂iφ) ~Y3

)
.(26)

It remains to treat each term on the right-hand side of equality (26). For the
first term above, by using Sobolev embedding Ḣ1(R3) ⊂ L6(R3) and a standard
heat kernel estimate (see Lemma 5.2), we get

‖ϕφ~Y3‖L6
tL

6
x

≤ C‖~Y3‖L∞
t L6

x
≤ C‖~Y3‖L∞

t Ḣ1
x

≤ C

3∑

i=1

∥∥∥∥
∫ t

0

e(t−s)∆

(
1

∆
~∇ ∧ ∂i

(
(∂iϕ)~ω

))
(s, ·) ds

∥∥∥∥
L∞

t Ḣ1
x

≤ C

3∑

i=1

∥∥∥∥
1

∆
~∇∧ ∂i

(
(∂iϕ)~ω

)∥∥∥∥
L2

tL
2
x

≤ C

3∑

i=1

‖(∂iϕ)~ω‖L2
tL

2
x
≤ C‖~u‖L2

t Ḣ
1
x
. (27)
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For the second term on the right-hand side of (26), we use the embedding

Ḣ1 ⊂ L6 and the embedding L
6
5 ⊂ Ḣ−1 to get

∥∥∥∥ϕ
1

∆

(
(∆φ)~Y3

)∥∥∥∥
L6

tL
6
x

≤ C

∥∥∥∥
1

∆

(
(∆φ)~Y3

)∥∥∥∥
L6

t Ḣ
1
x

≤ C
∥∥∥(∆φ)1Ω1

~Y3

∥∥∥
L6

t Ḣ
−1
x

≤ C
∥∥∥(∆φ)1Ω1

~Y3

∥∥∥
L6

tL
6
5
x

.

Then, by Hölder’s inequality with 5
6 = 1

3 + 1
2 , we have

∥∥∥(∆φ)1Ω1
~Y3

∥∥∥
L6

tL
6
5
x

≤ C ‖(∆φ)‖L∞
t L3

x

∥∥∥1Ω1
~Y3

∥∥∥
L6

tL
2
x

≤ C‖~Y3‖L∞
t L6

x
,

and from the previous calculus displayed in (27) we obtain

∥∥∥∥ϕ
1

∆

(
(∆φ)~Y3

)∥∥∥∥
L6

tL
6
x

≤ C‖~u‖L2
tḢ

1
x
< +∞.

For the last term of (26), we do the same estimates as above. By using the
Sobolev embedding and Hölder’s inequality with 1

2 = 1
3 + 1

6 , we obtain

∥∥∥∥∥

3∑

i=1

ϕ
∂i

∆

(
(∂iφ) ~Y3

)∥∥∥∥∥
L6

tL
6
x

≤ C

3∑

i=1

∥∥∥∥
∂i

∆

(
(∂iφ) ~Y3

)∥∥∥∥
L6

t Ḣ
1
x

≤ C

3∑

i=1

∥∥∥(∂iφ)1Ω1
~Y3

∥∥∥
L6

tL
2
x

≤ C

3∑

i=1

‖∂iφ‖L∞
t L3

x

∥∥∥1Ω1
~Y3

∥∥∥
L6

tL
6
x

≤ C‖~Y3‖L∞
t L6

x
≤ C‖~u‖L2

t Ḣ
1
x
.

Thus gathering all the L6
tL

6
x estimates for (26), we obtain ϕ( 1

∆ (φ(~∇∧ ~T3))) ∈
M

σ0,q0
t,x .

We continue our study of the terms ~Tj and ~Xj for j = 4, 5, 6, 8, 9, 10 and for
this we will need to establish some estimates that involve the parabolic Riesz
potencial Iα defined in (10).

Lemma 4.1. Under the notation above, for j = 4, 5, 6, 8, 9, 10 there exists a
generic constant C > 0 depending only on the size of the set Ω =]a, b[×B(x0, r),

such that the variables ~Tj and ~Xj verify the following pointwise estimates:

1) For j = 4, 5, | ~Tj(t, x)| ≤ C I1(1Ω|~u(t, x)|2) and

| ~Xj(t, x)| ≤ C I1(1Ω|~u(t, x)⊗~b(t, x)|).

Documenta Mathematica 26 (2021) 125–148



Local Regularity Theory for the MHD Equations 139

2) | ~T6(t, x)| ≤ C I2(1Ω|~u(t, x)|2) and | ~X6(t, x)| ≤ C I2(1Ω|~u(t, x)⊗~b(t, x)|).

3) For j = 8, 9, | ~Tj(t, x)| ≤ C I1(1Ω|~b(t, x)|2) and

| ~Xj(t, x)| ≤ C I1(1Ω|~u(t, x)⊗~b(t, x)|).

4) | ~T10(t, x)| ≤ C I2(1Ω|~b(t, x)|2) and

| ~X10(t, x)| ≤ C I2(1Ω|~u(t, x) ⊗~b(t, x)|).

Proof of Lemma 4.1. We detail here only the estimates for the values j = 4
and j = 6 since the proofs of all the other terms follow essentially the same
computations due to their common structure.

• For j = 4, recalling that we have the following expression for the heat
semi-group e(t−s)∆f = ht−s ∗ f where ht is the heat kernel, we can write

~T4(t, x) =

∫ t

0

e(t−s)∆

(
3∑

i=1

∂i(~∇ϕ ∧ (ui~u))

)
(s, x)ds

=

3∑

i=1

∫ t

0

∫

R3

∂iht−s(x− y)~∇ϕ ∧ (ui~u)(s, y)dyds

| ~T4(t, x)| ≤
3∑

i=1

∫ t

0

∫

R3

|∂iht−s(x− y)| |~∇ϕ ∧ (ui~u)|(s, y)dyds.

By the decay properties of the heat kernel (see Lemma 5.1 in the Ap-
pendix) and by the support properties of the function ϕ, we observe that
we have

| ~T4(t, x)| ≤ C

3∑

i=1

∫

R

∫

R3

1

(|t− s| 12 + |x− y|)4
|~∇ϕ ∧ (ui~u)(s, y)| dy ds,

now, with the definition of the parabolic Riesz potential I1 given in (10)
and with the boundedness properties of the function ϕ we have:

| ~T4(t, x)| ≤ C

3∑

i=1

I1(|~∇ϕ ∧ (ui~u)|) ≤ C I1(1Ω|~u(t, x)|2).

Remember that ~X4(t, x) has the same expression as ~T4(t, x) by replacing

~u by ~b. So we may use the same technique to show that

| ~X4(t, x)| ≤ C I1(1Ω|~u(t, x)⊗~b(t, x)|).
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• For j = 6, recall that we have

~T6(t, x) =

∫ t

0

e(t−s)∆

(
3∑

i=1

(~∇∂iϕ) ∧ (ui~u)

)
(s, x)ds,

and by the same arguments above we can write

| ~T6(t, x)| ≤ C

3∑

i=1

∫

R

∫

R3

1

(|t− s| 12 + |x− y|)3
|~∇∂iϕ ∧ (ui~u)(s, y)| dy ds

≤ C I2(1Ω|~u(t, x)|2).

The same computations for ~X6(t, x) lead us to obtain

| ~X6(t, x)| ≤ C I2(1Ω|~u(t, x)⊗~b(t, x)|).

Once we have these pointwise estimates, we can continue our study where we
will use the hypothesis on ~u and ~b given in (9).

Proposition 4.4. Under the notation above and for j = 4, 5, 6, 8, 9, 10 we have

ϕ

(
1

∆
(φ~∇ ∧ ~Tj)

)
∈ M

σ0,q0
t,x and ϕ

(
1

∆
(φ~∇ ∧ ~Xj)

)
∈ M

σ1,q1
t,x .

Proof of Proposition 4.4. As for the previous lemma, we will only detail here
some cases since the proof of the remaining cases follows essentially the same
computations.

• For the term ϕ
(

1
∆

(
φ~∇ ∧ ~T4

))
, we have

∥∥∥∥ϕ
( 1

∆

(
φ~∇ ∧ ~T4

))∥∥∥∥
M

σ0,q0
t,x

=

∥∥∥∥ϕ
( 1

∆

(
~∇ ∧ (φ~T4)− ~∇φ ∧ ~T4

))∥∥∥∥
M

σ0,q0
t,x

≤
∥∥∥∥ϕ
( 1

∆
~∇ ∧ (φ~T4)

)∥∥∥∥
M

σ0,q0
t,x

+

∥∥∥∥ϕ
( 1

∆
~∇φ ∧ ~T4

)∥∥∥∥
M

σ0,q0
t,x

. (28)

Let us remark now that the inner structure of the terms ϕ
(

1
∆
~∇∧ (φ~T4)

)
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and ϕ
(

1
∆
~∇φ ∧ ~T4

)
is of the following form:

Ta,i(f)(t, x) = ϕ

(
1

∆
∂i(φf)

)
(t, x) = ϕ(∂iK ∗ φf)(t, x)

= Cϕ(t, x)

∫

R3

xi − yi

|x− y|3φ(t, y)f(t, y)dy;

Tb,i(f)(t, x) = ϕ

(
1

∆
(∂iφ)f

)
(t, x) = ϕ(K ∗ (∂iφf))(t, x)

= Cϕ(t, x)

∫

R3

1

|x− y|∂iφ(t, y)f(t, y)dy,

where K is the convolution kernel associated to the operator 1
∆ (namely

1
|x|) and f(t, x) is a component of the vector ~T4. At this point we observe

that, due to the support properties of the functions ϕ and φ, the kernels
associated to the operators Ta,i and Tb,i are bounded in L1(R3). Indeed,
for Ta,i(f)(t, x), we have

ϕ(t, x)

∫

R3

xi − yi

|x− y|3φ(t, y)dy = ϕ(t, x)

∫

Ω1

xi − yi

|x− y|3φ(t, y)dy ≤ Ca,1

for almost all x ∈ R
3 and

φ(t, y)

∫

R3

ϕ(t, x)
xi − yi

|x− y|3 dx = φ(t, y)

∫

Ω

ϕ(t, x)
xi − yi

|x− y|3 dx ≤ Ca,2

for almost all y ∈ R
3. Thus, by Schur’s test, we get ‖Ta,i‖L1→L1 ≤ Ca.

By the same reason we get ‖Tb,i‖L1→L1 ≤ Cb. Since the norm of Mσ0,q0

is translation invariant, we deduce that

‖Ta,i(f)‖Mσ0,q0
t,x

≤ Ca‖f‖Mσ0,q0
t,x

, ‖Tb,i(f)‖Mσ0,q0
t,x

≤ Cb‖f‖Mσ0,q0
t,x

.

Applying these observations to the right-hand side of (28), and keeping
in mind the support of the function φ given in (16) we have

∥∥∥∥ϕ
( 1

∆
~∇ ∧ (φ~T4)

)∥∥∥∥
M

σ0,q0
t,x

≤ Ca‖φ~T4‖Mσ0,q0
t,x

= Ca‖1Ω1
~T4‖Mσ0,q0

t,x

and
∥∥∥∥ϕ
( 1

∆
~∇φ ∧ ~T4

)∥∥∥∥
M

σ0,q0
t,x

≤ Cb‖φ~T4‖Mσ0,q0
t,x

= Ca‖1Ω1
~T4‖Mσ0,q0

t,x

which result in
∥∥∥∥ϕ
( 1

∆

(
φ~∇ ∧ ~T4

))∥∥∥∥
M

σ0,q0
t,x

≤ Ca‖1Ω1
~T4‖Mσ0,q0

t,x
+Cb‖1Ω1

~T4‖Mσ0,q0
t,x

. (29)
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Now, using the first point of Lemma 4.1, the second point of Corollary 3.1
and Lemma 3.1 we obtain:

∥∥∥∥ϕ
( 1

∆

(
φ~∇ ∧ ~T4

))∥∥∥∥
M

σ0,q0
t,x

≤ C‖1Ω1I1(1Ω0 |~u|2)‖Mσ0,q0
t,x

≤ C‖1Ω0 |~u|2‖
M

p0
2

,
q0
2

t,x

≤ C‖1Ω|~u|‖2Mp0,q0
t,x

,

thus, by the assumption 1Ω~u ∈ M
p0,q0
t,x (R × R

3), we can conclude that

ϕ
(

1
∆

(
φ~∇ ∧ ~T4

))
∈ M

σ0,q0
t,x (R× R

3).

• For the term ϕ
(

1
∆

(
φ~∇ ∧ ~X4

))
, we can perform the same computations

as before to obtain
∥∥∥∥ϕ
( 1

∆

(
φ~∇ ∧ ~X4

))∥∥∥∥
M

σ1,q1
t,x

≤
∥∥∥∥ϕ
( 1

∆
~∇ ∧ (φ ~X4)

)∥∥∥∥
M

σ1,q1
t,x

+

∥∥∥∥ϕ
( 1

∆
~∇φ ∧ ~X4

)∥∥∥∥
M

σ1,q1
t,x

≤ Ca

∥∥∥1Ω1
~X4

∥∥∥
M

σ1,q1
t,x

+ Cb

∥∥∥1Ω1
~X4

∥∥∥
M

σ1,q1
t,x

≤ C‖1Ω1I1(1Ω|~u(t, x) ⊗~b(t, x)|)‖Mσ1 ,q1
t,x

≤ C‖1Ω0 |~u⊗~b|‖
M

p1
2

,
q1
2

t,x

≤ ‖1Ω|~u|‖Mp1,q1
t,x

‖1Ω|~b|‖Mp1,q1
t,x

By the hypotheses 1Ω~u ∈ M
p0,q0
t,x (R × R

3) and 1Ω
~b ∈ M

p1,q1
t,x (R × R

3)

with p1 ≤ p0, q1 ≤ q0, we finally obtain that ϕ
(

1
∆

(
φ~∇ ∧ ~X4

))
∈

M
p1,q1
t,x (R× R

3).

For the cases j = 6 and j = 10 we can apply the same arguments, the only
modification is given by the use of Corollary 3.2 in order to study the parabolic
Riesz potential I2.

Proposition 4.5. For the remaining terms of (24), i.e. for j = 7, 11, we have

ϕ

(
1

∆

(
φ~∇ ∧ ~Tj

))
∈ M

σ0,q0
t,x and ϕ

(
1

∆

(
φ~∇ ∧ ~Xj

))
∈ M

σ1,q1
t,x .

Proof of Proposition 4.5. We will detail the case j = 7 as the case when j = 11
follows the same computations.
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• Recall that

~∇ ∧ ~T7 = −
∫ t

0

~∇ ∧ ~∇∧ e(t−s)∆
( 3∑

i=1

∂i(ϕui~u)
)
ds

Let ~∇ ∧ ~T7 := ∆~Y7, more precisely we have

~Y7 = −
3∑

i=1

∫ t

0

1

∆
~∇∧ ~∇ ∧ e(t−s)∆∂i(ϕui~u) ds.

Doing the same as for (26), we obtain
∥∥∥∥ϕ
( 1

∆

(
φ~∇ ∧ ~T7

))∥∥∥∥
M

σ0,q0
t,x

≤
∥∥∥ϕφ~Y7

∥∥∥
M

σ0,q0
t,x

+

∥∥∥∥ϕ
1

∆

(
(∆φ)~Y7

)∥∥∥∥
M

σ0,q0
t,x

+2
3∑

i=1

∥∥∥∥ϕ
∂i

∆

(
(∂iφ) ~Y7

)∥∥∥∥
M

σ0,q0
t,x

,

and it remains to study each term separately. For the first term above
we write

‖ϕφ~Y7‖Mσ0,q0
t,x

≤
3∑

i=1

∥∥∥∥ϕφ
∫ t

0

1

∆
~∇ ∧ ~∇∧ e(t−s)∆∂i(ϕui~u) ds

∥∥∥∥
M

σ0,q0
t,x

≤
3∑

i=1

∥∥∥∥ϕφ
∫ t

0

∂ie
(t−s)∆

(
1

∆
~∇ ∧ ~∇∧ (ϕui~u)

)
ds

∥∥∥∥
M

σ0,q0
t,x

.

Let us study the quantity ϕφ

∫ t

0

∂ie
(t−s)∆

(
1

∆
~∇ ∧ ~∇∧ (ϕui~u)

)
ds. We

can write

ϕφ

∫ t

0

∂ie
(t−s)∆

(
1

∆
~∇∧ ~∇ ∧ (ϕui~u)

)
ds

= ϕφ

∫ t

0

∫

R3

∂iht−s(x − y)

(
1

∆
~∇∧ ~∇ ∧ (ϕui~u)

)
(s, y) dyds,

and due to the support properties of the functions ϕ and φ, and to the
decay properties of the heat kernel (see Lemma 5.1 in the Appendix), we
obtain
∣∣∣∣ϕφ
∫ t

0

∂ie
(t−s)∆

(
1

∆
~∇∧ ~∇ ∧ (ϕui~u)

)
ds

∣∣∣∣

≤ |ϕφ|
∫

R

∫

R3

|∂iht−s(x− y)|
∣∣∣∣
1

∆
~∇∧ ~∇ ∧ (ϕui~u)(s, y)

∣∣∣∣ dyds

≤ C|ϕφ|
∫

R

∫

R3

1

(|t− s| 12 + |x− y|)4

∣∣∣∣
1

∆
~∇ ∧ ~∇ ∧ (ϕui~u)(s, y)

∣∣∣∣ dyds

≤ C|ϕφ|I1
(∣∣∣∣

1

∆
~∇∧ ~∇ ∧ (ϕui~u)

∣∣∣∣
)
,
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and with this estimate we have

3∑

i=1

∥∥∥∥ϕφ
∫ t

0

∂ie
(t−s)∆

(
1

∆
~∇∧ ~∇ ∧ (ϕui~u)

)
ds

∥∥∥∥
M

σ0,q0
t,x

≤ C

3∑

i=1

∥∥∥∥1Ω0I1
(∣∣∣∣

1

∆
~∇∧ ~∇ ∧ (ϕui~u)

∣∣∣∣
)∥∥∥∥

M
σ0,q0
t,x

.

By the localization properties of φ, the second point of Corollary 3.1 and
the boundedness of Riesz transforms in Morrey spaces and Lemma 3.1,
we have

‖ϕφ~Y7‖Mσ0,q0
t,x

≤ C

3∑

i=1

∥∥∥∥
1

∆
~∇ ∧ ~∇∧ (ϕui~u)

∥∥∥∥
M

p0
2

,
q0
2

t,x

≤ C‖1Ω0 |~u(t, x)|‖2Mp0,q0
t,x

< +∞, (30)

since by hypothesis we have 1Ω0~u ∈ M
p0,q0
t,x and we thus obtain the

wished estimate for the first term of the right-hand side of (30).

For the second and the third term of the right-hand side of (30), using
the same strategy as in the proof of Proposition 4.4 (see (28) and (29))
and with the previous estimate (30) we finally obtain

‖ϕ 1

∆

(
(∆φ)~Y7

)
‖Mσ0,q0

t,x
≤ C‖1Ω1

~Y7‖Mσ0,q0
t,x

≤ C‖1Ω0 |~u(t, x)|‖2Mp0,q0
t,x

< +∞, (31)

and

‖
3∑

i=1

ϕ
∂i

∆

(
(∂iφ) ~Y7

)
‖Mσ0,q0

t,x
≤ C‖1Ω1

~Y7‖Mσ0,q0
t,x

≤ C‖1Ω0 |~u(t, x)|‖2Mp0,q0
t,x

< +∞. (32)

Gathering the relations (30)-(32), we can conclude that each term of (30)
is bounded and we have

ϕ

(
1

∆
(φ~∇ ∧ ~T7)

)
∈ M

σ0,q0
t,x (R× R

3).

• Recall that

~∇∧ ~X7 = −
∫ t

0

~∇ ∧ ~∇∧ e(t−s)∆
( 3∑

i=1

∂i(ϕui
~b)
)
ds

Let us define ~∇ ∧ ~X7 := ∆~Z7. As 1Ω~u ∈ M
p0,q0
t,x (R × R

3) and 1Ω
~b ∈

M
p1,q1
t,x (R × R

3) with p0 ≤ q0, p1 ≤ q1, p1 ≤ p0 and q1 ≤ q0 the same
calculus can be used to complete our proof.
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5 Appendix

Lemma 5.1. Let ht be the heat kernel. If α ∈ N
3 is a multi-index then we have

|Dαht(x)| ≤ C




|x|−(3+|α|) if |x|2 > t,

t−
(3+|α|)

2 if |x|2 ≤ t.

See [14] for a proof of these facts in a general framework.

Lemma 5.2. If f ∈ L2([0,+∞[, L2(R3)) and if we define F (t, x) =∫ t

0

ht−s ∗ f(s, x)ds then we have

‖F (t, ·)‖Ḣ1
x
≤ C‖f‖L2

tL
2
x
.

Proof of Lemma 5.2. We simply write

‖(−∆)
1
2F (t, ·)‖L2 = sup

‖φ‖L2≤1

∣∣∣∣
∫

R3

(−∆)
1
2F (t, x)φ(x)dx

∣∣∣∣

= sup
‖φ‖L2≤1

∣∣∣∣
∫

R3

∫ t

0

(−∆)
1
2 (ht−s ∗ f(s, x)) dsφ(x)dx

∣∣∣∣

= sup
‖φ‖L2≤1

∣∣∣∣
∫ t

0

∫

R3

(−∆)
1
2 (ht−s ∗ φ) f(s, x)dxds

∣∣∣∣

≤ sup
‖φ‖L2≤1

∫ t

0

‖f(s, ·)‖L2‖(−∆)
1
2 (ht−s ∗ φ)‖L2ds

≤ sup
‖φ‖L2≤1

‖f‖L2
tL

2
x
‖ht ∗ φ‖L2

t Ḣ
1
x
.

Now remark that we have for the last term above

‖ht ∗ φ‖2L2
t Ḣ

1
x

≃
∫ +∞

0

∫

R3

|ξ|2e−2t|ξ|2|φ̂(ξ)|2dξdt

=

∫

R3

∫ +∞

0

|ξ|2e−2t|ξ|2|φ̂(ξ)|2dtdξ,

thus, by the change of variable τ = 2t|ξ|2 we can write

‖ht ∗ φ‖2L2
t Ḣ

1
x
≃
∫

R3

∫ +∞

0

e−τ |φ̂(ξ)|2dτdξ = ‖φ̂‖2L2 which gives

‖ht ∗ φ‖L2
t Ḣ

1
x
≤ C‖φ‖L2 ,

and we finally obtain ‖F (t, ·)‖Ḣ1
x
≤ C‖f‖L2

tL
2
x
.

Lemma 5.3. If φ is the test function defined in (16), if ϕ the test function
defined in (17) and ~u is a regular vector field, then we have

ϕ

(
1

∆
(φ(∆~u))

)
= −ϕ

(
1

∆

(
φ~∇ ∧ [ϕ~∇ ∧ ~u]

))
.
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Proof of Lemma 5.3. Indeed,

~∇ ∧ [ϕ~∇ ∧ ~u] = ϕ~∇ ∧ (~∇ ∧ ~u) + ~∇ϕ ∧ (~∇ ∧ ~u) = ϕ
(
~∇(div(~u))−∆~u

)

+~∇ϕ ∧ (~∇ ∧ ~u)

= −ϕ∆~u+ ~∇ϕ ∧ (~∇∧ ~u).

Moreover, by the support properties of φ and ϕ we have ~∇ϕ ≡ 0 and φϕ = 1
on the support of φ. So the second term in the identity above will disappear
when we multiply the identity by φ and then we have

φ(~∇ ∧ [ϕ~∇ ∧ ~u]) = φ(−ϕ∆~u+ ~∇ϕ ∧ (~∇ ∧ ~u)) = −∆~u.

For the nonlinear terms in the equations, we use the following lemma:

Lemma 5.4. Let ~A = (A1, A2, A3) and ~B = (B1, B2, B3) be two functions such

that div( ~A) = 0 and div( ~B) = 0. Then,

ϕ(~∇ ∧ ( ~A · ~∇) ~B) =−
3∑

i=1

∂i(~∇ϕ ∧ (Ai
~B))− ~∇ ∧ (

n∑

i=1

(∂iϕ)Ai
~B)

+
3∑

i=1

(~∇∂iϕ) ∧ (Ai
~B) + ~∇ ∧ (

3∑

i=1

∂i(ϕAi
~B)).

(33)

Proof. We write ϕ(~∇∧ ( ~A · ~∇) ~B) = ~∇∧ (ϕ( ~A · ~∇) ~B)− ~∇ϕ∧ (( ~A · ~∇) ~B) where

we study each term in the right-hand side. As div( ~A) = 0 we can write

~∇ ∧ (ϕ( ~A · ~∇) ~B) = ~∇ ∧ (ϕ
3∑

i=1

Ai∂i ~B) = ~∇∧ (
3∑

i=1

ϕ∂i(Ai
~B))

= ~∇ ∧ (
3∑

i=1

(∂i(ϕAi
~B)− (∂iϕ)(Ai

~B)))

= −~∇∧ ((∂iϕ)Ai
~B) + ~∇∧ (

3∑

i=1

∂i(ϕAi
~B)),

where we obtain the second and fourth terms in (33). Then, always as we have

div( ~A) = 0 we write

−~∇ϕ ∧ (( ~A · ~∇) ~B) = −~∇ϕ ∧ (
3∑

i=1

∂i(Ai
~B)) = −

3∑

i=1

~∇ϕ ∧ ∂i(Ai
~B)

= −
3∑

i=1

(∂i(~∇ϕ ∧ (Ai
~B)) + ~∇∂iϕ ∧ (Ai

~B))

= −
3∑

i=1

∂i(~∇ϕ ∧ (Ai
~B)) +

3∑

i=1

~∇∂iϕ ∧ (Ai
~B),

Documenta Mathematica 26 (2021) 125–148



Local Regularity Theory for the MHD Equations 147

where we obtain the first and third term in (33).
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[11] P.G. Lemarié-Rieusset. Recent developments in the Navier-Stokes prob-
lem. Chapman & Hall/CRC (2002).

Documenta Mathematica 26 (2021) 125–148



148 D. Chamorro, F. Cortez, J. He, O. Jarŕın
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