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1 INTRODUCTION

The group SL; (A) of reduced norm one elements of a finite dimensional central sim-
ple algebra A over a field K is one of the main and well-studied examples of sim-
ply connected almost simple algebraic groups of type A. The commutator subgroup
[A*, A*] is clearly contained in SL; (A). Whether the reverse inclusion holds is how-
ever a far more subtle and difficult question to tackle. This problem was formulated
by Tannaka and Artin independently in terms of SK;(A) which is defined to be the

abstract quotient group [SALQ 54’4,)] .

QUESTION 1.1 (Tannaka-Artin, 1943). Is SK(A) trivial?

The Tannaka-Artin problem can be rephrased as a special case of the more general
Kneser-Tits problem. For G, a semisimple simply connected isotropic K -group, let
G (K) denote the normal subgroup generated by the conjugates of the K -points of
the unipotent radical of a proper K parabolic of G. One defines the reduced Whitehead
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group to be W (G, K) := gf—{% The Kneser-Tits problem asks whether W (G, K)
is trivial.

The Tannaka-Artin problem was answered affirmatively for square-free index alge-
bras over arbitrary fields ([W50]). It was also shown that SK; (A) was trivial for all
central simple algebras A defined over local or global fields ([NM43],[W50]) and it
was widely believed that the Tannaka-Artin question had a positive answer in general.
However Platonov’s famous example ([P78]) of a biquarternion division algebra D
over an iterated Laurent-series field Q,((x))((y)) with non-trivial SK; (D) negatively
settled the Tannaka-Artin problem and also gave rise to the first example of a non-
rational simply connected almost simple algebraic K -group. Note that the cohomo-
logical dimension of the base field under consideration is 4. However, in the same
paper by Platonov, it was also shown that the Tannaka-Artin problem has a positive
answer for central simple algebras over fields of cohomological dimension < 2.

In 1991, Suslin conjectured that if the index of the central simple algebra D/ K is not
square free, then SK; (D) is generically non-trivial, i.e, there exists a field extension
F/K such that SK;(D ®k F) is non-trivial ([Su91]). More formally, the Suslin
invariant

kernel [HY, (K, u2%) — HY, (K(Y), u®3)]

: SK4
p:SKi(D) = [D] e H? (K, 11,)

)

where Y is the Severi-Brauer variety defined by D, a central division algebra of de-
gree n, was conjectured to send the generic element to a non-trivial image. Suslin’s
conjecture was settled affirmatively by Merkurjev for algebras with indices divisible
by 4 in ([M93], [M06]).

In the case when the index of D is 4, it is known that p is in fact an isomorphism (Rost,
Chapter 17 [KMRTT; [M99]; [Su06]). Hence if cd K < 3, then SK; (D) = {0}. This
led Suslin to ask whether SK; (D) = {0} for any central simple algebra D of index £>
where /¢ is a prime, over fields of cohomological dimension 3 ([Su06]).

In this paper, we settle this question affirmatively for exponent ¢ algebras over func-
tion fields of p-adic curves where ¢ is any odd prime not equal to p, assuming that
our base field contains a primitive 2" root of unity (Theorem 13.8). The proof,
whose strategy is outlined below, relies on the techniques of patching as developed by
Harbater-Hartmann-Krashen (HHK) in ((HH10], [HHKO09], [HHK14] & [HHK15])
and exploits the arithmetic of the base field to show triviality of the reduced White-
head group.

Let F = K(X) be the function field of a smooth projective geometrically integral
curve X over a p-adic field K. Let D denote a central division algebra over F' of
exponent ¢ where £ is an odd prime different from p. Let z € SL;(D) lie in some
maximal subfield M of D. We would like to show that z is a product of commutators.
The results of Saltman and Wang ([S97], [S98], [W50]) along with standard Galois
theory techniques help reduce to the case when D has index ¢ and M contains a sub-
cyclic degree ¢ extension Y/F. Let Nj;/y (2) = a, which therefore has further norm
one to F.

We now briefly explain our strategy (cf.Section 3.3) which essentially adapts
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Platonov’s argument ([P76]) to our situation. We split a into a product of suitable el-
ements a; and as in Y, where the case of each a; is easier to handle. More precisely,
we find elements a1,a2 € Y and degree ¢ sub-field extensions Ey/F, Fs/F in D
which commute with Y such that a; is a norm from Y E; of a product of commutators
for each j = 1, 2. One can think of having moved the problem over to the fields Ejs,
which by construction are more “amenable” and where we can solve the problem. We
then modify 2z by commutators so that the modified z (and hence also the original z) is
a product of commutators (Proposition 3.6). The required E;s and a;s are constructed
by HHK patching by prescribing compatible local data for an appropriate model X
of X.

We now briefly mention what each section in the paper is about. The second sec-
tion collects lemmata about the shape of units, norms of field extensions and reduced
norms of algebras defined over some special complete fields encountered in the patch-
ing set-up. It also contains some class field theory lemmata which will be useful in
approximating local data to get global objects. The third section sets forth patching
notations, fixes a preliminary model X of X arranging some necessary divisors to
be in good shape (i.e. normal crossing divisors with regular components) and gives
the initial reductions which help simplify the problem. It also spells out the overall
strategy adopted in the proof (mentioned above) in more precise detail.

The fourth and fifth sections classify into types, codimension one and closed points
of X lying on the special fiber. Here, we also understand the configuration of the cyclic
sub-extension Y/ F’ and the shape of the norm one element a € Y at the fraction fields
of the local rings at these points completed at their maximal ideals. The sixth section
discusses further blowing up the model at closed points to eliminate certain types
of closed points from the classification. It also constructs a partial dual graph and
outputs a nine-colouring of it, which will help in ensuring compatibility of the local
data at the branches in the patching problem. The seventh section gives patching data
(a1,p,as,p, E1,p, E2 p) at closed points P while the next two discuss their structure
over the branches.

The tenth and eleven sections give patching data (a1 .y, a2y, E1.,, E2,,) at codimen-
sion one points 77 of X’ lying on the special fiber. We patch the data in the twelfth
section by spreading (a1, a2, E1 n, E2.,) to work over open sets U,y > n of the
special fiber to get the required elements a1, a2 € Y and extensions E1, Ea/F. The
final section uses patching again to finally solve the problem over the F;s.
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2 LEMMATA

2.1 NOTATIONS AND TERMINOLOGY

Let ¢ be a prime and let J be a field which is not of characteristic ¢ containing p, a
primitive /*! root of unity. Then for a,b € J*, we let the symbol (a,b) denote the
J-cyclic /-algebra

(a,b) = J (i, j|i* = a,j° = b,ij = pji).

If E/J is a cyclic extension of degree ¢ with Gal(E/J) = (o) and b € J*, we let the
symbol (E, o,b) (or (E,b) if the automorphism o is clear from the context) denote
the J-cyclic ¢ algebra

-1
(E,o0,b) = @uiE, u' =b, eu=uo(e)VecE.
=0

We also note that for central simple algebras (abbreviated as CSAs) Dy, Dy over J,
we use D1 = D5 to mean equality in Br(J), i.e D; = Dy denotes that Dy /J and
D5/ J are Brauer equivalent.

Let F' be a complete discretely valued field with ring of integers R and residue field k.
Let £ be a prime which is not equal to char(k) such that F' contains a primitive ¢/*®
root of unity. Let o € Br(F’) be an element of order ¢ which is ramified at R. Recall
the residue map Or : H*(F, pg) — H'(k,Z/(Z). Let Op (@) = (E/k, ) where E/k
is a cyclic extension of degree ¢ with Galois group generated by &.

RESIDUAL EXTENSION: There is a unique unramified cyclic extension E/F of de-
gree ¢ with residue field £. We call E the [ift of residue of o at R or the residual
extension of o at R.

RESIDUAL BRAUER CLASS: We define the residual class of o (depending on the
choice of a parameter of R) as in ([S07]). Given a parameter 7 of R, let L denote the
totally ramified extension F’ ({/7) and S denote the ring of integers of L with residue
field also k. Then o, := o ® L is unramified and hence is in Br(S).

Let 5 € Br(k) denote the image of az,. Then the residual Brauer class of o, denoted
Qrbe, is defined to be the image of /3 in the unramified cohomology group H2 (F, /)
under the isomorphism iz : H2(k, 1) — H2 (F, p10), f ~ ube.

LEMMA 2.1 ([SO7], Proof of Proposition 0.6).
o= appe + (E,0,7) in Br(F).
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2.2 NORMS, REDUCED NORMS AND INDEX COMPUTATIONS

LEMMA 2.2 (cf. [PPS18], Lemma 2.7). Let F be a field and ¢, a prime not equal to
the characteristic of F'. Let Y/ F be a cyclic extension of F or the split extension of
degree € and 1), a generator of the Galois group of Y/ F. Suppose that there exists an
integer m > 1 such that F does not contain a primitive (™" root of unity. Let i € Y
with Ny, () = 1. Further assume that

o IfY/F is split, then . = (gf) € [[ F for some g; € F.
o IfY/F is not split, then yn = gézm for some g €Y.
Then there exists h € Y/ F such that i = h="4 (h)".

LEMMA 2.3 (Totally ramified extensions (dim 1)). Let R be a complete discretely
valued ring with fraction field K and residue field k. Let { be a prime which is not
divisible by char (k) such that K contains a primitive £ root of unity. Let L/ K be a
totally ramified extension of degree £ and let S be the integral closure of R in L. Then

a. L ~ K ({r) for some parameter w of K,
b. If x € R* is a norm from L, then x € K*

c. Norm one elements in L are (** powers in S*.

Proof. a. follows from ([PPS18], Lemma 2.4), while b. and c. are easy consequences
of Hensel’s lemma. (]

LEMMA 2.4. Let A be a complete regular local ring of dim 2 with fraction field F
and finite residue field k. Let L/ F be a cyclic extension of F of degree £ unramified
on A, where { is a prime not divisible by char(k). If a € A*, then it is a norm from L.

Proof. Let o be a generator of Gal(L/F'). Since a € A*, the cyclic algebra (L, 0, a)
is unramified and hence trivial in Br (F'). O

LEMMA 2.5 (Norm one elements of an unramified extension). Let A be a complete
regular local ring with fraction field F' and finite residue field k. Let ¢ be a prime
which is not divisible by char(k). Assume F contains a primitive (" root of unity.
If Y is a degree { field extension of ' unramified on A, then norm one elements of
Y/ F which are integral over A are {*" powers in'Y.

Proof. Let B denote the integral closure of A in Y and let k; be its residue field. Let
c € Y be integral over A such that Ny p(c) = 1. Hence ¢ € B*, the minimal poly-
nomial g(¢) of ¢ in Y/F lies in A[t] and is monic and irreducible. By the Henselian
property of A, g(t) is irreducible (of the same degree) in k[t] and is therefore the
minimal polynomial of €.

Since Y/F is unramified, [Y : F] = [k : k] = £ and therefore Ny, /,(¢) =
(—1)¢g(0)F1:+@) = (—1)¢g(0)VF()] = Ny, p(c) = 1. Now k;/k is an exten-
sion of finite fields and hence the norm map N : k — k* is surjective. Since N is
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s k- Since Zisa
k Iz

prime not divisible by char(k) and F contains a primitive £*" root of unity, ¢ divides

also multiplicative, it induces a surjective map of groups N:

|k*| and |k¥|. Thus both ]fgg and % are cyclic groups of order £ which shows that N'
is injective as well.
Since Ny, /1 (€) = 1, this shows that ¢ = Xt for some A € k;. Using the fact that B is

Henselian as well, we see that ¢ is also therefore an ¢t powerin Y. O

LEMMA 2.6 (Norm one elements (dim 2)). Let A be a complete regular local ring of
dim 2 with fraction field F' and finite residue field k. Let ¢ be a prime not divisible by

char(k). Assume F contains a primitive {*'' root of unity. Let Y = F (\[/ uﬂiéj) be
a degree { field extension of F where uw € A*, (m, ) form a system of parameters of
Aand0 <i,j <l —1. Let b € Y be such that it is integral over A. IfNy/F(b) =1,
thenb € Y*,

Proof. We split it into two cases depending on the ramification of Y/F. If Y/F is
unramified and nonsplit, then by Lemma 2.5, b in an £*" power.

If Y/F is ramified, then Y = F (\[/ uwiéj) where 0 < ¢,j < £ — 1 with at least one
of them non-zero. Let B denote the integral closure of A in Y. It is a complete local

ring ([HS06], Theorem 4.3.4) with maximal ideal M B_and residue field k. Letb € B
such that Ny z(b) = 1. Let a € A* be such that@ = b. Thus ba™' ~ 1 mod Mp.

Since B is complete and char(k) # ¢, b = aX’ for some A € B. This implies that
Ny/r(b) = (a Ny/F()\)é)é = 1. Thus a Ny, ()" = p where p is an (" root of
unity. Hence a is equal to p up to £** powers in Y. Since F' contains a primitive ¢2
root of unity, this shows a and hence b is an £*" powerin Y. o

LEMMA 2.7 (Reduced norms of an unramified algebra). Let R be a complete dis-
cretely valued ring with fraction field K and residue field k of cohomological dimen-
sion < 2. Let Dy be an unramified central simple algebra over K of index { where £ is
a prime not divisible by char(k). Then every unitu € R* is a reduced norm from D.

Proof. By the reSIits of Merkurjev and Suslin ([Se], Chapter II, Sec 4.5, Pg 88), the
reduced norm of Dy is surjective. Thus the polynomial Nrdp,(x) —u = 0 has a
solution over k. By Hensel’s Lemma, there exists a solution over K. O

LEMMA 2.8 (Splitting fields). Let A be a complete regular local ring of dim 2 with
fraction field F and finite residue field k. Let { be a prime not divisible by char(k)
such that F contains a primitive {1 root of unity. Let D = (v, ) be an { torsion

algebra over F and E = F (\[/ uﬂ'iéj) be a degree { field extension of F where

u,v € A*, (m,0) form a system of parameters of A and 0 < i,j < £ — 1. Let A/(;)
be completion of Ay at its maximal ideal and let its fraction field be denoted by F,
which is a complete discretely valued field with parameter m and residue field kp. If
D ®p (E ®F Fp) is split, then so is D ®f E.

DOCUMENTA MATHEMATICA 26 (2021) 337-413



REDUCED WHITEHEAD GROUPS OF ALGEBRAS 343

Proof. 1fi = j = 0, then F is the unique unramified (on A) extension of F. Therefore
v e E* andhence D ® E = 0.

If: = 0,5 # 0, then E ® Fg/Fp is an unramified extension, Fg :=EQFgisa
totally ramified extension over kp and the further residue field of Epg is k . Note that
D ® E ® Fp = 0 implies that the residue v € E_B*Z and hence © € k*‘. This implies
v € A** and hence D = 0 to begin with.

If ¢ # 0, without loss of generality we can assume ¢ = 1 and 0 < j < ¢. Thus
D®E = (v,u=1677) = (6,v”) € Br(E). Note that E ® Fp/Fp is totally ramified
and Ep = kp. Since D ® E ® Fp = 0, we see that (6,17) = 0 € Br(E ® Fp)

and hence (3,77) € Br(kp). This implies 7’ € k** and hence v € A**. Hence
D®E=0. O

LEMMA 2.9 (Index formula, [JW90]). Let R be a complete discretely valued ring
with fraction field F. Let E be a cyclic unramified extension of F' of degree m and
let « = o + (E,o,7) in Br(F) where 7 is a parameter of R, o is a generator of
E/F and o is a central simple algebra of degree n unramified at R. Assume mn is
invertible in R. Then index (o)) = index(o/ @ E) [E : F].

2.3 APPROXIMATING LOCAL DATA

For the rest of this section, ¢ will denote an odd prime, F', a global field with
char(F) # (¢ containing a primitive /** root of unity and D’, a central simple al-
gebra over F’ of index dividing ¢. F, will denote the completion of F" at a place v of F’
and k,, its residue field. T = {vy, va, ..., v, } will be a finite set of places of F' such
that ¢ # char(k,,) for each i < r and D’ ® F, is split for every place v & T'.

LEMMA 2.10 (An approximate cyclic extension). Suppose that there exists v’ € F*
and cyclic or split extensions E,, | F,, of degree { for each v; € T such that

e v’ is a norm from E,, | F,, for eachv; € T,
e D' ®p E,, is split for eachv; € T.
Then there exists a cyclic field extension E | F of degree { such that
o E®r F,, >~ E, foreachv, € T,
e u' is a norm from E/F,
e D' ®F E is split.

Proof. Without loss of generality, assume that there exists a v € T such that E, /F,,
is a field extension. This can be done by expanding 7" to include a place v of F
where v’ € 07, and choosing E, to be the unique cyclic unramified field extension
of degree ¢ over F,.

Pick w, to be so that the given F, ~ (tfj[j]] ) foreach v € T. If u/ € F**, using

weak approximation pick w € F so that up to ¢! powers, it matches w, € F, for
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each v € T. Then the field E = F[t]/ (t* — w) satisfies the lemma. So we assume
v’ ¢ F** in the rest of the proof.
For each place v € T, by hypothesis we know (w,,u’) = 0 € Br(F,). Hence

pick 0, € (F (Vi) @ F,) so that Ny yryop, /p, (00) = wy. By weak ap-
proximation, find 8 € F (W) so that it matches 6, up to £** powers. Set w =
NF(W)/F(G)' Thus w matches with w,, up to £** powers and (u/,w) = 0 € Br(F).

Set E = F ({/w). This is a cyclic Galois extension of F' which approximates the F,s
for each v € T'. By hypothesis, D’ is split at places not in T and E,, ® p D' is split for
every v € T. Thus F splits D’. O

LEMMA 2.11 (Another approximate cyclic extension). Let Y = F (\7@7) be a
cyclic field extension of degree { where u' € F* \ F*'. Leta' € Y \ Y*! and L

be the Galois closure of the compositum Y’ (W) over F. Suppose that for each

v € T, there exist w, € F) and extensions E, := (t[FiEf;] y of I, with the following
properties:

e w, isanormfrom L& F,/F,,
e D' ®F E, is split,
o (wy,a) is splitover Y' @ F,.
Then there exists a cyclic field extension E/F of degree { such that
o F®p F, ~E, foreachv €T,
o v is anorm from E/F,
e D' ®F FE is split,
o d isanormfrom EQp Y'Y

Proof. Without loss of generality, assume that there exists a v € T such that E, /F,,
is a field extension. This can be done by expanding 7’ to include a place v of F' with
the following properties : 1) v’ € OF, , 2) @’ € Oy, for any place 2 of Y’ lying over
v, 3) L ® F, is a unramified extension of F3, (or axproduct of unramified extensions
over [,) and choosing w, € OFf, \ O}l; and I, to be the unique cyclic unramified
field extension of degree ¢ over F,.

Let z, € (L ® F,,)* such that Nygp, /5, (20) = w,. By weak approximation, find
z € L so that it matches up to £** powers with z, for eachv € T'. Set § := Ny, /y(z)
and set w := Ny ,(0) = Np/r(2) . Thus w matches with the w, up to £*"

Clearly w is a norm from Y’ = F ( v u’) also and hence (v/,w) = 0 € Br(F). Set

E = F ({/w). Hence v’ is a norm from E/F.
Note that E is an extension of F' which approximates the given £, for each v € T
Since there exists some v € T such that E, is a field, E/ F' is a nonsplit field extension,

powers.
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which is clearly cyclic of degree ¢. By hypothesis, D'/ F is split at places not in T’
and F, @ D’ is split for every v € T'. Thus E splits D’.

As 0 = Np,yi(z) and Y’ C Y’(’Za’) C L, we have that (a/,0) = 0 €
Br(Y’). Given any ¢ € Gal(Y’/F), extend it to some ¢ € Gal(L/F). Then
Ny (15(2)) = (0). Hence ¥(0) is a norm from L/Y”’ and so also from

Y’ (W) /Y. Therefore
(a',9(0)) =0 € Br(Y') Vv € Gal(Y'/F).

Finally, since Ny, (#) = w and Y’/ F is Galois, we have that HweGal(y/F) »(0) =
w. Therefore
[I (@ )= w=0eBr(Y).

YEGal(Y", F)
O

LEMMA 2.12 (Invariant algebras of global fields). Let E/F be a cyclic extension
of global fields of degree {, where { is a prime not divisible by any of the residual
characteristics of F. Further assume that F contains a primitive {** root of unity. Let
E,, denote the completion of E at any place w of E and Og,,, its valuation ring. Let
Gal (E/F) = (o). Letu € F*, b € E* be such that

e At every place w of E where E/F is ramified, u is an (** power in £y,

e At every place w of E where E/F is unramified and inert, u € 0%, up to ¢th
powers in I

o (u,b) = (u,o(b)) in H? (E, ).

Additionally, let Ty be a finite set of places of F' such that for each place v € Ty,
one is given f, € FF such that for any place w of E lying above v, (u,b) =
(u7 fv) in H2 (EUH M@)'
Then there exists f € F* such that

1. f= fqﬁf in F, for some 0,, € F, foreachv € Ty,

2. (u,b) = (u, f) in H? (E, uy).
Proof. By Kummer theory, & = F' (W) for some ) which generates % Note that
if u € E**, we can choose f by weak approximation such that f matches f, up to
¢t powers. So for the remainder of the proof, we assume that u ¢ E*‘. We also
note that if v € Tp splits completely in E, then the hypothesis that (u, b) = (u, o(b))
guarantees that the same f,, works for each place w above v.
Let T" denote the union of Ty and the finite set of places v of F' which satisfy both the

following conditions: 1) v is either unramified and inert or completely split in E, 2)
There exists a place w of E lying above v at which either v or b is not a unitin Og,, .
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For each place v € T', we find f,, € F}; as follows:
CASE 0 : For each v € Tp, we choose the f, given by the hypothesis.

Case I:Letv € T'\ Tp be a place of F' which is unramified and inert in E and let w
be the place above v. Let b = b,,m;, where b € O;’Jw and 7, is a parameter for F,,. Set
Jv = ;. Since by hypothesis, u is in OF, up to ¢t powers, we have that

(u,b) = (u,?)w) + (u, 7)) = (u, f) € H? (Ew, te) -

CASE 11 : Let v € T\ Ty be a place of F which splits in E. Thus E@p F, = [['_, F,
andletb € E = (by,bs,...,b) € E®p F,. Thus (u,b) = (u, o(b)) implies

(uvbl) - (uabQ) == (uabl) € H? (thul) (*)

Set f, = b1. And thus (u, f,) matches (u, b;) over F,, for each 1.

Since by hypothesis, u € E;jf for every w/v totally ramified, we have that for each
place w lying over a place v not in T, (u, b) is split over E,,.

Note that since v ¢ E*/, it is not in F** either and hence F ({/u) is a cyclic Galois
extension of degree ¢ over F'. Then L := F ({7&, W) is a Galois extension over F'
with Galois group % X %.

By Chebotarev density, pick a place v of F' (there are infinitely many!) which is not in
T such that 1) § does not ramify in L, 2) o’ € Gal(L/F) ++ (1,1) € £ x Z is the
Frobenius automorphism Frobg of L, /F; where x is any place lying above 9. [Since
L/F is abelian, the Frobenius automorphism does not depend on the choice of x]
Note that the residue field extension degree [l : k5] < ¢. Forif E,, is nonsplit unram-
ified extension of Fj, then since u € (’)*6, we have u € E;jf.

We have chosen o’ to be the non-trivial automorphism of L/F of order ¢ such that
o' (Vu) = p uand o’ (/) = p’ /¥, where p, p are primitive ¢** roots of unity.
This, by the choice of v gives rise to the Frobenius automorphism of the residue field
extensions [, /k. Thus [, /k; is a non-trivial extension, i.e., ¥ is not completely split
in L. (The choice of Frobenius for a trivial extension is the identity map.)

Thus the residue field extension [, /k; is degree ¢ with Galois group generated by o”.
Note that since o’ fixes neither \/u nor /2, u and 1 are not ¢*" powers in F,. Thus
E,, is unramified, nonsplit over F; and u & Fgl.

FINDING an f'

Our first goal is to find an algebra o = (u, f’) € Br(F) suchthat « @ p E = (u,b) €
Br(E). We find « by prescribing its shape v, locally so that o, @p F = (u,b) €
Br (Fy,) where w is any place lying over v.

For v € T, choose o, = (u, fy). So a, @ E = (u,b) in Br (E,,). Forv ¢ T and
v # U, choose «,, = 0 € Br (F,). This matches with (u, b) over E,, since the latter is
also split at these places. For v = 0, let 5 be a parameter of F3. Choose oy = (u, 75)
for an appropriate s so that inv (a,) =0 € %. This can be done since u is a
unit at o and u & Fj¥.

vEQR
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Note that (u, b) is split over E,, for any w|9. Now since Cor is injective for local fields,
i = (u,7s) is split over E,, for w|v because Cor : H? (Ey, py) — H? (F3, jug)
sends (u, 75) ~ (u, 7f) = 0.

By the Albert-Hasse-Brauer-Noether theorem, there exists an o € Br(F) of order
dividing ¢ such that o« ® g F}, = a,, € Br (F,,). Also note that locally at each place, it
is split by F' ({/u), hence there exists an f’ € F such that o« = (u, f’) € Br(F) since
F contains a primitive /" root of unity.

MODIFYING f’ SO THAT IT APPROXIMATES f, FOR EACH v € T

By the choice of f’, we have that (u, ') = (u, f,) € Br(F,) foreach v € T. Hence
for each v € T, there exists w, € F (u) ® F, such that NFU(\‘T)®FU/FU (wy) =

f/—lfv.
By weak approximation, there exists a w € F' ({/u) such that for eachv € T, w =
wy,ys for vy, € F (¥/u)® F,. This implies that Np () Jp(w) € P Y v e T

Finally, set f = f'N(w). Therefore (u, f') = (u, f) € Br(F)and f € f,F* Vv €
T. o

3 REDUCTIONS AND STRATEGIES

3.1 THE SET-UP

Let K be a p-adic field with ring of integers O and residue field k. Let F' = K (X)
be the function field of a smooth projective geometrically integral curve X over K.
Let D denote a central division algebra over F' of exponent ¢ where ¢ is a prime
different from p. We want to prove triviality of SK;(D). Since it is known that the
index of D divides £2 ([S97], [S98]) and that SK; (D) is trivial for square-free index
algebras ([W50]), we assume from now on that the index of D is /2.

Note that in the case when ¢ = 2, the works of Merkurjev and Rost ([M93], [M06],
Rost, Chapter 17 [KMRTT; [M99]) lead to the more general result that SK; (D) = {0}
over cohomological dimension 3 fields. Thus, in this paper, we assume that £ # 2. We

.. . . Lo th .
also make an additional assumption that F contains a primitive {?"" root of unity.

Let z € SL;(D) and let M be a maximal subfield of D containing z. Thus
Nar/r(2) = Nrdp(z) = 1. We would like to show z € [D*, D*]. Using ([P76],
Lemma 2.2, Section 2.4) and ([A61], Chapter IV, Theorem 31), by a coprime to /¢
base change, we assume that M contains a cyclic degree ¢ sub-extension Y/F with
Gal(Y/F) = (¢). Since F contains a primitive £** root of unity, by Kummer the-
ory, we have Y = F (/y) for some y € F*. Since Ny p(z) = 1, the element
a := Njy/y(z) is a norm one element of Y//F and by Hilbert 90, a = b~'4(b) for
some b € Y. We fix a choice of such a b.
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3.1.1 A PRELIMINARY MODEL

By resolution of singularities ([Lip75]), there exists a regular integral scheme' X’ with
function field F' equipped with a proper, flat and projective morphism X — Spec Ok.
Let X denote its reduced special fiber. For each z € &, let the regular local ring at
on X be denoted by A, := Ox ;. Let the completion of A, at its maximal ideal be
denoted by ;1;, the fraction field of Zl; by F and the residue field of ;1; by k.. We
also let D, (resp. Y,) denote D ®f F), (resp. Y @p F,). If n € Xg is a codimension
one point of X and P € X is a closed point of X with P lying in the Zariski closure
of nin X, we let Fip,, denote the branch field. More explicitly, if (m,) € Ap denotes
a prime defining 7, then localization at this prime ideal yields a discrete valuation ring
;1;(7“,)' Completing this discrete valuation ring at its maximal ideal and further taking
its field of fractions yields the branch field F'p,,. Thus Fp and F;, are both subfields
of Fp,. Let kp, denote the residue field of Fp,y,.

Since X is normal, for each codimension one point x € X (1, we choose an
extension to a’ discrete valuation v(,) on Y. Define supporty(b) = {z €
XM max; (Jv) (¥(b))]) > 0} for the b which was fixed in Section 3.1 and let
Tx = sesupport  (b) - Further set Hx to be the divisor corresponding to the
union of the reduced special fiber Xy, divx (y), Jx, the ramification locus of M and
the ramification divisor of D in X.

Notation: We say a divisor is in good shape if it is a union of regular curves in normal
crossing.

PROPOSITION 3.1. There exists a regular proper model X of X over Ok such that
Hx is in good shape, i.e. is a union of regular curves in normal crossing in X.
Further, let h : Y — X denote the normal closure of the model X inY. Letx € X
of codimension 1 < i < 2 and let B, denote the integral closure of Ay = Ox z inY.
Then the following hold:

a. If' Yy is a field, then h=1(x) = {y} where y € Y of codimension i and B, is a
local ring and isomorphic to Oy ,,.

b. If Yy ~ [[ Fy, then h=(z) = {y1,v2,...,ye}, a set of £ points in Y of codi-
mension i and By, is semi-local with ¢ maximal ideals m,, for 1 < i < £
Further;, (By)m,, =~ Oy.y,.

Proof. Fix a preliminary regular proper model X’ of X over Of. Construct X’ by
blowing up X’ at closed points of X’ repeatedly (p : X — X’) such that H” :=
p~! (Hx) is a union of regular curves in normal crossing. To prove that H x is in
good shape, it suffices to show that 7y C H". By construction, the union of X,
divy (y), ramy (M) and ram x ([D]) lies in H".

'We would like to note in advance that we will finally work over a new model obtained from X’ by
repeatedly blowing up closed points.

21n case the prime corresponding to x splits in Y, then z defines £ valuations vz, , Vs, ..., Vz, ON Y.
However vy, (b) = vz, (™1 (D). Set vy) := vgy.
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Now let 5 € Jx. If 3 is the generic point of the strict transform of a curve in X”, then
p(B) € Jx+ and hence 8 € H". On the other hand, if 3 lies on an exceptional curve
of p: X — X', then clearly 8 € H"”. Hence Hy is in good shape.

We give the proof for the case when x = P, a closed pointin X. The proof for the case
when z has codimension one is similar. Let U C X be an open affine neighbourhood
containing P with coordinate ring A. Thus h~1(U) is affine with coordinate ring,
say B, which is the integral closure of A in Y. Thus it follows that the integral closure
of the local ring Ap in Y is B localized at the multiplicatively closed set A\ P which
we denoted by Bp. Since Bp is integral over A p, the maximal ideals of Bp contract
to the unique maximal ideal of Ap and hence correspond to the points in h=1(P).
Since Gal(Y/F') ~ Z/{Z acts transitively on h =1 (P), it is clear that h =1 (P) is either
a singleton or a set of size ¢.

Now it only remains to compare the shape of Yp := Y ®r Fp and the size of h~1(P).
By (Lemma 07N9, stacks-project), Bp ®4, Z} ~Qich-1(P) H(’)/yz which is a
(local) domain iff |h=(P)| = 1.

We have the following injective® A p-morphism: Bp ®4, Ap = Y ®ap Ap <
Y ®ap, Fp~Y®pFp:=Yp. Thusif Ypisafield, Bp®a4, 14/1; has to be a domain
and hence |h=1(P)| = 1. Conversely, if h~1(P) = 1, then Bp ®4, Ap has to be
a local domain. The above injection shows that Yp ~ Y ® 4, Fp lies in the fraction
field of Bp ® 4, ;1;. Hence Yp is a domain and hence a field. O

We continue to work this model X’ till the end of Section 5.

LEMMA 3.2. Let P be a closed point in X lying on the Zariski closure of a codimen-
sion one pointn € X. If Y, ~ [[ F,, then Yp ~ ] Fp.

Proof. Let (mp,dp) be a system of parameters of Ap such that p cuts out the curve
7 at P. Recall that Y = F'(/y) and that div(y) is arranged to be in good shape in X'.

Since Y7, is split, so is Y’ ® F'p ;. Thus we can assume that up to (™ powers, y = vpégg
—~ Xk
for some unitvp € Ap and 0 < j < £ withy € k}l:n' Recall that kp ,, is a complete

%

discretely valued field with Op as a parameter. Thus j = 0 and since vp € Ap ,

P
Tp € kif. Hence vp € Ap . This immediately implies that Yp is split. O

3.1.2 FIXING PARAMETERS

Let So = {P1, P, ..., Py} denote the finite set of closed points of intersection of
distinct irreducible curves in H . Expand S if necessary so that it includes at least
one closed point from each irreducible curve in H . We call the elements in the set
S to be intersection points.

Let N/ denote the set of all codimension one points of X which lie in Hx and let
Ny denote the subset V) N X. Using ([S98], Lemma), for each p € N/, choose a

3As Z;/Ap and Y/Ap are flat and M @ g N ~ M ®g N for S-modules M, N where S is a
localisation of R.
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function m,, € F such that divy (7,) = 77 + E,, where E, avoids NjU Sy. Thus m, is
a parameter of F;, for each such 7.

Further if P € Sy lies on two distinct irreducible curves C' and C’ in H x with generic
points 7 and 7’ respectively. Then (m,, 7,/) form a system of parameters of Ap. If
P € S) lies on exactly on one irreducible curve C of H x with generic point 7, then
7, can be extended to a system of parameters (7,7, ) of Ap for some prime 7,
defining a curve C’ with generic point 7 cutting C' transversally.

We choose this system of parameters for each P € Sy. Let mp := 7, and p :=
. Since Hy is in good shape and at P, the division algebra is ramified at most
along C and C’, using ([S97], Proposition 1.2) we see that there exist o/ € Br (Ap),
up,vp € A% and integer 0 < m < £ such that [D] € Br(F) is either equal to o’ or
o 4+ (up,mp)ora + (vp,dp) or + (up,mp) + (vp,dp) or & + (upm,vpdp).

3.2 THE SHAPE OF a

The following propositions specify the shape of a = Nj;/y () (which is an element
of norm one in Y/ F') over the model X'.

PROPOSITION 3.3. Let x € X be such that Y, is a field extension of F,.. Let é; be
the integral closure of A, inY,. Thena € B, .

Proof. Let us first look at the case when = € Xy is a codimension one point of X.
Thus F is a complete discretely valued field and therefore so is Y,. Let my, be a

. —k
parameter of Y, and 7, be a parameter of F,. Thus a = uﬂr{,m for some u, € B,

and j € Z. Let e be the ramification degree of Y,/ F,. Then there exists v, € ;1;*
il

such that 1 = Ny, /p, (a) = Ny, /p, (uﬂr{,@) = vwﬂ';?m. This implies % = 0 which
shows that j = 0 and that a € é;*

Now let z = P € X be a closed point of X and let Bp denote the integral closure of
Ap in Y. By Proposition 3.1, Bp is local and isomorphic to Oy g where h : Y — X
denotes the normal closure of X' in Y and h=(P) = {Q}.

If P ¢ Hx, thena = b~ 1¢(b) € (Bp);" for any height one prime ideal I of Bp.
Since Bp is normal, we have N;(Bp); = Bp. Therefore a € Bp and further since a
is not contained in any height one prime ideal, a € B%.

Let P € Hx and (7wp, dp) be a system of parameters of Ap such that they cut out the
irreducible curves in H x on which P lies. Thus divspec 5, (a) is supported at most
along primes of Bp lying over (wp) and (§p). By Lemma 3.2 and Proposition 3.1,
there exists exactly one prime lying over (7p) and one over (§p). Since Bp is normal
and Ny, p(a) = 1, we see that a € Bp.

The canonical Ap-morphismi : Bp — Y ®@p Fp = Yp sending b’ ~ b’ ® 1 is an
injection. Since Bp is integral over Ap, we see that i(Bp) is integral over ;1; and
hence i(Bp) C é;. Hence a € B}, implies a € é;a* also. O

PROPOSITION 3.4. Let P € Sy such that Yp ~ Hle Fp. Let (mp,dp) be the
system of regular parameters at Ap fixed as in Section 3.1.2 and let a. = (a}), where
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a; € Fp. Then there exist z; p € Ap and m;,n; € Z such that o}, = z; pmp 0.
Further - m; =Y n;=0and[[zip = 1.

Proof. By Proposition 3.1, if h : )V — X denotes the normal closure of X’ in Y, then
h=1(P) = {Q1,...,Q.}. Further if Bp denotes the integral closure of Ap in Y, Bp
is semi-local with maximal ideals {mgq,, ..., mq,} With (Bp)mq,, =~ Oy q,-

Let (mp,0p) be a system of parameters of Ap such that they cut out the irreducible
curves in Hx on which P lies. As in the proof of Proposition 3.3, divspec Bp (a) is
supported at most along primes lying above (7p) and (dp).

Since Y = F({/y) where div(y) is arranged to be in good shape in X" and Yp is
split, Oy ¢, is a regular local ring. Further O/yz ~ Ap. Let (7o, 0, ) be a system
of regular parameters where ﬂ-/Qi (resp. 5/Qi) lies over wp (resp. dp). Using the
identification* Y C Fp (via Q1 say), we identify Y ® Fp with [ Fp.

Note that 7, € Y@ Fp gets identified with (7,7, .., 7o, , ) € [T Fp where
each ij is supported at most along (7p) in Ap. Similarly d,. gets identified with

(6’Qi,6’QH1, R 5221_71) with each 6’Qj being supported at most along (dp) in Z}.
Since a has norm 1, the proposition about the shape of a follows. O

PROPOSITION 3.5. Let P € X\ Sp be a closed point of X such that it lies on exactly
one irreducible curve (say C) of Hx. Further assume Yp =~ Hle Fp. Let (wp,0p)
be a system of regular parameters at Ap such that wp defines C at P. Let a = (aj),

— %
where o) € Fp. Then there exist z; p € Ap and m; € Z such that o} = z; pTp".
Further Y m; =0and [[z;,p = 1.

Proof. The proof is similar to that of the previous proposition except that a is now
supported at most at primes lying above 7p. o

3.3 STRATEGY

Recall that we have z € M NSLy (D) with Nps/y (2) = aand Ny, p(a) = 1 where M
is a maximal subfield containing a cyclic subfield Y of degree ¢. The goal is to show
z € [D*,D*]. We would like to split ¢ into a product of suitable elements a; and
as lying in nicer subfields F; and Es respectively. More precisely, we would like to
find elements a1, a2 € Y and field extensions E, Fo such that for each 7 = 1, 2, the
following hold:

1. a1as = a.
2. E;/F is asubfield of D of degree .
3. E;CCp(Y)and D® E; ® Y is split.

4. There exists 0; € Y E; C D such that Ny g, /v (6;) = a;.

4Note that if Y C Fp via a different @Q;, then the new identification of Y ® Fp ~Q, [1 Fp differs
from the old one Y’ ® Fp ~g, [] Fp by an automorphism [] Fp >~ [] Fp permuting the components.
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5. 0; € [D*,D*].

Note that properties (3), (4) and (5) force that a; € Nrdy (Cp(Y)) and that
Ny, (a;) = 1. The construction of such subfields £;/F" is useful in modifying 2
by commutators so that it is a product of commutators, as shown by the proposition
below.

PROPOSITION 3.6. Let D, M,Y, z, a be as before. If there exist elements a1,as € Y
and subfields E1/F and E5 | F with properties (1) - (5) above, then z is a product of
commutators.

Proof. Let D' := Cp(Y') which is a central divison algebra of index ¢ over Y. Since
E; commutes with Y in D , 8; € D’. Since z € D', we have that 29;19;1 e D,
Note that Y E; and M are maximal subfields of D’/Y". Thus

NI‘dD/ (29519;1) = N]\/j/y(Z) NYEQ/Y (951) NYEl/Y (9;1) = aa;lafl = 1.

Since D’ is a central division algebra with square-free index, every reduced norm
one element is a product of commutators ((W50]). Thus 26, *6;7* C [D’*, D"*] C
[D*, D*]. Since each 6; € [D*, D*] by hypothesis, z € [D*, D*] also. O

The rest of the paper is devoted to constructing F; and a; satisfying properties (1)-
(5) listed above. This is done by applying the techniques of patching developed by
Harbater-Hartmann-Krashen.

4 AT CODIMENSION ONE POINTS

Recall that N/} denotes the set of all codimension one points of X which lie in H .
For each ) € Ny, let m,, be the parameter of F), fixed as in Section 3.1.2.

CLASSIFICATION OF POINTS OF N/
We say that n € N is of
e TYPE 0 if the index of D,; is 1. Thus n ¢ ramx (D).
e TvyPE 1 if the index of D, is £. We further classify these points into subtypes.

— TyPE 1A:if n € ramy (D). Thus D,/ F,, is an unramified index ¢ CSA.
— TvyPpE 1B: if n € ramy (D). Thus D,, = Dy + (uy, ) where Dy /F,, is

an unramified CSA and u,, is a unit in A,. By Lemma 2.9, Dy is split by
the degree ¢ extension F),(/u,) and hence D, = My (uy,, v,m,) where

Uy, Uy are units in A,

e TYPE 2 if the index of D, is £2. Thus n € ramx (D) and D,, = Do + (uy, 7)

where u,, € ;1;* is not an £** power and Dy / F}, is an unramified CSA such that

Dy ® F,) (/) has index £ (Lemma 2.9).
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SHAPES OF Y AND a

For n € N{, let B, denote the integral closure of A, in Y,, whenever the latter is a

field extension of F,. If Y;, ~ [[ F,, we let a = (a;m)i where a;, € F),. Since
Ny,p(a) = 1, we have [[a;,, = 1 € F,. We now classify Y, into four types as

follows:

e RAM Y, is of Type RAM if Y,/ F}, is a ramified extension.

e RES :Letn be of Type 1bor 2 (i.e n € ramx (D)). Then Y, is of Type RES if
it is the lift of residues as defined in Section 2.1. In particular, it is an unramified
nonsplit extension of F,.

e SPLIT : Y, is of Type SPLIT if Y, ~ [['_, F,.

e NONRES :Y,, is of Type NONRES if it is none of the above types. That is,
it is an unramified nonsplit extension of F,, and if n € ramx (D), it is NOT the
lift of residues.

REMARK 4.1. Thus if n) is of Type 2, then Y, cannot be of Type SPLIT.

LEMMA 4.2 (Along n of Type 1a). Letn € N be of Type la. Further assume that
Y, ~[[F, Leta = (a;m) € [[ F where each a; ,, € F). Then a;

m;
n = Zi,nTn e
o~k
/
F, where z; ) € A, andm; € Z.

Proof. Leta; , = z;,m," for z;, € ;1;* and m; € Z. Since a is a reduced norm
from D ® Y, we have (z;,77%) [D,] = 0 € H?(F,, ) for each i. Since D, is

n
unramified and has index ¢, by Lemma 2.7 (z; ,,) [D,] = 0. Thus, taking residues
along 7, shows thatm; =2 0 mod /. O

For ease of reference, we summarize possible shapes of Y and « at points of NV in the

following table (cf. Lemmata 2.3, 4.2, Proposition 3.3) where we use the notations that
— — —

wy, 2y € Bn*, Un, Ziy € An* and u, ¢ A, , m;,m) € Zand Do/ F;, is an unramified

CSA. Further Ny, /r, (2) = 1, Ny, /p, (w))’ = 1, 30 my = 30_ m} = 0 and

¢
[lici2in =1
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n D, More information Y, a€c Yy,

0 Do index(Do) = 1 RAM w'

0 Do index(Do) = 1 SPLIT (a’m zi,nwl,”i) _
0 Do index(Dp) = 1 NONRES Zn

la Do index(Dg) = £ RAM w't

!

la Dg index(Dg) = £ SPLIT (a; n= zi,nwfymi>
la Do index(Dg) = ¢ NONRES Zn

1b | Do + (uy,my) | index(Do ® Fy(¥u,))) = 1 RAM w't

1b | Do + (un,m,) | index(Do ® Fn(%n))) =1 RES Zn

16 | Do+ (uy,my) | index(Do @ Fy(Va,)) =1 | SPLIT | (o], = zim't).
1b | Do + (uy,my) | index(Do ® Fy(Y/u,))) =1 | NONRES Zn

2 [ Do + (un, m,) | index(Do ® Fp(Yu,))) = ¢ RAM w'l

2 | Do+ (ug,my) | index(Do ® Fp(Yu,))) =4 RES 2z

2 | Do + (un, ) | index(Do ® Fy(¥/u,))) =¢ | NONRES Zn

Table 1: Shape of D, Y and a at € N||

FIXING RESIDUAL BRAUER CLASSES FOR POINTS IN N{j ALONG WHICH D IS
RAMIFIED

For each 7 € Ny of Type 1b or 2, we define (¢, € Br(F;;) as follows:

IfY, is RAM, (so Y, = F} ( ¢ wnwn) for some w, € //1:,*), then there exists an
unramified algebra Dy,, such that D,, = Dy, + (uy, wym,) € Br (Fy). Set Brpen, =
[Do,,] € Br(F)), ie. setit to be the residual Brauer class with respect to parameter
wymy,. In all other cases, set B,.y.,, to be the residual Brauer class of D with respect to
parameter 7, (cf. Section 2.1). Note that 3,.,, has index at most £.

5 AT CLOSED POINTS

Recall that Sy denotes the finite set of closed points lying on H x chosen as in Section
3.1.2. We refer to points P in Sy as marked points occasionally. In this section, we
classify points in Sy following ([SO7]) in essence, study the configuration of Y at
these points and also investigate the shape of a at some types of closed points P when
Yp >~ H Fp.

Let P € Sy be the intersection of two distinct irreducible curves C' and C’ of H y
with generic points 77 and 7’ in N/ respectively. Let mp and §p be primes defining C
and C’ at P be as fixed in Section 3.1.2.

5.1 CLASSIFICATION OF MARKED POINTS

We use the following notations: up, vp will denote units in Ap, Dgg, the Brauer class
of an algebra of Br (F') unramified at Ap, i.e. Doy € Br (Ap). Superscripts s and ns
on Dp are used to denote that the algebra D p is split and non-split respectively. We
sometimes refer to the irreducible curve with generic point 7 € N as 7. We begin
with a lemma (similar to Lemma 3.2) relating the shapes of D,; and Dp.
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LEMMA 5.1. If D,y = 0 € Br(F,), then Dp = 0 € Br(Fp).

Proof. Since D is unramified at n, Dp = (vp,dp). Further as D, is split, so is

D® Fp,,. This implies (vp,dp) = 0 € Br (Fp,). Thatis (W, 5p) =0¢€ Br(kpy).

Recall that kp, is a complete discretely valued field with Jp as a parameter. Since
~ % —~ %l

vp € Ap ,p € ki and hence vp € Ap . This immediately implies that Dp = 0

in Br (Fp). O

REMARK 5.2. Lemma 3.2 implies that if 1), n' € N} are such that Y, is of Type RAM
and Y, is of Type SPLIT, then 7 and ) cannot intersect.

We now list® the types® of closed points in Sy possible.

TypPE A: P is of Type A if both C' and C’ do not lie in the ramification locus of D.
Further D is unramified at P and because the residue field is finite, D p is split. Type A
points are further subdivided as follows:

- TYPE A{,: Both i and " are of Type 0. Thus D,, and D, are split.

- TYPE Aj§,: Exactly one of 7,7/’ is of Type 0. Thus the other, say 7, is of Type
la. So D,y is split whereas D,, is an unramified index ¢ CSA.

- *Type A$;: Both n and )’ are of Type la.

TyPE B: P is of Type B if exactly one of C' and C” lies in the ramification locus of D
(say C). Thus 7 is of Type 1b or 2 and rj/, of Type O or 1a. Further D = Dgo+(up, 7p)
in Br(F’) and because the residue field is finite, Dp = (up,wp) in Br (Fp). Type B
points are further subdivided as follows:

- TYPE Bj,: nis of Type 1b and » is of Type 0. Note that by Lemma 5.1, Dp
is split.

- *Type Bj,: n is of Type 1b, 1)/ is of Type 1a and Dp is split.
- TyPE B}%: nis of Type 1b, 7 is of Type 1a and Dp is non-split.

- TyPE Bj: nis of Type 2 and 7/’ is of Type 0. Note that by Lemma 5.1, Dp is
split.

- *Type B3;: 7 is of Type 2, 1’ is of Type 1a and Dp is split.
- TypE BZ$: nis of Type 2, 7 is of Type 1a and Dp is non-split.

TypE C: P is of Type C if both C' and C" lie in the ramification locus of D. Thus
7 and 7’ are of Type 1b or 2. Further D = Dy + (up,7p) + (vp,dp) or Dog +
(upm®,vpdp) in Br (F) for an integer m coprime to ¢ in Br(F).

SThe order of the subscripts in the types of points do not matter. So for instance we will use both Cg"ld
and Cgf’ld to mean the same type of point.

61t will be shown in Proposition 6.2 following the classification that the starred ones can be eliminated
by blowing up our model repeatedly.
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Points P where D = Do+ (upn}y, vpdp) were labelled cold points in ([SO7]). Thus

Dp = (upm,vpdp) at a cold point P and the ramification data at C, dc([D]) is
1

given by ((vpép)_m) “ at P. Points P where D = Doo + (up,7p) + (vp,dp)

were further subdivided depending on the shape of the finite subgroups © = (up)
and y = (vp) in kb /K3 into chilly points (when x = y # {1}), cool points (when
x =y = {1}), and hot points (when = # ¥). Since k% /k} is a cyclic group of order
¢, the subgroups =, y have to be either trivial or all of k% /k.

If P is a chilly point, without loss of generality assume p = p’ for some j coprime

to £. Thus Dp = (vp, W%,(Sp) € Br(Fp) and the ramification data at C, ¢ ([D]) is

1

given by (vfg) “ at P. If P is a cool point, Dp = {0} € Br(Fp). If P is a hot point,
assume without loss of generality that y = {1}. Thus Dp = (up,np) € Br(Fp) and

the ramification data at C, d¢([D]) is given by (up)% at P. We also recall that in this
case, D ® F}, has index 22 ([S07], Proposition 0.5, Theorem 2.5) and hence 7’ is of
Type 2. We continue to follow Saltman’s convention while refining the classification
as follows:

- TypE C5P : npis of Type 1b, 1’ is of Type 1b and P is cold.

- Type CI"™ . ) is of Type 1b, ) is of Type 1b and P is chilly.
- *Type CG°° : n7is of Type 1b, 7/’ is of Type 1b and P is cool.

- TypE CGPM : pyis of Type 1b, ' is of Type 2 and P is cold.

- *Type C’ghi”y : 1 is of Type 1b, 7’ is of Type 2 and P is chilly.

- *Type C2° : nis of Type 1b, 1" is of Type 2 and P is cool.

- Type CH° : nis of Type 1b, 7' is of Type 2 and P is hot.

- *Type C5,, : 1 is of Type 2 and 7' is of Type 2.

5.2 SHAPE OF a WHEN Yp IS SPLIT

We investigate the shape of a at some types of closed points P € Sy when Yp ~
[] Fp. By Proposition 3.4, a = (a;P)i € [] Fp where a;P = 2z, pTp'0p, zip €

Z;* and m;,n; € Zwichmi = an =0.
PROPOSITION 5.3. Let P € Sy such that Yp ~ [[ Fp and let a = (a;7p)i e[[Fp

A _ X my; SNg
where a; p = z; pTp'Op' as above.

1. If P is a cold point with Dp = (upm’},vpdp) where 0 < m < £, then a;,P =

(upm®)*™ (vpdp)™ (w’iyp)e(ﬂgrmi)éfor some w'; p € A;* and s,r € 7
such that sm = rf + 1.

DOCUMENTA MATHEMATICA 26 (2021) 337-413



REDUCED WHITEHEAD GROUPS OF ALGEBRAS 357

2. If P is a chilly point with Dp = (’Up,ﬂ"]jgép) where 0 < j < {, then m; =

il + jn; where v; € Z. Thus Y r; = 0 and aj p = z; p (W';(SP) ' ()"

3. If P is a hot point’ or a Type B} point® with Dp = (up,7p), then n; = nil

N
where n; € Z. Thus Y n} = 0 and a} p = z; pmp’ (61@) .

4. If P be a Type BY point’ with Dp = (up,7p), then m; = 0 and n; = nll
A
where n; € Z. Thus Y n; = 0 and a; p = zi,p(ézi) .

Proof. Since a is a reduced norm from D ® Y, for each i, (a] p) [D] = 0 €

H? (Fp, pe).
At a cold point:

(2i,pTp 0p') (upmp, vpdp) =0
= (zi,p) (7}, 0p) + (757) (up,dp) + (05') (mp,vp) =0
— (Z;np) (7Tp,(5p) + (u;ml) (ﬂ'p,(SP) + (’U;mni) (7Tp,(5p) =0

= (zﬂqpu;miv;m”i) (mp,0p) =0

Taking residues along 7p and then along dp, we see that 2], = up'vp ™ w"; p for

— %k
somew’; p € Ap . Since 0 < m < {,let 0 < s < ¢ such that sm = r¢+ 1 for some

: th ré+1 _  smy, nirl+n; st
r € Z. Taking s'* powers, we have Zip = Up Up w"; p. Hence for some

w; p € ;G’*,
i p = 2 pm i = (upme)™ (vpdp)™ (v"u”sprp)
= (upmp)™ (w5 ) (0pdp)" 0/} p
At a chilly point:
(zi,pTp 0%) (’UP,TF';ép) =0
= (xp) " 8p) + (5p) (o} 7p ) =0
— (U;mi) (mp,dp) + (Uﬂ”) (mp,dp) =0

— (™) (xp,0p) = 0.

"Here 7 is of Type 1b whereas 7/ is of Type 2 ([S07], Proposition 0.5, Theorem 2.5).
8Here 7 is of Type 1b whereas 7’ is of Type la.
9Here 7 is of Type 2 whereas 7’ is of Type 1a.
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Taking residues along mp and then along Sp, we see that m; = jn; mod £. Since
>mi=3n;=0and0<j <> 1 =0.

At a hot / BYY point : (z; prp'p ) (up, mp) = 0. Hence (67') (up,mp) = 0 and
therefore (us') (mp,dp) = 0. Taking residues along 7p and then along Op, We see
that n; = n¢ for some n); € Z. Since >, n; =0, >_ n, = 0 also.

At a B3{ point : Since Yp is split, Y;, is not of Type RAM. By Remark 4.1 and
Proposition 3.3, a is a unit along 7. Since a is arranged to be in good shape, we have

m; = 0. The same proof as in the previous case shows n; = nfand > n, =0. O

5.3 CONFIGURATION OF Y AT MARKED POINTS IN Sy

We record the configuration of Y at some types of the marked points in Sy. This is
possible since the div x (y) is arranged to be in good shape where Y = F'({/y). We
spell out the proof in the case when P is a CG°¢ point. The other proofs follow
in a similar fashion by using Lemma 3.2 and the fact that the shape of Yp can be
determined from that of Y, and Y, by going to the branch fields ¥ ® F'p s, and
Y ® Fp,y (c.f proof of Lemma 3.2) along with Remarks 4.1 and 5.2.

In this subsection, we use the following notations in the tables: 0 < r < ¢ and

— %
w,up,vp € Ap . Lp refers to the unique cyclic degree ¢ field extension of Fp
unramified at Ap.

PROPOSITION 5.4 (At CG° points). Let P be a C°' point and let Dp =
(upmB,vpdp) for 0 < m < L. Then the following table gives the possible con-
figurations (including some symmetric situations) of Y at P.

Y, Y, Yp
RAM RAM Fp (\‘Vwﬂ'pzi;j)
RAM RES Fp (\%P(SP)

RAM | NONRES | Fp (m)

RES RAM Fp ({/upmyp)

SPLIT SPLIT [1Fr

SPLIT NONRES H Fp
NONRES | RAM Fp (Ywrp)
NONRES SPLIT [I1Fp

NONRES | NONRES Lpor [[Fp

Table 2: Shape of Y at C5°! point P

Proof. 1Y, is RAM, by Remark 5.2, Y, cannotbe SPLIT. If Y, is RES, then Yp ,,; ~
Fp,y ({/upn), afield extension and Yp, /kp,, is ramified. Hence Y;, is RAM. If
Y, is SPLIT, then Yp ~ ][] Fp by Lemma 3.2. Hence Y, cannot be RAM. It also
cannot be RES by the same argument as above. Finally, if Y,/ is NONRES, the same
argument shows Y;, cannot be RES. Since Y/ F is arranged to be in good shape in X,
the shape of Yp can be determined from that of Y7, and Y, in a similar manner as that
in the proof of Lemma 3.2. |

PROPOSITION 5.5 (At C%°' points). Let P be a C50' point and let Dp =
(upmB,vpdp) for 0 < m < L. Assume without loss of generality that 1 is of Type 2.
Then the following table gives the possible configurations of Y at P.

DOCUMENTA MATHEMATICA 26 (2021) 337-413



REDUCED WHITEHEAD GROUPS OF ALGEBRAS 359

Y, Y, Yp
RAM RAM Fp ({/wrpdy)
RAM RES Fp (\%pap)
RAM | NONRES | Fp (\f/wap )

RES RAM Fp (\E/upwzl)

NONRES RAM Fp (Ywrp)
NONRES SPLIT [1Fp

NONRES | NONRES Lpor [[Fp

Table 3: Shape of Y at C'°! point P

PROPOSITION 5.6 (At C5"™ points). Let P be a CS"™ point and let Dp =
(vp, ﬂ'gpép) where 0 < j < L. Then the following table'® gives the possible configu-
rations of Y at P.

Y, Y, Yp
RAM RAM Fp (\‘Vwﬂ'pzi;j)
RAM | NONRES | Fp (m)
RES RES L
RES NONRES Lp

SPLIT SPLIT H Fp

SPLIT | NONRES [IF>r
NONRES | RAM Fp (Ywrp)
NONRES RES Lp
NONRES SPLIT H Fp
NONRES | NONRES | Lpor [[Fp

Table 4: Shape of Y at chilly point P

PROPOSITION 5.7 (At C°t points). Let P be a CH°t point and let'' Dp =
(up,7p). Ifan/Fnr is an unramified extension which is not RES, then it must be
of Type NONRES. Further, Yp is a non-split extension and hence Y @r D Q@ Fp is
split.

Proof. By ([S971, [S98]), [D] = [Doo| + (up,wp) + (vp,dp) € Br(F) where Doy
is unramified at Ap. By ([SO7], Proposition 0.5, Theorem 2.5), D @ F) is a divi-
sion algebra and hence Y, has to be a non-split field extension. Thus it is of Type
NONRES.

Now D = Dy + (vp,dp) € Br (Fy) where Do = [Dyo] + (up, 7p) is unramified at
n'. Since P is a hot point, D is ramified along both 1 and 7. Thus vp is not an ¢
power in F. Since Y, is unramified and not RES, [Yn’ (\‘/ﬁ) : Yn/} = /.

Thus by Lemma 2.9, ¢ equals index (D ® Y, ). Thus,

¢ = index (Do ® Yy (/7)) [Yor (/) : Vo]
— ¢ (index (Do ® Yy (/7))

Thus Y, ((7@) splits Dq over I, and hence also over the branch field F'p,. Note
that [DO] = (’LLP, 7TP) #0 € Br (Fpm/),

10t includes some symmetric situations.
"'Thus 7 is of Type 1b whereas 7’ is of Type 2 ([S07], Proposition 0.5, Theorem 2.5).
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Suppose that Yp is split. Since P is a hot point, p is an ¢! power in kp and hence
Yp (/vp) =~ [] Fp. Thus along the branch field, Yp,/ (/op) =~ [ Fp,y which
cannot split the non-trivial algebra Dgy. Thus we conclude that Yp is a non-split field
extension.

Since we have assumed that Y is in good shape and that Y; is unramified at 77/, there
exists j € {0, 1} such that

Yp = FP (\E/ lUPT('}_)) ,wp € AZ;)*

If j = 0, Yp is the unique non-split unramified extension at P and has to be isomor-
phic to Fip ({/up), which splits Dp. If j = 1, then let \* = wpmp for A € Yp. Thus
Dp®Yp = (up,mp) = (up,wp"') € Br(Yp) and hence split. O

PROPOSITION 5.8 (At Bj, points). Let P be a B, point. Assume without loss of
generality that 1) is of Type 1b and v’ is of Type 0. Then the following table gives the
possible configurations of Y at P.

Y, Y, Yp

RAM RAM Fp ({/wr%dp)

RAM NONRES | Fp (m)

SPLIT RES [1Fr

SPLIT SPLIT TIFr

SPLIT | NONRES T1Fr
NONRES | RAM Fp (Ywnp)
NONRES RES T1Fr
NONRES | SPLIT TIFr
NONRES | NONRES | Lpor [1Fp

Table 5: Shape of Y at Bj, point P

PROPOSITION 5.9 (At B}y points). Let P be a Bf; point. Assume without loss of
generality that 1 is of Type 1b and v’ is of Type 1a. Then the following table gives the
possible configurations of Y at P.

Y, Y, Yp

RAM RAM Fp ({/wrdp)

RAM NONRES | Fp (m)

SPLIT SPLIT 1 Fr

SPLIT | NONRES [IFr
NONRES | RAM Fp (Ywrp)
NONRES RES Lp
NONRES | SPLIT T Fr
NONRES | NONRES | Lpor [[Fp

Table 6: Shape of Y at B}’ point P
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6 BLowups

We repeatedly exploit the trick of blowing up'? our model at closed points to make the
model more amenable for patching. In this section, assume P € C N C’ where C, C’
are distinct irreducible curves in H y with generic points 7 and 1’ respectively. Let 7p
and ¢ p be primes defining C and C’ at P as before. After blowing up the model at P
once, let ¥ denote the exceptional curve with generic point € and let C and C’ denote
the strict transforms of C' and C’ respectively. Let the two new intersection points be
Q1 (where € intersects C)) and Q5 (where e intersects C”).

LEMMA 6.1 (Blowing up a cold point). Let P be a cold point and let Dp =
(upmB,vpdp) where 0 < m < L. Let ¢ : Xy — X denote the blowup at point
P. Then the exceptional curve Y obtained is of Type 1b and both Q1 = C' N Y and
Q2 = C' N X are cold points.

)
cr
c @
C P -
o |9

Figure 1: Blowup of a point

Proof. Look at the local blow-up Z := Proj (%) — Spec(g;) at the max-

imal ideal of Z}. Setting t = y/x, we have mp = tdp. Thus Z is the union of open

A Arlt
affines Spec (WP%,[:?P) and Spec (WTPP,[Q,)

glued appropriately.

By (Lemma 085S, stacks-project), we have 5;}: =: 1/4\6 = (%)(WR&P) .

Thus in F,, the fraction field of 2\6, both mp and §p are parameters. Since D, =

upTrgL
vE O
upvp"t™ which is non-trivial in the residue field ke = kp(t). Therefore € is of
Type 1b.

(upm®,vpdp), it has index at most ¢. The residue of D, is equal to

12Note that with each blow up, the set Sp for the new model is enlarged to include the intersection points
of the exceptional curve and the closure of the strict transforms of 7y and the set N} is expanded to
include the generic point of the exceptional curve.
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—

Note that @1 =: ZQ\l = (%)(t o) where t defines C' and dp defines

Y at @y (cf. [SO7], Pg 832, paragraph 1). Thus over Fy, , the fraction field of ZQ\l,

Dq, = (updpt™,vpép) = (upt™,vpdp) + (05, vpip)
= (’LLP’U;mtm, ’UP(SP) S BI‘(FQI).

Ap[1/1] )
(e /t=0P) ) (1 /t,7p)
defines X at Q2. Thus over Fy,, the fraction field of ZQ\Q and for s with ms = 1
mod /4,

Similarly (9/X1,\Q2 =: /TQ: = ( where 1/t defines C’ and 7p

s 1
Dq, = (uPﬂg,vaP) = (’U,pTrgL,’Upg) + (upmp,7p)
m —S 1
= \upmp, up’vpy € Br(Fyp,).

Hence both 1 and @5 are cold points. O

We now eliminate certain types of closed points listed in the classification in Sec-
tion 5.1.

PROPOSITION 6.2. There exists a regular proper model such that Sq does not contain
points of Type A3, BS,, By, CCoot, cGpol, ¢ and O,

Proof. Let P denote an intersection point of one of types listed in the proposition and
let > and e denote the exceptional curve and its generic point obtained after blowing
up P once. The following subtypes can be avoided by blowing up the model once
at P.

TYPE Af;: Since Dp is split, D ® F is split too and hence ¢ is of Type 0. Thus the
two new intersection points are obtained by Type la curves (C or C") intersecting a
curve of Type 0 (X). [A5; — A3, + A35).

TYPE B3, (i = 1,2): Since Dp is split, D ® F, is split too and hence ¢ is of Type
0. Thus the two new intersection points are obtained by Type 1b/2 or 1a curves (C or
C") intersecting a curve of Type 0 (X). [Bf; — Bj, + Aj).

TypE C{° (i =1,2): [C{° — B§y + Bjy] (cf. [SO7], Theorem 2.6).

TYPE Ccmuy This subtype can be avoided by blowing up the model & consecu-
tively. Since Dp = (vp, 7rp(5p) after one blowup at P, D ® F, has index at most
£ and hence € is of Type O or 1. Thus the two new intersection points are )1 (Type
11/01 : where ¥ intersects C') and @2 (Type 12/02 : where ¥ intersects .

Let us investigate the case when € is of Type 1b. Then as in the proof of Lemma 6.1,

Dq, = (vp 7T53+ %) where 1/t defines C' and 7p defines X at Q5 with §p = =,

Hence Q)5 is again of Type Ccmuy. However the ramification along the Type 1b
curve (C' ~ %) has changed as evinced by the increase j ~ 7 + 1. We can keep
blowing up the intersection points of the strict transforms of C” and the exceptional
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curve repeatedly till the new exc gtlonal curve is of Type O or 1a and thus eliminate
hilly

intersection points of the shape C;, 7.

TyPE C,,: This subtype can again be avoided by blowing up the model X" an appro-

priate number of times at P. Since Dp has index at most /, after one blowup, € is of

Type 0, 1a or 1b. Thus the two new intersection points are obtained by Type 2 curves

(C or C") intersecting a curve of Type 0,1a or 1b (X). In case B, or 012 M points

are generated, further blow up as in the previous steps to eliminate them. o

6.1 LIMITING NEIGHBOURS

We introduce the terminology that the closed points PP and () in Sy are Type x neigh-
bours if they both lie on the closure (denoted 77) of some n € N/ of Type x where
z € {0,1a,1b,2}. Let P,C,C", 0,7, wp,dp,C,C’, %, € be as before. We first begin
with the following proposition that records the configuration of Y when X is blown
up at a hot point P once.

PROPOSITION 6.3. Let P be a hot point of X and let ¢ : Xpery — X be the blowup
at P. Without loss of generality, let Dp = (up,7p). Then Q2 is a hot point in Xyeq,
while Q)1 is a chilly point. Further the following table records possible configurations
of Yy, Yy and Y.. In particular if Y, is not of Type RAM, then Y. is not of Type
NONRES.

Proof. Since Dp = (up,mp) where up € A/;*, 7 is of Type 1b while 7’ is of Type 2.
Thus Do, = (up,dpt) where ¢ defines C and 6p defines Y at Q1 where mp = tdp.
Similarly Dg, = (up,np) where 1/t defines C and 7p defines ¥ at Qo. Thus we
have replaced P with hot point Q5 and chilly point Q1 in X,,ey,.

Let € € X, denote the generic point of the exceptional curve > and by abuse of
notation, a parameter of F¢. Since D, is division ([SO7], Theorem 2.5, Proposition
0.5), Y, cannot be SPLIT. If Y, is of Type RAM, then Y, cannot be SPLIT or RES. If
Y, is of Type RES, then Yp ~ [ Fp and hence Y, can only be SPLIT or NONRES.
Finally observe that if Y,/ is NONRES, then Yp is non-split by Proposition 5.7 and
hence Y;, cannot be SPLIT by Lemma 3.2.

Thus we have the following table (in which we use the notations v € //1;*, w e A\:,
0 <r < {and Fp (,f/u p) to be the unique degree ¢ unramified field extension of
Fp).

Y,/ Y, Vi Y. Type of Y,
RAM RAM | Fp ({/vrpdr) | Fo (VwesT) | RAM/NONRES
RAM | NONRES | Fp ({vir) F. (Ywe) RAM
RES SPLIT T Fr T1F. SPLIT
RES | NONRES T1Fr I1F. SPLIT

NONRES | RAM ) F. (we) RAM

NONRES | RES Fr (Yup) F. (Yur) RES

NONRES | NONRES | Fp (Yup) F. (Yur) RES

Table 7: Table giving shape of Y at hot point Q)
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In the following proposition, we blow up further so as to arrange for a model X’ such
that its marked points do not have any ‘difficult’ neighbours. This will be helpful
when constructing F1 ,, and E3 , along codimension one points 7 lying in the special
fiber Xo.

PROPOSITION 6.4. There exists a sequence of blowups ¢ : Xpew — X such that for
anyn € (Ng) x, .., the following hold:

1. Ifnis of Type O containing a A3, B3, or B3, marked point P, then there is at
most only one other marked point () € 7 and it is of Type Af.

2. If n is of Type 1b containing a Clclhi”y marked point P, then there is at most

only one other marked point Q) € 1 and it is of Type By or Clclhi”y.

3. Ifn is of Type 1b containing a C1°t marked point P, then there is at most only

one other marked point () € 1 and it is of Type B7y.

Proof. Let P,C,C",n,n,7p,dp,C,C", 3, € be as before. Recall that Q; = C N'Y
while Q2 = C’ N Y are the two new marked points obtained after blowing up at P.
We investigate each case separately.

1. Let 1 be of Type 0 with a marked point P as above. Since D p is split, € is of Type 0
and has exactly two marked points @1 and Q- lying on it. For {e, f} = {1,2}, we
see that (). replaces P and has at most one Type 0 neighbour @) ¢ which is necessarily
of Type Aj.

2. Let ) be of Type 1b with a chilly point P. This case is reminiscent of the breaking
of chilly loops in ([S07], Corollary 2.9).

If Dp = (up, 7 d%) for some unit up and 0 < m,n < ¢, we say the algebra is of
the shape [m, n]c,cr. Leta=! = 1 € (Z/€Z)". Then [m, n]c,cr = [1,nm ™ e,or =

[mn=1, 1o as (up, THOR) = (up, (mman)™ m) =m (up, (mman)™ ) =
(up,mpop™

Since P is a C’lclhmy point, Dp is of the shape [1, j]c ¢ for some 0 < j < £. After
a single blow up, as in the proof of Proposition 6.2, Dg, = [j,j + 1]6,2 and Dq, =
1,5+ 1]@,72. Hence either j+1 220 mod £ and e is a Type lacurve P orj+1 < ¢,
€ is a Type 1b curve and both @1 and Q- are Clclhi”y points again. If j + 1 < ¢,
blow up the point ()2 again. Repeating this process, we get a model A where the
closure of the strict transform of C” intersects an exceptional curve of Type la. Carry
out the same procedure on @1, the other intersection point till the closure of the strict
transform of C also intersects an exceptional curve of Type 1a.

3. Let 1) be of Type 1b with a hot point P. By Proposition 6.3, blowing up the model
at P yields a hot point ()2 which has only )1, a chilly point, as a Type 1b neighbour.
Now following the proof of the previous case and blowing up the chilly point Q1
repeatedly, we see that Q2 will only have a B7y’ point as a Type 1b neighbour at
most. O

13Note that when j + 1 22 0 mod ¥, Dg,, is still not a split algebra and hence € cannot be a Type 0
curve by Lemma 5.1.
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6.2 THE FINAL MODEL X

Recall that X is arranged such that the divisor Hx is in good shape. We note that
this property is preserved under blowups (cf. proof of Proposition 3.1). Thus using
Propositions 6.2, 6.4, from now on we can and do assume that our model X has no
marked points of Type A3, B, BS;, CG0l, ¢5eol, ¢ and Cs,. Further we

also assume that any Clclhi”y point has only Type 1b neighbours which are either again

C’lclhmy or B, any C1°! point can be a Type 1b neighbour at most of one other point

which should be of Type B}} and any A3, B, or B3, point has at most one Type 0
neighbour which will necessarily be of Type A{,. Note also that in constructing such
a model (cf. the proof of Proposition 6.4, hot point case), we would have blown up
the original hot points exactly once and hence would have arranged for the shape of Y
at any hot point in the final model to be as given by Proposition 6.3. We finally fix
parameters 7, for each 7 € N as in Section 3.1.2, which further determine a system
of parameters for each P € 5.

6.3 GRAPHS
6.3.1 LABELLING CURVES WITH {CH, C, H, Z} LABELS

Let v € Ny be of Type 1b with Y, ~ [] F,,. Using Proposition 6.4, we label it as
follows:

- ryis a CH-CURVE if 7 N Sy contains a chilly point. Note that 5 N So will consist
of marked points of Types B}5 and C'Z"""% only.

- 7visa C-CURVE if ¥ N Sy contains a cold point. Note that 7 N .Sy will consist of
marked points of Types B3, By, CG°4 and C°' only.

- 7 is a H-CURVE if 7 N Sy contains a hot point. Note that 7 N Sy will consist of
marked points of Types B} and C4° only.

- «yisa Z-CURVE if it is not a Ch, C or H-curve. Note that 5 N .Sy will consist of
marked points of Types Bf, or B}’ only.

Thus the sets of Ch, C, H and Z-curves are mutually disjoint. Note also that when you
blow up a cold point P on a C-curve 7, then the exceptional curve obtained is again a
C-curve and the two new marked points obtained are again cold points (Lemmata 3.2
and 6.1).

6.3.2 A PARTIAL DUAL GRAPH

In subsequent sections, we will prescribe patching data E ,, and E5 ,, forn € Ng :=
N{ N Xo. Ensuring compatibility at branches can be, in part, turned into a colouring
problem for a partial dual graph built as follows:

Construct an undirected graph A with vertex set Va consisting of n € N{ of Type
1b or 2. The edge set Ja consists of cold points in Sy. So if 77,7 € V intersect at
a cold point P in our model, then they are joined by an edge labelled P. Note that
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therefore multiple edges between distinct vertices are allowed, while self loops are
not. Blowing up a cold point P has the effect of adding a vertex in middle of the edge
Pin A.

C/
C Q1
c r e
C/ Q2
c £ o C&e Q@2 '

6.3.3 PRIMARY COLOURING OF A

We now present a combinatorial colouring proposition, reserving for later the explana-
tion of the precise relevance of this to the patching problem. The following guarantees
that after finitely many blowups of cold points, there exists a ‘suitable’ colouring of
the vertices of A with the colours red (R), green (G), and blue (B). More precisely:

PROPOSITION 6.5. There exists a sequence of blowups of cold points on C-curves,
¢ : Xnew — X, such that the vertices of the new partial graph A, ¢., can be coloured
with colours blue (B), green (G) and red (R) such that

14

1. n € Va,., is coloured green if and only if 1 is not a C-curve'”,

2. Any non-green vertex with an edge to a green vertex is coloured red,
3. Any non-green vertex with an edge to a red vertex is blue,
4. Any non-green vertex with an edge to a blue vertex is red.

Proof. Without loss of generality, assume A is connected (otherwise repeat the same
proof for each connected component). Let W C VA denote the set of C-curves.
Colour every n € Va \ W with green. Thus A is partially coloured. For v € Va
which is uncoloured and X € {R, G, B}, define the function d(v, X) for any partial
colouring of A as follows:

e Setd(v, X) = 1 if there is an edge between v and a vertex coloured X .

e Set d(v, X') = 0 if there is no edge between v and any vertex coloured X .

14Note that in particular if 7 is of Type 2, it is necessarily coloured green.
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The following algorithm colours vertices in W/ with R and B in a compatible fashion.

Step 1: Colour with red (R), all uncoloured vertices v € W such that d(v, G) = 1. If
no such vertices exist, colour an arbitrary uncoloured vertex with red (R).

Step 2: The previous step might lead to a situation where two red vertices are con-
nected by an edge. For every such edge P : 7 — 1/, blow up the cold point P (which
note, is on two C-curves). As we have already observed, the exceptional curve ob-
tained is again a C-curve and the new marked points are cold points. In the new par-
tial dual graph, this introduces a new vertex (corresponding to the exceptional curve)
breaking the edge P into two edges )1 and (J2. Colour this new vertex with blue (B).
If all vertices are coloured, terminate.

Step 3: Colour with blue(B), all uncoloured vertices v such that d(v, R) = 1. If no
such vertices exist, colour an arbitrary uncoloured vertex with blue (B).

Step 4: The previous step might lead to a situation where two blue vertices are con-
nected by an edge. For every such edge P : 7 — 1)/, blow up the cold point P (which
note, is on two C-curves). As before, in the new partial dual graph, this introduces
a new vertex (corresponding to the exceptional curve) breaking the edge P into two
edges 1 and (2. Colour this new vertex with red (R). If all vertices are coloured,
terminate.

Step 5: Colour with red (R), all uncoloured vertices v € W such that d(v, B) = 1. If
no such vertices exist, colour an arbitrary uncoloured vertex with red (R).

Step 6: Go to Step 2.

Note that in Steps 1, 3 and 5 we colour at least one uncoloured vertex each time. In
Steps 2 and 4, though we introduce new vertices, they always correspond to C-curves
and we colour them with R or B in the same step. Since |Va| < oo, the algorithm
terminates after finitely many steps. Each partial colouring obtained satisfies Prop-
erties 1-4. Hence when the algorithm terminates, we will end up with a compatible
colouring of Va. (]

6.3.4 AN EXTENDED RAINBOW COLOURING OF A

We refine the colouring of A by colouring OVER 7 which are Ch, H or Z-curves as
follows: Let € Va be a Ch, H or Z-curve and let ¢ = (a’m)i e[lF,

- If each a;_’n is a unit (up to fth powers) in ;1;, then colour n violet (V) if it is a
Ch-curve, indigo (1) if it is a H-curve, and black (Bl) if it is a Z-curve.

- If at least one a;m is not a unit (up to /" powers) in ;1;, then colour 7 yellow (Ye) if

it is a Ch-curve, orange (O) if it is a H-curve, and white (W) if it is a Z-curve.

Thus we get a nine-colouring of VA with colours violet (V), indigo (I), blue (B), green
(G), yellow (Ye), orange (O), red (R), black (Bl) and white(W).
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Type 1b with split Y curves Ch H Z C
All a;, 5, units Violet (V) | Indigo (I) | Black (Bl)|Red (R) or Blue (B)
Some a;, , not a unit Yellow (Ye)| Orange (O)| White (W)| Red (R) or Blue (B)

Table 8: Extended rainbow colouring of Va

7 PATCHING DATA AT MARKED POINTS IN S

Let P € Sy be the intersection of two distinct irreducible curves C'; and Cy of H ».
Let n; and 72 denote the generic points of C; and C respectively. Let mp and dp be
primes defining C; and C5 at P fixed as in Section 6.2. As before, if Y, ~ [] F, we
leta = (a’ )i, where a; , € F,. We will now prescribe E; p for j = 1,2 at P € Sy

1,2

in accordance with the following heuristic:

-Ifn € N(’) is of Type O or 1a, then both Fy p and E» p should be unramified
along 7,

- If n € N{ is coloured G, V, I or Bl, then both E; p and E5 p should be unram-
ified along 7,

- If n € N{ is coloured R, O, Ye or W, then E; p should be ramified along 7
while E» p should be unramified along 7,

-Iftng e N(’) is coloured B, then 1 p should be unramified along n while Es p
should be ramified along 7.
7.1 PoOINTS NOT OF TYPE Ay,

PROPOSITION 7.1. Let P € Sy be such that it is not of Type Ajy. Then for each
7 = 1,2, there exist cyclic degree { extensions E]‘_VP/FP and elements a; p € Yp such
that

l. ai,paz,p = a.

D ® Ej p has index at most £.
D®Y ® E; p is split.

a; p is anorm from E; p @ Yp /Yp.

Ny, rp (aj,p) = 1.

S T

Each E; p is either a split extension or D @ E; p is split.

Proof. We investigate each type of point separately. In every case, we will deter-
mine Fy p,Es pand a1 p and set ag p = aa;}g, thus ensuring that Property 1 holds.
Since N(a) = 1, Property 5 will also be satisfied provided N (a1,p) = 1. By ([S97],
Proposition 1.2), Property 2 holds for any closed point.
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We adopt the following notations in the proof: up,vp,wp € 14/1;*, 0<r,s,mj<
€. If Yp is split, by Proposition 3.4, a = (a} p) where a} p = z; pmp 0} where
mi,n; € Z and z; p € 14/1;*. Also since N(a) = 1, we have [[z;,p = 1 and
> m; = Y.n; = 0. Lp denotes the unique non-split degree ¢ extension of Fp
unramified at Ap and H p, the extension Fp (Y/upm® + vpdp).

TYPE Aj,: Without loss of generality, assume 7); is of Type 1a and 7 is of Type 0.
Note that by Lemma 5.1, Dp is split. The following choices for E; p and a; p satisfy
Properties 1-6.

Row|n1|n2| E1,p | E2,p |a1,plaz,p = aa] b
0.1 1a0HFpHFP a 1

Table 9: Patching data at points of Type Af

TYPE Bj,: Without loss of generality, assume 7, is of Type 1b and 7, is of Type 0.
By Proposition 6.4 and Section 6.3.1, n; cannot be a Ch or H-curve and hence isn’t
coloured V, I, Ye or O. The following table gives the choice for F; p and a; p.

Row| m Ei p Ez p ai,p |a2,p =aa; p
1.1 |R,W|Fp (¥7p)| IlFp (rp?), | (z:,p83}),
1.2|G,Bl| TIFp [1Fp a 1

1.3 B HFP FP(«[/TK‘P) (Zi,PlS;i)i (71‘;11)

Table 10: Patching data at points of Type B,

Since D p is itself split, Properties 3 and 6 hold while Property 4 holds by construction.
Since > m; = > n; = 0and [[ z;,p = 1, we have N (a1, p) = 1. Hence Property 5
holds.

TyPE B7y: Without loss of generality, assume 7; is of Type 1b and 7, is of Type
la. Thus Dp = (up,7p) € Br(Fp). By Proposition 3.3, a is a unit in the integral
closure of Ap in Yp if the latter is not split. By Proposition 5.3, if Yp is split, a; p=
Zi P P with Y- n} = 0. The following table' gives the choice for F; p and
a;.p.

I5SRow 2.2* is a special case when 71 is Type 1b and green with Yy, of Type RAM and 72 of Type la
with Y}, of Type NONRES. In this situation, we choose E1 p = FEo p = [[ Fp while a1, p = a and
az.p = 1.
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Row,| 71 n2 Eip Es p ai,p az,p = aaf};
2.1 |W,R,0,Ye Fp (YmF)| Lp (w1, (ziwpapfné)_
2.2*| G(RAM) |(NONRES)| []Fp T1Fr a 1

22| BI,I,G,V Lp Lp a 1

2.3 B Le |Fp (&7p) (ziwpapfﬂé)i (w1),

Table 11: Patching data at points of Type BT}

Since Dp = (up,mp) and up becomes an £** power in Lp, E; p splits D in each
case except Row 2.2*. In this row however, Yp = Fp ({/wpmp) and hence D ® Yp
is split. Thus Properties 3 and 6 hold. By Lemmata 2.4 and 2.6, Property 4 holds.
Since > m; = > n, = 0and []z;,p = 1, we have N (a1, p) = 1. Hence Property 5
holds.

TYPE B35,: Without loss of generality, assume 7, is Type 2 and 72 is Type 0. Thus 7,
is coloured G. The following choices satisfy Properties 1-6.

Row\m|E1,p|F2, pla1,plaz,p = aaf}
3.1 GHFP ],_[FP a 1

Table 12: Patching data at points of Type B3,

TyYPE B3y: Without loss of generality, assume 7; is Type 2 and 12 is Type la. Thus
Dp = (up,mp) € Br(Fp). By Proposition 3.3, a is a unit in the integral closure of
Z} in Yp if the latter is not split. By Proposition 5.3, if Yp is split, a;P = Z,L'_’P(Spén;
with 3" n! = 0. The following table!® gives the choice for E; p and a;, p.

Row| m 12 E1,p|E2 pla1,plaz,p = aa]
4.17|G(RAM)|(NONRES)|[1 Fr|[1 Fr| « 1
4.1 G Lp Lp a 1

Table 13: Patching data at points of Type B3y

Since Dp = (up,7p) and up becomes an £ power in Lp, E; p splits D in Row
4.1. InRow 4.1*,Yp = Fp (W) and hence D ® Yp is split. Thus Properties 3
and 6 hold. By Lemmata 2.4 and 2.6, Property 4 holds. Since N(a) = 1, so does
Property 5.

Type C5" . We assume that D = Dgg + (up,7p) + (vp,dp) € Br(F) where

Dgo is unramified at Ap and Dp = (’Up, 7r§35p where 0 < j < £. By Proposition

16Row 4.1%* is a special case when 71 is Type 2 with Y3, of Type RAM and 72 of Type la with Y;, of
Type NONRES. In this situation, we choose E1 p = F p = [IFp whilea; p =aandaz p = 1.
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5.3, if Yp is split, then ag_’P =z p (W};(Sp) ' (77‘?2) where m; = jn; + r;{ and
hence >_ r; = 0. In particular, a is a unit (up to £ powers) in Z;* if and only if it is
is a unit (up to £*" powers) in Z;*

Let j = 1, 2. Recall that if 7); is not a Ch-curve, then it is coloured G. The above dis-
cussion implies that if ; and 72 are both Ch-curves, then they are both coloured Ye or
both coloured V. Similarly if 777 is coloured G and 7, is a Ch-curve, then 75 is coloured
V. Likewise if 72 is coloured G and 7; is a Ch-curve, then 7; is coloured V. Invoking
Proposition 5.6, Table 13 below prescribes E; p depending on the configuration of
a,Y,m,ns.

Since Dp = (vp, 7T536P) and vp becomes an (8 powerin Lp, E; p splits D in each
case. Thus Properties 3 and 6 hold. By Lemma 2.6, Property 4 holds for Rows 5.1-5.4,
5.8-5.9,5.11 (when Yp is a field). By Lemma 2.4, Property 4 holds in the remaining
cases (except for (E1 p, a17p) in Row 5.6, where it is clear by observation). Finally
since N(a) = 1 and for Row 5.6, > 'n; = > r; = 0and [[zi,p = 1, N(ar,p) =1
for all rows. Hence Property 5 holds.

Row|n1|n2 Yo, Yoo Yp Eip Eap ai,p az p
51|G|G| RAM RAM |Fp ({/wpnipép) Lp Lp 1
52|c|c|NONRES] RAM | Fp (W) Lp Lp 1
5.3 G G RES RES Lp LP LP a 1
5.4|G|G|NONRES| RES Lp Lp Lp 1
5.5|V |V | SPLIT | SPLIT [1Fr Lp Lp a 1
5.6 [Ye[Ye| SPLIT | SPLIT I1Fp Fp(,‘/ﬂggsp> Le |((hor)" (717)) |Gir)s
5.7 | G|V [NONRES| SPLIT [1Fr Lp Lp a 1
58|G|G| RAM |NONRES| Fp (Ywpmp) Lp Lp a 1
5.9 G G RES NONRES Lp LP LP a 1
5.10| V|G| SPLIT [NONRES [1Fr Lp Lp a 1
5.11| G| G [NONRES|[NONRES| Lp/[[Fr Lp Lp a 1

Table 14: Patching data at points of Type C’lclhi”y

CoLD POINTS: We assume that D = Dgg + (upmy,vpdp) € Br(F) where Dy is
unramified at Ap and Dp = (up7m,vpdp) where 0 < m < ¢. By Proposition 5.3,
if Yp is split, then af p = (upnp)”™ (vpdp)™ (wgypwg"mi)é where sm = rl + 1

— %
’ . rolosmyomg ) _ ’ —rm; .
and w; p € Ap with w] p up"' vy = 2z, p. Setx;p = (wi,PﬁP "). Since

> mi =Y n; =0and[]a] p = 1, clearly [Taf , = 1.

TyPE CGO: Letj = 1,2.If Y, is of Type SPLIT, then since P is a cold point lying
on it, 77; must be a C-curve. Thus it is coloured R or B. If 7, is coloured G and 7, is
a C-curve, then by Proposition 6.5, 12 will be coloured R. Similarly, if 77, is coloured
G and n; is a C-curve, then 1; will be coloured R. Finally if both 7; and 7, are C-
curves, then both of them cannot be of the same colour. Invoking Proposition 5.4, we
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prescribe the choices for E; p and a; p in the following table:
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Table 15: Patching data at points of Type C'{°/¢

Since Dp = (upm,vpdp), clearly Fp (f/umr?) and Fp (\"’/vpzip) split it. Since
the symbol algebra (z,y) = (x + y, —yxr~!), so does Hp. Thus Properties 3 and 6
hold. By Lemma 2.6, Property 4 holds for Rows 6.1-6.4, 6.8 (and for Row 6.10, if
Yp = Lp). By construction it also holds for Rows 6.5-6.6. In Row 6.7, a is a unit
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along n;. Thus a;P = (vpép)™ wﬁp which is a norm from F'p (\E/UP(SP) . A similar
argument works for Row 6.9. In Row 6.10,if Yp = H F'p, then since a is a unit along
both 7; and 72, we have that a’in = wf_rp. So each ag_’P is a norm from E; p. Thus
Property 4 holds for CG°!¢ points. Finally since N(a) = 1 and for Rows 6.6-6.7,
> m; = >.n; = 0 and Hzf,P = 1, we have N (a1 p) = 1 for all rows. Hence
Property 5 holds.

Type C&P : Without loss of generality, assume 7 is of Type 2. Hence it is coloured
G. If Y, is of Type SPLIT, then since P is a cold point lying on it, ; must be a C-
curve. Thus it is coloured R or B. Since 7, is coloured G, then by Proposition 6.5,
11 will be coloured R in this case. Invoking Proposition 5.5, we prescribe the choices
for E; p and a; p in the following table. The proof that Properties 1-6 hold is exactly

similar to the Type C'5°! point case.
Row{ni|n2| Yy, Y, Yp Eip E> plai,plaz,p = aa] p
71|G|G| RAM | RAM |Fp ({/wpmpd}) Hp Hp | a 1
72]cle] rRES | rRAM | Fp (K/—Upap) Hp Hp| a 1
7.3|c|c|NONRES| RAM | Fp (\f/—wpap) Hp Hp| a 1
7.4 G G RAM RES FP(‘E/’U.PWZL) HP HP a 1
75|G|G| RAM |NONRES| Fp (Ywpnr) Hp Hp | a 1
7.6 |R|G| SPLIT |NONRES I1Fr Fp ({upnZ)| Hp | a 1
7.7 |G|G|NONRES|NONRES| Lp/[]Fr Hp Hp | a 1

Table 16: Patching data at points of Type CG0!¢

Typre Cf4°t : Without loss of generality, assume 7, is of Type 2 and coloured G. If
Y, is of Type SPLIT, then since P is a hot point lying on it, ; must be a H-curve and

coloured I or O. By Proposition 5.3, if Y is split, then a} p = zi7p7rgi6f3n£ where
>~ nl = 0. Invoking the table in Proposition 6.3, we prescribe the choices for E;p
and a; p in the following table:

Row(n1|n2 Yo, Ya, Yp Eip Ez p| a1,p |az,p = aa;}n
8.1 |G|G| RAM RAM |Fp ({/wprnipépr)| Lp Lp a 1
8.2|c|c|NONRES| RAM | Fp (%"/u;pap) Lp Lp| a 1
8.3|1]|G| SPLIT | RES [1Fr Lp Lp a 1
s on’
8.4|0|G| SPLIT | RES [1Fp Fp (Y7p)| Lp |(7p?), (zi,pap’”)
8.5 G G RAM NONRES FP («[/’LUPTK‘P) HFP HFP a 1
8.6 |G|G] RES [NONRES Lp [IFr [[1Fp| @ 1

Table 17: Patching data at points of Type C{1°!

Since Dp = (up,7p), clearly Fp (‘[/Trp) and Lp splits it. Thus Properties 3 and 6
hold for Rows 8.1-8.4. For Rows 8.5-8.6, we observe that D ® Yp = 0 and E; p are
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split. Thus Properties 3 and 6 hold for all cases. By Lemma 2.6, Property 4 holds for
Rows 8.1-8.2 and 8.5-8.6. In Row 8.3, the colours of n; and 7, imply that a is a unit
along 7, and 7, (up to £*™" powers). Hence each a} , = 2 pmat where m; = m)
is a unit in E;a* up to /" powers. Thus by Lemma 2.4, Property 4 holds here. For
Row 8.4, clearly 75" is a norm from Fp ({/7p). Appealing again to Lemma 2.4, we

see that z;, péf)"; are norms from L p. Finally Property 5 holds because N(a) = 1 and

>omy=3 n;=0. O

7.2 PoINTS OF TYPE A,

Let P be of Type Aj,. Thus n; and 7, are both of Type 0. For j = 1,2, letC; :=
(77 N So) \ {P} denote the set of marked points on n; apart from P. By Proposition
6.4, it is clear that if ); € C; is not of Type Ag, then C; = {@;}. In such a case, let
«v; denote the Type 1a/1b/2 curve such that Q); € m; N7; N Sy. Note y; can only be
coloured R, G, B, Bl, or W. We subdivide Type A, points into three sub-types:

D1: C; = {Q;} where @, is not of Type A{, for j = 1,2.

D2: C; = {Q;} where Q; is not of Type A§, and C;- is either empty or consists only
of Type A, points for {j,j'} = {1, 2}.

D3: C; is either empty or consists only of Type A{, points for j = 1,2.

PROPOSITION 7.2. Let P € Sy be such that it is of Type Agy. Set E1 p = Eo p =
[1 Fp. Then there exist a1,p, az,p € Yp such that for j = 1,2,

1. a1 pasp = a.

2. NYP/FP (%‘.,P) = 1
3. aj pisanormfrom E; p @ Yp/Yp.

Proof. Note that since we have chosen the split extension for each E; p, Property 3
holds for any choice of a; p. By Remark 5.2, note that if Y;;, is of Type RAM, then
Y, cannot be of Type SPLIT and vice-versa. For the same reason, if «y; is coloured
red/blue/white/black, then Y, cannot be of Type RAM. Finally if Y;,, is of Type RAM,
then by Proposition 3.3 and Lemmata 2.3 and 2.6, a € (’){/{j and (’){/{, . We prescribe

aj p as in the tables below!” depending on the subtype and neighbours of P.
SUBTYPE D3: Let P be of subtype D3. Thus C; is empty or consists only of Type
A points for j =1, 2.

Row|a1, plaz,p = aa;}a
11.1| a 1

Table 18: Patching data at points of subtype D3

71f Yp is not split, set m; = n; = 0 and read the entry (n;;”)i as 1 and (zi,pégi)i as a etc.
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SUBTYPE D2: Let P be of subtype D2. Without loss of generality assume C; = {Q1}
where () is not of Type A{, and that Cy is empty or consists only of Type Af, points.

Row|Vy,| Yiy Q1 [y1|Colour of v1| a1,p |az,p = aaf},
10.1| — — Alo|la a 1
10.2'| — | RAM |Bj,|1b| R,W a 1
10.2] — [Not RAM[B§ [16] R, W [(67)),] (ipmp?),
10.3| — - |B§,|16| G,B,BI a 1
10.4| — — Bl 2 G a 1

Table 19: Patching data at points of subtype D2

SUBTYPE D1: Let P be of subtype D1. For j = 1,2, let C; = {Q;} where Q; is not
of Type Af.

Row Yo, Yo, Q1| Q2 |[v1|Colour of y1|yz2|Colour of v2| a1, p |az,p = aa;i,
9.1 — — AlolAio[la) la a 1

9.2'| RAM — Ajo|Biolla 1| RW a 1

9.2 [Not RAM| —  |A5,|Bi,|la 1 RW  |(zp%),] (zi,pd3),
9.3 — —  |Aj,|Biolla 16| G,B, Bl a 1

9.4 — — Ajo|Bsolla) 2 G a 1

9.5’ — RAM |Bj,|Ajo|1| R, W |la a 1

9.5 —  |Not RAM|B3,|A5,[16] R, W |lq (029, | (zipmp?),
9.6 — —  |Bj|Biol1d] R.W  |15] R, W 1 a

9.7’ — RAM |Bj,|Bi,|1b| R,W  |1b G a 1

9.7 —  [Not RAM|B3|B5ol1b]| R, W [1b] G,B,Bl [(63)).] (zi.pmpt),
9.8’ — RAM |Bj|Bso|1b| R, W 2 G a 1

9.8 —  |Not RAM|Bj,|B5,|1b| R.W |2 G (629, | (zipmp?),
9.9 — — Biy|Ajo|1b| G,B,Bl |la a 1
9.10'f RAM — B;io|Bio|1b G 1| R W a 1
9.10|Not RAM| —  [B5y[Bi|1b| G,B,Bl |1 R W |[(zp%).] (zi,p03}),
9.11 - —  |Bi,|Bio|1b| G,B,Bl |1b| G,B,BIl a 1

9.12 - —  |B5|Bso|1b| G,B.Bl |2 G a 1

9.13 — — B3p|Alo| 2 G la a 1
9.14'| RAM — B3,|Big| 2 G 1| RW a 1
9.14|Not RAM| —  [B3,|B,|2 G | RW  |(zp%),] (zi,pd3),
9.15 - —  |B5,|Bio| 2 G 16| G,B,Bl a 1
9.16 — —  |B5,|B3o| 2 G 2 G a 1

Table 20: Patching data at points of subtype D1
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8 STRUCTURE OF Ej p AND aj p ALONG BRANCH FIELDS

Let P € Sp. Recall the choice of parameter, ,,, of F,, for each n € N as in Section
6.2, which defines 7j at P if P € 7). In this case, mp := 7, is part of the chosen system
of parameters (7p, dp) of Ap. In this section, we study the ramification and splitting
properties of E; p and the shape of a; p for j = 1,2 with respect to the colour and
type of curves on which P lies. This will be useful when we construct extensions £} ,,
and elements a; , for codimension one points 1 € Ny.

We first begin by calculating how the lift of residues looks like along the residue fields
kp, of branch fields Fp,,.

LEMMA 8.1. Let P € Sy lie on the intersection of two distinct irreducible curves of
Hx with generic points 1 and na. Let (wp,dp) be the system of parameters at P
chosen as in Section 6.2 such that wp cuts out Ty and 6 p cuts out 7z at P. Letn = n;
or 1z and let H, denote the lift of residues along 1. Set Hp, = H,, @ Fp,/kp, and
u' € k}g-,n/kf’{n to be the residue of D over Fp,. Then the following table gives the
shape of Hp [kpy and v’ € kp,y,.

Row|[Location| P Dp € Br(Fp)|(n, Type) u’ Hy/kpy Description of H%
a. |Table 10| Bo, 0 (11, 1b) 1 1 kpom Split
b. |Table 11| B7Y (up,mp) (m1, 1b) up kp,n (\E/W) Unramified nonsplit
c. |Table 12| B3, 0 (11, 2) 1 [1kr.n Split
d. |Table 13| BZY (up,mp) (m1,2) up kp,n (\E/W) Unramified nonsplit
e. |Table 14 Clclh“ly (’UP, 71']];-,613) (m1,1b) UZ;_, kpn (\Z/ﬁ) Unramified nonsplit
f. |Table 14 Clclh“ly (’UP, 71'?3 6p) (n2, 1b) vp kpn (\Z/ﬁ) Unramified nonsplit
g. |Table 15| CG' |(upny,vpdp)| (11, 1b) [vp ™8™ kp.y (f/vpép) Ramified nonsplit
h. |Table 15 Clclom (upmE,vpop)| (n2,10) | upmPy |kpy (WE/ upﬂ'?’) Ramified nonsplit
i. |Table 16 Clcz"ld (upmp,vpdp)| (n1,1b) ™6™ kp,n ( {/’Uplsp) Ramified nonsplit
j. |Table 16 Clczom (upmd,vpdp)| (n2,2) upmy |kpy (f/ upﬂ'?) Ramified nonsplit
l. |Table 17 C{ém (up,mp) (m1, 1b) up kpn (\E/W) Unramified nonsplit
m. |Table 17| CHot (up,7p) (12,2) 1 [1kp, Split

Table 21: The shape of the lift of residues

In the following, we let m,, = mp be the prime defining n at P and let Jp denote the
other prime completing the system of parameters at P. We also let L p denote the the
unique degree ¢ extension of F'p unramified at Ap.

PROPOSITION 8.2 (Violet/Indigo/Black). Let n € N{and P € 77N Sy. Assume
further that 1 is coloured violet, indigo or black. Let j = 1 or 2 and let E; p be as
prescribed in Proposition 7.1. Then

1. E; p = Lp ifnis coloured violet or indigo.

2. a1,p=aandasp = 1.
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3. E; p ® Fp,, is an unramified extension of Fp, and matches with the lift of
residues at 1) as etale algebras over Fp .

4. E; p ® Fpy, splits D in Br (Fpy,).

Proof. An inspection of Row 1.2, 2.2, 5.5, 5.7, 5.10 and 8.3 of the tables in Proposi-
tion 7.1 immediately shows that Properties 1-4 hold (Lemma 8.1). o

PROPOSITION 8.3 (Blue). Lern € Njand P € TN Sy. Assumefurther that n is

coloured blue. Let D, ~ M, (uy, wymy) for units wy, u, € A . Letj =1o0r2and
let E; p be as prescribed in Proposition 7.1. Then

1. E1,p ® Fpy, is an unramified extension of Fp, and matches with the lift of
residues at 1) as etale algebras over Fp .

2. Ey p ® IF'p,, is a ramified extension of Fp,,.

3. a1,p is a unit along 1.

4. E; p ® Fpy, splits D in Br (Fpy,).

5. There exist wp,x; p € E;:fori < £ which are units along 7 such that

(a) B2 p ~ Fp[t]/(t' —wpnp) and ag,.p = ((U}pﬂ'P) “P xé ) form; p €
Z.

(b) (wpwgl,un) =0¢€ Br(Fpy).

Proof. Since 7 is coloured blue, it has to be Type 1b C-curve. Thus P can either be a
point of Type B, B or C5°'. (It cannot be a C5°' point because then the other
curve will be of Type 2 and hence green in colour. And therefore 17 would have to be
red). We mention the relevant rows of the tables in Proposition 7.1 below (whence
Properties 1-4 become clear) and give a proof of Property 5a & 5b in each case.
Row 1.3 of Table 10: Here wp = 1 = z; p. Since P is a B point, by Lemma 8.1,
e F j;fn and hence Property 5a & 5b is satisfied.
Row 2.3 of Table 11: Here wp = 1 = z; p. Since P is a BT} point, by Lemma 8.1, the
lift of residues along 7 matches with L p along Fp,. Writing D = Doy + (up,7p) €
Br(F') where D0 is unramified at Ap, we have (up, 7p) = (uy, wymy,;) € Br (Fpy).
Since mp = m,, comparing residues we have that up = u,, up to /' powers in Fp,,
and hence (u,, w,) = 0. As wp = 1 here, Property 5b is proved.
Rows 6.5 and 6.6 of Table 15: We only investigate Row 6.6 (as the proof for Row
6.5 is similar in nature). Since P is a C°!? point, by Lemma 8.1, the lift of residues
along 77; matches with Fp (\"/vpép) along Fpy,, .

. . . ; ¢
Unravelling the expression for as p from Row 6.6, we see it is ((uf‘ﬂrp)m w; p )Z

where sm = r{+1 and w; P 6 E;a* Also By p = Fp (1/’U,p7TP) Fp (1/U1;_>7Tp).
Thus wp = v and z; p = W, p- Writing D = Doo + (upmp,vpdp) € Br(F) for

D0 unramified at Ap, we have (upm,vpdp) = (Uy, wymy,) in Br (Fpy,).
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As m, = mp, comparing residues as before, we have that (vpép)fm = u, up to ¢th
powers in Fp .

Hence (UPFg,’UP(Sp) = (w;;nﬂ';;n,’l}pép). This implies (’LLP,’Upép) = (’LU;;”,’Upép).
Hence (qu;m, vpdp) = 0 and so (u}w;l, (vpép)™) = 0. Thus
(wpwgl,un) = 0. O

PROPOSITION 8.4 (Green(1)). Let n € N{ be of Type 1b or 2 and let P € T N
So. Assume further that Y, is of Type NONRES. Let j = 1 or 2 and let E; p be as
prescribed in Proposition 7.1. Then

1. nis coloured green.
2. a1,p=aandas p = 1.

3. E;, ® Fp, is an unramified extension of F'p, and matches with the lift of
residues at 1 as etale algebras over Fp,,.

Proof. Property 1 is obvious (Section 6.3.3). An inspection of Rows 1.2, 2.2, 3.1,
4.1, 5.2,5.4,5.7-5.11, 6.3, 6.7-6.10, 7.3, 7.5-7.7, 8.2 and 8.5-8.6 of the Tables in
Proposition 7.1 shows that Properties 2 and 3 also hold (Lemma 8.1). O

PROPOSITION 8.5 (Green(2)). Letn € Njand P € TN Sy. Assume further that one
of the following holds:

1. n is of Type 1b and coloured green and Y, is not of Type NONRES,

2. nis of Type 2 (and hence coloured green) and Y, is not of Type NONRES.
Let j = 1 or 2 and let E; p be as prescribed in Proposition 7.1. Then,

1. E; p ® Fp,, is an unramified (possibly split) extension of Fp .

2. Ej p ® Broc,y = 0 where Brycy is as defined in Section 4.

3. If P is not a hot point, a1,p = a and az p = 1.

4. If P is a hot point and Yp is not split, then a1, p = a and az p = 1.

5. If Pis a hot point and Yp is split, then ao_p is a unit in 11 f/l; up to th powers.

Proof. The hypothesis implies Y;, is of Type RES or RAM. We investigate each case
separately. Note that Properties 1, 3-5 will be clear from inspection of the relevant
rows in the tables in Proposition 7.1 (which we will mention subsequently).

RAM: Let Y,, be of Type RAM. Then Y;, = F;, ({/W) for some unit w,, € ;1;
and Brpe,y € Br (F,) with D& F,) = Brpe n+(uy, wymy,). If Pis nota cold point write
D = Dyo + (up,mp) + (vp,dp) where Dy is unramified at Ap and up,vp € A%p.
Thus D ® Fp, = (up,m,) + (vp,dp). Hence in Br (Fp,), we have (up,m,) +
(vp,dp) = Broe,n + (Un, wymy,). This implies that

*

Broey = (vp,dp) + (up, ) — (uy, wymy)

= (vp,dp) + (wy, uy) + (uPugl,m]) .
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Comparing residues, we get Srpen @ Fpp = ((vp,0p) + (wy, uy)) @ Fp,y;, Where T,
is the residue of D ® I;,. We investigate the relevant rows of the Tables in Proposi-
tion 7.1.

n OF TYPE 1B:

Row 1.2 of Table 10: Here (vp,dp) = 0 € Br(F) itself. Computing residues along 7,
we see that W, € kp,, is an oth power. So B,y is already split over Fp,y,.

Row 2.2* of Table 11: Here (vp,dp) = 0 € Br(F) itself. Computing residues along
7, we see thatu,, = up € kp, up to £ powers. Also since Y,,, is of Type NONRES,
w, € (’);Pm. S0 Brpc,y is already split over Fp,,.

Row 2.2 of Table 11: Here (vp,dp) = 0 € Br(F) itself. Computing residues along 7,
we see that u,; = up € kp, up to oth powers. Thus the choice of F; p = Lp splits
Brbe,n over Fp .

Rows 5.1, 5.2 and 5.8 of Table 14: Since P is a chilly point, we have up = vp’. Here
E; p = Lp. Note that (vp,dp) is split by Lp as vp becomes an ¢t power in Lp.
Computing residues along 7, we see u,, = vp) € kpy up to /" powers. Thus Lp
splits (uy,, wy) over Fp, also.

Row 8.1 of Table 17: Since P is a hot point and 7 is of Type 1b, (vp,dp) = 0 €

—~ L
Br(Fp)asvp € Ap . Computing residues along 7, we see U, = up € kp, up to
¢*% powers. Here E;j p = Lp which splits (wi, ty) = Brbe,n, over Fp,.
Row 8.5 of Table 17: Since P is a hot point and 7 is of Type 1b, (vp,dp) = 0 €

Br(Fp)asvp € @*e. Computing residues along 71, we see u,, = up € kp, up to
£t powers. Since Y, has to be of Type NONRES in this configuration, we see that
w;, has to have valuation = 0 mod £ in the complete discretely valued field kp,,, with
parameter 0 p.

Putting this together, we see that (u,, w,,) is unramified over local field kp,,, hence
trivial. Therefore (u,,, wy) is trivial over Fip;,. SO Byc,y is already split over Fp,,,.

n OF TYPE 2:

Row 3.1 of Table 12: Here (vp,dp) = 0 € Br(F) itself. Computing residues along 7,
we see that W, € kp, is an oth power. So B,y is already split over Fp,y,.

Row 4.1* of Table 13: Here (vp,dp) = 0 € Br(F) itself. Computing residues along
7, we see thatu,, = up € kp, up to £ powers. Also since Y,,, is of Type NONRES,
wy € Ozpm. S0 Brbe,y is already split over Fp,y,.

Row 4.1 of Table 13: Here (vp,dp) = 0 € Br(F) itself. Computing residues along 7,
we see that u,; = up € kp, up to (th powers. Thus the choice of F; p = Lp splits
Brve,n over Fp .

Rows 8.1-8.2 of Table 17: Since P is a hot point and 7 is of Type 2, computing residues
along 7, we see u,, € k};‘in and therefore 3,.4.,, = (vp,dp). Since E; p = Lp, itsplits
Brbe,n over Fp .

Now let P be a cold point and write D = Do + (upm®, vpdp) where Dy is unram-
ified at Ap and up,vp € Ap. Thus D ® Fp,, = (upﬂ]”, vpép). Thus in Br (Fp,),
we have (upm))", vpdp) = Brbey + (U, wym,). This implies that

Broc,y = (“PWZznva‘SP) — (up, wyy)

= (up,vpdp) + (wy, uy) + (my, vE 6P Uy) -

DOCUMENTA MATHEMATICA 26 (2021) 337-413



380 N. BHASKHAR

Comparing residues, we get u,, = v5"35" up to £*2 powers and B4, ® Fp,,, equals
((’LLP, Up5p) + (wn, un)) X F’p_’77 which is (qu;m, Up5p) X Fp_’77 in Br (Fpm).
Rows 6.1-6.4 and 6.8 of Table 15 and Rows 7.1-7.5 of Table 16 are relevant here. In
each case, Ej7p =Fp (\[/ UPﬂg + ’Upép) . Thus Ej7p ® Fpm = Fpm (\['/’Upép) is
unramified and clearly splits 5,4, over Fp,.

RES: Let Y;, be of Type RES. Then Y,, = F, (\f/ﬁ) and Brpe,, € Br(F,) with
D ® F,; = Brie,y + (un, m,;). If P is not a cold point, write D = Dgg + (up,7p) +
(vp,dp) € Br(F) where Dy is unramified at Ap and up,vp € A%. Thus
D®Fpy, = (up,m)+(vp,dp). Hencein Br (Fp,,), we have (up, )+ (vp,dp) =
Brbem + (uy,my) which implies Brpe, — (vp,dp) = (u,'up,m,). Comparing
residues, we see that u,) = up up to £ powers and Brbeq @ Fpy = (vp,0p) ® Fpy.
If Pis acold point, D = Dyg + (upniy,vpdp) € Br(F). Following a similar argu-
ment, we get Bype,; equals (upﬁ;”,vpép) — (uy, T,) which equals (up,vpdp) +
(my, VB P uy) in Br (Fp,). Comparing residues, we see that Brpe, ® Fp, =
(up,vpdp)® F'p,,. We investigate the relevant rows of the Tables in Proposition 7.1.
n OF TYPE 1B:

Row 1.2 of Table 10: Here (vp,dp) = 0 € Br(F) itself.

Row 2.2 of Table 11: Here (vp,dp) = 0 € Br(F) itself.

Rows 5.3-5.4 and 5.9 of Table 14: Since P is a chilly point, we have up = 7p’. In
any case (vp,dp) is split by Lp as vp becomes an (th power in Lp.

Rows 6.2 and 6.4 of Table 15 and Row 7.2 of Table 16: Since P is a cold point, we are
interested in splitting (up,vpdp). Here E; p is Fp (,"/upﬂg + vpép) and hence
E;p®Fp, =Fp, (\"’/vpép) which clearly splits 5,y

Row 8.6 of Table 17: Since P is a hot point and 7 is of Type 1b, Sype,, = (vp,dp)

~ *l
where vp € Ap . Thus B4, is already split over Fp ,,.

n OF TYPE 2:

Row 3.1 of Table 12: Here (vp,dp) = 0 € Br(F) itself.

Row 4.1 of Table 13: Here (vp,dp) = 0 € Br(F) itself.

Row 7.4 of Table 16: Since P is a cold point, we are interested in splitting (up, vpdp).

Here Ej,p is Fp (f/ ’uPﬂ'g + ’Upép) and hence Ej7p ® Fp,n = Fp,n (\['/ ’UP(SP) which
clearly splits Brpc,y-
Rows 8.3- 8.4 of Table 17: Since P is a hot point and 7 is of Type 2, Srpe,, = (vp, dp)

— %
where vp € Ap but not an /" power. Here E; p is either Lp or Fp (\E/ép). In
either case, it splits 3,p.,, over Fp,,,. O

PROPOSITION 8.6 (Yellow/Orange/Red/White). Letn) € Njjand P € TNSy. Assume
further that n is coloured yellow, orange, red or white. Let D ~ M; (u,, wymy,) for

Units Wy, Uy € ;1;* Let j = 1 or 2 and let E; p be as prescribed in Proposition 7.1.
Then,

1. E1 p ® Fp,, is a ramified extension of Fp,.
2. Ey p = Lp ifnis coloured yellow or orange.

3. ag,p is a unit along .
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4. Ey p ® Fp, is an unramified extension of Fp, and matches with the lift of
residues at 1) as etale algebras over Fp .

5. Ej p ® Fpy, splits D in Br (Fp,).

6. There exist wp,x; p € E;:fori < £ which are units along 1 such that
(a) Erp ~ Fp[t]/(t* —wpmp) and ay,p = ((’LUPTFP)mi’P
Z.

(b) (wpwy,*,uy) =0 € Br(Fpy,).

xfyp)ifor mi p €

Proof. We will mention the relevant rows of the tables in Proposition 7.1 below,
whence Properties 1-5 become clear (Lemma 8.1 for Property 4). We will give a
proof of Property 6a & 6b in each case.

Row 1.1 of Table 10: 7 is coloured red/white. Here wp = 1 = x; p. The proof is
similar to that of Proposition 8.3 5(b) for Row 1.3.

Row 2.1 of Table 11: 7 is coloured yellow/orange/red/white. Here wp = 1 = z; p.
Since P is a BYY point, Dp = (up,7p) is nonsplit. The proof is similar to that of
Proposition 8.3 5(b) for Row 2.3.

Row 5.6 of Table 14: 7 is coloured yellow. Unravelling the expression for aq p
from Row 5.6, we see it is (7p?dp'), where m; = ril + jn;. Let sj = 1

mod ¢. Thus n; = ri{ + sm; for some r}. Hence a1 p = ((77']36183)"” (5?1') . As
3

Eip=Fp <(’/7r{;5p> = Fp ({/mpo}), we have wp = 63 and z; p = 5;; here.
Writing D = Dgg + (up,7p) + (vp,dp) € Br(F) for Doy unramified at Ap, we
have (vp,wggép = (uy, wymy,) in Br (Fp,). Since 7p = m,, comparing residues
we have v}, 2 u,, up to /" powers, and hence (u,,w,) = (vp,dp). Since sj = 1
mod £, we have vp = uy up to ' powers. Therefore (uy, w,) = (uy, %) which
implies (u,, 53w, ) = 0. Hence Properties 6a & 6b hold.

Rows 6.5, 6.6, 6.7 and 6.9 of Table 15 and Row 7.6 of Table 16: 7 is coloured red and
Dp = (upm®,vpdp). The proof is similar to that of Proposition 8.3 5(b) of Rows
6.5-6.6.

Row 8.4 of Table 17: 1 is coloured orange. Here wp = 1 = z; p. Writing D =
Doo + (up,mp) + (vp,dp) € Br(F) for Dy unramified at Ap, we have (up, 7p) =
(un, wymy) in Br (Fpy,). Since m7p = m,, comparing residues we have that up = u,
up to /** powers, and hence (¢, wy,) = 0. Hence Properties 6a & 6b hold. (]

PROPOSITION 8.7 (0/1a). Letn € N{ybe of Type la or Oand P € TN Sp. Let j =1
or 2 and let E; p be as prescribed in Propositions 7.1 and 7.2. Then

1. E; p ® Fp,, is an unramified (possibly split) extension of Fp,,.
2. IfY, is of Type RAM, then a1 p = aand az p = 1.

Further if n is of Type 0, then there exist j, j' such that {3, j'} = {1, 2} such that for
every P € 1N Sy, the element aj: p is a unit in OY®FP,77 and E; p ~ [ Fp.
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Proof. By an inspection of Tables 9, 10, 11, 12, 13 and the choice of E; p in Proposi-
tion 7.2, it is clear that they are unramified along 7. If Y}, is of Type RAM, by Remark
5.2 it cannot intersect n’ € N where Y, is of Type SPLIT. Hence it cannot intersect
n’ € N} which is coloured V, I, B, Ye, O, R, W or BI. Inspecting Tables 9, 10, 11, 12,
13, 18, 19 and 20 shows that in this case, a1,p = aand ag p = 1.

Now let us assume 7 is of Type 0 and let 737’7 = 7N Sp. Then one of the following
holds (Proposition 6.4 and proof of Proposition 7.2): Case A) P, = {Q} where @ is
not of Type Af, Case B) P; = {Q,Q'} where @ is not of Type Af, and Q" is of
Type Ajp- Case C) P;, consists of only Type Ag, points.

Case A/B: Let @ € TN 17 (and Q' € 7 N7 in Case B). Note that () can be of Type
A3y, Biy or Bs,. Thus 7’ can be Type 1a or coloured red, green, blue, white or black
(and y is of Type 0 in Case B while @’ has to be of subtype D1 or D2 as defined in
Section 7.2).

Set j = 1and j' = 2if n/’ is of Type la or coloured green, blue or black. Set j = 2 and
j' = 1if n is coloured red or white. An inspection of Tables 9, 10 and 12 for Case A
and Tables 19 and 20 for Case B'® verifies that our choice of j and 5’ is compatible.
Case C: In this case each P; € 737’7 is of Type Af,. Thus it has to be of subtype D2 or
D3. Setj = 1 and j' = 2. An inspection of Tables 18 and 19 verifies the compatibility
of this choice. O

9 UNDERSTANDING E; p IN TERMS OF NORMS FROM SOME EXTENSIONS

In this section, we continue to assume that n € N, with P € Sy N7 being the intersec-
tion of two distinct irreducible curves with generic points 7; and 72. Let wp, dp, m, be
as before. We study E; p (as prescribed in Propositions 7.1 and 7.2) vis-4-vis norms
from some related extensions.

9.1 WHEN 5 1S 1B OR 2 AND Y, 1s RAM

Let 1 = 1, or 12 be of Type 1b or 2 with Y;, of Type RAM. By Proposition 8.5, E; p
is unramified along 7 for j = 1,2 and splits B4, over Fp,,. Let Y, = F, ({/w0,7y,)
where w,, € //1;* Thus D = Brpey + (Uy, wymy,) Where v/ = @, € kn/kj;e is
the residue of D),,. In this subsection, we show that u’ is locally a norm from E;p.

This will be useful in the final part of this paper (Section 13) where we show that the
constructed F;s are good.

PROPOSITION 9.1. Letn, u' and P be as above. Then there exist wy,p,W2,p € kpy
such that for j = 1 or 2,

1. Ej_’p ® Fp_’n = kp_’n[t]/(te — w]-_,p)

2. (wj,p,v')=0¢€Br(kpy).

18 Appeal to Lemma 2.6 and Proposition 3.3 for Rows 9.5°,9.7°, 9.8 and 10.2".
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Proof. Since 7 is Type 1b/2 and Y, is RAM, 1) is coloured green. We investigate the
relevant rows in the tables given in the proof of Proposition 7.1.

For the following situations, choose w1, p = wa p = 1.

- B{, point, n of Type 1b (cf. Row 1.2 of Table 10 and Row a in Table 21)

- some BTy points(*), n of Type 1b (cf. Row 2.2* of Table 11 and Row b in Table 21)
- B3 point, 1 of Type 2 (cf. Row 3.1 of Table 12 and Row c in Table 21)

- some B3 points(*), n of Type 2 (cf. Row 4.1* of Table 13 and Row d in Table 21)
- C{Lot point, 1) of Type 1b (cf. Row 8.5 of Table 17 and Row 1 in Table 21).

For the following situations, choose wy p = wq p = u'.

- BT point,  of Type 1b : (cf. Row 2.2 of Table 11 and Row b in Table 21)

- B2 point, n of Type 2 : (cf. Row 4.1 of Table 13 and Row d in Table 21)

- Clclhi”y point, i of Type 1b : (cf. Rows 5.1, 5.2 and 5.8 of Table 14 and Rows e,f in
Table 21)

- CG°Y point, i of Type 1b : (cf. Rows 6.1-6.4 and 6.8 of Table 15 and Rows g,h in
Table 21)

- CP' point, 1) of Type 1b : (cf. Rows 7.1, 7.4 and 7.5 of Table 16 and Row i in
Table 21)

- O5PY point, 1 of Type 2 : (cf. Rows 7.1-7.3 of Table 16 and Row j in Table 21)

- C{Let point, n of Type 1b : (cf. Row 8.1 of Table 17 and Row 1 in Table 21).

For C{L°! points, n of Type 2 (cf. Rows 8.1-8.2 of Table 17 and Row m in Table 21),
choose w1, p = wo,p € Of, \ Off . Since u’ = 1 here, (w; p,u’) = 0. a

9.2 WHEN 7 1S 1B OR 2 AND Y,, 1S RES

Let 7 = n1 or 1 be of Type 1b or 2 with Y;, of Type RES. In this subsection, we
will define certain extensions Lp and ﬂlp of kp, and understand E; p in terms of
norms from these extensions. This will be helpful in constructing £ ,, over I}, by
approximating local data.

Since Y;, is of Type RES, we have Y, ~ F), ({/u,) where v’ = 7, € kn/kj;e is the
residue of D ® F,,. Recall that Gal (Y,,/F),) = (¢). LetY' be Y ® F,, over k, and by
abuse of notation, let Gal (Y'/k,) = (¢) also. Finally let Y/, be Y ® Fp, over kp,y,
with an induced action of 1.

Note that if Y, is split, then Y}, ~ [[ kp,, where x € Y” is identified with the tuple
(z,¢(z),..., v (x)). Note that ¢ acts on [ kp, by permutations. That is, for
T; € kP,’r]»

w($1;$27 cee 71"5) = (.1'2,173, o 'axéwrl)-

Let a; p and E; p be as prescribed in Propositions 7.1 and 7.2. By Proposition 8.5,
E; p is unramified along 1) for j = 1,2 and splits B,y over Fp,,. Also a; p are units
along 7 (Proposition 3.3). Set bp := @1, p, b := @z, p in Y. If Y}, is split, then set
bp = (bi,P)i € HkPJZ and bIP = (b;P)Z S HkPJI'
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When Y7}, is not split, set

Lp=Y} (@\/Tp VA 1bp>
L =5 (/o (/000D {0100

Since Y7, is a nonsplit extension of kp, and N (bp) = 1 = N (b’p), first of all bp and
b are units in Oy p. Also by Lemmata 2.3 and 2.5, we have bp, b € YI’D*Z. Hence
i (bp) , 7 (V) are all /'8 powers in Y7, also. Therefore Lp = Y, = L.

When Y}, is split, set

Lp =kp, (\E/ bi,p, /b2, P,y A/ be,P)
Lo = ke ({0 (Vo {000

~ ~/
Note that in either case Lp /kp,, and L /kp,, are Galois extensions.

~ ~/

PROPOSITION 9.2. Letn, P, v, Lp and Lp be as above. There exist wp, wp € kpy,
~ ~/

zp € Lp and 2% € Lp such that

1. El,p & FPJ] = kp7n[t]/(té — ’LUP), Nﬂp Jkp.y (zp) = wp and (’LUP,U/) =0¢€
Br (k/’p,n).

2. Bop @ Epyy = kpy[t]/ (" — wh), Nt iy, (2p) = wp and (wp,u') =0 €
Br (k/’p,n).

Proof. Since 7 is of Type 1b or 2 and Y7, is RES, 7 is coloured green. We investigate
the relevant rows in the tables given in the proof of Proposition 7.1.

n of Type 1b:

Choose wp = wp = zp = 2z = 1 for Bj points (cf. Row 1.2 of Table 10 and Row
ain Table 21) and C’g"t points (cf. Row 8.6 of Table 17 and Row 1 in Table 21).

For the following situations, Y, = kp, is a nonsplit (unramified/ramified extension).

Thus Lp = I:IP =Y}, =kp, (\7@7) Choose wp = wp = v/ and zp = 2z, = V.

- BT point : (cf Row 2.2 of Table 11 and Row b in Table 21)

—Clclhi”y point : (cf. Rows 5.3, 5.4 and 5.9 of Table 14 and Rows e,f in Table 21)
-C5° point : (cf. Rows 6.2 and 6.4 of Table 15 and Row g,h in Table 21)

-C5°" point : (cf Row 7.2 of Table 16 and Row i in Table 21)

n of Type 2:

Choose wp = wp = zp = zp = 1 for B3 points (cf Row 3.1 of Table 12 and Row
c in Table 21).

For the following situations, Y}, /kp,, is a nonsplit (unramified/ramified extension).
Thus Lp = I:IP =Y}, =kp, (\7@7) Choose wp = wp = v/ and zp = 2} = V'
- B2 point : (cf. Row 4.1 of Table 13 and Row d in Table 21)

- O point : (cf Row 7.4 of Table 16 and Row j in Table 21).

DOCUMENTA MATHEMATICA 26 (2021) 337-413



REDUCED WHITEHEAD GROUPS OF ALGEBRAS 385

We are left with the case of hot points. Rows 8.3-8.4 of Table 17 are relevant here (With
1 = 12). Note that by Row m of Table 21, we know Y7}, is split. Hence u’ € k Pin
and therefore (wp,u') = (whp,u’) = 0 for whatever be the choice of wp and w'p.
However we need to be more careful in making our choice to ensure the existence of
zp and z)p.

Row 8.3 of Table 17: Observe n; is coloured indigo. This implies that the b; p are
all units in the local field kp,. Hence f,p is an unramified extension of kp,. By

. ~/ .
construction, b p = 1 and hence L = kp,. Thus all units of kp,, are norms from

I:p and I:;g. Choose wp = w's to be a unit in kp, which is not an (th power and
zp € Lp such that NLP/kP,n(ZP) = wp. Also set zp = whp.

Row 8.4 of Table 17: By choice b; p = m}". Hence we see that I:p = kpy (\’Vﬁ)
Set wp = Tp which is clearly a norm from Lp. Note that b;_’P = Z; p. Since z; p
are units in ;1;*, we see that I:;; is an unramified extension of kp ,. Thus all units of
kp, are norms from I:/P. As before choose w's to be a unit in Oy, which is not an

¢*h power and 2, € L, such that Nt g, (2P) = Wh. O

9.3 WHEN 7 1S 1A

Let n = 11 € Ny be of Type la. For convenience, we again summarize the choice of
E; p at points P € 7N .Sy for j = 1,2 while also tabulating the shape of Y in Table
22. Both extensions are unramified along 7. By Proposition 3.3 and Lemma 4.2, a is
a unit along 7 up to /** powers.

9.3.1 WHEN Y, 1s NONRES

PROPOSITION 9.3. Let n = 11 be of Type 1a and let P € 11N Sy. Further as-
sume Yy, is of Type NONRES. Let Y' =Y, = k, (W) and Y}, = Y' ® kpy,.

If Y, is nonsplit set Lp = I:/P =Yy IfY, = [lkpy letarp = (bip),

and azp = lP in [ kp,, and set Lp = kpy (wf/bl P, /b2, p, \E/bgyp) and

i (i e )

Then there exist wp, W' € kpny, zp € I:p and zp € I:; such that
1. E1p® Fpy = kpy[t]/(t" —wp) and Ni | Ik, (2P) = WP,
2. By p @ Fpyy = kpylt]/(t* — wh) and Nit g, (2P) = wh.

Proof. In Table 22, the Rows NR.1-NR.12 are relevant. We only give the choices of
wp and w), from which existence of zp, 2}, become clear. For Rows NR.1-NR.4 and

NR.10, choose wp = wgg = 1. For Row NR.7, l~/p = kpy (\[/E) is a ramified
extension and i'P /kp., is an unramified extension. Choose wp = dp and w)p to

be any unit in Ok, which is not an ¢t power. For Row NR.8, a similar proof as
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T D dq d7 (dm/y)dq  |SHUNON|SHUNON| &g @ J9) CT YN
T v d7 47 4] SdY  |SHUNON|Sid| 3 3) TTUN
T D 4] 4] T?:;\» vni INVYH |SHUNON|SIE| @ 1) 01U N
T D dq d7 (dm/y)dq  |SHUNON|SHUNON| L d|dT J9) 6N
(+2e) A@SWE;N Aé\wv dyg| d7 g1 LITdS [SHUNON|Lglar] g QUN
/
A;mi‘.s (+50) 47 Tm\» vni 411 IITdS |STUNON|LA[ATP A OU ‘M| LUN
/
1 D d7 d7 aq1] LITdS |[SHUNON|E|aT] A'T1d |9UN
T D d7 d7 a7 SHY  |SHUNON| . dlaT [5) SUN
I D 4] 4] Tﬁs\w vni INVYH  |SHYNON| ;i d|dT 1) VUN
T B 4411 aq]1] (dn/)dq  |STUNON|SHUNON]| v | 0 SUN
I B 4] 4] 4] IITdS |SHUNON|°iv |0 TUN
I D 4] 4] Tﬁs\w vni INVY  [SHUNON]| v | 0 TUN
T B d7 dq 4] SHUNON| 111ds (&gl [2) L'S
T D d7 a7 4] SHTUNON| LITdS |sigldT [5) 9'S
(:Le) A‘w‘sﬂi‘.s Tm\»vni dr dq11 LI1ds | 1rids |&glar g ¢g
A?mka 1z (:Z9) dg Aé\w v dq a1 111dS | Lr1ds |&glatexoam| vs
T B d7 d7 4] 117dS | LITdS |s.gla1] A‘T99 | €8
I B 4] 4] 4] SHUNON| L11dS [°tv|o z'S
T B 4] 4] 4] LITds | 111ds |°tv]o 1S
I D d d7 (dedm/})dg [SHUNON| VM |Sld|e [5) 9y
I B dq a7 [(deduda/Y)dg| wvya | wvu |Sdle [5) Sy
I D a7 d7 (dedm/})dg |[SHINON| VY |J.gldT [5) v
I B d7 a7 [(deduda/Y)dg| wvya | wvu |Lglar [5) ey
I D 4] 4] (dudm/})dg [SHINON| VM |[°Iv]|o [
I B 411 a1 [(dededm/y)dq] wvyu | wvy [°%v]|o [
d‘ep d‘Ip deny di dx % T J |et|anojoo—zl| moy

Table 22: Patching data at closed points when 7; is of Type la
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in Row NR.7 works. For the remaining rows, Lp and L', are unramified extensions
. _ / . . . . th

of kpy. So again choose wp = w}p to be any unit in Oy, which is not an £

power. O

9.3.2 WHEN Y, 1s SPLIT

PROPOSITION 9.4. Let n = n; be of Type la and let P € 77N Sy. Further
assume Yy is of Type SPLIT. Let" a1 p = (b p) (resp. azp = (bgﬁp)). Set

Xp = ko (Y0, /bep) and Xy = kg ({0 oo /000 )

Then there exist wp,wp € kp,y, zp € Xp and 2z}, € X such that
1. El,p ® Fp,n = k/’pm[t]/(té — ’LUP) and wp = NXP/kP,n (Zp)
2. Brp ® Fpy = kpylt]/(t" — wp) and wp = Nxy, i, (2p).
Proof. In Table 22, the Rows S.1-S.7 are relevant. We only give the choices of wp
and w) from which the existence of zp, 2> become clear.
For Rows S.1-S.2, choose wp = wﬁ; = 1. For Row S.4, Xp = kp, ([ E) is a

ramified extension and X} /kp,, is an unramified extension. Choose wp = Jp and
w'p to be any unitin O, which is not an £t power. For Row S.5, a similar proof as
in Row S.4 works. For Rows S.3, S.6 and S.7, Xp and Xj; are unramified extensions
of kp . So choose wp = w's to be any unit in Oy, which is not an oth power. [

10 PATCHING DATA AT COLOURED POINTS OF Ny

Let 7 € N be of Type 1b or 2 where Ny denotes the subset N N Xo. Let m, denote
the parameter of F;, fixed in Section 6.2 and let (3,4, be as defined in Section 4. For
j=1,2and any P € Sy, let E; p and a; p be as prescribed in Propositions 7.1. We
now prescribe the choices for E; ,, and a; ,,.

ProrosiTioN 10.1 (Violet/Indigo/Black). Let n € Ny be coloured violet, indigo or

black. Set E , and Ej , to be the lift of residues at A,. Further, set a1, = a and
azy = 1. Then for j = 1,2, we have

1. ainaz, = a.

2. D® Ej,, is split.

w

ajn is a norm from E; , @ Y, /Yy,

A

NYW/FT) (ajm) =1.
. Ejy®Fpy, ~ E;p® Fpy, for each point P € Sy N7.

5
6. ajp=ajy €Y ® Fp, for each point P € Sy N 7.

Modify a;, p by £th powers of the parameter 7, if needed to define (b;, p) and (b} p).

/
i,
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Proof. Recall that we have D = Brpcy + (uy, m;) in Br(F,)) where Sy, is an
unramified algebra with index at most £. And by construction, F;, ~ F, («”Un)~
Properties 1 & 4 are immediate, while Properties 5 & 6 follow from Proposition
8.2. Since D is ramified at 7, we have [E;, : ;)] = (. Since 7 is of Type 1b,
D,, ~ My (uy, wymy,) for some unit w, € ;1;* Thus D ® Ej 5, is split which shows
Property 2 holds.

Since 7 is coloured violet/indigo/black, then it has to be a Ch/H/Z curve respectively.
In particular 7 is a Type 1b curve with Y;, of Type SPLIT and a = (a;m)i where
each a; ,, is a unit up to ¢*h powers in ;1; Therefore the fact that a € Nrd (D ® Y;))
translates to (a;-,n) (uy, m,) = 0in H? (F,), j1¢) for all i (Lemma 2.7). This implies by

taking residues that (u,, a;m) = 0in H? (k,, j1) for all i. Hence each a; , is a norm

from E ,,. Since clearly 1 is a norm from Fj ,, Property 3 holds. (]

PROPOSITION 10.2 (Blue). Let 1 € Ng be coloured blue. Set E ;, to be the lift of
residues at A,,. Then there exists a ramified cyclic extension Es ;| F, of degree { and

elements a1, = (G1,iy); and az, = (G2,y); € [[Fy, such that for j = 1,2, the
following holds:

1. a1pa2,y = a €Yy, i.e. @1,naz,n = a;, for each i.

2. D® Ej, is split.

3. ajy is anorm from Ej, @Y, /Y, i.e. 4,y is a norm from E; ,, for each i.

4. Nyn/pn (ajm) = 1, ie. Hz djm = 1.

5. Ej,®Fp, ~ E;p® Fp, for each point P € Sy N7.

6. Qjinltjs,Pn = Q5P € Fpy for all i at each point P € Sy N7 for some
Hji Py € Fj;fn such that [ ], juji, py = 1.

7. B\, /F, is unramified and cyclic of degree (.

Proof. Since 1) is coloured blue, it is a C curve of Type 1b with Y;, of Type SPLIT.
!

. M
with z} € A, . Because N(a) = 1, we have )~ m; = 0and [[ 2} = 1.
Let P € 7N Sp. By Proposition 8.3, Es p = Fr[t]

(tg—wpﬂ'p)

%k
. ~ _ / o my
Write D ~ My (uy, wym,) where wy,, u, € A, anda = (a )z where a; , = z;m"

tn

and a2 p = (dgmp) where
ao,ip = (wpmp)""" xt , for some wp,z; p € Ap which are units along 7. Further
L p matches the lift of residues along F'p,, and a1 p = (du,p) where a4 ; p are all

units along 7. Thus, since a is arranged to be in good shape, we have m; = m; p.

Let X, = F, (/) and let X,, = k,, ({/i,). Our goal is to find a 6,y € A, which
is a norm from Xn so that w,,0,, is close to wp in kp,, for each P € 7N Sp.
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If such a 6, exists, then we set

E,, =F, (f/wnt?nﬂ'n) ,

By = Xy = Fy (i),
2,5 = (Wybym))" Vi <4 —1,

a2 = (G2,1n---G20-1,3)

-1
a1,y = GGy .

Thus clearly Properties 1, 4, 5, 6 and 7 hold. Since 6,, is assumed to be a norm from
X,,, we have (u,,0,) = 0 € Br(F,). Hence D = (u,, w,0,m,) € Br(F,), which
therefore implies Property 2 holds.

Let us check that Property 3 holds. Clearly as;, = (wy,0,m,)"" is a norm from
E,, foreach i < ¢ — 1. Since 1 is a norm always, so is @z ¢ ,. It is left to show that
a1,y = @ (wy0,) ™" isanorm from X, foreach i < /—1 (which will automatically
imply @ ; ,, is a norm from X, also as N(a; ,,) = 1).

. / . l _
Since each aj, is a reduced norm of D, we have (uy,wy0,m;) (aim) =

0. This implies (uy,wy0,m,) ((wnﬁnwn)miz; (wnﬁn)fm"') = 0 and hence

(U, wyBOyy) (z; (wnﬁn)fm"') = 0. Taking residues, we see (un, ) (wnﬁn)fm") =
0 and thus each @ ;. is a norm from X,,.

Now let us find 6,. Recall that X, is the residue of D,. For each P € 71 N S,
by Proposition 8.3 5(b), we know that wpw;, ! is a norm from X, ® kpyy. Thus for
each P € 7N Sy, let zp,, € X,, ® kp,, such that N (zp,) = wpwﬁl. By weak

approximation, find z € X,, which is close to each zp,. Set @ = Nx /1 (2) € ky
and let 6, denote its lift in F},. This §,, satisfies the required properties. O

PRrRoPOSITION 10.3 (Green(1)). Let ) € Ng be of Type 1b/2 with Y;, of Type NON-

RES. Set Ey ,, and E5 ,, to be the lift of residues at Zl; Further, set a1, = a and
az, = 1. Then for j = 1,2, we have

1. ay a2, = a

2. D® Ej, has index at most L.

3. DY ® Ej, is split.

4. a;y is anorm from Ej, @Y, /Y.

5. Ny, /r, (aj,) = L

6. Ej,® Fp, ~ E; p® Fp,, for each point P € Sy N 7.

7. ajp=a;, €Y ® Fp, for each point P € Sy N 7.
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Proof. By hypothesis, 7 is coloured green. Recall that we have D = B4y +
(ty, ) in Br (F;)) where Bypc,y is unramified with index at most £. By construction,
Ejn ~ F, (/). Properties 1 & 5 are immediate while Properties 6 & 7 follow from
Proposition 8.4. Note that D ® E; , = Brie,n ® Ej,, € Br (F),) and hence Property 2
holds.

Since D is ramified at 1, we have [E;, : F,] = (. As Y, is NONRES, we
have E;, ® Y, /Y, is a field extension of degree ¢. Then by Lemma 2.9, the
index of (D ®Y;) equals index (Brpe,n @, Yy @F, Ejy) [Ejn ®Y, : Y] which
is index (Brpe,n ®F, Yy ®p, Ejy) % L. Since index (D ®Y;) < £, we see that
Ejn ®F, Y, splits B¢, and hence also D, implying Property 3.

By hypothesis, a € Nrd(D®Y,). That is, (a)[Brbey] + (a) (uy,m) =
0 in H* (Y, s1¢). By Proposition 3.3, a is a unit at 7. By Lemma 2.7, a is a reduced
norm of 3,4, ® Y, and therefore we have that (a) (u,, ;) = 0in H* (Y, uz). Thus
by taking residues, we see that (u,, a) = 0 in H? (Y}, s1¢) which would imply that a
is a norm from E; , ®r, Y;,/Y,,. Hence Property 4 holds. O

PROPOSITION 10.4 (Green(2)-RAM). Letn € Nq be of Type 1b or 2 and let Y,, be
of Type RAM. Set a1, = a and az, = 1. Then for j = 1,2, there exist E; |/ F,,
unramified cyclic extensions of degree { such that

1. aina2,=a
. B ., splits the residual Brauer class Brpc,y.
. D® Ej,, has index at most L and D @Y ® Ej ,, is split.

. @y is anorm from E;, @Y, /Y,

. By @ Fpy ~ E; p® Fpy, for each point P € Sy N7.

2
3
4
5. Ny, /r, (aj) = L
6
7. ajy=a;p €Y ® Fp, for each point P € Sy N 7.
8

. The residue of Dy, is a norm from E; [ k.

Proof. By hypothesis, n is coloured green. Properties 1 & 5 are immediate. By
Lemma 2.3,a = a1, € Yn*é. Since a2, = 1, Property 4 holds for whatever de-
gree ¢ extensions £} ,, we choose. We first construct £ ,, /k,, and then set E; ,, /k,, to
be the unramified lift of E; ,,/k,. We would like to apply Lemma 2.10 to construct
E;,.

Recall that we have D = Brpc,y + (Uy, wymy,) in Br(F,) where Y,, ~ F,(y/w,m,)
for w,, € ;1;* Let D’ = Brpc,y, the residual Brauer class considered over the residue
field k,. Thus D’ is a central simple algebra of exponent and index at most ¢ over
global field k. Letu' := ;; € k. Let P; :=7 N Sp. Let Q; denote the set of closed
points @ € 7 not in P, such that D’ ® kg ,, # 0.

For P € 737’7, set E}P = E; p® Fp,/kpy, and let wi p,wa p € k%, be the
ones obtained from Proposition 9.1. So E; p ® Fp,, = kpy[t]/(t' — wj p) and
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(u';wjp) = 0. For Q € Q), set B}  and Ej , to be the unique unramified field
extension of k¢, and set wy, = wa, be any unitin O, , which s not an £*" power.
Let us verify that the hypotheses of Lemma 2.10 hold now. Let P € P, U Q; . We first
check that (w; p,u’) = 0 € Br (kp,,). For P € P, this is assured by Proposition 9.1.
For P € Q%, v’ is a unit in Okp,n~ Since wj;, p is a unit, by local class field theory,
(wJ p,u') =0.

Next we verify that D’ ®E’ _pistrivial. For P € 73’ this is assured by Proposition 8.5.
For P € Q' since each E’ P is a nonsplit unramlﬁed extension of degree ¢, local class
field theory guarantees that it will split any index ¢ algebra over kp,,.

Clearly for each Q & (P) U Q). D' @ kg, is split.

Thus Lemma 2.10 can be used to construct m and ﬁn over k;. Setting Fy , and
Es5 , to be their respective unramified lifts over F,, it is immediate that Properties 2,
6, and 8 are satisfied. Property 7 is guaranteed by again using Proposition 8.5.

To complete the proof of Property 3, note that as £}, splits Brpc, and Y, =
F, (Ywqgmy) and D = Bryey + (uy, wymy) € Br(F,), it is immediate that
index (D ®f E; ;) < ¢and that D ® Y, ® Ej ,, is split. O

PROPOSITION 10.5 (Green(2)-RES). Let p € No be of Type 1b or 2 and let Y, be
of Type RES. Then for j = 1,2, there exist E; ,/ F,, unramified cyclic extensions of
degree { and elements a1 ,, a2, € (’)yn such that

1. aypa2., = a.

N

E; . splits Brie,n-

3. D® Ej, has index at most L and D @ Y ® E; ,, is split.
4. aj, is anorm from Ej, @Y, /Y.

5. Ny, /r, (aj) = L

6. Ej,® Fp, ~ E; p® Fp,, for each point P € Sy N 7.

7. ajnipn = ajp inY @ Fp, for each point P € Sy N7 for some u;p, €
Oy @Fp, such that jij p, = 1 mod (m,) and N (uj pp) = 1.

8. The residue of D @ Fy, is a norm from E; ,, [ ky.

Proof. By hypothesis, 7 is coloured green. Since Y, is of Type RES, by Lemma 3.3
we have that a € Oy, . Recall that we have D = Bypey + (up, m) in Br(£). Set
W=y € iy, Y=Yy = ky (Vi) and o’ =@ € Y and let Gal (Y'/ky) = (1).

Let P7'7 := 1N Sp. By Proposition 8.5, a; p is a unit along 7. First let’s construct
a} € Y’ approximating @y p € Y ® Fp ® Fp,, for each P € 737’7. Since N (a1,p) =
1, by Hilbert 90 there exists cp € Y’ @ kp,,, such that c}lw (cp) = ar,p. Using weak
approximation, find ¢ € Y which is close to cp for each P € P,. Seta} = c1y(e)

—1 . —
and set ay = a’a} . Let ay ,, denote a lift of @ and let as ,, = aa; ,17
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Therefore Properties 1, 5 & 7 are immediate. We will first construct m/ k, and
then set E; ,,/k, to be the unramified lift of m/ ky. We appeal to Lemma 2.11 to
construct £ ,,.

Let D' = m, the residual Brauer class considered over the residue field £,,. Thus
D' is a central simple algebra of exponent and index at most £ over global field k.
Let Q;, denote the set of closed points @ € 7 not in P;, such that D’ ® kq,,, # 0.
Letj =1 or2. For P € P!, set E}-_’P :=FE; p® Fpy/kpy,. For P € Q, set E}P to
be the unique unramified field extension of kp,,. Let L denote the Galois closure of

Y'({/a}) and let I denote the Galois closure of Y'({/ab).

Whenever Y’ ® kg ,, is not split, since a} and a5 have norm 1, they are also units and
in fact /*" powers in the complete discretely valued field Y’ ® kq ,, for every Q € 7
(Lemmata 2.3 and 2.5). Further, since Y7, is RES, we note that Y is unramified except
at points P € Sy N7j of Type C°4 or C{?!. For each P € P}, recall the extensions

f,p, ﬂlp defined in Section 9.2. Note that the extension L, Qk,, kpy, ~ Hig:1 I:p and
extension L’ Ok, kpy =~ H?Zl I:IP for some g, h > 1.

Proposition 9.2 says that there exist wp, wp € kpy,, zp € Lp and Zp € I:;g so that
Ei,P = kp_’n[t]/ (te — U}p), Nip Jkpom (ZP) = wp, Eé,P = kp_’n[t]/ (te — w;g) and
Ner e (2p) = wp. Foreach P € Q) letwp = w)p be any unitin Ok, which is
not an ¢** power.

We now construct® the extensions E; ,, using Lemma 2.11 by verifying that the hy-
potheses of the same hold. Let P € 73,’7 U Q;.

We need to find Zp € L Qkpy, =] Lp (respectively Zp € i ®kp, = HI:;;) such
that its norm to kp,, is wp (resp wp). For P € P/, set zp = (zp,1,1,...,1) and
z; = (#},1,1,...,1) and use Proposition 9.2 to conclude the proof in this case. For
P € Q;, we claim that Y}, is a nonsplit unramified extension of kp,,. This is because
of the following:

Write D = Dgg + (up,np) € Br(F) where up € E;a* and wp is a prime corre-
sponding to the curve 77 ([S97]). We also have D = Brpcp + (uy, m) € Br(Fy).
Note that 7p = m,w, € F), where w, € ;1:7* Comparing these two expressions in
Br (Fp,y), we see (up,wy) + (up, m;) = Broc,y + (uy, m). Taking residues, we see
that wpt,, ' = 1upto /' powersin kp.,,. Andhence Bypc.ny = (uy, wy) € Br (Fp,).
Now we are looking at a place P ¢ Pv/z such that this algebra is not trivial. In particu-
lar, this implies W, is not an ¢t power. Therefore Y7}, is not split.

As observed before, this further implies a} and @), are units (and in fact £** powers) in
Oy,. Thus L®kp, = [[Lp and i ®kpy = HI:/P where Lp = I:/P = Y}.. Since
Y}, is unramified nonsplit extension of kp,,, every unit of kp , is a norm from it and
hence from L p and L , which finishes the proof of this case.

We need to verify that D’ ® EJ p is trivial for all P € 7. For P € Py, use Proposi-

201f a; is an P power in Y, Property 4 is automatically satisfied for ajn- A check of the relevant

rows mentioned in Proposition 8.5 show «’ is a norm from E; p ® kp,y,. We can then use Lemma 2.10 to
construct E; ;.
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tion 8.5 to conclude the proof in this case. For P € Q' since each EJ’ p 1s a nonsplit
unramified extension of degree ¢, local class field theory guarantees that it will split
any index ¢ algebra over kp,,. Also clearly for each Q ¢ (737’7 U Q;), D' ® kg, is
split already.

We need to verify that (wp, a}), = (wp, ay), = 0 for every valuation y € Qy~ lying
over P. For P € 737’7, this is assured by Proposition 7.1 (4). For P € Q’, we have
already noted that Y}, is unramified and nonsplit over kp ;. By Lemma 2.5, a/ and a5
are (*" powers in Y/ @ kp,. So (wp,a}) =0 = (wh,ab).

Thus Lemma 2.11 can be used to construct m over k,, for j = 1,2. Setting E;
to be their respective unramified lifts over F},, it is immediate that Properties 2, 4,
6 and 8 are satisfied. To complete the proof of Property 3, note that as Ej , splits
Brbens Yo = Fy () and D = Brye.y + (uy, ) € Br(F,), it is immediate that

index (D ®f E;,,) < {and that D ® Y;, ® E; , is split. O

ProrosiTioN 10.6 (Yellow/Orange/Red/White). Let n € Ny be coloured yellow,
orange or white. Set Es, to be the lift of residues at A,. Then there exists a

ramified cyclic extension E ./ F;, of degree { and elements a1, = (G1,,) and
as.y = (G2,in) € |1 F), such that for j = 1,2, the following holds:

l. aynaz,=a €Y, ie a1;,02;y= agmfor each i.

2. Ej, splits D.

3. ajy is anormfrom Ej, @Y, /Y, i.e. 4,y is a norm from E; ,, for each i.
4. Ny, /F, (ajm) =1 ie [];a5in =1

5. Ejy®Fpy, ~ E; p® Fp,, for each point P € Sy N7.

6. GjinltjiPy = Gjip € Fpy for all © at each point P € Sy N7 for some
Wii, Py € F;;fn such that Hl Wii Py = 1.

7. Es,/F, is unramified and cyclic of degree {.

Proof. By hypothesis, 1) is a Ch/H/C/Z curve of Type 1b with Y;, of Type SPLIT. The
proof is similar to the proof of Proposition 10.2 (we appeal to Proposition 8.6 to ensure
compatibility at branches). O

11 PATCHING DATA AT UNCOLOURED POINTS OF N

Let n € Ng be of Type 1a or 0 and let 7, be a parameter of F;, as before. Set
P, =10 Sp. If nis of Type 0, set Q; := ). If 1 is of Type la, set D' = D ® I,
over the residue field k,,. Thus D’ is a central simple algebra over the global field &,
of exponent and index dividing ¢. Let Q;] denote the set of closed points () € 7 not
in P; such that D' ® kq,; # 0. For j = 1,2 and any P € Sp, let £ p and a;,p be
as prescribed in Propositions 7.1 and 7.2. We now prescribe the choices for £ ,, and
ajn. Tables 9, 10, 11, 12, 13, 18, 19 and 20 are relevant in this section.
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PROPOSITION 11.1 (0/1a-RAM). Letn € No be of Type O or 1a and let Y,, be of Type
RAM. Set a1, = a and as,, = 1. Then for j = 1,2, there exist Ej,n/Fn’ unramified
cyclic extensions of degree { such that

1. ayna2,=ainY,.

D ® Ej,, is split. If n is of Type 0, then E; ,, ~ [| F,.
a; .y is a norm from E; , Y, /Y,

Ny, /F, (ajn) =1

E;, ® Fpy ~ Ej p® Fp,, for each point P € Sy N7].

S

ajn =ajp €Y ® Fp, for each point P € Sy N 7.

Proof. By Proposition 3.3 and Lemma 2.3, a € (’){/{I. By Proposition 8.7, a1.p = a
and ax p = 1 foreach P € 73,’7. Hence Properties 1, 3, 4 and 6 hold.

LET n BE OF TYPE 0. Note that by Remark 5.2, ) cannot intersect ’ € N{ with Yy,
of Type SPLIT. By inspection of the relevant tables, we see that E1 p = Eo p = [[ Fp
for any P € 77,’7. Set E; , = [ [ F’,. Hence Properties 2 & 5 hold in this case.

LET 1 BE OF TYPE 1A. Letj = lor2. For P € Py, set B} p := Ej p @ Fpy/kpy.
For P € Q%, set E; p to be the unique unramified field extension of kp,, of degree
(. D' ® E;jp is trivial for all P € P{7 U Q;? (cf. Proof of Proposition 7.1 for P € 737’7
and local class field theory for P € Q}). Also clearly for each Q € 77\ (P, U Q}).
D’ ® kq,y is split already. Set v/ = 1 and use Lemma 2.10 to construct m Set
E; ./ F, to be the unramified lift of E; ,,/k,, to see that Properties 2 & 5 hold. O

PROPOSITION 11.2 (0/1a-SPLIT). Let n € Ng be of Type 0 or 1a and let Y, be of
Type SPLIT. Then for j = 1,2, there exist E; ,/F,, unramified cyclic extensions of
degree { and elements a;, = (@), € [ [ Fy such that

~

a1 oy = 0 = (a;m)i inYy, i.e@1,inG2y = a;mfor each i.

D ® Ej,, is split. If n is of Type 0, then E; ,, ~ [] F,,.

a;.n is a norm from E; , Y, /Y, i.e. @; ;. is a norm from E; ., for each i.
Ny, /r, (ajn) =1, ie [Tajin = 1.

E;,®Fp, ~E;p® Fp, for each point P € Sy N 7.

S

Gjinltji Py = Gjip € Fpy forall i at each point P € Sy N7 for some
Wi, Py € F;fn such that HZ Wi Py = 1.

Proof. Leta = (aj,) € [[F, where aj, = xjm;" where m; € Z and } € //1;*
Because N(a) = 1, we have Y, m; = 0and [[ ] = 1.

LET n BE OF TYPE 0. Since D, is already split, Property 2 is satisfied. Choose
{4,7'} = {1, 2} as in Proposition 8.7.
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First let’s construct a;,,, € [ F}, approximating a; p for each P € 737’7. By inspection
of the relevant tables, we see that a; p = (&;, p) is suchthata;; p = z; pmp* where
zi,p € Of, . Since N(ajp) = 1, we have [Jz;p = 1. For1 < i < ¢ —1by
weak approximation, find ¢; € kj which is close to Z; p in £, and let ¢; be a lift

of ¢; in 4, . Lete, = [['Zh (e,) " and & = [['2} (&) 7" Set iy = G
and aj , = aa;,. Thus G ;, = zjé;" " € 21;* Let ¢; = ajr ;. € ky. Therefore
Properties 1, 4 & 6 are immediate.

Set E;,, = [[ F;. Note that by Proposition 8.7, E; p = [[ Fp. Thus Properties 3

& 5 are satisfied for a;,,) and Ej ). For P € Py, set Y, p:= Ej p @ Fpy/kpy. Let

= ky ( VA< TR {/cj) By inspection of the relevant tables, we find that one of
the following hold for P € P,:

- Ej, p =[] kpy : In this case, set wp = 1.

- E}’,P = kpy (\[/ E) : In this case, also note that ¢} = 5_$i up to /*" powers.
Hence X' ® kp,, = kpy (\[/E). Set wp = op.

Thus for P € P} we have found w}, € kp,y so that Ef, p, = kpy[t]/ (t* — w})
and wp = Nx/grp, /kp., (2p) for suitable elements 2%,. By weak approximation, we
can find 2’ € X' close to zp. Letw’ = N(z'). Set Ej:,, = ky[t]/(#* — w'). Thus
(w',¢;) = 01in Br (k,) for all 5. Let Ej ,, be the unramified lift of £}/ ,,. This shows
that Properties 3 & 5 hold for a; ,, and E}/ ,, as well.

LET 1 BE OF TYPE 1A. By Lemma 4.2 we have that m; = ¢m; and a; , = x,me]m

For (Q € Q;, set a1, = a and az o = 1. Since a is arranged to be in good shape
(Proposition 3.5), we see that at these points a; g = (xi,Qﬂgni) where g is some
prime in a regular system of parameters defining 7 at Q) and z; ¢ € //122*
First let’s construct a1, € []F;, approximating a; p for each P € 77{7 U Q;?. By
the above discussion and inspection of the relevant tables, we see that in [] Fp,,
a1,p = (zi,p); or (aci,pwfgmi) where z; p € @ . Since N (a1, p) = 1, we have
K]
[[z:p =1.Forl <i < {—1,by weak approximation, find ¢; € k,, which is close to
Tip in kp,, and let & be a lift of ¢; in F,. Let o = [[°2) (¢,) ", & = [1°2) (&)
and ¢, = x’rc}_l forr < {¢. Letay,, = () and let az ,, = aai}]. Thus Properties 1,
4 & 6 are immediate.
Let j = lor2 For P € Py, set B p := Ejp® Fp,/kp,. For P € Q;, se
E’ plo be the unique unramlﬁed ﬁeld extensmn of kpy. D'® E’ P is trivial for a]l
P € P, U Q, (cf. Proof of Proposition 7.1 for P € P, and local class field theory for
Pe Q%) A]so clearly for each Q € 77\ (73’ U Q’) D’ ® kq,y is split already.

Let X = ky (21, ., ¢/e) andlet X' = ky (/... (/). Then X @y, kpy =
71 Xp (resp. X' @y, kpy ~ Hj:1 X1,) where Xp and X, are as in Proposi-
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tion9.4if P € Q;] and are unramified field extensions?! of k pnif P € Q;.

For each P € Q), let wp = w} be any unit in O, which is not an oth
power, which therefore are norms from unramified extensions Xp and X/, respec-
tively. For each P € P, choose wp,wp € kpy as in Proposition 9.4. Thus for
P e PyuUQ,, we have E] p = kpylt]/ (té — wp), By p = kpyltl/ (té — w})
with wp = Nxgip, /kp., (2P) and wp = Nx/gp,, /kp, (2p) for suitable elements
zp and z},. By weak approximation, we can find z € X and 2z’ € X' close to zp
and 2/, respectively. Let w = N(2) and w’ = N(2). Set B = ky,[t]/(t* — w) and
Eb = ky[t]/(t* —w'). Thus (w, ¢;) = 0and (w', ¢;) = 01in Br (k,) for all i. Let E; ,,
be unramified lifts of E; These extensions approximate I/; p and Properties 2, 3 & 5
hold. O

PROPOSITION 11.3 (0/1a-NONRES). Let 7 € Ny be of Type 0 or 1a and let Y,, be
of Type NONRES. Then for j = 1,2, there exist E; ,,/ F;,, unramified cyclic extensions
of degree { and elements a; , € Oy, such that

1. aynaz, =ainY,.

2. Dy is splitifnis of Type 0. Else D ® E; ;, has index at most £ and D QY Q@ F; ,,
is split. Further if ) is of Type O, then E; ,, ~ [ F;,.

3. ajnisanormfrom E;, @Y, /Y,.
4. NYW/FU (ajm) =1
5. Ej,®Fp, ~ E;p® Fp, for each point P € Sy N7.

6. ajnljpy = ajp inY ® Fp,, for each point P € Sy N7 for some |1 p, €
OygFp,, suchthat ji; p, = 1 mod (m,) and N (pj p,) = 1.

Proof. By Proposition 3.3 we have that a € Oy,. LetY' =Y, = k, (W),
a' =a €Y and Gal(Y'/ky) = (¢). For P € Q),seta; p = aandaz p = 1.
Further since a is in good shape and P ¢ Sy, we see that a; p are units along 1 and
further, a; p € (’);‘,F,’. Since Y is also arranged to be in good shape, Y7, is an unramified
(possibly split) extension of kp,. By inspecting the relevant tables, we see that a; p
are units along 7 for P € Py also.

First let’s construct a} € Y/ approximatinga; p € Y ® Fp,, foreach P € 73,’7 U Q%.
Since N (@1.p) = 1, by Hilbert 90 there exists cp € Y’ @ kp,,, such that ¢ (cp) =

ar,p. Using weak approximation, find ¢ € Y which is close to cp for each P. Set
@y = ¢ M)(c) and set a)y = a’a} . Let a1, denote a lift of ¢} and let as ,, = aai%.
Then Properties 1, 4 & 6 are immediate.

LET 1 BE oF TYPE 0. Property 2 is satisfied by the definition of Type 0. Choose
{7,4'} = {1,2} as in Proposition 8.7. Set E; , = [[ F},. Since by the same proposi-

tion, E; p = [ [ Fp, Properties 3 & 5 are satisfied for a; ,, and E ,,

. — % .
2lsince x;, p € Ap at these points.
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For P € P), set EY, p := Ej p® Fpy/kp,. Let I denote the Galois closure

of Y'(¢/a’,). Letting D’ = 0 € Br(k;,), we would like to apply Lemma 2.11

to construct E}/ = Ej , first. Thus for each P € 737’7, we would like to first

find wp € kpy and 2z € L ®kp, so that B, p = kpy[t]/ (' —w)) and
!/ /

N/ rp, fhps (zp) = wh.

By inspection of the relevant tables, we find that one of the following hold :

- Ej, p = [ kpy : In this case, set wp = 1.
- Bl p = kpy (\[/E) : In this case, also note that aj; p = (@) Hence
I ®kpy = kpy (\[/5). So set whp = op

Similarly it is an immediate check that (w}, a;/), = 0 for every valuation y € Qy-
lying over P. Thus Lemma 2.11 can be used to construct E;,. Setting E: ,, to be its
unramified lift over ), it is immediate that Properties 3 & 5 are satisfied.

LET 1 BE OF TYPE 1A. Let 5 = 1 or 2. We would like to apply Lemma 2.11 to first
construct £ = Ej,. For P € Py, set B} p == Ejp @ Fpy/kpy. For P € Q, set
E; p to be the unique unramified field extension of kp ,, of degree ¢.

D'eY'® E}P is trivial forall P € 73,’7 U Q% (cf. Proof of Proposition 7.1 for P € 73,’7
and local class field theory for P € Q}). Also clearly for each Q € 77\ (P, U Q}).
D' ® kg, is split already.

Let L denote the Galois closure of Y’ ({/CT’1 ) and let L’ denote the Galois closure of
Y'({/a%). Note that whenever Y’ ® kg ,, is not split, since a} and a) have norm
1, they are also units (and in fact /*P powers) in the complete discretely valued field
Y’ ® kg, for every @ € 7 by Lemmata 2.3 and 2.5. Then as in the previous proof,
L Qk, kpy ~ Hle Lp (resp. i @k, kpn ~ H?Zl I:/P) where Lp and I:/P are as in
Proposition 9.3 if P € Pv/z and are unramified field extensions?? if P € Q;.

Foreach P € Q;, let wp = w’p be any unitin Oy, which is not an ¢t power, which

therefore are norms from unramified extensions Lp and I:IP respectively. For each
P € P}, choose wp, wp € kp, as in Proposition 9.3. Thus for P € P, UQ;, we have
Ei,P = k/’p,n[t]/ (té — ’wp), Eéyp = kpm[t]/ (té — w;;) and NI:p Jkpom (Zp) = wp,
N&r i, (z}) = w'pfor suitable elements zp and 2.

We would like to use a modified version of Lemma 2.11. Let P € P; U Q;. By the
above discussion, we can find Zp € L ®kp,, = [[ Lp (resp 7}, € i ®kpy =11 f,/P)
such thatits norm to kp,, is wp (resp wp). We verify that (wp, a}), = (wp,a3), =0
for every valuation y € Qy- lying over P. For P € P;, this is by Proposition 7.1 (4).
For P € Q’, by construction @ is a unit in O3, while ay = (1). Since wp € O, |
also, we are done in this case. Thus Lemma 2.11 can be used to construct E{ and

EY over k,, though E! will not split D’. Setting E1 ,, and E> , to be their respective
unramified lifts over F;,, we see that Properties 2, 3 & 6 are satisfied. O

22By the remark in the beginning of this proof, Y/, is an unramified (possibly split) extension and a} and
a/, are units at these points.
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12 SPREADING AND PATCHING OF E; AND a;

Recall that FF = K(X) is the function field of a smooth projective geometrically
integral curve X over a p-adic field K and X — Spec Ok, a normal proper model
of F' as fixed in Section 6.2. We recall some further notation from ([HH10], Section
6) and ([HHKO09], Section 3.3). Let n € Ng and let U,, C X, be a non-empty open
subset containing 7. Then Ay, denotes the ring of functions regular on U,,. Fix a

parameter ¢ of K. Thust € Ay, . Then ZU\n denotes the completion of Ay at ideal (t)

and FY;, the fraction field of /TU: . Further F' C Fy, C F,,. Let 7, be the parameter
of I, fixed as in Section 6.2.

PROPOSITION 12.1. Let j = 1 or 2. For eachn € Ny, there exist a neighbourhood
Uy, of nin Xg such that U,y C 7\ So, elements a;y, €Y ® Fy, and cyclic or split
extensions Iy, [ Fu, of degree { such that

1. a1 y,a2u, = a.

2. D ® Ejy, has index dividing (.

3. DY ® Ejy, is split.

4. ajy, isanormfromY ® E;y, |Y ® Fy,,.

5. Nygry, (ajﬁUn) =1

6. Eju, ® Fy =~ Ej,.

7. Eju, ~ [ Fu, whenever E; , ~ ] F, .

8. Eju, ~ Ivy,[t]/ (te - eijn)for some ej y, € /TU: . Further if E; ,, is unram-

ified, then e; y, € Ay, .

9. aLUnvf’n =a;n €Y ® F, for some v, €Y ® F;, of norm one.
10. D ® Fy, is split whenever D & F, is split.
11. D ® E;y, is split whenever D ® FE; ,, is split.

Proof. By the propositions in Section 10 and 11, we know D ® E;,, ® Y is split and
D ® Ej; , has index dividing £. Further, we also know F; , = F,[t]/(t* — e’ ,) where
e}, =mjej, withe; € {0,1} and e, € ;1;* Finally we have norm one elements
ajy € Yy such that ay yas,, = aand (a;,,€;,) =0 € Br(Yy).

For d = 2 or ¢ + 1, by ([HHK 5], Proposition 5.8) and ((KMRT], Proposition 1.17),
there exists non-empty open set VT; of p such that D ® FVn/ (resp. D® Y ® Fvn/) has
index < d whenever D ® F,, (resp D ® Y ® F,)) hasindex < d. If E; ,, ~ [[ F,, set
Vig = an' Set Ey,, = [[ Fv,, and e; v, = 1. Then Properties 2, 3,6,7,8 , 10 &
11 clearly hold.
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If E] n/Fy is a field extension, choose e; € F* such that e Yejn is 1 mod (m,) in

A Sete =mie; € F* and £ = F[t]/(t* e;). Since ¢} 7ejn:c for some

T € A,7 , E; ® F, ~ Ej; ,. Now again by (([HHK15], Proposition 5.8) and ([KMRT],
Proposition 1.17), for d = 2 or £ + 1, there exists non-empty open set V; ,, C V,; of
n such that D @ E ® Fy,  (resp. D ®@ Y ® E} ® Fy, ) has index < d whenever
D® E;® F, (resp D®Y @ E} ® Fy) has index < d. Setting E; v, = E; @ Fy, ,,
it is clear that Properties 2,3,6,7,10 and 11 hold. Shrink Vj , further to assume
e; € A/V:?* Setting ey, ‘= e;, it is clear that Property 8 holds. Shrink V; , and
V3, to assume they are both equal and call them V;,. To address Properties 1,4, 5
and 9, we distinguish between the cases when Y, /F,, is a field extension and when
Y, ~ ] F,.

Suppose that Y,/ F,, is a field extension: Let F# be the henselization of F' at the
discrete valuation 7. Set Ynh =Y ®f F,? and identify it as a subfield of Y, via the
canonical morphism Ynh — Y, Letm, € Y,]h be a parameter. Then 7, is also a
parameter in Y. Since Ny, /r, (a1,,) = 1, by Hilbert 90, let a; ,, = bfﬂlﬂ/) (b1,y) for
some by, € Y,*. Write by, = u,, for some u, € Y; which is a unit at . Since
uy, € Y, is a unit at 7, by ([Ar69], Theorem 1.10), there exists u;‘ S Ynh such that

h — hsr

. . . . h _
u, = u, modulo the maximal ideal of valuation ring of Y;. Let by, = uy7, €

Y. Setaf, = (bfn)_1 W (b%,). Thus N(af',) = 1 and a} ,a; ) is a norm one
element in Y, which is 1 modulo the maximal ideal of valuation ring of Y;,. Thus
by Lemma 2.2 again, a}fm (vlm)é = ay,, for some v, € Y, of norm one. Thus
(a1,4,€}) = (af,,€}) = 0 € Br(Y,) and we have (af,,€}) = 0 € Br(Y;") (cf.
proof of ([HHK14], Proposition 3.2.2)).

Since F,? is the filtered direct limit of the fields Fy-, where V' ranges over the non-
empty open subset of n ((HHK 14], Lemma 2.2.1), there exist a non-empty open subset
U, CV,ofnandayy, €Y ® Fy, such that NY®FU77/FU77 (a1,u,) = 1 and the image
of ay y, in Ynh is equal to a’f’n.

By shrinking U,, we can assume that (a1,u,,€}) = 0 € Br(Yy,) ([HHK14]
Proposition 3.2.2). Hence Property 4 holds for a1y, . Finally set az y, = aa; U
Thus for 7 = 1 and 2, it is clear that Properties 1,5 and 9 are satisfied. Since
(az,n,€b) = (az,u,,€s) = 0 € Br(Y;), by using ((HHK 14], Proposition 3.2.2) again
and shrinking U,;, we can show that Property 4 holds for az y, also.

Suppose that Yy, is split: Then shrink V;, further such that Y ® Fy, ~ [] Fy, also
([Ar69], Theorem 1.10 & [HHK14], Lemma 2.2.1). We have a1, = (@1,i,)i<¢

mi ¢ F,form; € Zand ¢, € A, . Forl <i < (-1,

—1 . . T
choose ¢; € F* such that ¢; "¢; ,, is 1 mod () in A,,.

where a1, = ¢ ;7

—1
Set iy, = ;™ fori < £ — 1 and set v, ¢ = (]‘[ﬁ;ﬁ al,r,Vn,) . Finally set

_ ~ —1, .
ayy, = (al-,iv‘/n)i and az v, = (0,2_’1'7\/”)1. = (al,Vn) in HFVH- Thus Properties
1, 5 and 9 (using®® Lemma 2.2) are satisfied. Let j = 1 or 2 and i < /. Since

23There exists an m > 1 such that F}, doesn’t contain a primitive £ th root of unity. Look at any branch
field Fp; D Fy. Its residue field kp ,, has further residue field kp, a finite field with characteristic # £.
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(ajm,e;-) = 0 € Br(Y,), we have (djyiyn,e;-) = 0 € Br(F,). By ([HHK14],
Proposition 3.2.2) and shrinking further if necessary, there exists a neighbourhood
U, C V; of 1) such that (@ v,,e;) = 0 € Br(Fy,) which shows that Property 4
holds. =

Recall that 737’7 denotes the finite set of marked closed points in 77 N Sy. For each 7 in
Ny, choose U, as in Proposition 12.1 and let R;] denote the finite set of closed points

7\ Un) \ So.

PROPOSITION 12.2. Let j = 1 or 2 and let n € Ny. For each P € P, UR,, there
exist elements aj p € Yp and cyclic or split extensions Ejﬁp/Fp of degree ! such that

1. a1 pasp = a.

D ® Ej p has index at most £.

D®Y ® E; p is split.

a; pisanormfromY Q E; p/Y ® Fp.
Nyors (aj,p) = 1.

Eju, ® Fpy ~ Ejp ® Fp,,.
E;p~][FporD® E; p is split.

& N & A Db

There exists [1j p, € (Y@Fpm)* such that a;p = ajnpjpy, where
N (yj,py) =1and

- pipy = 1ifY, is of Type RAM.
- s, Py = (Wj,i,Pn); fori < L where pj; pry € FI’S,Z,] if'Y, is of Type SPLIT.
- Wi py =1 mod (m,) if Yy, is of Type RES/NONRES.

Proof. If P € 73,’7, the proof follows from Propositions 7.1, 7.2 and those in Sec-
tion 10. Assume therefore that P € R%, i.e. it is a curve point. For j = 1,2, let
E;, = F,[t]/ (t* —ej,) where e;, € F, with v,, (e;,,) = 0 or 1. Let (7p,5p) de-
note a system of regular parameters at Ap such that Dp = (up,wp) where up € A/;*
([S97]). Let m,, = Opmp in F;, where 0p € ;1;* Lete;, = zjmwg € I'p, where

z; € A/z?n* and ¢; € {0,1}. Let Tj,, = y;0p ' up to £*" powers where y; € Oip
and 0 < rj < /L.

Let y; € ;1;* be such that it matches with 7j; in kp. Set e;p = y}-érpng and
E; p = Fplt]/ (t' — e; p). Using Proposition 12.1, Property 6 is satisfied. Also note
that by ([S97]), Property 2 is satisfied. As Y is arranged to be in good shape, Yp is
unramified or Yp = Fp (W) where vp € //l;*. Thus if Yp is not split, then
D ® Yp is already split.

As D is ramified at most along 7 at P, this implies by Lemma 2.8 thatif D ® E; p ®
Fp, is split, then so is D ® E; p. Using Propositions in Section 10, it is clear that
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D®Y ® Ej, issplitandhencesois D ®Y ® E; p ® Fp,. If Yp is split, therefore
we see that D ® E; p ® Fp, is split. Hence Property 3 is satisfied.
Note that Property 7 holds in the following situations:

- nis of Type O or 1a. This is because D = 0 € Br(Fp) already.
- Ejp=1][Fp.

- D® E; p® Fpy, is split.

- Y, is of Type SPLIT as the discussion above shows.

- E; p = Lp, the unique field extension of Fp of degree ¢ unramified at Ap.
This is because up becomes an ¢t power in E; p.

Recall that we choose E;;, to be ramified along 7 in some cases only when Y, is
SPLIT, where Property 7 already holds. Thus to check that this Property holds in
general, we have to investigate only the cases when E; p = Fp[t]/(t* — ;0 ) where
0<r; <X

We now discuss the proof of the rest of the Properties 1-8 depending on the type of
Y,

Y,, is RAM: Thus 1) can be of Type 0, 1, 1b and coloured green or 2. Set a1, p = a and
az,p = 1 to see Properties 1, 5 & 8 hold by construction (Propositions 10.4 and 11.1).
By Lemma 2.6 and Proposition 3.3, these are ¢! powers in Y and hence Property 4
holds. To check that Property 7 holds, we can assume 7 is of Type 1b or 2. Proposition
10.4 also implies that each E; p ® Fp,, is unramified. Thus the only case to check is
when E; p ~ Fp[t]/(t' — ;0p). However, the same proposition gives that , is a
norm from m where up = U, € kp,, is the residue of D along the branch. Since
we are in the case when E; ,, ® kp,, is ramified, this implies that up € k3 and hence

~ *l
up € Ap . Therefore D = 0 € Br(Fp) already.
Y,, is SPLIT: For] = 1 2, write a; , = (a“n) € [1 Fp, where @i, = zji pmp”
where x;; p € Apm .LetT;; p = ij-,Pép " € kp,, where 2 p € Of,, - Let
jip € Ap bealiftof 2/, p.
Set a1,p = (a1,,,p); Where a1, p = 2’1, prp  dp " for 1 < i < £ —1. Set
arep = (a1,1,p- ..Zng_l,P)_l. And set as p = aa;}g. Thus Properties 1, 5 & 8
hold. We have already checked that Property 7 holds in this case (Y7, being SPLIT).
Since @; ; ,, is a norm from Ej ,, for each i, we have (@; ., ej,p) = (Gj,i,pP,€j,p) =
0 € Br (Fp,,). By construction, (G;; p,e;, p) is ramified at most along 7p and dp in
Br (Fp). Hence by ([PPS18], Corollary 5.5), we have (@;; p,e;p) = 0 € Br(Fp)
also for each i. Therefore Property 4 holds.
Y, is RES/NONRES: Since P is a curve point, Y is arranged to be in good shape and
Y,/ F, is unramified, we have Yp = Fp|t]/ (t* — vp) for some vp € Ap . Hence Yp
is either split or L p, the unique unramified extension of Fp of degree £. Thus Y ® Fp,,,
is unramified over Fp, as also Y ® Fp, over kp,. Note that a;, € OY®FP by

construction and F; ,, is unramified along 7 (cf. proofs of Propositions 10.3, 10. §'and
11.3).
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—_— __ /_Sj N o / _ ~I S
Leta;, = SCj5p €Y ® Fp, where z; € O;@TW' Setay,p = 105 € Yp where

24 € Yp is alift of 2 and as = aaj L. Thus Properties 1, 5 & 8 hold. Since a; , is
a norm from F; ,,, we have (a;,, ejyl’n) = (aj,p,ejp) =0 € Br(Y ® Fp,). Note
that Yp is an unramified extension of F'p. By construction, (aj7 P,€j, p) is ramified
at most along 7p and dp in Br (Yp). Hence by ([PPS18], Corollary 5.5), we have
(aj p,e;p) =0 € Br(Yp) also. Therefore Property 4 holds.

To check Property 7, we can assume 7 is Type 1b or 2. When Y7, is of Type NONRES,
E; ,, is the lift of residues. Thus, E; p = Lp or [ Fp where we have checked that
Property 7 holds. When Y, is of Type RES, Proposition 10.5 guarantees that u,, is a
norm from E; ,, where Up = ,, € kp,, is the residue of D along the branch. Arguing
as in the case when Y}, is Type RAM, we are done. o

PROPOSITION 12.3. Let j = 1 or2 andletn € Ny. Let Gal (Y/F) = (). For each
P € P} UR;, there exist elements hj p, € Y @ Fp, such that

—/ 4
aju,h; p o (hjpn) =ajp €Y ® Fpy.

Proof. Let m > 1 be?* such that Fpp,, does not contain a primitive ¢™-th root of
unity. By Propositions 12.1 and 12.2, there exist norm one elements v; ,, and ji; p 5, in
Y ® FPJZ such that a;,u, ’Ufmuj,pm =a;p < Y ® Fpm.

2m
Proposition 12.2 also gives us that u; p,, € (Y ® Fp,)*™ if Y @ Fp,, is a field
extension and pj,p, € [] F;;,én if Y ® Fp,, is split. Therefore by Lemma 2.2 and

Hilbert 90, there exists h; p, € Y ® Fpy, such that a;y, h;fgmi/) (h,jﬂpm)e = a; p.

REMARK 12.4. Note that {P; U R}, Uy }nen, forms a patching set P as in defined
in ([HHI0]).

PROPOSITION 12.5. Let j = 1 or 2. Then there exist E;/F, degree { extensions of
F which are subfields of D /F and elements aj € Y such that

e ajaz = aand Ny,p (a;) = 1.

o I, ®F Fy, ~ Eju, and E; @ Fp ~ Ej p for the patching set-up P.
e DRFE; Y issplitand E; C Cp (V).

e There exist 0; € E;Y C D suchthat Ng,yy (0;) = aj.

Proof. Let j = 1 or 2. In this proof, by € P we mean z € {Uy, P, UR]} of the
patching set up P defined in Remark 12.4.

From Propositions 12.1 and 12.2, we see that by ([HH10], Theorem 7.1), there exists
a degree ¢ etale algebra E'j/F such that E'j ®@r Fy, ~ Eju, and Ej ®p Fp~FE;p
for the patching set-up P. Since at least one of the E; p (or the F; y,) is a nonsplit
field extension, clearly E;/F is a field.

24 As before, such an m exists because the residue field kp of its residue field k P,y is a finite field (of
characteristic not £).
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These propositions also guarantee that index (D ®p Ej,) < ¢ for each z € P.
Therefore by ([HHKO09], Theorem 5.1), we have that index (D Rp E'j) < /¢ and

hence there exists a subfield of D isomorphic to E'j /F which we again call Ej.

We also have that Y, ® p E; , splits D foreachxz € P. Thus D ®r Y ®F Ej is split.
And therefore Cp(Y) @y (Y @p Ej) is split. As D is a divison algebra of degree (2,
we have that Cp(Y)/Y is division of degree ¢, and hence Y @5 E; splits Cp(Y).
Thus it is a degree ¢ field extension of Y and therefore a degree ¢? field extension
of .

Since Y ®f E'j is a splitting field of D, which is a division algebra of degree ¢2, there
exists L;-, a maximal subfield of D which is isomorphicto Y ® g Ej. Let E}’ denote
the subfield of L’ which is isomorphic to {1} ®p E; in L’ and Y}, the isomorphic
copy of Y @ {1}. Thus E} and Y} are commuting degree ¢ subfields of D.

By Skolem-Noether, Y = ijj’bj_1 C D forsome unitb; € D*. Set L; = bng-bj_1 -
D and E; = b; B/ bj_1 C D. Thus E; and Y commute in D (they are subfields of the
maximal subfield L ;).

We now construct a; € Y using the norm one elements a1, € Y ® F, forz € P.
By Proposition 12.3, for each branch in the patching set-up corresponding to a pair
(U, P), we have a1 p = alyUnhl_fgmz/J (hlﬁpm)é for some hy p, € (Y @ Fpy)"*
where Gal (Y/F) = (¢). By simultaneous factorization for curves for the rational
group Ry (G,,) ([HHK09], Theorem 3.6), we can find hy . € (Y ® F,)" for each
x € P such that for every pair (U,, P), we have hy p,, = h1,u, h;}g. Thus for every
branch defined by (U,, P),

aip = a1,UT,h1_,§3,,71P (hl,P,n)Z
_ ¢ _
= ai,p= a1,Unh1,€nh§,p7/) (h1,u,) ¥ (h1,p) ¢
_ _ ‘
= ayphy %0 (hp) = avu, b g, (ho,)"

Let z € P. Thus by ([HH10], Proposition 6.3 & Theorem 6.4), we have an element
a1 € Y such that a; = al,mhf,iw (hl,m)é €Y ®F,andN(a;) =1. Setas = aal_l.
Note that a; = a; . up to £*® powers in Y @ F.

Now we only have to verify that a; is a norm from £;Y. Without loss of generality
let j = 1 (the same proof works for j = 2). By Propositions 12.1 and 12.2, we see
that (a1 4, ELE)YI is split for each z. This implies that a; , and hence a; is a norm
from E1Y Qv Y ®F F, over Y ® F, as a; differs from each a1 , by an fth power.
There exists a field extension N/Y of degree coprime to £ such that £1Y ®y N isa
cyclic field extension of degree ¢ ([A61], Chapter IV, Theorem 31). Let ) (resp. Z)
denote the normal closure of X in Y (resp. V) with special fiber Y, (resp. Zj). Let
v : Zy — Ypand ¢ : Yy — Xj be the induced morphisms. Then, as in the proof of
([PPS18], Proposition 7.5), we have induced patching systems )’ of Yj (resp. Z’ of
Zy) consisting of open sets U, (resp. U;) and closed points P, (resp. F.) such that
Fy CcYy, C Ny,, Fp C Yp, C Np, forU, P € P withy(U;) C Uy, ¢(Uy,) C U,
v(P;) = P, and ¢(P,) = P.
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Then for x = U or P, we have the following commutative diagram induced by norm
maps

E\YY @y Y @p Fy, — E1Y @y Y, —— (E1Y ®y N)®n N,.)

l | |

Y®F Fx Yzy N:Ez

This shows that (a1, E1Y ®y N) is trivial over each N, for each z, € Z’ and
hence trivial over N ([HHKO09], Theorem 5.1). Thus a; is a norm of the extension
E Y ®y N/N and hence a[lN:Y] isanormof E1Y/Y. Since [NV : Y] is coprime to ¢,
this implies that there exists 61 € E1Y such that Ng,y/y (61) = a1. O

13 SOLVING THE PROBLEM OVER E;

Recall that we started with z € SL; (D) living in a maximal subfield M of D which
contains a cyclic degree £ subfield ' C Y C M with Ny /y (2) := a. Let a;, E; and
¢; be as in Proposition 12.5 for j = 1,2. Note that N,y #(0;) = 1 and hence 0; €
SL1 (D). If we can prove that 8; € [D*, D*], then by Proposition 3.6, z € [D*, D*].
Let ¢j := Ng,y/g, (0;). Since the proofs for the cases j = 1 and j = 2 are similar,
without loss of generality, assume j = 1. We also drop the suffixes in the remainder
of this paper, i.e. we set £ := F1, 0 := 61, c := ¢ etc.

13.1 STRATEGY A LA PLATONOV

To show 0 € [D*, D*], we adapt the basic strategy underlying the proof of the trivial-
ity of SK; (D) over global fields ([P76], Theorem 5.4) as follows:

There exists a suitable? field extension N/F such that [V : F] is coprime to £ with
En = E®F N, acyclic subfield of Dy := D ® N. By ([P76], Lemma 2.2, Section
2.4), it suffices to show that @ € [D%,, D3] Let Yy :=Y ®p N and Gal(Eny /N) =
(o). Note that 0 € ExYy C Cpy(En) and Ng, v, /g, (0) = c. Therefore the
further norm, N, /n (c) = 1. Now, because E /N is a cyclic extension with Galois
group (), by Hilbert 90, there exists a b € Ex such that ¢ = b~ 'o(b) € Ex. Note
that c = b=1o(b) is a reduced norm in Ey from Cp,, (En).

PRroOPOSITION 13.1. For N, o,b, c as above, if there exists f € N such that bf is a
reduced norm in En from (Cp, (En)), then 6 € [D%,, Dx/].

Proof. Set b’ = bf. Note that ¢ = b~ lo(b) = (bf)~to(bf) = V' "to(V). By
Skolem Noether, extend ¢ : Exy — En C Dy to an automorphism of Dy given by

25We can and do choose the coprime extension N/ F carefully as follows: Let N’ be the Galois closure
of E/F and take N to be the fixed field of an ¢-Sylow group of Gal(IN/F'). Thus [N : F] is coprime to £
and E @ 7 N = N’ which is indeed cyclic over N of degree £ (cf. [A61], Chapter IV, Theorem 31).

DOCUMENTA MATHEMATICA 26 (2021) 337-413



REDUCED WHITEHEAD GROUPS OF ALGEBRAS 405

6 = Int(v) : Dy — Dy, d ~ vdv~!. Note that & restricts to an N-automorphism
of Cp, (En) since 6|g, = 0. Set D1 = Cp, (En).
By hypothesis, there exists g € D such that Nrdp, /g, (9) = V'. Thus,

Nrdp, /ey (g_lvgv_l) = Nrdp, /ey (g_l) Nrdp, /ey (vgv_l)

=b! Nrdp, /ey (6(9))

= b/715' (Nrle/EN (g))

=bv"lo(b)

=c
Since Nrdp, /g, (0) = ¢, we have Nrdp, /i, (fvg~*v™'g) = 1. Since Dy is a
central simple algebra of square-free index ¢, SL; (D1) = [D7, Dj] (IW50]). Hence
we have that fvg~tv~tg C [D}, Di] C [D%, D). O

We will find f € N satisfying the hypothesis of Proposition 13.1 by patching suitable
elements f, € (N ®p F,)" for x in a refinement of the patching system P used to
construct &/ (Remark 12.4).

13.1.1 THE SHAPES OF Ex AND b

We investigate the shape of E after the coprime base change N. Let z € P. Since
E, := E ®p F, is a cyclic extension by construction and Ey = N’, the Galois
closure of E/F, we see that Exy @p Fy =~ []y.p Bx- Let N @ Fy = [[;2) Ni.
Since [E, : F,] = ¢, this forces each N; , to be isomorphic to F, or E,. Hence
En ®Fp Fy asan N ®F F, algebra is the product of an appropriate number of copies
of the cyclic extensions £, /F, and the split extensions [ [, £, / E,.

Letb® 1 € En QF F, correspond to the entry Hq bg x [1;(bi,p,bi2,py--- biep)
in [[, Ex/F, x [[; (I, Ez/Ez). The o action is componentwise and further in
[1; E=/Es, it permutes the entries of each tuple (b;,;,p) ;. , amongst themselves, i.e.
o (I1,bip)i<e) =11, (bi_’a-(j)_rp)jgz. The o action on the E, /F, components can
be similarly described if £, ~ [, F}, is itself split.

For € Ny and closed point P € 7}, let z = 7 or (P, n). Then we denote the integral
closure of ;1; in £ ® F, by E; Let its residue field be denoted k. Similarly, let
6‘; denote the integral closure of ;1; in N ® F, with residue field k2. Thus 6‘; ~
[14; <[] B..

We begin with the following broad modification of b: Let ) € Ny be such that E, / F},
is an unramified field extension. Thus Eny Qg Fn/N®F F, is the unramified (possibly
split or partially split) extension [ [ £,/ F;, <] [ ([ [, £/ Ey,). By weak approximation,
modify b by a suitable element of N so that if b = [], by X [[;(bi,1,n,bi,2,n, - - -+ bien)
in [, Ey/Fy x I1; (I, Ey/Ey). then

1. Each b, living in any component of shape E,,/F,, is a unit in é; This can be
done by knocking off an appropriate power of 7, from F,.
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2. If D ® E, is an unramified algebra of index /, then each entry b; ; ,, in the tuple
(bi,jn)j<e living in any component of shape [[, E,/E, is a unit in B,,. This
can be done as follows:

Let m; denote the valuation of b; ; ., in E,,. It suffices to check that all ms are
%k

equal because then we can again make (b; j)j<¢ € [[ B, by knocking off

my " from E,,. Since ¢ = b~ (b) is a reduced norm from D ® F, this implies

bjl, b jn is a reduced norm from D ® E,, for each j < {. Since every unit in

Py

B, is areduced norm from D ® E,, (Proposition 2.7), this forces all valuations
m,; to equal each other.

3. If D ® F,, is an unramified algebra of index ¢ and if E,, ~ [] F), is split, then
each by = (bg,j.n);<¢ living in any component of shape E, /F,, is a unit in B,,

—~ %
i.e. each by j, € A, . This can be achieved by a similar argument as in 2).

13.2 PRELIMINARY PATCHING DATA OF f

Recall that for each € No, P, := 7N S and R}, := (7 \ Uy) \ So. Thus Sy =
UneNU'P;].

PROPOSITION 13.2 (f at closed points). Let 1) € No and P € P, UR;. Then there
exists fp € (N @p Fp)* such that bfp is a reduced norm from Dy ® Ep. Further
fp € C’R77 .

Proof. If D ® Ep is split, set fp = 1. Note that bfp (and indeed any other element

in N ® Ep)is areduced norm from Dy ® Ep. Clearly 1 € Cp,, .

Therefore assume D ® Ep is not split and let P € 5 N 7/. We can in fact pinpoint
precisely when this happens by a closer inspection of the proofs of Propositions 7.1
and 12.2 - at points in Rows 2.2* of Table 11, 4.1* of Table 13, 8.5-8.6 of Table 17 and
at some innocuous curve points in R;] where both Y,, and Y;» are not SPLIT. Note that
in all these cases, £,/ F;, and E,, / F;, are unramified field extensions by construction,
{n,n'} = {Type 1b, Type 1a} or {Type 1b, Type 2} and Dp ~ (up,7wp) for some
unit up € Z;* and 7p defines one of n or i)’ at P.

By Proposition 12.2, Ep =~ [[Fp and therefore Fy ®@p Fp/N ®p Fp =~
[I(II, Fr/Fp). Let b ® 1 correspond to the entry [[,(bi1,p,bi2,p,-..,bie,p). As
discussed before, o permutes the entries of each tuple (b; j p),., amongst them-
selves. Since ¢ = b=1o(b) € Nrdg, (Cpy(EN)), we have that (b; 1 p) [Dp] =
(bio,p) [Dp] = ... = (biy,p) [Dp] € H? (Fp, j1¢). Let b; ; p have valuation m; in
Fp,.

We first look at the case when 7p defines 7. Set f; p := b; | 7", Since 7p is a
parameter of Fp, also, f; p is a unit along 7). Define fp = Hz(flp) € N® Fp. Thus

fp € 671-:7* It now suffices to see that each b; ; p f; p is a reduced norm from Dp.
For j =1, we have (b;1,pfip) [Dp] = (75" )(up, mp) = 0. Since the cup-products
(b; j,p)[Dp] equal each other for j < ¢, we have (b; ; p fi.p) [Dp] = 0 for each j.
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Identifying H' (Fpp, SL; (Dp)) with F}5/ Nrd (Dp)”, recall Suslin’s invariant
R:H' (Fp,SL1 (Dp)) = H? (Fp,us?), A~ (A\) U [Dp].

Since index of Dp is ¢ and in particular square-free, R is injective ((MS82], Theorem
12.2). Hence b; j p fi, p is a reduced norm from Dp and hence we are done in this
case.

Now let’s look at the case when 7p defines 7', Thus 7 is either of Type la or P is a
hot point and 7 is of Type 2 with Y;, of Type NONRES (Rows 8.5-8.6 of Table 17). In
either case D® Fy, is an unramified index ¢ algebra”®. Thus by our initial modification,

%k —
b, € B, already which shows that b; ; p € Ap, foreach j < {. Since 7p is a
unit along 1 now, so is f; p. O

ProrosiTION 13.3 (f at codimension one points). Let 7 € Ny. Then there exists
fn € Cy C N ® F, such that

o fn= fpgbfjm € N®Fp,, for some ¢p,, € (N ® Fp,)" foreach P € P:]U'R%.

o bf, is a reduced norm from Dy @ E,.

Proof. Note that by Proposition 13.2, we see that fp € @7* foreach P € P UR;,.
n 18 OF TYPE 0: D, is split and so is D ® Fp for every P € 7). Thus each fp =1
by choice for every marked point P on 7] (Proposition 13.2). Choose f,, = 1. Clearly
bf, (and indeed any other element in N ® E,) is a reduced norm from Dy ® E,,.

n 1S OF TYPE 1A: By construction, F;, is unramified (Propositions 11.1, 11.2 and
11.3). By weak approximation, find f,, € k; which is close to fp € k., for each

marked P in 7. Let f;, be a lift off_,7 in 6‘:7*

If D ® E, is split, then clearly bf,, (and indeed any other element in N ® E)) is a
reduced norm from Dy ® E,,. So assume D ® FE), is not split. Since 7 is Type 1a, D,
is an unramified index ¢ algebra and hence so is D ® E,,. By our initial modification
of b, this implies all components of b are units along 1. Thus by Lemma 2.7, bf, is a
reduced norm from Dy ® E,.

1 1s oF TYPE 1B/2: Let u, € F, such thatw’ =, € k, /k;" is the residue of D,,.
There are three possible shapes of E,,.

Shape A: E;, is a ramified/unramified field extension which splits D),, (Propositions
10.1, 10.2 and 10.6).

Shape B: E,, is the lift of residues which might or might not split D, (Proposition
10.3). Though in particular, it is an unramified field extension of F7,.

Shape C: E,/F;, is an unramified field extension which is not the lift of residues of
F;,. Then v’ 1s a norm frornE_77 and E,, ® Brpe,y, is split. (Propositions 10.4 and 10.5).
For each shape, we prescribe f,, € N ® F;, as follows:

E, of Shape A/B: As before find f, € k; which is close to fp € kb, for each

P € P} UR,. Let f, be alift of f, in 6‘;* If E, is of Shape A , since D ® E,, is
split, every elementin N ® E,, is a reduced norm from Dy ® K.

261t is unramified if 7 is Type la and by Proposition 10.3 otherwise. It is non-split since D ® Ep and
hence D ® Ep,,, is non-split.
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Let E,, be of Shape B. Note that D = Srpcr + (uy, m;) € Br(F,) where m, is a
parameter of ;. Thus D ® E, is an unramified algebra. If it is split, our choice of
[y clearly works. So assume D ® E, has index ¢. Then by our initial modification of
b, each component of b is a unit along 7. Thus by Lemma 2.7, b f,, is a reduced norm
from Dy ® K.

E,, of Shape C : Note that D = B4,y + (uy, ;) € Br (F;,) where 7, is a parameter
of F,,. Since E,, splits Srpc,n, we have D ® E; = (uy, m,;). Let Ey ® Fy,/N @ F;, ~
1, Eq/Fy x I1; (I, £n/Ey) and let b = [T bg x [, (bijn) <, We will prescribe
fo=111fex1]; & € N®F, ~[], F;, x]]; E, by prescribing each of its components
f, €A, ande; € B, individually.

Let us look at the case of b, € E,/F,. By our initial modification of b, we have
b, € E;* for each ¢ and hence o(b,) € Z?T also. Set £/ = E, and V' = b, € E'.
By abuse of notation, let Gal (E’/k,) = (o) also. Since ¢ is a reduced norm from
Dn ® E, (b;'o(bg)) (uy, my) = 0 € H* (Ey, ). This gives (b ~'o(V'),u/) =0 €
H? (E', ). Thus (Y, u) = (o (V') ,v') € H? (E', ).

We would like to apply Lemma 2.12 to find an f_q € ky and hence an f; € F; with
the required properties. To do so, we proceed to verify that the rest of the hypotheses
of the lemma are indeed satisfied by v, E’ /k, and b'.

By ([S97], [S98], Proposition 1.2), we see that the residue ’ is up to (th powers, a unit
at almost all places v of k,, except at those given by cold points (Type C-Cold) P on
7. Recall that by the choice of F'p at cold points (cf Tables 15 and 16), at such places
E'/kp.,, is given by adjoining the ¢! root of the residue v’ and hence v/ € E}gme.
In particular, this discussion shows that at every place v where E’ is unramified and
inert, u’ € O, up to £*" powers in £}".

Let w be a place where E’ /k,, is ramified. We have already seen that if w corresponds
to a cold point P, then v’ € E, *!. Therefore assume w corresponds to a non-cold
point P. Hence v’ € OZPle. Since we know v’ is a norm from E’ and hence from E, ,

Lemma 2.3 implies that v/ € E/,**.
Finally for P € 73,’7 U R%, we have (byf, p) is a reduced norm from Dy @ Ep.
This implies (b, fy,p) (uy, 7)) = 0 € H* (Ep,,, 1¢). Taking residues, this implies
W)= (0 For ) € B o kpy

Thus we can apply Lemma 2.12 to find f, € F}, such that f, = f, p € Fpy, upto
" powers for marked points P € P} U R, Further, (uy,byf;) = 0 € Br(E,).
This implies (u,, ™) (bqfq) = 0. Since D ® E, = (uy,m,), we have byf, €
Nrdg, (D ® E,) using injectivity of Suslin’s invariant for index ¢ algebras again
([MS82], Theorem 12.2).

Now let us look at the case of (bi )<, € (II, Ey) /Ey. Since c is a reduced
norm from Dy ® E, we have that (b;1,,) [D ® E,)] = (bi2y) [D®E,) = ... =
(bie) [D ® E,) € B (B, j1). Let b; ; ,, have valuation m; in F,).

I =1 _my Qg . / o
Sete; :=b; 1Tyt Since T, is a parameter of I}, and hence of E,, also, e; € B, .

/L7

Since (b1 ne;) [D ® Ey] = (m7")(uy, m,) = 0. Since the cup-products (b; j.,)[D ®

E,] equal each other for j < ¢, we have 0 = (b; j,e;) [D ® E,] for each j. Thus by
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injectivity of Suslin’s invariant for index ¢ algebras, each b; ; ne; is a reduced norm
from D ® E,,.
However, ¢; might not approximate the choice at marked points on 7. So we find a

suitable correcting factor 6 € E;* such that § € Nrd(D ® E;;) and €6 is close to

the choice along marked points. Then e; = e} is still in B;* and each b; j ne; is a
reduced norm from D ® F,,.

Note that since D ® Ep,, is still ramified, if P € 737’7 U R%, then D® Ep ~ (up,mp)
where 7p defines n at P. Let mp = m,0’ for some 6’ € //1}7 Following the proof of
Proposition 13.2, we see that we are in the case when 7 is Type 1b/2 and Ep ~ || Fp.
Thus Ep,, ~ [ Fp,, and under this identification, (b; j,)j<¢ € (11, Ey/Ey) goes
to (O'j_l (bi71,77) ,O'j_1 (bi72,77) sy oIt (bi,g,n))jgg in Hl (Hl FPJZ/FPJ]) over the
branch. Our choice of e; p along the branch corresponds to

p=1 pma b —1_my =1 (p. -1 _my f*wg\*
i, 1,7 P yo(big) w0 (biny) ') € pPn = DpPn

. -1 _m 5 y—1 yma - %
1.e. e, p = bi,l,nﬂpl € Bp’77 and €;, P€; =40 € Bp777 .

Since both 7, and 7p are reduced norms from D ® Ep,,, so is ¢’ and hence §'"".
Therefore (0, u,) = 0 € H*(Fp,, pu¢) and (0", y) = 0 € H(kp,, ju¢). Find
01 € Fpy (J/un) such that N (6;) = ™. Note that since D ® Ep = (up,7p),

Fp, ( E/un) is an unramified field extension of F'p,. Choose 0; € OFn(W) such
that its image is close to 1 and set § = N (9}) € I, O

13.3 SPREADING AND PATCHING OF f

PROPOSITION 13.4. For each n in Ny, there exist a neighbourhood U7I7 of nin Xo
with U} C 77\ (7)7'7 U R;]) and an fu, € N @ Fy; such that

1. U,’7 C U, where U, are the neighbourhoods in the patching set up ‘P

2. bfu; is a reduced norm from Dy @ E @ Fy;,.
3 fU; =~ f, upto 2 powers in N ® F,.

Proof. By Proposition 13.3, we see that f;, € 6’;* and that bf,, € Nrd(Dy ® Ey).
Thus (bf,) ((Dn ® E;]) = 0 € H* (N ® Ey, pg). Let f' € N* such that f,71 f"is 1
mod the maximal ideal of C,,. Note that f,, = f'z‘ € (N @ F,)* for some = € 6';*
and hence (bf') ([Dy ® E,]) = 0 € H* (N ® E,), j1¢). By ([PPS18], proof of Lemma
7.2 & [HHK14], proof of Proposition 3.2.2) and shrinking further if necessary, there
exists a neighbourhood Uy C U, of n such that (bf') (([Dy ® E ® Fy]) = 0 €

H? (EN ® FUT’, , M) Since Dy ® E has index /¢, by injectivity of Suslin’s invariant

(IMS82], Theorem 12.2), we have bf’ is a reduced norm from Dy ® E ® FU%. The
element fU; := f’ has the required properties.
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REMARK 13.5. Let T}, denote the finite set of closed points 7 \ (Uv/z up,u 'R%)
Thus {P, UR, UT,, U, }yen, form a patching set up P’ as in defined in ([HH10]).

PROPOSITION 13.6. Letn € Ny and let P € (’P,’7 UR;, UT)). Then there exists
fp € N ® Fp such that

1. bfp is a reduced norm from Dy ® Ep.

2. fUT/]z/)fg,n = fpin N ® Fp, for some p,, € N @ Fp,.
Proof. If P € 737’7 U R%, the proposition follows from Propositions 13.2, 13.3 and
13.4. Hence assume P € 777’ In particular, this implies P € U, where U, is the
neighbourhood of 7 in the patching system P defined in Remark 12.4. Hence Fy, C
Fp. Let (mp, dp) be a system of regular parameters of Ap where p defines the curve
natP.
We choose fp depending the shape of D ® Ep as follows:
D ® E ® Fp is split: Since N ® Fp is dense in N ® Fp,, pick an fp here which
approximates f,, € N ® F), treated as an element over the branch, i.e. f, € N ® Fp,,.
The proposition is clearly true for this choice of fp.
D ® E ® Fp is not split: Since P is a curve point, we have D # 0 € Br(Fp)
poss1b1y only if n is of Type 1b or 2, in which case D = (up,mp) € Br(Fp) where
up € Ap ([S97]). Let u,, € F, be such that v’ =, € k: /kz*é is the residue of D,,.
Thus up 2 v’ € kp,, up to £*" powers.
Except when 1 is coloured green, D ® E,, is split by construction (Propositions in 10).
By Proposition 12.1, this implies D ® E ® Fy, is splitand hence sois D ® E ® Fp.
When 7 is coloured green, by Propositions 10 3,104 and 10.5, E, / F;, is unramified.
By Proposition 12.1, this implies E® Fy, =~ 0 ti Ut 1 for some unite € AU Therefore
E ® Fp = [] Fp or Lp, the unique field extension of Fp of degree ¢ unramified
at E;. If F ® Fp is a nonsplit field extension, then D ® E ® Fp is split. Thus
E ® Fp ~ [] Fp. Therefore Exy ® Fp/N ® Fp ~ [], (I, Fp) /Fp. Let us look
at the i-th component (][, Fp) /Fp in Ex ® Fp/N ® Fp. We will prescribe fp by
prescribing each of its components f; € Fp.
Let b; = (bs,1,bi2,...,bi¢) € [[ Fp. By Proposition 13.3, we have fp, € Zl?n*
such that for each j, we have (b; ; fp,) (up,mp) =0 € 3 (Fpy, te)- Let b; 1 have

valuation m; in Fp,, and let b} , := b; 1 fp,mp™" € @*. Thus (b;l) (up,7p) =
0 also and taking residues, we get (b;l,ﬁ) =0eH (kp,y, ). Since (bg,l, up)
is unramified over Fp,, it is also split over Fp, and we see that there exists §; €
Fp, (y/up) such that N (6;) = b,

Since we are in the case when D ® F ® Fp is not split, up & F;;Z. There-
fore Fp ({/u_p) is an unramified ﬁeld extension of F'p, as also its residue field

kpy (Vup) [kpy. As b, € Ap,7 , clearly 6, € O, ()" Let0, = 0'0p
where ¢/ € Okpyn(\g/ﬁ) and m € Z. Find ' € OFP(\/E) such that its image
matches that of ¢’. Set 6, = 0’6 € Fp (,’f/uP). Thus 6; = 6 up to ¢th powers in
Fpm (wf/up). Set fi7p = b;llN (él) W?l € Fp.
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Thus by construction (b; 1 f; p) (up, mp) =0 € H? (Fp, ue) and f; p = fp,, up to
(th powers in Fp,. Finally, since bilo(b) is a reduced norm from D ® Ep, we have
that for every 7, the cup-products (b; ;) (up,7p) are all equal in H? (Fp, ). Thus,
we also have that for each j, (b, ;fi.p) (up,7p) = 0 € H? (Fp, ). Again using
injectivity of Suslin’s invariant for index ¢ algebras ([MS82], Theorem 12.2), we can
argue as before that this implies b; ; f; p is a reduced norm from D ® Fp for each j
and hence that b, f; p is a reduced norm from D ® £ ® Fp. O

We are now in a position to find f € N satisfying the hypothesis of Proposition 13.1.
PROPOSITION 13.7. There exists f € N suchthatbf € Nrdg, (Cp, (EN)).

Proof. By Propositions 13.4 and 13.6, we have f, € N ® F, for x €
{u},PluR, U 7;7/}776 ~, in the patching set-up P’ defined in Remark 13.5 such that
forbf, € Nrd Dy ® E,. Further for each branch in the patching set-up corresponding
to a pair (U, P), we have fp = fu: 4}, for some ¢p, € N ® Fp, .

By simultaneous factorization for curves for the rational group Ry /rG, ((HHK09],
Theorem 3.6), we can find v, € (N ® F,)" for each z € P’ such that for every
branch defined by (U7’7,P), we have Yp, = ’L/}U%’L/}I;l. Thus we have fU;]w[Z];] =
fpi% for every branch (UT’77 P). Therefore there exists f € N such that f = f,’ €
N @ F, for each z € {U}, P} ([HH10], Proposition 6.3 & Theorem 6.4). Thus
bf € Nrd (Dy ® E,) and therefore (bf) U [Dy ® E,] =0 € H* (N ® E,, ju) for
each 2 € P’. This implies (bf) U [Dy ® E] = 0 € H* (E, j1¢) ([PPS18], proofs of
Proposition 7.1 & 7.4). Injectivity of Suslin’s invariant for index ¢ algebras ([MS82])
shows that bf € Nrd (Dy ® E) which proves the proposition. O

Thus we have our main theorem:

THEOREM 13.8. Let F be the function field of a curve over a p-adic field. Let D/ F
be a central division algebra of prime exponent { which is different from p. Assume
that F' contains a primitive (**" root of unity. Then SK1 (D) is trivial.
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