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ABSTRACT. We study simplicity and pure infiniteness criteria for C*-
algebras associated to inverse semigroup actions by Hilbert bimodules
and to Fell bundles over étale not necessarily Hausdorff groupoids. In-
spired by recent work of Exel and Pitts, we introduce essential crossed
products for which there are such criteria. In our approach the major
role is played by a generalised expectation with values in the local
multiplier algebra. We give a long list of equivalent conditions char-
acterising when the essential and reduced C*-algebras coincide. Our
most general simplicity and pure infiniteness criteria apply to aperi-
odic C*-inclusions equipped with supportive generalised expectations.
We thoroughly discuss the relationship between aperiodicity, detection
of ideals, purely outer inverse semigroup actions, and non-triviality
conditions for dual groupoids.
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1 INTRODUCTION

Much is known about the ideal structure of reduced crossed products for
group actions and of reduced groupoid C*-algebras of étale, Hausdorff, locally
compact groupoids. More precisely, for an action « of a discrete group G on
a separable C*-algebra A, there is a long list of equivalent conditions due to
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Kishimoto and Olesen—Pedersen, which imply that the coefficient algebra A
detects ideals in the reduced crossed product A x,, G in the sense that
JnA=0for an ideal J in A %, G implies J = 0. This theory has recently
been generalised in [43] to actions by Hilbert bimodules or, equivalently, Fell
bundles over groups. The goal of this article is to generalise the results in [43]
to Fell bundles over groupoids and inverse semigroups. It turns out that
many of these results extend, without major problems, to actions of inverse
semigroups by Hilbert bimodules provided that the crossed product carries
a conditional expectation. Such crossed products model, as a special case,
section C*-algebras associated to Fell bundles over Hausdorff, étale, locally
compact groupoids. The existence of a canonical conditional expectation
is closely related to the Hausdorffness of the underlying groupoid. This is
already quite satisfactory, as it unifies the existing results for crossed products
for group actions and for (twisted) groupoid C*-algebras of Hausdorff étale
groupoids and improves the criteria for detection of ideals for groupoid crossed
products by Renault [55]. Another intriguing source of potential applications
come from regular inclusions and the noncommutative Cartan inclusions
introduced by Exel [20]. Namely, Exel [20] has found sufficient conditions for a
regular inclusion with a conditional expectation to be of the form A € A x, S
for some inverse semigroup action by Hilbert bimodules. However, a real
challenge and an important problem that has been open for decades now, is
how to deal with non-Hausdorff groupoids. Eventually, the main point of this
article has become how to attack this problem and get results about detection
of ideals without a (genuine) conditional expectation.

Difficulties for non-Hausdorff groupoids were already noticed in [55], which
includes an unexpected example by Skandalis of a minimal foliation with a non-
simple C*-algebra. Reduced crossed products for non-Hausdorff groupoids
were studied further in [33, 34], but without progress on their ideal struc-
ture. Until recently, all general results about the ideal structure of groupoid
C*-algebras were limited to the Hausdorff case. There are several constructions
of étale groupoids from other data for which Hausdorffness is unclear and not a
natural assumption to make. Important classes of such groupoids are foliation
C*-algebras — restricted to complete transversals to make them étale — and the
C*-algebras of self-similar graphs defined by Exel and Pardo [24]. Very recently,
there has been progress in the non-Hausdorff case in two directions. First,
the simplicity of C¥*(H) for minimal, topologically principal, second countable
groupoids H has been studied in [13]. Secondly, Exel and Pitts [25] have
defined “essential” (twisted) groupoid C*-algebras for topologically principal
groupoids in which Cq(X') detects ideals. The construction in [25] appears to be
rather ad hoc, however. It only works well for topologically principal groupoids.

Here we take the idea of Exel and Pitts much further. We define essential
crossed products for all inverse semigroup actions on C*-algebras by Hilbert

bimodules. Our definition is conceptual and analogous to the definition of
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reduced crossed products in [10]. Secondly, we derive a very powerful abstract
criterion for a C*-subalgebra A in a C*-algebra B to detect ideals. Even more,
our theory may show that A supports B in the sense that any non-zero positive
element in B dominates some non-zero positive element in A with respect to
the Cuntz preorder. This allows to prove that B is purely infinite and simple
under suitable assumptions. Previous criteria for pure infiniteness of crossed
products were restricted to groupoid C*-algebras of Hausdorff groupoids (see
also [27,30,37,41, 43,46, 50,57] for more work on pure infiniteness of crossed
products).

The reduced crossed product A x, S for an inverse semigroup action on A is
defined in [10] using a weak conditional expectation E: A xS — A” where A”
is the bidual of A. We call the action closed if this expectation takes values
in A € A”. This happens for inverse semigroup actions that are derived from
actions of Hausdorff étale groupoids. In general, however, we must enlarge A to
accommodate a conditional expectation. Let M,.(A) be the local multiplier
algebra of A, that is, the inductive limit of the multiplier algebras of the
essential ideals in A (see [3]). If A = Co(X), then Moc(A) is the inductive
limit of Cy(U) for dense open subsets U € X. So it is spanned by functions
that are “densely defined” on X. Our main idea is to replace E: AxS — A” by
a generalised conditional expectation EL: A x S — Mjoc(A), which we briefly
call an M,.-expectation. Then we define the essential crossed product as the
quotient of A x S by the largest two-sided ideal on which EL vanishes. The
main troublemakers in C¥(H) for a non-Hausdorff groupoid H are elements
x € C¥(H) for which E(x) is supported on a nowhere dense subset of X. The
expectation FL kills such elements. Hence they get killed in the essential
crossed product.

The main achievement in this article is a conceptual understanding of the
techniques used to prove that crossed products of various kinds are simple
or purely infinite. We take this occasion to honour Emmy Noether, who
pioneered the conceptual approach to mathematics despite strong resistance,
and whose Habilitation in Gottingen was finally granted only in 1919. The ba-
sic concepts that make this paper work are aperiodicity and M,.-expectations.

The concept of aperiodicity goes back to Kishimoto’s proof that reduced
crossed products for outer group actions on simple C*-algebras are again sim-
ple (see [38]). The crucial condition in Kishimoto’s proof was rewritten in [43]
in terms of normed A-bimodules in order to treat actions by Hilbert bimodules
instead of by automorphisms. The right generality to study aperiodicity is a
C*-inclusion A < B. We call the inclusion aperiodic if B/A equipped with
the quotient norm and the induced A-bimodule structure satisfies Kishimoto’s
condition. Given an aperiodic inclusion, we prove that there is a maximal
ideal N in B which is aperiodic as an A-bimodule and that B/N is the unique
quotient of B for which the map A — B/N is injective and detects ideals.
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For inverse semigroup actions by Hilbert bimodules, the aperiodicity of (A x
S)/A is equivalent to the aperiodicity of certain Hilbert bimodules. Using the
results of [43] we show the following. Let A be separable or of Type I. The
inclusion A © A x S is aperiodic if and only if the dual groupoid A xS is
topologically free (see Theorem 6.13). Here A is the space of isomorphism
classes of irreducible representations of A, and the action of S on A by Hilbert
bimodules induces an action on A by the Rieffel correspondence. We carefully
discuss the concept of a “topologically free” étale groupoid in Section 2 because
several slightly different definitions are used in the literature, and the dual
groupoid A x S is rather badly non-Hausdorff.

Aperiodicity becomes powerful when combined with a conditional expectation.
The following theorem is a special case of Theorem 5.28.

THEOREM 1. Let A € B be an aperiodic C*-inclusion with a conditional ex-
pectation E: B — A. Let Ng be the largest two-sided ideal contained in ker E.
Let AT :={a€ A:a >0} and let < denote the Cuntz preorder on BT. Then

(1) for every be Bt with b¢ Ng, there is a € AT\{0} with a < b;
(2) A supports B/NEg;

(3) A detects ideals in B/Ng, and B/Ng is the only quotient of B with this
property;

(4) B is simple if and only if Ng =0 and BIB = B for all 0 # I € I(A);

(5) if B is simple, then B is purely infinite if and only if every element in
AT\{0} is infinite in B.

The first statement (1) is the key step here. It easily implies all the others.

In order to treat general inverse semigroup crossed products or C*-algebras
of non-Hausdorff étale groupoids, it is necessary to replace the conditional
expectation in Theorem 1 by something weaker. At first, we tried a weak
conditional expectation E: B — A” as in the definition of the reduced crossed
product for inverse semigroup actions in [10]. An inspection of the proof of
Theorem 1 led to the concept of a supportive weak conditional expectation,
which suffices to make the proof of the theorem work. Besides looking at weak
conditional expectations, we also looked at pseudo-expectations, which take
values in the injective hull of A. Here we were motivated by the theorem
of Zarikian that a crossed product for a group action has a unique pseudo-
expectation if and only if the action is aperiodic (see [61, Theorem 3.5]). The
injective hull of a commutative C*-algebra is equal to its local multiplier algebra
(see [26]). And it turns out that a generalised conditional expectation with
values in Mj.(A) is always supportive. Thus Theorem 1 still holds with a
generalised conditional expectation E that takes values in Moc(A). And this
then suggests our definition of the essential crossed product.
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As another test of our definition of the essential crossed product, we carry
over the main results of Archbold-Spielberg [4] and Kawamura—Tomiyama [31].
Namely, if S is an inverse semigroup acting on a C*-algebra A by Hilbert
bimodules and A x S is topologically free, then A detects ideals in A Xegs S
(Theorem 6.14). And for an étale locally compact groupoid H, Co(X) detects
ideals in C¥ (H) if and only if H is topologically free (Theorem 7.29). Another
very promising observation is that all derivations on A become inner in M, (A)
(see [3]). The corresponding result for A” instead of Mjo.(A) plays a key role in
the work of Olesen—Pedersen. The local multiplier algebra always embeds into
Hamana’s injective hull (see [26]). Hence every M,c-expectation is a pseudo-
expectation as well. These have been studied, for instance, in [52,53,61].

It is, however, often necessary to work with the reduced crossed product. One
reason is that the essential crossed product is not functorial. Thus we want to
know when the essential and the reduced crossed products are equal, meaning
that they are both quotients of A x S by the same ideal. We use that F(A x .S)
embeds into the product [ | _ 2 B(Hx), consisting of uniformly bounded families
of operators on the Hilbert spaces on which the irreducible representations
of A act. The local multiplier algebra Mec(A) embeds into the quotient of
[,c4B(Hx) that is defined by the essential supremum of the pointwise norms
— we disregard subsets that are meagre. As a result, the following are equivalent
(see Corollary 4.17):

° AXrS:ANesSS;

o ifxe(AxS)t and E(x) # 0, then the set of 7 € A with |7 (E(x))|| # 0
is not meagre;

o ife>0and ze (AxS)* satisfies E(x) # 0, then the set of 7 € A with
|7 (E(x))|| > ¢ has non-empty interior.

We carry the theory above over to section C*-algebras C*(H, A) for Fell bun-
dles A over a locally compact, étale groupoid H with Hausdorff unit space X.
This includes twisted groupoid C*-algebras as a special case. We define an
essential section C*-algebra C*_(H,.A) for all Fell bundles A. For a Fell line
bundle A, it coincides with the essental twisted groupoid C*-algebra defined
by Pitts and Exel [25] if and only if H is topologically principal. We give many
equivalent characterisations for C} (H, A) = CX (H, A). One of them is related
to singular elements as defined in [13] for groupoid C*-algebras. We also dis-
cuss simplicity and pure infiniteness criteria for C¥(H,.A) that generalise and
improve various results of this sort.

Our more recent article [45] contains two important advances. First, all
topologically free inverse semigroup actions are aperiodic. Secondly, pseudo-
expectations are always supportive. This generalises Theorem 1 to all aperiodic
inclusions A < B.

Steinberg and Szakécs in [59] prove a criterion when the Steinberg algebra of
an étale groupoid with totally disconnected object space is simple. Our results
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imply an analogous criterion for reduced groupoid C*-algebras.

The paper is organised as follows. Section 2 introduces inverse semigroup ac-
tions on topological spaces and C*-algebras and the dual groupoid for an action
on a C*-algebra, and it compares several concepts of topological freeness for
such actions and for non-Hausdorff étale groupoids. Section 3 discusses ba-
sic notation about generalised conditional expectations and full and reduced
crossed products for inverse semigroup actions. We show that the canonical
weak conditional expectation on the reduced crossed product is faithful. Sec-
tion 4 introduces the essential crossed product and the M,.-expectation that
defines it. We prove that this generalised expectation is faithful, and we char-
acterise when the reduced and essential crossed products coincide.

Section 5 contains our general results on aperiodic C*-inclusions A € B. We
show that for any such inclusion there is a unique quotient of B in which A
detects ideals. Then we say that A € B has the generalised intersection prop-
erty and call the unique ideal A such that A detects ideals in B/A the hidden
ideal. We define supportive generalised expectations and prove the generalisa-
tions of Theorem 1 discussed above. In Section 6, we specialise aperiodicity to
inverse semigroup actions. We show that the inclusion A € B into an exotic
crossed product is aperiodic if and only if the underlying action is aperiodic
in a suitable sense, and we reformulate aperiodicity in several equivalent ways.
We use these equivalent characterisations of aperiodicity to rewrite our main
results with different assumptions. In Section 7, we describe section algebras of
Fell bundles over étale, locally compact groupoids through crossed products for
inverse semigroup actions. Using this we define essential section algebras for
Fell bundles over étale groupoids. We prove results about their ideal structure
and when they are simple and purely infinite. And we compare the essential
and reduced section algebras.
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2 PRELIMINARIES ON INVERSE SEMIGROUP ACTIONS AND ETALE GROUPOIDS

First we define inverse semigroup actions on topological spaces and compare
them to étale groupoids. We allow arbitrary topological spaces, requiring nei-
ther Hausdorffness nor local compactness. We define actions of inverse semi-
groups on C*-algebras by Hilbert bimodules and relate them to regular inclu-
sions and gradings by inverse semigroups. We define the dual groupoid A xS of
such an action. Then we discuss several variants of the concept of topological
freeness.
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2.1 INVERSE SEMIGROUP ACTIONS ON SPACES AND ETALE GROUPOIDS

An inverse semigroup is a semigroup S with the property that for each t € S
there is a unique element t* € S such that tt*t = t and t*tt* = t*. Let

E(S):={ee S:e? =e}.

If e, f € E(S), then e = e* and ef = fe. If t € S, then t*t, tt* € E(S). We call
E(S) the idempotent semilattice of S. A partial order on S is defined by ¢t < u
for t,u € S if and only if ¢ = ut*¢, if and only if there is e € E(S) with t = ue.
By definition, E(S) = {e€ S:e < 1}.

Let X be an arbitrary topological space. A partial homeomorphism of X is
a homeomorphism between two open subsets of X. Partial homeomorphisms
with the composition of partial maps form a unital inverse semigroup, which we
denote by II(X). Let S be a unital inverse semigroup. An action of S on X by
partial homeomorphisms is a unital semigroup homomorphism h: S — II(X).
So it consists of open subsets X; of X and homeomorphisms h;: X; — X
for all t € S, such that h; o hy, = hy, for all t,u € S and hy = Idx; then
hyw = hf = h[l for all t € S. We denote the domain of h; by X, rather
than by X;x (which is a convention adopted in most of sources). We do this
to lighten the notation, as we will talk mostly about domains of h;’s.

An inverse semigroup action h on X as above yields an étale topological
groupoid with object space X, namely, the transformation groupoid X x S (see
[51, p. 140] or [19, Section 4]). We avoid the name “groupoid of germs” used by
Exel because some authors use that name for another groupoid with a different
germ relation. The arrows of X x S are equivalence classes of pairs (¢, z) for
x € Xy € X; two pairs (t,x) and (¢',2') are equivalent if = 2’ and there is
ve S with v <t,t and x € X,,. The range and source maps r,s: X xS 3 X
and the multiplication are defined by r([t,z]) := hi(x), s([t,z]) := =z, and
[t, ho(2)] - [u,2] = [t - u,2]. We give X x S the unique topology for which
[t, 2] — « is a homeomorphism from an open subset of X x S onto X; for each
t € S. Then the range and source maps are local homeomorphisms X x5 3 X.
The multiplication is continuous. So X x S is an étale topological groupoid.
The subsets Uy := {[t,z] : x € X;} are bisections of X xS, and they cover X x S.
Now let H be an étale groupoid with object space X. We are going to write H
as a transformation groupoid. A bisection of H is an open subset U € H such
that r|y and s|y are injective. If U,V € H are bisections, then so are

Uli={yliyveU}, U-Vi={y-n:velU neV}

The bisections of H with these operations form a unital inverse semigroup,
which we denote by Bis(H). The unit bisection is the subset of all identity
arrows in H. The inverse semigroup Bis(H) acts canonically on X by hy :=
ro(s|ly)~t for U € Bis(H).

DEFINITION 2.1. An inverse subsemigroup S € Bis(H) is called wide if | S =
H and U NV is a union of bisections in S for all U,V € S.
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PROPOSITION 2.2. For any unital inverse subsemigroup S € Bis(H), the map
®: X xS—H,  [Uaz]—(s|v)""(2),

is a well defined, continuous, open groupoid homomorphism. It is an isomor-
phism if and only if S < Bis(H) is wide.

Proof. This is mostly proven in [19, Propositions 5.3 and 5.4]. Direct compu-
tations show that ® is a well defined groupoid homomorphism. If U € S, then
U' = {[U,x] :x € s(U)} is a bisection of X x S with ®(U’) = U. Since both
H and X x S are étale and ® is the identity map on objects, it follows that &
restricts to a homeomorphism from U’ onto U. The bisections U’ for U € S
cover X x S. Therefore, the map ® is both continuous and open.

Clearly, the map @ is surjective if and only if ]S = H. And ® is not injective
if and only if there are U,V € S and v € U n V with [U, s(vy)] # [V, s(v)] in
X x S. By the definition of X x S, the latter holds if and only if v ¢ W for
all W e S with W < U n V. Hence there is such a v € U n V if and only if
Uweswev~v W # U n V. So @ is bijective if and only if S is wide. O

Proposition 2.2 allows to translate properties of groupoids into the language of
inverse semigroup actions, and vice versa.

DEFINITION 2.3. A subset Y € X is h-invariant for an action h: S — II(X) if
h(Y nXy) €Y forallte S. If Y is invariant, then there is a restricted action
hly : S — I(Y), which is defined by (hly): := he]y: Y n Xy > YV n Xyx for all
teS. Asubset Y € X is H-invariant for a groupoid H with object space X if
and only if s71(Y) = r~1(Y) as subsets of H.

Remark 2.4. A subset Y € X is X xj S-invariant if and only if it is h-invariant
(see [23, Proposition 5.4]).

DEFINITION 2.5. Let X be a topological space and h: S — II(X) an inverse
semigroup action. For ¢t € S, define

Xy, = U X..
e<t,eeE(S)

The action is called closed if X+ is relatively closed in X; for all ¢t € S.

LEMMA 2.6. The action h is closed if and only if the space of units X is closed
in X xS.

Proof. This follows because the subset X ; is equal to the intersection of X,
with the unit bisection in X x S and (X})tes is an open cover of X. O

Remark 2.7. Closed inverse semigroup actions are important because a topo-
logical groupoid is Hausdorff if and only if the object space is Hausdorff and
the units form a closed subset of the arrows (see [10, Lemma 5.2]).

DOCUMENTA MATHEMATICA 26 (2021) 271-335



EssENTIAL CROSSED PRODUCTS 279

2.2 INVERSE SEMIGROUP ACTIONS ON C*-ALGEBRAS

DEFINITION 2.8 ([11]). An action of a unital inverse semigroup S on a
C*-algebra A (by Hilbert bimodules) consists of Hilbert A-bimodules &; for
t € S and Hilbert bimodule isomorphisms pi¢ : & @4 £, — Epy for t,u € S,
such that

(A1) for all t,u,v € S, the following diagram commutes (associativity):

u ®a ldg,
(&t ®a Eu) ®a &y P D470 Eru ®a &, \fjm’v
assI i
& Eu®a &y & ®a Eun
! ®A ( ®A ) Idgt ®A Mo, v ¢ ®A Mt uv

(A2) & is the identity Hilbert A, A-bimodule A;

(A3) p1: E:@a A Eand g 0 AQAE — & for t € S are the maps defined
by p1(a®€) =a-§and pu1(E®a)=E-aforaec A €&,

We shall not use actions by partial automorphisms in this article. So all actions
of inverse semigroups on C*-algebras are understood to be by Hilbert bimodules.
Any S-action by Hilbert bimodules comes with canonical involutions &£ — &,
x — z*, and inclusion maps j, +: & — &, for t < u that satisfy the conditions
required for a saturated Fell bundle in [20] (see [11, Theorem 4.8]). Thus
S-actions by Hilbert bimodules are equivalent to saturated Fell bundles over S.

DEFINITION 2.9 ([44, Definition 6.15]). An S-graded C*-algebra is a
C*-algebra B with closed subspaces By < B for ¢t € S such that Y, s By
is dense in B, ByB, € By, and B = By for all t,u € S, and B; < B,, if
t < uin S. The grading is saturated if By - By, = By, for all t,u € §. We call
A := By € B the unit fibre of the grading.

Remark 2.10. For group gradings, it is customary to require the fibres to be
linearly independent. We have no use for such a condition. We will, however,
restrict to “topological gradings” for several important results. In the group
case, our notion of a topological grading specialises to the usual one, and that
implies immediately that the fibres are linearly independent.

A (saturated) S-grading (B¢)wes on B defines a (saturated) Fell bundle over S
using the operations in B. Conversely, the crossed product construction al-
lows to realise any (saturated) Fell bundle through a grading on a suitable
C*-algebra.

One important source of inverse semigroup actions are Fell bundles over étale
groupoids (see Section 7.1). Another important source are regular inclusions:

DEFINITION 2.11. Let A € B be a C*-subalgebra. We call the elements of

N(A,B) := {be B:bAb* < A, b*Ab = A}
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normalisers of A in B (see [39]). We call the inclusion A € B regular if it is
non-degenerate and N (4, B) generates B as a C*-algebra (see [56]).

PROPOSITION 2.12. The following are equivalent for a C*-inclusion A € B:
(1) A is a regular subalgebra of B;
(2) A is the unit fibre for some inverse semigroup grading on B;
(3) A is the unit fibre for some saturated inverse semigroup grading on B.

If these equivalent conditions hold, then

S(A,B) :={M < N(A,B) : M is a closed linear subspace
and AM < M, MA< M}

with the operations M - N :=span{mn:me M, ne N} and M* := {m*:m e
M} is an inverse semigroup. And the subspaces M € S(A, B) form a saturated
S(A, B)-grading on B.

Proof. This goes back to [20]. See also [44, Lemma 6.25 and Proposition 6.26].
o

LEMMA 2.13. Any non-degenerate C*-inclusion A € B with commutative B is
regular.

Proof. Let Bt be the minimal unitisation of B. If w € BT is unitary, then
A-u < N(A,B) because B is commutative. The unital C*-algebra B is
spanned by the unitaries it contains. Hence B is the linear span of A - u for
unitaries v € BT, O

2.3 DUAL GROUPOIDS

Let A be a C*-algebra with an action £ of a unital inverse semigroup S. Let A
and A = Prim(A) be the space of irreducible representations and the primitive
ideal space of A, respectively. Open subsets in A and in A are _in natural
bijection with ideals in A. The action of S on A induces an action (Et)tes on A
by partial homeomorphisms by [11, Lemma 6.12]. We explain how this action
lifts to an action (5}) of S on A.

Let t € S. Then s(Et) is an open subset of A, consisting of all 7 € A that are
non-degenerate on s(&) = (& | &). Let w e A. The tensor product & @4 H

is non-zero if and only if m belongs to s(&). And then the left multiplication
action of A on &® 4 H is another irreducible representatlon of A, which we call

&/(m) € A. This defines a homeomorphism & : (5}) — r(&) with inverse £px.
The family £ = (5t)tes forms an action of S on A by partial homeomorphisms.

DEFINITION 2.14. We call £ the dual action to the action €. The transforma-
tion groupoid A x S is called the dual groupoid of £.
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Let I(A) for a C*-algebra A denote the lattice of (closed, two-sided) ideals in A.

DEFINITION 2.15. We call I € I(A) F-invariant for a Hilbert A-bimodule F
if1-F =F-1. We call I € I(A) E-invariant for an action £ of an inverse
semigroup S if I is &-invariant for all t € S. Let I€(A) denote the set of all
E-invariant ideals in A. We call & minimal if 1€ (A) = {0, A}, that is, the only
E-invariant ideals in A are 0 and A.

Remark 2.16. Let B be an S-graded C*-algebra with grading & = (&)tes.
Then I€(A) = {J n A:J € I(B)} (see [44, Proposition 6.19]).

LEMMA 2.17. An ideal I in A is E-invariant if and only if the corresponding
open subset I c A is invariant for the dual groupoid AxS.

Proof. By Remark 2.4, A % S-invariance is the same as invariance under the
dual S-action (5t)tes on A. Therefore, we need to show that I is £-invariant
if and only if St(l N Dt) =TIn Dt* for all t € S. This follows from a known
fact for any Hilbert A-bimodule F: an ideal I in A is F-invariant if and only
if T is invariant under the partial homeomorphism F (see [40] or the proof of
[1, Proposition 3.10]). O

DEFINITION 2.18. An inverse semigroup action £ on a C*-algebra A is called
closed if the dual S-action on A is closed.

Remark 2.19. Let H be an étale locally compact groupoid with a Hausdorff
unit space X and let S be a wide inverse semigroup of bisections of H. If
we equip A = Cy(X) with the canonical action of S, then the dual action on
A >~ X is the canonical S-action and A x S =~ H. Hence the S-action on A is
closed if and only if H is Hausdorff (see Remark 2.7).

2.4 NON-TRIVIALITY CONDITIONS FOR ETALE GROUPOIDS

We carefully distinguish several versions of the concept of topological freeness.
They are all equivalent for groupoids that are second countable, locally compact
and Hausdorff. We will, however, meet groupoids where the object space is the
spectrum of a C*-algebra, which is often badly non-Hausdorff, and the unit
space is not closed in the groupoid.

DEFINITION 2.20. Let H be an étale groupoid and X € H its unit space. The
isotropy group of a point x € X is H(x) := s~ 1(x) nr~1(z) € H. We call H

(1) effective if any open subset U € H with r|y = s|y is contained in X;

(2) topologically free if, for every bisection U € H\X, the set {x € X : H(z)n
U # &} has empty interior;

(3) AS topologically free if, for finitely many bisections Uq,...,U, € H\X,
the union | !, {z € X : H(z) n U; # &} has empty interior;
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(4) topologically principal if the set of points of X with trivial isotropy is
dense or, equivalently, the set {z € X : H(x)\X # ¢} has empty interior.

An action of an inverse semigroup on a topological space X or on a C*-algebra A
is called topologically free if the transformation groupoid X x S or the dual
groupoid A x S is topologically free, and similarly for effective, AS topologically
free and topologically principal actions.

Remark 2.21. Let a: G — Aut(A) be an action of a discrete group on
a C*-algebra A. The transformation groupoid A x G for the dual action
is AS topologically free if and only if, for any ti,...,t, € G\{1}, the set
Ui {z € A:dy,(z) = z} has empty interior in A. This definition is due to
Archbold and Spielberg (see [4, Definition 1]), and this is what “AS” in Defini-
tion 2.20(3) stands for.

Remark 2.22. Topological freeness for groupoids as defined in Definition 2.20.(2)
has not yet received as much attention as it deserves. This condition appears,
for instance, in [5, Lemma 3.1.(3)] and in [25, 14.15(ii)], where it is related to the
conditions that we call “effective” and “topologically principal”, respectively.

We are going to describe the above properties in terms of an inverse semigroup
action h: S — II(X). For t € S, define

Fix(hy) := {x € X\X1 1 : () = x}, Fix(h) == {z € X\X1,;: hy(z) = z}.

By definition, Fix(h;) = Fix(h,) = g if t € E(S). If S is a group and ¢ € S\{1},
then Fix(h;) = Fix(hy) = {x € X : ly(z) = z}.

LEMMA 2.23. Let h: S — TI(X) be an inverse semigroup action and H :=
X xS,

(1) If H is effective, then H is topologically free. The converse holds if X is
closed in H.

(2) H is topologically free if and only if Fix(ht) has empty interior for any
t € S, if and only if Fix(h:) has empty interior for any t € S.

(3) H is AS topologically free if and only if | J;_, Fix(h¢,) has empty interior
foranyty,...;t, €S8S.

(4) H is topologically principal if and only if |J,cg Fix(h¢) has empty interior.
Proof. The construction of H = X x S implies

{ze X:H@)\X # &} = || Fix(h).
tesS

This readily implies (4).
For a subset A € X, let Int(A4) denote its interior in X. If ¢ € S, then
Int(Xt\XM) = Xt\Xl,t and hence

Int (Fix(h:)) = Int (Fix(h:)) .
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Thus the second equivalence in (2) is valid. The subset V; :=
{[t,x] :x € X\ X7} is a bisection contained in H\X, and

{xe X:H(z) nV; # g} = Fix(h). (2.1)

Hence, if H is effective or topologically free, then Int (Fix(h;)) = Int (Fix(h)) =
. Conversely, if H is not topologically free, then there is a bisection U € H\X
such that the interior V of {x € X : H(x) n U # J} is non-empty. Let x € V.
Then = € s(U) and there is a unique v € U with s(y) = x because U is
a bisection. And r(y) = x because H(z) nU # J. There is t € S with
v = [¢, s()]. Since U is open, it contains an open neighbourhood Us of «y, which
we may take of the form Uy = {[t, x] : 2 € Va} for an open subset Vo © X;. Then
V V4 is an open neighbourhood of s(7) such that [t,z] € U and H(z)nU # &
for all x € V- n Va. Thus r([t,z]) = s([t,z]) for all x € V n V5. So the interior
of Fix(h;) is non-empty. This finishes the proof of (2).

As we noticed above, if H is effective, then Int (Fix(h:)) = & for all t € S, and
hence H is topologically free by (2). Suppose now that H is not effective. So
there is a bisection U € H with r|y = s|y that is not contained in X. If X
is closed in H, then V := U\X is a bisection contained in H\X, and it is still
non-empty. Since s(V) = {x € X:H(x) n'V # J}, the groupoid H is not
topologically free. Thus (1) is proved.

The ‘only if” part in (3) follows from (2.1). For the ‘if’ part, suppose that there

are bisections Uy, ..., U, contained in H\X and a non-empty open subset
We | J{zeX:H) nU; # @} (2.2)
i=1

We may assume without loss of generality that W n s(U;) # & fori =1,...,n.
Since Uy is open and contained in H\X there are open sets W, € X\ X1 ,t € S,
with Uy = yegilt,z]:x € Wy, t € S}. If ty € S is such that W, n W # (&,
then replacing W by W n Wy, and Uy by {[t1,z]:x € Wy, }, the inclusion (2.2)
remains valid. Proceeding in this way, we may arrange for the sets U; to be
of the form U; = {[t;,z] :x € W;} for some t; € S and some open subsets W;

of X;,\X1,4, fori =1,...,n. Being open, these subsets are even contained in
Xt\Xl,t- And

W< U{:c:H(x) U # @y = J{we W, by (2) =2} < U&(hti).

i=1

This finishes the proof of (3). O

Lemma 2.23 implies the following relations between the properties in Defini-
tion 2.20:

(effective) = (top. free) < (AS top. free) < (top. principal).
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And topological freeness and effectiveness are equivalent if the unit space is
closed. Example 6.4 below exhibits a topologically principal action of an inverse
semigroup S on [0, 1] that is not effective (see also [13, Example 5.1] for such
an example). There are situations when topological freeness implies topological
principality. The following result of this nature is essentially due to Renault
(see [56, Proposition 3.6.(ii)]).

PRrROPOSITION 2.24. Let X be a Hausdorff space. An action h of an inverse
semigroup S on X is topologically free if and only if it is AS topologically free.
If, in addition, X is a Baire space and S is countable, then h is topologically
free if and only if it is topologically principal.

Proof. Assume h to be topologically free. We are going to prove that h is AS
topologically free. This implies the first statement. Let t € S. Lemma 2.23
shows that Fix(h:) has empty interior in X. Equivalently, the set of z € X;
with h¢(z) # x is dense in X;. This subset is open because X is Hausdorff.
Therefore, the open subset Y; of all z € X with either = ¢ X; or z € X; and
hi(x) # x is dense in X. No point in Y; can belong to the closure of Fix(h;).
Therefore, the interior of Fix(h:) is empty or, equivalently, Fix(h;) is nowhere
dense in X. This is inherited by the subset Fix(h;) of Fix(h;). A finite union
of nowhere dense subsets is again nowhere dense. Hence every finite union
Ui, Fix(hy,) for t1,...,t, € S is nowhere dense and hence has empty interior.
Thus h is AS topologically free by Lemma 2.23. If, in addition, S is countable,
and X Baire, then the countable union | J,. g Fix(h;) is still nowhere dense in X.
Hence Lemma 2.23 implies that h is topologically principal. O

In Theorem 6.13, we will prove an analogue of Proposition 2.24 for the dual
groupoid H = Ax S of an inverse semigroup action on a separable C*-algebra A,
so A need not be Hausdorff. Some further assumption besides X being Baire
and S countable is needed for this converse implication. For instance, the
action of the permutation group S3 on the three-element set X with the chaotic
topology {J, X'} is topologically free, but not AS topologically free.

The following lemma allows to relax the assumptions in Proposition 2.24
slightly:

LEMMA 2.25. Let H be an étale groupoid and X its space of units. Let X' < X
be an open dense subset of X. Then H' := s~ (X') nr~1(X') is an open dense
subgroupoid of H, and

(1) H is topologically free if and only if H' is topologically free.
(2) H is AS topologically free if and only if H' is AS topologically free.
(3) H is topologically principal if and only if H' is topologically principal.

Proof. Clearly, H' is an open subgroupoid of H. It is dense in H because for
every bisection U € H the intersection U n H' is open and dense in U. For
any z € X’ the isotropy groups in H and H’ are the same. This immediately
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gives (3). If U is a bisection in H, then U < H\X if and only if U n H' <
H"\X'. This readily implies (1). Concerning (2), it is easy to see that H' is
AS topologically free if H is. Conversely, let H' be AS topologically free and
let Uy, ...,U, € H\X be bisections of H. Let U} := U;j n H' for j =1,...,n.
Then

JleeX:H@) nUi# S} n X' = | J{ze X' :H'(x) n U] # B},
i=1 =1

The set on the right has empty interior because H' is AS topologically free.
Since X’ is dense in X, it follows that | J;",{z € X:H(z) n U; # &} has
empty interior. Thus H is AS topologically free. O

COROLLARY 2.26. Suppose that the space of units X of an étale groupoid H
contains an open dense subset X' which is Hausdorff. Then H is topologically
free if and only if H is AS topologically free. If X' is Baire and H has a
countable cover by bisections, then H is topologically free if and only if it is
topologically principal.

Proof. Combine Proposition 2.24 and Lemma 2.25. O

3 FULL AND REDUCED CROSSED PRODUCTS

We first establish some basic notation about generalised conditional expecta-
tions. Then we construct the full and reduced crossed products for inverse
semigroup actions and prove that the canonical weak expectation on the re-
duced crossed product is faithful.

3.1 GENERALISED EXPECTATIONS

Conditional expectations are crucial tools in the study of crossed products for
group actions. For an inverse semigroup action, the reduced crossed product is
defined in [10] using a “weak conditional expectation” E: A x S — A" which
takes values in the bidual von Neumann algebra A”. Pseudo-expectations,
which take values in the injective hull of A, have been studied in [52,53,61].
To define the essential crossed product, we will use expectations with values in
the local multiplier algebra (see Definition 4.2 below). The following definition
covers all these cases:

DEFINITION 3.1. Let A € B be a C*-inclusion. A generalised expectation
consists of another C*-inclusion A € A and a completely positive, contractive
map B — A that restricts to the identity map on A. If A = A, A = A”, or
A is the injective envelope of A, then we speak of a conditional expectation, a
weak conditional expectation, or a pseudo-expectation, respectively.

LEMMA 3.2. Any generalised expectation is an A-bimodule map.
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Proof. The unique unital, linear extension Et: BT — A" is still completely
positive and contractive (see, for instance, [6, Subsection 2.2]). And it is the
identity map on A*. Then E7 is A*-bilinear by Choi’s Theorem, [12, Theo-
rem 3.1]. O

Any idempotent linear contraction F: B — A is a completely positive bimodule
map and thus a conditional expectation. This result is due to Tomiyama [60].

Ezample 3.3. For any C*-inclusion A € B, the identity map on B is a gener-
alised expectation with values in B.

Ezample 3.4 ([52]). The identity map on A extends to a completely positive
map from B to the injective hull of A. Thus, any C*-inclusion A € B has a
pseudo-expectation.

We will see more examples of generalised expectations in the definitions of the
reduced and essential crossed products for inverse semigroup actions.

DEFINITION 3.5. Let E: B — A 2 A be a generalised expectation. Let Nz be
the closed linear span of all J € I(B) with J < ker E. This is the largest two-
sided ideal in B that is contained in ker E. Let B, := B/Ng and let A: B — B,
be the quotient map. Since E|y, = 0, the expectation E descends to a map
E,.: B, » A 2 A, called the reduced generalised expectation of E.

Since E|a = Ida and E|y, = 0, it follows that A n Ng = 0. Hence the
composite map A — B — B/Nf is injective. The map E, is a generalised
expectation for the inclusion A — B;.

PROPOSITION 3.6. Let E: B — A 2 A be a generalised expectation. Let

LN = {be B: E(b*b) = 0},
RN g :={be B: E(bb*) = 0}.

Then LN g and RNg are the largest left and right ideals in B contained
in ker E, respectively. Hence (LN g)* = RN g and Ng € LN~ RNE. And

Ng ={be B:E((bc)*bc) =0 for allce B} = {be B:b- B < LN}
={be B: E(zby) = 0 for all z,y € B}.

The third description of Nz was pointed out to us by Ruy Exel.

Proof. If necessary, adjoin units to B and A to make them unital. The unique
unital extension of F is unital and completely positive. It is already observed
in [12, Remark 3.4] that LA g is the largest left ideal contained in ker E; this is
a general feature of 2-positive maps. The main point is the Schwarz inequality
E(b*)E() < E(b*b) for all b € B (see [12, Corollary 2.8]). Since RN g =
(LN E)*, it follows that RN g is the largest right ideal contained in ker E.
Thus N is contained in LN g and RN g. If be Ng, then b-ce Ng € LN g
for all ¢ € B. Thus E((bc)*be) = 0 for all ¢ € B. Conversely, if E((bc)*bec) =0
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for all c € B, then b- B € LN g; and then B-b- B € LN g because LN g is
a left ideal. This implies b € Ng because B -b- B is a two-sided ideal that
contains b. Thus b € N if and only if E((be)*bec) = 0 for all ¢ € B, if and only
ifb- B< LNE. And E(zby) =0 for all z,y € B if and only if B-b- B < ker F,
if and only if the closed two-sided ideal generated by b is contained in ker F, if
and only if b e Ng. O

DEFINITION 3.7. A generalised expectation E: B — A 2 A is faithful if
E(b*b) = 0 for some b e B implies b = 0. It is almost faithful if E((bc)*bc) =0
for all ¢ € B and some b € B implies b = 0. It is symmetric if E(b*b) = 0 for
some b € B implies E(bb*) = 0.

The concept of an almost faithful positive map plays an important role in
the theory of Exel’s crossed products (see [7, Definition 4.1] and [42, Subsec-
tion 2.1]).

COROLLARY 3.8. Let E: B — A 2 A be a generalised expectation.
(1) E is symmetric if and only if LN g = RN g = NEg;
(2) E is faithful if and only if LN g = RN = Ng =0;

(3) E is almost faithful if and only if Ng = 0, if and only if there are no
non-zero ideals in B contained in ker E;

(4) E is faithful if and only if E is almost faithful and symmetric.
Proof. This readily follows from Proposition 3.6. O
COROLLARY 3.9. If A detects ideals in B, then E is almost faithful.

Proof. The intersection Ng N A is 0 because E is the identity map on A. There-
fore, if A detects ideals in B, then Ny = {0}, that is, F is almost faithful. [

LEMMA 3.10. The reduced generalised expectation E; is almost faithful. It is
faithful if and only if E is symmetric.

Proof. Proposition 3.6 implies LN g, = A(LNE), RNE = A(RNE) and
Ng, = A(Ng) = 0. This together with Corollary 3.8 implies all the state-
ments. O

LEMMA 3.11. Let E: B — A 2 A be a generalised expectation, and m: B — C
a *-homomorphism. The following are equivalent:

(1) kerm € Ng;

(2) there is a *-homomorphism ¢: m(B) — B/Ng with pom = A: B —
B/Ng;

(3) there is a map Er: ©(B) — A with Exom = E.
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If these conditions hold, then w| 4 is injective, @ and E; are unique and, identify-
ing A with w(A), Er is a generalised expectation for the inclusion m(A) € w(B).
The *-homomorphism @ in (2) is faithful if and only if E. is almost faithful.

Proof. Since Ng = ker A, the *-homomorphism A descends to a *-homo-
morphism from 7(B) =~ B/kerw to B/Ng if and only if kerm = AMg. Thus (1)
is equivalent to (2). A map E, as in (3) exists if and only if E(kerw) = 0
or, equivalently, kerm < ker E. Since ker 7 is an ideal, this is equivalent to
kerm € Ng. Thus (3) is equivalent to (1). Since m: B — 7w(B) is surjective,
the maps ¢ and E,; are unique if they exist. Then E is automatically a com-
pletely positive contraction. And E is almost faithful if and only if ker 7 = Ng,
if and only if ¢ is injective. O

Lemma 3.11 is a key point in the proof of gauge-equivariant uniqueness theo-
rems. An action of a compact group such as T defines a conditional expectation
onto the fixed-point algebra by averaging, and T-equivariant maps intertwine
these expectations. Hence a conditional expectation as in 3.11.(3) exists in the
situation of gauge-equivariant uniqueness theorems.

3.2 FULL AND REDUCED CROSSED PRODUCTS

We fix an action £ = ((Et)tes, (Mt,u)t,ues) of a unital inverse semigroup S on a
C*-algebra A as in Definition 2.8. We recall how the algebraic crossed product
A Xae S, the full crossed product A x S and the reduced crossed product
A x; S of € are defined in [10]. The algebraic crossed products defined in [10]
and in [20] differ. The definition in [10] has the merit that the canonical maps
from A %, S to A x S and A xS are injective.

For any t € S, let r(&;) and s(&;) be the ideals in A generated by the left and
right inner products of elements in &, respectively. Thus & is an 7(&)-s(&;)-
imprimitivity bimodule. These ideals satisfy

s(Et) = s(Epxy) = 1(Eprt) = 1(Epx).

If v < ¢, then the inclusion map j; , restricts to a Hilbert bimodule isomorphism
from &, onto r(&,) - & = & - s(Ey). For t,u € S and v < ¢, u, this gives Hilbert
bimodule isomorphisms

1
Jt,0

90t & s(Ea) T2 €, 11 £, 5(E,).
Let
It,u = Z 5(571) (31)
v<t,u
be the closed ideal generated by s(€,) for v < t,u. This is contained in s(&;) N
s(€y), and the inclusion may be strict. There is a unique Hilbert bimodule

isomorphism
qu,t: gt : It,u L’ gu : It,u (32)
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that restricts to J;, , on & - 5(€,) for all v < t,u by [10, Lemma 2.4].

Let A xa1, S be the quotient vector space of @, ¢ & by the linear span of
V1 (€)0y, — &0y for all t,u € S and € € & - I . The multiplication maps i
and the involutions & — & turn A x4, S into a *-algebra.

DEFINITION 3.12 ([10]). The (full) crossed product A x S of the action £ is the
maximal C*-completion of the *-algebra A x,14 S described above.

The C*-algebra A x S is canonically isomorphic to the full section C*-algebra
of the Fell bundle over S corresponding to £ introduced in [20]. It is also
characterised by a universal property.

DEFINITION 3.13. A representation of £ in a C*-algebra B is a family of
linear maps m¢: & — B for t € S such that m, (1 (€ ®n)) = m(&)my(n),
T (€1)* e (§2) = m1 (61 [€2)) and i (§1)me(§2)* = m1(K&1 | €2)) for all t,u € S,
£,61,6 € &, n € &,. Here (-|-) and -|-) denote the right and left inner
products, respectively.

Remark 3.14. A representation 7 of £ in B induces a *-homomorphism A x
S — B and, conversely, every *-homomorphism A x S — B is of this form
for a unique representation 7 (compare [10, Proposition 2.9]). This universal
property determines A x S uniquely up to isomorphism. Let B be a C*-algebra
with an S-grading (B:)ies. Then (Bi)ies is a Fell bundle over S, and the
inclusion maps B; — B are a representation of this Fell bundle. The induced
*-homomorphism A x S — B is surjective because > B; is dense in B. And its
restriction to A € A xS is injective by construction. Conversely, any surjective
*_homomorphism A x S — B that restricts to an injective map on A € A x S
comes from a unique S-grading on B because A x S is S-graded by the images
of the Hilbert bimodules &; for t € S.

The reduced section C*-algebra of a Fell bundle over S is introduced in [20].
An equivalent definition appears in [10], where it is called the reduced crossed
product A xS of the action €. The main ingredient in the construction in [10]
is a canonical weak conditional expectation E: A” x, S — A”, involving
the unique normal extension of the S-action & to A”. It is defined in [10,
Lemma 4.5] through the formula

B(¢8) = s-lim 9,4(& - ) (3.3)

for £ € & and ¢t € S, where (u;) is an approximate unit for I, and s-lim
denotes the limit in the strict topology on M(Iy,) € A”. In fact, this net also
converges in the strong topology on A”. Let € A x4, S. Then E(z*z) > 0,
and E(z*z) = 0 implies = 0 (see [10, Proposition 3.6]). Thus A” xug S
may be completed to a Hilbert A”-module ¢?(S, A”) using the inner product
{x|yy := E(z*y). The action of A x,15 S on A” X, S by left multiplication
extends to a non-degenerate representation of A x S on ¢2(S, A”).
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DEFINITION 3.15 ([10]). The reduced crossed product A x, S of the action & is
the image of A x S in B(¢%(S, A”)). Let A: A xS — A %, S be the canonical

map.
This definition agrees with the one in [10] by [10, Remark 4.2].

PROPOSITION 3.16. The map E: A xa, S — A” extends to a weak conditional
expectation A x S — A", which we also denote by E. Moreover, Ng = ker A.
Thus

Ax, S~ (AxS)/Ng

is the reduced quotient of A x S for the generalised expectation E, and E de-
scends to an almost faithful weak conditional expectation E,: A x, S — A”.

Proof. The unit element of A” gives an element 1 of A” x,, S < B(¢2(S, A”)),
and (1|b-1) = E(b) for all be A x S. This provides the unique extension of F
to a completely positive, contractive map A x S — A”, which we also denote
by E. By construction, an element b € A x S satisfies A(b) = 0 if and only if
b-c=0 for all ce £2(S, A”). This is equivalent to E(c*b*bc) = (b-c|b-c) =0
for all ¢ € £2(S, A”). This follows once it holds for all ¢ in the dense subspace
A" xag S. Since E is normal, we may further reduce to the weakly dense
subspace A Xaig S. This is norm dense in A x S. So A(b) = 0 if and only if
E(c*b*bec) = 0 for all ¢ € A x S. Then Proposition 3.6 implies ker A = Npg.
Hence the weak conditional expectation on A x .S descends to one on A x, S,
which is almost faithful. o

Remark 3.17. The canonical map from A %, S to A %, S is injective by
[10, Proposition 4.3].

Remark 3.18. Let (Ai)ies be a non-saturated Fell bundle over a unital inverse
semigroup S. It is turned into a saturated Fell bundle (£;),.s over another
inverse semigroup S in [9]. This construction does not change the full and
reduced section C*-algebras by [9, Theorem 7.2]. Therefore, we usually restrict
attention to saturated Fell bundles, which we replace by inverse semigroup

actions as in Definition 2.8.

We recall some known conditions for E: A x S — A” to be A-valued, that is,
a genuine conditional expectation.

PROPOSITION 3.19 ([10, Proposition 6.3]). The map E is A-valued if and only
if the ideal I ; defined in (3.1) is complemented in the larger ideal s(&;) for
each te S.

There is a largest ideal J € I(A) with J n I; ; = {0}, namely,
Ity i={ze Az I, =0} (3.4)
Therefore, I ¢ is complemented in s(&;) if and only if s(&) = I, @®(s(&) N IT-).

Then
91,:@Id

>~

Ev= (& Ti0)® (& - I1y) La® (& Iy), (3.5)
and El|g, is the orthogonal projection onto the summand I; ; by (3.3).
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PROPOSITION 3.20. Let € be an action of S on A. The following are equivalent:

(1) the weak conditional expectation E: A x S — A" is A-valued;
(2) the subset of units A is closed in A x S;

(3) the action is closed, that is, the dual S-action on A is closed.

Proof. The equivalence of the first two statements is [10, Theorem 6.5]. The
map A 3 [7] — ker[n] € A intertwines the inverse semigroup actions (EAt)tes
and (g})tes. It is continuous, open and closed because the spaces A and A
both have I(A) as their lattice of open subsets. So the map above extends to
a continuous, open and closed groupoid homomorphism

ki AxS—>AxS, [t [r]] — [t kerT].

Since f(l(g) = /Al, the space of units A is closed in A x S if and only if A is
closed in A x S. Now (2) and (3) are equivalent by Lemma 2.6. O

3.3 THE REDUCED WEAK CONDITIONAL EXPECTATION IS FAITHFUL

It is claimed in [10] that the weak conditional expectation E becomes faithful
on A x, S. But in [10, Proposition 3.6], this is shown only for its restriction to
A X1 S. Here we fill this gap.

LEMMA 3.21. Let 9: A” — [[ __2B(Hx) be the projection to the direct sum
of all irreducible representations in the universal representation of A”. Then
o 15 isometric on the C*-algebra generated by the range of E in A”. Hence
|E(z)|| = ||oo E(x)|| for allz € A x S and, in particular, ker E = ker(p o E).

Proof. A family of representations (m;);e; of A is called E-faithful in [10, Def-
inition 4.9] if the extension of the representation @, ; m; to A” restricts to
a faithful representation on the C*-subalgebra that is generated by the im-
age of E. The family of all irreducible representations of A is E-faithful by
[10, Theorem 7.4]. O

THEOREM 3.22. The weak conditional expectation E: AxS — A" is symmetric.
Equivalently, E.: A x, S — A" is faithful.

Proof. By Proposition 3.6 and Corollary 3.8, it suffices to show that if be Ax .S
satisfies E(b*b) = 0, then E(c*b*bc) = 0 for all ce A x S. Since ce A x S
satisfies E(c*b*bc) = 0 if and only if b- ¢ € LNE, the space of ¢ with this
property is a closed linear subspace. Hence it suffices to prove E(c*b*bc) = 0
for ¢ € & for some t € S. Here we embed the Hilbert A-bimodules & of the
S-action on A into A x,j, S in the usual way. So we may fix t € S and c € &.
We must show that E(b*b) = 0 implies E(c*b*bc) = 0.

Let 7 € A. The tensor product & ®4 Hr is non-zero if and only if 7 belongs to

J——

s(&t), and then the left multiplication action of A on £&®4 H is the irreducible
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representation w := é\t(ﬂ) The element ¢ € & induces an adjointable linear
map

TC:HTF_)Et®AH7Ta 6'_’0®€

Its adjoint is given by T (e ® &) = w(c*e)¢ for e € &, € € Hy. Let 7”7 and w”
be the weakly continuous extensions of 7w and w to A”. We claim that
%, M . o
T (E(c*de)) = THrW"(E(d)T, if e s(&), (3.6)
0 otherwise,

———

for all d € A x S. We are interested, of course, in d = b*b. If w ¢ s(&:), then

7" (E(c*dc)) = 0. So it suffices to consider the case when 7 € s(&;). The set
of de A x S for which (3.6) holds is a closed linear subspace because the two
sides of the equality are bounded linear operators of d. Therefore, it suffices
to prove (3.6) for d € &, with some v € S. It is more convenient to work in
the bidual A” for this computation and to allow d € &!/. Let [I] for an ideal I
in A denote the support projection of I, that is, the weak limit in A” of an
approximate unit in I. There is a canonical Hilbert bimodule isomorphism

Ou: " (L] 5 I

1,u»

and E(d) = ©,(d - [I14]) = E(d-[I1.4]). Similarly, E(c*dc) = Oy (c*dc -
[11,4%ut]) because c*dc € E,,,. The Rieffel correspondence for £/ implies that
E-[I] = (&-1)" = (J-&)" = [J]-E/', where J = &(I). Therefore, c-[I y# ] =
[J] - ¢, where J = EA}(IU/*\M) Since

[

é\t(ll/t;t) = E; =Tunr(&),
we get [J]-¢=[I1,4] - c. So
B(*de) = Op(c*d- ([Ta] - ) = B(c*(d - [T1u])0)

Therefore, the two sides in (3.6) do not change when we replace d by d - [I1,4].
But ©,(d-[I1.]) € IY,, € A" and d € & - [I1 ] < &, are identified in A” x S.
Since the two sides in (3.6) only depend on the image of d in A” x S, we
are reduced to the case d € A”. Then c¢*dc € A” as well, and so E(d) = d
and E(c*dc) = ¢*dc. And (3.6) follows because TFw”(d)T, = n"(c*dc). This
finishes the proof of (3.6).
Now E(b*b) = 0 is equivalent to w”(E(b*b)) = 0 for all w € A by Lemma 3.21.
This implies 7(E(c*b*bc)) = TFw"(E(b*b))T. = 0 for all 7 € A by (3.6). This
is equivalent to E(c*b*bc) = 0 by Lemma 3.21. This proves the claim about F
being symmetric. And this is equivalent to E; being faithful by Lemma 3.10.
O

4 THE ESSENTIAL CROSSED PRODUCT

We are going to define a variant of the reduced crossed product that is based
on a generalised expectation with values in the local multiplier algebra.
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4.1 'THE DEFINITION OF THE ESSENTIAL CROSSED PRODUCT

DEFINITION 4.1 ([3]). Let A be a C*-algebra. The essential ideals in A form
a directed set for the relation © because I n J € I(A) is essential if I, J € I(A)
are essential. If I < J < A are essential ideals, then a multiplier of J re-
stricts to a multiplier of I. This defines a canonical, unital *-homomorphism
M(J) - M(I), which is injective because I is essential in J. The local multi-
plier algebra Moc(A) of A is the inductive limit C*-algebra of this inductive
system.

The canonical map A — Miec(A) is injective because A — M(I) is injective
for any essential ideal I in A. We identify A with its image in Mo (A).

DEFINITION 4.2. For any C*-inclusion A € B, a generalised expectation with
values in Mjo.(A) is called an Mj.-expectation.

Now let us fix an action € of a unital inverse semigroup S on a C*-algebra A. We
modify the construction of the reduced crossed product by replacing the weak
conditional expectation E: A xS — A” by an Mj,.-expectation EL: Ax S —
Mioe(A). We first define EL on the dense subalgebra A x,, S € A x S. This
is spanned by & for t € S. Let ¢t € S and define I ; as in (3.1). Recall that the
ideal Ii, defined in (3.4) is the largest ideal J € I(4) with J n I, = {0}. The
ideal Jy :=11+ ® If:t C A is essential by construction. And

91 . @®Id
E-Ji= (& -y @ (& 'IIJ:t)

I ® (& - Iit)

as in (3.5). Any & € & defines a map J; — & - Ji, a — £ - a. Composing with
the orthogonal projection to I; ; defines an adjointable operator J; — I+ < J;
or, equivalently, a multiplier of J;. We let EL(¢) € M(J;) S Mioc(A) be this
multiplier of J;.

PROPOSITION 4.3. The map @, & 3 & — EL(E) € Mioc(A) factors through
to a map A Xag S — Mioo(A), which extends to an Mioc-expectation EL: A x
S — Mioc(A) that satisfies |EL(z)|| < |E(x)|| for allze Ax S.

Proof. If £ € & - Jy, then the above definition gives EL(§) € I;; € A. In this
case, EL(¢) = E(§) because the strict limit in (3.3) is equal to a norm limit.
More generally, let £ € A x4, S. Then there are a finite subset ¥ < S and
&e&forte Fwitheé =3, &€ AxagS. Theideal J:=(),.pJ; in Ais
essential as a finite intersection of essential ideals. The arguments above imply

E(€)a =) E(&a) = ), EL(&a) = <Z EL(&)) aeJ

teF teF teF

for every a € J. Hence ), p FL(&) € M(J) S Mioc(A) coincides with
the multiplier given by multiplication by E(£). This implies that EFL(§) :=
Duer EL(&:) is well defined on A x4, S (because E is). The norm of EL(§)
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in Mioc(A) is equal to its norm in M(J). If a € J satisfies ||a| < 1, then
| EL(E)-all = |1E(E)-all < |E(E)]. Hence [EL©)|| < |E(E)]. Thus EL extends
to a contractive linear map FL: A x S — Mo.(A) because E: Ax S — A" is
contractive. The above considerations also imply FL|4 = Id4.

To see that EL is completely positive, let z € M,,(A Xag S). There are a
finite subset F' < S and 2; € & ® M, for t € F such that x = >, p .
Then J := ﬂs’teF Jgx; i an essential ideal in A. One checks as above that
multiplication by E(z*z) on M, (J) coincides with EL(z*z) € M(M,(J)) =
M, (M(J)) € M, (Mioe(A)). Therefore, if y € M, (J), then

y* - EL(z%z) -y =y* - E(z*z) -y = E((zy)*zy) > 0

because E is completely positive.  Therefore, EL(x*x) is positive in
M, (Mioc(4)). So EL is completely positive on A x5, S. It follows that EL is
completely positive on A x S. So EL is an M),.-expectation. O

DEFINITION 4.4. The essential crossed product A xegs .S is the reduced quotient
(A x S)/Ngr for the generalised expectation EL.

Remark 4.5. Since |EL(x)| < ||E(z)|| for all x € A% S, it follows that ker EL 2
ker E. Thus A XS is also a quotient of A x,S. By construction, EL descends
to an almost faithful Mec-expectation A Xegs S — Mioc(A) for the inclusion
A A X S.

Remark 4.6. If the action is closed, then EL = F and A X5 S = A %, S by the
construction and (3.5). Thus essential crossed products give something new
only for non-closed actions.

Example 4.7. We show by an example that A xS may differ from A x, S.
Let G be an amenable discrete group. View G as an inverse semigroup and
adjoin a zero element to it. This gives the inverse semigroup S := G U {0} with
g-0=0-g=0forall ge .S and such that g-h for g, h € G is the usual product
in G. Let G act on A := CJ[0,1] by &, := CJ[0,1] for g € G and & := Cy(0, 1],
equipped with the usual involution and multiplication maps. If g € G\{1}, then
I;1 = Co(0,1] because v € S satisfies v < 1, ¢ if and only if v = 0. The full
crossed product for this action is a C[0,1]-C*-algebra with fibres C*(G) at 0
and C at z € (0,1]. The reduced crossed product is equal to the full one here
because G is amenable. (If G is non-amenable, then the fibre of the reduced
crossed product at 0 is C@® C}(G) and not C}(G). We restrict to amenable
groups to avoid discussing this issue further.) The essential crossed product in
this case reduces to A = CJ[0, 1]. Indeed, let {; € £, = C[0,1]. Let & € & be
the same element of C[0,1]. Then EL(¢,) = EL(& ) because the ideal Cy(0, 1]
in A is essential. Thus ker EL contains the kernel of the *-homomorphism
A %15 S — A that applies the trivial representation of the group in each fibre.
It follows that A X S =~ A.

In this example, F'L takes values in A although the action is not closed. And the
map AxaeS — AXes S is not injective. In contrast, the map Ax S — Ax,.S
is always injective.
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Remark 4.8. Unlike the reduced and full crossed products, the essential crossed
product is not functorial for *-homomorphisms. This is because the local mul-
tiplier algebra is not functorial. The problem is very visible for quotient maps.
If I < A is an essential ideal, then a local multiplier of A does not descend
to anything on A/I. For instance, consider the restriction map C[0,1] — C,
f— f(0), in the situation of Example 4.7. This is S-equivariant, where S acts
on C by the trivial action, with 0 acting by the ideal {0}. Now C x S =~ C*(G),
and the weak conditional expectation C*(G) — C is the usual trace, which has
values in C = C” = M,(C). Hence the essential and reduced crossed products
are the same for the action on C. But the fibre restriction map A x, S — CZ(Q)
does not factor through A x5 S = A.

In order to relate EL: A Xgss S — Mioe(A) to E: A x S — A" we use
Lemma 3.21. It says that the *-homomorphism ¢: A” — []__;B(Hx) is iso-
metric on E(A x S). We shall embed Mo.(A) into a quotient of [ [ _ 7 B(Hx).

DEFINITION 4.9. A subset of A is nowhere dense if its closure has empty interior.
It is meagre if it may be written as a countable union of nowhere dense subsets.
It is comeagre if its complement is meagre. For (fr) _1 €[] .4 B(Hx), define

H(f“)weﬁness = inf {sug I fzll: R < A comeagre}.
e

By definition, a subset is meagre if and only if it is contained in a union of
countably many closed subsets with empty interior. Thus a subset is comeagre
if and only if it contains an intersection of countably many dense open subsets.
Any countable intersection of comeagre subsets is again comeagre, and a subset
that contains a comeagre subset is also comeagre. It follows that the infimum
in Definition 4.9 is a minimum. And the set of comeagre subsets of A4 is directed
by 2. The values sup,cp || fz] for comeagre subsets R < A form a monotone
net indexed by this directed set. Thus

[(fo)lless = min sup||fz]| = lim sup|[fz].
REA neR REA  neR
comeagre comeagre

PROPOSITION 4.10. The function ||-||less on [] i B(Hx) is a C*-seminorm.
Let D be the quotient of []__2B(Hx) by the null space of ||-||ess- The faithful
representation A — []__iB(Hx) factors through to A — D, and the latter
extends to an isometric *-homomorphism v: Mioc(A) — D such that the fol-
lowing diagram commutes:

AxS —2 A

| I

Mioc(A) D

Ifbe Ax S, then EL(b) = 0 if and only if {x € A:7"(E(b)) = 0} is comeagre
in A.
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Proof. If R < A is a comeagre subset, then the supremum of | fz|| for me R is
a C*-seminormon [ [__3B(#~). As the pointwise limit of these C*-seminorms,
[[less is a C*-seminorm as well. Since [] _;B(H,) is already a C*-algebra,
the quotient D by the null space of this C*-seminorm is complete, hence a
C*-algebra. A

We define . Let J < A be an essential ideal. Then J < A is a dense open
subset, hence comeagre. If 7 € J, then 7 extends uniquely to a representation 7
of M(J), and so w(a) € B(H,) is defined for all @ € M(J). This defines
a unital *-homomorphism ¢ty: M(J) — D. If K < J, then the composite
of tx with the restriction map M(J) — M(K) is equal to ¢;. Hence the
maps ¢y for all essential ideals J & A combine to a unital *-homomorphism
t: Mioe(A) — D. To see that ¢ is isometric, it suffices to prove that ||a| <
lles(a)| holds for all essential ideals J < A and all a € M(J). Let € > 0 and

I

C := |lallp(s)- The function M(J) 3T — ||7(a)| has the supremum ||al| and
is lower semicontinuous (see [17, Proposition 3.3.2]), and J is an open dense
subset in m Therefore, U := {7 € J: |7 (a)|| > C —€} is a non-empty open
subset of .J QAA. Since A is a Baire space, every comeagre subset R Ais
also dense in A. Thus R n U # ¢, and the supremum of ||7(a)| for 7 € R is
at least C'— . Then [ts(a)|| > C — ¢ follows. Since € > 0 is arbitrary, this
implies ||¢j(a)|| = C. Hence t: Mjoc(A) — D is isometric.

Now we show that the diagram in the proposition commutes. Let b e A x4 S.
Then b =}, ;- &:0; for a finite subset F' < S and & € &. Let J; := I (—Blf:t
and J = (,cp Ji- These are essential ideals in A. We have already seen that
E(b)-a e Jforallae J, and EL(b) is the resulting multiplier of J. If 7 € .J < A,
then 7”(E(b)) = #(EL(b)). Since J is comeagre, ¢ maps o o E(b) to t(EL(D)).
Hence the diagram commutes on all elements of A X, S. Since A X, S is

dense in A x S and all maps involved are contractive, it commutes on all of
AxS. O

THEOREM 4.11. The Migc-expectation EL: A x S — Mo.(A) is symmetric
and thus descends to a faithful Mioc-expectation A Xess S — Mige(A).

Proof. The two statements in the assertion are equivalent by Lemma 3.10.
Let & be the Hilbert A-bimodules that define the S-action on A. We em-
bed these into A x5 S as usual. Arguing as in the beginning of the proof of
Theorem 3.22, it suffices to show that if b € A % S satisfies EL(b*b) = 0,
then EL(c*b*bc) = 0 for all c € &, t € S. Thus let b € A x5 S be such that
EL(b*b) = 0. By Proposition 4.10, the set of w € A with w”(E(b*b)) # 0
is meagre. Equation (3.6) shows that 7”(E(c*b*bc)) # 0 can only happen if
TE s(éA't) and w(E(b*Db)) # 0 for w = <5A't(7r) Therefore, the set

{re dia"(B(e*v*be)) # 0} < & ({wer(&) W (Bb*y) # 0})

is meagre as a subset of a meagre set. Thus EL(c*b*bc) = 0 by Proposition 4.10.
O
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COROLLARY 4.12. Ngp = {b € AxS:{re A:x"(ED*D)) = 0} is comeagre}.

4.2 TOPOLOGICAL GRADINGS

The following definition is an inverse semigroup analogue of [18, Definition 3.4].
We choose to use the essential instead of the reduced crossed product here.

DEFINITION 4.13. Let B be a C*-algebra with an S-grading (Bi)iwcs. Let
m: AxS — B be the canonical *-epimorphism as in Remark 3.14. The grading
is called topological and B is called topologically S-graded if ker 7 is contained
in the kernel Ny, of the quotient map A xS — A X S.

By definition, a grading is topological if and only if there is a (surjective)
*_homomorphism
@: B— A X S

with wom = A. So B lies between the full and the essential crossed products and
may be called an exotic crossed product. Another equivalent characterisation
when a grading is topological is ||7(z)| > ||z|ess for all z € A x S or all
x € A X, S, where ||z||ess denotes the norm in the essential crossed product
AxesS. Equivalently, B is isomorphic to a completion of the *-algebra A x5
for a C*-norm that lies between the maximal and the essential C*-norm:

PROPOSITION 4.14. Let B be an S-graded C*-algebra. View the grading as

an S-action on its unit fibre A, and let m: A xS — B be the induced surjec-
tive *-homomorphism as in Remark 3.14. Let EL: A x S — Moc(A) be the
canonical Mioc-expectation. The following are equivalent:

(1) the S-grading on B is topological;
(2) there is an Mioc-expectation P: B — Moe(A) with Ponm = EL;
(3) |1EL(z)|| < |7 ()| for allx € A xqag S.

If P is an Migc-expectation as in (2), then the canonical surjective
*-homomorphism B — A Xess S is an isomorphism if and only if P is

almost faithful, if and only if P is faithful.

Proof. The assertions mostly follow from Lemma 3.11. That P is almost faith-
ful if and only if it is faithful follows from Theorem 4.11. O

4.3 COINCIDENCE OF THE REDUCED AND ESSENTIAL CROSSED PRODUCTS

The essential crossed product has the advantage of having the “right” ideal
structure, even for non-Hausdorff groupoids and similar situations. A serious
disadvantage is that it is not functorial (see Remark 4.8). This suggests that
it is not the right object for K-theory computations. A question like exactness
does not even make sense for it. So it is desirable to know when the reduced and
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essential crossed products are the same, meaning that the canonical quotient
map A xS — A X S is an isomorphism.

Let E: A xS — A” be the canonical weak conditional expectation and let
EL: A xS — Mc(A) be the canonical Mj,.-expectation. By definition,
A xS = A xe S if and only if Ng = Ngr. A case when this is particularly
clear is when FE is a genuine conditional expectation, taking values in A < A”.
Then EL also takes values in A € Mjo.(A) and EL = E. If E is not A-valued,
then Ng € Ngr. The difference between A x,. S and A X4 S is measured by
the ideal

Jsing = A(NEL)

in A xS because
(A Ar S)/Jsing = A Xegs S.

We call elements of Jgine singular. Proposition 4.10 describes the kernels of E
and FL using the supremum and the essential supremum norm of functions
on A, where the essential supremum is defined as the supremum over comeagre
subsets. We use it to describe Jung. If @ € A”, then we define

~

Vg: A — [0,00), T 7" (a)],

where 7”: A” — B(H ) denotes the unique extension of m to A”. If be A x S,
then
IE®)] = llec E®)]| = supve@e) () = (V@ o

TeEA
by Lemma 3.21. Similarly, Proposition 4.10 gives
[ELD)| = l[co EL(®)[| = min supvpe)(m) = [vp@)lless-

REA  weR

comeagre
In particular, EL(b) = 0 if and only if {7 € A: vp@w)(m) # 0} is meagre.

PROPOSITION 4.15. Let b e A x S. The function vg): A [0,0) is lower
semicontinuous on a comeagre subset. The following are equivalent:

(1) {re flzuE(b) () # 0} is meagre;
(2) {re A\il/E(b) () # 0} has empty interior;
(3) the subsets {7 € flzuE(b) (m) > €} have empty interior for all e > 0.

Proof. Assume first that b = >}, &6, € A x4, S. In the last part of the
proof of Proposition 4.10, we have defined an essential ideal J in A such that
EL(b) € M(J) and #"(E(b)) = 7(EL(b)) for all m € J = A, where 7 denotes
the unique extension of m to M(J). The map 7 — 7 identifies J with an open

subset in M(J), and the function w — ||w(EL(b))|| is lower semicontinuous
on M(J) by [17, Proposition 3.3.2]. Hence v ;) is lower semicontinuous on J,
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which is a dense open subset in A. Now let be A x S. Then there is a sequence
(bn)nen In A Xga1g S with limb, = b. Since E is contractive, the sequence of
functions v, ) converges uniformly towards vg (). For each n € N, there is an
essential ideal J,, as above such that v} is lower semicontinuous on j\n The
intersection Y := ﬂj\n is comeagre. If m € Y, then the functions VE(b,) €
lower semicontinuous at 7. Since they converge uniformly to vg), the latter
is also lower semicontinuous at . R

The statement (1) implies (2) because A is a Baire space (see [17, Proposi-
tion 3.4.13]). And (2) clearly implies (3). To complete the proof, we show
that not (1) implies not (3). Let Y be the comeagre subset of A defined above.
If {m € A:I/E(b) (m) # 0} is not meagre, then it cannot be contained in the
complement of Y. So there is 7 € Y with v (7) # 0. Since vg, is lower
semicontinuous at 7, it follows that v (w) > vEe)(7)/2 > 0 for all w in some
neighbourhood of . O

COROLLARY 4.16. An element b € A x, S belongs to Jsng if and only if the
subset {m € A: VE, (b (T) # 0} is meagre in A’ if and only if this subset has
empty interior, if and only if {w € /Al:yEr(b*b) () > €} has empty interior in A
for all e > 0.

Proof. Combine Corollary 4.12 and Proposition 4.15. O

COROLLARY 4.17. A Xess S = A%, S if and only if for every b e (A x,;S)™\{0}
there is € > 0 such that {m € A:vg, )(7) > &} has non-empty interior, if and
only if for every b € (A x, S)T\{0} the set {r € A: Ve, ) (m) # 0} is not meagre.

COROLLARY 4.18. If there is € > 0 with ||[vgw)lless = € |[VEw) o for all positive
elements b € (A xag S)T, then A xess S = A %, S.

Proof. By Proposition 4.10, the assumption implies |EL(b*b)|| = | E(b*D)]|
for all b€ A %, S. This inequality extends by continuity to all be A x S and
then implies LN g = LN g. Since both E and EL are symmetric, the latter
is equivalent to Ny, = Ng and then to A xS = A %, S. O

The condition in Corollary 4.18 has the advantage to involve only elements
of A x,1s S, making it more checkable. It is unclear, however, whether it is
necessary.

Remark 4.19. The reader may readily rephrase the above results to characterise
when ker EL = ker E. Namely, this is equivalent to conditions as above for all
elements in A x, S, not only in the positive cone (A %, S)™.

4.4 'THE LOCAL MULTIPLIER ALGEBRA AND THE INJECTIVE HULL

Let I(A) be the injective hull of A (see [29]). The canonical embedding
A — I(A) factors through the inclusion A € Mjec(A) and an embedding
t: Mioc(A) — I(A) by [26, Theorem 1]. And this is an isomorphism if A is
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commutative. Hence every Mj,c.-expectation is a pseudo-expectation, and both
the kernel and the ideal Ng do not change when we view an Mj,.-expectation
as a pseudo-expectation. The two notions are exactly the same if A is commu-
tative.

Let A = Co(X) be commutative. Let B(X) 2 A be the C*-algebra of all
bounded Borel functions on X. The subset

M(X) :={f € B(X): f vanishes on a comeagre set}

is an ideal in B(X) with Co(X) n M(X) = 0. So Co(X) embeds into
B(X)/M(X). Gonshor has identified I(Co(X)) with the algebra B(X)/M(X)
(see [28, Theorem 1]). In fact, this follows from a much earlier result of
Dixmier [16]. So

Mioe(Co(X)) = B(X)/M(X) = I(Co(X))

for any locally compact Hausdorff space X. For Gonshor, injectivity means
that if A — B is an injective *-homomorphism to another commutative
C*-algebra B such that A detects ideals in B, then there is an injective
*_homomorphism B < M,.(A) that respects the inclusions of A. Roughly
speaking, Mjo.(A) is the largest commutative C*-algebra in which A detects
ideals.

If A is simple, then Mj,.(4) = M(A). In particular, if A is simple and
unital, then Mjo.(A) = A. A simple unital C*-algebra need not be injective;
an example is the Calkin algebra, see [29]. So I(A) differs from Mj,c(A) in
general.

5 APERIODIC INCLUSIONS AND GENERALISED EXPECTATIONS

In this section, we fix a general C*-inclusion A € B. More generally, we often
treat an injective *-homomorphism A < B as if it were an inclusion. Recall
that I(B) denotes the lattice of (closed, two-sided) ideals in B. We say that A
detects ideals in B if J n A # 0 for any ideal J € I(B) with J # 0. This is
a fundamental property in the study of the ideal structure of reduced crossed
products (see [4,43,44,58]). The usual assumptions that guarantee it imply a
stronger property, namely, that the full crossed product has a unique quotient
in which the coefficient algebra detects ideas. In this section, we study this
generalised intersection property. We introduce the concept of aperiodicity for
the C*-inclusion A < B, which implies the generalised intersection property.
If, in addition, E: B — Aisa generalised expectation, then we find a criterion
when A detects ideals in B/ANg: this happens if the conditional expectation is
supportive. We show that any Mj,c.-expectation has this property. This gives
general simplicity and pure infiniteness criteria for B when F is almost faithful.
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5.1 GENERALISED INTERSECTION PROPERTY AND HIDDEN IDEAL

Before we begin with the study of aperiodicity, we prove some elementary
results about detection of ideals in quotients of B. Let

Io(B) :={Jel(B):JnA=0}
So A detects ideals in B if and only if Io(B) = {0}.

LEMMA 5.1. Let J € I(B). The composite map A — B — B/J is injective if
and only if J € Io(B). If this is the case, then the inclusion A — B/J detects
ideals if and only if J is a mazimal element of Iy(B).

Proof. The first claim holds because the kernel of the composite map A — B/.J
is An J. To prove the second claim, we use that any ideal in B/J is the image
of an ideal K € I(B) with J € K. And A n K = 0 is the preimage in A of the
ideal in B/J corresponding to K. So A does not detect ideals in B/J if and
only if there is K € Ip(B) with J & K. O

Ezample 5.2. Consider the unital inclusion C € C*(Z) =~ C(T). An ideal
J € I(C(T)) satisfies J n C = 0 if and only if it is proper. Thus Io(C(T)) has
many different maximal elements, namely, all the maximal ideals Co(T\{z})
for z € T. The resulting quotients are all isomorphic to C, in which C detects
ideals. There is, however, no canonical way to choose one of these quotients.

LEMMA 5.3. We have 0 € Ig(B). If Ji, J2 € I(B) satisfy J1 < J2 and J2 € Ip(B),
then Jy € Ig(B). If X < Io(B) with the partial order C is directed, then the
supremum of X in I(B) belongs to Io(B). Any element of Io(B) is contained
in a mazimal element of To(B).

Proof. The claim about subideals and 0 € Iy(B) are obvious. Let X < Iy(B)
be directed. Its supremum in [I(B) is the closure K of the union | J .y J, which
is equal to the closed linear span because X is directed. If a € A and J € X,
then the distance between a and J is ||a|| because A — B/.J is injective. Hence
the distance between a and K is |ja]|. So K € Iy(B). It follows that any chain
of ideals in Iy(B) has a supremum in Iy(B). So the set of elements in Iy(B)
containing a given J € Ip(B) has a maximal element by Zorn’s Lemma. This
element remains maximal in Io(B). O

PROPOSITION 5.4. The subset Iy(B) has a unique mazimal element if and only
if J1 + Jy € Io(B) for all Jy,Jy € Io(B). If N is this unique mazimal element,
then Ip(B) = {J € (B):J < N}.

Proof. By Lemma 5.3, J; + Jo € Io(B) holds for all Jy,Jo € Io(B) once it
holds for all maximal elements of Io(B). If J; # J2 for two maximal elements
of Io(B), then J; + J2 2 Ji, J2 and hence J; + Jo ¢ Io(B) because otherwise
J1, J2 would not be maximal. Hence J; + Ja € Io(B) for all Jq, J5 € Iy(B) if and
only if Iy(B) has a unique maximal element. Since I(B) is a complete lattice,
a subset of I(B) is of the form {J € I(B):J < N} for some N € I(B) if and
only if it has A/ as a unique maximal element. o
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DEFINITION 5.5. The inclusion A € B has the generalised intersection property
if there is a unique maximal ideal N € I(B) with A/ n A = 0. Then we call N
the hidden ideal, and we define Begs 1= B/N.

Proposition 5.4 shows that the hidden ideal exists if and only if the sum of two
ideals in Io(B) remains in Io(B), if and only if Io(B) = {J € I(B):J < N} for
some A € I(B), and then A is the hidden ideal.

DEFINITION 5.6. A C*-subalgebra A € B is called B-minimal if BIB = B for
all 0 # I € I(A).

In the following proposition, and in the whole paper, we assume A # 0.

PROPOSITION 5.7. A C*-inclusion A € B has the generalised intersection prop-
erty if and only if there is a unique quotient B/N of B such that An N =0
and the image of A detects ideals in B/N. Then N is the hidden ideal and
Bess = B/N.

If the C*-inclusion A < B has the generalised intersection property and A is
B-minimal, then Begs is the unique simple quotient of B for which the quotient
map is injective on A. Moreover, B is simple if and only if A detects ideals
in B and A is B-minimal.

Proof. The first part of the assertion follows from Lemma 5.1 and Proposi-
tion 5.4. Assume that the C*-inclusion A € B has the generalised intersection
property and that A is B-minimal. Since A detects ideals in By = B/N,
every non-zero ideal in Begs is the image of an ideal J € I(B), with N' < J and
JnA+#0. Then B = B(J n A)B < J by minimality. So the ideal in question
is Begs- That is, Begs is simple. If J is any ideal in Io(B) such that B/J is
simple, then A detects ideals in B/J and hence B/J = Begss by the first part.

As a result, if A detects ideals in B and A is B-minimal, then B = By is
simple. Conversely, if A does not detect ideals in B, then there is an ideal
J < Bwith J # 0and Jn A =0. It cannot be 0 or B. So B is not simple.
If A is not B-minimal, then there is 0 # I € I(A) with BIB # B. Then
BIB € 1(B) is not B and not 0 because it contains I. So B is not simple. O

PROPOSITION 5.8. Let AC B be a C*-inclusion with a generalised expectation
E: B— A2 A. The following are equivalent:

(1) Ng is the hidden ideal for the inclusion A < B;

(2) B/NE is the unique quotient of B for which the induced map A — B/NE
is injective and detects ideals;

(3) if J € I(B) satisfies J n A =0, then J < ker E;
(4) if J € I(B) satisfies J n A =0, then J < Ng;

(5) for every C*-algebra C and *-homomorphism w: B — C that is injective
on A, there is a *-homomorphism ¢: w(B) — B/Ng with pomr = A: B —
B/NE;
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(6) for every C*-algebra C' and *-homomorphism m: B — C that is injective
on A, there is a generalised expectation E: n(B) > A with Ex o = E.

In particular, A detects ideals in B if and only if the statements above hold
and E is almost faithful.

Proof. Statements (3) and (4) are equivalent by the definition of Ng. Since
Ng nA =0, (4) is equivalent to (1). And (1) and (2) are equivalent by
Proposition 5.7. Any ideal J in B is the kernel of a *-homomorphism B — B/J.
And a *-homomorphism 7 of B is faithful on A if and only if its kernel J := ker «
satisfies J n A = 0. Hence (4)—(6) are equivalent by Lemma 3.11.

If A detects ideals in B, then Ng = 0 is the hidden ideal and E is almost
faithful. Conversely, if Mg is the hidden ideal and E is almost faithful, then
NEg =0 and A detects ideals in B by (2). O

5.2 APERIODIC INCLUSIONS

Kishimoto’s condition for automorphisms was extended to bimodules in [43]
in order to generalise the known criteria for detection of ideals in reduced
crossed products for group actions to Fell bundles over groups. Here we rename
Kishimoto’s condition, speaking more briefly of aperiodicity.

Let H(A) denote the set of non-zero, hereditary C*-subalgebras of A. Let A"
be the cone of positive elements in A.

DEFINITION 5.9 ([43]). Let X be a normed A-bimodule. We say that z € X
satisfies Kishimoto’s condition if, for all D € H(A) and € > 0, there is a € DT
with [|a|| = 1 and |Jazal < e. We call X aperiodic if Kishimoto’s condition
holds for all z € X.

LEMMA 5.10. Consider the C*-algebra A as an A-bimodule. No non-zero pos-
itive element of A satisfies Kishimoto’s condition.

Proof. Given b € A* with ||b|| = 1, [43, Lemma 2.9] provides a hereditary
subalgebra Dy © A such that ||zbz| > ||2?| — ||zbx — 22| > (1 — €)]|=||? for all
zeDf.

LEMMA 5.11 ([43, Lemma 4.2]). The subset of elements in a normed
A-bimodule that satisfy Kishimoto’s condition is a closed vector subspace.

LEMMA 5.12. Subbimodules, quotient bimodules, extensions, finite direct sums,
and inductive limits of aperiodic mormed A-bimodules remain aperiodic. If
f: X — Y is a bounded A-bimodule homomorphism with dense range and X
is aperiodic, then so is Y. If D € H(A), then an aperiodic A-bimodule is
also aperiodic as a D-bimodule. If J € 1(A) is an essential ideal and X an
A-bimodule, then JX J is aperiodic as a J-bimodule if and only if X is aperiodic
as an A-bimodule.
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Proof. The claims about subbimodules and about aperiodicity as a D-bimodule
are trivial. If f: X — Y is a bounded A-bimodule homomorphism and z € X,
then f(z) inherits Kishimoto’s condition from z. Hence the second statement
follows from Lemma 5.11. This implies the claim about quotient bimodules.
The claim about extensions is proved as in the proof of [43, Lemma 4.2].
Namely, let M; — Ms — Mz be an extension of A-bimodules such that M,
and Ms are aperiodic. Let € Ms, € > 0, and D € H(A). We may assume
without loss of generality that ||z|| = 1. Since M3 is aperiodic, there is ag € D
with |lag]] = 1 and |Japzap + Mi||ps < /2. Hence agrag = 1 + 22 with
x1 € My and ||z2]] < e. By [43, Lemma 2.9], there is Dy € H(A) such that
Do € D and ||a — a - ag|| < ¢||al| for all @ € Dy. Kishimoto’s condition for z;
gives a € D < D with |ja|| = 1 and ||az1a|| < e. Then ||aza| < 4e. Thus M>
is aperiodic.

A direct sum of two aperiodic normed A-bimodules is also an extension, hence
inherits aperiodicity. By induction, this remains true for direct sums of finitely
many aperiodic normed A-bimodules; here the norm should be one that de-
fines the product topology. The claim about inductive limits follows from
Lemma 5.11.

Now let J € I(A) be an essential ideal and X an A-bimodule. The claims
in the lemma already proven show that JXJ is aperiodic as a J-bimodule
if X is aperiodic as an A-bimodule. Conversely, assume JXJ to be aperi-
odic as a J-bimodule. The Cohen-Hewitt Factorisation Theorem shows that
JX, XJ and JXJ are closed J-subbimodules in X. There are extensions
JXJ— JX - JX/JXJ and JX — X — X /JX. The quotients in both are
aperiodic as J-bimodules because they satisfy xa = 0 or ax = 0 for all a € J,
respectively. Hence the claim about extensions shows that X is also aperiodic
as a J-bimodule. Let D € H(A), x € X, and £ > 0. Since J is essential, the
intersection D N J is still non-zero. It is a hereditary C*-subalgebra in J, and
Kishimoto’s condition for = gives a € (D n J)* with [ja]| = 1 and |jaza| < .
This witnesses that X is aperiodic as an A-bimodule. o

Remark 5.13. An infinite direct sum of aperiodic normed bimodules inherits
aperiodicity when it is given a norm that defines the product topology on each
finite sub-sum. This follows from Lemma 5.12 by viewing it as an inductive
limit of finite direct sums.

For any C*-inclusion A € B, both A and B are naturally normed A-bimodules.
So is the quotient Banach space B/A with the quotient norm.

DEFINITION 5.14. A C*-inclusion A € B is aperiodic if the Banach A-bimodule
B/A is aperiodic.

PROPOSITION 5.15. If A < B is aperiodic and A < C < B, then the inclusion
A < C is aperiodic. If A € B is aperiodic and J € I(B) satisfies J n A = 0,
then the induced inclusion A — B/J is aperiodic. Let I € I(A). If A < B is
aperiodic, then I < IBI is aperiodic; conversely, A € B is aperiodic if I € IBI
is aperiodic and I is essential.
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Proof. This follows from Lemma 5.12 because C/A and I BI/I are isometrically
isomorphic to A-subbimodules of B/A and (B/J)/A =~ B/(J + A) is isometri-
cally isomorphic to a quotient bimodule of B/A. o

PROPOSITION 5.16. Let A < B be aperiodic and J € I(B). Then J n A =0 if
and only if J is an aperiodic A-bimodule.

Proof. First assume J n A # 0. Then there is be J n A with b # 0. Then b*b
is a non-zero positive element of J n A. By Lemma 5.10, it does not satisfy
Kishimoto’s condition. Then J is not aperiodic. Another proof goes as follows.
The intersection J N A is an A-subbimodule in J and an ideal in A. Lemma 5.10
shows that Jn A is not aperiodic as a Jn A-bimodule. Then Lemma 5.12 implies
that J is not aperiodic as an A-bimodule.

Now assume that J n A = 0. Then the composite *-homomorphism A «—
B — B/J is injective, hence isometric. So its image is closed. Thus the map
A®J — B, (a,z) — a + z, is a continuous bijection onto a closed subspace
of B. It follows that it is a topological isomorphism. Then the injective map
J — B/A is also a topological isomorphism onto its image. Since B/A is
aperiodic by assumption, so is J by Lemma 5.12. o

THEOREM 5.17. Ewvery aperiodic inclusion A S B has the generalised inter-
section property. The hidden ideal is the largest ideal that is aperiodic as an

A-bimodule.

Proof. Let 1,(B) be the set of all ideals in B that are aperiodic as an
A-bimodule. Certainly, 0 € I,(B). Let Ji,J; € I,(B). Then there is a Ba-
nach A-bimodule extension J; — J; + Jo — Jo/(J1 n J2). So Lemma 5.12
implies J; + Jy € I,(B). Hence 1,(B) < I(B) is closed under finite joins.
Lemma 5.12 implies that I,(B) is also closed under increasing unions. Hence it
is closed under arbitrary joins. Let A/ be the join of all ideals in I,(B). Then
J € I(B) satisfies J = N if and only if J € I,(B). Proposition 5.16 says that
I.(B) = Ip(B). So N is the hidden ideal. O

Remark 5.18. Let A € B be a C*-inclusion that need not be aperiodic. The
proof of Theorem 5.17 still gives A/ € I(B) such that J € I(B) is aperiodic as
an A-bimodule if and only if J € N. That is, N is the largest aperiodic ideal
in B. The proof of Proposition 5.16 still shows that A" n A = 0. So we get
an induced inclusion A — B/A. Lemma 5.12 implies that no non-zero ideal
in B/N is aperiodic as an A-bimodule. But A need not detect ideals in B/N.
For instance, in Example 5.2, the largest aperiodic ideal is 0 because a unital
C-bimodule is never aperiodic.

5.3 SUPPORTIVE GENERALISED EXPECTATIONS

Now assume the inclusion A B to be aperiodic and let E: B — A 2 A be a
generalised expectation. Then A € B has the generalised intersection property
by Theorem 5.17. The hidden ideal N contains N because Ng n A = 0.
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When is MV equal to Ng? We cannot expect this for all generalised expectations.
For instance, for the trivial generalised expectation in Example 3.3 we always
have Ng = 0 independently of A/. More importantly, there are examples of
aperiodic inclusions coming from non-Hausdorff groupoids where Nz # N for
the canonical weak conditional expectation E: B — A”. We are going to
identify an extra property of generalised conditional expectations that implies
that the hidden ideal is Ng. Even more, it implies that the positive elements
in A support all positive elements in B/Ng.

DEFINITION 5.19. A generalised expectation E: B — A 2 A is called sup-
portive if, for any b € Bt with E(b) # 0, there are § > 0 and a hereditary
C*-subalgebra D € H(A) such that ||[zE(b)x|| = § for all z € D¥ with ||z| = 1.

Remark 5.20. By definition, E is supportive if and only if no non-zero element
of E(B*) satisfies Kishimoto’s condition. Then any aperiodic ideal in B is
contained in ker £ and hence in Ng. If A € B is aperiodic, then Proposi-
tion 5.16 implies that Ny is aperiodic because Ng n A = 0; so the unique
maximal aperiodic ideal is N if A € B is aperiodic and E is supportive. This
short argument justifies our definition of supportive conditional expectations.
Theorem 5.28 will prove the stronger statement that A supports B.

Remark 5.21. Since the property of being supportive depends only on E(BY),
a generalised expectation E: B — A 2 A is supportive if and only if the
corresponding reduced generalised expectation B/Ng — A is supportive.

PROPOSITION 5.22. Any Mioc-expectation E: B — Mioc(A) and, in particular,
any genuine conditional expectation E: B — A is supportive.

Proof. Let b€ BT satisfy E(b) # 0. Then there is ¢ > 0 with ||E(b)|| > € and
(1—¢)? > 1/2. By the definition of Mj,.(A) as an inductive limit, there are an
essential ideal I € A and ¢ € M(I) € Moc(A) with |[E(b) — ¢|| < e/4. Since
E(b) = 0, we may assume without loss of generality that ¢ > 0. Then ||¢| >
3¢/4. Hence there is a € I with 0 < a < 1, ||la]| = 1, and |lac'/?| > (3¢/4)"/2.
Let d := (c'/?2a?c'/?)'/? € I. [43, Lemma 2.9] gives a hereditary C*-subalgebra
D € H(A) such that ||zd — z|| < ¢||z| - ||d|| and ||zd| > (1 —&)||z| - ||d] for
all z € D. Let x € D* satisfy ||z|| = 1. Then zcx > xc'/?a?c'?x = xd(xd)*.
Hence
l|zez|| = ||zd||* > (1 —&)?||d||* > (1 —¢€)? - 3e/4 > 3¢/8.

Then
B (b)z|| = ||zcx|| — |z E(®) — c| > 3¢/8 — /4 = /8.

Since this holds for all x € Dt with ||z|| = 1, E is supportive. O

LEMMA 5.23. A generalised expectation E: B — A D A is supportive if, for
any b e Bt with E(b) # 0, there is a € AT\{0} with a < E(b).

Proof. Choose 0 < & < |[a*?|| and let ¢ = 1 — §/||a"/?||. The element
llal|~'/2a*? € A* has norm 1, and [43, Lemma 2.9] gives a hereditary sub-
algebra D € H(A) with [|a/2z| > (1 —¢)||a'/?||||z|| = §||z|| for all z € D. Let
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x € D. Since z*E(b)x > z*ax, we may estimate ||[z*E(b)z| = [z*az| =
la'/2z||? = 62||z||? as desired. O

DEFINITION 5.24 ([41, Definition 2.39]). We say that A" supports B if, for
every b € BtT\{0}, there is a € AT\{0} with a < b in the Cuntz preorder
(see [14]); that is, for every € > 0, there is x € B with |la — *bz|| < e.

DEFINITION 5.25 ([46, Lemma 2.1]). An element a € BT\{0} is infinite in B if
and only if there is b € BT\{0} such that for all € > 0 there are z,y € aB with
l*x — al| <e, ||y*y — b|| < e and ||a*y|| < e.

ProprosSITION 5.26. If B is simple, then B is purely infinite if and only if
At < B supports B and all elements of AT\{0} are infinite in B.

Proof. Since B is simple, every infinite element in B is properly infinite by
[35, Proposition 3.14]. Hence by [35, Theorem 4.16], B is purely infinite if and
only if all elements of BT\{0} are infinite in B. If B is purely infinite, then
elements of A*\{0} are infinite in B, and A™* supports B by [35, Definition 4.1]
and the simplicity of B. Conversely, assume that AT supports B and that
all elements of AT\{0} are infinite in B. Let b € BT\{0}. Then there is
a € AT\{0} with a < b. Since B is simple, b € BaB = B. This implies b < a by
[35, Proposition 3.5]. Hence a and b are Cuntz equivalent. So b is infinite. [

LEMMA 5.27. If N € Ig(B) is such that for every b € BT with b ¢ N, there
is a € ATN\{0} with a < b, then N is the hidden ideal for A € B and AT
supports B/N. In particular, if AT supports B, then A detects ideals in B.

Proof. Let J € I(B) satisfy J &£ N. Then there is b € JT\N. By assumption,
there is a € AT\{0} with a < b. This implies a € BbB < J, and so J n A # {0}.
Therefore, if J n A = {0} for J € I(B), then J € AN. The converse also holds
because N'n A = 0. So NV is the hidden ideal. And a < b in B implies a < q(b),
where q: B — B/N is the quotient map. Hence A* supports B/N.. O

THEOREM 5.28. Let A € B be an aperiodic C*-inclusion. Let E be an Mjqc-

expectation or, more generally, a supportive generalised expectation E: B —
ADA. Then

1) for every b e Bt with b ¢ Ng, there is a € AT\{0} with a < b;

(1)

(2) A supports B/Ng;

(3) A detects ideals in B/Ng;
(4)

4) N is the hidden ideal for the inclusion A € B, and so all the equivalent
statements in Proposition 5.8 hold;

(5) B is simple if and only if A is B-minimal and E is almost faithul;
(6) if B is simple, then B is purely infinite if and only if all elements of
AT™N\{0} are infinite in B.
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Proof. (1) implies (2)—(4) by Lemma 5.27. (4) implies (5) by Proposition 5.7,
and (2) implies (6) by Proposition 5.26. So everything follows once we show (1).
Moreover, M,.-expectations are supportive by Proposition 5.22. So we may
assume F to be a supportive generalised expectation.

Let b € Bt with b ¢ Ng. Then b2 ¢ Ng. Proposition 3.6 gives z € B
with E(z*bx) # 0. Since z*bx < b, we may replace b by z*bx and assume
without loss of generality that E(b) # 0. Since E is supportive, there are
d > 0 and D € H(A) such that |[RE(b)h| = § for all h € D* with ||h] = 1.
Choose ¢ := §/4. Since B/A is aperiodic, there is h € DT with ||h]| = 1 and
|hbh||g/a < €. That is, there is ¢ € A with ||hbh — c| < €. Since hbh is self-
adjoint, even positive, we may replace ¢ by its real part (¢* +¢)/2. This makes ¢
self-adjoint and does not increase ||hbh—c||. Next, decompose ¢ into its positive

and negative parts, ¢ = cy —c_ withecy > 0and cy-c- = c_-cy = 0. Weclaim
that ||hbh —c4 || < 2e. First, ||hbh —c|| < € implies € = hbh—¢c > —c=c_ —cy4
because hbh > 0. Since c4 are orthogonal, this implies € = ||c_|| = |lc — c4||.

So ||hbh — c4|| < ||hbh — ¢|| + ||c — c+]|| < 2e. Now we estimate
lexll = 1Bl = IhE@)A] = |E(hbh — ¢4 )| > § — 26 = 2e.

Hence (c+ —e)y # 0. Let a := (cy —e)y € AT\{0}. Since ||[hbh — c4]|| < 2,
[36, Lemma 2.2] gives a contraction y € B with a = y*hbhy. Thus a <b. O

By Proposition 5.15, the reduced inclusion A < B/Ng is aperiodic if A < B
is aperiodic. The converse is false:

Ezxample 5.29. Embed A = C diagonally into B = C®C and define E: B — A,
E(z,y) := x. Then the reduced inclusion is an isomorphism A ~ B/NE and
hence aperiodic. But the inclusion A € B is not aperiodic.

6 APERIODICITY FOR INVERSE SEMIGROUP ACTIONS

In this section, we characterise when the inclusion A € A x S for an inverse
semigroup action is aperiodic. In this case, A X5 S is the unique quotient of
A xS in which A embeds and detects ideals. Even more, A' supports A Xgg 5.
Using previous results in [43], we relate aperiodicity of an inverse semigroup
action to topological freeness of the dual groupoid and pure outerness of the
action. Following Archbold and Spielberg [4], we also show directly that a
variant of topological freeness implies detection of ideals.

6.1 APERIODIC INVERSE SEMIGROUP ACTIONS

DEFINITION 6.1. An inverse semigroup action & is called aperiodic if the Hilbert
A-bimodules & - I, are aperiodic for all ¢ € S, where I{-, is defined in (3.4).

Recall the inverse semigroup S(A, B) for a regular inclusion defined in Propo-
sition 2.12.
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LEMMA 6.2. Let A € B be a regular C*-inclusion and let S = S(A, B) be a
subset with closed linear span B; for instance, S = S(A, B). Let (N n A)* for
N € S(A, B) be the annihilator of the ideal N n A in A. The inclusion A < B
is aperiodic if and only if the image of N - (N n A)* in B/A is an aperiodic
A-bimodule for all N € S.

Proof. Since > N is dense in B, the images of the A-submodules N < B
in B/A are linearly dense. By Lemma 5.11, B/A is aperiodic if and only if
these images, equipped with the quotient norm from B/A, are all aperiodic.
Fix N e S and put I := NN A. Let J := I + I'-. This is an essential ideal in A
and N-J=N-I@N-I* =NnA@N -I+. By Lemma 5.12, the image of N
in B/A is an aperiodic A-bimodule if and only if the image of J- N -.J in B/A
is an aperiodic J-bimodule, if and only if the image of J- N - J in B/A is an
aperiodic A-bimodule. And the same proof works with N -J instead of J-N - J.
Finally, the subspace N - J has the same image in B/Aas N- (N n A)*. O

PROPOSITION 6.3. Let B be an S-graded C*-algebra with a grading € = (£;)tes-
Let A := &, < B and turn &€ into an S-action on A. If this action is aperiodic,
then the inclusion A < B is aperiodic. The converse holds if the grading is
topological as in Definition 4.13.

Proof. Suppose first that £ is aperiodic. Any S-grading satisfies & < &, for
t < uin S. Hence the ideal I; ; used in Definition 6.1 is contained in & n A
for all t € S. So & - (£ n A)* is a subbimodule of & - I{, and hence inherits
aperiodicity from the latter by Lemma 5.12. Thus A < B is aperiodic by
Lemma 6.2.

Conversely, assume that A € B is aperiodic. Let ¢t € S. Using that the grading
is topological, we are going to prove that the seminorm on Stlf:t induced by
the quotient norm on B/A is equal to the usual norm in B. Hence Etll{t
inherits aperiodicity from B/A by Lemma 5.12. Tt is clear that [[z]p/4 <
|lz|| g for all 2 € B. It remains to prove the opposite inequality for z € Stlﬁt.
Since ||z||% = ||z*2]| 4, it follows that ||z||p = ||7||ax...s- By Proposition 4.14,
lzllB/a = [|Zll(Axe.5)/4- So we may assume without loss of generality that
B = A X S. By definition of EL, EL(a*x) = 0 for all a € A. Hence z®1 and
a®1lin (Ax,1eS)OMiec(A) are orthogonal. The following norms are computed
in the Hilbert module completion F of (A xa1g S) © Mioc(A) or in Mo (A):

Iz +a) @1 = |z O1)* = [z © L]z @ || = [ EL(z*2)]| = [|la*a]| = [|=]*.

The first inequality follows because x ® 1 and a ® 1 are orthogonal, and
EL(xz*x) = z*xz because *x € A. Hence the norm of the operator of left
multiplication by x + a on F is at least ||z| for all @ € A. This implies
||z||(AnessS)/A > ||z|| 5 as desired. O

Example 6.4. We are going to build a regular inclusion A € B with two different
wide gradings, such that one grading gives an aperiodic action and the other
not. By Proposition 6.3, the inclusion A < B is aperiodic although it can be
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equipped with a wide grading which is not aperiodic. So the equivalence in the
second part of Proposition 6.3 fails for non-topological gradings, even if they
are wide.

Let B be the C*-algebra of all bounded functions f: [0,1] — C such that f is
continuous at irrational numbers and, at rational numbers in [0, 1], still satisfies
f(t) :=lim, ~ f(x) and that the limit from the right lim,\ f(z) exists. Let
A := C([0,1]) € B. A character on B maps f: [0,1] — C to the value f(¢)
for some ¢ € [0,1] or to the right limit f(t*) := lim, f(z) for some ¢ € Q.
The set R\Q of irrational numbers is dense in the spectrum of B. This implies
that A detects ideals in B. The inclusion A € B is unital, and it is regular by
Lemma 2.13 because B is commutative. If v € B is unitary, then v - A € B
belongs to S(A, B) (see the proof of Lemma 2.13). These elements generate a
subgroup of S(A, B) that is isomorphic to the quotient group I' := U(B)/U(A).
Let I'g < I' be the subgroup of all unitaries that are discontinuous at only
finitely many points of [0,1]. These separate the characters of B and hence
generate B as a C*-algebra by the Stone-Weierstral Theorem. So B is graded
by the group I'y. And then it is also graded by the larger group I'. If u € I'g,
then f € A satisfies f-u € A if and only if f(¢) = 0 at all ¢t € [0,1] where u
is not continuous. So A nwu-A = Cy([0,1]\F) for a finite set F < Q. In
order for this to be useful, the subgroup I'y of S(A, B) must be enlarged to
the wide inverse subsemigroup that it generates. Or we may as well take
Lo:={u-J:uely, J< A}. Since [0,1]\F is dense in [0, 1], the ideals It{-1 are
zero for all t € Ty. Hence the I'g-action on A defined by the Tg-grading of B is
aperiodic.

This action is topologically principal as well because its isotropy is trivial in
[0,1\Q. At the same time, this action is trivial: any slice u - J in T is
isomorphic to J as an A-bimodule, and the multiplication in the Fell bundle
over Ty is also the usual multiplication in A. The Ty-grading on B is not
aperiodic, however, because for any ¢ € T'g\{1}, there is no element in I’y below
1 and ¢, so that I; ; = 0. We thank Jonathan Taylor for pointing this out to
us.

Let I := {u-J:uel, J< A}. Then B carries a wide I'-grading. There is a
unitary u € B that is discontinuous at all rational points in [0,1]. Then u - f
for f € A is only continuous if f = 0. Sou-An A =0. Then I4,.4 =0 and
aperiodicity of the T-grading on B would ask for u - A to be aperiodic as an
A-bimodule. This contradicts Lemma 5.10 because u - A carries the standard
A-bimodule structure. Hence the T-action on A defined by the I'-grading on B
is not aperiodic.

6.2 PROPERTIES OF APERIODIC INVERSE SEMIGROUP ACTIONS

The following theorem specialises Theorem 5.28 to aperiodic inverse semigroup
actions:
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THEOREM 6.5. Let £ be an aperiodic action of a unital inverse semigroup S on
a C*-algebra A. Let EL: A xS — Mo(A) be the canonical Moc-expectation.

(1) The ideal Ngy, is the hidden ideal of the C*-inclusion A< A x S.
(2) A™ supports A Xess S.

(3) A detects ideals in A Xess S, and A Xess S is the unique quotient of Ax S
with this property.

(4) For any representation m of (E)iwes in a C*-algebra B that is faithful
on A, the image of the induced *-homomorphism A x S — B is an exotic
crossed product, that is, w(B) 1is topologically graded by (Et)tes.

Proof. Proposition 6.3 implies that the inclusion A € A x S is aperiodic. Then
(1)—(3) follow from Theorem 5.28. In the situation of (4), the theorem implies
kerm € Ngr. And then (4) follows easily. O

THEOREM 6.6. Let B be an S-graded C*-algebra and turn the grading into an
action € of S on A. Then B is simple if and only if A detects ideals in B and
the action & is minimal. In particular, if the S-action on A is aperiodic and
minimal, then A X5 S is simple.

Proof. Tt is shown in [44, Section 6.3] that an ideal in A is of the form J n A
for J € I(B) if and only if it is invariant. Therefore, the minimality assumption
here is equivalent to the B-minimality assumption in Proposition 5.7, and the
first claim follows. The second claim follows because A detects ideals in A X ¢gs S
for any aperiodic action (Theorem 6.5). O

COROLLARY 6.7. Let £ be an aperiodic, minimal action of a unital inverse
semigroup S on a C*-algebra A. Then A X S is simple and purely infinite if
and only if every element in AT\{0} is infinite in A Xegs S.

Proof. This follows from the previous theorem and Proposition 5.26. O

PROPOSITION 6.8. Let £ be an aperiodic action of a unital inverse semigroup S
on a C*-algebra A. Let ||*||min be the infimum of all C*-seminorms on A x4, S
that restrict to the given C*-norm on A. This is a C*-seminorm on A X g
S. The Hausdorff completion of A Xae S in this seminorm is canonically
isomorphic to A Xegs S.

Proof. Any C*-seminorm on A x,ig S is of the form ||7(z)|| for a representa-
tion . And 7 is injective on A if and only if |7 (z)|| = ||z|| for all z € A. Hence
Theorem 6.5.(4) says that the C*-norm of A Xs S, restricted to A xa, S,
is the minimal C*-seminorm on A x,), S that restricts to the given C*-norm
on A. O
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6.3 APERIODICITY, TOPOLOGICAL FREEENESS AND PURE OUTERNESS

Aperiodicity of single Hilbert bimodules is shown in [43] to be equivalent to
several other properties, under some mild assumptions. This allows us to com-
pare aperiodicity of inverse semigroup actions to the non-triviality conditions
in Definition 2.20.

DEFINITION 6.9. A Hilbert A-bimodule H over a C*-algebra A is purely outer
if there is no non-zero ideal J € I(A4) with H - J = J as a Hilbert bimodule
(see [43]). An action € of an inverse semigroup on a C*-algebra A is purely
outer if the Hilbert A-bimodules &; - I 1th are purely outer for all t € S.

DEFINITION 6.10 ([43]). A Hilbert A-bimodule H over a C*-algebra A is topo-
logically non-trivial if the set {[ﬂ'] € A:H[r] = [ﬂ']} has empty interior. Here

7—A[[7r] = [m] means that the irreducible representations H ®4 7 and 7 are uni-
tarily equivalent.

THEOREM 6.11 ([43, Theorem 8.1]). Let A be a C*-algebra and let H be a
Hilbert A-bimodule. Consider the following conditions:

(1) H is aperiodic;
(2) the partial homeomorphism H ofﬁ 1s topologically non-trivial;
(3) H is purely outer.

Then (1) or (2) implies (3). If A contains a separable essential ideal, then (1)
and (2) are equivalent. If A contains a simple, essential ideal, then (1) and (3)
are equivalent. If A contains an essential ideal of Type I, then (1)—(3) are
equivalent.

LEMMA 6.12 ([43, Proposition 9.7]). Assume that A contains an essential ideal
which is separable or whose spectrum is Hausdorff. Let (H;)ier be a countable
family of Hilbert A-bimodules. The following are equivalent:

(1) 7—71 is topologically non-trivial for every i e I;
(2) the union Uid{[ﬂ] € A\’]/'[\Z[Tf‘] = [7‘(‘]} has empty interior.

Proof. We only need to show that (1) implies (2). By [43, Corollary 6.9] we may
assume that A is separable or that A is Hausdorff (compare Corollary 2.26).

If A is Hausdorff, then the sets {[ﬂ'] cA: 7/-[\1[77] = [ﬂ']} for i € I are closed in A.

Hence (1) implies (2) because A is a Baire space.

Now assume A to be separable. We will reduce our considerations to the case
when the Hilbert bimodules H; come from automorphisms of A. We may
assume that A and (H;)ie; are embedded into a C*-algebra B in such a way
that all the structure of these objects is inherited from B. In addition, we may
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assume that the C*-algebra B is generated by A and (H;)cs. Let F be the free
group on the set I. We define an F-grading (&;)er on B with unit fibre A. Let

E:=H, iftel, and & :=H} iftel L

If t;---t, € Fis a reduced word, that is, ¢, € T UI7! for 1 < k < n and
ti # ti+, for 1 <k <mn, then

Eyoty = E &y - &

"

One readily sees that (&;)ier is indeed an F-grading on B and hence a Fell
bundle over F. Let v: F — Aut(C) be the Morita globalisation of (& )er in
[43, Proposition 7.1]. So C is a separable C*-algebra and for each i € I, the
Hilbert bimodules (&;;4-1)¢er cover C, up to Morita equivalence. For eacht € T,
either &1 = EHiErr or Eyp1 = EyHiEy— with u = tit!, Hence &,
is topologically non-trivial if #; is. Thus by [43, Proposition 6.8.(2)]

i is topologically non-trivial, that is, the sets {[7‘(‘] € 6‘5; [7] = [7‘(‘]} =
{[ﬂ'] eC:[roy] = [7‘(‘]} for ¢ € I have empty interiors. As in the proof of
[49, Proposition 4.4], one shows that the union | J {[7‘(] eC: [Tov] = [w]}
has empty interior. Since v: F — Aut(C) is a Morita globalisation of (&;)+er,
the partial action (&;)+er may be identified with the restriction of 4 to an open
subset. Hence the union | J, I{[ﬂ'] cA: 7/-[\1[77] = [ﬂ']} has empty interior. O

i€l

THEOREM 6.13. Let A be a C*-algebra, S a unital inverse semigroup, and &
an S-action on A by Hilbert bimodules. Consider the following conditions:

(1) the action & is aperiodic;

(2) for eachte S and 0 # K € I(I,) there is [r] € K with &[r] # [x];
(3) the dual groupoid A x S is topologically free;

(4) the dual groupoid AxSis AS topologically free;

(5) the dual groupoid AxS is topologically principal;

(6) the action & is purely outer.

If A contains an essential ideal which is separable or of Type I, then (1)—(4)
are equivalent. If, in addition, S is countable, then (1)—(5) are equivalent. In
general, each of the conditions (1)—(5) implies (6). Conversely, (6) implies (1)
if A contains an essential ideal which is of Type I or simple.

Proof. By definition, the action £ has one of the properties in Definition 2.20
if and only if the dual groupoid A x S has that property. The groupoid A x .S
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is the union of the bisections <5A't And <5A't NA = 1/1;- The restriction of fj‘t to If:t
is the complement of the closure of E,A't A A in EA} So

o~ ~

{Irle i : &l = (7]} = Eix(&) (6.1)

in the notation of Lemma 2.23. Condition (2) for ¢t € S makes precise what it
means for the partial homeomorphism of A induced by &1 f:t to be topologically
non-trivial. So (2) and (3) are equivalent by Lemma 2.23. If A contains an
essential ideal which is separable or of Type I, then (1) is equivalent to (2) by
Theorem 6.11. By Lemma 6.12, condition (2) holds if and only if countable
unions of the subsets @(5}) have empty interior. Accordingly, (2) and (4) are
equivalent by Lemma 2.23.(3). Also by Lemma 2.23, conditions (2) and (5) are
equivalent if S is countable. The implications concerning condition (6) follow
from Theorem 6.11. O

Following Archbold and Spielberg [4], we prove that A detects ideals in A X¢gs.5
for AS topologically free actions, without going through aperiodicity and thus
without separability assumptions on A:

THEOREM 6.14. Let A be a C*-algebra with an AS topologically free action &
of a unital inverse semigroup S. Then A Xess S is the unique quotient of A x S
in which A embeds and detects ideals.

Proof. By Proposition 5.8 it suffices to show that, for any representation 7: Ax
S — B(H) which is injective on A, there is a map E: m(A x S) — Mjee(A)
such that F; om = EL ox. This is equivalent to ||[EL(a)| < ||w(a)| for all
a € AxS. It suffices to check this on the dense *-subalgebra A X, .S. So
take a € A X S and write it as a = ), 5 a0 for a finite subset F' < S and
a; € & for t € F. Define J; := I, (—Dlit and J := (),cg J¢ as in the proof of
Proposition 4.3. These are essential ideals in A, and |[|EL(a)|| is equal to the
supremum of ||EL(ax)|| for x € J with ||z|| < 1. So ||EL(a)|| < ||7(a)]|| follows
if ||EL(ax)|| < ||7(az)| holds for all x € J. So we may assume without loss of
generality that a; € & - J for all t € F.

Then we may further decompose a; = EL(a.d;) + a} with EL(ad;) € I ; and
ay € & =& - I{,. Thus a = EL(a) + Y, ;6 with EL(a) € A. To simplify,
we may assume without loss of generality that |EL(a)|| = 1. Let 0 < e < 1.
The set U := {[o] € A: le(EL(a))|| > 1 — &} is open and non-empty because
|IEL(a)|| = 1. For each t € S, Equation (6.1) and Lemma 2.23.(3) show that
there is [o] € U with &[o] # [o] for all t € F. There is a representation
v:m(A xS) - B(H,) that extends the irreducible representation o, that is,
there is a closed subspace H, < H, on which v o 7w is unitarily equivalent
to 0. For each t € F, let P, be the orthogonal projection from H, onto the
closed subspace v(7(E+))H,. Let P, be the orthogonal projection onto H,.
The subspaces P,H, are invariant for v(m(A)), and von: A — B(PH,) is

—~

either zero or an irreducible representation whose equivalence class is £*[o]

DOCUMENTA MATHEMATICA 26 (2021) 271-335



EssENTIAL CROSSED PRODUCTS 315

(see [40, Lemma 1.3] or [1, Proposition 3.1]). Therefore, 5/;-[0] # [o] implies
P,P;, =0. Thus P,v(n(a}))P, = PyPuw(w(a;))P, = 0 for all ¢t € F. Hence

1 —e <|lo(E(a)| = [|Pov(n(E(a)Po || = || Pov(n(a)) Po |l < [Iw(a)]-

Since € € (0,1) is arbitrary, this implies ||[FL(a)|| = 1 < ||w(a)||. Then EL
factors through m, as desired. o

COROLLARY 6.15. Suppose that € is aperiodic or that AxSis AS topologically
free. Then A Xess S is simple if and only if £ is minimal, if and only if A xS
is minimal.

Proof. Theorem 6.6 applies in both cases. O

Remark 6.16. More recently, it is shown in [45] that topologically free actions
are aperiodic. This significantly improves Theorem 6.14 and Corollary 6.15.
First, aperiodicity is weaker than (AS) topological freeness and, secondly, it
also gives results about pure infiniteness (see Corollary 6.7).

The aperiodicity assumption in Theorem 6.5 is not necessary for A to detect
ideals in A X¢s S. An easy counterexample is an irrational rotation algebra,
viewed as the (essential) crossed product for a twisted action of the group Z?
on A = C. An important case where aperiodicity is necessary for detection of
ideals is when S is very special, namely, Z or Z,, with square-free n € Ny 1:

THEOREM 6.17. Let the compact group I' be either T or Z, with square-free
n € Nxy. Let B be a C*-algebra with a continuous action 3: ' — Aut(B) and
let A = BP be the fized point algebra. Assume that A contains an essential ideal
which is separable, simple, or of Type I. Then the following are equivalent:

(1) A < B is aperiodic;
(2) A detects ideals in B;
(3) A" supports B.

Proof. Let G = T be the dual group, that is, G = Z or G =T = Z,. Let
B = (Bg)gec be the Fell bundle formed by the spectral subspaces of the action £.
Then By = A = A and B = C*(B) = C*(B) by the Gauge-Equivariant
Uniqueness Theorem. By Proposition 6.3, the inclusion A < B is aperiodic if
and only if the Fell bundle is aperiodic. Then [43, Theorem 9.12] implies that
(1)—(3) are equivalent. O

Remark 6.18. For an action of a discrete group on a separable C*-algebra for
which A € A x, G detects ideals, Kennedy and Schafhauser [32] introduce a
cohomological obstruction whose vanishing implies aperiodicity (the condition
they call proper outerness is aperiodicity).
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7 FELL BUNDLES OVER GROUPOIDS

Fell bundles over groups are studied, for instance, in [22]. We are going to
describe their analogues over étale groupoids through inverse semigroup actions.
Then we carry over our definitions and results for inverse semigroup actions to
the realm of Fell bundles over étale groupoids. Throughout this section, X is
a locally compact Hausdorff space, H is an étale groupoid with unit space X,
and S € Bis(H) is a unital, wide inverse subsemigroup of bisections of H.

7.1 GROUPOID FELL BUNDLES AND INVERSE SEMIGROUPS ACTIONS

DEFINITION 7.1 ([8, Section 2]). A Fell bundle over H is an upper semicon-
tinuous bundle A = (Av)ve g of Banach spaces with a continuous involution
*: A — A and a continuous multiplication

s {(aab)eAXA:GJEA’YN bEA’sz 71572€Ha 5(71) ZT(FYQ)}*)Aa

which is associative whenever defined. In addition, the fibres A, for z € X
must be C*-algebras and the fibres A, for v € H must be Hilbert Ay (yy-As()-
bimodules for the left and right inner products {x | y) := zy* and (x| y) := a*y
for z,y € A,. Then the multiplication map yields isometric Hilbert bimodule
maps

Hoya,ya - A’Yl ®A A’Y2 - A

s(v1) Y172

for all y1,v2 € H with s(y1) = r(y2). If these maps are surjective, the Fell
bundle A is called saturated. This holds if and only if p., -1 is surjective for
allve H.

Ezample 7.2. An action o of H on a C*-algebra as in [54, Section 3] yields a
saturated Fell bundle over H. Namely, let A, := A,(,) for v € H and define
the multiplication maps and involutions by A, x A, — A,,, (a,b) — a- ay(b),
and Ay — A -1, a— a;'(a*).

We are going to turn a Fell bundle A = (A, ) ey over H into an inverse semi-
group action. Let A be the Cy(X)-algebra corresponding to the bundle of
C*-algebras (A;)zex. Let S < Bis(H) be any unital, wide inverse subsemi-
group of bisections of H and let U € S. This subset is always Hausdorff and
locally compact because the source and range maps restrict to homeomorphisms
from U onto the open subsets s(U) and r(U) in X. Let Ay be the space of
Co-sections of the restriction of (A, ) en to U. The spaces A,y and Ay are
closed ideals in A = Ax. And the formulas

(a-&-b)(7) = alr
E&Im(s(v)):
LEImy(r()) = E(n()*

for a € Ay, §&,n € Au, b € Ayuy, and v € U define on Ay the structure
of a Hilbert A, (;r)-Asw)-bimodule. For U,V € S, there is a unique isometric

[
A
=2
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Hilbert bimodule map puy,v: Ay ®4 Ay — Ayy with

pov(E@n) (71 - 72) = E(v)n(r2)

for all 41 € U, 72 € V. The involutions are the maps Ay — Af, f*(y) :=
f(y~1)*. This defines a Fell bundle over S (see [8, Example 2.9]). If A is
saturated, then the maps 7y are surjective, that is, the Fell bundle over S is
saturated. Then the Fell bundle above defines an action of S on A by Hilbert
bimodules.

If A is not saturated, then we have to modify S to make the Fell bundle
saturated. Instead of using the general construction in [9] mentioned in Re-
mark 3.18, we prefer a more concrete construction that depends on the Fell
bundle A. Let Sy for U € S be the set of all Hilbert subbimodules of Ay and
let S be the disjoint union of the sets Sy. By the Rieffel correspondence, any
element of Sy is of the form F = Ay - I = J - Ay, where I and J are the
source and range ideals of 7. The involutions Ay — A}, and multiplication
maps py,v: Av ®a4 Ay — Ayy map Hilbert subbimodules again to Hilbert
subbimodules. So they define maps Sy — S’U* and Sy x Sy — Syv. These
define an involution and a multiplication on S.

LEMMA 7.3. The multiplication above makesJSN’ a unital inverse semigroup. And
(‘F)UES,}'ES?U 1s a saturated Fell bundle over S. There is also a canonical inverse

semigroup homomorphism S — S with fibres Syy. The Fell bundles over S and S
defined above have the same algebraic, full and reduced section C*-algebras.

Proof. The equation tt*t = t holds for all ¢ € S because F @4 F* @4 F =~ F
holds for all Hilbert A-bimodules F. To show that S is an inverse semigroup,
it suffices to prove that the idempotent elements in S form a commutative
subsemigroup. If F € Sy is idempotent, then U? = U and so Ay is an ideal in A.
Then F is an ideal in A as well. The product of two ideals is their intersection.
Since this operation on ideals is commutative and E(S) is commutative, the
idempotents in S form a commutative semigroup. Therefore, S is an inverse
semigroup. The element A € S is an identity element in S.

We have defined the multiplication in S so that the involutions and multi-
plication maps in our original Fell bundle over S restricted to the elements
of S give (F JUes.Fes, the structure of a saturated Fell bundle over S. We
only discuss the inclusion maps (which are redundant in the saturated case by
the results in [11]). Let Fy, € Ay, and F, € Ay, be elements of S. Then
(U1, F1) < (Ua, F2) holds in S if and only if U; < Us in S and the multiplica-
tion map Ay, ®4 Ayw,) — Av, maps F2 ®a s(F1) onto Fi; this follows from
our description of idempotent elements in S above. In this situation, there is a
canonial inclusion map F; = Fo ®4 s(F1) — Fa. It agrees with the restriction
of the map Ay, — Ay,. And (Uy, F1) < (Uz, F2) holds if and only if the map
Ay, — Ay, maps Fj into Fo.

A section of the Fell bundle over S is a finite formal linear combination of
elements of F for (U, F) € S. The relations are defined in [8] using only the
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inclusion maps F; — JFo for Fi; < AU17 Fo AU2 with (Ul,fl) < (UQ,]:Q).
More relations are used in [10], giving a variant of the algebraic section alge-
bra; but this is worked out only in the saturated case. The relations in [8]
already suffice to show that any element of F for (U, F) € S is identified in
the algebraic section C*-algebra with the corresponding element of (U, Ay ).
And these are subjected to the same relations and *-algebra structure as in
the section C*-algebra of the Fell bundle over S. So the section *-algebras of
the Fell bundles as defined in [8] are canonically isomorphic. The same would
be true for the definition in [10] if that were carried over to the non-saturated
case. The full section C*-algebras are defined as the maximal C*-completions
of the section *-algebras. Hence these are also canonically isomorphic. The
reduced section C*-algebra of a non-saturated Fell bundle is defined in [20]
using all representations of the full section C*-algebra that are obtained by
inducing irreducible representations of A in a certain way. When we identify
the full section C*-algebras as above, we get the same induced representations
for both of them. Hence the reduced section C*-algebras are also isomorphic.
For saturated Fell bundles, the definition of the reduced section C*-algebra
through a weak conditional expectation is equivalent to Exel’s definition by
Lemma 3.21. o

Let A be a Fell bundle over H. Then H acts naturally on the space A of
all irreducible representations of the unit fibre A = Ax. First, any irreducible
representation of A factors through the evaluation map A — A, for some z € X,
and this defines a continuous map ¥: A — X. Such a map is also equivalent to
a Co(X)-C*-algebra structure on A by the Dauns—Hofmann Theorem (see [48]).
The map 1 is the anchor map of the H-action on A. Secondly, if v € H, then the
Hilbert AT(W), Ag(y)-bimodule A induces a partial homeomorphism A, from

Aé(v) to AT(W) If the Fell bundle over H is not saturated, then the domain and

codomain A may be smaller than A, and A/T(\,Y), respectively. These partial

s(v)
homeomorphisms still form a continuous “partial” action of H on /Al, and this
is enough to form a transformation groupoid A x H, just as for a partial group
action on a space. The proof of Proposition 2.2 extends to this situation and
shows that Ax H>~Ax S =AxS.

Remark 7.4. If H is Hausdorff, then the unit space of H is closed in H. This
implies that the unit space A'is closed in A x H. That is, all inverse semigroup
actions associated to actions of H are closed (see [10, Example 6.7]).

The following theorem describes when a saturated Fell bundle over Bis(H)
comes from a saturated Fell bundle over H. The extra ingredient is the map
P: A— X.

THEOREM 7.5 ([11, Theorem 6.1]). Let H be an étale groupoid with locally
compact, Hausdorff object space X. A saturated Fell bundle over Bis(H) comes
from a saturated Fell bundle over H if and only if the map U — Ay from open

subsets in X to ideals in A commutes with suprema if and only if there is a
continuous map m: A — X such that AU = 7~ Y(U) for all open subsets U < X .
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A similar result holds for non-saturated Fell bundles over H and Bis(H). And
if we replace Bis(H) by S < Bis(H), then a Fell bundle over S comes from
a Fell bundle over H if and only if there is a continuous, S-equivariant map
7: A — X such that A, = 77 1(e) for all e € E(S), identified with open subsets
of X.

7.2 THE FULL GROUPOID CROSSED PRODUCT

If U <€ H is a bisection, then U is Hausdorfl and locally compact. Let
C.(U,A) < Ay be the space of continuous sections of A|y with compact sup-
port. Extend functions in C¢(U,.A) by 0 to H. These extensions need not
be continuous any more. Let &(H, A) be the linear span of C.(U, A) for all
bisections U € H. We call sections in &(H,.A) quasi-continuous. The space
S(H, A) carries a convolution product and an involution given by

(fx9)(v) = D> f)-g™-7), ()= fGH)*

r(m)=r(v)

for all f,g € &(H, A), v € H. The full section C*-algebra C*(H, A) of the
Fell bundle A over H is defined as the maximal C*-completion of the *-algebra

S(H, A).

PROPOSITION 7.6. Let H be an étale groupoid with locally compact and Haus-
dorff unit space X and let A be a Fell bundle over H. Turn A into a satu-
rated Fell bundle over an inverse semigroup S as in Lemma 7.3 above. Then

C*(H,A) =~ AxS.

Proof. If the Fell bundle A is saturated, then the isomorphism C*(H,A) =
A x S is [11, Corollary 5.6]. Under separability hypotheses, [8, Theorem 2.13]
says that C*(H, A) is isomorphic to the full section C*-algebra of the Fell bun-
dle (Ay)ves- This is isomorphic to A S by Lemma 7.3. We briefly sketch the
proof to point out that the extra saturatedness or separability assumptions in
these proofs are not needed. What makes the proof tricky is that the algebraic
*_subalgebras used to define C*(H, A) and A x S are not the same. The proof
shows that they have the same *-representations.

If U € Bis(H), then any compact subset of U is covered by finitely many
bisections in S. Using a partition of unity, one shows that functions in
Cc(t, A) for t € S already span &(H,.A). This gives a surjective linear map
@®,c5 Ce(t, A) — &(H, A). The proof of Lemma 7.3 shows that Ax 1,5 € AxS
is spanned by the subspaces A; for t € S, giving a surjective linear map
@Dyeg At — AxaeS. We claim that the map @, g Ce(t, A) — @,cg Ar defined
by the inclusion maps Ce(t,.A) — A; for t € S descends to a well defined map
G(H, A) — A x4, S. This follows from [11, Proposition B.2], which describes
the kernel of the map @, g Cc(t, A) — &(H, A) in terms of the inclusion maps
Ce(t, A) — Cc(u, A) for t < u. The resulting map S(H, A) — A X, S is an
injective *-algebra homomorphism, but not surjective.
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If U € X, then any *-representation of C.(U,.A) is already bounded in the
C*-norm on Ay because C.(U,.A) is a union of C*-subalgebras of Ay. Hence
it extends uniquely to a *-representation of Ay. Then it follows that the re-
striction of a *-representation of G(H, A) to C.(t,.A) for t € S is bounded in
the norm of A; and hence extends uniquely to a bounded linear map on Ay.
These maps form a representation of the Fell bundle (A;)tes over S. Thus
G(H, A) and A x4 S have the same representations and hence the same max-
imal C*-completions. O

Remark 7.7. A Fell line bundle over H is a continuous Fell bundle with A, = C
as a vector space for all v € H. Such Fell bundles correspond to “twists” of H
(the proof of [15, Theorem 5.6] still works for non-Hausdorff groupoids). The
corresponding Fell bundles over inverse semigroups are studied in [8], where
they are called semi-Abelian. The section C*-algebra of a Fell line bundle
over H is a twisted groupoid C*-algebra of H. The usual groupoid C*-algebra
C*(H) corresponds to the “trivial” Fell line bundle, where all the multiplication
maps are the usual multiplication map on C.

7.3 THE REDUCED SECTION C*-ALGEBRA

Next we define the reduced section C*-algebra of the Fell bundle A over H.
Let z € X. Then
CC(HI,A) = @ Av
s(y)=z
is a pre-Hilbert A, -module for the obvious right multiplication and the standard
inner product {f|g) := ), f(7)*9(7). Let (?(Hz, A) denote its Hilbert
Az-module completion. If f € §(H, A), g € Cc.(H,,.A), then define A\, (f)(g) €
Ce(Hy, A) by
(D))= D> Fmglny).

r(m)=r(v)

The operator \;(f) extends uniquely to an adjointable operator on ¢?(H,, A)
with adjoint A, (f*), and this defines a non-degenerate *-representation
of &(H,A) on (*(H,,A). It extends uniquely to a non-degenerate
*_representation

Azt C*(H, A) - B((*(H,, A)).
DEFINITION 7.8. The reduced norm on C*(H, A) or &(H, A) is defined by

1z == sup | Az (f)]]-
zeX

The reduced section C*-algebra C; (H, A) of the Fell bundle A over H is defined
as the completion of &(H, A) in the reduced norm. Equivalently, it is the
quotient of C*(H, A) by the ideal [,y ker(\;), which is the null space of the
reduced norm on C*(H, A).
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PROPOSITION 7.9. The isomorphism C*(H, A) =~ A x S in Proposition 7.6

descends to an isomorphism C¥(H, A) =~ A x, S.

Proof. For saturated Fell bundles over H, which correspond to saturated Fell
bundles over S and thus actions of S by Hilbert bimodules, this is contained
in [10, Theorem 8.11]. The same idea works in the non-saturated case. Each
representation 7 of A may be induced to a representation i(w) of A x S. The
representation @__z4(m) of A % S descends to a faithful representation of
A %, S. This is how Lemma 3.21 is proven. Any irreducible representation
of A factors through one of the fibres A, for z € X. The representation of
A x S induced by 7 € A, corresponds to the representation A\, ® 1 of C*(H, A)
on (?(Hy, A) ®a, Hr. And |[[X.(f)]| is the supremum of ||\, ® 13 (f)| over
all 7 € A,. So the reduced norm that defines C}(H, A) corresponds to the
supremum of ||i(m)(f)|| over all 7 € A, which gives A x, S. O

Let B(H, A) denote the Banach space of bounded Borel sections of the Ba-
nach space bundle A, and similarly for B(X,.A). So 6(H, A) < B(H, A) <
[ [,ex Ay as vector spaces.

PROPOSITION 7.10. The embedding &(H, A) — B(H, A) extends uniquely to
an injective and contractive linear map j: CX(H, A) — B(H, A). The map

is a faithful generalised expectation.

Proof. Let vy € H. Then A, < (2 (Hy(4),A) is a direct summand. Let T,: A, —
EQ(HS(,Y), A) be the isometric inclusion. Then 77* is the orthogonal projection
onto A,. If f € Cf(H, A), then define

J(f)(V) = T»;k)‘Z(f)TS(v) : AS(W) - Av'

If f e C.(U,A) for some bisection U < H, then j(f)(y)(a) = f(v) - a for all
a€ Ay andy e H. Thus j(f)(v) is the compact operator corresponding under
the isomorphism K(A,(,),A4,) = A, to the element f(y) € A,. We simply
write j(f)(y) = f(y) for all f € &(H, A). Since ||T,|| = 1, we may estimate
O = (DI < I for all f € CF(H, A). The section j(f) € [ Lex As
is Borel for all f € C.(U, . A) and hence for f € &(H,.A). Since j is bounded,
S(H, A) is dense in C] (H, A), and uniform limits of Borel functions are Borel,
it follows that j is the unique contractive linear map C¥(H, A) — B(H, A)
extending j on G(H, A).

If x € X, then f — j(f)(x) = TFX.(f)T: is a completely positive, contractive
linear map E,: CF(H, A) — A,. Hence E.(f) := j(f)|x is completely positive
and contractive as a map to [ [,.y Az. Then it is a completely positive con-
traction E,: C}(H, A) — B(X,A) as well. Being the identity map on A, it is
a generalised conditional expectation. We may further compose E, with the
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faithul representation A, — [] B(Hr). Since A= Llex A,, this gives a

generalised expectation

B CHHA) = [[BOL). B (D) = 7G()])

neA

7r€A

Let E,: Ax, S — A” be the canonical weak conditional expectation (it should
not be confused with E,: Cf(H, A) — B(X, A) as the domain and codomain
are different). The generalised expectation

0o Er: Ax, S — [ [ B(H
red

is faithful by Lemma 3.21 and Theorem 3.22. The isomorphism C}(H, A) =~
A%, S in Proposition 7.9 intertwines the generalised expectations E, and po F,
because it does so on functions in f € C.(t,.A) for t € S. Hence the generalised
expectation E, is faithful. Then so is E,: C¥(H, A) — B(X, A).

If fe &(H,.A), then we compute

E(f*+ @) =j(f*« )= X OO0 = D iHW*iH0).

s(y)=z s(y)=z

The norm of the left hand side is bounded by ||f||é>,<(H )" The norm of
the right hand side is the square of the norm of j(f) in ¢?(H,,A). Hence
J(F)lu, € (Hy, A) and ||(f)la, e, < # (1,4 for all f € CY(H, A).

By continuity, we get

E(f*+ f)@) = >, i(H*(H() (7.1)

s(y)==

for all f e C¥(H,A). So E.(f* = f) = 0 is equivalent to j(f) = 0. Since E, is
faithful, this is equivalent to f = 0. Hence j is injective. O

Remark 7.11. If A is a Fell line bundle, then its restriction to the unit space
is the trivial bundle X x C. Hence identifying sections j(f)|x with scalar-
valued functions on X, we may view E, as a generalised expectation into the
C*-algebra B(X) of Borel functions on X. This expectation has been used
already by Khoskham and Skandalis [33].

7.4 'THE ESSENTIAL GROUPOID CROSSED PRODUCT
DEFINITION 7.12. Let C*

Uies (H, A) be the quotient of C*(H, A) that corresponds
to the quotient A X egs S of A x S under the isomorphism in Proposition 7.6.

So Ck (H, A) is the quotient of C*(H,.A) by the ideal Ngy, for the canonical

Moc-expectation

EL: C*(H,A) = Ax 5 — Mc(A).
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Since EL is symmetric by Theorem 3.22, b € C*(H, A) belongs to Ngy, if and
only if EL(b* #b) = 0. Since A e S is a quotient of A x, S, Proposition 7.9
allows to identify C*_(H,.A) with the quotient of C*(H, .A) by the image of Ny,
in C¥(H,A). We denote this image by Jsing as in Section 4.3 and call its
elements singular. We are going to describe Jgng in terms of the groupoid Fell
bundle.

By Proposition 4.10, the essential multiplier algebra Mj,.(A4) is embeds into
the quotient of [] _2B(H,) by the null space of the essential supremum
norm ||-|less, which takes the minimum of the supremum norms over comea-
gre subsets of A. In the proof of Proposition 7.10, we have noticed that the
canonical generalised expectation E,: C} (H, A) — [ ],.x Az — composed with
the standard faithful representations — gives a faithful generalised expectation

E.: C¥H,A) — HA HHB

xeX A

which corresponds to go Fy: A x, 8 — [],ciB(Hx). So by Proposition 4.10,
the norm of the image of b € CJ(H, A) in C;“SS(H7 A) is the essential supremum
of "E‘r(b)(w)H Therefore, b € Jging if and only if the set of 7 € A with Er(b* *
b)(m) # 0 is meagre. In general, this is the best we can say. Under extra
assumptions, we are going to rewrite this in terms of the set of x € X with
E.(b* «b)(x) # 0, or the set of v € H with j(b)(y) # 0. The starting point is
the following analogue of Proposition 4.15:

LEMMA 7.13. Let f € C¥(H,A). There is a comeagre subset C = H such that
the section j(f) of A is continuous in all points of C; that is, if v € C, then
there is an open neighbourhood U of v and a continuous section h of Ay with
lim, ., ||f(n) — h(n)|] = 0. Thus the section E.(f) of A|x is continuous in
C n X, which is comeagre in X .

Proof. First let f € C.(U, A) for some bisection U. Then j(f) is a continuous
section on U and vanishes on the interior of H\U. Thus it is continuous in all
points of the dense open subset H\OU. I f € &(H, A), then f is a finite linear
combination of functions as above. Hence j(f) is continuous in all points of a
finite intersection of dense open subsets, which is again dense open. Finally, if
f e ClH(H,A), then there is a sequence (fy,)nen in S(H, A) with lim || f,, — f]| =
0. Hence j(f,) converges uniformly towards j(f). For each n € N, there is a
dense open subset Y,, € H where f, is continuous. Let C := ﬂneNY The
subset C' is comeagre as a countable intersection of dense open subsets. Its
intersection with the closed subspace X < H is comeagre in X.

We claim that j(f) is a continuous section in all v € C. Thus E.(f) = j(f )|
is continuous in C'n X. A continuous section h with lim,,_,., || f(n) — h(n)| =
is built as follows. Let f, and Y,, for n € N be as above. Define f_; := 0. We
may arrange that || fn, — fn—1/lc < 27" for all n € N. Let U be a bisection
containing ~. Since Y,, is open, there is a function w, € C.(U nY,, nY,_1)
with w, (y) = 1 and ||wy |l < 1. Then (f, — fn—1) - wy, is a continuous section
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of Aly with ||(fn — fa—1) - ws| < 27" Hence h := 37" (fn — fa—1) - wy, is
a well defined continuous section of A|y. The continuity of the functions wy,
implies that lim,_.~ || f(n) — h(n)| = 0. O

In order to compare our description of the essential crossed product to the one
in [25], we need more information about the comeagre subset C' in Lemma 7.13.

DEFINITION 7.14. Call € X dangerous if there is a net (7,) in H that con-
verges towards two different points vy # +' € H with s(v) = s(v') = .

LEMMA 7.15. Let f € C}(H, A) and v € H. If s(v) is not dangerous, then j(f)
is continuous at . If x € X is dangerous, then the isotropy group H(x) at x
is non-trivial. If H is covered by countably many bisections, then the subset D
of dangerous points is meagre, and so is s~1(D) < H.

Proof. First let f € C.(U,.A) for some U € Bis(H) and assume that j(f) is
discontinuous at v € H. Then v € H\U and there is a net (v,,) converging to
with f(y,) — 0. So 7y, must lie in the support of f, which is a compact subset
of U. Passing to a subnet, we may arrange that 7, converges to some v’ € U.
This must be different from +. Since X is Hausdorff, s(vy) = lim s(v,) = s(v/).
So s(y) is dangerous. In other words, j(f) for f € C.(U,.A) is continuous at
all v € H with s(y) ¢ D. This remains so for uniform limits of finite linear
combinations of such j(f), giving the first claim for all f € C¥(H, A). The
same argument shows that r(y) = r(y). So y~!4/ is a non-trivial element in
the isotropy group of x and H(z) is non-trivial if = is dangerous.

Now assume that H is covered by countably many bisections S € Bis(H). The
arrows v,~y' witnessing that some z € X is dangerous must belong to some
bisections U,V € S. Since a countable union of meagre subsets is meagre, it
suffices to fix U,V € S and prove the meagreness of the set of all z € X for
which there are v € U, 4/ € V with s(y) = s(y/) = x and a net (v,) in H
converging both to v and +'. Since U and V are open, we may restrict our net
(7n) to a subnet that belongs to U n'V. But v,7' ¢ U n V. Since s restricts to
homeomorphisms U = s(U) and V' = s(V), it follows that « € d(s(UnV)). This
subset is closed and nowhere dense, hence meagre. The subset s~1(3(s(UnV)))
is also closed and nowhere dense because s is continuous and open. Hence
s~1(D) < H is meagre as well. O

Ezxample 7.16. If H is not covered by countably many bisections, then all z € X
may be dangerous. To produce such an example, let X = [0,1] and let the
free group F' on the set [0,1] act identically on X. For each t € [0,1] we
identify the arrow s — s given by the generator ¢t € F' with the identity arrow
on s if s € [0,t). This extends to a congruence relation ~ on the transformation
groupoid [0, 1] x F. By construction, each ¢ € [0, 1] is dangerous in [0, 1] x F'/~.
So far, we have assumed A to be an upper semicontinuous field. Then
Lemma 7.13 implies that, for every f € C¥(H,.A), the function

v H—[0,0), 7o 15D
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is upper semicontinuous in a comeagre subset of X. This is useless, however.
The applications of Proposition 4.15 in Section 4.3 need lower semicontinuity
instead. Therefore, we assume A to be a continuous field of Banach spaces
from now on. For brevity, we call A a continuous Fell bundle.

Remark 7.17. A Fell bundle A over H is continuous if and only if its re-
striction A|x is a continuous field of C*-algebras over X. One implica-
tion is trivial, and the continuity of A|x implies continuity of A because
la(MI%, = lla*alla,,, for all a € A,. Recall also that a Co(X)-C*-algebra

structure on the C*-algebra Ay is equivalent to a continuous map : Z; - X.
The field A|x is a continuous field of C*-algebras if and only if 1 is open (see
[48, Theorem 3.3]). A Fell bundle A is a line bundle if and only if A|x is
the trivial C*-algebra bundle over X with fibre C. This implies that A is
continuous. In fact, Fell line bundles are locally trivial.

We can now describe the ideal Jyyg := ker (C}(H, A) — CL (H, A)):

PROPOSITION 7.18. Let H be an étale groupoid with locally compact and Haus-
dorff unit space X. Let A be a continuous Fell bundle over H; so the map
P: A — X withp~(x) = A, € A for x € X is open. Assume H to be covered
by countably many bisections. Let f € C¥(H, A) and € = 0. Define

s5() = {m e Asln(B(F* « NI > ¢},

sk (f) = A{z e X:||E(f* = )(@)] > €},

su(f) = A{ve H:[l5(f) (VI > }.

Let D € X be the set of dangerous points. The following are equivalent:
(1) fE Jsing;
(2) $%(f) = v\ (D);

(3) s%(f) < A is meagre;

(4) s%(f) < A has empty interior;

(5) s%(f) C A has empty interior for all € > 0;

(6) sx(f) < D;

(7) s%(f) S X is meagre;

(8) s%(f) = X has empty interior;

(9) s%(f) € X has empty interior for all e > 0;
(10) s3(f) = s7H(D);
(11) s%(f) < H is meagre;
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(12) % (f) < H has empty interior;
(13) s%(f) € H has empty interior for all e > 0.

In general, without any restriction on A and H, (1) is equivalent to each of
the conditions (3)—(5). And if A is a Fell line bundle, then they are further
equivalent to (7)—(9).

Proof. In general, without any restriction on .4 and H, (1) is equivalent to (3)—
(5) by Corollary 4.16. If A is a line bundle, then 1): A — X is a homeomorphism
and ¥(s5(f)) = sk (f) for all € > 0. Thus (3)—(5) are equivalent to (7)-(9) in
this case.

From now on, we assume A to be a continuous Fell bundle and H to be covered
by countably many bisections. We first show that (10)—(13) are equivalent. The
subset s71(D) < H is meagre by Lemma 7.15. So (10) implies (11). Since H
is a union of open sets that are Baire, H is a Baire space. Hence a meagre
subset of H must have empty interior. So (11) implies (12). And (12) implies
(13) because s (f) 2 s5(f) for all e > 0. If s%(f) is not contained in s~*(D),
then there is v € H with s(y) ¢ D and j(f)(y) # 0. Let € = ||7(/)(V)|l/2
Since s(y) ¢ D and the bundle A is lower semicontinuous, ||7(f)| is lower
semicontinuous in v by Lemma 7.13. This gives an open neighbourhood U of
with ||7(f)(n)|| > € for all n € U. So s5,;(f) has non-empty interior. This shows
that (13) implies (10) and finishes the proof that (10)—(13) are equivalent.
The spaces X and A are Baire spaces as well (see [17, Proposition 3.4.13]).
The subset D © X is meagre. Since ¢ is open and continuous, this implies
that v ~1(D) < A is also meagre. By Lemma 7.15, the function |E.(f* %
f)(z)|| is continuous in X\D. We claim that the function ||E.(f* * f)(x)]
is lower semicontinuous in ¢ ~1(X\D). Indeed, if x € X\D, then there is a
continuous section h of A|lx with lim, . || Ex(f* = f)(y) — h(y)|| = 0. Since
h € A, the function ||E.(h)(r)|| = ||m(R)|| is lower semicontinuous on A (see
[17, Proposition 3.3.2]). Since

E ()= (£ Y| < NE(F* = F)(y) = h(y)ll

for 7 € ;1; c A, it follows that | E.(f* % f)(m)|| is lower semicontinuous in
().

Using the facts gathered in the previous paragraph, we may carry over the proof
of the equivalence (10)—(13) to prove that (6)—(9) are equivalent and that (2)-
(5) are equivalent. Finally, E,(f*#f)(z) = 0 is equivalent to || (E,(f*+f))|| = 0
for all 7 € A,, and to J(f)m, =0 by (7.1). Hence (6) is equivalent to (2) and
(10). O

Remark 7.19. By definition, C}(H, A) = CX (H,A) if and only if the only
element f € C(H, A) that belongs to Jung is the zero element. Thus Proposi-
tion 7.18 implies many equivalent characterisations for C;(H, A) = CX_(H, A).

€ss
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Remark 7.20. An element f of C¥(H) is called singular in [13] if s%(f) := {y €
H :j(f)() # 0} has empty interior. Proposition 7.18 shows that f € C}(H) is
singular in the notation of [13] if and only if it belongs to Jsing, provided H is
covered by countably many bisections. This follows if H is countable at infinity.

Let A be a Fell line bundle. Remark 7.17 shows that A is a continuous field of
Banach spaces over H. Exel and Pitts show that

I:={feCiHA):E(f*f)(x) =0 for all z € X with H(z) = {z}}

is an ideal in CJ(H,.A), and they define the essential groupoid C*-algebra as
the quotient C}(H,A)/T. It is clear that I' n Co(X) = 0 if and only if the
set of x € H with H(x) = {«} has empty interior, that is, H is topologically
principal. Therefore, the map from Co(X) to C¥(H,A)/T is injective if and
only if H is topologically principal. In contrast, we have defined CX_(H,.A)
so that the map Co(X) — CX (H,.A) is always injective. Hence the essential
twisted groupoid C*-algebras defined here and in [25] differ when H is not
topologically principal. If, however, H is topologically principal, then the two
definitions are equivalent:

PROPOSITION 7.21. Let H be topologically principal and let A be a Fell bundle
over H. Assume either that A is a Fell line bundle or that A is continuous
and H is covered by countably many bisections. Then

Jsing = {f € CH(H, A): E.(f* = f)(z) = 0 for all x € X with H(z) = {x}}.

Proof. Assume E,(f*f)(x) # 0 for some z € X with H(z) = {z}. Then
E.(f*f) is continuous at this point by Lemma 7.15. Hence there is an open
neighbourhood of « on which E,(f*f)(y) # 0. Thus f ¢ Jsng by Proposi-
tion 7.18. Conversely, assume E,(f*f)(z) = 0 for all z € X with H(z) = {z}.
Since H is topologically principal, the set of € X with H(z) # {z} has empty
interior. Hence the set of z € X with E,(f*f)(z) # 0 has empty interior. Then
f € Jsing by Proposition 7.18. O

If A is a Fell line bundle, then the conditions above may also be related to
supportive conditional expectations and the criterion in Lemma 5.23:

THEOREM 7.22. Let H be a topologically free étale groupoid with locally compact
Hausdorff object space X. Let L be a Fell line bundle over H. The following
are equivalent:

(1) CY(H, L) = C&(H, L);
(2) Co(X) supports CY(H, L);
(3) Co(X) detects ideals in C(H,L);

(4) for any f e C¥(H,L)"\{0}, there is a € Co(X)T\{0} with a < j(f)|x:
(5)

5) the canonical weak expectation C}(H,L) — Co(X)" is supportive.
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Proof. The dual groupoid of our action is H, and Cy(X) is of Type I. So Theo-
rem 6.13 shows that the inclusion Co(X) < C*(H, L) =~ Co(X) xS is aperiodic.
Thus Theorem 6.5 shows that the essential crossed product CX (H, L) is the
unique quotient of C*(H, £) in which Co(X) embeds and detects ideals, and
also that Co(X) supports Ci (H, L). So (1) and (3) are equivalent and they
imply (2). And (2) implies (3) by Lemma 5.27. Hence the conditions (1)-
(3) are equivalent. Assume (1) and let f € CF(H,L£)"\{0}. Since Jgng = O,
Proposition 7.18 implies that there are € > 0 and an open subset U € X with
J(Nx(x) = Ex(f)(x) > e for all x € U. There is a € Co(U) with 0 < a < e.
It witnesses that f satisfies the condition in (4). So (1) implies (4). And (4)
implies (5) by Lemma 5.23. Condition (5) implies (2) and (3) by Theorem 5.28.
This shows that all conditions are equivalent. O

Remark 7.23. The existence of non-trivial singular elements in C}(H, L) for
a Fell line bundle £ depends on the line bundle £. Exel constructed in [21,
Section 2] a non-Hausdorff, topologically principal, étale groupoid H such that
Co(X) does not detect ideals in C}(H). A line bundle £ over the same groupoid
such that Co(X) does detect ideals in C¥(H, £) is built in [25, Section 23].

7.5 SIMPLICITY AND PURE INFINITENESS FOR GROUPOID FELL BUNDLES

The following theorem carries our results for inverse semigroup crossed products
over to the groupoid case:

THEOREM 7.24. Let A be a Fell bundle over an étale groupoid H with locally
compact Hausdorff object space X. Assume that A := Co(A|x) contains an
essential ideal that is separable or of Type I. The inclusion A < C*(H,A) is
aperiodic if and only if the dual groupoid Ax H is topologically free. This
follows if Prim(A) x H is topologically free. If A is a continuous Fell bundle,
then it follows also if H is topologically free.

Proof. The first statement follows from Theorem 6.13 because A x H is natu-
rally isomorphic to the dual groupoid A % S for the inverse semigroup action
defined in Lemma 7.3. If X — Y is an H-equivariant, continuous and open map
between two H-spaces, then X x H inherits topological freeness from Y x H.
Hence A x H is topologically free if Prim(A) x H is topologically free. And
Prim(A) x H is topologically free if H = X x H is topologically free and the
base map 1: Prim(A) — X is open. The base map is open if and only if A
is a continuous Cy(X)-algebra if and only if A is a continuous Fell bundle (see
Remark 7.17). O

THEOREM 7.25. Let A be a Fell bundle over an étale groupoid H with locally

compact Hausdor(f object space X. Assume that the inclusion A := Co(A|x) S
C*(H, A) is aperiodic. Then

(1) A supports CE (H, A);
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(2) A detects ideals in CE (H,A), and C: (H,A) is the only quotient of
C*(H, A) with this property;

(3) if Je I(C*(H,A)) and JnA =0, then J < ker(C*(H, A) — CX.(H,A));

(4) Ck (H,A) is simple if and only if the dual groupoid Ax H is minimal;

ess

(5) if A x H is minimal, then C* (H, A) is simple and purely infinite if and

ess

only if every element of AT\{0} is infinite in CE (H, A).

Proof. We may apply Theorems 6.5 and 6.6 and Corollary 6.7, replacing A x .S
and A X S by C*(H, A) and C¥_(H,.A). This implies all the statements. [

€ess

The simplicity criterion above strengthens the criterion of Renault [55] by re-
moving the Hausdorffness assumption, replacing Prim(A) x H by A x H in the
topological freeness assumption, and weakening the separability assumptions.
In the group case, Theorem 7.25 implies Kishimoto’s theorem that purely outer
group actions on simple C*-algebras are simple, whereas Renault’s criterion
says nothing about this situation. Theorems 7.25 and 7.24 combined with the
criteria for C¥(H, A) = CX (H,A) also imply the results in [13] about the
simplicity of C(H).

THEOREM 7.26. Let H be a minimal, topologically free, étale groupoid with
locally compact Hausdorff object space X. Let L be a Fell line bundle over H.
Then C¥ (H, L) is simple. And Ck (H, L) is purely infinite if and only if every
element of Co(X) is infinite in CE (H, L).

In particular, Ck (H, L) is purely infinite if, for every non-empty open subset
U < X there are n € N, a non-empty open subset V. < U, and bisections

t1,...,tn € Bis(H) on which L is trivial such that

riti)nr(t) =@ fori<i<j<n, V=]st) |Jrt)sw
1=1

i=1

Proof. Theorem 7.24 implies that the inclusion Co(X) = C*(H, £) is aperiodic
because A = X. Then the inclusion Co(X) S C*_(H, L) is aperiodic as well.
Now Theorem 7.25 implies the first part of the statement. It remains to check
that the criterion in the second paragraph implies that any f € Co(X)™\{0} is
infinite in B := C¥_(H, L) (see Definition 5.25).

Let S be the set of bisections in Bis(H) that trivialise £. This is a unital,
wide inverse subsemigroup, and we may identify C} (H, L) with the essential
crossed product Cg(X) Xess S by the inverse semigroup action & = (&)ies
associated to the Fell line bundle £. Let U := {z € X: f(z) # 0}. Choose
@ #V < U and ty,...,t, € S as in the statement of the theorem. Let

a =be Cy(X)T\{0} be any non-zero positive function that is supported in the
open subset V\J'_, 7(¢;). Then a < f. Since C} (H, L) is simple, f is infinite

if a is infinite (see the proof of Proposition 5.26). Let wy,...,w, € Co(X)

DOCUMENTA MATHEMATICA 26 (2021) 271-335



330 B. K. KWASNIEWSKI, R. MEYER

be a partition of unity subordinate to the open covering V = (J'_, s(¢;). Let
a; ‘= a- wil/2 for © = 1,...,n. These functions vanish outside V', and a; is
supported in s(t;). Since L], is a trivial line bundle, a; gives an element of &,
which we denote by a;d,. It belongs to a - &, by construction. The product
(aids;)*a;ds; is defined using the Fell bundle structure. It vanishes for ¢ # j
because r(t;) N r(t;) = &. Similarly, (a;d;,)*a = 0. And X1 | (a;d,)*a;dy, =
> aw; = a. Hence x := )" | a;0;, and y := y/a are elements of a-C} (H, L)
such that z*x = a, y*y = a # 0 and z¥y = 0. Thus «a is infinite in CZ(H, L).

In fact, the proof shows that a is properly infinite. O

Remark 7.27. The condition in the second paragraph of Theorem 7.26 is satis-
fied, for instance, for the transformation groupoids of strongly boundary group
actions (see [47]) and, more generally, for filling actions (see [30]). Hence the
pure infiniteness results in [30,47] are covered by Theorem 7.26.

For an étale, locally compact groupoid H, the condition of being locally con-
tracting in [2] is the same as the condition in Theorem 7.26 with n = 1, without
the trivialisation of the Fell line bundle. Thus C} (H) is purely infinite and
simple if H is a minimal, topologically free, étale, locally contracting groupoid
with locally compact Hausdorff object space.

Now we specialise further to the trivial Fell bundle, which gives the groupoid
C*-algebra C*(H) without any twist. Then C*(H) =~ Co(X) x S for any
unital, wide inverse subsemigroup S < Bis(H), acting in the canonical way
on Co(X). We are going to show that Co(X) < C*(H) has the generalised
intersection property with essential quotient C*_(H) if and only if H is topo-
logically free. One direction already follows from our general results. For
the other direction, we construct the orbit representations of C*(H). We
construct them as covariant representations of the S-action on Co(X). Let
r € X and let [z] := r(s7!(x)) € X be the orbit of z. The orbit represen-
tation of [z] takes place on the Hilbert space £%([z]). Here Co(X) acts by
pointwise multiplication. If U € S is a bisection of H, then f € Co(U) acts
on ([z]) by 7u(f)E(r(y)) = f(7) - &(s(y)) for all y € U with s(v) € [z],
and 7wy (f)é(y) = 0 for y € [z]\r(U). Simple computations show that
o ())* = mus(f*), mo(Hmvie) = mov(f = g) for UV € 8, f e Co(U),
g€ Co(V), and my(f) = my (f) for U < V and f e Co(U) < Co(V). Hence the
maps 7y for U € S form a representation of the action of S on Cyo(X). Then
they induce a non-degenerate representation 7, of Co(X) xS on B(¢?[z]). Let
7 1= @,cx Mo be the direct sum of all these representations.

LEMMA 7.28. The representation w is faithful on Co(X). If it factors through
Cl.(H,A), then H is topologically free.

Proof. The algebra Co(X) acts on ¢?([z]) by pointwise multiplication. These
representations are faithful when we sum over all x € X. Assume that H is
not topologically free. That is, there is a non-empty bisection U < H\X with
rly = s|y. Since U n X = 0, it follows that EL(f) = 0 for all f € Co(U).
Choose any non-zero f € C.(U). Define fy € C.(s(U)) < Co(X) by fo(s(7)) :=
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f(v) for all v € U. Since r|y = s|y, both f € Co(U) and fo € Co(X) act on
£2([z]) by pointwise multiplication with the same function fo, for all z € X.
Hence f — fo € kerm. But EL(f — fo) = —fo # 0. Hence f — fo ¢ NgL. O

THEOREM 7.29. Let H be an étale groupoid with locally compact, Hausdorff
unit space X. The inclusion Co(X) S Co(X) x S = C*(H) has the generalised
intersection property with hidden ideal Ngr if and only if H is topologically
free.

Proof. The dual groupoid for the S-action on Cy(X) is simply H, and Cy(X)
is of Type I. So Theorem 6.13 (or Theorem 7.24) shows that the action of S on
Co(X) is aperiodic if and only if H is topologically free. Aperiodicity implies
that Co(X) < Co(X) xS = C*(H) has the generalised intersection prop-
erty with hidden ideal Ngr. Conversely, if H is not topologically free, then
Lemma, 7.28 exhibits an ideal ker m with kerm n A = 0, but kerm € Ngr. O

The special case of Theorem 7.29 for transformation groups goes back to
Kawamura—Tomiyama and Archbold—-Spielberg (see [31, Theorem 4.1] and
[4, Theorem 2]). The special case of Hausdorff groupoids with C;(H) instead
of C(H) is similar to [5, Proposition 5.5]; replacing “topologically principal”
by “topologically free” allows us to remove the second countability assumption,
and replacing the reduced by the essential crossed product allows to remove

the Hausdorffness assumption.
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