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1 Introduction

The group SL1(A) of reduced norm one elements of a finite dimensional central sim-

ple algebra A over a field K is one of the main and well-studied examples of sim-

ply connected almost simple algebraic groups of type A. The commutator subgroup

[A∗, A∗] is clearly contained in SL1(A). Whether the reverse inclusion holds is how-

ever a far more subtle and difficult question to tackle. This problem was formulated

by Tannaka and Artin independently in terms of SK1(A) which is defined to be the

abstract quotient group
SL1(A)
[A∗,A∗] .

Question 1.1 (Tannaka-Artin, 1943). Is SK1(A) trivial?

The Tannaka-Artin problem can be rephrased as a special case of the more general

Kneser-Tits problem. For G, a semisimple simply connected isotropic K-group, let

G+(K) denote the normal subgroup generated by the conjugates of the K-points of

the unipotent radical of a properK parabolic ofG. One defines the reduced Whitehead
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group to be W (G,K) := G(K)
G+(K) . The Kneser-Tits problem asks whether W (G,K)

is trivial.

The Tannaka-Artin problem was answered affirmatively for square-free index alge-

bras over arbitrary fields ([W50]). It was also shown that SK1(A) was trivial for all

central simple algebras A defined over local or global fields ([NM43],[W50]) and it

was widely believed that the Tannaka-Artin question had a positive answer in general.

However Platonov’s famous example ([P78]) of a biquarternion division algebra D
over an iterated Laurent-series field Qp((x))((y)) with non-trivial SK1(D) negatively

settled the Tannaka-Artin problem and also gave rise to the first example of a non-

rational simply connected almost simple algebraic K-group. Note that the cohomo-

logical dimension of the base field under consideration is 4. However, in the same

paper by Platonov, it was also shown that the Tannaka-Artin problem has a positive

answer for central simple algebras over fields of cohomological dimension ≤ 2.

In 1991, Suslin conjectured that if the index of the central simple algebra D/K is not

square free, then SK1(D) is generically non-trivial, i.e, there exists a field extension

F/K such that SK1(D ⊗K F ) is non-trivial ([Su91]). More formally, the Suslin

invariant

ρ : SK1(D) → kernel
[
H4
et

(
K,µ⊗3

n

)
→ H4

et

(
K(Y ), µ⊗3

n

)]

[D] •H2 (K,µn)
,

where Y is the Severi-Brauer variety defined by D, a central division algebra of de-

gree n, was conjectured to send the generic element to a non-trivial image. Suslin’s

conjecture was settled affirmatively by Merkurjev for algebras with indices divisible

by 4 in ([M93], [M06]).

In the case when the index ofD is 4, it is known that ρ is in fact an isomorphism (Rost,

Chapter 17 [KMRT]; [M99]; [Su06]). Hence if cdK ≤ 3, then SK1(D) = {0}. This

led Suslin to ask whether SK1(D) = {0} for any central simple algebraD of index ℓ2

where ℓ is a prime, over fields of cohomological dimension 3 ([Su06]).

In this paper, we settle this question affirmatively for exponent ℓ algebras over func-

tion fields of p-adic curves where ℓ is any odd prime not equal to p, assuming that

our base field contains a primitive ℓ2th root of unity (Theorem 13.8). The proof,

whose strategy is outlined below, relies on the techniques of patching as developed by

Harbater-Hartmann-Krashen (HHK) in ([HH10], [HHK09], [HHK14] & [HHK15])

and exploits the arithmetic of the base field to show triviality of the reduced White-

head group.

Let F = K(X) be the function field of a smooth projective geometrically integral

curve X over a p-adic field K . Let D denote a central division algebra over F of

exponent ℓ where ℓ is an odd prime different from p. Let z ∈ SL1(D) lie in some

maximal subfield M ofD. We would like to show that z is a product of commutators.

The results of Saltman and Wang ([S97], [S98], [W50]) along with standard Galois

theory techniques help reduce to the case whenD has index ℓ2 andM contains a sub-

cyclic degree ℓ extension Y/F . Let NM/Y (z) = a, which therefore has further norm

one to F .

We now briefly explain our strategy (cf. Section 3.3) which essentially adapts

Documenta Mathematica 26 (2021) 337–413



Reduced Whitehead Groups of Algebras 339

Platonov’s argument ([P76]) to our situation. We split a into a product of suitable el-

ements a1 and a2 in Y , where the case of each ai is easier to handle. More precisely,

we find elements a1, a2 ∈ Y and degree ℓ sub-field extensions E1/F , E2/F in D
which commute with Y such that aj is a norm from Y Ej of a product of commutators

for each j = 1, 2. One can think of having moved the problem over to the fields Ejs,

which by construction are more “amenable” and where we can solve the problem. We

then modify z by commutators so that the modified z (and hence also the original z) is

a product of commutators (Proposition 3.6). The requiredEjs and ajs are constructed

by HHK patching by prescribing compatible local data for an appropriate model X
of X .

We now briefly mention what each section in the paper is about. The second sec-

tion collects lemmata about the shape of units, norms of field extensions and reduced

norms of algebras defined over some special complete fields encountered in the patch-

ing set-up. It also contains some class field theory lemmata which will be useful in

approximating local data to get global objects. The third section sets forth patching

notations, fixes a preliminary model X of X arranging some necessary divisors to

be in good shape (i.e. normal crossing divisors with regular components) and gives

the initial reductions which help simplify the problem. It also spells out the overall

strategy adopted in the proof (mentioned above) in more precise detail.

The fourth and fifth sections classify into types, codimension one and closed points

ofX lying on the special fiber. Here, we also understand the configuration of the cyclic

sub-extension Y/F and the shape of the norm one element a ∈ Y at the fraction fields

of the local rings at these points completed at their maximal ideals. The sixth section

discusses further blowing up the model at closed points to eliminate certain types

of closed points from the classification. It also constructs a partial dual graph and

outputs a nine-colouring of it, which will help in ensuring compatibility of the local

data at the branches in the patching problem. The seventh section gives patching data

(a1,P , a2,P , E1,P , E2,P ) at closed points P while the next two discuss their structure

over the branches.

The tenth and eleven sections give patching data (a1,η, a2,η, E1,η, E2,η) at codimen-

sion one points η of X lying on the special fiber. We patch the data in the twelfth

section by spreading (a1,η, a2,η, E1,η, E2,η) to work over open sets Uη ∋ η of the

special fiber to get the required elements a1, a2 ∈ Y and extensions E1, E2/F . The

final section uses patching again to finally solve the problem over the Ejs.
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2 Lemmata

2.1 Notations and terminology

Let ℓ be a prime and let J be a field which is not of characteristic ℓ containing ρ, a

primitive ℓth root of unity. Then for a, b ∈ J∗, we let the symbol (a, b) denote the

J-cyclic ℓ-algebra

(a, b) = J〈i, j|iℓ = a, jℓ = b, ij = ρji〉.

If E/J is a cyclic extension of degree ℓ with Gal(E/J) = 〈σ〉 and b ∈ J∗, we let the

symbol (E, σ, b) (or (E, b) if the automorphism σ is clear from the context) denote

the J-cyclic ℓ algebra

(E, σ, b) =
ℓ−1⊕

i=0

uiE, uℓ = b, eu = uσ(e) ∀ e ∈ E.

We also note that for central simple algebras (abbreviated as CSAs) D1, D2 over J ,

we use D1 = D2 to mean equality in Br(J), i.e D1 = D2 denotes that D1/J and

D2/J are Brauer equivalent.

Let F be a complete discretely valued field with ring of integersR and residue field k.

Let ℓ be a prime which is not equal to char(k) such that F contains a primitive ℓth

root of unity. Let α ∈ Br(F ) be an element of order ℓ which is ramified at R. Recall

the residue map ∂F : H2(F, µℓ) → H1(k,Z/ℓZ). Let ∂F (α) =
(
E/k, σ

)
whereE/k

is a cyclic extension of degree ℓ with Galois group generated by σ.

Residual extension: There is a unique unramified cyclic extension E/F of de-

gree ℓ with residue field E. We call E the lift of residue of α at R or the residual

extension of α at R.

Residual Brauer class: We define the residual class of α (depending on the

choice of a parameter of R) as in ([S07]). Given a parameter π of R, let L denote the

totally ramified extension F ( ℓ
√
π) and S denote the ring of integers of L with residue

field also k. Then αL := α⊗F L is unramified and hence is in Br(S).

Let β ∈ Br(k) denote the image of αL. Then the residual Brauer class of α, denoted

αrbc, is defined to be the image of β in the unramified cohomology group H2
nr (F, µℓ)

under the isomorphism iF : H2(k, µℓ) → H2
nr(F, µℓ), β ❀ αrbc.

Lemma 2.1 ([S07], Proof of Proposition 0.6).

α = αrbc + (E, σ, π) in Br(F ).
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2.2 Norms, reduced norms and index computations

Lemma 2.2 (cf. [PPS18], Lemma 2.7). Let F be a field and ℓ, a prime not equal to

the characteristic of F . Let Y/F be a cyclic extension of F or the split extension of

degree ℓ and ψ, a generator of the Galois group of Y/F . Suppose that there exists an

integer m ≥ 1 such that F does not contain a primitive ℓmth
root of unity. Let µ ∈ Y

with NY/F (µ) = 1. Further assume that

• If Y/F is split, then µ =
(
gℓi
)
∈ ∏

F for some gi ∈ F .

• If Y/F is not split, then µ = gℓ
2m

for some g ∈ Y .

Then there exists h ∈ Y/F such that µ = h−ℓψ (h)ℓ.

Lemma 2.3 (Totally ramified extensions (dim 1)). Let R be a complete discretely

valued ring with fraction field K and residue field k. Let ℓ be a prime which is not

divisible by char(k) such thatK contains a primitive ℓ2th root of unity. Let L/K be a

totally ramified extension of degree ℓ and let S be the integral closure of R in L. Then

a. L ≃ K ( ℓ
√
π) for some parameter π of K ,

b. If x ∈ R∗ is a norm from L, then x ∈ K∗ℓ,

c. Norm one elements in L are ℓth powers in S∗.

Proof. a. follows from ([PPS18], Lemma 2.4), while b. and c. are easy consequences

of Hensel’s lemma.

Lemma 2.4. Let A be a complete regular local ring of dim2 with fraction field F
and finite residue field k. Let L/F be a cyclic extension of F of degree ℓ unramified

on A, where ℓ is a prime not divisible by char(k). If a ∈ A∗, then it is a norm from L.

Proof. Let σ be a generator of Gal(L/F ). Since a ∈ A∗, the cyclic algebra (L, σ, a)
is unramified and hence trivial in Br (F ).

Lemma 2.5 (Norm one elements of an unramified extension). Let A be a complete

regular local ring with fraction field F and finite residue field k. Let ℓ be a prime

which is not divisible by char(k). Assume F contains a primitive ℓth root of unity.

If Y is a degree ℓ field extension of F unramified on A, then norm one elements of

Y/F which are integral over A are ℓth powers in Y .

Proof. Let B denote the integral closure of A in Y and let k1 be its residue field. Let

c ∈ Y be integral over A such that NY/F (c) = 1. Hence c ∈ B∗, the minimal poly-

nomial g(t) of c in Y/F lies in A[t] and is monic and irreducible. By the Henselian

property of A, g(t) is irreducible (of the same degree) in k[t] and is therefore the

minimal polynomial of c.
Since Y/F is unramified, [Y : F ] = [k1 : k] = ℓ and therefore Nk1/k(c) =

(−1)ℓg(0)[k1:k(c̄)] = (−1)ℓg(0)[Y :F (c)] = NY/F (c) = 1. Now k1/k is an exten-

sion of finite fields and hence the norm map N : k∗1 → k∗ is surjective. Since N is
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also multiplicative, it induces a surjective map of groups Ñ :
k∗1
k∗ℓ
1

→ k∗

k∗ℓ . Since ℓ is a

prime not divisible by char(k) and F contains a primitive ℓth root of unity, ℓ divides

|k∗| and |k∗1 |. Thus both
k∗1
k∗ℓ
1

and
k∗1
k∗ℓ
1

are cyclic groups of order ℓ which shows that Ñ

is injective as well.

Since Nk1/k(c) = 1, this shows that c = λℓ for some λ ∈ k1. Using the fact that B is

Henselian as well, we see that c is also therefore an ℓth power in Y .

Lemma 2.6 (Norm one elements (dim 2)). Let A be a complete regular local ring of

dim2 with fraction field F and finite residue field k. Let ℓ be a prime not divisible by

char(k). Assume F contains a primitive ℓ2th root of unity. Let Y = F
(

ℓ
√
uπiδj

)
be

a degree ℓ field extension of F where u ∈ A∗, (π, δ) form a system of parameters of

A and 0 ≤ i, j ≤ ℓ − 1. Let b ∈ Y be such that it is integral over A. If NY/F (b) = 1,

then b ∈ Y ∗ℓ.

Proof. We split it into two cases depending on the ramification of Y/F . If Y/F is

unramified and nonsplit, then by Lemma 2.5, b in an ℓth power.

If Y/F is ramified, then Y = F
(

ℓ
√
uπiδj

)
where 0 ≤ i, j ≤ ℓ − 1 with at least one

of them non-zero. Let B denote the integral closure of A in Y . It is a complete local

ring ([HS06], Theorem 4.3.4) with maximal ideal MB and residue field k. Let b ∈ B
such that NY/F (b) = 1. Let a ∈ A∗ be such that a = b. Thus ba−1 ≃ 1 mod MB .

Since B is complete and char(k) 6= ℓ, b = aλℓ
2

for some λ ∈ B. This implies that

NY/F (b) =
(
aNY/F (λ)

ℓ
)ℓ

= 1. Thus aNY/F (λ)
ℓ = ρ where ρ is an ℓth root of

unity. Hence a is equal to ρ up to ℓth powers in Y . Since F contains a primitive ℓ2th

root of unity, this shows a and hence b is an ℓth power in Y .

Lemma 2.7 (Reduced norms of an unramified algebra). Let R be a complete dis-

cretely valued ring with fraction field K and residue field k of cohomological dimen-

sion ≤ 2. LetD0 be an unramified central simple algebra overK of index ℓ where ℓ is

a prime not divisible by char(k). Then every unit u ∈ R∗ is a reduced norm from D0.

Proof. By the results of Merkurjev and Suslin ([Se], Chapter II, Sec 4.5, Pg 88), the

reduced norm of D0 is surjective. Thus the polynomial NrdD0
(x)− u = 0 has a

solution over k. By Hensel’s Lemma, there exists a solution over K .

Lemma 2.8 (Splitting fields). Let A be a complete regular local ring of dim2 with

fraction field F and finite residue field k. Let ℓ be a prime not divisible by char(k)
such that F contains a primitive ℓth root of unity. Let D = (v, π) be an ℓ torsion

algebra over F and E = F
(

ℓ
√
uπiδj

)
be a degree ℓ field extension of F where

u, v ∈ A∗, (π, δ) form a system of parameters of A and 0 ≤ i, j ≤ ℓ − 1. Let Â(π)

be completion of A(π) at its maximal ideal and let its fraction field be denoted by FB ,

which is a complete discretely valued field with parameter π and residue field kB . If

D ⊗F (E ⊗F FB) is split, then so is D ⊗F E.
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Proof. If i = j = 0, thenE is the unique unramified (onA) extension of F . Therefore

v ∈ E∗ℓ and hence D ⊗ E = 0.

If i = 0, j 6= 0, then E ⊗ FB/FB is an unramified extension, EB := E ⊗ FB is a

totally ramified extension over kB and the further residue field of EB is k . Note that

D ⊗ E ⊗ FB = 0 implies that the residue v ∈ EB
∗ℓ

and hence v ∈ k∗ℓ. This implies

v ∈ A∗ℓ and hence D = 0 to begin with.

If i 6= 0, without loss of generality we can assume i = 1 and 0 ≤ j < ℓ. Thus

D ⊗E =
(
v, u−1δ−j

)
=

(
δ, vj

)
∈ Br(E). Note that E ⊗ FB/FB is totally ramified

and EB = kB . Since D ⊗ E ⊗ FB = 0, we see that
(
δ, vj

)
= 0 ∈ Br(E ⊗ FB)

and hence
(
δ, vj

)
∈ Br(kB). This implies v

j ∈ k∗ℓ and hence v ∈ A∗ℓ. Hence

D ⊗ E = 0.

Lemma 2.9 (Index formula, [JW90]). Let R be a complete discretely valued ring

with fraction field F . Let E be a cyclic unramified extension of F of degree m and

let α = α′ + (E, σ, π) in Br(F ) where π is a parameter of R, σ is a generator of

E/F and α′ is a central simple algebra of degree n unramified at R. Assume mn is

invertible in R. Then index (α) = index(α′ ⊗F E) [E : F ].

2.3 Approximating local data

For the rest of this section, ℓ will denote an odd prime, F , a global field with

char(F ) 6= ℓ containing a primitive ℓth root of unity and D′, a central simple al-

gebra over F of index dividing ℓ. Fv will denote the completion of F at a place v of F
and kv , its residue field. T = {v1, v2, . . . , vr} will be a finite set of places of F such

that ℓ 6= char(kvi ) for each i ≤ r and D′ ⊗ Fv is split for every place v 6∈ T .

Lemma 2.10 (An approximate cyclic extension). Suppose that there exists u′ ∈ F ∗

and cyclic or split extensions Evi/Fvi of degree ℓ for each vi ∈ T such that

• u′ is a norm from Evi/Fvi for each vi ∈ T ,

• D′ ⊗F Evi is split for each vi ∈ T .

Then there exists a cyclic field extension E/F of degree ℓ such that

• E ⊗F Fvi ≃ Ei for each vi ∈ T ,

• u′ is a norm from E/F ,

• D′ ⊗F E is split.

Proof. Without loss of generality, assume that there exists a v ∈ T such that Ev/Fv
is a field extension. This can be done by expanding T to include a place v of F
where u′ ∈ O∗

Fv
and choosing Ev to be the unique cyclic unramified field extension

of degree ℓ over Fv .

Pick wv to be so that the given Ev ≃ Fv [t]
(tℓ−wv)

for each v ∈ T . If u′ ∈ F ∗ℓ, using

weak approximation pick w ∈ F so that up to ℓth powers, it matches wv ∈ Fv for
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each v ∈ T . Then the field E = F [t]/
(
tℓ − w

)
satisfies the lemma. So we assume

u′ 6∈ F ∗ℓ in the rest of the proof.

For each place v ∈ T , by hypothesis we know (wv, u
′) = 0 ∈ Br (Fv). Hence

pick θv ∈
(
F
(

ℓ
√
u′
)
⊗ Fv

)∗
so that N

F( ℓ
√
u′)⊗Fv/Fv

(θv) = wv. By weak ap-

proximation, find θ ∈ F
(

ℓ
√
u′
)

so that it matches θv up to ℓth powers. Set w =

N
F( ℓ

√
u′)/F (θ). Thus w matches with wv up to ℓth powers and (u′, w) = 0 ∈ Br(F ).

Set E = F ( ℓ
√
w). This is a cyclic Galois extension of F which approximates the Evs

for each v ∈ T . By hypothesis,D′ is split at places not in T and Ev ⊗F D′ is split for

every v ∈ T . Thus E splits D′.

Lemma 2.11 (Another approximate cyclic extension). Let Y ′ = F
(

ℓ
√
u′
)

be a

cyclic field extension of degree ℓ where u′ ∈ F ∗ \ F ∗ℓ. Let a′ ∈ Y ′∗ \ Y ′∗ℓ and L

be the Galois closure of the compositum Y ′
(

ℓ
√
a′
)

over F . Suppose that for each

v ∈ T , there exist wv ∈ F ∗
v and extensions Ev := Fv [t]

(tℓ−wv)
of Fv with the following

properties:

• wv is a norm from L⊗ Fv/Fv ,

• D′ ⊗F Ev is split,

• (wv, a
′) is split over Y ′ ⊗ Fv .

Then there exists a cyclic field extension E/F of degree ℓ such that

• E ⊗F Fv ≃ Ev for each v ∈ T ,

• u′ is a norm from E/F ,

• D′ ⊗F E is split,

• a′ is a norm from E ⊗F Y ′/Y ′.

Proof. Without loss of generality, assume that there exists a v ∈ T such that Ev/Fv
is a field extension. This can be done by expanding T to include a place v of F with

the following properties : 1) u′ ∈ O∗
Fv

, 2) a′ ∈ O∗
Y ′
x

for any place x of Y ′ lying over

v, 3) L ⊗ Fv is a unramified extension of Fv (or a product of unramified extensions

over Fv) and choosing wv ∈ O∗
Fv

\ O∗ℓ
Fv

and Ev to be the unique cyclic unramified

field extension of degree ℓ over Fv .

Let zv ∈ (L ⊗ Fv)
∗ such that NL⊗Fv/Fv

(zv) = wv . By weak approximation, find

z ∈ L so that it matches up to ℓth powers with zv for each v ∈ T . Set θ := NL/Y ′(z)

and set w := NY ′/F (θ) = NL/F (z) . Thus w matches with the wv up to ℓth powers.

Clearly w is a norm from Y ′ = F
(

ℓ
√
u′
)

also and hence (u′, w) = 0 ∈ Br(F ). Set

E = F ( ℓ
√
w). Hence u′ is a norm from E/F .

Note that E is an extension of F which approximates the given Ev for each v ∈ T .

Since there exists some v ∈ T such thatEv is a field,E/F is a nonsplit field extension,
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which is clearly cyclic of degree ℓ. By hypothesis, D′/F is split at places not in T
and Ev ⊗F D′ is split for every v ∈ T . Thus E splits D′.

As θ = NL/Y ′(z) and Y ′ ⊆ Y ′
(

ℓ
√
a′
)

⊆ L, we have that (a′, θ) = 0 ∈
Br(Y ′). Given any ψ ∈ Gal(Y ′/F ), extend it to some ψ̃ ∈ Gal(L/F ). Then

NL/Y ′

(
ψ̃(z)

)
= ψ(θ). Hence ψ(θ) is a norm from L/Y ′ and so also from

Y ′
(

ℓ
√
a′
)
/Y ′. Therefore

(a′, ψ(θ)) = 0 ∈ Br(Y ′) ∀ ψ ∈ Gal(Y ′/F ).

Finally, since NY ′/F (θ) = w and Y ′/F is Galois, we have that
∏
ψ∈Gal(Y/F ) ψ(θ) =

w. Therefore ∏

ψ∈Gal(Y ′,F )

(a′, ψ(θ)) = (a′, w) = 0 ∈ Br(Y ′).

Lemma 2.12 (Invariant algebras of global fields). Let E/F be a cyclic extension

of global fields of degree ℓ, where ℓ is a prime not divisible by any of the residual

characteristics of F . Further assume that F contains a primitive ℓth root of unity. Let

Ew denote the completion of E at any place w of E and OEw
, its valuation ring. Let

Gal (E/F ) = 〈σ〉. Let u ∈ F ∗, b ∈ E∗ be such that

• At every place w of E where E/F is ramified, u is an ℓth power in E∗
w,

• At every place w of E where E/F is unramified and inert, u ∈ O∗
Ew

up to ℓth

powers in E∗
w,

• (u, b) = (u, σ(b)) in H2 (E, µℓ).

Additionally, let T0 be a finite set of places of F such that for each place v ∈ T0,

one is given fv ∈ F ∗
v such that for any place w of E lying above v, (u, b) =

(u, fv) in H2 (Ew, µℓ).
Then there exists f ∈ F ∗ such that

1. f = fvθ
ℓ
v in Fv for some θv ∈ Fv for each v ∈ T0,

2. (u, b) = (u, f) in H2 (E, µℓ).

Proof. By Kummer theory,E = F
(

ℓ
√
ψ
)

for some ψ which generates F∗

F∗ℓ . Note that

if u ∈ E∗ℓ, we can choose f by weak approximation such that f matches fv up to

ℓth powers. So for the remainder of the proof, we assume that u 6∈ E∗ℓ. We also

note that if v ∈ T0 splits completely in E, then the hypothesis that (u, b) = (u, σ(b))
guarantees that the same fv works for each place w above v.

Let T denote the union of T0 and the finite set of places v of F which satisfy both the

following conditions: 1) v is either unramified and inert or completely split in E, 2)

There exists a place w of E lying above v at which either u or b is not a unit in OEw
.
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For each place v ∈ T , we find fv ∈ F ∗
v as follows:

Case 0 : For each v ∈ T0, we choose the fv given by the hypothesis.

Case I : Let v ∈ T \ T0 be a place of F which is unramified and inert in E and let w
be the place above v. Let b = b̃wπ

s
v where b̃ ∈ O∗

Ew
and πv is a parameter for Fv. Set

fv = πsv . Since by hypothesis, u is in O∗
Ew

up to ℓth powers, we have that

(u, b) =
(
u, b̃w

)
+ (u, πsv) = (u, fv) ∈ H2 (Ew, µℓ) .

Case II : Let v ∈ T \T0 be a place of F which splits inE. ThusE⊗F Fv =
∏ℓ
i=1 Fv

and let b ∈ E = (b1, b2, . . . , bℓ) ∈ E ⊗F Fv . Thus (u, b) = (u, σ(b)) implies

(u, b1) = (u, b2) = . . . = (u, bℓ) ∈ H2 (Fv, µℓ) (∗).

Set fv = b1. And thus (u, fv) matches (u, bi) over Fv for each i.
Since by hypothesis, u ∈ E∗ℓ

w for every w/v totally ramified, we have that for each

place w lying over a place v not in T , (u, b) is split over Ew.

Note that since u 6∈ E∗ℓ, it is not in F ∗ℓ either and hence F ( ℓ
√
u) is a cyclic Galois

extension of degree ℓ over F . Then L := F
(

ℓ
√
u, ℓ

√
ψ
)

is a Galois extension over F

with Galois group Z
ℓZ × Z

ℓZ .

By Chebotarev density, pick a place ṽ of F (there are infinitely many!) which is not in

T such that 1) ṽ does not ramify in L, 2) σ′ ∈ Gal(L/F ) ↔ (1, 1) ∈ Z
ℓZ × Z

ℓZ is the

Frobenius automorphism Frobṽ of Lx/Fṽ where x is any place lying above ṽ. [Since

L/F is abelian, the Frobenius automorphism does not depend on the choice of x]

Note that the residue field extension degree [lx : kṽ] ≤ ℓ. For if Ew is nonsplit unram-

ified extension of Fṽ , then since u ∈ O∗
Fṽ

, we have u ∈ E∗ℓ
w .

We have chosen σ′ to be the non-trivial automorphism of L/F of order ℓ such that

σ′ ( ℓ
√
u) = ρ ℓ

√
u and σ′ ( ℓ

√
ψ
)
= ρ′ ℓ

√
ψ, where ρ, ρ′ are primitive ℓth roots of unity.

This, by the choice of ṽ gives rise to the Frobenius automorphism of the residue field

extensions lx/kṽ . Thus lx/kṽ is a non-trivial extension, i.e., ṽ is not completely split

in L. (The choice of Frobenius for a trivial extension is the identity map.)

Thus the residue field extension lx/kṽ is degree ℓ with Galois group generated by σ′.
Note that since σ′ fixes neither ℓ

√
u nor ℓ

√
ψ, u and ψ are not ℓth powers in Fv. Thus

Ew is unramified, nonsplit over Fṽ and u 6∈ F ∗ℓ
ṽ .

Finding an f ′

Our first goal is to find an algebra α = (u, f ′) ∈ Br(F ) such that α⊗F E = (u, b) ∈
Br(E). We find α by prescribing its shape αv locally so that αv ⊗F E = (u, b) ∈
Br (Ew) where w is any place lying over v.

For v ∈ T , choose αv = (u, fv). So αv ⊗F E = (u, b) in Br (Ew). For v 6∈ T and

v 6= ṽ, choose αv = 0 ∈ Br (Fv). This matches with (u, b) overEw since the latter is

also split at these places. For v = ṽ, let πṽ be a parameter of Fṽ . Choose αṽ = (u, πsṽ)
for an appropriate s so that

∑
v∈ΩF

inv (αv) = 0 ∈ Q
Z

. This can be done since u is a

unit at ṽ and u 6∈ F ∗ℓ
ṽ .
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Note that (u, b) is split overEw for anyw|ṽ. Now since Cor is injective for local fields,

αṽ := (u, πsṽ) is split over Ew for w|ṽ because Cor : H2 (Ew, µℓ) → H2 (Fṽ, µℓ)
sends (u, πsṽ) ❀

(
u, πsℓṽ

)
= 0.

By the Albert-Hasse-Brauer-Noether theorem, there exists an α ∈ Br(F ) of order

dividing ℓ such that α⊗F Fv = αv ∈ Br (Fv). Also note that locally at each place, it

is split by F ( ℓ
√
u), hence there exists an f ′ ∈ F such that α = (u, f ′) ∈ Br(F ) since

F contains a primitive ℓth root of unity.

Modifying f ′ so that it approximates fv for each v ∈ T

By the choice of f ′, we have that (u, f ′) = (u, fv) ∈ Br (Fv) for each v ∈ T . Hence

for each v ∈ T , there exists wv ∈ F ( ℓ
√
u) ⊗ Fv such that NFv( ℓ

√
u)⊗Fv/Fv

(wv) =

f ′−1fv.

By weak approximation, there exists a w ∈ F ( ℓ
√
u) such that for each v ∈ T , w =

wvγ
ℓ
v for γv ∈ F ( ℓ

√
u)⊗Fv. This implies that NF( ℓ

√
u)/F (w) ∈ f ′−1fvF

∗ℓ
v ∀ v ∈ T .

Finally, set f = f ′ N(w). Therefore (u, f ′) = (u, f) ∈ Br(F ) and f ∈ fvF
∗ℓ
v ∀ v ∈

T .

3 Reductions and strategies

3.1 The set-up

Let K be a p-adic field with ring of integers OK and residue field k. Let F = K(X)
be the function field of a smooth projective geometrically integral curve X over K .

Let D denote a central division algebra over F of exponent ℓ where ℓ is a prime

different from p. We want to prove triviality of SK1(D). Since it is known that the

index of D divides ℓ2 ([S97], [S98]) and that SK1(D) is trivial for square-free index

algebras ([W50]), we assume from now on that the index of D is ℓ2.

Note that in the case when ℓ = 2, the works of Merkurjev and Rost ([M93], [M06],

Rost, Chapter 17 [KMRT]; [M99]) lead to the more general result that SK1(D) = {0}
over cohomological dimension 3 fields. Thus, in this paper, we assume that ℓ 6= 2. We

also make an additional assumption that F contains a primitive ℓ2
th

root of unity.

Let z ∈ SL1(D) and let M be a maximal subfield of D containing z. Thus

NM/F (z) = NrdD(z) = 1. We would like to show z ∈ [D∗, D∗]. Using ([P76],

Lemma 2.2, Section 2.4) and ([A61], Chapter IV, Theorem 31), by a coprime to ℓ
base change, we assume that M contains a cyclic degree ℓ sub-extension Y/F with

Gal(Y/F ) = 〈ψ〉. Since F contains a primitive ℓth root of unity, by Kummer the-

ory, we have Y = F
(

ℓ
√
y
)

for some y ∈ F ∗. Since NM/F (z) = 1, the element

a := NM/Y (z) is a norm one element of Y/F and by Hilbert 90, a = b−1ψ(b) for

some b ∈ Y . We fix a choice of such a b.
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3.1.1 A preliminary model

By resolution of singularities ([Lip75]), there exists a regular integral scheme1 X with

function field F equipped with a proper, flat and projective morphismX → SpecOK .

Let X0 denote its reduced special fiber. For each x ∈ X , let the regular local ring at x
on X be denoted by Ax := OX ,x. Let the completion of Ax at its maximal ideal be

denoted by Âx, the fraction field of Âx by Fx and the residue field of Âx by kx. We

also let Dx (resp. Yx) denote D ⊗F Fx (resp. Y ⊗F Fx). If η ∈ X0 is a codimension

one point of X and P ∈ X0 is a closed point of X with P lying in the Zariski closure

of η in X , we let FP,η denote the branch field. More explicitly, if (πη) ∈ ÂP denotes

a prime defining η, then localization at this prime ideal yields a discrete valuation ring

ÂP (πη). Completing this discrete valuation ring at its maximal ideal and further taking

its field of fractions yields the branch field FP,η . Thus FP and Fη are both subfields

of FP,η . Let kP,η denote the residue field of FP,η .

Since X is normal, for each codimension one point x ∈ X (1), we choose an

extension to a2 discrete valuation v(x) on Y . Define supportX (b) := {x ∈
X (1)|maxi

(
|v(x)(ψi(b))|

)
> 0} for the b which was fixed in Section 3.1 and let

JX :=
∑
x∈support

X
(b) x. Further set HX to be the divisor corresponding to the

union of the reduced special fiber X0, divX (y), JX , the ramification locus of M and

the ramification divisor of D in X .

Notation: We say a divisor is in good shape if it is a union of regular curves in normal

crossing.

Proposition 3.1. There exists a regular proper model X of X over OK such that

HX is in good shape, i.e. is a union of regular curves in normal crossing in X .

Further, let h : Y → X denote the normal closure of the model X in Y . Let x ∈ X
of codimension 1 ≤ i ≤ 2 and let Bx denote the integral closure of Ax = OX ,x in Y .

Then the following hold:

a. If Yx is a field, then h−1(x) = {y} where y ∈ Y of codimension i and Bx is a

local ring and isomorphic to OY,y .

b. If Yx ≃ ∏
Fx, then h−1(x) = {y1, y2, . . . , yℓ}, a set of ℓ points in Y of codi-

mension i and Bx is semi-local with ℓ maximal ideals myi for 1 ≤ i ≤ ℓ.
Further, (Bx)myi

≃ OY,yi .

Proof. Fix a preliminary regular proper model X ′ of X over OK . Construct X by

blowing up X ′ at closed points of X ′ repeatedly (p : X → X ′) such that H′′ :=
p−1 (HX ′) is a union of regular curves in normal crossing. To prove that HX is in

good shape, it suffices to show that HX ⊆ H′′. By construction, the union of X0,

divX (y), ramX (M) and ramX ([D]) lies in H′′.

1We would like to note in advance that we will finally work over a new model obtained from X by

repeatedly blowing up closed points.
2In case the prime corresponding to x splits in Y , then x defines ℓ valuations vx1

, vx2
, . . . , vxℓ

on Y .

However vxi(b) = vx1
(ψ−i+1(b)). Set v(x) := vx1

.
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Now let β ∈ JX . If β is the generic point of the strict transform of a curve in X ′, then

p (β) ∈ JX ′ and hence β ∈ H′′. On the other hand, if β lies on an exceptional curve

of p : X → X ′, then clearly β ∈ H′′. Hence HX is in good shape.

We give the proof for the case when x = P , a closed point in X . The proof for the case

when x has codimension one is similar. Let U ⊂ X be an open affine neighbourhood

containing P with coordinate ring A. Thus h−1(U) is affine with coordinate ring,

sayB, which is the integral closure ofA in Y . Thus it follows that the integral closure

of the local ring AP in Y is B localized at the multiplicatively closed set A \P which

we denoted by BP . Since BP is integral over AP , the maximal ideals of BP contract

to the unique maximal ideal of AP and hence correspond to the points in h−1(P ).
Since Gal(Y/F ) ≃ Z/ℓZ acts transitively on h−1(P ), it is clear that h−1(P ) is either

a singleton or a set of size ℓ.

Now it only remains to compare the shape of YP := Y ⊗F FP and the size of h−1(P ).

By (Lemma 07N9, stacks-project), BP ⊗AP
ÂP ≃Qi∈h−1(P )

∏ ÔY,Qi
which is a

(local) domain iff |h−1(P )| = 1.

We have the following injective3 AP -morphism: BP ⊗AP
ÂP →֒ Y ⊗AP

ÂP →֒
Y ⊗AP

FP ≃ Y ⊗F FP := YP . Thus if YP is a field, BP ⊗AP
ÂP has to be a domain

and hence |h−1(P )| = 1. Conversely, if h−1(P ) = 1, then BP ⊗AP
ÂP has to be

a local domain. The above injection shows that YP ≃ Y ⊗AP
FP lies in the fraction

field of BP ⊗AP
ÂP . Hence YP is a domain and hence a field.

We continue to work this model X till the end of Section 5.

Lemma 3.2. Let P be a closed point in X lying on the Zariski closure of a codimen-

sion one point η ∈ X . If Yη ≃ ∏
Fη , then YP ≃ ∏

FP .

Proof. Let (πP , δP ) be a system of parameters of AP such that πP cuts out the curve

η at P . Recall that Y = F ( ℓ
√
y) and that div(y) is arranged to be in good shape in X .

Since Yη is split, so is Y ⊗FP,η. Thus we can assume that up to ℓth powers, y = vP δ
j
P

for some unit vP ∈ ÂP
∗

and 0 ≤ j < ℓ with y ∈ k∗ℓP,η . Recall that kP,η is a complete

discretely valued field with δP as a parameter. Thus j = 0 and since vP ∈ ÂP
∗
,

vP ∈ k∗ℓP . Hence vP ∈ ÂP
∗ℓ

. This immediately implies that YP is split.

3.1.2 Fixing parameters

Let S0 = {P1, P2, . . . , Pm} denote the finite set of closed points of intersection of

distinct irreducible curves in HX . Expand S0 if necessary so that it includes at least

one closed point from each irreducible curve in HX . We call the elements in the set

S0 to be intersection points.

Let N ′
0 denote the set of all codimension one points of X which lie in HX and let

N0 denote the subset N ′
0 ∩ X0. Using ([S98], Lemma), for each η ∈ N ′

0, choose a

3As ÂP /AP and Y/AP are flat and M ⊗R N ≃ M ⊗S N for S-modules M,N where S is a

localisation of R.
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function πη ∈ F such that divX (πη) = η+Eη where Eη avoids N ′
0 ∪ S0. Thus πη is

a parameter of Fη for each such η.

Further if P ∈ S0 lies on two distinct irreducible curvesC and C′ in HX with generic

points η and η′ respectively. Then (πη, πη′) form a system of parameters of AP . If

P ∈ S0 lies on exactly on one irreducible curve C of HX with generic point η, then

πη can be extended to a system of parameters (πη, πη′) of AP for some prime πη′

defining a curve C′ with generic point η′ cutting C transversally.

We choose this system of parameters for each P ∈ S0. Let πP := πη and δP :=
πη′ . Since HX is in good shape and at P , the division algebra is ramified at most

along C and C′, using ([S97], Proposition 1.2) we see that there exist α′ ∈ Br (AP ),
uP , vP ∈ A∗

P and integer 0 < m < ℓ such that [D] ∈ Br(F ) is either equal to α′ or

α′ + (uP , πP ) or α′ + (vP , δP ) or α′ + (uP , πP ) + (vP , δP ) or α′ + (uPπ
m
P , vP δP ).

3.2 The shape of a

The following propositions specify the shape of a = NM/Y (z) (which is an element

of norm one in Y/F ) over the model X .

Proposition 3.3. Let x ∈ X0 be such that Yx is a field extension of Fx. Let B̂x be

the integral closure of Âx in Yx. Then a ∈ B̂x
∗
.

Proof. Let us first look at the case when x ∈ X0 is a codimension one point of X .

Thus Fx is a complete discretely valued field and therefore so is Yx. Let πYx
be a

parameter of Yx and πFx
be a parameter of Fx. Thus a = uxπ

j
Yx

for some ux ∈ B̂x
∗

and j ∈ Z. Let e be the ramification degree of Yx/Fx. Then there exists vx ∈ Âx
∗

such that 1 = NYx/Fx
(a) = NYx/Fx

(
uxπ

j
Yx

)
= vxπ

jℓ
e

Fx
. This implies jℓ

e = 0 which

shows that j = 0 and that a ∈ B̂x
∗
.

Now let x = P ∈ X0 be a closed point of X and let BP denote the integral closure of

AP in Y . By Proposition 3.1, BP is local and isomorphic to OY,Q where h : Y → X
denotes the normal closure of X in Y and h−1(P ) = {Q}.

If P 6∈ HX , then a = b−1ψ(b) ∈ (BP )I
∗

for any height one prime ideal I of BP .

Since BP is normal, we have ∩I(BP )I = BP . Therefore a ∈ BP and further since a
is not contained in any height one prime ideal, a ∈ B∗

P .

Let P ∈ HX and (πP , δP ) be a system of parameters of AP such that they cut out the

irreducible curves in HX on which P lies. Thus divSpecBP
(a) is supported at most

along primes of BP lying over (πP ) and (δP ). By Lemma 3.2 and Proposition 3.1,

there exists exactly one prime lying over (πP ) and one over (δP ). SinceBP is normal

and NY/F (a) = 1, we see that a ∈ B∗
P .

The canonical AP -morphism i : BP → Y ⊗F FP = YP sending b′ ❀ b′ ⊗ 1 is an

injection. Since BP is integral over AP , we see that i(BP ) is integral over ÂP and

hence i(BP ) ⊆ B̂P . Hence a ∈ B∗
P implies a ∈ B̂P

∗
also.

Proposition 3.4. Let P ∈ S0 such that YP ≃ ∏ℓ
i=1 FP . Let (πP , δP ) be the

system of regular parameters at AP fixed as in Section 3.1.2 and let a = (a′i)i where
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a′i ∈ FP . Then there exist zi,P ∈ ÂP
∗

and mi, ni ∈ Z such that a′i = zi,Pπ
mi

P δni

P .

Further
∑
mi =

∑
ni = 0 and

∏
zi,P = 1.

Proof. By Proposition 3.1, if h : Y → X denotes the normal closure of X in Y , then

h−1(P ) = {Q1, . . . , Qℓ}. Further if BP denotes the integral closure of AP in Y , BP
is semi-local with maximal ideals {mQ1

, . . . ,mQℓ
} with (BP )mQi

≃ OY,Qi
.

Let (πP , δP ) be a system of parameters of AP such that they cut out the irreducible

curves in HX on which P lies. As in the proof of Proposition 3.3, divSpecBP
(a) is

supported at most along primes lying above (πP ) and (δP ).
Since Y = F ( ℓ

√
y) where div(y) is arranged to be in good shape in X and YP is

split, OY,Qi
is a regular local ring. Further ÔY,Qi

≃ ÂP . Let (π′
Qi
, δ′Qi

) be a system

of regular parameters where π′
Qi

(resp. δ′Qi
) lies over πP (resp. δP ). Using the

identification4 Y ⊆ FP (via Q1 say), we identify Y ⊗ FP with
∏
FP .

Note that π′
Qi

∈ Y ⊗FP gets identified with
(
π′
Qi
, π′
Qi+1

, . . . , π′
Qi−1

)
∈ ∏

FP where

each π′
Qj

is supported at most along (πP ) in ÂP . Similarly δ′Qi
gets identified with(

δ′Qi
, δ′Qi+1

, . . . , δ′Qi−1

)
with each δ′Qj

being supported at most along (δP ) in ÂP .

Since a has norm 1, the proposition about the shape of a follows.

Proposition 3.5. Let P ∈ X0\S0 be a closed point of X such that it lies on exactly

one irreducible curve (say C) of HX . Further assume YP ≃ ∏ℓ
i=1 FP . Let (πP , δP )

be a system of regular parameters at AP such that πP defines C at P . Let a = (a′i)i
where a′i ∈ FP . Then there exist zi,P ∈ ÂP

∗
and mi ∈ Z such that a′i = zi,Pπ

mi

P .

Further
∑
mi = 0 and

∏
zi,P = 1.

Proof. The proof is similar to that of the previous proposition except that a is now

supported at most at primes lying above πP .

3.3 Strategy

Recall that we have z ∈M∩SL1(D) with NM/Y (z) = a and NY/F (a) = 1 whereM
is a maximal subfield containing a cyclic subfield Y of degree ℓ. The goal is to show

z ∈ [D∗, D∗]. We would like to split a into a product of suitable elements a1 and

a2 lying in nicer subfields E1 and E2 respectively. More precisely, we would like to

find elements a1, a2 ∈ Y and field extensions E1, E2 such that for each i = 1, 2, the

following hold:

1. a1a2 = a.

2. Ei/F is a subfield of D of degree ℓ.

3. Ei ⊆ CD(Y ) and D ⊗ Ei ⊗ Y is split.

4. There exists θi ∈ Y Ei ⊆ D such that NY Ei/Y (θi) = ai.

4Note that if Y ⊆ FP via a different Qi, then the new identification of Y ⊗ FP ≃Qi

∏
FP differs

from the old one Y ⊗ FP ≃Q1

∏
FP by an automorphism

∏
FP ≃

∏
FP permuting the components.
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5. θi ∈ [D∗, D∗].

Note that properties (3), (4) and (5) force that ai ∈ NrdY (CD(Y )) and that

NY/F (ai) = 1. The construction of such subfields Ei/F is useful in modifying z
by commutators so that it is a product of commutators, as shown by the proposition

below.

Proposition 3.6. Let D,M, Y, z, a be as before. If there exist elements a1, a2 ∈ Y
and subfields E1/F and E2/F with properties (1) - (5) above, then z is a product of

commutators.

Proof. Let D′ := CD(Y ) which is a central divison algebra of index ℓ over Y . Since

Ei commutes with Y in D , θi ∈ D′. Since z ∈ D′, we have that zθ−1
2 θ−1

1 ∈ D′.

Note that Y Ei and M are maximal subfields of D′/Y . Thus

NrdD′

(
zθ−1

2 θ−1
1

)
= NM/Y (z)NY E2/Y

(
θ−1
2

)
NY E1/Y

(
θ−1
1

)
= aa−1

2 a−1
1 = 1.

Since D′ is a central division algebra with square-free index, every reduced norm

one element is a product of commutators ([W50]). Thus zθ−1
2 θ−1

1 ⊆ [D′∗, D′∗] ⊆
[D∗, D∗]. Since each θi ∈ [D∗, D∗] by hypothesis, z ∈ [D∗, D∗] also.

The rest of the paper is devoted to constructing Ei and ai satisfying properties (1)-

(5) listed above. This is done by applying the techniques of patching developed by

Harbater-Hartmann-Krashen.

4 At codimension one points

Recall that N ′
0 denotes the set of all codimension one points of X which lie in HX .

For each η ∈ N ′
0, let πη be the parameter of Fη fixed as in Section 3.1.2.

Classification of points of N ′
0

We say that η ∈ N ′
0 is of

• Type 0 if the index of Dη is 1. Thus η 6∈ ramX (D).

• Type 1 if the index of Dη is ℓ. We further classify these points into subtypes.

– Type 1a: if η 6∈ ramX (D). Thus Dη/Fη is an unramified index ℓ CSA.

– Type 1b: if η ∈ ramX (D). Thus Dη = D0 + (uη, πη) where D0/Fη is

an unramified CSA and uη is a unit in Âη . By Lemma 2.9, D0 is split by

the degree ℓ extension Fη( ℓ
√
uη) and hence Dη = Mℓ (uη, vηπη) where

uη, vη are units in Âη

• Type 2 if the index of Dη is ℓ2. Thus η ∈ ramX (D) andDη = D0+(uη, πη)

where uη ∈ Âη
∗

is not an ℓth power andD0/Fη is an unramified CSA such that

D0 ⊗ Fη( ℓ
√
uη) has index ℓ (Lemma 2.9).
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Shapes of Y and a

For η ∈ N ′
0, let B̂η denote the integral closure of Âη in Yη whenever the latter is a

field extension of Fη . If Yη ≃ ∏
Fη , we let a =

(
a′i,η

)
i

where a′i,η ∈ Fη . Since

NY/F (a) = 1, we have
∏
a′i,η = 1 ∈ Fη . We now classify Yη into four types as

follows:

• RAM : Yη is of Type RAM if Yη/Fη is a ramified extension.

• RES : Let η be of Type 1b or 2 (i.e η ∈ ramX (D)). Then Yη is of Type RES if

it is the lift of residues as defined in Section 2.1. In particular, it is an unramified

nonsplit extension of Fη .

• SPLIT : Yη is of Type SPLIT if Yη ≃ ∏ℓ
i=1 Fη .

• NONRES : Yη is of Type NONRES if it is none of the above types. That is,

it is an unramified nonsplit extension of Fη and if η ∈ ramX (D), it is NOT the

lift of residues.

Remark 4.1. Thus if η is of Type 2, then Yη cannot be of Type SPLIT.

Lemma 4.2 (Along η of Type 1a). Let η ∈ N ′
0 be of Type 1a. Further assume that

Yη ≃ ∏
Fη . Let a =

(
a′i,η

)
∈ ∏

Fη where each a′i,η ∈ Fη . Then a′i,η = zi,ηπ
ℓm′

i
η ∈

Fη where zi,η ∈ Âη
∗

and m′
i ∈ Z.

Proof. Let a′i,η = zi,ηπ
mi
η for zi,η ∈ Âη

∗
and mi ∈ Z. Since a is a reduced norm

from D ⊗ Y , we have
(
zi,ηπ

mi
η

)
[Dη] = 0 ∈ H3 (Fη, µℓ) for each i. Since Dη is

unramified and has index ℓ, by Lemma 2.7 (zi,η) [Dη] = 0. Thus, taking residues

along πη shows that mi
∼= 0 mod ℓ.

For ease of reference, we summarize possible shapes of Y and a at points ofN ′
0 in the

following table (cf. Lemmata 2.3, 4.2, Proposition 3.3) where we use the notations that

w′
η, zη ∈ B̂η

∗
, uη, zi,η ∈ Âη

∗
and uη 6∈ Âη

ℓ
,mi,m

′
i ∈ Z andD0/Fη is an unramified

CSA. Further NYη/Fη
(zη) = 1, NYη/Fη

(
w′
η

)ℓ
= 1,

∑ℓ
i=1mi =

∑ℓ
i=1m

′
i = 0 and∏ℓ

i=1 zi,η = 1.
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η Dη More information Yη a ∈ Yη

0 D0 index(D0) = 1 RAM w′ℓ
η

0 D0 index(D0) = 1 SPLIT
(
a′i,η = zi,ηπ

mi
η

)
i

0 D0 index(D0) = 1 NONRES zη

1a D0 index(D0) = ℓ RAM w′ℓ
η

1a D0 index(D0) = ℓ SPLIT

(
a′i,η = zi,ηπ

ℓm′
i

η

)

i

1a D0 index(D0) = ℓ NONRES zη

1b D0 + (uη , πη) index(D0 ⊗ Fη( ℓ
√
uη))) = 1 RAM w′ℓ

η

1b D0 + (uη , πη) index(D0 ⊗ Fη( ℓ
√
uη))) = 1 RES zη

1b D0 + (uη , πη) index(D0 ⊗ Fη( ℓ
√
uη))) = 1 SPLIT

(
a′i,η = zi,ηπ

mi
η

)
i

1b D0 + (uη , πη) index(D0 ⊗ Fη( ℓ
√
uη))) = 1 NONRES zη

2 D0 + (uη , πη) index(D0 ⊗ Fη( ℓ
√
uη))) = ℓ RAM w′ℓ

η

2 D0 + (uη , πη) index(D0 ⊗ Fη( ℓ
√
uη))) = ℓ RES zη

2 D0 + (uη , πη) index(D0 ⊗ Fη( ℓ
√
uη))) = ℓ NONRES zη

Table 1: Shape of D, Y and a at η ∈ N ′
0

Fixing residual Brauer classes for points in N ′
0 along which D is

ramified

For each η ∈ N ′
0 of Type 1b or 2, we define βrbc,η ∈ Br(Fη) as follows:

If Yη is RAM, (so Yη = Fη
(

ℓ
√
wηπη

)
for some wη ∈ Âη

∗
), then there exists an

unramified algebra D0η such that Dη = D0η + (uη, wηπη) ∈ Br (Fη). Set βrbc,η =
[D0η] ∈ Br (Fη), i.e. set it to be the residual Brauer class with respect to parameter

wηπη . In all other cases, set βrbc,η to be the residual Brauer class of D with respect to

parameter πη (cf. Section 2.1). Note that βrbc,η has index at most ℓ.

5 At closed points

Recall that S0 denotes the finite set of closed points lying on HX chosen as in Section

3.1.2. We refer to points P in S0 as marked points occasionally. In this section, we

classify points in S0 following ([S07]) in essence, study the configuration of Y at

these points and also investigate the shape of a at some types of closed points P when

YP ≃ ∏
FP .

Let P ∈ S0 be the intersection of two distinct irreducible curves C and C′ of HX
with generic points η and η′ in N ′

0 respectively. Let πP and δP be primes defining C
and C′ at P be as fixed in Section 3.1.2.

5.1 Classification of marked points

We use the following notations: uP , vP will denote units inAP , D00, the Brauer class

of an algebra of Br (F ) unramified at AP , i.e. D00 ∈ Br (AP ). Superscripts s and ns
on DP are used to denote that the algebra DP is split and non-split respectively. We

sometimes refer to the irreducible curve with generic point η ∈ N ′
0 as η. We begin

with a lemma (similar to Lemma 3.2) relating the shapes of Dη and DP .
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Lemma 5.1. If Dη = 0 ∈ Br(Fη), then DP = 0 ∈ Br(FP ).

Proof. Since D is unramified at η, DP = (vP , δP ). Further as Dη is split, so is

D⊗FP,η. This implies (vP , δP ) = 0 ∈ Br (FP,η). That is
(
vP , δP

)
= 0 ∈ Br (kP,η).

Recall that kP,η is a complete discretely valued field with δP as a parameter. Since

vP ∈ ÂP
∗
, vP ∈ k∗ℓP and hence vP ∈ ÂP

∗ℓ
. This immediately implies that DP = 0

in Br (FP ).

Remark 5.2. Lemma 3.2 implies that if η, η′ ∈ N ′
0 are such that Yη is of Type RAM

and Yη′ is of Type SPLIT, then η and η′ cannot intersect.

We now list5 the types6 of closed points in S0 possible.

Type A: P is of Type A if both C and C′ do not lie in the ramification locus of D.

FurtherD is unramified at P and because the residue field is finite,DP is split. TypeA
points are further subdivided as follows:

- Type As00: Both η and η′ are of Type 0. Thus Dη and Dη′ are split.

- Type As10: Exactly one of η, η′ is of Type 0. Thus the other, say η, is of Type

1a. So Dη′ is split whereas Dη is an unramified index ℓ CSA.

- *Type As11: Both η and η′ are of Type 1a.

Type B: P is of Type B if exactly one of C andC′ lies in the ramification locus ofD
(sayC). Thus η is of Type 1b or 2 and η′, of Type 0 or 1a. FurtherD = D00+(uP , πP )
in Br(F ) and because the residue field is finite, DP = (uP , πP ) in Br (FP ). Type B
points are further subdivided as follows:

- Type Bs10: η is of Type 1b and η′ is of Type 0. Note that by Lemma 5.1, DP

is split.

- *Type Bs11: η is of Type 1b, η′ is of Type 1a and DP is split.

- Type Bns11 : η is of Type 1b, η′ is of Type 1a and DP is non-split.

- Type Bs20: η is of Type 2 and η′ is of Type 0. Note that by Lemma 5.1, DP is

split.

- *Type Bs21: η is of Type 2, η′ is of Type 1a and DP is split.

- Type Bns21 : η is of Type 2, η′ is of Type 1a and DP is non-split.

Type C: P is of Type C if both C and C′ lie in the ramification locus of D. Thus

η and η′ are of Type 1b or 2. Further D = D00 + (uP , πP ) + (vP , δP ) or D00 +
(uPπ

m
P , vP δP ) in Br (F ) for an integer m coprime to ℓ in Br(F ).

5The order of the subscripts in the types of points do not matter. So for instance we will use both CCold
12

and CCold
21 to mean the same type of point.

6It will be shown in Proposition 6.2 following the classification that the starred ones can be eliminated

by blowing up our model repeatedly.
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Points P whereD = D00+(uPπ
m
P , vP δP ) were labelled cold points in ([S07]). Thus

DP = (uPπ
m
P , vP δP ) at a cold point P and the ramification data at C, ∂C([D]) is

given by
(
(vP δP )

−m
) 1

ℓ

at P . Points P where D = D00 + (uP , πP ) + (vP , δP )

were further subdivided depending on the shape of the finite subgroups x = 〈uP 〉
and y = 〈vP 〉 in k∗P /k

∗ℓ
P into chilly points (when x = y 6= {1}), cool points (when

x = y = {1}), and hot points (when x 6= y). Since k∗P /k
∗ℓ
P is a cyclic group of order

ℓ, the subgroups x, y have to be either trivial or all of k∗P /k
∗ℓ
P .

If P is a chilly point, without loss of generality assume uP = vP
j for some j coprime

to ℓ. Thus DP =
(
vP , π

j
P δP

)
∈ Br(FP ) and the ramification data at C, ∂C([D]) is

given by
(
vjP

) 1
ℓ

at P . If P is a cool point, DP = {0} ∈ Br(FP ). If P is a hot point,

assume without loss of generality that y = {1}. ThusDP = (uP , πP ) ∈ Br(FP ) and

the ramification data at C, ∂C([D]) is given by (uP )
1
ℓ at P . We also recall that in this

case, D ⊗ Fη′ has index ℓ2 ([S07], Proposition 0.5, Theorem 2.5) and hence η′ is of

Type 2. We continue to follow Saltman’s convention while refining the classification

as follows:

- Type CCold11 : η is of Type 1b, η′ is of Type 1b and P is cold.

- Type CChilly11 : η is of Type 1b, η′ is of Type 1b and P is chilly.

- *Type CCool11 : η is of Type 1b, η′ is of Type 1b and P is cool.

- Type CCold12 : η is of Type 1b, η′ is of Type 2 and P is cold.

- *Type CChilly12 : η is of Type 1b, η′ is of Type 2 and P is chilly.

- *Type CCool12 : η is of Type 1b, η′ is of Type 2 and P is cool.

- Type CHot12 : η is of Type 1b, η′ is of Type 2 and P is hot.

- *Type C−
22 : η is of Type 2 and η′ is of Type 2.

5.2 Shape of a when YP is split

We investigate the shape of a at some types of closed points P ∈ S0 when YP ≃∏
FP . By Proposition 3.4, a =

(
a′i,P

)
i
∈ ∏

FP where a′i,P = zi,Pπ
mi

P δni

P , zi,P ∈
ÂP

∗
and mi, ni ∈ Z with

∑
mi =

∑
ni = 0.

Proposition 5.3. Let P ∈ S0 such that YP ≃ ∏
FP and let a =

(
a′i,P

)
i
∈ ∏

FP
where a′i,P = zi,Pπ

mi

P δni

P as above.

1. If P is a cold point with DP = (uPπ
m
P , vP δP ) where 0 < m < ℓ, then a′i,P =

(uPπ
m
P )

smi (vP δP )
ni (w′

i,P )
ℓ(
π−rmi

P

)ℓ
for some w′

i,P ∈ ÂP
∗

and s, r ∈ Z
such that sm = rℓ + 1.
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2. If P is a chilly point with DP =
(
vP , π

j
P δP

)
where 0 < j < ℓ, then mi =

riℓ+ jni where ri ∈ Z. Thus
∑
ri = 0 and a′i,P = zi,P

(
πjP δP

)ni

(πriP )
ℓ
.

3. If P is a hot point7 or a Type Bns11 point8 with DP = (uP , πP ), then ni = n′
iℓ

where n′
i ∈ Z. Thus

∑
n′
i = 0 and a′i,P = zi,Pπ

mi

P

(
δ
n′

i

P

)ℓ
.

4. If P be a Type Bns21 point9 with DP = (uP , πP ), then mi = 0 and ni = n′
iℓ

where n′
i ∈ Z. Thus

∑
n′
i = 0 and a′i,P = zi,P

(
δ
n′

i

P

)ℓ
.

Proof. Since a is a reduced norm from D ⊗ Y , for each i,
(
a′i,P

)
[D] = 0 ∈

H3 (FP , µℓ).
At a cold point:

(zi,Pπ
mi

P δni

P ) (uPπ
m
P , vP δP ) = 0

=⇒ (zi,P ) (π
m
P , δP ) + (πmi

P ) (uP , δP ) + (δni

P ) (πmP , vP ) = 0

=⇒
(
zmi,P

)
(πP , δP ) +

(
u−mi

P

)
(πP , δP ) +

(
v−mni

P

)
(πP , δP ) = 0

=⇒
(
zmi,Pu

−mi

P v−mni

P

)
(πP , δP ) = 0

Taking residues along πP and then along δP , we see that zmi,P = umi

P vmni

P w′′ℓ
i,P for

some w′′
i,P ∈ ÂP

∗
. Since 0 < m < ℓ, let 0 < s < ℓ such that sm = rℓ+1 for some

r ∈ Z. Taking sth powers, we have zrℓ+1
i,P = usmi

P vnirℓ+ni

P w′′sℓ
i,P . Hence for some

w′
i,P ∈ ÂP

∗
,

a′i,P = zi,Pπ
mi

P δni

P = (usPπP )
mi (vP δP )

ni

(
vnir
P w′′s

i,P z
−r
i,P

)ℓ

= (uPπ
m
P )

smi

(
π−rmiℓ
P

)
(vP δP )

ni w′ℓ
i,P

At a chilly point:

(zi,Pπ
mi

P δni

P )
(
vP , π

j
P δP

)
= 0

=⇒ (πP ) (v
mi

P , δP ) + (δP )
(
vjni

P , πP

)
= 0

=⇒
(
v−mi

P

)
(πP , δP ) +

(
vjni

P

)
(πP , δP ) = 0

=⇒
(
vjni−mi

P

)
(πP , δP ) = 0.

7Here η is of Type 1b whereas η′ is of Type 2 ([S07], Proposition 0.5, Theorem 2.5).
8Here η is of Type 1b whereas η′ is of Type 1a.
9Here η is of Type 2 whereas η′ is of Type 1a.
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Taking residues along πP and then along δP , we see that mi
∼= jni mod ℓ. Since∑

mi =
∑
ni = 0 and 0 < j < ℓ,

∑
ri = 0.

At a hot / Bns11 point : (zi,Pπ
mi

P δni

P ) (uP , πP ) = 0. Hence (δni

P ) (uP , πP ) = 0 and

therefore (uni

P ) (πP , δP ) = 0. Taking residues along πP and then along δP , we see

that ni = n′
iℓ for some n′

i ∈ Z. Since
∑
ni = 0,

∑
n′
i = 0 also.

At a Bns21 point : Since YP is split, Yη is not of Type RAM. By Remark 4.1 and

Proposition 3.3, a is a unit along η. Since a is arranged to be in good shape, we have

mi = 0. The same proof as in the previous case shows ni = n′
iℓ and

∑
n′
i = 0.

5.3 Configuration of Y at marked points in S0

We record the configuration of Y at some types of the marked points in S0. This is

possible since the divX (y) is arranged to be in good shape where Y = F ( ℓ
√
y). We

spell out the proof in the case when P is a CCold11 point. The other proofs follow

in a similar fashion by using Lemma 3.2 and the fact that the shape of YP can be

determined from that of Yη and Yη′ by going to the branch fields Y ⊗ FP,eta and

Y ⊗ FP,η′ (c.f proof of Lemma 3.2) along with Remarks 4.1 and 5.2.

In this subsection, we use the following notations in the tables: 0 < r < ℓ and

w, uP , vP ∈ ÂP
∗
. LP refers to the unique cyclic degree ℓ field extension of FP

unramified at ÂP .

Proposition 5.4 (At CCold11 points). Let P be a CCold11 point and let DP =
(uPπ

m
P , vP δP ) for 0 < m < ℓ. Then the following table gives the possible con-

figurations (including some symmetric situations) of Y at P .
Yη′ Yη YP

RAM RAM FP

(
ℓ
√
wπP δrP

)

RAM RES FP

(
ℓ
√
vP δP

)

RAM NONRES FP

(
ℓ
√
wδP

)

RES RAM FP

(
ℓ
√
uP πm

P

)

SPLIT SPLIT
∏
FP

SPLIT NONRES
∏
FP

NONRES RAM FP ( ℓ
√
wπP )

NONRES SPLIT
∏
FP

NONRES NONRES LP or
∏
FP

Table 2: Shape of Y at CCold11 point P

Proof. If Yη′ is RAM, by Remark 5.2, Yη cannot be SPLIT. If Yη′ is RES, then YP,η′ ≃
FP,η′

(
ℓ
√
uPπmP

)
, a field extension and YP,η′/kP,η′ is ramified. Hence Yη is RAM. If

Yη′ is SPLIT, then YP ≃ ∏
FP by Lemma 3.2. Hence Yη cannot be RAM. It also

cannot be RES by the same argument as above. Finally, if Yη′ is NONRES, the same

argument shows Yη cannot be RES. Since Y/F is arranged to be in good shape in X ,

the shape of YP can be determined from that of Yη and Yη′ in a similar manner as that

in the proof of Lemma 3.2.

Proposition 5.5 (At CCold12 points). Let P be a CCold12 point and let DP =
(uPπ

m
P , vP δP ) for 0 < m < ℓ. Assume without loss of generality that η′ is of Type 2.

Then the following table gives the possible configurations of Y at P .
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Yη′ Yη YP

RAM RAM FP

(
ℓ
√
wπP δrP

)

RAM RES FP

(
ℓ
√
vP δP

)

RAM NONRES FP

(
ℓ
√
wδP

)

RES RAM FP

(
ℓ
√
uP πm

P

)

NONRES RAM FP ( ℓ
√
wπP )

NONRES SPLIT
∏
FP

NONRES NONRES LP or
∏
FP

Table 3: Shape of Y at CCold12 point P

Proposition 5.6 (At CChilly11 points). Let P be a CChilly11 point and let DP =(
vP , π

j
P δP

)
where 0 < j < ℓ. Then the following table10 gives the possible configu-

rations of Y at P .
Yη′ Yη YP

RAM RAM FP

(
ℓ
√
wπP δrP

)

RAM NONRES FP

(
ℓ
√
wδP

)

RES RES LP

RES NONRES LP

SPLIT SPLIT
∏
FP

SPLIT NONRES
∏
FP

NONRES RAM FP ( ℓ
√
wπP )

NONRES RES LP

NONRES SPLIT
∏
FP

NONRES NONRES LP or
∏
FP

Table 4: Shape of Y at chilly point P

Proposition 5.7 (At CHot12 points). Let P be a CHot12 point and let11 DP =
(uP , πP ). If Yη′/Fη′ is an unramified extension which is not RES, then it must be

of Type NONRES. Further, YP is a non-split extension and hence Y ⊗F D ⊗F FP is

split.

Proof. By ([S97], [S98]), [D] = [D00] + (uP , πP ) + (vP , δP ) ∈ Br (F ) where D00

is unramified at AP . By ([S07], Proposition 0.5, Theorem 2.5), D ⊗F Fη′ is a divi-

sion algebra and hence Yη′ has to be a non-split field extension. Thus it is of Type

NONRES.

Now D = D0 + (vP , δP ) ∈ Br (Fη′ ) where D0 = [D00] + (uP , πP ) is unramified at

η′. Since P is a hot point, D is ramified along both η and η′. Thus vP is not an ℓth

power in Fη′ . Since Yη′ is unramified and not RES,
[
Yη′

(
ℓ
√
vP

)
: Yη′

]
= ℓ.

Thus by Lemma 2.9, ℓ equals index (D ⊗ Yη′). Thus,

ℓ = index (D0 ⊗ Yη′ ( ℓ
√
vP )) [Yη′ ( ℓ

√
vP ) : Yη′ ]

= ℓ (index (D0 ⊗ Yη′ ( ℓ
√
vP ))) .

Thus Yη′
(

ℓ
√
vP

)
splits D0 over Fη′ and hence also over the branch field FP,η′ . Note

that [D0] = (uP , πP ) 6= 0 ∈ Br (FP,η′).

10It includes some symmetric situations.
11Thus η is of Type 1b whereas η′ is of Type 2 ([S07], Proposition 0.5, Theorem 2.5).
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Suppose that YP is split. Since P is a hot point, vP is an ℓth power in kP and hence

YP
(

ℓ
√
vP

)
≃ ∏

FP . Thus along the branch field, YP,η′
(

ℓ
√
vP

)
≃ ∏

FP,η′ which

cannot split the non-trivial algebra D0. Thus we conclude that YP is a non-split field

extension.

Since we have assumed that Y is in good shape and that Yη′ is unramified at η′, there

exists j ∈ {0, 1} such that

YP = FP

(
ℓ

√
wPπ

j
P

)
, wP ∈ ÂP

∗
.

If j = 0, YP is the unique non-split unramified extension at P and has to be isomor-

phic to FP
(

ℓ
√
uP

)
, which splits DP . If j = 1, then let λℓ = wPπP for λ ∈ YP . Thus

DP ⊗ YP = (uP , πP ) =
(
uP , w

−1
P

)
∈ Br (YP ) and hence split.

Proposition 5.8 (At Bs10 points). Let P be a Bs10 point. Assume without loss of

generality that η is of Type 1b and η′ is of Type 0. Then the following table gives the

possible configurations of Y at P .

Yη′ Yη YP

RAM RAM FP

(
ℓ
√
wπr

P δP
)

RAM NONRES FP

(
ℓ
√
wδP

)

SPLIT RES
∏
FP

SPLIT SPLIT
∏
FP

SPLIT NONRES
∏
FP

NONRES RAM FP ( ℓ
√
wπP )

NONRES RES
∏
FP

NONRES SPLIT
∏
FP

NONRES NONRES LP or
∏
FP

Table 5: Shape of Y at Bs10 point P

Proposition 5.9 (At Bns11 points). Let P be a Bs11 point. Assume without loss of

generality that η is of Type 1b and η′ is of Type 1a. Then the following table gives the

possible configurations of Y at P .

Yη′ Yη YP

RAM RAM FP

(
ℓ
√
wπr

P
δP

)

RAM NONRES FP

(
ℓ
√
wδP

)

SPLIT SPLIT
∏
FP

SPLIT NONRES
∏
FP

NONRES RAM FP ( ℓ
√
wπP )

NONRES RES LP

NONRES SPLIT
∏
FP

NONRES NONRES LP or
∏
FP

Table 6: Shape of Y at Bns11 point P
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6 Blowups

We repeatedly exploit the trick of blowing up12 our model at closed points to make the

model more amenable for patching. In this section, assume P ∈ C ∩ C′ where C,C′

are distinct irreducible curves in HX with generic points η and η′ respectively. Let πP
and δP be primes defining C and C′ at P as before. After blowing up the model at P
once, let Σ denote the exceptional curve with generic point ǫ and let C̃ and C̃′ denote

the strict transforms of C and C′ respectively. Let the two new intersection points be

Q1 (where ǫ intersects C̃) and Q2 (where ǫ intersects C̃′).

Lemma 6.1 (Blowing up a cold point). Let P be a cold point and let DP =
(uPπ

m
P , vP δP ) where 0 < m < ℓ. Let φ : X1 → X denote the blowup at point

P . Then the exceptional curve Σ obtained is of Type 1b and both Q1 = C ∩ Σ and

Q2 = C′ ∩ Σ are cold points.

C′

C P ❀

Σ

C̃

C̃′

Q1

Q2

Figure 1: Blowup of a point

Proof. Look at the local blow-up Z := Proj
(

ÂP [x,y]
(xπP−yδP )

)
→ Spec(ÂP ) at the max-

imal ideal of ÂP . Setting t = y/x, we have πP = tδP . Thus Z is the union of open

affines Spec ÂP [t]
(πP−tδP ) and Spec

ÂP [ 1
t
]

(πP
t

−δP )
glued appropriately.

By (Lemma 085S, stacks-project), we have ÔX1,ǫ =: Âǫ =
(

ÂP [t]
(πP−tδP )

) ̂

(πP ,δP )
.

Thus in Fǫ, the fraction field of Âǫ, both πP and δP are parameters. Since Dǫ =

(uPπ
m
P , vP δP ), it has index at most ℓ. The residue of Dǫ is equal to

uP πm
P

vm
P
δm
P

=

uP v
−m
P tm which is non-trivial in the residue field kǫ = kP (t). Therefore ǫ is of

Type 1b.

12Note that with each blow up, the set S0 for the new model is enlarged to include the intersection points

of the exceptional curve and the closure of the strict transforms of HX and the set N ′

0 is expanded to

include the generic point of the exceptional curve.
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Note that ÔX1,Q1
=: ÂQ1

=
(

ÂP [t]
(πP−tδP )

) ̂

(t,δP )
where t defines C̃ and δP defines

Σ at Q1 (cf. [S07], Pg 832, paragraph 1). Thus over FQ1
, the fraction field of ÂQ1

,

DQ1
= (uP δ

m
P t

m, vP δP ) = (uP t
m, vP δP ) + (δmP , vP δP )

=
(
uPv

−m
P tm, vP δP

)
∈ Br(FQ1

).

Similarly ÔX1,Q2
=: ÂQ2

=
(

ÂP [1/t]
(πP /t−δP )

) ̂

(1/t,πP )
where 1/t defines C̃′ and πP

defines Σ at Q2. Thus over FQ2
, the fraction field of ÂQ2

and for s with ms ∼= 1
mod ℓ,

DQ2
=

(
uPπ

m
P , vP

πP
t

)
=

(
uPπ

m
P , vP

1

t

)
+ (uPπ

m
P , πP )

=

(
uPπ

m
P , u

−s
P vP

1

t

)
∈ Br(FQ2

).

Hence both Q1 and Q2 are cold points.

We now eliminate certain types of closed points listed in the classification in Sec-

tion 5.1.

Proposition 6.2. There exists a regular proper model such that S0 does not contain

points of Type As11, B
s
11, B

s
21, C

Cool
11 , CCool12 , CChilly12 and C−

22.

Proof. Let P denote an intersection point of one of types listed in the proposition and

let Σ and ǫ denote the exceptional curve and its generic point obtained after blowing

up P once. The following subtypes can be avoided by blowing up the model once

at P .

Type As11: Since DP is split, D ⊗ Fǫ is split too and hence ǫ is of Type 0. Thus the

two new intersection points are obtained by Type 1a curves (C̃ or C̃′) intersecting a

curve of Type 0 (Σ). [As11 7→ As10 +As10].
Type Bsi1 (i = 1, 2): Since DP is split, D ⊗ Fǫ is split too and hence ǫ is of Type

0. Thus the two new intersection points are obtained by Type 1b/2 or 1a curves (C̃ or

C̃′) intersecting a curve of Type 0 (Σ). [Bsi1 7→ Bsi0 +As10].
Type CCool1i (i = 1, 2):

[
CCool11 7→ Bs10 +Bsi0

]
(cf. [S07], Theorem 2.6).

Type CChilly12 : This subtype can be avoided by blowing up the model X consecu-

tively. Since DP = (vP , π
j
P δP ), after one blowup at P , D ⊗ Fǫ has index at most

ℓ and hence ǫ is of Type 0 or 1. Thus the two new intersection points are Q1 (Type

11/01 : where Σ intersects C̃) and Q2 (Type 12/02 : where Σ intersects C̃′).

Let us investigate the case when ǫ is of Type 1b. Then as in the proof of Lemma 6.1,

DQ2
=

(
vP , π

j+1
P

1
t

)
where 1/t defines C̃′ and πP defines Σ at Q2 with δP = πP

t .

Hence Q2 is again of Type CChilly12 . However the ramification along the Type 1b

curve (C ❀ Σ) has changed as evinced by the increase j ❀ j + 1. We can keep

blowing up the intersection points of the strict transforms of C′ and the exceptional

Documenta Mathematica 26 (2021) 337–413



Reduced Whitehead Groups of Algebras 363

curve repeatedly till the new exceptional curve is of Type 0 or 1a and thus eliminate

intersection points of the shape CChilly12 .

Type C−
22: This subtype can again be avoided by blowing up the model X an appro-

priate number of times at P . Since DP has index at most ℓ, after one blowup, ǫ is of

Type 0, 1a or 1b. Thus the two new intersection points are obtained by Type 2 curves

(C̃ or C̃′) intersecting a curve of Type 0,1a or 1b (Σ). In case Bs21 or CChilly12 points

are generated, further blow up as in the previous steps to eliminate them.

6.1 Limiting neighbours

We introduce the terminology that the closed points P and Q in S0 are Type x neigh-

bours if they both lie on the closure (denoted η) of some η ∈ N ′
0 of Type x where

x ∈ {0, 1a, 1b, 2}. Let P,C,C ′, η, η′, πP , δP , C̃, C̃
′,Σ, ǫ be as before. We first begin

with the following proposition that records the configuration of Y when X is blown

up at a hot point P once.

Proposition 6.3. Let P be a hot point of X and let φ : Xnew → X be the blowup

at P . Without loss of generality, let DP = (uP , πP ). Then Q2 is a hot point in Xnew
while Q1 is a chilly point. Further the following table records possible configurations

of Yη , Yη′ and Yǫ. In particular if Yη′ is not of Type RAM, then Yǫ is not of Type

NONRES.

Proof. SinceDP = (uP , πP ) where uP ∈ ÂP
∗
, η is of Type 1b while η′ is of Type 2.

Thus DQ1
= (uP , δP t) where t defines C̃ and δP defines Σ at Q1 where πP = tδP .

Similarly DQ2
= (uP , πP ) where 1/t defines C̃′ and πP defines Σ at Q2. Thus we

have replaced P with hot point Q2 and chilly point Q1 in Xnew.

Let ǫ ∈ Xnew denote the generic point of the exceptional curve Σ and by abuse of

notation, a parameter of Fǫ. Since Dη′ is division ([S07], Theorem 2.5, Proposition

0.5), Yη′ cannot be SPLIT. If Yη′ is of Type RAM, then Yη cannot be SPLIT or RES. If

Yη′ is of Type RES, then YP ≃ ∏
FP and hence Yη can only be SPLIT or NONRES.

Finally observe that if Yη′ is NONRES, then YP is non-split by Proposition 5.7 and

hence Yη cannot be SPLIT by Lemma 3.2.

Thus we have the following table (in which we use the notations v ∈ ÂP
∗
, w ∈ Âǫ

∗
,

0 < r < ℓ and FP
(

ℓ
√
uP

)
to be the unique degree ℓ unramified field extension of

FP ).
Yη′ Yη YP Yǫ Type of Yǫ

RAM RAM FP

(
ℓ
√
vπr

P δP
)

Fǫ

(
ℓ
√
wǫr+1

)
RAM/NONRES

RAM NONRES FP

(
ℓ
√
vδP

)
Fǫ

(
ℓ
√
wǫ

)
RAM

RES SPLIT
∏
FP

∏
Fǫ SPLIT

RES NONRES
∏
FP

∏
Fǫ SPLIT

NONRES RAM FP ( ℓ
√
vπP ) Fǫ

(
ℓ
√
wǫ

)
RAM

NONRES RES FP ( ℓ
√
uP ) Fǫ ( ℓ

√
uP ) RES

NONRES NONRES FP ( ℓ
√
uP ) Fǫ ( ℓ

√
uP ) RES

Table 7: Table giving shape of Y at hot point Q2
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In the following proposition, we blow up further so as to arrange for a model X such

that its marked points do not have any ‘difficult’ neighbours. This will be helpful

when constructing E1,η and E2,η along codimension one points η lying in the special

fiber X0.

Proposition 6.4. There exists a sequence of blowups φ : Xnew → X such that for

any η ∈ (N ′
0)Xnew

, the following hold:

1. If η is of Type 0 containing a As10, Bs10 or Bs20 marked point P , then there is at

most only one other marked point Q ∈ η and it is of Type As00.

2. If η is of Type 1b containing a CChilly11 marked point P , then there is at most

only one other marked point Q ∈ η and it is of Type Bns11 or CChilly11 .

3. If η is of Type 1b containing a CHot12 marked point P , then there is at most only

one other marked point Q ∈ η and it is of Type Bns11 .

Proof. Let P,C,C′, η, η′, πP , δP , C̃, C̃
′,Σ, ǫ be as before. Recall that Q1 = C̃ ∩ Σ

while Q2 = C̃′ ∩ Σ are the two new marked points obtained after blowing up at P .

We investigate each case separately.

1. Let η be of Type 0 with a marked point P as above. SinceDP is split, ǫ is of Type 0

and has exactly two marked points Q1 and Q2 lying on it. For {e, f} = {1, 2}, we

see that Qe replaces P and has at most one Type 0 neighbourQf which is necessarily

of Type As00.

2. Let η be of Type 1b with a chilly point P . This case is reminiscent of the breaking

of chilly loops in ([S07], Corollary 2.9).

If DP = (uP , π
m
P δ

n
P ) for some unit uP and 0 < m,n < ℓ, we say the algebra is of

the shape [m,n]C,C′ . Let x−1 = 1
x ∈ (Z/ℓZ)∗. Then [m,n]C,C′ = [1, nm−1]C,C′ =

[mn−1, 1]C,C′ as (uP , π
m
P δ

n
P ) =

(
uP , (π

m
P δ

n
P )

m−1m
)

= m
(
uP , (π

m
P δ

n
P )
m−1

)
=

(
umP , πP δ

nm−1

P

)
.

Since P is a CChilly11 point, DP is of the shape [1, j]C,C′ for some 0 < j < ℓ. After

a single blow up, as in the proof of Proposition 6.2, DQ1
= [j, j + 1]C̃,Σ and DQ2

=

[1, j+1]C̃′,Σ. Hence either j+1 ∼= 0 mod ℓ and ǫ is a Type 1a curve 13 or j+1 < ℓ,

ǫ is a Type 1b curve and both Q1 and Q2 are CChilly11 points again. If j + 1 < ℓ,
blow up the point Q2 again. Repeating this process, we get a model X1 where the

closure of the strict transform of C′ intersects an exceptional curve of Type 1a. Carry

out the same procedure on Q1, the other intersection point till the closure of the strict

transform of C also intersects an exceptional curve of Type 1a.

3. Let η be of Type 1b with a hot point P . By Proposition 6.3, blowing up the model

at P yields a hot point Q2 which has only Q1, a chilly point, as a Type 1b neighbour.

Now following the proof of the previous case and blowing up the chilly point Q1

repeatedly, we see that Q2 will only have a Bns11 point as a Type 1b neighbour at

most.

13Note that when j + 1 ∼= 0 mod ℓ, DQ2
is still not a split algebra and hence ǫ cannot be a Type 0

curve by Lemma 5.1.

Documenta Mathematica 26 (2021) 337–413



Reduced Whitehead Groups of Algebras 365

6.2 The final model X
Recall that X is arranged such that the divisor HX is in good shape. We note that

this property is preserved under blowups (cf. proof of Proposition 3.1). Thus using

Propositions 6.2, 6.4, from now on we can and do assume that our model X has no

marked points of Type As11, Bs11, Bs21, CCool11 , CCool12 , CChilly12 and C−
22. Further we

also assume that anyCChilly11 point has only Type 1b neighbours which are either again

CChilly11 orBns11 , anyCHot12 point can be a Type 1b neighbour at most of one other point

which should be of Type Bns11 and any As10, Bs10 or Bs20 point has at most one Type 0

neighbour which will necessarily be of Type As00. Note also that in constructing such

a model (cf. the proof of Proposition 6.4, hot point case), we would have blown up

the original hot points exactly once and hence would have arranged for the shape of Y
at any hot point in the final model to be as given by Proposition 6.3. We finally fix

parameters πη for each η ∈ N ′
0 as in Section 3.1.2, which further determine a system

of parameters for each P ∈ S0.

6.3 Graphs

6.3.1 Labelling curves with {Ch, C, H, Z} labels

Let γ ∈ N ′
0 be of Type 1b with Yγ ≃ ∏

Fγ . Using Proposition 6.4, we label it as

follows:

- γ is a Ch-curve if γ ∩S0 contains a chilly point. Note that γ ∩S0 will consist

of marked points of Types Bns11 and CChilly11 only.

- γ is a C-curve if γ ∩S0 contains a cold point. Note that γ ∩S0 will consist of

marked points of Types Bs10, Bns11 , CCold11 and CCold12 only.

- γ is a H-curve if γ ∩ S0 contains a hot point. Note that γ ∩ S0 will consist of

marked points of Types Bns11 and CHot12 only.

- γ is a Z-curve if it is not a Ch, C or H-curve. Note that γ ∩ S0 will consist of

marked points of Types Bs10 or Bns11 only.

Thus the sets of Ch, C, H and Z-curves are mutually disjoint. Note also that when you

blow up a cold point P on a C-curve η, then the exceptional curve obtained is again a

C-curve and the two new marked points obtained are again cold points (Lemmata 3.2

and 6.1).

6.3.2 A partial dual graph

In subsequent sections, we will prescribe patching data E1,η and E2,η for η ∈ N0 :=
N ′

0 ∩ X0. Ensuring compatibility at branches can be, in part, turned into a colouring

problem for a partial dual graph built as follows:

Construct an undirected graph ∆ with vertex set V∆ consisting of η ∈ N ′
0 of Type

1b or 2. The edge set J∆ consists of cold points in S0. So if η, η′ ∈ V∆ intersect at

a cold point P in our model, then they are joined by an edge labelled P . Note that
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therefore multiple edges between distinct vertices are allowed, while self loops are

not. Blowing up a cold point P has the effect of adding a vertex in middle of the edge

P in ∆.

C′

C
P ❀

ǫ

C

C′

Q1

Q2

C C′P
❀ C ǫ C′Q1 Q2

6.3.3 Primary colouring of ∆

We now present a combinatorial colouring proposition, reserving for later the explana-

tion of the precise relevance of this to the patching problem. The following guarantees

that after finitely many blowups of cold points, there exists a ‘suitable’ colouring of

the vertices of ∆ with the colours red (R), green (G), and blue (B). More precisely:

Proposition 6.5. There exists a sequence of blowups of cold points on C-curves,

φ : Xnew → X , such that the vertices of the new partial graph ∆new can be coloured

with colours blue (B), green (G) and red (R) such that

1. η ∈ V∆new
is coloured green if and only if η is not a C-curve14,

2. Any non-green vertex with an edge to a green vertex is coloured red,

3. Any non-green vertex with an edge to a red vertex is blue,

4. Any non-green vertex with an edge to a blue vertex is red.

Proof. Without loss of generality, assume ∆ is connected (otherwise repeat the same

proof for each connected component). Let W ⊆ V∆ denote the set of C-curves.

Colour every η ∈ V∆ \W with green. Thus ∆ is partially coloured. For v ∈ V∆
which is uncoloured and X ∈ {R,G,B}, define the function d(v,X) for any partial

colouring of ∆ as follows:

• Set d(v,X) = 1 if there is an edge between v and a vertex colouredX .

• Set d(v,X) = 0 if there is no edge between v and any vertex coloured X .

14Note that in particular if η is of Type 2, it is necessarily coloured green.
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The following algorithm colours vertices in W with R andB in a compatible fashion.

Step 1: Colour with red (R), all uncoloured vertices v ∈ W such that d(v,G) = 1. If

no such vertices exist, colour an arbitrary uncoloured vertex with red (R).

Step 2: The previous step might lead to a situation where two red vertices are con-

nected by an edge. For every such edge P : η − η′, blow up the cold point P (which

note, is on two C-curves). As we have already observed, the exceptional curve ob-

tained is again a C-curve and the new marked points are cold points. In the new par-

tial dual graph, this introduces a new vertex (corresponding to the exceptional curve)

breaking the edge P into two edges Q1 and Q2. Colour this new vertex with blue (B).

If all vertices are coloured, terminate.

Step 3: Colour with blue(B), all uncoloured vertices v such that d(v,R) = 1. If no

such vertices exist, colour an arbitrary uncoloured vertex with blue (B).

Step 4: The previous step might lead to a situation where two blue vertices are con-

nected by an edge. For every such edge P : η − η′, blow up the cold point P (which

note, is on two C-curves). As before, in the new partial dual graph, this introduces

a new vertex (corresponding to the exceptional curve) breaking the edge P into two

edges Q1 and Q2. Colour this new vertex with red (R). If all vertices are coloured,

terminate.

Step 5: Colour with red (R), all uncoloured vertices v ∈ W such that d(v,B) = 1. If

no such vertices exist, colour an arbitrary uncoloured vertex with red (R).

Step 6: Go to Step 2.

Note that in Steps 1, 3 and 5 we colour at least one uncoloured vertex each time. In

Steps 2 and 4, though we introduce new vertices, they always correspond to C-curves

and we colour them with R or B in the same step. Since |V∆| < ∞, the algorithm

terminates after finitely many steps. Each partial colouring obtained satisfies Prop-

erties 1-4. Hence when the algorithm terminates, we will end up with a compatible

colouring of V∆.

6.3.4 An extended rainbow colouring of ∆

We refine the colouring of ∆ by colouring over η which are Ch, H or Z-curves as

follows: Let η ∈ V∆ be a Ch, H or Z-curve and let a =
(
a′i,η

)
i
∈ ∏

Fη .

- If each a′i,η is a unit (up to ℓth powers) in Âη , then colour η violet (V) if it is a

Ch-curve, indigo (I) if it is a H-curve, and black (Bl) if it is a Z-curve.

- If at least one a′i,η is not a unit (up to ℓth powers) in Âη , then colour η yellow (Ye) if

it is a Ch-curve, orange (O) if it is a H-curve, and white (W) if it is a Z-curve.

Thus we get a nine-colouring of V∆ with colours violet (V), indigo (I), blue (B), green

(G), yellow (Ye), orange (O), red (R), black (Bl) and white(W).
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Type 1b with split Y curves Ch H Z C

All ai,η units Violet (V) Indigo (I) Black (Bl) Red (R) or Blue (B)

Some ai,η not a unit Yellow (Ye) Orange (O) White (W) Red (R) or Blue (B)

Table 8: Extended rainbow colouring of V∆

7 Patching data at marked points in S0

Let P ∈ S0 be the intersection of two distinct irreducible curves C1 and C2 of HX .

Let η1 and η2 denote the generic points of C1 and C2 respectively. Let πP and δP be

primes defining C1 and C2 at P fixed as in Section 6.2. As before, if Yx ≃ ∏
Fx, we

let a =
(
a′i,x

)
i
, where a′i,x ∈ Fx. We will now prescribe Ej,P for j = 1, 2 at P ∈ S0

in accordance with the following heuristic:

- If η ∈ N ′
0 is of Type 0 or 1a, then both E1,P and E2,P should be unramified

along η,

- If η ∈ N ′
0 is coloured G, V, I or Bl, then both E1,P and E2,P should be unram-

ified along η,

- If η ∈ N ′
0 is coloured R, O, Ye or W, then E1,P should be ramified along η

while E2,P should be unramified along η,

- If η ∈ N ′
0 is coloured B, then E1,P should be unramified along η while E2,P

should be ramified along η.

7.1 Points not of Type As00

Proposition 7.1. Let P ∈ S0 be such that it is not of Type As00. Then for each

j = 1, 2, there exist cyclic degree ℓ extensionsEj,P /FP and elements aj,P ∈ YP such

that

1. a1,Pa2,P = a.

2. D ⊗ Ej,P has index at most ℓ.

3. D ⊗ Y ⊗ Ej,P is split.

4. aj,P is a norm from Ej,P ⊗ YP /YP .

5. NYP /FP
(aj,P ) = 1.

6. Each Ej,P is either a split extension or D ⊗ Ej,P is split.

Proof. We investigate each type of point separately. In every case, we will deter-

mine E1,P , E2,P and a1,P and set a2,P = aa−1
1,P , thus ensuring that Property 1 holds.

Since N(a) = 1, Property 5 will also be satisfied provided N(a1,P ) = 1. By ([S97],

Proposition 1.2), Property 2 holds for any closed point.
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We adopt the following notations in the proof: uP , vP , wP ∈ ÂP
∗
, 0 < r, s,m, j <

ℓ. If YP is split, by Proposition 3.4, a =
(
a′i,P

)
where a′i,P = zi,Pπ

mi

P δni

P where

mi, ni ∈ Z and zi,P ∈ ÂP
∗
. Also since N(a) = 1, we have

∏
zi,P = 1 and∑

mi =
∑
ni = 0. LP denotes the unique non-split degree ℓ extension of FP

unramified at ÂP and HP , the extension FP
(

ℓ
√
uPπmP + vP δP

)
.

Type As10: Without loss of generality, assume η1 is of Type 1a and η2 is of Type 0.

Note that by Lemma 5.1,DP is split. The following choices forEj,P and aj,P satisfy

Properties 1-6.

Row η1 η2 E1,P E2,P a1,P a2,P = aa−1

1,P

0.1 1a 0
∏
FP

∏
FP a 1

Table 9: Patching data at points of Type As10

Type Bs10: Without loss of generality, assume η1 is of Type 1b and η2 is of Type 0.

By Proposition 6.4 and Section 6.3.1, η1 cannot be a Ch or H-curve and hence isn’t

coloured V, I, Ye or O. The following table gives the choice for Ej,P and aj,P .

Row η1 E1,P E2,P a1,P a2,P = aa−1

1,P

1.1 R,W FP ( ℓ
√
πP )

∏
FP

(
π
mi
P

)
i

(
zi,P δ

ni
P

)
i

1.2 G,Bl
∏
FP

∏
FP a 1

1.3 B
∏
FP FP ( ℓ

√
πP )

(
zi,P δ

ni
P

)
i

(
π
mi
P

)
i

Table 10: Patching data at points of Type Bs10

SinceDP is itself split, Properties 3 and 6 hold while Property 4 holds by construction.

Since
∑
mi =

∑
ni = 0 and

∏
zi,P = 1, we have N(a1,P ) = 1. Hence Property 5

holds.

Type Bns11 : Without loss of generality, assume η1 is of Type 1b and η2 is of Type

1a. Thus DP = (uP , πP ) ∈ Br (FP ). By Proposition 3.3, a is a unit in the integral

closure of ÂP in YP if the latter is not split. By Proposition 5.3, if YP is split, a′i,P =

zi,Pπ
mi

P δP
ℓn′

i with
∑
n′
i = 0. The following table15 gives the choice for Ej,P and

aj,P .

15Row 2.2* is a special case when η1 is Type 1b and green with Yη1 of Type RAM and η2 of Type 1a

with Yη2 of Type NONRES. In this situation, we choose E1,P = E2,P =
∏
FP while a1,P = a and

a2,P = 1.
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Row η1 η2 E1,P E2,P a1,P a2,P = aa−1

1,P

2.1 W,R,O, Y e FP ( ℓ
√
πP ) LP

(
π
mi
P

)
i

(
zi,P δP

ℓn′

i

)
i

2.2∗ G(RAM) (NONRES)
∏
FP

∏
FP a 1

2.2 Bl, I,G, V LP LP a 1

2.3 B LP FP ( ℓ
√
πP )

(
zi,P δP

ℓn′

i

)
i

(
π
mi
P

)
i

Table 11: Patching data at points of Type Bns11

Since DP = (uP , πP ) and uP becomes an ℓth power in LP , Ej,P splits D in each

case except Row 2.2∗. In this row however, YP = FP
(

ℓ
√
wPπP

)
and hence D ⊗ YP

is split. Thus Properties 3 and 6 hold. By Lemmata 2.4 and 2.6, Property 4 holds.

Since
∑
mi =

∑
n′
i = 0 and

∏
zi,P = 1, we have N(a1,P ) = 1. Hence Property 5

holds.

Type Bs20: Without loss of generality, assume η1 is Type 2 and η2 is Type 0. Thus η1
is coloured G. The following choices satisfy Properties 1-6.

Row η1 E1,P E2,P a1,P a2,P = aa−1

1,P

3.1 G
∏
FP

∏
FP a 1

Table 12: Patching data at points of Type Bs20

Type Bns21 : Without loss of generality, assume η1 is Type 2 and η2 is Type 1a. Thus

DP = (uP , πP ) ∈ Br (FP ). By Proposition 3.3, a is a unit in the integral closure of

ÂP in YP if the latter is not split. By Proposition 5.3, if YP is split, a′i,P = zi,P δP
ℓn′

i

with
∑
n′
i = 0. The following table16 gives the choice for Ej,P and aj,P .

Row η1 η2 E1,P E2,P a1,P a2,P = aa−1

1,P

4.1∗ G(RAM) (NONRES)
∏
FP

∏
FP a 1

4.1 G LP LP a 1

Table 13: Patching data at points of Type Bns21

Since DP = (uP , πP ) and uP becomes an ℓth power in LP , Ej,P splits D in Row

4.1. In Row 4.1*, YP = FP
(

ℓ
√
wPπP

)
and hence D ⊗ YP is split. Thus Properties 3

and 6 hold. By Lemmata 2.4 and 2.6, Property 4 holds. Since N(a) = 1, so does

Property 5.

Type CChilly11 : We assume that D = D00 + (uP , πP ) + (vP , δP ) ∈ Br(F ) where

D00 is unramified at AP and DP =
(
vP , π

j
P δP

)
where 0 < j < ℓ. By Proposition

16Row 4.1* is a special case when η1 is Type 2 with Yη1 of Type RAM and η2 of Type 1a with Yη2 of

Type NONRES. In this situation, we choose E1,P = E2,P =
∏
FP while a1,P = a and a2,P = 1.
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5.3, if YP is split, then a′i,P = zi,P

(
πjP δP

)ni
(
πriℓP

)
where mi = jni + riℓ and

hence
∑
ri = 0. In particular, a is a unit (up to ℓth powers) in Âη1

∗
if and only if it is

is a unit (up to ℓth powers) in Âη2
∗
.

Let j = 1, 2. Recall that if ηj is not a Ch-curve, then it is coloured G. The above dis-

cussion implies that if η1 and η2 are both Ch-curves, then they are both coloured Ye or

both coloured V. Similarly if η1 is coloured G and η2 is a Ch-curve, then η2 is coloured

V. Likewise if η2 is coloured G and η1 is a Ch-curve, then η1 is coloured V. Invoking

Proposition 5.6, Table 13 below prescribes Ej,P depending on the configuration of

a, Y, η1, η2.

Since DP =
(
vP , π

j
P δP

)
and vP becomes an ℓth power in LP , Ej,P splits D in each

case. Thus Properties 3 and 6 hold. By Lemma 2.6, Property 4 holds for Rows 5.1-5.4,

5.8-5.9, 5.11 (when YP is a field). By Lemma 2.4, Property 4 holds in the remaining

cases (except for (E1,P , a1,P ) in Row 5.6, where it is clear by observation). Finally

since N(a) = 1 and for Row 5.6,
∑
ni =

∑
ri = 0 and

∏
zi,P = 1, N(a1,P ) = 1

for all rows. Hence Property 5 holds.

Row η1 η2 Yη1
Yη2

YP E1,P E2,P a1,P a2,P

5.1 G G RAM RAM FP

(
ℓ
√
wP πr

P
δP

)
LP LP a 1

5.2 G G NONRES RAM FP

(
ℓ
√
wP δP

)
LP LP a 1

5.3 G G RES RES LP LP LP a 1

5.4 G G NONRES RES LP LP LP a 1

5.5 V V SPLIT SPLIT
∏
FP LP LP a 1

5.6 Y e Y e SPLIT SPLIT
∏
FP FP

(
ℓ
√
πj
P δP

)
LP

((
πj
P δP

)ni
(
π
riℓ

P

))
i
(zi,P )

i

5.7 G V NONRES SPLIT
∏
FP LP LP a 1

5.8 G G RAM NONRES FP ( ℓ
√
wPπP ) LP LP a 1

5.9 G G RES NONRES LP LP LP a 1

5.10 V G SPLIT NONRES
∏
FP LP LP a 1

5.11 G G NONRESNONRES LP /
∏
FP LP LP a 1

Table 14: Patching data at points of Type CChilly11

Cold points: We assume that D = D00 + (uPπ
m
P , vP δP ) ∈ Br(F ) where D00 is

unramified at AP and DP = (uPπ
m
P , vP δP ) where 0 < m < ℓ. By Proposition 5.3,

if YP is split, then a′i,P = (uPπ
m
P )

smi (vP δP )
ni

(
w′
i,Pπ

−rmi

P

)ℓ
where sm = rℓ + 1

and w′
i,P ∈ ÂP

∗
with w′

i,P
ℓ
usmi

P vni

P = zi,P . Set xi,P =
(
w′
i,Pπ

−rmi

P

)
. Since∑

mi =
∑
ni = 0 and

∏
a′i,P = 1, clearly

∏
xℓi,P = 1.

Type CCold11 : Let j = 1, 2. If Yηj is of Type SPLIT, then since P is a cold point lying

on it, ηj must be a C-curve. Thus it is coloured R or B. If η1 is coloured G and η2 is

a C-curve, then by Proposition 6.5, η2 will be coloured R. Similarly, if η2 is coloured

G and η1 is a C-curve, then η1 will be coloured R. Finally if both η1 and η2 are C-

curves, then both of them cannot be of the same colour. Invoking Proposition 5.4, we
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prescribe the choices for Ej,P and aj,P in the following table:

R
o
w
η
1
η
2

Y
η
1

Y
η
2

Y
P

E
1
,P

E
2
,P

a
1
,P

a
2
,P

6
.1

G
G

R
A
M

R
A
M

F
P

(
ℓ√
w

P
π
r P
δ
P

)
H

P
H

P
a

1

6
.2

G
G

R
E
S

R
A
M

F
P

(
ℓ√
v
P
δ
P

)
H

P
H

P
a

1

6
.3

G
G

N
O
N
R
E
S

R
A
M

F
P

(
ℓ√
w

P
δ
P

)
H

P
H

P
a

1

6
.4

G
G

R
A
M

R
E
S

F
P

(
ℓ√
u
P
π
m P

)
H

P
H

P
a

1

6
.5

R
B

S
P
L
IT

S
P
L
IT

∏
F

P
F

P

(
ℓ√
u
P
π
m P

)
F

P

(
ℓ√
v
P
δ
P

)
( (u

P
π
m P
)s

m
i
(x

i
,P

)ℓ
) i

((
v
P
δ
P
)n

i
) i

6
.6

B
R

S
P
L
IT

S
P
L
IT

∏
F

P
F

P

(
ℓ√
v
P
δ
P

)
F

P

(
ℓ√
u
P
π
m P

)
((
v
P
δ
P
)n

i
) i

( (u
P
π
m P
)s

m
i
(x

i
,P

)ℓ
) i

6
.7

G
R

N
O
N
R
E
S

S
P
L
IT

∏
F

P
F

P

(
ℓ√
v
P
δ
P

)
H

P
a

1

6
.8

G
G

R
A
M

N
O
N
R
E
S

F
P

(
ℓ√
w

P
π
P
)

H
P

H
P

a
1

6
.9

R
G

S
P
L
IT

N
O
N
R
E
S

∏
F

P
F

P

(
ℓ√
u
P
π
m P

)
H

P
a

1

6
.1
0
G
G

N
O
N
R
E
S
N
O
N
R
E
S

L
P
/
∏
F

P
H

P
H

P
a

1

Table 15: Patching data at points of Type CCold11

Since DP = (uPπ
m
P , vP δP ), clearly FP

(
ℓ
√
uPπmP

)
and FP

(
ℓ
√
vP δP

)
split it. Since

the symbol algebra (x, y) = (x + y,−yx−1), so does HP . Thus Properties 3 and 6

hold. By Lemma 2.6, Property 4 holds for Rows 6.1-6.4, 6.8 (and for Row 6.10, if

YP = LP ). By construction it also holds for Rows 6.5-6.6. In Row 6.7, a is a unit
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along η1. Thus a′i,P = (vP δP )
ni wℓi,P which is a norm from FP

(
ℓ
√
vP δP

)
. A similar

argument works for Row 6.9. In Row 6.10, if YP =
∏
FP , then since a is a unit along

both η1 and η2, we have that a′i,P = wℓi,P . So each a′i,P is a norm from E1,P . Thus

Property 4 holds for CCold11 points. Finally since N(a) = 1 and for Rows 6.6-6.7,∑
mi =

∑
ni = 0 and

∏
xℓi,P = 1, we have N(a1,P ) = 1 for all rows. Hence

Property 5 holds.

Type CCold12 : Without loss of generality, assume η2 is of Type 2. Hence it is coloured

G. If Yη1 is of Type SPLIT, then since P is a cold point lying on it, η1 must be a C-

curve. Thus it is coloured R or B. Since η2 is coloured G, then by Proposition 6.5,

η1 will be coloured R in this case. Invoking Proposition 5.5, we prescribe the choices

for Ej,P and aj,P in the following table. The proof that Properties 1-6 hold is exactly

similar to the Type CCold11 point case.

Row η1 η2 Yη1
Yη2

YP E1,P E2,P a1,P a2,P = aa−1

1,P

7.1 G G RAM RAM FP

(
ℓ
√
wPπP δrP

)
HP HP a 1

7.2 G G RES RAM FP

(
ℓ
√
vP δP

)
HP HP a 1

7.3 G G NONRES RAM FP

(
ℓ
√
wP δP

)
HP HP a 1

7.4 G G RAM RES FP

(
ℓ
√
uP πm

P

)
HP HP a 1

7.5 G G RAM NONRES FP ( ℓ
√
wP πP ) HP HP a 1

7.6 R G SPLIT NONRES
∏
FP FP

(
ℓ
√
uP πm

P

)
HP a 1

7.7 G G NONRESNONRES LP /
∏
FP HP HP a 1

Table 16: Patching data at points of Type CCold12

Type CHot12 : Without loss of generality, assume η2 is of Type 2 and coloured G. If

Yη1 is of Type SPLIT, then since P is a hot point lying on it, η1 must be a H-curve and

coloured I or O. By Proposition 5.3, if YP is split, then a′i,P = zi,Pπ
mi

P δ
ℓn′

i

P where∑
n′
i = 0. Invoking the table in Proposition 6.3, we prescribe the choices for Ej,P

and aj,P in the following table:

Row η1 η2 Yη1
Yη2

YP E1,P E2,P a1,P a2,P = aa−1

1,P

8.1 G G RAM RAM FP

(
ℓ
√
wP πr

P
δP

)
LP LP a 1

8.2 G G NONRES RAM FP

(
ℓ
√
wP δP

)
LP LP a 1

8.3 I G SPLIT RES
∏
FP LP LP a 1

8.4 O G SPLIT RES
∏
FP FP ( ℓ

√
πP ) LP

(
π
mi
P

)
i

(
zi,P δ

ℓn′

i
P

)

i

8.5 G G RAM NONRES FP ( ℓ
√
wP πP )

∏
FP

∏
FP a 1

8.6 G G RES NONRES LP

∏
FP

∏
FP a 1

Table 17: Patching data at points of Type CHot12

Since DP = (uP , πP ), clearly FP
(

ℓ
√
πP

)
and LP splits it. Thus Properties 3 and 6

hold for Rows 8.1-8.4. For Rows 8.5-8.6, we observe that D ⊗ YP = 0 and Ej,P are
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split. Thus Properties 3 and 6 hold for all cases. By Lemma 2.6, Property 4 holds for

Rows 8.1-8.2 and 8.5-8.6. In Row 8.3, the colours of η1 and η2 imply that a is a unit

along η2 and η1 (up to ℓth powers). Hence each a′i,P = zi,Pπ
ℓm′

i

P where mi = ℓm′
i

is a unit in ÂP
∗

up to ℓth powers. Thus by Lemma 2.4, Property 4 holds here. For

Row 8.4, clearly πmi

P is a norm from FP
(

ℓ
√
πP

)
. Appealing again to Lemma 2.4, we

see that zi,P δ
ℓn′

i

P are norms from LP . Finally Property 5 holds because N(a) = 1 and∑
mi =

∑
n′
i = 0.

7.2 Points of Type As00

Let P be of Type As00. Thus η1 and η2 are both of Type 0. For j = 1, 2, let Cj :=
(ηj ∩ S0) \ {P} denote the set of marked points on ηj apart from P . By Proposition

6.4, it is clear that if Qj ∈ Cj is not of Type As00, then Cj = {Qj}. In such a case, let

γj denote the Type 1a/1b/2 curve such that Qj ∈ ηj ∩ γj ∩ S0. Note γj can only be

coloured R, G, B, Bl, or W. We subdivide Type As00 points into three sub-types:

D1: Cj = {Qj} where Qj is not of Type As00 for j = 1, 2.

D2: Cj = {Qj} where Qj is not of Type As00 and Cj′ is either empty or consists only

of Type As00 points for {j, j′} = {1, 2}.

D3: Cj is either empty or consists only of Type As00 points for j = 1, 2.

Proposition 7.2. Let P ∈ S0 be such that it is of Type As00. Set E1,P = E2,P =∏
FP . Then there exist a1,P , a2,P ∈ YP such that for j = 1, 2,

1. a1,Pa2,P = a.

2. NYP /FP
(aj,P ) = 1.

3. aj,P is a norm from Ej,P ⊗ YP /YP .

Proof. Note that since we have chosen the split extension for each Ej,P , Property 3

holds for any choice of aj,P . By Remark 5.2, note that if Yη1 is of Type RAM, then

Yη2 cannot be of Type SPLIT and vice-versa. For the same reason, if γj is coloured

red/blue/white/black, then Yηj cannot be of Type RAM. Finally if Yηj is of Type RAM,

then by Proposition 3.3 and Lemmata 2.3 and 2.6, a ∈ O∗ℓ
Yηj

and O∗ℓ
YP

. We prescribe

aj,P as in the tables below17 depending on the subtype and neighbours of P .

Subtype D3: Let P be of subtype D3. Thus Cj is empty or consists only of Type

As00 points for j = 1, 2.

Row a1,P a2,P = aa−1

1,P

11.1 a 1

Table 18: Patching data at points of subtype D3

17If YP is not split, set mi = ni = 0 and read the entry
(
πmi
P

)
i

as 1 and
(
zi,P δ

ni
P

)
i

as a etc.
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Subtype D2: LetP be of subtype D2. Without loss of generality assume C1 = {Q1}
whereQ1 is not of TypeAs00 and that C2 is empty or consists only of TypeAs00 points.

Row Yη1
Yη2

Q1 γ1 Colour of γ1 a1,P a2,P = aa−1

1,P

10.1 − − As
10 1a a 1

10.2′ − RAM Bs
10 1b R,W a 1

10.2 − Not RAMBs
10 1b R,W

(
δ
ni
P

)
i

(
zi,P π

mi
P

)
i

10.3 − − Bs
10 1b G,B,Bl a 1

10.4 − − Bs
20 2 G a 1

Table 19: Patching data at points of subtype D2

Subtype D1: Let P be of subtype D1. For j = 1, 2, let Cj = {Qj} where Qj is not

of Type As00.

Row Yη1
Yη2

Q1 Q2 γ1 Colour of γ1 γ2 Colour of γ2 a1,P a2,P = aa−1

1,P

9.1 − − As
10 A

s
10 1a 1a a 1

9.2′ RAM − As
10 B

s
10 1a 1b R,W a 1

9.2 Not RAM − As
10 B

s
10 1a 1b R,W

(
π
mi
P

)
i

(
zi,P δ

ni
P

)
i

9.3 − − As
10 B

s
10 1a 1b G,B,Bl a 1

9.4 − − As
10 B

s
20 1a 2 G a 1

9.5′ − RAM Bs
10 A

s
10 1b R,W 1a a 1

9.5 − Not RAMBs
10 A

s
10 1b R,W 1a

(
δ
ni
P

)
i

(
zi,P π

mi
P

)
i

9.6 − − Bs
10 B

s
10 1b R,W 1b R,W 1 a

9.7′ − RAM Bs
10 B

s
10 1b R,W 1b G a 1

9.7 − Not RAMBs
10 B

s
10 1b R,W 1b G,B,Bl

(
δ
ni
P

)
i

(
zi,P π

mi
P

)
i

9.8′ − RAM Bs
10 B

s
20 1b R,W 2 G a 1

9.8 − Not RAMBs
10 B

s
20 1b R,W 2 G

(
δ
ni
P

)
i

(
zi,P π

mi
P

)
i

9.9 − − Bs
10 A

s
10 1b G,B,Bl 1a a 1

9.10′ RAM − Bs
10 B

s
10 1b G 1b R,W a 1

9.10 Not RAM − Bs
10 B

s
10 1b G,B,Bl 1b R,W

(
π
mi
P

)
i

(
zi,P δ

ni
P

)
i

9.11 − − Bs
10 B

s
10 1b G,B,Bl 1b G,B,Bl a 1

9.12 − − Bs
10 B

s
20 1b G,B,Bl 2 G a 1

9.13 − − Bs
20 A

s
10 2 G 1a a 1

9.14′ RAM − Bs
20 B

s
10 2 G 1b R,W a 1

9.14 Not RAM − Bs
20 B

s
10 2 G 1b R,W

(
π
mi
P

)
i

(
zi,P δ

ni
P

)
i

9.15 − − Bs
20 B

s
10 2 G 1b G,B,Bl a 1

9.16 − − Bs
20 B

s
20 2 G 2 G a 1

Table 20: Patching data at points of subtype D1
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8 Structure of Ej,P and aj,P along branch fields

Let P ∈ S0. Recall the choice of parameter, πη , of Fη for each η ∈ N ′
0 as in Section

6.2, which defines η at P if P ∈ η. In this case, πP := πη is part of the chosen system

of parameters (πP , δP ) of AP . In this section, we study the ramification and splitting

properties of Ej,P and the shape of aj,P for j = 1, 2 with respect to the colour and

type of curves on which P lies. This will be useful when we construct extensionsEj,η
and elements aj,η for codimension one points η ∈ N0.

We first begin by calculating how the lift of residues looks like along the residue fields

kP,η of branch fields FP,η.

Lemma 8.1. Let P ∈ S0 lie on the intersection of two distinct irreducible curves of

HX with generic points η1 and η2. Let (πP , δP ) be the system of parameters at P
chosen as in Section 6.2 such that πP cuts out η1 and δP cuts out η2 at P . Let η = η1
or η2 and let Hη denote the lift of residues along η. Set H ′

P = Hη ⊗ FP,η/kP,η and

u′ ∈ k∗P,η/k
∗ℓ
P,η to be the residue of D over FP,η . Then the following table gives the

shape of H ′
P /kP,η and u′ ∈ kP,η.

RowLocation P DP ∈ Br(FP ) (η,Type) u′ H′

P /kP,η Description of H′

P

a. Table 10 Bs
10 0 (η1, 1b) 1

∏
kP,η Split

b. Table 11 Bns
11 (uP , πP ) (η1, 1b) uP kP,η

(
ℓ
√
uP

)
Unramifiednonsplit

c. Table 12 Bs
20 0 (η1, 2) 1

∏
kP,η Split

d. Table 13 Bns
21 (uP , πP ) (η1, 2) uP kP,η

(
ℓ
√
uP

)
Unramifiednonsplit

e. Table 14 CChilly
11

(
vP , π

j

P
δP

)
(η1, 1b) vj

P
kP,η

(
ℓ
√
vP

)
Unramifiednonsplit

f. Table 14 CChilly
11

(
vP , π

j

P
δP

)
(η2, 1b) vP kP,η

(
ℓ
√
vP

)
Unramifiednonsplit

g. Table 15 CCold
11 (uP π

m
P , vP δP ) (η1, 1b) v−m

P
δ−m
P

kP,η

(
ℓ
√
vP δP

)
Ramifiednonsplit

h. Table 15 CCold
11 (uP π

m
P , vP δP ) (η2, 1b) uP πm

P kP,η

(
ℓ
√
uP πm

P

)
Ramifiednonsplit

i. Table 16 CCold
12 (uP π

m
P , vP δP ) (η1, 1b) v−m

P δ−m
P kP,η

(
ℓ
√
vP δP

)
Ramifiednonsplit

j. Table 16 CCold
12 (uP π

m
P , vP δP ) (η2, 2) uP πm

P
kP,η

(
ℓ
√
uP πm

P

)
Ramifiednonsplit

l. Table 17 CHot
12 (uP , πP ) (η1, 1b) uP kP,η

(
ℓ
√
uP

)
Unramifiednonsplit

m. Table 17 CHot
12 (uP , πP ) (η2, 2) 1

∏
kP,η Split

Table 21: The shape of the lift of residues

In the following, we let πη = πP be the prime defining η at P and let δP denote the

other prime completing the system of parameters at P . We also let LP denote the the

unique degree ℓ extension of FP unramified at ÂP .

Proposition 8.2 (Violet/Indigo/Black). Let η ∈ N ′
0 and P ∈ η ∩ S0. Assume

further that η is coloured violet, indigo or black. Let j = 1 or 2 and let Ej,P be as

prescribed in Proposition 7.1. Then

1. Ej,P = LP if η is coloured violet or indigo.

2. a1,P = a and a2,P = 1.
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3. Ej,P ⊗ FP,η is an unramified extension of FP,η and matches with the lift of

residues at η as etale algebras over FP,η.

4. Ej,P ⊗ FP,η splits D in Br (FP,η).

Proof. An inspection of Row 1.2, 2.2, 5.5, 5.7, 5.10 and 8.3 of the tables in Proposi-

tion 7.1 immediately shows that Properties 1-4 hold (Lemma 8.1).

Proposition 8.3 (Blue). Let η ∈ N ′
0 and P ∈ η ∩ S0. Assume further that η is

coloured blue. Let Dη ≃ Mℓ (uη, wηπη) for units wη, uη ∈ Âη
∗
. Let j = 1 or 2 and

let Ej,P be as prescribed in Proposition 7.1. Then

1. E1,P ⊗ FP,η is an unramified extension of FP,η and matches with the lift of

residues at η as etale algebras over FP,η.

2. E2,P ⊗ FP,η is a ramified extension of FP,η.

3. a1,P is a unit along η.

4. Ej,P ⊗ FP,η splits D in Br (FP,η).

5. There exist wP , xi,P ∈ ÂP for i ≤ ℓ which are units along η such that

(a) E2,P ≃ FP [t]/(t
ℓ−wPπP ) and a2,P =

(
(wPπP )

mi,P xℓi,P
)
i

for mi,P ∈
Z.

(b)
(
wPw

−1
η , uη

)
= 0 ∈ Br (FP,η).

Proof. Since η is coloured blue, it has to be Type 1b C-curve. Thus P can either be a

point of Type Bs10, B
ns
11 or CCold11 . (It cannot be a CCold12 point because then the other

curve will be of Type 2 and hence green in colour. And therefore η would have to be

red). We mention the relevant rows of the tables in Proposition 7.1 below (whence

Properties 1-4 become clear) and give a proof of Property 5a & 5b in each case.

Row 1.3 of Table 10: Here wP = 1 = xi,P . Since P is a Bs10 point, by Lemma 8.1,

uη ∈ F ∗ℓ
P,η and hence Property 5a & 5b is satisfied.

Row 2.3 of Table 11: HerewP = 1 = xi,P . Since P is aBns11 point, by Lemma 8.1, the

lift of residues along η matches with LP along FP,η. Writing D = D00+(uP , πP ) ∈
Br(F ) whereD00 is unramified atAP , we have (uP , πP ) = (uη, wηπη) ∈ Br (FP,η).
Since πP = πη , comparing residues we have that uP ∼= uη up to ℓth powers in FP,η ,

and hence (uη, wη) = 0. As wP = 1 here, Property 5b is proved.

Rows 6.5 and 6.6 of Table 15: We only investigate Row 6.6 (as the proof for Row

6.5 is similar in nature). Since P is a CCold11 point, by Lemma 8.1, the lift of residues

along η1 matches with FP
(

ℓ
√
vP δP

)
along FP,η1 .

Unravelling the expression for a2,P from Row 6.6, we see it is
(
(usPπP )

mi w′
i,P

ℓ
)
i

where sm = rℓ+1 and w′
i,P ∈ ÂP

∗
. Also E2,P = FP

(
ℓ
√
uPπmP

)
= FP

(
ℓ
√
usPπP

)
.

Thus wP = usP and xi,P = w′
i,P . Writing D = D00 + (uPπ

m
P , vP δP ) ∈ Br(F ) for

D00 unramified at AP , we have (uPπ
m
P , vP δP ) = (uη, wηπη) in Br (FP,η).
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As πη = πP , comparing residues as before, we have that (vP δP )
−m ∼= uη up to ℓth

powers in FP,η .

Hence (uPπ
m
P , vP δP ) =

(
wmη π

m
η , vP δP

)
. This implies (uP , vP δP ) =

(
wmη , vP δP

)
.

Hence
(
uPw

−m
η , vP δP

)
= 0 and so

(
usPw

−1
η , (vP δP )

m)
= 0. Thus(

wPw
−1
η , uη

)
= 0.

Proposition 8.4 (Green(1)). Let η ∈ N ′
0 be of Type 1b or 2 and let P ∈ η ∩

S0. Assume further that Yη is of Type NONRES. Let j = 1 or 2 and let Ej,P be as

prescribed in Proposition 7.1. Then

1. η is coloured green.

2. a1,P = a and a2,P = 1.

3. Ej,η ⊗ FP,η is an unramified extension of FP,η and matches with the lift of

residues at η as etale algebras over FP,η.

Proof. Property 1 is obvious (Section 6.3.3). An inspection of Rows 1.2, 2.2, 3.1,

4.1, 5.2, 5.4, 5.7-5.11, 6.3, 6.7-6.10, 7.3, 7.5-7.7, 8.2 and 8.5-8.6 of the Tables in

Proposition 7.1 shows that Properties 2 and 3 also hold (Lemma 8.1).

Proposition 8.5 (Green(2)). Let η ∈ N ′
0 and P ∈ η∩S0. Assume further that one

of the following holds:

1. η is of Type 1b and coloured green and Yη is not of Type NONRES,

2. η is of Type 2 (and hence coloured green) and Yη is not of Type NONRES.

Let j = 1 or 2 and let Ej,P be as prescribed in Proposition 7.1. Then,

1. Ej,P ⊗ FP,η is an unramified (possibly split) extension of FP,η .

2. Ej,P ⊗ βrbc,η = 0 where βrbc,η is as defined in Section 4.

3. If P is not a hot point, a1,P = a and a2,P = 1.

4. If P is a hot point and YP is not split, then a1,P = a and a2,P = 1.

5. If P is a hot point and YP is split, then a2,P is a unit in
∏
ÂP up to ℓth powers.

Proof. The hypothesis implies Yη is of Type RES or RAM. We investigate each case

separately. Note that Properties 1, 3-5 will be clear from inspection of the relevant

rows in the tables in Proposition 7.1 (which we will mention subsequently).

RAM: Let Yη be of Type RAM. Then Yη = Fη
(

ℓ
√
wηπη

)
for some unit wη ∈ Âη

∗

and βrbc,η ∈ Br (Fη) withD⊗Fη = βrbc,η+(uη, wηπη). IfP is not a cold point write

D = D00 + (uP , πP ) + (vP , δP ) where D00 is unramified at AP and uP , vP ∈ A∗
P .

Thus D ⊗ FP,η = (uP , πη) + (vP , δP ). Hence in Br (FP,η), we have (uP , πη) +
(vP , δP ) = βrbc,η + (uη, wηπη). This implies that

βrbc,η = (vP , δP ) + (uP , πη)− (uη, wηπη)

= (vP , δP ) + (wη, uη) +
(
uPu

−1
η , πη

)
.
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Comparing residues, we get βrbc,η⊗FP,η = ((vP , δP ) + (wη, uη))⊗FP,η, where uη
is the residue of D ⊗ Fη. We investigate the relevant rows of the Tables in Proposi-

tion 7.1.

η of Type 1b:

Row 1.2 of Table 10: Here (vP , δP ) = 0 ∈ Br(F ) itself. Computing residues along η,

we see that uη ∈ kP,η is an ℓth power. So βrbc,η is already split over FP,η.

Row 2.2∗ of Table 11: Here (vP , δP ) = 0 ∈ Br(F ) itself. Computing residues along

η, we see that uη ∼= uP ∈ kP,η up to ℓth powers. Also since Yη2 is of Type NONRES,

wη ∈ O∗
kP,η

. So βrbc,η is already split over FP,η .

Row 2.2 of Table 11: Here (vP , δP ) = 0 ∈ Br(F ) itself. Computing residues along η,

we see that uη ∼= uP ∈ kP,η up to ℓth powers. Thus the choice of Ej,P = LP splits

βrbc,η over FP,η .

Rows 5.1, 5.2 and 5.8 of Table 14: Since P is a chilly point, we have uP = vP
j . Here

Ej,P = LP . Note that (vP , δP ) is split by LP as vP becomes an ℓth power in LP .

Computing residues along η, we see uη ∼= vP
j ∈ kP,η up to ℓth powers. Thus LP

splits (uη, wη) over FP,η also.

Row 8.1 of Table 17: Since P is a hot point and η is of Type 1b, (vP , δP ) = 0 ∈
Br(FP ) as vP ∈ ÂP

∗ℓ
. Computing residues along η, we see uη ∼= uP ∈ kP,η up to

ℓth powers. Here Ej,P = LP which splits (wη, uη) = βrbc,η over FP,η .

Row 8.5 of Table 17: Since P is a hot point and η is of Type 1b, (vP , δP ) = 0 ∈
Br(FP ) as vP ∈ ÂP

∗ℓ
. Computing residues along η, we see uη ∼= uP ∈ kP,η up to

ℓth powers. Since Yη2 has to be of Type NONRES in this configuration, we see that

wη has to have valuation ∼= 0 mod ℓ in the complete discretely valued field kP,η with

parameter δP .

Putting this together, we see that (uη, wη) is unramified over local field kP,η, hence

trivial. Therefore (uη, wη) is trivial over FP,η . So βrbc,η is already split over FP,η.

η of Type 2:

Row 3.1 of Table 12: Here (vP , δP ) = 0 ∈ Br(F ) itself. Computing residues along η,

we see that uη ∈ kP,η is an ℓth power. So βrbc,η is already split over FP,η.

Row 4.1∗ of Table 13: Here (vP , δP ) = 0 ∈ Br(F ) itself. Computing residues along

η, we see that uη ∼= uP ∈ kP,η up to ℓth powers. Also since Yη2 is of Type NONRES,

wη ∈ O∗
kP,η

. So βrbc,η is already split over FP,η .

Row 4.1 of Table 13: Here (vP , δP ) = 0 ∈ Br(F ) itself. Computing residues along η,

we see that uη ∼= uP ∈ kP,η up to ℓth powers. Thus the choice of Ej,P = LP splits

βrbc,η over FP,η .

Rows 8.1-8.2 of Table 17: Since P is a hot point and η is of Type 2, computing residues

along η, we see uη ∈ k∗ℓP,η and therefore βrbc,η = (vP , δP ). SinceEj,P = LP , it splits

βrbc,η over FP,η .

Now let P be a cold point and write D = D00+(uPπ
m
P , vP δP ) where D00 is unram-

ified at AP and uP , vP ∈ A∗
P . Thus D⊗ FP,η =

(
uPπ

m
η , vP δP

)
. Thus in Br (FP,η),

we have
(
uPπ

m
η , vP δP

)
= βrbc,η + (uη, wηπη). This implies that

βrbc,η =
(
uPπ

m
η , vP δP

)
− (uη, wηπη)

= (uP , vP δP ) + (wη, uη) + (πη, v
m
P δ

m
P uη) .
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Comparing residues, we get uη ∼= v−mP δ−mP up to ℓth powers and βrbc,η⊗FP,η equals

((uP , vP δP ) + (wη, uη))⊗ FP,η which is
(
uPw

−m
η , vP δP

)
⊗ FP,η in Br (FP,η).

Rows 6.1-6.4 and 6.8 of Table 15 and Rows 7.1-7.5 of Table 16 are relevant here. In

each case, Ej,P = FP
(

ℓ
√
uPπmP + vP δP

)
. Thus Ej,P ⊗ FP,η = FP,η

(
ℓ
√
vP δP

)
is

unramified and clearly splits βrbc,η over FP,η .

RES: Let Yη be of Type RES. Then Yη = Fη
(

ℓ
√
uη

)
and βrbc,η ∈ Br (Fη) with

D ⊗ Fη = βrbc,η + (uη, πη). If P is not a cold point, write D = D00 + (uP , πP ) +
(vP , δP ) ∈ Br(F ) where D00 is unramified at AP and uP , vP ∈ A∗

P . Thus

D⊗FP,η = (uP , πη)+(vP , δP ). Hence in Br (FP,η), we have (uP , πη)+(vP , δP ) =
βrbc,η + (uη, πη) which implies βrbc,η − (vP , δP ) =

(
u−1
η uP , πη

)
. Comparing

residues, we see that uη ∼= uP up to ℓth powers and βrbc,η⊗FP,η = (vP , δP )⊗FP,η.

If P is a cold point, D = D00 + (uPπ
m
P , vP δP ) ∈ Br(F ). Following a similar argu-

ment, we get βrbc,η equals
(
uPπ

m
η , vP δP

)
− (uη, πη) which equals (uP , vP δP ) +

(πη, v
m
P δ

m
P uη) in Br (FP,η). Comparing residues, we see that βrbc,η ⊗ FP,η =

(uP , vP δP )⊗FP,η . We investigate the relevant rows of the Tables in Proposition 7.1.

η of Type 1b:

Row 1.2 of Table 10: Here (vP , δP ) = 0 ∈ Br(F ) itself.

Row 2.2 of Table 11: Here (vP , δP ) = 0 ∈ Br(F ) itself.

Rows 5.3-5.4 and 5.9 of Table 14: Since P is a chilly point, we have uP = vP
j . In

any case (vP , δP ) is split by LP as vP becomes an ℓth power in LP .

Rows 6.2 and 6.4 of Table 15 and Row 7.2 of Table 16: Since P is a cold point, we are

interested in splitting (uP , vP δP ). Here Ej,P is FP
(

ℓ
√
uPπmP + vP δP

)
and hence

Ej,P ⊗ FP,η = FP,η
(

ℓ
√
vP δP

)
which clearly splits βrbc,η.

Row 8.6 of Table 17: Since P is a hot point and η is of Type 1b, βrbc,η = (vP , δP )

where vP ∈ ÂP
∗ℓ

. Thus βrbc,η is already split over FP,η.

η of Type 2:

Row 3.1 of Table 12: Here (vP , δP ) = 0 ∈ Br(F ) itself.

Row 4.1 of Table 13: Here (vP , δP ) = 0 ∈ Br(F ) itself.

Row 7.4 of Table 16: Since P is a cold point, we are interested in splitting (uP , vP δP ).
HereEj,P is FP

(
ℓ
√
uPπmP + vP δP

)
and henceEj,P ⊗FP,η = FP,η

(
ℓ
√
vP δP

)
which

clearly splits βrbc,η.

Rows 8.3- 8.4 of Table 17: Since P is a hot point and η is of Type 2, βrbc,η = (vP , δP )

where vP ∈ ÂP
∗

but not an ℓth power. Here Ej,P is either LP or FP
(

ℓ
√
δP

)
. In

either case, it splits βrbc,η over FP,η.

Proposition 8.6 (Yellow/Orange/Red/White). Let η ∈ N ′
0 andP ∈ η∩S0. Assume

further that η is coloured yellow, orange, red or white. Let D ≃ Mℓ (uη, wηπη) for

units wη, uη ∈ Âη
∗
. Let j = 1 or 2 and let Ej,P be as prescribed in Proposition 7.1.

Then,

1. E1,P ⊗ FP,η is a ramified extension of FP,η.

2. E2,P = LP if η is coloured yellow or orange.

3. a2,P is a unit along η.
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4. E2,P ⊗ FP,η is an unramified extension of FP,η and matches with the lift of

residues at η as etale algebras over FP,η.

5. Ej,P ⊗ FP,η splits D in Br (FP,η).

6. There exist wP , xi,P ∈ ÂP for i ≤ ℓ which are units along η such that

(a) E1,P ≃ FP [t]/(t
ℓ−wPπP ) and a1,P =

(
(wPπP )

mi,P xℓi,P
)
i

for mi,P ∈
Z.

(b)
(
wPw

−1
η , uη

)
= 0 ∈ Br (FP,η).

Proof. We will mention the relevant rows of the tables in Proposition 7.1 below,

whence Properties 1-5 become clear (Lemma 8.1 for Property 4). We will give a

proof of Property 6a & 6b in each case.

Row 1.1 of Table 10: η is coloured red/white. Here wP = 1 = xi,P . The proof is

similar to that of Proposition 8.3 5(b) for Row 1.3.

Row 2.1 of Table 11: η is coloured yellow/orange/red/white. Here wP = 1 = xi,P .

Since P is a Bns11 point, DP = (uP , πP ) is nonsplit. The proof is similar to that of

Proposition 8.3 5(b) for Row 2.3.

Row 5.6 of Table 14: η is coloured yellow. Unravelling the expression for a1,P
from Row 5.6, we see it is (πmi

P δni

P )i where mi = riℓ + jni. Let sj ∼= 1

mod ℓ. Thus ni = r′iℓ + smi for some r′i. Hence a1,P =
(
(πP δ

s
P )

mi δ
ℓr′i
P

)
i
. As

E1,P = FP

(
ℓ

√
πjP δP

)
= FP

(
ℓ
√
πP δsP

)
, we have wP = δsP and xi,P = δ

r′i
P here.

Writing D = D00 + (uP , πP ) + (vP , δP ) ∈ Br(F ) for D00 unramified at AP , we

have
(
vP , π

j
P δP

)
= (uη, wηπη) in Br (FP,η). Since πP = πη , comparing residues

we have vjP
∼= uη up to ℓth powers, and hence (uη, wη) = (vP , δP ). Since sj ∼= 1

mod ℓ, we have vP ∼= usη up to ℓth powers. Therefore (uη, wη) = (uη, δ
s
P ) which

implies
(
uη, δ

s
Pw

−1
η

)
= 0. Hence Properties 6a & 6b hold.

Rows 6.5, 6.6, 6.7 and 6.9 of Table 15 and Row 7.6 of Table 16: η is coloured red and

DP = (uPπ
m
P , vP δP ). The proof is similar to that of Proposition 8.3 5(b) of Rows

6.5-6.6.

Row 8.4 of Table 17: η is coloured orange. Here wP = 1 = xi,P . Writing D =
D00 +(uP , πP )+ (vP , δP ) ∈ Br(F ) forD00 unramified at AP , we have (uP , πP ) =
(uη, wηπη) in Br (FP,η). Since πP = πη, comparing residues we have that uP ∼= uη
up to ℓth powers, and hence (uη, wη) = 0. Hence Properties 6a & 6b hold.

Proposition 8.7 (0/1a). Let η ∈ N ′
0 be of Type 1a or 0 and P ∈ η ∩S0. Let j = 1

or 2 and let Ej,P be as prescribed in Propositions 7.1 and 7.2. Then

1. Ej,P ⊗ FP,η is an unramified (possibly split) extension of FP,η .

2. If Yη is of Type RAM, then a1,P = a and a2,P = 1.

Further if η is of Type 0, then there exist j, j′ such that {j, j′} = {1, 2} such that for

every P ∈ η ∩ S0, the element aj′,P is a unit in OY⊗FP,η
and Ej,P ≃ ∏

FP .
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Proof. By an inspection of Tables 9, 10, 11, 12, 13 and the choice ofEj,P in Proposi-

tion 7.2, it is clear that they are unramified along η. If Yη is of Type RAM, by Remark

5.2 it cannot intersect η′ ∈ N ′
0 where Yη′ is of Type SPLIT. Hence it cannot intersect

η′ ∈ N ′
0 which is coloured V, I, B, Ye, O, R, W or Bl. Inspecting Tables 9, 10, 11, 12,

13, 18, 19 and 20 shows that in this case, a1,P = a and a2,P = 1.

Now let us assume η is of Type 0 and let P ′
η = η ∩ S0. Then one of the following

holds (Proposition 6.4 and proof of Proposition 7.2): Case A) P ′
η = {Q} where Q is

not of Type As00, Case B) P ′
η = {Q,Q′} where Q is not of Type As00 and Q′ is of

Type As00. Case C) P ′
η consists of only Type As00 points.

Case A/B: Let Q ∈ η ∩ η′ (and Q′ ∈ η ∩ γ in Case B). Note that Q can be of Type

As10, B
s
10 or Bs20. Thus η′ can be Type 1a or coloured red, green, blue, white or black

(and γ is of Type 0 in Case B while Q′ has to be of subtype D1 or D2 as defined in

Section 7.2).

Set j = 1 and j′ = 2 if η′ is of Type 1a or coloured green, blue or black. Set j = 2 and

j′ = 1 if η′ is coloured red or white. An inspection of Tables 9, 10 and 12 for Case A

and Tables 19 and 20 for Case B18 verifies that our choice of j and j′ is compatible.

Case C: In this case each Pi ∈ P ′
η is of Type As00. Thus it has to be of subtype D2 or

D3. Set j = 1 and j′ = 2. An inspection of Tables 18 and 19 verifies the compatibility

of this choice.

9 Understanding Ej,P in terms of norms from some extensions

In this section, we continue to assume that η ∈ N ′
0 with P ∈ S0∩η being the intersec-

tion of two distinct irreducible curves with generic points η1 and η2. Let πP , δP , πη be

as before. We study Ej,P (as prescribed in Propositions 7.1 and 7.2) vis-á-vis norms

from some related extensions.

9.1 When η is 1b or 2 and Yη is RAM

Let η = η1 or η2 be of Type 1b or 2 with Yη of Type RAM. By Proposition 8.5, Ej,P
is unramified along η for j = 1, 2 and splits βrbc,η over FP,η . Let Yη = Fη

(
ℓ
√
wηπη

)

where wη ∈ Âη
∗
. Thus D = βrbc,η + (uη, wηπη) where u′ = uη ∈ kη/k

∗ℓ
η is

the residue of Dη. In this subsection, we show that u′ is locally a norm from Ej,P .

This will be useful in the final part of this paper (Section 13) where we show that the

constructed Ejs are good.

Proposition 9.1. Let η, u′ and P be as above. Then there exist w1,P , w2,P ∈ kP,η
such that for j = 1 or 2,

1. Ej,P ⊗ FP,η = kP,η[t]/(t
ℓ − wj,P )

2. (wj,P , u
′) = 0 ∈ Br (kP,η).

18Appeal to Lemma 2.6 and Proposition 3.3 for Rows 9.5’, 9.7’, 9.8’ and 10.2’.
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Proof. Since η is Type 1b/2 and Yη is RAM, η is coloured green. We investigate the

relevant rows in the tables given in the proof of Proposition 7.1.

For the following situations, choose w1,P = w2,P = 1.

- Bs10 point, η of Type 1b (cf. Row 1.2 of Table 10 and Row a in Table 21)

- some Bns11 points(*), η of Type 1b (cf. Row 2.2∗ of Table 11 and Row b in Table 21)

- Bs20 point, η of Type 2 (cf. Row 3.1 of Table 12 and Row c in Table 21)

- some Bns21 points(*), η of Type 2 (cf. Row 4.1∗ of Table 13 and Row d in Table 21)

- CHot12 point, η of Type 1b (cf. Row 8.5 of Table 17 and Row l in Table 21).

For the following situations, choose w1,P = w2,P = u′.

- Bns11 point, η of Type 1b : (cf. Row 2.2 of Table 11 and Row b in Table 21)

- Bns21 point, η of Type 2 : (cf. Row 4.1 of Table 13 and Row d in Table 21)

- CChilly11 point, η of Type 1b : (cf. Rows 5.1, 5.2 and 5.8 of Table 14 and Rows e,f in

Table 21)

- CCold11 point, η of Type 1b : (cf. Rows 6.1-6.4 and 6.8 of Table 15 and Rows g,h in

Table 21)

- CCold12 point, η of Type 1b : (cf. Rows 7.1, 7.4 and 7.5 of Table 16 and Row i in

Table 21)

- CCold12 point, η of Type 2 : (cf. Rows 7.1-7.3 of Table 16 and Row j in Table 21)

- CHot12 point, η of Type 1b : (cf. Row 8.1 of Table 17 and Row l in Table 21).

For CHot12 points, η of Type 2 (cf. Rows 8.1-8.2 of Table 17 and Row m in Table 21),

choose w1,P = w2,P ∈ O∗
kP,η

\ O∗ℓ
kP,η

. Since u′ = 1 here, (wj,P , u
′) = 0.

9.2 When η is 1b or 2 and Yη is RES

Let η = η1 or η2 be of Type 1b or 2 with Yη of Type RES. In this subsection, we

will define certain extensions L̃P and L̃
′
P of kP,η and understand Ej,P in terms of

norms from these extensions. This will be helpful in constructing Ej,η over Fη by

approximating local data.

Since Yη is of Type RES, we have Yη ≃ Fη
(

ℓ
√
uη

)
where u′ = uη ∈ kη/k

∗ℓ
η is the

residue ofD⊗Fη. Recall that Gal (Yη/Fη) = 〈ψ〉. Let Y ′ be Y ⊗ Fη over kη and by

abuse of notation, let Gal (Y ′/kη) = 〈ψ〉 also. Finally let Y ′
P be Y ⊗ FP,η over kP,η

with an induced action of ψ.

Note that if Y ′
P is split, then Y ′

P ≃ ∏
kP,η where x ∈ Y ′ is identified with the tuple(

x, ψ(x), . . . , ψℓ−1(x)
)
. Note that ψ acts on

∏
kP,η by permutations. That is, for

xi ∈ kP,η,

ψ(x1, x2, . . . , xℓ) = (x2, x3, . . . , xℓ, x1).

Let aj,P and Ej,P be as prescribed in Propositions 7.1 and 7.2. By Proposition 8.5,

Ej,P is unramified along η for j = 1, 2 and splits βrbc,η over FP,η. Also aj,P are units

along η (Proposition 3.3). Set bP := a1,P , b
′
P := a2,P in Y ′

P . If Y ′
P is split, then set

bP = (bi,P )i ∈
∏
kP,η and b′P =

(
b′i,P

)
i
∈ ∏

kP,η .
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When Y ′
P is not split, set

L̃P = Y ′
P

(
ℓ
√
bP ,

ℓ
√
ψ(bP ), . . . ,

ℓ

√
ψℓ−1(bP )

)

L̃
′
P = Y ′

P

(
ℓ

√
b′P ,

ℓ

√
ψ(b′P ), . . . ,

ℓ

√
ψℓ−1(b′P )

)
.

Since Y ′
P is a nonsplit extension of kP,η and N(bP ) = 1 = N (b′P ), first of all bP and

b′P are units in OY ′,P . Also by Lemmata 2.3 and 2.5, we have bP , b
′
P ∈ Y ′

P
∗ℓ

. Hence

ψj (bP ) , ψ
j (b′P ) are all ℓth powers in Y ′

P also. Therefore L̃P = Y ′
P = L̃

′
P .

When Y ′
P is split, set

L̃P = kP,η

(
ℓ
√
b1,P ,

ℓ
√
b2,P , . . . ,

ℓ
√
bℓ,P

)

L̃
′
P = kP,η

(
ℓ

√
b′1,P ,

ℓ

√
b′2,P , . . . ,

ℓ

√
b′ℓ,P

)

Note that in either case L̃P /kP,η and L̃
′
P /kP,η are Galois extensions.

Proposition 9.2. Let η, P , u′, L̃P and L̃
′
P be as above. There existwP , w

′
P ∈ kP,η,

zP ∈ L̃P and z′P ∈ L̃
′
P such that

1. E1,P ⊗ FP,η = kP,η[t]/(t
ℓ − wP ), NL̃P /kP,η

(zP ) = wP and (wP , u
′) = 0 ∈

Br (kP,η).

2. E2,P ⊗ FP,η = kP,η[t]/(t
ℓ − w′

P ), NL̃
′

P /kP,η
(z′P ) = w′

P and (w′
P , u

′) = 0 ∈
Br (kP,η).

Proof. Since η is of Type 1b or 2 and Yη is RES, η is coloured green. We investigate

the relevant rows in the tables given in the proof of Proposition 7.1.

η of Type 1b:

Choose wP = w′
P = zP = z′P = 1 for Bs10 points (cf. Row 1.2 of Table 10 and Row

a in Table 21) and CHot12 points (cf. Row 8.6 of Table 17 and Row l in Table 21).

For the following situations, Y ′
P = kP,η is a nonsplit (unramified/ramified extension).

Thus L̃P = L̃
′
P = Y ′

P = kP,η

(
ℓ
√
u′
)

. Choose wP = w′
P = u′ and zP = z′P = ℓ

√
u′.

- Bns11 point : (cf Row 2.2 of Table 11 and Row b in Table 21)

-CChilly11 point : (cf. Rows 5.3, 5.4 and 5.9 of Table 14 and Rows e,f in Table 21)

-CCold11 point : (cf. Rows 6.2 and 6.4 of Table 15 and Row g,h in Table 21)

-CCold12 point : (cf Row 7.2 of Table 16 and Row i in Table 21)

η of Type 2:

Choose wP = w′
P = zP = z′P = 1 for Bs20 points (cf Row 3.1 of Table 12 and Row

c in Table 21).

For the following situations, Y ′
P /kP,η is a nonsplit (unramified/ramified extension).

Thus L̃P = L̃
′
P = Y ′

P = kP,η

(
ℓ
√
u′
)

. Choose wP = w′
P = u′ and zP = z′P = ℓ

√
u′.

- Bns21 point : (cf. Row 4.1 of Table 13 and Row d in Table 21)

- CCold12 point : (cf Row 7.4 of Table 16 and Row j in Table 21).
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We are left with the case of hot points. Rows 8.3-8.4 of Table 17 are relevant here (with

η = η2). Note that by Row m of Table 21, we know Y ′
P is split. Hence u′ ∈ k∗ℓP,η

and therefore (wP , u
′) = (w′

P , u
′) = 0 for whatever be the choice of wP and w′

P .

However we need to be more careful in making our choice to ensure the existence of

zP and z′P .

Row 8.3 of Table 17: Observe η1 is coloured indigo. This implies that the bi,P are

all units in the local field kP,η . Hence L̃P is an unramified extension of kP,η . By

construction, b′i,P = 1 and hence L̃
′
P = kP,η. Thus all units of kP,η are norms from

L̃P and L̃
′
P . Choose wP = w′

P to be a unit in kP,η which is not an ℓth power and

zP ∈ L̃P such that NLP /kP,η
(zP ) = wP . Also set z′P = w′

P .

Row 8.4 of Table 17: By choice bi,P = πmi

P . Hence we see that L̃P = kP,η
(

ℓ
√
πP

)
.

Set wP = πP which is clearly a norm from L̃P . Note that b′i,P = zi,P . Since zi,P

are units in ÂP
∗
, we see that L̃

′
P is an unramified extension of kP,η. Thus all units of

kP,η are norms from L̃
′
P . As before choose w′

P to be a unit in OkP,η
which is not an

ℓth power and z′P ∈ L̃
′
P such that NL̃

′

P /kP,η
(z′P ) = w′

P .

9.3 When η is 1a

Let η = η1 ∈ N0 be of Type 1a. For convenience, we again summarize the choice of

Ej,P at points P ∈ η ∩ S0 for j = 1, 2 while also tabulating the shape of Y in Table

22. Both extensions are unramified along η. By Proposition 3.3 and Lemma 4.2, a is

a unit along η up to ℓth powers.

9.3.1 When Yη is NONRES

Proposition 9.3. Let η = η1 be of Type 1a and let P ∈ η ∩ S0. Further as-

sume Yη is of Type NONRES. Let Y ′ = Yη = kη

(
ℓ
√
u′
)

and Y ′
P = Y ′ ⊗ kP,η.

If Y ′
P is nonsplit, set L̃P = L̃

′
P = Y ′

P . If Y ′
P =

∏
kP,η, let a1,P = (bi,P )i

and a2,P =
(
b′i,P

)
i

in
∏
kP,η and set L̃P = kP,η

(
ℓ
√
b1,P , ℓ

√
b2,P , . . . , ℓ

√
bℓ,P

)
and

L̃
′
P = kP,η

(
ℓ

√
b′1,P ,

ℓ

√
b′2,P , . . . ,

ℓ

√
b′ℓ,P

)
.

Then there exist wP , w
′
P ∈ kP,η , zP ∈ L̃P and z′P ∈ L̃

′
P such that

1. E1,P ⊗ FP,η = kP,η[t]/(t
ℓ − wP ) and NL̃P /kP,η

(zP ) = wP .

2. E2,P ⊗ FP,η = kP,η[t]/(t
ℓ − w′

P ) and NL̃
′

P /kP,η
(z′P ) = w′

P .

Proof. In Table 22, the Rows NR.1-NR.12 are relevant. We only give the choices of

wP and w′
P from which existence of zP , z

′
P become clear. For Rows NR.1-NR.4 and

NR.10, choose wP = w′
P = 1. For Row NR.7, L̃P = kP,η

(
ℓ
√
δP

)
is a ramified

extension and L̃′
P /kP,η is an unramified extension. Choose wP = δP and w′

P to

be any unit in OkP,η
which is not an ℓth power. For Row NR.8, a similar proof as
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Table 22: Patching data at closed points when η1 is of Type 1a
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in Row NR.7 works. For the remaining rows, L̃P and L̃′
P are unramified extensions

of kP,η . So again choose wP = w′
P to be any unit in OkP,η

which is not an ℓth

power.

9.3.2 When Yη is SPLIT

Proposition 9.4. Let η = η1 be of Type 1a and let P ∈ η ∩ S0. Further

assume Yη is of Type SPLIT. Let19 a1,P = (bi,P ) (resp. a2,P =
(
b′i,P

)
). Set

XP = kP,η
(

ℓ
√
b1,P , . . . , ℓ

√
bℓ,P

)
and X ′

P = kP,η

(
ℓ

√
b′1,P , . . . ,

ℓ

√
b′ℓ,P

)
.

Then there exist wP , w
′
P ∈ kP,η , zP ∈ XP and z′P ∈ X ′

P such that

1. E1,P ⊗ FP,η = kP,η[t]/(t
ℓ − wP ) and wP = NXP /kP,η

(zP ).

2. E2,P ⊗ FP,η = kP,η[t]/(t
ℓ − w′

P ) and w′
P = NX′

P /kP,η
(z′P ).

Proof. In Table 22, the Rows S.1-S.7 are relevant. We only give the choices of wP
and w′

P from which the existence of zP , z
′
P become clear.

For Rows S.1-S.2, choose wP = w′
P = 1. For Row S.4, XP = kP,η

(
ℓ
√
δP

)
is a

ramified extension and X ′
P /kP,η is an unramified extension. Choose wP = δP and

w′
P to be any unit in OkP,η

which is not an ℓth power. For Row S.5, a similar proof as

in Row S.4 works. For Rows S.3, S.6 and S.7, XP and X ′
P are unramified extensions

of kP,η . So choose wP = w′
P to be any unit in OkP,η

which is not an ℓth power.

10 Patching data at coloured points of N0

Let η ∈ N0 be of Type 1b or 2 where N0 denotes the subset N ′
0 ∩X0. Let πη denote

the parameter of Fη fixed in Section 6.2 and let βrbc,η be as defined in Section 4. For

j = 1, 2 and any P ∈ S0, let Ej,P and aj,P be as prescribed in Propositions 7.1. We

now prescribe the choices for Ej,η and aj,η .

Proposition 10.1 (Violet/Indigo/Black). Let η ∈ N0 be coloured violet, indigo or

black. Set E1,η and E2,η to be the lift of residues at Âη . Further, set a1,η = a and

a2,η = 1. Then for j = 1, 2, we have

1. a1,ηa2,η = a.

2. D ⊗ Ej,η is split.

3. aj,η is a norm from Ej,η ⊗ Yη/Yη.

4. NYη/Fη
(aj,η) = 1.

5. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

6. aj,P = aj,η ∈ Y ⊗ FP,η for each point P ∈ S0 ∩ η.

19Modify aj,P by ℓth powers of the parameter πη if needed to define (bi,P ) and (b′
i,P

).
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Proof. Recall that we have D = βrbc,η + (uη, πη) in Br (Fη) where βrbc,η is an

unramified algebra with index at most ℓ. And by construction, Ej,η ≃ Fη
(

ℓ
√
uη

)
.

Properties 1 & 4 are immediate, while Properties 5 & 6 follow from Proposition

8.2. Since D is ramified at η, we have [Ej,η : Fη] = ℓ. Since η is of Type 1b,

Dη ≃ Mℓ (uη, wηπη) for some unit wη ∈ Âη
∗
. Thus D ⊗ Ej,η is split which shows

Property 2 holds.

Since η is coloured violet/indigo/black, then it has to be a Ch/H/Z curve respectively.

In particular η is a Type 1b curve with Yη of Type SPLIT and a =
(
a′i,η

)
i

where

each a′i,η is a unit up to ℓth powers in Âη . Therefore the fact that a ∈ Nrd (D ⊗ Yη)

translates to
(
a′i,η

)
(uη, πη) = 0 in H3 (Fη, µℓ) for all i (Lemma 2.7). This implies by

taking residues that
(
uη, a′i,η

)
= 0 in H2 (kη, µℓ) for all i. Hence each a′i,η is a norm

from E1,η . Since clearly 1 is a norm from E2,η , Property 3 holds.

Proposition 10.2 (Blue). Let η ∈ N0 be coloured blue. Set E1,η to be the lift of

residues at Âη. Then there exists a ramified cyclic extension E2,η/Fη of degree ℓ and

elements a1,η = (ã1,i,η)i and a2,η = (ã2,i,η)i ∈ ∏
Fη such that for j = 1, 2, the

following holds:

1. a1,ηa2,η = a ∈ Yη , i.e. ã1,i,η ã2,i,η = a′i,η for each i.

2. D ⊗ Ej,η is split.

3. aj,η is a norm from Ej,η ⊗ Yη/Yη, i.e . ãj,i,η is a norm from Ej,η for each i.

4. NYη/Fη
(aj,η) = 1, i.e.

∏
i ãj,i,η = 1.

5. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

6. ãj,i,ηµj,i,P,η = ãj,i,P ∈ FP,η for all i at each point P ∈ S0 ∩ η for some

µj,i,P,η ∈ F ∗ℓ
P,η such that

∏
i µj,i,P,η = 1.

7. E1,η/Fη is unramified and cyclic of degree ℓ.

Proof. Since η is coloured blue, it is a C curve of Type 1b with Yη of Type SPLIT.

Write D ≃ Mℓ (uη, wηπη) where wη, uη ∈ Âη
∗

and a =
(
a′i,η

)
i

where a′i,η = x′iπ
mi
η

with x′i ∈ Âη
∗
. Because N(a) = 1, we have

∑
mi = 0 and

∏
x′i = 1.

Let P ∈ η ∩ S0. By Proposition 8.3, E2,P = FP [t]
(tℓ−wP πP )

and a2,P = (ã2,i,P ) where

ã2,i,P = (wPπP )
mi,P xℓi,P for some wP , xi,P ∈ ÂP which are units along η. Further

E1,P matches the lift of residues along FP,η and a1,P = (ã1,i,P ) where ã1,i,P are all

units along η. Thus, since a is arranged to be in good shape, we have mi = mi,P .

Let X̃η = Fη
(

ℓ
√
uη

)
and let Xη = kη

(
ℓ
√
uη

)
. Our goal is to find a θη ∈ Âη

∗
which

is a norm from X̃η so that wηθη is close to wP in kP,η for each P ∈ η ∩ S0.

Documenta Mathematica 26 (2021) 337–413



Reduced Whitehead Groups of Algebras 389

If such a θη exists, then we set

E2,η = Fη

(
ℓ
√
wηθηπη

)
,

E1,η = X̃η = Fη
(

ℓ
√
uη

)
,

ã2,i,η = (wηθηπη)
mi ∀ i ≤ ℓ− 1,

ã2,ℓ,η = (ã2,1,η . . . ã2,ℓ−1,η)
−1
,

a1,η = aa−1
2,η.

Thus clearly Properties 1, 4, 5, 6 and 7 hold. Since θη is assumed to be a norm from

X̃η, we have (uη, θη) = 0 ∈ Br (Fη). Hence D = (uη, wηθηπη) ∈ Br (Fη), which

therefore implies Property 2 holds.

Let us check that Property 3 holds. Clearly ã2,i,η = (wηθηπη)
mi is a norm from

E2,η for each i ≤ ℓ − 1. Since 1 is a norm always, so is ã2,ℓ,η. It is left to show that

ã1,i,η = x′i (wηθη)
−mi is a norm from X̃η for each i ≤ ℓ−1 (which will automatically

imply ã1,i,η is a norm from X̃η also as N(a1,η) = 1).

Since each a′i,η is a reduced norm of D, we have (uη, wηθηπη)
(
a′i,η

)
=

0. This implies (uη, wηθηπη)
(
(wηθηπη)

mix′i (wηθη)
−mi

)
= 0 and hence

(uη, wηθηπη)
(
x′i (wηθη)

−mi

)
= 0. Taking residues, we see

(
uη, x′i (wηθη)

−mi

)
=

0 and thus each ã1,i,η is a norm from X̃η.

Now let us find θη. Recall that Xη is the residue of Dη. For each P ∈ η ∩ S0,

by Proposition 8.3 5(b), we know that wPw
−1
η is a norm from Xη ⊗ kP,η . Thus for

each P ∈ η ∩ S0, let zP,η ∈ Xη ⊗ kP,η such that N(zP,η) = wPw
−1
η . By weak

approximation, find z ∈ Xη which is close to each zP,η. Set θ = NXη/kη (z) ∈ kη
and let θη denote its lift in Fη . This θη satisfies the required properties.

Proposition 10.3 (Green(1)). Let η ∈ N0 be of Type 1b/2 with Yη of Type NON-

RES. Set E1,η and E2,η to be the lift of residues at Âη. Further, set a1,η = a and

a2,η = 1. Then for j = 1, 2, we have

1. a1,ηa2,η = a

2. D ⊗ Ej,η has index at most ℓ.

3. D ⊗ Y ⊗ Ej,η is split.

4. aj,η is a norm from Ej,η ⊗ Yη/Yη.

5. NYη/Fη
(aj,η) = 1.

6. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

7. aj,P = aj,η ∈ Y ⊗ FP,η for each point P ∈ S0 ∩ η.
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Proof. By hypothesis, η is coloured green. Recall that we have D = βrbc,η +
(uη, πη) in Br (Fη) where βrbc,η is unramified with index at most ℓ. By construction,

Ej,η ≃ Fη
(

ℓ
√
uη

)
. Properties 1 & 5 are immediate while Properties 6 & 7 follow from

Proposition 8.4. Note that D⊗Ej,η = βrbc,η ⊗Ej,η ∈ Br (Fη) and hence Property 2

holds.

Since D is ramified at η, we have [Ej,η : Fη] = ℓ. As Yη is NONRES, we

have Ej,η ⊗ Yη/Yη is a field extension of degree ℓ. Then by Lemma 2.9, the

index of (D ⊗ Yη) equals index
(
βrbc,η ⊗Fη

Yη ⊗Fη
Ej,η

)
[Ej,η ⊗ Yη : Yη] which

is index
(
βrbc,η ⊗Fη

Yη ⊗Fη
Ej,η

)
× ℓ. Since index (D ⊗ Yη) ≤ ℓ, we see that

Ej,η ⊗Fη
Yη splits βrbc,η and hence also D, implying Property 3.

By hypothesis, a ∈ Nrd (D ⊗ Yη). That is, (a) [βrbc,η] + (a) (uη, πη) =
0 in H3 (Yη, µℓ). By Proposition 3.3, a is a unit at η. By Lemma 2.7, a is a reduced

norm of βrbc,η⊗Yη and therefore we have that (a) (uη, πη) = 0 in H3 (Yη, µℓ). Thus

by taking residues, we see that (uη, a) = 0 in H2
(
Yη, µℓ

)
which would imply that a

is a norm from Ej,η ⊗Fη
Yη/Yη. Hence Property 4 holds.

Proposition 10.4 (Green(2)-RAM). Let η ∈ N0 be of Type 1b or 2 and let Yη be

of Type RAM. Set a1,η = a and a2,η = 1. Then for j = 1, 2, there exist Ej,η/Fη,

unramified cyclic extensions of degree ℓ such that

1. a1,ηa2,η = a

2. Ej,η splits the residual Brauer class βrbc,η.

3. D ⊗ Ej,η has index at most ℓ and D ⊗ Y ⊗ Ej,η is split.

4. aj,η is a norm from Ej,η ⊗ Yη/Yη.

5. NYη/Fη
(aj,η) = 1.

6. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

7. aj,η = aj,P ∈ Y ⊗ FP,η for each point P ∈ S0 ∩ η.

8. The residue of Dη is a norm from Ej,η/kη .

Proof. By hypothesis, η is coloured green. Properties 1 & 5 are immediate. By

Lemma 2.3, a = a1,η ∈ Y ∗ℓ
η . Since a2,η = 1, Property 4 holds for whatever de-

gree ℓ extensions Ej,η we choose. We first construct Ej,η/kη and then set Ej,η/kη to

be the unramified lift of Ej,η/kη. We would like to apply Lemma 2.10 to construct

Ej,η .

Recall that we have D = βrbc,η + (uη, wηπη) in Br(Fη) where Yη ≃ Fη( ℓ
√
wηπη)

for wη ∈ Âη
∗
. Let D′ = βrbc,η, the residual Brauer class considered over the residue

field kη . Thus D′ is a central simple algebra of exponent and index at most ℓ over

global field kη . Let u′ := uη ∈ kη . Let P ′
η := η ∩S0. Let Q′

η denote the set of closed

points Q ∈ η not in P ′
η such that D′ ⊗ kQ,η 6= 0.

For P ∈ P ′
η, set E′

j,P := Ej,P ⊗ FP,η/kP,η and let w1,P , w2,P ∈ k∗P,η be the

ones obtained from Proposition 9.1. So Ej,P ⊗ FP,η = kP,η[t]/(t
ℓ − wj,P ) and
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(u′, wj,P ) = 0. For Q ∈ Q′
η, set E′

1,Q and E′
2,Q to be the unique unramified field

extension of kQ,η and set w1,Q = w2,Q be any unit in OkQ,η
which is not an ℓth power.

Let us verify that the hypotheses of Lemma 2.10 hold now. Let P ∈ P ′
η∪Q′

η. We first

check that (wj,P , u
′) = 0 ∈ Br (kP,η). For P ∈ P ′

η, this is assured by Proposition 9.1.

For P ∈ Q′
η, u′ is a unit in OkP,η

. Since wj,P is a unit, by local class field theory,

(wj,P , u
′) = 0.

Next we verify thatD′⊗E′
j,P is trivial. ForP ∈ P ′

η, this is assured by Proposition 8.5.

For P ∈ Q′
η, since eachE′

j,P is a nonsplit unramified extension of degree ℓ, local class

field theory guarantees that it will split any index ℓ algebra over kP,η.

Clearly for each Q 6∈
(
P ′
η ∪Q′

η

)
, D′ ⊗ kQ,η is split.

Thus Lemma 2.10 can be used to construct E1,η and E2,η over kη. Setting E1,η and

E2,η to be their respective unramified lifts over Fη , it is immediate that Properties 2,

6, and 8 are satisfied. Property 7 is guaranteed by again using Proposition 8.5.

To complete the proof of Property 3, note that as Ej,η splits βrbc,η and Yη =
Fη

(
ℓ
√
wηπη

)
and D = βrbc,η + (uη, wηπη) ∈ Br (Fη), it is immediate that

index (D ⊗F Ei,η) ≤ ℓ and that D ⊗ Yη ⊗ Ej,η is split.

Proposition 10.5 (Green(2)-RES). Let η ∈ N0 be of Type 1b or 2 and let Yη be

of Type RES. Then for j = 1, 2, there exist Ej,η/Fη, unramified cyclic extensions of

degree ℓ and elements a1,η, a2,η ∈ OYη
such that

1. a1,ηa2,η = a.

2. Ej,η splits βrbc,η.

3. D ⊗ Ej,η has index at most ℓ and D ⊗ Y ⊗ Ej,η is split.

4. aj,η is a norm from Ej,η ⊗ Yη/Yη.

5. NYη/Fη
(aj,η) = 1.

6. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

7. aj,ηµj,P,η = aj,P in Y ⊗ FP,η for each point P ∈ S0 ∩ η for some µj,P,η ∈
OY⊗FP,η

such that µj,P,η ∼= 1 mod (πη) and N(µj,P,η) = 1.

8. The residue of D ⊗ Fη is a norm from Ej,η/kη.

Proof. By hypothesis, η is coloured green. Since Yη is of Type RES, by Lemma 3.3

we have that a ∈ O∗
Y,η. Recall that we have D = βrbc,η + (uη, πη) in Br(Fη). Set

u′ := uη ∈ kη , Y ′ := Yη = kη

(
ℓ
√
u′
)

and a′ = a ∈ Y ′ and let Gal (Y ′/kη) = 〈ψ〉.
Let P ′

η := η ∩ S0. By Proposition 8.5, aj,P is a unit along η. First let’s construct

a′1 ∈ Y ′ approximating a1,P ∈ Y ⊗ FP ⊗ FP,η for each P ∈ P ′
η. Since N(a1,P ) =

1, by Hilbert 90 there exists cP ∈ Y ′⊗kP,η such that c−1
P ψ (cP ) = a1,P . Using weak

approximation, find c ∈ Y ′ which is close to cP for each P ∈ P ′
η. Set a′1 = c−1ψ(c)

and set a′2 = a′a′1
−1

. Let a1,η denote a lift of a′1 and let a2,η = aa−1
1,η.
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Therefore Properties 1, 5 & 7 are immediate. We will first construct Ej,η/kη and

then set Ej,η/kη to be the unramified lift of Ej,η/kη. We appeal to Lemma 2.11 to

construct Ej,η .

Let D′ = βrbc,η, the residual Brauer class considered over the residue field kη. Thus

D′ is a central simple algebra of exponent and index at most ℓ over global field kη .

Let Q′
η denote the set of closed points Q ∈ η not in P ′

η such that D′ ⊗ kQ,η 6= 0.

Let j = 1 or 2. For P ∈ P ′
η, set E′

j,P := Ej,P ⊗ FP,η/kP,η. For P ∈ Q′
η, set E′

j,P to

be the unique unramified field extension of kP,η . Let L̃ denote the Galois closure of

Y ′( ℓ
√
a′1) and let L̃

′
denote the Galois closure of Y ′( ℓ

√
a′2).

Whenever Y ′ ⊗ kQ,η is not split, since a′1 and a′2 have norm 1, they are also units and

in fact ℓth powers in the complete discretely valued field Y ′ ⊗ kQ,η for every Q ∈ η
(Lemmata 2.3 and 2.5). Further, since Yη is RES, we note that Y ′ is unramified except

at points P ∈ S0 ∩ η of Type CCold11 or CCold12 . For each P ∈ P ′
η, recall the extensions

L̃P , L̃
′
P defined in Section 9.2. Note that the extension L̃⊗kηkP,η ≃ ∏g

i=1 L̃P and

extension L̃
′ ⊗kηkP,η ≃ ∏h

j=1 L̃
′
P for some g, h ≥ 1.

Proposition 9.2 says that there exist wP , w
′
P ∈ kP,η , zP ∈ L̃P and z′P ∈ L̃

′
P so that

E′
1,P = kP,η[t]/

(
tℓ − wP

)
, NL̃P /kP,η

(zP ) = wP , E′
2,P = kP,η[t]/

(
tℓ − w′

P

)
and

NL̃
′

P /kP,η
(z′P ) = w′

P . For each P ∈ Q′
η, let wP = w′

P be any unit in OkP,η
which is

not an ℓth power.

We now construct20 the extensions Ej,η using Lemma 2.11 by verifying that the hy-

potheses of the same hold. Let P ∈ P ′
η ∪ Q′

η.

We need to find z̃P ∈ L̃⊗kP,η =
∏

L̃P (respectively z̃′P ∈ L̃
′ ⊗kP,η =

∏
L̃
′
P ) such

that its norm to kP,η is wP (resp w′
P ). For P ∈ P ′

η, set z̃P = (zP , 1, 1, . . . , 1) and

z̃′P = (z′P , 1, 1, . . . , 1) and use Proposition 9.2 to conclude the proof in this case. For

P ∈ Q′
η , we claim that Y ′

P is a nonsplit unramified extension of kP,η. This is because

of the following:

Write D = D00 + (uP , πP ) ∈ Br(F ) where uP ∈ ÂP
∗

and πP is a prime corre-

sponding to the curve η ([S97]). We also have D = βrbc,η + (uη, πη) ∈ Br (Fη).

Note that πP = πηwη ∈ Fη where wη ∈ Âη
∗
. Comparing these two expressions in

Br (FP,η), we see (uP , wη) + (uP , πη) = βrbc,η + (uη, πη). Taking residues, we see

that uPuη
−1 = 1 up to ℓth powers in kP,η . And hence βrbc,η = (uη, wη) ∈ Br (FP,η).

Now we are looking at a place P 6∈ P ′
η such that this algebra is not trivial. In particu-

lar, this implies uη is not an ℓth power. Therefore Y ′
P is not split.

As observed before, this further implies a′1 and a′2 are units (and in fact ℓth powers) in

OY ′

P
. Thus L̃⊗kP,η =

∏
L̃P and L̃

′ ⊗kP,η =
∏

L̃
′
P where L̃P = L̃

′
P = Y ′

P . Since

Y ′
P is unramified nonsplit extension of kP,η, every unit of kP,η is a norm from it and

hence from L̃P and L̃′
P , which finishes the proof of this case.

We need to verify that D′ ⊗ E′
j,P is trivial for all P ∈ η. For P ∈ P ′

η, use Proposi-

20If a′j is an ℓth power in Y ′, Property 4 is automatically satisfied for aj,η . A check of the relevant

rows mentioned in Proposition 8.5 show u′ is a norm from Ej,P ⊗ kP,η. We can then use Lemma 2.10 to

construct Ej,η .
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tion 8.5 to conclude the proof in this case. For P ∈ Q′
η, since each E′

j,P is a nonsplit

unramified extension of degree ℓ, local class field theory guarantees that it will split

any index ℓ algebra over kP,η. Also clearly for each Q 6∈
(
P ′
η ∪ Q′

η

)
, D′ ⊗ kQ,η is

split already.

We need to verify that (wP , a
′
1)y = (w′

P , a
′
2)y = 0 for every valuation y ∈ ΩY ′ lying

over P . For P ∈ P ′
η, this is assured by Proposition 7.1 (4). For P ∈ Q′

η, we have

already noted that Y ′
P is unramified and nonsplit over kP,η . By Lemma 2.5, a′1 and a′2

are ℓth powers in Y ′ ⊗ kP,η. So (wP , a
′
1) = 0 = (w′

P , a
′
2).

Thus Lemma 2.11 can be used to construct Ej,η over kη for j = 1, 2. Setting Ej,η
to be their respective unramified lifts over Fη , it is immediate that Properties 2, 4,

6 and 8 are satisfied. To complete the proof of Property 3, note that as Ej,η splits

βrbc,η, Yη = Fη
(

ℓ
√
uη

)
and D = βrbc,η + (uη, πη) ∈ Br (Fη), it is immediate that

index (D ⊗F Ej,η) ≤ ℓ and that D ⊗ Yη ⊗ Ej,η is split.

Proposition 10.6 (Yellow/Orange/Red/White). Let η ∈ N0 be coloured yellow,

orange or white. Set E2,η to be the lift of residues at Âη. Then there exists a

ramified cyclic extension E1,η/Fη of degree ℓ and elements a1,η = (ã1,i,η) and

a2,η = (ã2,i,η) ∈
∏
Fη such that for j = 1, 2, the following holds:

1. a1,ηa2,η = a ∈ Yη , i.e. ã1,i,η ã2,i,η = a′i,η for each i.

2. Ej,η splits D.

3. aj,η is a norm from Ej,η ⊗ Yη/Yη, i.e . ãj,i,η is a norm from Ej,η for each i.

4. NYη/Fη
(aj,η) = 1, i.e.

∏
i ãj,i,η = 1.

5. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

6. ãj,i,ηµj,i,P,η = ãj,i,P ∈ FP,η for all i at each point P ∈ S0 ∩ η for some

µj,i,P,η ∈ F ∗ℓ
P,η such that

∏
i µj,i,P,η = 1.

7. E2,η/Fη is unramified and cyclic of degree ℓ.

Proof. By hypothesis, η is a Ch/H/C/Z curve of Type 1b with Yη of Type SPLIT. The

proof is similar to the proof of Proposition 10.2 (we appeal to Proposition 8.6 to ensure

compatibility at branches).

11 Patching data at uncoloured points of N0

Let η ∈ N0 be of Type 1a or 0 and let πη be a parameter of Fη as before. Set

P ′
η := η ∩ S0. If η is of Type 0, set Q′

η := ∅. If η is of Type 1a, set D′ = D ⊗ Fη
over the residue field kη. Thus D′ is a central simple algebra over the global field kη
of exponent and index dividing ℓ. Let Q′

η denote the set of closed points Q ∈ η not

in P ′
η such that D′ ⊗ kQ,η 6= 0. For j = 1, 2 and any P ∈ S0, let Ej,P and aj,P be

as prescribed in Propositions 7.1 and 7.2. We now prescribe the choices for Ej,η and

aj,η. Tables 9, 10, 11, 12, 13, 18, 19 and 20 are relevant in this section.
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Proposition 11.1 (0/1a-RAM). Let η ∈ N0 be of Type 0 or 1a and let Yη be of Type

RAM. Set a1,η = a and a2,η = 1. Then for j = 1, 2, there exist Ej,η/Fη, unramified

cyclic extensions of degree ℓ such that

1. a1,ηa2,η = a in Yη.

2. D ⊗ Ej,η is split. If η is of Type 0, then Ej,η ≃ ∏
Fη .

3. aj,η is a norm from Ej,η ⊗ Yη/Yη.

4. NYη/Fη
(aj,η) = 1.

5. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

6. aj,η = aj,P ∈ Y ⊗ FP,η for each point P ∈ S0 ∩ η.

Proof. By Proposition 3.3 and Lemma 2.3, a ∈ O∗ℓ
Yη

. By Proposition 8.7, a1,P = a

and a2,P = 1 for each P ∈ P ′
η. Hence Properties 1, 3, 4 and 6 hold.

Let η be of Type 0. Note that by Remark 5.2, η cannot intersect η′ ∈ N ′
0 with Yη′

of Type SPLIT. By inspection of the relevant tables, we see thatE1,P = E2,P =
∏
FP

for any P ∈ P ′
η . Set Ej,η =

∏
Fη. Hence Properties 2 & 5 hold in this case.

Let η be of Type 1a. Let j = 1 or 2. For P ∈ P ′
η, setE′

j,P := Ej,P ⊗ FP,η/kP,η.

For P ∈ Q′
η, set E′

j,P to be the unique unramified field extension of kP,η of degree

ℓ. D′ ⊗ E′
j,P is trivial for all P ∈ P ′

η ∪ Q′
η (cf. Proof of Proposition 7.1 for P ∈ P ′

η

and local class field theory for P ∈ Q′
η). Also clearly for each Q ∈ η \

(
P ′
η ∪ Q′

η

)
,

D′ ⊗ kQ,η is split already. Set u′ = 1 and use Lemma 2.10 to construct Ej,η . Set

Ej,η/Fη to be the unramified lift of Ej,η/kη to see that Properties 2 & 5 hold.

Proposition 11.2 (0/1a-SPLIT). Let η ∈ N0 be of Type 0 or 1a and let Yη be of

Type SPLIT. Then for j = 1, 2, there exist Ej,η/Fη , unramified cyclic extensions of

degree ℓ and elements aj,η = (ãj,i,η)i ∈
∏
Fη such that

1. a1,ηa2,η = a =
(
a′i,η

)
i

in Yη, i.e ã1,i,η ã2,i,η = a′i,η for each i.

2. D ⊗ Ej,η is split. If η is of Type 0, then Ej,η ≃ ∏
Fη .

3. aj,η is a norm from Ej,η ⊗ Yη/Yη, i.e. ãj,i,η is a norm from Ej,η for each i.

4. NYη/Fη
(aj,η) = 1, i.e.

∏
ãj,i,η = 1.

5. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

6. ãj,i,ηµj,i,P,η = ãj,i,P ∈ FP,η for all i at each point P ∈ S0 ∩ η for some

µj,i,P,η ∈ F ∗ℓ
P,η such that

∏
i µj,i,P,η = 1.

Proof. Let a =
(
a′i,η

)
∈ ∏

Fη where a′i,η = x′iπ
mi
η where mi ∈ Z and x′i ∈ Âη

∗
.

Because N(a) = 1, we have
∑
mi = 0 and

∏
x′i = 1.

Let η be of Type 0. Since Dη is already split, Property 2 is satisfied. Choose

{j, j′} = {1, 2} as in Proposition 8.7.
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First let’s construct aj,η ∈ ∏
Fη approximating aj,P for each P ∈ P ′

η. By inspection

of the relevant tables, we see that aj,P = (ãj,i,P ) is such that ãj,i,P = xi,Pπ
mi

P where

xi,P ∈ O∗
FP,η

. Since N(aj,P ) = 1, we have
∏
xi,P = 1. For 1 ≤ i ≤ ℓ − 1 by

weak approximation, find ci ∈ k∗η which is close to xi,P in k∗P,η and let c̃i be a lift

of ci in Âη
∗
. Let cℓ =

∏ℓ−1
r=1 (cr)

−1
and c̃ℓ =

∏ℓ−1
r=1 (c̃r)

−1
. Set ãj,i,η = c̃iπ

mi
η

and aj′,η = aa−1
j,η . Thus ãj′,i,η = x′ic̃i

−1 ∈ Âη
∗
. Let c′i = ãj′,i,η ∈ kη . Therefore

Properties 1, 4 & 6 are immediate.

Set Ej,η =
∏
Fη . Note that by Proposition 8.7, Ej,P =

∏
FP . Thus Properties 3

& 5 are satisfied for aj,η and Ej,η . For P ∈ P ′
η, set E′

j′,P := Ej′,P ⊗ FP,η/kP,η. Let

X ′ = kη

(
ℓ
√
c′1, . . . ,

ℓ
√
c′ℓ

)
. By inspection of the relevant tables, we find that one of

the following hold for P ∈ P ′
η:

- E′
j′,P =

∏
kP,η : In this case, set w′

P = 1.

- E′
j′,P = kP,η

(
ℓ
√
δP

)
: In this case, also note that c′i = δni

P up to ℓth powers.

Hence X ′ ⊗ kP,η = kP,η

(
ℓ
√
δP

)
. Set w′

P = δP .

Thus for P ∈ P ′
η we have found w′

P ∈ kP,η so that E′
j′,P = kP,η[t]/

(
tℓ − w′

P

)

and w′
P = NX′⊗kP,η/kP,η

(z′P ) for suitable elements z′P . By weak approximation, we

can find z′ ∈ X ′ close to z′P . Let w′ = N(z′). Set Ej′,η = kη[t]/(t
ℓ − w′). Thus

(w′, c′i) = 0 in Br (kη) for all i. Let Ej′,η be the unramified lift of Ej′,η. This shows

that Properties 3 & 5 hold for aj′,η and Ej′,η as well.

Let η be of Type 1a. By Lemma 4.2 we have thatmi = ℓm′
i and a′i,η = x′iπ

ℓm′

i
η .

For Q ∈ Q′
η, set a1,Q = a and a2,Q = 1. Since a is arranged to be in good shape

(Proposition 3.5), we see that at these points a1,Q =
(
xi,Qπ

ℓm′

i

Q

)
where πQ is some

prime in a regular system of parameters defining η at Q and xi,Q ∈ ÂQ
∗
.

First let’s construct a1,η ∈ ∏
Fη approximating a1,P for each P ∈ P ′

η ∪ Q′
η. By

the above discussion and inspection of the relevant tables, we see that in
∏
FP,η ,

a1,P = (xi,P )i or
(
xi,Pπ

ℓm′

i

P

)
i

where xi,P ∈ ÂP,η
∗
. Since N(a1,P ) = 1, we have

∏
xi,P = 1. For 1 ≤ i ≤ ℓ−1, by weak approximation, find ci ∈ kη which is close to

xi,P in kP,η and let c̃i be a lift of ci in Fη . Let cℓ =
∏ℓ−1
r=1 (cr)

−1
, c̃ℓ =

∏ℓ−1
r=1 (c̃r)

−1

and c′r = x′r c̃r
−1 for r ≤ ℓ. Let a1,η = (c̃i) and let a2,η = aa−1

1,η. Thus Properties 1,

4 & 6 are immediate.

Let j = 1 or 2. For P ∈ P ′
η, set E′

j,P := Ej,P ⊗ FP,η/kP,η. For P ∈ Q′
η, set

E′
j,P to be the unique unramified field extension of kP,η. D′ ⊗ E′

j,P is trivial for all

P ∈ P ′
η ∪Q′

η (cf. Proof of Proposition 7.1 for P ∈ P ′
η and local class field theory for

P ∈ Q′
η). Also clearly for each Q ∈ η \

(
P ′
η ∪ Q′

η

)
, D′ ⊗ kQ,η is split already.

Let X = kη
(

ℓ
√
c1, . . . , ℓ

√
cℓ
)

and let X ′ = kη

(
ℓ
√
c′1, . . . ,

ℓ
√
c′ℓ

)
. ThenX ⊗kη kP,η ≃

∏g
i=1XP (resp. X ′ ⊗kη kP,η ≃ ∏h

j=1X
′
P ) where XP and X ′

P are as in Proposi-
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tion 9.4 if P ∈ Q′
η and are unramified field extensions21 of kP,η if P ∈ Q′

η.

For each P ∈ Q′
η, let wP = w′

P be any unit in OkP,η
which is not an ℓth

power, which therefore are norms from unramified extensions XP and X ′
P respec-

tively. For each P ∈ P ′
η choose wP , w

′
P ∈ kP,η as in Proposition 9.4. Thus for

P ∈ P ′
η ∪ Q′

η, we have E′
1,P = kP,η[t]/

(
tℓ − wP

)
, E′

2,P = kP,η[t]/
(
tℓ − w′

P

)

with wP = NX⊗kP,η/kP,η
(zP ) and w′

P = NX′⊗kP,η/kP,η
(z′P ) for suitable elements

zP and z′P . By weak approximation, we can find z ∈ X and z′ ∈ X ′ close to zP
and z′P respectively. Let w = N(z) and w′ = N(z′). Set E′

1 = kη[t]/(t
ℓ − w) and

E′
2 = kη[t]/(t

ℓ−w′). Thus (w, ci) = 0 and (w′, c′i) = 0 in Br (kη) for all i. Let Ej,η
be unramified lifts of E′

j . These extensions approximateEj,P and Properties 2, 3 & 5

hold.

Proposition 11.3 (0/1a-NONRES). Let η ∈ N0 be of Type 0 or 1a and let Yη be

of Type NONRES. Then for j = 1, 2, there exist Ej,η/Fη, unramified cyclic extensions

of degree ℓ and elements aj,η ∈ OY,η such that

1. a1,ηa2,η = a in Yη.

2. Dη is split if η is of Type 0. ElseD⊗Ej,η has index at most ℓ andD⊗Y ⊗Ej,η
is split. Further if η is of Type 0, then Ej,η ≃ ∏

Fη .

3. aj,η is a norm from Ej,η ⊗ Yη/Yη.

4. NYη/Fη
(aj,η) = 1.

5. Ej,η ⊗ FP,η ≃ Ej,P ⊗ FP,η for each point P ∈ S0 ∩ η.

6. aj,ηµj,P,η = aj,P in Y ⊗ FP,η for each point P ∈ S0 ∩ η for some µj,P,η ∈
OY⊗FP,η

such that µj,P,η ∼= 1 mod (πη) and N(µj,P,η) = 1.

Proof. By Proposition 3.3 we have that a ∈ O∗
Y,η. Let Y ′ = Yη = kη

(
ℓ
√
u′
)

,

a′ = a ∈ Y ′ and Gal (Y ′/kη) = 〈ψ〉. For P ∈ Q′
η, set a1,P = a and a2,P = 1.

Further since a is in good shape and P 6∈ S0, we see that aj,P are units along η and

further, aj,P ∈ O∗
Y ′

P
. Since Y is also arranged to be in good shape, Y ′

P is an unramified

(possibly split) extension of kP,η. By inspecting the relevant tables, we see that aj,P
are units along η for P ∈ P ′

η also.

First let’s construct a′1 ∈ Y ′ approximating a1,P ∈ Y ⊗ FP,η for each P ∈ P ′
η ∪ Q′

η.

Since N(a1,P ) = 1, by Hilbert 90 there exists cP ∈ Y ′⊗ kP,η such that c−1
P ψ (cP ) =

a1,P . Using weak approximation, find c ∈ Y ′ which is close to cP for each P . Set

a′1 = c−1ψ(c) and set a′2 = a′a′1
−1

. Let a1,η denote a lift of a′1 and let a2,η = aa−1
1,η.

Then Properties 1, 4 & 6 are immediate.

Let η be of Type 0. Property 2 is satisfied by the definition of Type 0. Choose

{j, j′} = {1, 2} as in Proposition 8.7. Set Ej,η =
∏
Fη . Since by the same proposi-

tion, Ej,P =
∏
FP , Properties 3 & 5 are satisfied for aj,η and Ej,η .

21since xi,P ∈ ÂP
∗

at these points.
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For P ∈ P ′
η, set E′

j′,P := Ej′,P ⊗ FP,η/kP,η. Let L̃
′

denote the Galois closure

of Y ′( ℓ

√
a′j′). Letting D′ = 0 ∈ Br (kη), we would like to apply Lemma 2.11

to construct E′
j′ = Ej′,η first. Thus for each P ∈ P ′

η, we would like to first

find w′
P ∈ kP,η and z′P ∈ L̃

′ ⊗kP,η so that E′
j′,P = kP,η[t]/

(
tℓ − w′

P

)
and

NL̃
′ ⊗kP,η/kP,η

(z′P ) = w′
P .

By inspection of the relevant tables, we find that one of the following hold :

- E′
j′,P =

∏
kP,η : In this case, set w′

P = 1.

- E′
j′,P = kP,η

(
ℓ
√
δP

)
: In this case, also note that aj′,P =

(
δni

P

)
i
. Hence

L̃
′ ⊗kP,η = kP,η

(
ℓ
√
δP

)
. So set w′

P = δP

Similarly it is an immediate check that (w′
P , aj′ )y = 0 for every valuation y ∈ ΩY ′

lying over P . Thus Lemma 2.11 can be used to construct E′
j′ . Setting Ej′,η to be its

unramified lift over Fη , it is immediate that Properties 3 & 5 are satisfied.

Let η be of Type 1a. Let j = 1 or 2. We would like to apply Lemma 2.11 to first

construct E′
j = Ej,η. For P ∈ P ′

η, set E′
j,P := Ej,P ⊗ FP,η/kP,η. For P ∈ Q′

η , set

E′
j,P to be the unique unramified field extension of kP,η of degree ℓ.

D′⊗Y ′⊗E′
j,P is trivial for all P ∈ P ′

η∪Q′
η (cf. Proof of Proposition 7.1 for P ∈ P ′

η

and local class field theory for P ∈ Q′
η). Also clearly for each Q ∈ η \

(
P ′
η ∪ Q′

η

)
,

D′ ⊗ kQ,η is split already.

Let L̃ denote the Galois closure of Y ′( ℓ
√
a′1) and let L̃

′
denote the Galois closure of

Y ′( ℓ
√
a′2). Note that whenever Y ′ ⊗ kQ,η is not split, since a′1 and a′2 have norm

1, they are also units (and in fact ℓth powers) in the complete discretely valued field

Y ′ ⊗ kQ,η for every Q ∈ η by Lemmata 2.3 and 2.5. Then as in the previous proof,

L̃⊗kηkP,η ≃ ∏g
i=1 L̃P (resp. L̃

′ ⊗kηkP,η ≃ ∏h
j=1 L̃

′
P ) where L̃P and L̃

′
P are as in

Proposition 9.3 if P ∈ P ′
η and are unramified field extensions22 if P ∈ Q′

η.

For each P ∈ Q′
η, let wP = w′

P be any unit in OkP,η
which is not an ℓth power, which

therefore are norms from unramified extensions L̃P and L̃
′
P respectively. For each

P ∈ P ′
η choosewP , w

′
P ∈ kP,η as in Proposition 9.3. Thus for P ∈ P ′

η∪Q′
η , we have

E′
1,P = kP,η[t]/

(
tℓ − wP

)
, E′

2,P = kP,η[t]/
(
tℓ − w′

P

)
and NL̃P /kP,η

(zP ) = wP ,

NL̃
′

P /kP,η
(z′P ) = w′

P for suitable elements zP and z′P .

We would like to use a modified version of Lemma 2.11. Let P ∈ P ′
η ∪ Q′

η . By the

above discussion, we can find z̃P ∈ L̃⊗kP,η =
∏

L̃P (resp z̃′P ∈ L̃
′ ⊗kP,η =

∏
L̃
′
P )

such that its norm to kP,η iswP (respw′
P ). We verify that (wP , a

′
1)y = (w′

P , a
′
2)y = 0

for every valuation y ∈ ΩY ′ lying over P . For P ∈ P ′
η, this is by Proposition 7.1 (4).

For P ∈ Q′
η, by construction a′1 is a unit in O∗

Y ′

P
while a′2 = (1). Since wP ∈ O∗

kP,η

also, we are done in this case. Thus Lemma 2.11 can be used to construct E′
1 and

E′
2 over kη though E′

i will not split D′. Setting E1,η and E2,η to be their respective

unramified lifts over Fη , we see that Properties 2, 3 & 6 are satisfied.

22By the remark in the beginning of this proof, Y ′

P
is an unramified (possibly split) extension and a′1 and

a′2 are units at these points.
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12 Spreading and patching of Ej and aj

Recall that F = K(X) is the function field of a smooth projective geometrically

integral curve X over a p-adic field K and X → SpecOK , a normal proper model

of F as fixed in Section 6.2. We recall some further notation from ([HH10], Section

6) and ([HHK09], Section 3.3). Let η ∈ N0 and let Uη ⊂ X0 be a non-empty open

subset containing η. Then AUη
denotes the ring of functions regular on Uη. Fix a

parameter t ofK . Thus t ∈ AUη
. Then ÂUη

denotes the completion ofAU at ideal (t)

and FU , the fraction field of ÂUη
. Further F ⊆ FUη

⊆ Fη . Let πη be the parameter

of Fη fixed as in Section 6.2.

Proposition 12.1. Let j = 1 or 2. For each η ∈ N0, there exist a neighbourhood

Uη of η in X0 such that Uη ⊆ η \ S0, elements aj,Uη
∈ Y ⊗ FUη

and cyclic or split

extensions Ej,Uη
/FUη

of degree ℓ such that

1. a1,Uη
a2,Uη

= a.

2. D ⊗ Ej,Uη
has index dividing ℓ.

3. D ⊗ Y ⊗ Ej,Uη
is split.

4. aj,Uη
is a norm from Y ⊗ Ej,Uη

/Y ⊗ FU,η .

5. NY⊗FUη

(
aj,Uη

)
= 1.

6. Ej,Uη
⊗ Fη ≃ Ej,η .

7. Ej,Uη
≃ ∏

FUη
whenever Ej,η ≃ ∏

Fη .

8. Ej,Uη
≃ FUη

[t]/
(
tℓ − ej,Uη

)
for some ej,Uη

∈ ÂUη
. Further if Ej,η is unram-

ified, then ej,Uη
∈ ÂUη

∗
.

9. aj,Uη
vℓj,η = aj,η ∈ Y ⊗ Fη for some vj,η ∈ Y ⊗ Fη of norm one.

10. D ⊗ FUη
is split whenever D ⊗ Fη is split.

11. D ⊗ Ej,Uη
is split whenever D ⊗ Ej,η is split.

Proof. By the propositions in Section 10 and 11, we know D ⊗ Ej,η ⊗ Y is split and

D⊗Ej,η has index dividing ℓ. Further, we also knowEj,η = Fη[t]/(t
ℓ− e′j,η) where

e′j,η = π
ǫj
η ej,η with ǫj ∈ {0, 1} and ej,η ∈ Âη

∗
. Finally we have norm one elements

aj,η ∈ Yη such that a1,ηa2,η = a and
(
aj,η, e

′
j,η

)
= 0 ∈ Br(Yη).

For d = 2 or ℓ + 1, by ([HHK15], Proposition 5.8) and ([KMRT], Proposition 1.17),

there exists non-empty open set V ′
η of η such that D ⊗ FV ′

η
(resp. D ⊗ Y ⊗ FV ′

η
) has

index < d whenever D ⊗ Fη (resp D ⊗ Y ⊗ Fη) has index < d. If Ej,η ≃ ∏
Fη, set

Vj,η := V ′
η . Set EVj,η

=
∏
FVj,η

and ej,Vj,η
= 1. Then Properties 2, 3, 6, 7, 8 , 10 &

11 clearly hold.
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If Ej,η/Fη is a field extension, choose ej ∈ F ∗ such that e−1
j ej,η is 1 mod (πη) in

Âη . Set e′j = π
ǫj
η ej ∈ F ∗ and E′

j = F [t]/(tℓ − e′j). Since e′j = e′j,ηx
ℓ for some

x ∈ Âη
∗
, E′

j ⊗ Fη ≃ Ej,η. Now again by ([HHK15], Proposition 5.8) and ([KMRT],

Proposition 1.17), for d = 2 or ℓ + 1, there exists non-empty open set Vj,η ⊆ V ′
η of

η such that D ⊗ E′
j ⊗ FVj,η

(resp. D ⊗ Y ⊗ E′
j ⊗ FVj,η

) has index < d whenever

D⊗E′
j ⊗Fη (resp D⊗ Y ⊗E′

j ⊗Fη) has index< d. Setting Ej,Vj,η
:= E′

j ⊗FVj,η
,

it is clear that Properties 2, 3, 6, 7, 10 and 11 hold. Shrink Vj,η further to assume

ej ∈ ÂVj,η

∗
. Setting eVj,η

:= e′j , it is clear that Property 8 holds. Shrink V1,η and

V2,η to assume they are both equal and call them Vη . To address Properties 1, 4, 5
and 9, we distinguish between the cases when Yη/Fη is a field extension and when

Yη ≃ ∏
Fη .

Suppose that Yη/Fη is a field extension: Let Fhη be the henselization of F at the

discrete valuation η. Set Y hη = Y ⊗F Fhη and identify it as a subfield of Yη via the

canonical morphism Y hη → Yη. Let π̃η ∈ Y hη be a parameter. Then π̃η is also a

parameter in Yη. Since NYη/Fη
(a1,η) = 1, by Hilbert 90, let a1,η = b−1

1,ηψ (b1,η) for

some b1,η ∈ Y ∗
η . Write b1,η = uηπ̃

r
η for some uη ∈ Yη which is a unit at η. Since

uη ∈ Yη is a unit at η, by ([Ar69], Theorem 1.10), there exists uhη ∈ Y hη such that

uhη ≡ uη modulo the maximal ideal of valuation ring of Yη . Let bh1,η = uhη π̃
r
η ∈

Y hη . Set ah1,η =
(
bh1,η

)−1
ψ
(
bh1,η

)
. Thus N(ah1,η) = 1 and ah1,ηa

−1
1,η is a norm one

element in Yη which is 1 modulo the maximal ideal of valuation ring of Yη. Thus

by Lemma 2.2 again, ah1,η (v1,η)
ℓ = a1,η for some v1,η ∈ Yη of norm one. Thus

(a1,η, e
′
1) =

(
ah1,η, e

′
1

)
= 0 ∈ Br(Yη) and we have

(
ah1,η, e

′
1

)
= 0 ∈ Br(Y hη ) (cf.

proof of ([HHK14], Proposition 3.2.2)).

Since Fhη is the filtered direct limit of the fields FV , where V ranges over the non-

empty open subset of η ([HHK14], Lemma 2.2.1), there exist a non-empty open subset

Uη ⊆ Vη of η and a1,Uη
∈ Y ⊗FUη

such thatNY⊗FUη/FUη
(a1,Uη

) = 1 and the image

of a1,Uη
in Y hη is equal to ah1,η.

By shrinking Uη , we can assume that
(
a1,Uη

, e′1
)

= 0 ∈ Br
(
YUη

)
([HHK14],

Proposition 3.2.2). Hence Property 4 holds for a1,Uη
. Finally set a2,Uη

= aa−1
1,Uη

.

Thus for j = 1 and 2, it is clear that Properties 1, 5 and 9 are satisfied. Since

(a2,η, e
′
2) =

(
a2,Uη

, e′2
)
= 0 ∈ Br(Yη), by using ([HHK14], Proposition 3.2.2) again

and shrinking Uη, we can show that Property 4 holds for a2,Uη
also.

Suppose that Yη is split: Then shrink Vη further such that Y ⊗ FVη
≃ ∏

FVη
also

([Ar69], Theorem 1.10 & [HHK14], Lemma 2.2.1). We have a1,η = (ã1,i,η)i≤ℓ

where ã1,i,η = ci,ηπ
mi
η ∈ Fη for mi ∈ Z and ci,η ∈ Âη

∗
. For 1 ≤ i ≤ ℓ − 1,

choose ci ∈ F ∗ such that c−1
i ci,η is 1 mod (πη) in Âη .

Set ã1,i,Vη
= ciπ

mi
η for i ≤ ℓ − 1 and set ã1,Vη,ℓ =

(∏ℓ−1
r=1 ã1,r,Vη,

)−1

. Finally set

a1,Vη
:=

(
ã1,i,Vη

)
i

and a2,Vη
=

(
ã2,i,Vη

)
i
=

(
a1,Vη

)−1
in

∏
FVη

. Thus Properties

1, 5 and 9 (using23 Lemma 2.2) are satisfied. Let j = 1 or 2 and i ≤ ℓ. Since

23There exists an m ≥ 1 such that Fη doesn’t contain a primitive ℓmth root of unity. Look at any branch

field FP,η ⊃ Fη . Its residue field kP,η has further residue field kP , a finite field with characteristic 6= ℓ.
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(
aj,η, e

′
j

)
= 0 ∈ Br (Yη), we have

(
ãj,i,Vη

, e′j
)
= 0 ∈ Br(Fη). By ([HHK14],

Proposition 3.2.2) and shrinking further if necessary, there exists a neighbourhood

Uη ⊆ Vη of η such that
(
ãj,i,Vη

, e′j
)
= 0 ∈ Br(FUη

) which shows that Property 4

holds.

Recall that P ′
η denotes the finite set of marked closed points in η ∩ S0. For each η in

N0, choose Uη as in Proposition 12.1 and let R′
η denote the finite set of closed points

(η \ Uη) \ S0.

Proposition 12.2. Let j = 1 or 2 and let η ∈ N0. For each P ∈ P ′
η ∪ R′

η , there

exist elements aj,P ∈ YP and cyclic or split extensions Ej,P /FP of degree ℓ such that

1. a1,Pa2,P = a.

2. D ⊗ Ej,P has index at most ℓ.

3. D ⊗ Y ⊗ Ej,P is split.

4. aj,P is a norm from Y ⊗ Ej,P /Y ⊗ FP .

5. NY⊗FP
(aj,P ) = 1.

6. Ej,Uη
⊗ FP,η ≃ Ej,P ⊗ FP,η.

7. Ej,P ≃ ∏
FP or D ⊗ Ej,P is split.

8. There exists µj,P,η ∈ (Y ⊗ FP,η)
∗

such that aj,P = aj,ηµj,P,η where

N(µj,P,η) = 1 and

- µj,P,η = 1 if Yη is of Type RAM.

- µj,P,η = (µj,i,P,η)i for i ≤ ℓ where µj,i,P,η ∈ F ∗ℓ
P,η if Yη is of Type SPLIT.

- µj,P,η ∼= 1 mod (πη) if Yη is of Type RES/NONRES.

Proof. If P ∈ P ′
η, the proof follows from Propositions 7.1, 7.2 and those in Sec-

tion 10. Assume therefore that P ∈ R′
η , i.e. it is a curve point. For j = 1, 2, let

Ej,η = Fη[t]/
(
tℓ − ej,η

)
where ej,η ∈ Fη with vη (ej,η) = 0 or 1. Let (πP , δP ) de-

note a system of regular parameters atAP such thatDP = (uP , πP ) where uP ∈ ÂP
∗

([S97]). Let πη = θPπP in Fη where θP ∈ Âη
∗
. Let ej,η = xj,ηπ

ǫj
P ∈ FP,η where

xj ∈ ÂP,η
∗

and ǫj ∈ {0, 1}. Let xj,η = yjδP
rj

up to ℓth powers where yj ∈ O∗
kP,η

and 0 ≤ rj < ℓ.

Let ỹj ∈ ÂP
∗

be such that it matches with yj in kP . Set ej,P = ỹjδ
rj
P π

ǫj
P and

Ej,P = FP [t]/
(
tℓ − ej,P

)
. Using Proposition 12.1, Property 6 is satisfied. Also note

that by ([S97]), Property 2 is satisfied. As Y is arranged to be in good shape, YP is

unramified or YP = FP
(

ℓ
√
vPπP

)
where vP ∈ ÂP

∗
. Thus if YP is not split, then

D ⊗ YP is already split.

As D is ramified at most along η at P , this implies by Lemma 2.8 that if D⊗Ej,P ⊗
FP,η is split, then so is D ⊗ Ej,P . Using Propositions in Section 10, it is clear that
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D ⊗ Y ⊗Ej,η is split and hence so is D⊗ Y ⊗Ej,P ⊗ FP,η . If YP is split, therefore

we see that D ⊗ Ej,P ⊗ FP,η is split. Hence Property 3 is satisfied.

Note that Property 7 holds in the following situations:

- η is of Type 0 or 1a. This is because D = 0 ∈ Br(FP ) already.

- Ej,P =
∏
FP .

- D ⊗ Ej,P ⊗ FP,η is split.

- Yη is of Type SPLIT as the discussion above shows.

- Ej,P = LP , the unique field extension of FP of degree ℓ unramified at ÂP .

This is because uP becomes an ℓth power in Ej,P .

Recall that we choose Ej,η to be ramified along η in some cases only when Yη is

SPLIT, where Property 7 already holds. Thus to check that this Property holds in

general, we have to investigate only the cases when Ej,P = FP [t]/(t
ℓ− ỹjδ

rj
P ) where

0 < rj < ℓ.
We now discuss the proof of the rest of the Properties 1-8 depending on the type of

Yη .

Yη is RAM: Thus η can be of Type 0, 1, 1b and coloured green or 2. Set a1,P = a and

a2,P = 1 to see Properties 1, 5 & 8 hold by construction (Propositions 10.4 and 11.1).

By Lemma 2.6 and Proposition 3.3, these are ℓth powers in YP and hence Property 4

holds. To check that Property 7 holds, we can assume η is of Type 1b or 2. Proposition

10.4 also implies that each Ej,P ⊗ FP,η is unramified. Thus the only case to check is

when Ej,P ≃ FP [t]/(t
ℓ − ỹjδP ). However, the same proposition gives that uη is a

norm from Ej,η where uP = uη ∈ kP,η is the residue of D along the branch. Since

we are in the case when Ej,η ⊗ kP,η is ramified, this implies that uP ∈ k∗ℓP and hence

uP ∈ ÂP
∗ℓ

. ThereforeD = 0 ∈ Br(FP ) already.

Yη is SPLIT: For j = 1, 2, write aj,η = (ãj,i,η)i ∈
∏
FP,η where ãj,i,η = xj,i,Pπ

mj,i

P

where xj,i,P ∈ ÂP,η
∗
. Let xj,i,P = x′j,i,P δP

sj,i ∈ kP,η where x′j,i,P ∈ O∗
kP,η

. Let

x̃′j,i,P ∈ ÂP
∗

be a lift of x′j,i,P .

Set a1,P = (ã1,i,P )i where ã1,i,P = x̃′1,i,Pπ
m1,i

P δ
s1,i
P for 1 ≤ i ≤ ℓ − 1. Set

ã1,ℓ,P = (ã1,1,P . . . ã1,ℓ−1,P )
−1

. And set a2,P = aa−1
1,P . Thus Properties 1, 5 & 8

hold. We have already checked that Property 7 holds in this case (Yη being SPLIT).

Since ãj,i,η is a norm from Ej,η for each i, we have (ãj,i,η, ej,P ) = (ãj,i,P , ej,P ) =
0 ∈ Br (FP,η). By construction, (ãj,i,P , ej,P ) is ramified at most along πP and δP in

Br (FP ). Hence by ([PPS18], Corollary 5.5), we have (ãj,i,P , ej,P ) = 0 ∈ Br (FP )
also for each i. Therefore Property 4 holds.

Yη is RES/NONRES: Since P is a curve point, Y is arranged to be in good shape and

Yη/Fη is unramified, we have YP = FP [t]/
(
tℓ − vP

)
for some vP ∈ ÂP

∗
. Hence YP

is either split orLP , the unique unramified extension of FP of degree ℓ. Thus Y ⊗FP,η
is unramified over FP,η as also Y ⊗ FP,η over kP,η. Note that aj,η ∈ O∗

Y⊗FP,η
by

construction and Ej,η is unramified along η (cf. proofs of Propositions 10.3, 10.5 and

11.3).

Documenta Mathematica 26 (2021) 337–413



402 N. Bhaskhar

Let aj,η = x′jδP
sj ∈ Y ⊗ FP,η where x′j ∈ O∗

Y⊗FP,η
. Set a1,P = x̃′1δ

s1
P ∈ YP where

x̃′1 ∈ YP is a lift of x′1 and a2 = aa−1
1,P . Thus Properties 1, 5 & 8 hold. Since aj,η is

a norm from Ej,η, we have (aj,η, ej,P ) = (aj,P , ej,P ) = 0 ∈ Br (Y ⊗ FP,η). Note

that YP is an unramified extension of FP . By construction, (aj,P , ej,P ) is ramified

at most along πP and δP in Br (YP ). Hence by ([PPS18], Corollary 5.5), we have

(aj,P , ej,P ) = 0 ∈ Br (YP ) also. Therefore Property 4 holds.

To check Property 7, we can assume η is Type 1b or 2. When Yη is of Type NONRES,

Ej,η is the lift of residues. Thus, Ej,P = LP or
∏
FP where we have checked that

Property 7 holds. When Yη is of Type RES, Proposition 10.5 guarantees that uη is a

norm from Ej,η where uP = uη ∈ kP,η is the residue ofD along the branch. Arguing

as in the case when Yη is Type RAM, we are done.

Proposition 12.3. Let j = 1 or 2 and let η ∈ N0. Let Gal (Y/F ) = 〈ψ〉. For each

P ∈ P ′
η ∪R′

η , there exist elements hj,P,η ∈ Y ⊗ FP,η such that

aj,Uη
h−ℓj,P,ηψ (hj,P,η)

ℓ
= aj,P ∈ Y ⊗ FP,η.

Proof. Let m ≥ 1 be24 such that FP,η does not contain a primitive ℓm-th root of

unity. By Propositions 12.1 and 12.2, there exist norm one elements vj,η and µj,P,η in

Y ⊗ FP,η such that aj,Uη
vℓj,ηµj,P,η = aj,P ∈ Y ⊗ FP,η .

Proposition 12.2 also gives us that µj,P,η ∈ (Y ⊗ FP,η)
∗ℓ2m

if Y ⊗ FP,η is a field

extension and µj,P,η ∈ ∏
F ∗ℓ
P,η if Y ⊗ FP,η is split. Therefore by Lemma 2.2 and

Hilbert 90, there exists hj,P,η ∈ Y ⊗ FP,η such that aj,Uη
h−ℓj,P,ηψ (hj,P,η)

ℓ
= aj,P .

Remark 12.4. Note that {P ′
η ∪ R′

η, Uη}η∈N0
forms a patching set P as in defined

in ([HH10]).

Proposition 12.5. Let j = 1 or 2. Then there exist Ej/F , degree ℓ extensions of

F which are subfields of D/F and elements aj ∈ Y such that

• a1a2 = a and NY/F (aj) = 1.

• Ej ⊗F FUη
≃ Ej,Uη

and Ej ⊗F FP ≃ Ej,P for the patching set-up P .

• D ⊗ Ej ⊗ Y is split and Ej ⊆ CD (Y ).

• There exist θj ∈ EjY ⊆ D such that NEjY/Y (θj) = aj .

Proof. Let j = 1 or 2. In this proof, by x ∈ P we mean x ∈ {Uη, P ′
η ∪ R′

η} of the

patching set up P defined in Remark 12.4.

From Propositions 12.1 and 12.2, we see that by ([HH10], Theorem 7.1), there exists

a degree ℓ etale algebra Ẽj/F such that Ẽj ⊗F FUη
≃ Ej,Uη

and Ẽj ⊗F FP ≃ Ej,P
for the patching set-up P . Since at least one of the Ej,P (or the Ej,Uη

) is a nonsplit

field extension, clearly Ẽj/F is a field.

24As before, such an m exists because the residue field kP of its residue field kP,η is a finite field (of

characteristic not ℓ).
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These propositions also guarantee that index (D ⊗F Ej,x) ≤ ℓ for each x ∈ P .

Therefore by ([HHK09], Theorem 5.1), we have that index
(
D ⊗F Ẽj

)
≤ ℓ and

hence there exists a subfield of D isomorphic to Ẽj/F which we again call Ẽj .

We also have that Yx ⊗F Ej,x splits D for each x ∈ P . Thus D⊗F Y ⊗F Ẽj is split.

And therefore CD(Y )⊗Y (Y ⊗F Ẽj) is split. As D is a divison algebra of degree ℓ2,

we have that CD(Y )/Y is division of degree ℓ, and hence Y ⊗F Ẽj splits CD(Y ).
Thus it is a degree ℓ field extension of Y and therefore a degree ℓ2 field extension

of F .

Since Y ⊗F Ẽj is a splitting field of D, which is a division algebra of degree ℓ2, there

exists L′
j , a maximal subfield of D which is isomorphic to Y ⊗F Ẽj . Let E′′

j denote

the subfield of L′
j which is isomorphic to {1} ⊗F Ẽj in L′

j and Y ′
j , the isomorphic

copy of Y ⊗F {1}. Thus E′′
j and Y ′

j are commuting degree ℓ subfields of D.

By Skolem-Noether,Y = bjY
′
j b

−1
j ⊆ D for some unit bj ∈ D∗. SetLj = bjL

′
jb

−1
j ⊆

D and Ej = bjE
′′
j b

−1
j ⊆ D. Thus Ej and Y commute in D (they are subfields of the

maximal subfield Lj).
We now construct a1 ∈ Y using the norm one elements a1,x ∈ Y ⊗ Fx for x ∈ P .

By Proposition 12.3, for each branch in the patching set-up corresponding to a pair

(Uη, P ), we have a1,P = a1,Uη
h−ℓ1,P,ηψ (h1,P,η)

ℓ
for some h1,P,η ∈ (Y ⊗ FP,η)

∗

where Gal (Y/F ) = 〈ψ〉. By simultaneous factorization for curves for the rational

group RY/F (Gm) ([HHK09], Theorem 3.6), we can find h1,x ∈ (Y ⊗ Fx)
∗

for each

x ∈ P such that for every pair (Uη, P ), we have h1,P,η = h1,Uη
h−1
1,P . Thus for every

branch defined by (Uη, P ),

a1,P = a1,Uη
h−ℓ1,P,ηψ (h1,P,η)

ℓ

=⇒ a1,P = a1,Uη
h−ℓ1,Uη

hℓ1,Pψ
(
h1,Uη

)ℓ
ψ (h1,P )

−ℓ

=⇒ a1,Ph
−ℓ
1,Pψ (h1,P )

ℓ = a1,Uη
h−ℓ1,Uη

ψ
(
h1,Uη

)ℓ
.

Let x ∈ P . Thus by ([HH10], Proposition 6.3 & Theorem 6.4), we have an element

a1 ∈ Y such that a1 = a1,xh
−ℓ
1,xψ (h1,x)

ℓ ∈ Y ⊗ Fx and N(a1) = 1. Set a2 = aa−1
1 .

Note that aj ∼= aj,x up to ℓth powers in Y ⊗ Fx.

Now we only have to verify that aj is a norm from EjY . Without loss of generality

let j = 1 (the same proof works for j = 2). By Propositions 12.1 and 12.2, we see

that (a1,x, E1,x)Yx
is split for each x. This implies that a1,x and hence a1 is a norm

from E1Y ⊗Y Y ⊗F Fx over Y ⊗ Fx as a1 differs from each a1,x by an ℓth power.

There exists a field extension N/Y of degree coprime to ℓ such that E1Y ⊗Y N is a

cyclic field extension of degree ℓ ([A61], Chapter IV, Theorem 31). Let Y (resp. Z)

denote the normal closure of X in Y (resp. N ) with special fiber Y0 (resp. Z0). Let

γ : Z0 → Y0 and φ : Y0 → X0 be the induced morphisms. Then, as in the proof of

([PPS18], Proposition 7.5), we have induced patching systems Y ′ of Y0 (resp. Z ′ of

Z0) consisting of open sets Uy (resp. Uz) and closed points Py (resp. Pz) such that

FU ⊂ YUy
⊂ NUz

, FP ⊂ YPy
⊂ NPz

for U, P ∈ P with γ(Uz) ⊂ Uy , φ(Uy) ⊂ U ,

γ(Pz) = Py and φ(Py) = P .
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Then for x = U or P , we have the following commutative diagram induced by norm

maps

E1Y ⊗Y Y ⊗F Fx E1Y ⊗Y Yxy
((E1Y ⊗Y N)⊗N Nxz

)

Y ⊗F Fx Yxy
Nxz

This shows that (a1, E1Y ⊗Y N) is trivial over each Nxz
for each xz ∈ Z ′ and

hence trivial over N ([HHK09], Theorem 5.1). Thus a1 is a norm of the extension

E1Y ⊗Y N/N and hence a
[N :Y ]
1 is a norm of E1Y/Y . Since [N : Y ] is coprime to ℓ,

this implies that there exists θ1 ∈ E1Y such that NE1Y/Y (θ1) = a1.

13 Solving the problem over Ej

Recall that we started with z ∈ SL1(D) living in a maximal subfield M of D which

contains a cyclic degree ℓ subfield F ⊆ Y ⊆M with NM/Y (z) := a. Let aj , Ej and

θj be as in Proposition 12.5 for j = 1, 2. Note that NEjY/F (θj) = 1 and hence θj ∈
SL1(D). If we can prove that θj ∈ [D∗, D∗], then by Proposition 3.6, z ∈ [D∗, D∗].
Let cj := NEjY/Ej

(θj). Since the proofs for the cases j = 1 and j = 2 are similar,

without loss of generality, assume j = 1. We also drop the suffixes in the remainder

of this paper, i.e. we set E := E1, θ := θ1, c := c1 etc.

13.1 Strategy à la Platonov

To show θ ∈ [D∗, D∗], we adapt the basic strategy underlying the proof of the trivial-

ity of SK1(D) over global fields ([P76], Theorem 5.4) as follows:

There exists a suitable25 field extension N/F such that [N : F ] is coprime to ℓ with

EN := E ⊗F N , a cyclic subfield of DN := D⊗N . By ([P76], Lemma 2.2, Section

2.4), it suffices to show that θ ∈ [D∗
N , D

∗
N ]. Let YN := Y ⊗F N and Gal(EN/N) =

〈σ〉. Note that θ ∈ ENYN ⊆ CDN
(EN ) and NENYN/EN

(θ) = c. Therefore the

further norm, NEN/N (c) = 1. Now, because EN/N is a cyclic extension with Galois

group 〈σ〉, by Hilbert 90, there exists a b ∈ EN such that c = b−1σ(b) ∈ EN . Note

that c = b−1σ(b) is a reduced norm in EN from CDN
(EN ).

Proposition 13.1. For N, σ, b, c as above, if there exists f ∈ N such that bf is a

reduced norm in EN from (CDN
(EN )), then θ ∈ [D∗

N , D
∗
N ].

Proof. Set b′ = bf . Note that c = b−1σ(b) = (bf)−1σ(bf) = b′−1σ(b′). By

Skolem Noether, extend σ : EN → EN ⊆ DN to an automorphism of DN given by

25We can and do choose the coprime extension N/F carefully as follows: Let N ′ be the Galois closure

of E/F and take N to be the fixed field of an ℓ-Sylow group of Gal(N/F ). Thus [N : F ] is coprime to ℓ
and E ⊗F N = N ′ which is indeed cyclic over N of degree ℓ (cf. [A61], Chapter IV, Theorem 31).
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σ̃ = Int(v) : DN → DN , d ❀ vdv−1. Note that σ̃ restricts to an N -automorphism

of CDN
(EN ) since σ̃|EN

= σ. Set D1 = CDN
(EN ).

By hypothesis, there exists g ∈ D1 such that NrdD1/EN
(g) = b′. Thus,

NrdD1/EN

(
g−1vgv−1

)
= NrdD1/EN

(
g−1

)
NrdD1/EN

(
vgv−1

)

= b′−1 NrdD1/EN
(σ̃(g))

= b′−1σ̃
(
NrdD1/EN

(g)
)

= b′−1σ(b′)

= c

Since NrdD1/EN
(θ) = c, we have NrdD1/EN

(
θvg−1v−1g

)
= 1. Since D1 is a

central simple algebra of square-free index ℓ, SL1 (D1) = [D∗
1 , D

∗
1 ] ([W50]). Hence

we have that θvg−1v−1g ⊆ [D∗
1 , D

∗
1 ] ⊆ [D∗

N , D
∗
N ].

We will find f ∈ N satisfying the hypothesis of Proposition 13.1 by patching suitable

elements fx ∈ (N ⊗F Fx)∗ for x in a refinement of the patching system P used to

construct E (Remark 12.4).

13.1.1 The shapes of EN and b

We investigate the shape of E after the coprime base change N . Let x ∈ P . Since

Ex := E ⊗F Fx is a cyclic extension by construction and EN = N ′, the Galois

closure of E/F , we see that EN ⊗F Fx ≃ ∏
[N :F ]Ex. Let N ⊗F Fx =

∏rx
i=1Ni,x.

Since [Ex : Fx] = ℓ, this forces each Ni,x to be isomorphic to Fx or Ex. Hence

EN ⊗F Fx as an N ⊗F Fx algebra is the product of an appropriate number of copies

of the cyclic extensions Ex/Fx and the split extensions
∏
ℓEx/Ex.

Let b⊗ 1 ∈ EN ⊗F Fx correspond to the entry
∏
q bq ×

∏
i(bi,1,P , bi,2,P , . . . , bi,ℓ,P )

in
∏
q Ex/Fx × ∏

i (
∏
ℓEx/Ex). The σ action is componentwise and further in∏

ℓEx/Ex, it permutes the entries of each tuple (bi,j,P )j≤ℓ amongst themselves, i.e.

σ (
∏
i(bi,j,P )j≤ℓ) =

∏
i

(
bi,σ(j),P

)
j≤ℓ. The σ action on the Ex/Fx components can

be similarly described if Ex ≃ ∏
ℓ Fx is itself split.

For η ∈ N0 and closed point P ∈ η, let x = η or (P, η). Then we denote the integral

closure of Âx in E ⊗ Fx by B̂x. Let its residue field be denoted k′x. Similarly, let

Ĉx denote the integral closure of Âx in N ⊗ Fx with residue field k′′x . Thus Ĉx ≃∏
Âx ×

∏
B̂x.

We begin with the following broad modification of b: Let η ∈ N0 be such that Eη/Fη
is an unramified field extension. ThusEN⊗F Fη/N⊗F Fη is the unramified (possibly

split or partially split) extension
∏
Eη/Fη×

∏
(
∏
ℓEη/Eη). By weak approximation,

modify b by a suitable element ofN so that if b =
∏
q bq×

∏
i(bi,1,η, bi,2,η, . . . , bi,ℓ,η)

in
∏
q Eη/Fη ×

∏
i (
∏
ℓEη/Eη), then

1. Each bq living in any component of shape Eη/Fη is a unit in B̂η . This can be

done by knocking off an appropriate power of πη from Fη.
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2. If D⊗Eη is an unramified algebra of index ℓ, then each entry bi,j,η in the tuple

(bi,j,η)j≤ℓ living in any component of shape
∏
ℓEη/Eη is a unit in B̂η. This

can be done as follows:

Let mj denote the valuation of bi,j,η in Eη . It suffices to check that all mjs are

equal because then we can again make (bi,j,η)j≤ℓ ∈ ∏
B̂η

∗
by knocking off

π
mj
η from Eη . Since c = b−1σ(b) is a reduced norm from D ⊗ E, this implies

b−1
i,1,ηbi,j,η is a reduced norm from D ⊗ Eη for each j ≤ ℓ. Since every unit in

B̂η is a reduced norm from D ⊗ Eη (Proposition 2.7), this forces all valuations

mj to equal each other.

3. If D ⊗ Fη is an unramified algebra of index ℓ and if Eη ≃ ∏
Fη is split, then

each bq = (bq,j,η)j≤ℓ living in any component of shape Eη/Fη is a unit in B̂η,

i.e. each bq,j,η ∈ Âη
∗
. This can be achieved by a similar argument as in 2).

13.2 Preliminary patching data of f

Recall that for each η ∈ N0, P ′
η := η ∩ S0 and R′

η := (η \ Uη) \ S0. Thus S0 =
∪η∈N0

P ′
η.

Proposition 13.2 (f at closed points). Let η ∈ N0 and P ∈ P ′
η ∪R′

η. Then there

exists fP ∈ (N ⊗F FP )∗ such that bfP is a reduced norm from DN ⊗ EP . Further

fP ∈ ĈP,η
∗
.

Proof. If D ⊗ EP is split, set fP = 1. Note that bfP (and indeed any other element

in N ⊗ EP ) is a reduced norm from DN ⊗ EP . Clearly 1 ∈ ĈP,η
∗
.

Therefore assume D ⊗ EP is not split and let P ∈ η ∩ η′. We can in fact pinpoint

precisely when this happens by a closer inspection of the proofs of Propositions 7.1

and 12.2 - at points in Rows 2.2* of Table 11, 4.1* of Table 13, 8.5-8.6 of Table 17 and

at some innocuous curve points in R′
η where both Yη and Yη′ are not SPLIT. Note that

in all these cases,Eη/Fη andEη′/Fη′ are unramified field extensions by construction,

{η, η′} = {Type 1b,Type 1a} or {Type 1b,Type 2} and DP ≃ (uP , πP ) for some

unit uP ∈ ÂP
∗

and πP defines one of η or η′ at P .

By Proposition 12.2, EP ≃ ∏
FP and therefore EN ⊗F FP /N ⊗F FP ≃∏

(
∏
ℓ FP /FP ). Let b ⊗ 1 correspond to the entry

∏
i(bi,1,P , bi,2,P , . . . , bi,ℓ,P ). As

discussed before, σ permutes the entries of each tuple (bi,j,P )j≤ℓ amongst them-

selves. Since c = b−1σ(b) ∈ NrdEN
(CDN

(EN )), we have that (bi,1,P ) [DP ] =
(bi,2,P ) [DP ] = . . . = (bi,ℓ,P ) [DP ] ∈ H3 (FP , µℓ). Let bi,j,P have valuation mj in

FP,η .

We first look at the case when πP defines η. Set fi,P := b−1
i,1,Pπ

m1

P . Since πP is a

parameter of FP,η also, fi,P is a unit along η. Define fP =
∏
i(fi,P ) ∈ N⊗FP . Thus

fP ∈ ĈP,η
∗
. It now suffices to see that each bi,j,P fi,P is a reduced norm from DP .

For j = 1, we have (bi,1,P fi,P ) [DP ] = (πm1

P )(uP , πP ) = 0. Since the cup-products

(bi,j,P )[DP ] equal each other for j ≤ ℓ, we have (bi,j,P fi,P ) [DP ] = 0 for each j.
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Identifying H1 (FP , SL1 (DP )) with F ∗
P /Nrd (DP )

∗
, recall Suslin’s invariant

R : H1 (FP , SL1 (DP )) → H3
(
FP , µ

⊗2
ℓ

)
, λ❀ (λ) ∪ [DP ].

Since index of DP is ℓ and in particular square-free,R is injective ([MS82], Theorem

12.2). Hence bi,j,P fi,P is a reduced norm from DP and hence we are done in this

case.

Now let’s look at the case when πP defines η′. Thus η is either of Type 1a or P is a

hot point and η is of Type 2 with Yη of Type NONRES (Rows 8.5-8.6 of Table 17). In

either caseD⊗Eη is an unramified index ℓ algebra26. Thus by our initial modification,

bi,η ∈ B̂η
∗

already which shows that bi,j,P ∈ ÂP,η
∗

for each j ≤ ℓ. Since πP is a

unit along η now, so is fi,P .

Proposition 13.3 (f at codimension one points). Let η ∈ N0. Then there exists

fη ∈ Ĉη
∗ ⊂ N ⊗ Fη such that

• fη = fPφ
ℓ
P,η ∈ N⊗FP,η for some φP,η ∈ (N ⊗ FP,η)

∗
for each P ∈ P ′

η∪R′
η .

• bfη is a reduced norm from DN ⊗ Eη.

Proof. Note that by Proposition 13.2, we see that fP ∈ ĈP,η
∗

for each P ∈ P ′
η ∪R′

η .

η is of Type 0: Dη is split and so is D ⊗ FP for every P ∈ η. Thus each fP = 1
by choice for every marked point P on η (Proposition 13.2). Choose fη = 1. Clearly

bfη (and indeed any other element in N ⊗ Eη) is a reduced norm from DN ⊗ Eη.

η is of Type 1a: By construction, Eη is unramified (Propositions 11.1, 11.2 and

11.3). By weak approximation, find fη ∈ k′′η which is close to fP ∈ k′′P,η for each

marked P in η. Let fη be a lift of fη in Ĉη
∗
.

If D ⊗ Eη is split, then clearly bfη (and indeed any other element in N ⊗ Eη) is a

reduced norm fromDN ⊗Eη . So assume D⊗Eη is not split. Since η is Type 1a, Dη

is an unramified index ℓ algebra and hence so is D ⊗ Eη . By our initial modification

of b, this implies all components of b are units along η. Thus by Lemma 2.7, bfη is a

reduced norm from DN ⊗ Eη .

η is of Type 1b/2: Let uη ∈ Fη such that u′ = uη ∈ kη/k
∗ℓ
η is the residue of Dη.

There are three possible shapes of Eη .

Shape A: Eη is a ramified/unramified field extension which splits Dη (Propositions

10.1, 10.2 and 10.6).

Shape B: Eη is the lift of residues which might or might not split Dη (Proposition

10.3). Though in particular, it is an unramified field extension of Fη .

Shape C: Eη/Fη is an unramified field extension which is not the lift of residues of

Fη . Then u′ is a norm from Eη and Eη ⊗ βrbc,η is split. (Propositions 10.4 and 10.5).

For each shape, we prescribe fη ∈ N ⊗ Fη as follows:

Eη of Shape A/B: As before find fη ∈ k′′η which is close to fP ∈ k′′P,η for each

P ∈ P ′
η ∪ R′

η . Let fη be a lift of fη in Ĉη
∗
. If Eη is of Shape A , since D ⊗ Eη is

split, every element in N ⊗ Eη is a reduced norm from DN ⊗ Eη .

26It is unramified if η is Type 1a and by Proposition 10.3 otherwise. It is non-split since D ⊗ EP and

hence D ⊗ EP,η is non-split.
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Let Eη be of Shape B. Note that D = βrbc,η + (uη, πη) ∈ Br (Fη) where πη is a

parameter of Fη. Thus D ⊗ Eη is an unramified algebra. If it is split, our choice of

fη clearly works. So assume D ⊗ Eη has index ℓ. Then by our initial modification of

b, each component of b is a unit along η. Thus by Lemma 2.7, bfη is a reduced norm

from DN ⊗ Eη.

Eη of Shape C : Note that D = βrbc,η + (uη, πη) ∈ Br (Fη) where πη is a parameter

of Fη . Since Eη splits βrbc,η, we have D ⊗Eη = (uη, πη). Let EN ⊗ Fη/N ⊗ Fη ≃∏
q Eη/Fη ×

∏
i (
∏
ℓEη/Eη) and let b =

∏
bq ×

∏
i (bi,j,η)j≤ℓ. We will prescribe

fη =
∏
fq×

∏
i ei ∈ N⊗Fη ≃ ∏

q Fη×
∏
i Eη by prescribing each of its components

fq ∈ Âη
∗

and ei ∈ B̂η
∗

individually.

Let us look at the case of bq ∈ Eη/Fη . By our initial modification of b, we have

bq ∈ B̂η
∗

for each q and hence σ(bq) ∈ B̂η
∗

also. Set E′ = Eη and b′ = bq ∈ E′.
By abuse of notation, let Gal (E′/kη) = 〈σ〉 also. Since c is a reduced norm from

DN ⊗ E,
(
b−1
q σ(bq)

)
(uη, πη) = 0 ∈ H3 (Eη, µℓ). This gives

(
b′−1σ(b′), u′

)
= 0 ∈

H2 (E′, µℓ). Thus (b′, u′) = (σ (b′) , u′) ∈ H2 (E′, µℓ).

We would like to apply Lemma 2.12 to find an fq ∈ kη and hence an fq ∈ Fη with

the required properties. To do so, we proceed to verify that the rest of the hypotheses

of the lemma are indeed satisfied by u′, E′/kη and b′.

By ([S97], [S98], Proposition 1.2), we see that the residue u′ is up to ℓth powers, a unit

at almost all places v of kη except at those given by cold points (Type C-Cold) P on

η. Recall that by the choice of EP at cold points (cf Tables 15 and 16), at such places

E′/kP,η is given by adjoining the ℓth root of the residue u′ and hence u′ ∈ E′
P,η

ℓ
.

In particular, this discussion shows that at every place v where E′ is unramified and

inert, u′ ∈ O∗
E′

v
up to ℓth powers in E′

v
∗
.

Let w be a place whereE′/kη is ramified. We have already seen that if w corresponds

to a cold point P , then u′ ∈ E′
w
∗ℓ

. Therefore assume w corresponds to a non-cold

point P . Hence u′ ∈ O∗
kP,η

. Since we know u′ is a norm fromE′ and hence fromE′
w,

Lemma 2.3 implies that u′ ∈ E′
w
∗ℓ

.

Finally for P ∈ P ′
η ∪ R′

η , we have (bqfq,P ) is a reduced norm from DN ⊗ EP .

This implies (bqfq,P ) (uη, πη) = 0 ∈ H3 (EP,η, µℓ). Taking residues, this implies

(u′, b′) =
(
u′, fq,P

−1
)
∈ E′ ⊗ kP,η.

Thus we can apply Lemma 2.12 to find fq ∈ Fη such that fq ≡ fq,P ∈ FP,η up to

ℓth powers for marked points P ∈ P ′
η ∪ R′

η . Further, (uη, bqfq) = 0 ∈ Br (Eη).
This implies (uη, πη) (bqfq) = 0. Since D ⊗ Eη = (uη, πη), we have bqfq ∈
NrdEη

(D ⊗ Eη) using injectivity of Suslin’s invariant for index ℓ algebras again

([MS82], Theorem 12.2).

Now let us look at the case of (bi,j,η)j≤ℓ ∈ (
∏
ℓEη) /Eη. Since c is a reduced

norm from DN ⊗ E, we have that (bi,1,η) [D ⊗ Eη] = (bi,2,η) [D ⊗ Eη] = . . . =
(bi,ℓ,η) [D ⊗ Eη] ∈ H3 (Eη, µℓ). Let bi,j,η have valuation mj in Eη .

Set e′i := b−1
i,1,ηπ

m1
η . Since πη is a parameter of Fη and hence of Eη also, e′i ∈ B̂η

∗
.

Since (bi,1,ηe
′
i) [D ⊗ Eη] = (πm1

η )(uη, πη) = 0. Since the cup-products (bi,j,η)[D ⊗
Eη] equal each other for j ≤ ℓ, we have 0 = (bi,j,ηe

′
i) [D ⊗ Eη] for each j. Thus by
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injectivity of Suslin’s invariant for index ℓ algebras, each bi,j,ηe
′
i is a reduced norm

from D ⊗ Eη .

However, e′i might not approximate the choice at marked points on η. So we find a

suitable correcting factor θ ∈ B̂η
∗

such that θ ∈ Nrd(D ⊗ Eη) and e′iθ is close to

the choice along marked points. Then ei = e′iθ is still in B̂η
∗

and each bi,j,ηei is a

reduced norm from D ⊗ Eη .

Note that since D⊗EP,η is still ramified, if P ∈ P ′
η ∪R′

η, then D⊗EP ≃ (uP , πP )

where πP defines η at P . Let πP = πηθ
′ for some θ′ ∈ Â∗

η. Following the proof of

Proposition 13.2, we see that we are in the case when η is Type 1b/2 andEP ≃ ∏
FP .

Thus EP,η ≃ ∏
FP,η and under this identification, (bi,j,η)j≤ℓ ∈ (

∏
ℓEη/Eη) goes

to (σj−1 (bi,1,η) , σ
j−1 (bi,2,η) , . . . , σ

j−1 (bi,ℓ,η))j≤ℓ in
∏
ℓ (
∏
ℓ FP,η/FP,η) over the

branch. Our choice of ei,P along the branch corresponds to

(
b−1
i,1,ηπ

m1

P , σ(bi,1,η)
−1πm1

P , . . . , σℓ−1 (bi,1,η)
−1 πm1

P

)
∈
∏

ÂP,η
∗
≃ B̂P,η

∗
,

i.e. ei,P = b−1
i,1,ηπ

m1

P ∈ B̂P,η
∗

and ei,P e
′
i
−1

= θ′
m1 ∈ B̂P,η

∗
.

Since both πη and πP are reduced norms from D ⊗ EP,η , so is θ′ and hence θ′
m1 .

Therefore (θ′m1 , uη) = 0 ∈ H2(FP,η, µℓ) and (θ′
m1

, uη) = 0 ∈ H2(kP,η, µℓ). Find

θ1 ∈ FP,η
(

ℓ
√
uη

)
such that N(θ1) = θ′m1 . Note that since D ⊗ EP = (uP , πP ),

FP,η
(

ℓ
√
uη

)
is an unramified field extension of FP,η . Choose θ̃1 ∈ O∗

Fη( ℓ
√
uη)

such

that its image is close to θ1 and set θ = N
(
θ̃1

)
∈ Fη .

13.3 Spreading and patching of f

Proposition 13.4. For each η in N0, there exist a neighbourhood U ′
η of η in X0

with U ′
η ⊆ η \

(
P ′
η ∪R′

η

)
and an fU ′

η
∈ N ⊗ FU ′

η
such that

1. U ′
η ⊆ Uη where Uη are the neighbourhoods in the patching set up P

2. bfU ′
η

is a reduced norm from DN ⊗ E ⊗ FU ′
η
.

3. fU ′
η

∼= fη up to ℓth powers in N ⊗ Fη .

Proof. By Proposition 13.3, we see that fη ∈ Ĉη
∗

and that bfη ∈ Nrd(DN ⊗ Eη).
Thus (bfη) ([DN ⊗ Eη]) = 0 ∈ H3 (N ⊗ Eη, µℓ). Let f ′ ∈ N∗ such that f−1

η f ′ is 1

mod the maximal ideal of Ĉη . Note that fη = f ′xℓ ∈ (N ⊗ Fη)
∗

for some x ∈ Ĉη
∗

and hence (bf ′) ([DN⊗Eη]) = 0 ∈ H3 (N ⊗ Eη, µℓ). By ([PPS18], proof of Lemma

7.2 & [HHK14], proof of Proposition 3.2.2) and shrinking further if necessary, there

exists a neighbourhood U ′
η ⊆ Uη of η such that (bf ′) ([DN ⊗ E ⊗ FU ′

η
]) = 0 ∈

H3
(
EN ⊗ FU ′

η
, µℓ

)
. Since DN ⊗ E has index ℓ, by injectivity of Suslin’s invariant

([MS82], Theorem 12.2), we have bf ′ is a reduced norm from DN ⊗ E ⊗ FU ′
η
. The

element fU ′
η
:= f ′ has the required properties.
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Remark 13.5. Let T ′
η denote the finite set of closed points η \

(
U ′
η ∪ P ′

η ∪R′
η

)
.

Thus {P ′
η ∪R′

η ∪ T ′
η , U

′
η}η∈N0

form a patching set up P ′ as in defined in ([HH10]).

Proposition 13.6. Let η ∈ N0 and let P ∈
(
P ′
η ∪R′

η ∪ T ′
η

)
. Then there exists

fP ∈ N ⊗ FP such that

1. bfP is a reduced norm from DN ⊗ EP .

2. fU ′
η
ψℓP,η = fP in N ⊗ FP,η for some ψP,η ∈ N ⊗ FP,η .

Proof. If P ∈ P ′
η ∪ R′

η , the proposition follows from Propositions 13.2, 13.3 and

13.4. Hence assume P ∈ T ′
η . In particular, this implies P ∈ Uη where Uη is the

neighbourhood of η in the patching system P defined in Remark 12.4. Hence FUη
⊆

FP . Let (πP , δP ) be a system of regular parameters ofAP where πP defines the curve

η at P .

We choose fP depending the shape of D ⊗ EP as follows:

D ⊗ E ⊗ FP is split: Since N ⊗ FP is dense in N ⊗ FP,η , pick an fP here which

approximates fη ∈ N ⊗Fη treated as an element over the branch, i.e. fη ∈ N ⊗FP,η.

The proposition is clearly true for this choice of fP .

D ⊗ E ⊗ FP is not split: Since P is a curve point, we have D 6= 0 ∈ Br(FP )
possibly only if η is of Type 1b or 2, in which case D = (uP , πP ) ∈ Br (FP ) where

uP ∈ ÂP
∗

([S97]). Let uη ∈ Fη be such that u′ = uη ∈ k∗η/k
∗ℓ
η is the residue of Dη.

Thus uP ∼= u′ ∈ kP,η up to ℓth powers.

Except when η is coloured green,D⊗Eη is split by construction (Propositions in 10).

By Proposition 12.1, this implies D⊗E ⊗ FUη
is split and hence so is D⊗E ⊗ FP .

When η is coloured green, by Propositions 10.3, 10.4 and 10.5, Eη/Fη is unramified.

By Proposition 12.1, this impliesE⊗FUη
≃ FUη [t]

(tℓ−e) for some unit e ∈ ÂU
∗
. Therefore

E ⊗ FP =
∏
FP or LP , the unique field extension of FP of degree ℓ unramified

at ÂP . If E ⊗ FP is a nonsplit field extension, then D ⊗ E ⊗ FP is split. Thus

E ⊗ FP ≃ ∏
FP . Therefore EN ⊗ FP /N ⊗ FP ≃ ∏

i (
∏
ℓ FP ) /FP . Let us look

at the i-th component (
∏
ℓ FP ) /FP in EN ⊗ FP /N ⊗ FP . We will prescribe fP by

prescribing each of its components fi ∈ FP .

Let bi = (bi,1, bi,2, . . . , bi,ℓ) ∈ ∏
FP . By Proposition 13.3, we have fP,η ∈ ÂP,η

∗

such that for each j, we have (bi,jfP,η) (uP , πP ) = 0 ∈ H3 (FP,η, µℓ). Let bi,1 have

valuation m1 in FP,η and let b′i,1 := bi,1fP,ηπ
−m1

P ∈ ÂP,η
∗
. Thus

(
b′i,1

)
(uP , πP ) =

0 also and taking residues, we get
(
b′i,1, uP

)
= 0 ∈ H2 (kP,η, µℓ). Since

(
b′i,1, uP

)

is unramified over FP,η, it is also split over FP,η and we see that there exists θ1 ∈
FP,η

(
ℓ
√
uP

)
such that N(θ1) = b′i,1.

Since we are in the case when D ⊗ E ⊗ FP is not split, uP 6∈ F ∗ℓ
P . There-

fore FP,η
(

ℓ
√
uP

)
is an unramified field extension of FP,η as also its residue field

kP,η
(

ℓ
√
uP

)
/kP,η. As b′i,1 ∈ ÂP,η

∗
, clearly θ1 ∈ O∗

FP,η( ℓ
√
uP ). Let θ1 = θ′δP

m

where θ′ ∈ OkP,η( ℓ
√
uP ) and m ∈ Z. Find θ̃′ ∈ O∗

FP ( ℓ
√
uP ) such that its image

matches that of θ′. Set θ̃1 = θ̃′δmP ∈ FP
(

ℓ
√
uP

)
. Thus θ̃1 ∼= θ1 up to ℓth powers in

FP,η
(

ℓ
√
uP

)
. Set fi,P = b−1

i,1 N
(
θ̃1

)
πm1

P ∈ FP .
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Thus by construction (bi,1fi,P ) (uP , πP ) = 0 ∈ H3 (FP , µℓ) and fi,P ∼= fP,η up to

ℓth powers in FP,η . Finally, since b−1σ(b) is a reduced norm from D ⊗ EP , we have

that for every j, the cup-products (bi,j) (uP , πP ) are all equal in H3 (FP , µℓ). Thus,

we also have that for each j, (bi,jfi,P ) (uP , πP ) = 0 ∈ H3 (FP , µℓ). Again using

injectivity of Suslin’s invariant for index ℓ algebras ([MS82], Theorem 12.2), we can

argue as before that this implies bi,jfi,P is a reduced norm from D ⊗ FP for each j
and hence that bifi,P is a reduced norm from D ⊗ E ⊗ FP .

We are now in a position to find f ∈ N satisfying the hypothesis of Proposition 13.1.

Proposition 13.7. There exists f ∈ N such that bf ∈ NrdEN
(CDN

(EN )).

Proof. By Propositions 13.4 and 13.6, we have fx ∈ N ⊗ Fx for x ∈{
U ′
η,P ′

η ∪R′
η ∪ T ′

η

}
η∈N0

in the patching set-up P ′ defined in Remark 13.5 such that

for bfx ∈ NrdDN⊗Ex. Further for each branch in the patching set-up corresponding

to a pair
(
U ′
η, P

)
, we have fP = fU ′

η
ψℓP,η for some ψP,η ∈ N ⊗ F ∗

P,η .

By simultaneous factorization for curves for the rational group RN/FGm ([HHK09],

Theorem 3.6), we can find ψx ∈ (N ⊗ Fx)
∗

for each x ∈ P ′ such that for every

branch defined by
(
U ′
η, P

)
, we have ψP,η = ψU ′

η
ψ−1
P . Thus we have fU ′

η
ψℓU ′

η
=

fPψ
ℓ
P for every branch

(
U ′
η, P

)
. Therefore there exists f ∈ N such that f = fxψ

ℓ
x ∈

N ⊗ Fx for each x ∈
{
U ′
η, P

}
([HH10], Proposition 6.3 & Theorem 6.4). Thus

bf ∈ Nrd (DN ⊗ Ex) and therefore (bf) ∪ [DN ⊗ Ex] = 0 ∈ H3 (N ⊗ Ex, µℓ) for

each x ∈ P ′. This implies (bf) ∪ [DN ⊗ E] = 0 ∈ H3 (EN , µℓ) ([PPS18], proofs of

Proposition 7.1 & 7.4). Injectivity of Suslin’s invariant for index ℓ algebras ([MS82])

shows that bf ∈ Nrd (DN ⊗ E) which proves the proposition.

Thus we have our main theorem:

Theorem 13.8. Let F be the function field of a curve over a p-adic field. Let D/F
be a central division algebra of prime exponent ℓ which is different from p. Assume

that F contains a primitive ℓ2th root of unity. Then SK1(D) is trivial.
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