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Abstract. We show that the strata M11,6(k) ⊂ M11,6 of 6−gonal
curves of genus 11, equipped with k mutually independent and type I
pencils of degree six, have a unirational irreducible component for
5 ≤ k ≤ 9. The unirational families arise from degree 9 plane curves
with 4 ordinary triple and 5 ordinary double points that dominate an
irreducible component of expected dimension. We will further show
that the family of degree 8 plane curves with 10 ordinary double points
covers an irreducible component of excess dimension in M11,6(10).
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Introduction

Let C be a smooth irreducible d−gonal curve of genus g defined over an al-
gebraically closed field K. Recall that by definition of gonality, there exists a
g1d but no g1d−1 on C. It is well-known that d ≤ [ g+3

2 ] with equality for gen-
eral curves. In a series of papers ([Cop97],[Cop98],[Cop99], [Cop00], [Cop05])
Coppens studied the number of pencils of degree d on C, for various d and g.
For low gonalities up to d = 5, the problem is intensively studied for almost all
possible genera. For 6−gonal curves, Coppens has settled the problem only for
genera g ≥ 15.
In this paper, we focus on 6−gonal curves of genus g = 11. The motivation
for our choice of genus 11 was the question asked by Michael Kemeny, whether
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any smooth curve of genus 11 carrying at least six pencils g16 ’s, comes from
degree 8 plane curves with 10 ordinary double points, where the pencils are cut
out by the pencil of lines through each of the singular points. More precisely,
there exists no smooth curve of genus 11 possessing exactly 6, 7, 8 or 9 pencils
of degree six. We will show the answer to this question is negative.

Let M11,6(k) ⊂ M11 be the moduli space of smooth 6−gonal curves of
genus 11, equipped with exactly k mutually independent1 g16 ’s of type I2. We
first investigate the possible number of g16 ’s on a 6−gonal curve of genus 11,
and therefore the possible values of k for which M11,6(k) is non-empty. In
[Sch02], Schreyer gave a list of conjectural Betti tables for canonical curves of
genus 11. Related to our question and interesting for us is the Betti table of
the following form

1 . . . . . . . . .
. 36 160 315 288 5k . . . .
. . . . 5k 288 315 160 36 .
. . . . . . . . . 1

where k is expected to have the values k = 1, 2, . . . , 10, 12, 20. Although, in
view of Green’s conjecture [Gr84], it is not clear that for a smooth canonical
curve of genus 11 with Betti table as above, the number k can always be
interpreted as the multiple number of pencils of degree six existing on the
curve. Nonetheless, for k = 1, 2, . . . , 10, 12, 20 we can provide families of
curves, whose generic element carries exactly k mutually independent pencils
of type I. The critical Betti number in this case is β5,6 = β4,6 = 5k as expected.
Therefore, in this range the locus M11,6(k) is non-empty.

The first natural question is then to ask about the geometry of the locus
M11,6(k) inside the moduli of curves M11, in particular about its unirational-
ity.

For k = 1, the corresponding locus is the famous Brill-Noether divisor M11,6

of 6−gonal curves [HM82], which is irreducible and furthermore known to
be unirational [Gei12]. The moduli space M11,6(2) is irreducible [Ty07], and
unirational such that a general element of M11,6(2) can be obtained from a
model of bidegree (6, 6) in P

1 × P
1 with δ = 14 ordinary double points. In

[HK18] it has been also shown that M11,6(3) has a unirational irreducible
component of expected dimension. A general curves lying on this component
can be constructed via liaison in two steps from a rational curve in multipro-
jective space P

1 × P
1 × P

1.

1Two pencils g1, g2 of degree d on a smooth curve C are called independent the corre-
sponding map gives a birational model of C inside P

1 × P
1.

2A base point free pencil g1
d
on a smooth curve C is called of type I if dim |2g1

d
| = 2. Type

I pencils are exactly those that we should count with multiplicity 1.
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Here we construct rational families of curves with additional pencils from plane
curves of suitable degrees with only ordinary multiple points, as singularities.
As the first significant result (Theorem 4.1), we will prove that for 5 ≤ k ≤ 9
the moduli space M11,6(k) has a unirational irreducible component of expected
dimension. A general curve lying on this component arises from a degree 9 plane
model with 4 ordinary triple and 5 ordinary double points which contains k−5
points among the ninth fixed point of the pencil of cubics passing through the 4
triple and 4 chosen double points.
The key technique of the proof is to study the space of first order equisingular
deformations of plane curves with prescribed singularities, as well as that of the
first order embedded deformations of their canonical model. In fact, denoting
by M the 5k×5k submatrix in the deformed minimal resolution corresponding
to the general first order deformation family of a canonical curve C with Betti
table as above, we use the condition M = 0 to determine the subspace of
the deformations with extra syzygies of rank 5k. It turns out that for 5 ≤
k ≤ 9, and respectively k linearly independent linear forms l1, . . . , lk in the free
deformation parameters corresponding to a basis of TCM11, we have detM =
l51 · . . . · l

5
k. This implies that M11,6(k) has an irreducible component of exactly

codimension k inside the moduli space M11. Furthermore, let K11 to be the
locus of the curves C ∈ M11 with extra syzygies, that is β5,6 6= 0. It is
known by Hirschowitz and Ramanan [HR98] that K11 is a divisor, called the
Koszul divisor, such that K11 = 5M11,6. Thus, M11,6 at the point C is locally
analytically the union of k smooth transversal branches.
We will then compute the kernel of the Kodaira-Spencer map and from that
the rank of the induced differential maps, in order to show that the rational
families of plane curves dominate this component.
By following the similar approach, we obtain our second main result. We show
that the family of degree 8 plane curves with 10 ordinary double points covers
an irreducible component of excess dimension in M11,6(10) (Theorem 4.2).

This paper is structured as follow. In section 2 we recall some basics of defor-
mation theory for smooth and singular plane curves. In section 3 we deal with
the computation of the tangent spaces to our parameter spaces and we con-
tinue by proving the main theorems on unirationality in section 4. In the last
section 5, using the syzygy schemes of the curves, we study the irreducibility
of these loci.
Our results and conjectures rely on the computations and experiments, per-
formed by the computer algebra system Macaulay2 [GS] and using the sup-
porting functions in the packages [KS18a] and [KS18b].
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1 Planar model description

In this section, we describe families of plane curves of genus 11 carrying
k = 4, . . . , 10, 12, 20 pencils. In particular, we give a model of genus 11 curve
with infinitely many pencils, arised as the triple cover of an elliptic curve.
Throughout this paper, to avoid iteration, a pencil is always of the degree six,
unless otherwise mentioned, and several pencils on a curve are supposed to be
mutually independent of type I.

We first deal with the construction of plane model for smooth curves of
genus 11 with k = 5, . . . , 9 pencils. Clearly, smooth curves of genus 11 with
ten pencils can be constructed from a plane model of degree 8 with 10 ordi-
nary double points in general position. The code provided by the function
random6gonalGenus11Curve10pencil in [KS18a], uses this plane model to
produce a random canonical curve of genus 11 with exactly 10g16’s. We remark
that, although we further provide a method to produce curves with k = 4, 12
pencils, by dimension reasons the rational family obtained from these models
may not cover any component of the corresponding locus.

model of curves with 5 ≤ k ≤ 9 pencils

Let P1, . . . , P4, Q1, . . . , Q5 be general points in the projective plane P
2 and let

Γ ⊂ P
2 be a plane curve of degree 9 with 4 ordinary triple points P1, . . . , P4,

and 5 ordinary double points Q1, . . . , Q5. We note that, since an ordinary
triple (resp. double) point in general position imposes six (resp. three) linear
conditions, such a plane curve with these singular points exists as

(
9 + 2

2

)
− 6 · 4− 3 · 5 > 0.

Blowing up these singular points

σ : P̃2 = P
2(. . . , Pi, . . . , Qj, . . .) −→ P

2,

let C ⊂ P̃
2 be the strict transformation of Γ on the blown up surface of P2.

Hence,

C ∼ 9H −
4∑

i=1

3EPi
−

5∑

j=1

2EQj
,

where H is the pullback of the class of a line in P
2, and EPi

and EQj
denote

the exceptional divisors of the blow up at the points Pi and Qj , respectively.
By the genus-degree formula, C is a smooth curve of genus 11 =

(
9−1
2

)
−4.3−5.

Moreover, C admits five mutually independent pencils of type I. Indeed, for
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i = 1, . . . , 4 the linear series |H−EPi
|, identified with the pencil of lines through

the triple point Pi induces a base point free pencil Gi on C. As by adjunction,
the canonical system |KC | is cut out by the complete linear series

|C +K
P̃2| = |6H −

4∑

i=1

2EPi
−

5∑

j=1

EQj
|,

the linear series |KC − 2Gi| is cut out by

|4H −
4∑

i=1

2EPi
−

5∑

j=1

EQj
+ 2EPi

|.

Therefore, we have dim |KC − 2Gi| = 0 and by Riemann–Roch dim |2Gi| = 2.
Thus, the induced pencils from linear system of lines through each of the triple
points are of type I. Furthermore, the linear series |2H −

∑4
i=1 EPi

| identified
with the the pencil of conics through the four triple points induces an extra
pencil G5 on C. Similarly by adjunction, the corresponding linear system
|KC − 2G5| can be identified with the linear system of quadrics containing the
double points. We obtain dim |KC − 2G5| = 0, which then Riemann–Roch
implies that dim |2G5| = 2. Hence, this gives another pencil of type I. In this
way we obtain smooth curves of genus 11 having five pencils.

In order to get the model of curves with further pencils, we impose certain one
dimensional conditions on the plane curve of degree 9 such that each condition
gives exactly one extra g16 .

For j = 1, . . . , 5, let Rj be the ninth fix point of the pencil of cubics through
the eight residual singular points by omitting Qj . The condition that Rj lies
on the plane curves imposes exactly one condition on linear series of degree 9
plane curves with 4 ordinary triple points at Pi’s and 5 ordinary double points
at Qj’s. On the other hand, the linear series

|3H −
4∑

i=1

EPi
−

5∑

j=1

EQj
+ EQj

|

induces a pencil G′
j of degree 7 with a fix point at Rj . Therefore, by forcing

the degree 9 plane curves to pass additionally through each Rj , we obtain one
further pencil of type I, given by G′

j − Rj . This way, by choosing 0 ≤ m ≤ 4
points among R1, . . . , R5, we get families of smooth curves of genus 11 pos-
sessing up to nine pencils. The function random6gonalGenus11Curvekpencil

in [KS18a] is an implementation of the above construction which produces a
random canonical curve of genus 11 possessing 5 ≤ k ≤ 9 pencils.

Remark 1.1. Although we expect that plane curves of degree 9 with singular
points as above, passing through all the five fixed points R1, . . . , R5, lead to the
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Two cubics through 8 points by omitting
one of the double points

Plane curve of degree 9 with six pencils
passing through the ninth fixed point

model of curves of genus 11 with ten pencils, our experimental computations
show that such a curve is in general reducible. It is a union of a sextic and the
unique cubic through the five double points and R1, . . . , R5, which has further
singular points than expected. Thus, our pattern fails to cover the case k = 10.
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Our families of plane curves depend on expected number of parameters as
desired. In fact, let

V4,5,m
9 := {(Γ;P1, . . . , P4, Q1, . . . , Q5)} ⊂ P

N × (P2)9

denote the variety, where N =
(
9+2
2

)
− 1 and Γ ⊂ P

2 is a plane curve of
degree 9 with prescribed singular points passing through 0 ≤ m ≤ 4 points
among R1, . . . , R5 as above. As an ordinary triple (resp. double) point in
general position imposes six (resp. three) linear conditions, we expect naively
that each irreducible component of V4,5,m

9 has dimension

9(9 + 3)

2
+ 2 · 9− 3 · 5− 6 · 4−m = 33−m.

models of curves with k = 4 pencils

Let P1, P2, P3, Q1, . . . , Q7 be general points in the projective plane and R be
the ninth fix point of a pencil of cubics through eight points, obtained by
omitting two of Qi’s. Then, the normalization of a general degree 9 plane
curve with ordinary triple points at P1, P2, P3 and ordinary double points at
Q1, . . . , Q7, R is a smooth curve of genus 11 that carries exactly k = 4 pencils.
In fact, the three pencils are induced from the pencil of lines through each
of the triple points and the pencil of cubics through the eight points gives
the extra g16 . In [KS18a], this construction is implemented in the function
random6gonalGenus11Curve4pencil.

Remark 1.2. The number of parameters for the choice of ten points in the
plane as above plus the dimension of the linear system of plane curves of de-
gree 9 with ordinary triple points at P1, P2, P3 and ordinary double points at
Q1, . . . , Q7, R amounts to 32 parameters. Therefore, modulo the isomorphisms
of the projective plane, we obtain a family of smooth curves of genus 11 with
exactly k = 4 pencils and smaller dimension than 26, which is the expected
dimension of M11,6(4). Thus, the rational family of curves obtained from this
model cannot cover any component of M11,6(4).

models of curves with k = 12 pencils

Let P1, . . . , P10 be general points in the projective plane and V1 ⊂ |L| =

|4H −
∑10
i=1 EPi

| be a pencil in the linear system of quartics passing through
these points. Let q1, . . . , q6 be the further fixed points of this pencil. Then,
normalization of a degree 8 plane curve Γ with 10 ordinary double points
P1, . . . , P10 and passing through q1, . . . , q6, carries exactly twelve pencils. On
the one hand, considering Q1, . . . , Q6 to be the six moving points of a divisor
in V1, our experiments show that Q1, . . . , Q6 are the extra fixed points of an
another pencil V2 ⊂ |L|. Namely, there is a two dimentional vector space of
quartics passing through P1, . . . , P10, Q1, . . . , Q6 cutting out the other g16 . In
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[KS18a], the function random6gonalGenus11Curve12pencil uses this method
to produce a random canonical curve of genus 11 carrying exactly twelve
pencils.

models of curves with k = 20 pencils

Let C be a smooth curve of genus 11 with a linear system g310. The space
model of C has exactly twenty 4-secant lines which cut out the twenty pencils.
A plane curve of degree 9 with 5 ordinary triple and 2 ordinary double points
provides a model of such curves. Using this pattern, in [KS18a], the function
random6gonalGenus11Curv20pencil gives model of genus 11 curves with
20g16’s.

models of curves with infinitely many pencils

Let E ⊂ P
2 be a smooth plane cubic, and consider X1 := E × P

1 ⊂ P
2 × P

1

as a hypersurface of bidegree (3, 0) containing two random lines L1, L2 and
four points P1, . . . , P4. Choosing a random hypersurface X2 of bidegree (3, 3)
with double points at P ′

is and containing the two lines, we obtain the com-
plete intersection X1 ∩ X2 = C ∪ L1 ∪ L2, where C is the triple cover of
the elliptic curve E of bi-degree (9, 7) in P

2 × P
1. Naturally, C admits in-

finitely many pencils which are cut out by the pencil of lines through ran-
dom points of E. In [KS18a], this algorithm is implemented in the func-
tion random6gonalGenus11CurveInfinitepencil and produces model of C
of deg(C) = 16 in P

5. Considering the space of hyperplanes through three gen-
eral points of C, we obtain a g213. Using this linear series one can compute the
plane model and from that the canonical model of C which leads into the Betti
number β5,6 = 25. With the same approach, and starting from three lines and
the choice of two points, we obtain a genus 11 triple cover of an elliptic curve
of bi-degree (9, 6) whose canonical model has the Betti number β5,6 = 30.

2 Families of curves and their deformation

To study the local geometry of parameter spaces introduced in the previ-
ous section, and also the locus of the smooth curves with several pencils,
we study the space of the first order deformation of curves. This leads
to the computation of the tangent space at the corresponding points in
the moduli space. We recall some basics on deformation theory for smooth
and singular plane curves which can be found in the standard textbook [Ser06].

Let C ⊂ P
n be a smooth curve and NC/Pn = HomOC

(I/I2,OC) denote

the normal bundle of C in P
n. The space of global sections H0(C,NC/Pn)

parametrizes the set of first order embedded deformations of C in P
n. This is

precisely the tangent space to the Hilbert scheme HC/Pn of C inside P
n (see

[Ser06], Theorem 3.2.12).
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An important refinement of the embedded deformation of a smooth curve is
consideration of flat families of curves inside a projective space having pre-
scribed singularities, that is of families whose members have the same type of
singularities in some specified sense. This leads to the notion of equisingularity.

Let Γ ⊂ P
2 be a singular plane curve. There exists an exact sequence of

coherent sheaves on Γ,

0 −→ TΓ −→ TP2 |Γ −→ NΓ/P2 −→ T 1
Γ −→ 0,

where the two middle sheaves are locally free, whereas the first one is not
(see [Ser06], Proposition 1.1.9). The sheaf T 1

Γ is the so-called cotangent sheaf,
supported on the singular locus of Γ. The equisingular normal sheaf of Γ in P

2

is defined to be

N ′ := ker[NΓ/P2 −→ T 1
Γ ],

which describes deformations preserving the singularities of Γ. In fact, the vec-
tor space H0(Γ,N ′

Γ/P2) parameterizes the locally trivial first order deformations

of Γ in P
2 having the prescribed singularities as Γ (See [Ser06], section 4.7.1).

In particular, the equisingular normal bundle fits into the short exact sequence

0 −→ OP2 −→ I(d) −→ N ′
Γ/P2 −→ 0, (1)

where I is the ideal sheaf locally generated by the partial derivatives of a local
equation of Γ, and the first injective map is defined by multiplication by an
equation of Γ (See [Ser06], page 55).

3 The tangent space computation

In this section, we compute the tangent space to the parameter space V4,5,m
9

as well as that to the locus M11,6(k) ⊂ M11. We further prove the existence
of a component with expected dimension on both spaces.

Theorem 3.1. For m = 0, . . . , 4, the parameter space V4,5,m
9 has an irreducible

component of expected dimension.

Proof. Let (Γ;P1, . . . , P4, Q1, . . . , Q5) ∈ V4,5,m
9 be a point corresponding to

a plane curve Γ : (f = 0) ⊂ P
2 with prescribed singular points and passing

through R1, . . . , Rm. Assume x, y, z are the coordinates of the projective plane.

Considering Γ as a point in the parameter space P
(9+2

2 )−1 of degree 9 plane
curves, without loss of generality we can assume it lies in the affine chart, which
does not contain the point (1 : 0 : 0). Moreover, to simplify our notations, we
can assume all the distinguished points of Γ are in the open affine subset of P2

defined by z = 1. Thus, Γ is locally defined by f =
∑
u,v auvx

uyv such that
a9,0 = 1, (xi, yi) for 1 ≤ i ≤ 9 are the affine coordinates of the singular points
and (x′l, y

′
l) is the affine coordinate of Rl. Therefore, in a neighbourhood of
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Γ, the space V4,5,m
9 is the set of pairs (h̄;S1, . . . , S9) with h̄ =

∑
u,v buvx

uyv,
b9,0 = 1 and Si = (Xi, Yi) for 1 ≤ i ≤ 9, satisfying the following equations:

Ri,s,t(. . . , buv, . . . , Xj, Yj , . . .) :=
∂h̄

∂tx∂s−ty
(Xi, Yi) = 0,

for 1 ≤ i ≤ 4, s = 0, 1, 2, t ∈ {0, . . . , s},

R′
i,s,t(. . . , buv, . . . , Xj, Yj , . . .) :=

∂h̄

∂tx∂s−ty
(Xi, Yi) = 0,

for 5 ≤ i ≤ 9, s = 0, 1, t ∈ {0, . . . , s} and

Fl := (
∑

u,v

buvx
uyv)(X ′

l , Y
′
l ) = 0, ∀ 1 ≤ l ≤ m,

where (X ′
l , Y

′
l ) are the coordinates of m points among the fixed points. Then,

the tangent space at Γ is the set of points (ḡ;T1, . . . , T9) with ḡ =
∑

u,v cuvx
uyv,

c9,0 = 1, cuv = auv+ buv for u 6= 9 and Ti = (xi+Xi, yi+Yi) for 1 ≤ i ≤ 9, sat-
isfying the following equations with indeterminate in . . . , buv, . . . , Xj , Yj , . . .:

∑

u,v≥0

u+v≤9

u 6=9

buv
∂Ri,s,t

∂buv
(. . . , auv, . . . , xi, yi, . . .) +

9∑

α=0

[Xα
∂Ri,s,t

∂Xα

(. . . , auv, . . . , xi, yi, . . .)

+ Yα
∂Ri,s,t

∂Yα

(. . . , auv, . . . , xi, yi, . . .)] = 0

for all 1 ≤ i ≤ 4, s = 0, 1, 2, t ∈ {0, . . . , s}, the same relation with R′
i,s,t, for

all 5 ≤ i ≤ 9, s = 0, 1, t ∈ {0, . . . , s} and

∑

u,v≥0
u+v≤9
u6=9

buv
∂h̄

∂buv
(x′l, y

′
l) = 0, ∀ 1 ≤ l ≤ m.

In [KS18a], the code provided by the implemented function
verifyAssertion(1) uses this method to compute the tangent space as
the space of solutions to the above equations. Our computation of an explicit
example for a randomly chosen point on V4,5,m

9 shows that this space is of
dimension 33−m. Therefore, the irreducible component of V4,5,m

9 containing
that point is of expected dimension.

Remark 3.2. Let (Γ;P1, . . . , P4, Q1, . . . , Q5) ∈ V4,5,0
9 be a point and let ∆

denote the singular locus of the corresponding plane curve with prescribed
number of double and triple points. Via the first projection map

p1 : V4,5,0
9 −→ V4,5

9 ⊂ P
N ,
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the variety V4,5,0
9 maps one-to-one to the Severi variety V4,5

9 , parametrizing the
degree 9 plane curves with 4 ordinary triple points and 5 ordinary double points.
This way, we can naturally denote V4,5,0

9 by V4,5
9 and identify the tangent space

to V4,5,0
9 at Γ with the space of the first order deformation of Γ ∈ V4,5

9 . Thus,
from the short exact sequence 1 we obtain

TΓV
4,5
9

∼= H0(P2, I∆(9))/〈f〉,

where 〈f〉 is the one-dimensional vector space generated by the defining equa-
tion of Γ. Moreover, for m > 0 the computed tangent space to V4,5,m

9 at a
random point as in Theorem 3.1, can be regarded as a subspace of such a
vector space.

Now we turn to the computation of the tangent space to the locus M11,6(k).

Let C ⊂ P
10 be the canonical model of the plane curve with k := m+5 pencils

described before and let

S(−6)5k

⊕
S(−7)288

ϕ4−−→
S(−5)288

⊕
S(−6)5k

ϕ3−−→ S(−4)315
ϕ2−−→ S(−3)160

ϕ1−−→ S(−2)36
f
−→ S −→ S/IC −→ 0

be the part of a minimal free resolution of C, where S = K[x0, . . . , x10] is the
coordinate ring of P10, and f = (f1, . . . , f36) is the minimal set of generators
of the ideal IC ⊂ S. Consider the pullback to C of the Euler sequence

0 −→ OC −→ OC(1)
⊕g −→ TP10 |C −→ 0. (2)

From the long exact sequence of cohomologies, the dual vector space
H1(C, TP10 |C)∨ can be identified with the kernel of the Petri map

µ0 : H0(C,L)⊗H0(C, ωC ⊗ L−1) −→ H0(C, ωC)

where L = OC(1). Therefore, we get

H1(C, TP10 |C) = 0

and from that, the induced long exact sequence of the normal exact sequence

0 −→ TC −→ TP10 |C −→ NC/P10 −→ 0,

reduces to the following short exact sequence

0 −→ H0(C, TP10 |C) −→ H0(C,NC/P10)
κ
−→ H1(C, TC) −→ 0, (3)

where κ is the so-called Kodaira-Spencer map. More precisely, here we realize
H1(C, TC) as the tangent space to the moduli space M11 at the point corre-
sponding to C, and κ as the induced map between the tangent spaces from the
natural map HC/P10 −→ M11. We observe that by Serre duality

H1(C, TC) ∼= H0(C, ω⊗2
C )∨.
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Since we assume that the curve is canonically embedded, the sheaf ω⊗2
C is

just the twisted sheaf OC(2). Hence, the cohomology group above will be
given by the quotient S2/(IC)2 and thus h1(C, TC) = 30. As IC is minimally
generated by 36 generators, we can identify a basis of H1(C, TC) with columns
of a matrix T of size 36 × 30 with entries in S2/(IC)2, introducing 30 free
deformation parameters b0, . . . , b29. Let f̄ = f + f (1) be the general first order
family perturbing f defined by the general element of H1(C, TC) and let

S̄(−2)36
f̄
−→ S̄

be the corresponding morphism, where

S̄ = K[b0, . . . , b29]/(b0, . . . , b29)
2 ⊗K S.

To find a lift ϕ̄1 = ϕ1 +ϕ
(1)
1 of ϕ1, we apply the necessary condition f̄ ◦ ϕ̄1 ≡ 0

mod (b0, . . . , b29)
2, and we solve for an unknown ϕ

(1)
1 the equation:

0 ≡ f̄◦ϕ̄1 = (f+f (1))(ϕ1+ϕ
(1)
1 ) = f◦ϕ1+(f◦ϕ

(1)
1 +f (1)◦ϕ1) mod (b0, . . . , b29)

2.

This leads to f ◦ϕ
(1)
1 = −f (1) ◦ϕ1, such that solving it for ϕ

(1)
1 by matrix quo-

tient gives the required perturbation of the first syzygy matrix ϕ1. Continuing
through the remaining resolution maps, we can lift the entire resolution to
first order in the same way. In [KS18b], an implementation of this algorithm
is provided by the function liftDeformationToFreeResolution, which lifts
a resolution to the first order deformed resolution.

In [HR98], Hirschowitz and Ramanan defined a determinantal divisor class, the
so-called Koszul divisor Kg, parameterising curves of odd genus g = 2d−1 with
extra syzygies, that is curves with non-zero Betti number βd−1,d 6= 0. Claire
Voisin in her landmark paper [V05] proved that this divisor is indeed effective,
and the divisor class computation of Hirschowitz and Ramanan gives that the
Koszul divisor Kg = (d−1)Mg,d whereMg,d ⊂ Mg is the Brill-Noether divisor
of curves with a g1d. The factor (d− 1) is explained by the fact that the general
curve in Mg,d has in fact βd−1,d = d− 1, see [FK19].

Hirschowitz and Ramanan constructed the divisor Kg as the degeneracy loci
of a map σ : E −→ F of vector bundles of the same rank on the open locus
M◦

g ⊂ Mg of curves with trivial automorphism group for which the universal
family exists. The same construction works on the moduli stack of curves of
genus g more generally. Farkas [F06] has given more general presentation of
sheaves of Koszul homology groups. We follow his approach in the special case
of canonical curves of arbitrary genus.

In the following, we will compare the Koszul divisor Kg with the divisor on the
Kuranishi family of a curve C (See [ACG], chapter XI) obtained by deforming
the minimal free resolution of the homogeneous coordinate ring SC of C in its
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canonical embedding C ⊂ P
g−1. Let

C ⊂ C
↓ ↓π

0 ∈ T

be a Kuranishi family of C. Let F̃ be the extension of a minimal free reso-
lution of C to a small affine neighborhood of 0 ∈ U = Spec(A) ⊂ T , namely

the resolution of S̃C , the coordinate ring of the family of curves over U , as a
module over S̃ = A[x0, . . . , xg−1]. Let M̃ℓ be the submatrix in F̃ defining the

component S̃(−ℓ− 1)βℓ,ℓ+1 −→ S̃(−ℓ− 1)βℓ−1,ℓ+1 of the ℓ-th differential in F̃ .

The matrix M̃ℓ has entries in A. On the other hand, let σℓ : Eℓ → Fℓ be the
presentation of the sheaf of Koszul cohomology groups Kℓ−1,2 of Farkas on the
moduli stack of curves of genus g.

Theorem 3.3 (Local presentation of the sheaf of Koszul homology groups).
Let C ⊂ P

g−1 be a smooth canonically embedded curve of genus g, and let ℓ be
an integer in the range 2 ≤ ℓ ≤ g − 3. With the above notations, the pull back

σℓ,U of σℓ to the base of the Kuranishi family U = SpecA and M̃ℓ have the

same cokernel:

Cokerσℓ,U ∼= Coker M̃ℓ.

Moreover, for a point p ∈ U with residue field κ(p) we have

Cokerσℓ,U ⊗A κ(p) = Kℓ−1,2(Cp, ωCp
) ∼= Tor

S̃p

ℓ−1(S̃Cp
, κ(p))ℓ+1.

Proof. The main reason is that Tor groups TorSi (SC ,K)j can be computed by
using a resolution of K as S-module, which leads to Koszul cohomology, or
using a resolution of SC as S-module, which uses syzygies of SC .
By construction of the Kuranishi family the Hodge bundle π∗ωC/T is free (of
rank g) on T . Let V denote the free A-module corresponding to π∗ωC/T |U . Let

K̃ be the (augmented) Koszul complex resolving A as S̃-module, and consider

the double complex K̃ ⊗S̃ F̃ . This is a complex with all rows and columns

but the first row F̃ ⊗ A and the first column K̃ ⊗ S̃C exact. Therefore, the
homologies of the two complexes are isomorphic. The degree ℓ + 1 part of
F̃ ⊗A is the complex

0 // A(−ℓ− 1)βℓ,ℓ+1
M̃ℓ

// A(−ℓ − 1)βℓ−1,ℓ+1 // 0

with the non-zero terms in homological degree ℓ and ℓ− 1. On the other hand,
the degree ℓ+ 1 piece of the complex K̃ ⊗ S̃C is the complex

0 →
ℓ+1∧

V →
ℓ∧
V ⊗ V →

ℓ−1∧
V ⊗ (S̃C)2 → . . .→

1∧
V ⊗ (S̃C)ℓ → (S̃C)ℓ+1 → 0

of locally free A-modules starting in homological degree ℓ + 1. Since both of
these complexes have isomorphic homology, the second one is quasi isomorphic
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to a two term complex as well, which is the generalized Hirschowitz-Ramanan
complex

0 // Eℓ
σℓ,U

// Fℓ // 0

with

Fℓ = Ker

(
ℓ−1∧

V ⊗ (S̃C)2 →
ℓ−2∧

V ⊗ (S̃C)3

)
,

Eℓ = Coker

(
ℓ+1∧

V →
ℓ∧
V ⊗ V

)
.

This proves the first statement. Note that

rankEℓ = g

(
g

ℓ

)
−

(
g

ℓ+ 1

)
= ℓ

(
g + 1

ℓ+ 1

)

and

rankFℓ = (g − 1)

ℓ+1∑

j=2

(−1)j(2j − 1)

(
g

ℓ+ 1− j

)
= (3g − 2ℓ− 1)

(
g − 1

ℓ− 1

)
.

To prove the second statement, we note that K̃ ⊗ κ(p) coincides with the
Koszul complex for Cp, since C → T is flat. This gives the first equality. On

the other hand, F̃ ⊗A κ(p) is a free resolution of S̃Cp
as an S̃p-module, since π

is flat. Hence, F̃ ⊗A κ(p) computes TorS̃p(S̃Cp
, κ(p)) which proves the second

equality.

Corollary 3.4. In case of odd genus g = 2d− 1 we have that detσd−1,U and

det M̃d−1 coincide on U up to a unit.

Proof. In case g = 2d − 1 and ℓ = d − 1 the vector bundles Fℓ and Eℓ have
the same rank (2d − 2)

(
2d−1
d−1

)
, and by Voisin theorem σl,U is generically an

isomorphism. Since two the cokernels are isomorphic the two determinants,
which both generate the first Fitting ideal of the cokernel, differ by a unit
in A.

Note that at the origin M̃ℓ defines a minimal presentation of the cokernel, while
σℓ,U is always highly non-minimal.

Theorem 3.5. Let 0 ≤ m ≤ 4, and set k := m+5. The locus M11,6(k) ⊂ M11

has an irreducible component Hk of expected dimension 30 − k. Moreover, at

a general point P ∈ Hk, M11,6 is locally analytically a union of k smooth

transversal branches. In other words, M11,6 is a normal crossing divisor around

the point P .
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Proof. Consider the natural commutative diagram

V4,5,m
9

ψ
//

φ

��

HC/P10

��

M11,6(k)
� � // M11

where φ takes the plane curve to its canonical model forgetting the embedding.
Let Hk ⊂ M11,6(k) be the irreducible component containing the image points

of curves lying in an irreducible component H ⊂ V4,5,m
9 with expected dimen-

sion (see Theorem 3.1). We show that Hk is of expected dimension.
Let C ⊂ P

10 be a canonical curve with b extra syzygies, and let C → (U, 0)
be its Kuranishi family. By theorem 3.3, the Koszul divisor K11 can be com-
puted locally in this family by extending a minimal free resolution of C. The
resulting complex will have a b×b square submatrix with entries in OU,0 whose
determinant defines the Koszul divisor restricted to the Kuranishi family. Due
to Hirschowitz and Ramanan [HR98], this divisor coincides with 5 times the
Brill-Noether divisor M11,6, that is K11 = 5M11,6. Thus, the determinant of
the matrix is a fifth power. Here, we compute the first order terms of this
matrix for specific curves in various strata.
For the image curve C ∈ Hk of a plane curve Γ and the general first order
deformation family of C, let M denote the 5k × 5k submatrix of ϕ4 in the
deformed free resolution with linear entries in free deformation parameters
b0, . . . , b29. In a minimal free resolution of C, the matrix defining the map
S(−6)5k −→ S(−6)5k is zero, hence the condition M = 0 determines the space
of the first order deformations with extra syzygies of rank 5k.
By means of the implemented function verfiyAssertion(2) in [KS18a], we
can compute an explicit single example which shows that for exactly k linearly
independent linear forms

l1, . . . , lk ∈ K[b0, . . . , b29],

we have
det M = l51 · . . . · l

5
k.

As the entries of the matrix M are linear combinations of the k independent
forms l1, . . . , lk, one has M = 0 if and only if l1 = · · · = lk = 0. Moreover,
identifying TCM11,6(k) with the space of first order deformations of C with k
pencils, TCM11,6(k) is a subset of the space of the first order deformations
of C with extra syzygies of rank 5k. Thus, since dim TCM11,6(k) ≥ 30 − k,
the tangent space TCM11,6(k) is the zero locus of these linear forms, and is of
codimension exactly k inside TCM11. Hence, Hk is an irreducible component
of expected dimension 25 −m. On the other hand, by Hirschowitz–Ramanan
[HR98] the Koszul divisor of curves with extra syzygies satisfies K11 = 5M11,6

and the single polynomial det(M) defines the tangent space to the Koszul divi-
sor at C. Therefore, we obtain that M11,6 at the point C is locally analytically
union of k smooth branches.
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Remark 3.6. With the notation as above, under a change of basis, we can
turn the matrix M to a block (or even a diagonal) matrix

M ′ =




B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bk




such that for i = 1, . . . , k the non-zero block is Bi = AiLi, where Ai is an
invertible 5×5 matrix with constant entries and Li is the diagonal matrix with
diagonal entries equal to li. In fact, for i = 1, . . . , k, let Xi be the scroll swept
out by the pencil gi on C. Let Mi = (MVi)

t be the 5 × 5k matrix, where Vi
is the constant matrix defining the last map ϕi = S(−6)5 −→ S(−6)5k in the
injective morphism of chain complexes from the resolution of Xi to the linear
strand of a minimal resolution of C. Set Wi := kerMi and for j ∈ {1, . . . , k},
let W j be the intersection of the modules Wi’s by omitting Wj . Our example
shows that the scrolls associated to each pencils contribute independently to
the rank of the module S̄(−6)5k, i.e. we check rankWi = 5(k− 1), and a basis
of Wi can be identified by columns of a constant matrix of size 5k × 5(k − 1).
Moreover, we have rankW j = 5 such that a basis of the module W 1⊕ . . .⊕W k

determines a 5k×5k invertible constant matrix. Using this invertible matrix for
changing the basis of the space S̄(−6)5k turns the matrix M to a block matrix
as above. To speed up our computations, we have used this presentation of M
to compute its determinant.

Theorem 3.7. The locus M3
11,10 of genus 11 curves with a g310 is an irreducible

component of M11,6(20) expected dimension 25.

Proof. With the same argument as above, the theorem follows from computa-
tion of an explicit example (see verfiyAssertion(6) in [KS18a]) which proves
for five linearly independent linear forms l1, . . . , l5 we have

TCM
3
11,10 = TCM11,6(20) = V (l1, . . . , l5).

4 Unirational irreducible components

In this section, we prove that the so-constructed rational families of plane curves
dominate an irreducible component in the locus M11,6(k) for k = 5, . . . , 10. To
this end, we count the number of moduli for these families, by computing the
rank of the differential map between the tangent spaces.

Theorem 4.1. For 5 ≤ k ≤ 9, the moduli space M11,6(k) has a unirational

irreducible component of expected dimension 30− k. A general curve lying on

this component arises from a degree 9 plane model with 4 ordinary triple and 5
ordinary double points which contains k− 5 points among the ninth fixed point

of the pencil of cubics passing through the 4 triple and 4 chosen double points.
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Proof. With notations as in Theorem 3.5 let φ|H : H −→ Hk be the natural
map between the irreducible components of expected dimensions. To compute
the dimension of φ(H), one has to compute the rank of the differential map

dφΓ : TΓH −→ TCHk,

at a smooth point C ∈ φ(H). We recall that for m > 0 the tangent space to
V4,5,m
9 at a point Γ is a subspace of TΓV

4,5
9 . Therefore, it suffices to show that

dim(ker dφΓ) = 8 for the case k = 5. Considering the following commutative
diagram of tangent maps

TΓH

dψΓ

��

dφΓ
// TCHk� _

��

0 // H0(C, TP10 |C) // H0(C,NC/P10) // H1(C, TC) // 0

our explicit computation of a single example (see VerfiyAssertion(3) in
[KS18a]) shows that the image of the map dψΓ has exactly 8−dimensional
intersection with the image of H0(C, TP10 |C) inside H0(C,NC/P10 ), which cor-
responds to the automorphisms of the projective plane. Therefore, the rational
family of plane curves lying on the irreducible component H dominates an
irreducible component of M11,6(k) with expected dimension.

Theorem 4.2. The moduli space M11,6(10) has a unirational irreducible com-

ponent of excess dimension 26, where the curves arise from degree 8 plane

models with 10 ordinary double points. More precisely, the locus M2
11,8 of

curves possessing a linear system g28 is a unirational irreducible component of

M11,6(10) of expected dimension 26.

Proof. Let V10
8 be the Severi variety of degree 8 plane curves with 10 ordinary

double points. By classical results [Har86], it is known that V10
8 is smooth

at each point and of pure dimension 34. Let Γ be a plane curve of degree
8 with 10 ordinary double points, and let C ∈ M2

11,8 ⊂ M11,6(10) be its
normalization. With the same argument as in the proof of 3.5 and 4.1, the
theorem follows from the computation of an example which shows that for
linear forms l1, . . . , l10 we have dim TCM11(10) = dim V (l1, . . . , l10) = 26 and
furthermore the induced differential map is of full rank 26. The verification of
this statement is implemented in the function verifyAssertion(4) in [KS18a].

Corollary 4.3. Let Γ be a general plane curve of degree 8 with 10 ordinary

double points, and let C ∈ M11 be its normalization. Consider a deformation

of C which preserves at least four pencils g16’s of the 10 existing pencils. Then,

the deformation of C preserves the g28. In other words, a deformation of C
which keeps at least four pencils g16’s lies still on the locus M2

11,8.
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Proof. By the above theorem, around a general point C ∈ M2
11,8, the Brill–

Noether divisor M11,6 is locally a union of 10 branches defined by l1 · . . . ·
l10 = 0. On the other hand, codimTCM2

11,8 = codimV (l1, . . . , l10) = 4,
such that any four of the linear forms are independent defining M2

11,8 locally
around C. Therefore, a deformation of C which keeps at least four of g16 ’s lies
still on the locus M2

11,8.

5 Further components

Having already described an irreducible unirational component of the moduli
space M11,6(k) for k = 5, . . . , 10, the first natural question is to ask about the
irreducibility of these loci. If the answer is negative, then the question is how
the other irreducible components arise.

Although one may mimic our pattern to find model of plane curves of higher
degree with singular points of higher multiplicity, considering the degree 9
plane curves with 4 ordinary triple and 5 ordinary double points as our
original model, our simple computations indicates that the models of higher
degree are usually a Cremona transformation of this model with respect to
three singular points. Therefore, considering models of different degrees and
singularities, we have not found new elements in these loci. On the other
hand, the study of syzygy schemes of curves lying on these loci leads to the
following theorem which states the existence of further irreducible components.

Theorem 5.1. For 5 ≤ k ≤ 8, the locus M11,6(k) has at least two irreducible

components both of expected dimension, along which M11,6 is generically a

simple normal crossing divisor.

Proof. The proof relies on the syzygy schemes and our computation of tangent
cone at a point C in Hk.
Consider η : W1

11,6 −→ M11,6 ⊂ M11 and let C be a point in our unirational
component Hk ⊂ M11,6(k) for 6 ≤ k ≤ 9. Then, by the Theorem 3.5, the
tangent cone of the Brill-Noether divisorM11,6 is defined by a product l1 ·. . .·lk
of k linearly independent linear forms, and W1

11,6 −→ M11,6 is locally around C
the normalization of M11,6. Let f1, . . . , fk be power series which define the k
branches of M11,6 in an analytic or étale neighbourhood U of C ∈ M11. Then

fi = li + higher order terms

and the zero locus V (fi) ⊂ U has the following interpretation:

V (fi) ∼= {(C′, L′) : (C′, L′) ∈ Ui},

where η−1(U) =
⋃k
i=1 Ui is the disjoint union of smooth 3g − 4 dimensional

manifolds with (C,Li) ∈ Ui such that Li denotes line bundle corresponding to
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the the i−th pencil g16 on C in some enumeration of the pencils L1, . . . , Lk that
we fix.
The submanifold Bi = {fi = 0} then consists of deformations of C induced by
deformation of pair (C,Li), and for any family ∆ ⊂ Bi the Kuranishi family
restricted to ∆ extends to a deformation of the pair (C,Li)

C ⊂ C (C,Li) ⊂ (C,Li)
↓ ↓ ↓ ↓
0 ∈ ∆ 0 ∈ ∆

Let I ⊂ {1, . . . , k} be any subset of cardinality ℓ ≥ 5 and C′ ∈ U be a point
such that

C′ ∈
⋂

i∈I

V (fi) \
⋃

j /∈I

V (fj).

Then, by Theorem 3.5

C′ ∈ M11,6(ℓ) \M11,6(ℓ+ 1)

since the li with i ∈ I are linearly independent, M11,6(ℓ) is of codimension ℓ
and M11,6 is a normal crossing divisor around C′.
Now, we examine that whether or not C′ lies in our component Hℓ. For this
purpose, we deform the Li for i ∈ I in a one-dimensional family of curves

∆ = {C′′} ⊂
⋂

i∈I

V (fi)

through C and C′, which intersects
⋃
j /∈I V (fj) only in the point C. The syzygy

schemes of the C′′ ∈ ∆ forms an algebraic family defined by the intersection
of the deformed scrolls X ′′

i swept out by the deformed line bundle L′′
i . Thus

by semicontinuity, the dimension of the syzygy scheme of C′′ near C ∈ ∆ is
smaller or equal than the dimension of the syzygy scheme

⋂
Xi, and in case

of equality we should have deg(
⋂
X ′′
i ) ≤ deg(

⋂
Xi). If we take special syzygy

scheme of C′′ corresponding to the syzygies of
⋂
j∈J X

′′
j then likewise we have

the semicontinuity compare to
⋂
j∈J Xj . Therefore, for C′′ to lie on Hl we

need a subset J ⊂ I of cardinality 5 such that the syzygy scheme is a surface
of degree 15 (see table 4). By the Remark 5.3, this occurs only if we have
a = 5 and b = 0. Thus, taking I to be a subset of {2, . . . , 5} ∪ {6, . . . , k} we
obtain a point C′′ ∈ M11,6(ℓ) \Hℓ. This proves that for 5 ≤ ℓ ≤ 8 the moduli
space M11,6(ℓ) has at least two components, one of which Hℓ and the other a
component containing C′′.

In particular, considering the five smooth transversal branches of M11,6 at a
general point C of the irreducible conponent H5 ⊂ M11,6(5), we can deform C
away from one of the branches, in a one-dimensional family of curves with 4
pencils, which proves the following.

Theorem 5.2. The locus M11,6(4) has an irreducible component of expected

dimension 26.
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Remark 5.3. For the model of plane curve of degree 9 with nine pencils
described in 1, we have computed the dimension, degree and the Betti table of
the syzyzgy schemes associated to different number 2 ≤ l ≤ 9 of pencils g16 ’s.
We recall that for a number of pencils indexed by a subset I ⊂ {1, . . . , 9},
the associated syzygy scheme is the intersection

⋂
i∈I Xi of the scrolls swept

out by each of the pencils. Let 1 ≤ a ≤ 5 be the number of chosen pencils
which are induced by projection from the triple points or the pencil of conics.
Likewise, let 1 ≤ b ≤ 4 be the number of chosen pencils arised from the
pencil of cubics through the certain number of points. In the following tables,
and for a specific genus 11 curve possessing nine pencils, we have listed the
numerical data of the plausible syzygy schemes arised form different number
l = a + b ≥ 2 of the existing pencils g16 ’s. In [KS18a], one can compute an
example of such a curve over a finite field of characteristic p, by running
the function random6gonalGenus11Curvekpencil(p,9). In particular, the
function verifyAsserion(5) provides the explicit equation of our specific
curve and the collection of the nine scrolls. In the columns ”dim”, ”deg”
and ”gen” we have marked the possible dimension, the degree and the genus
of the corresponding syzygy schemes for this specific curve. Based on our
experiments, it turns out that the values only depend on the numbers a and b
of the chosen pencils.

a b dim deg gen Betti table

0 2 2 18
1 . . . . . . . .
. 27 96 127 48 10 . . .
. . 1 48 220 288 189 64 9

1 1 2 18
1 . . . . . . . .
. 27 96 127 48 10 . . .
. . 1 48 220 288 189 64 9

2 0 2 18
1 . . . . . . . .
. 27 96 127 48 10 . . .
. . 1 48 220 288 189 64 9

Table 1: Numerical data of possible syzygy schemes with a+ b = 2.

a b dim deg gen Betti table

0 3 1 21 12

1 . . . . . . . . .
. 35 151 279 207 15 . . . .
. . . 3 141 414 399 196 45 1
. . . . . . . . . 1

1 2 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1
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2 1 1 21 12

1 . . . . . . . . .
. 35 151 279 210 30 . . . .
. . . . 6 156 414 399 45 1
. . . . . . . . . 1

3 0 2 16
1 . . . . . . . .
. 29 112 182 113 15 . . .
. . . 1 85 176 133 48 7

Table 2: Numerical data of possible syzygy schemes with a+ b = 3.

a b dim deg gen Betti table

0 4 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

1 3 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

2 2 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

3 1 1 21 12

1 . . . . . . . . .
. 35 151 279 210 30 . . . .
. . . . 6 156 414 399 45 1
. . . . . . . . . 1

4 0 2 15
1 . . . . . . . .
. 30 120 210 169 25 . . .
. . . 1 25 120 105 40 6

Table 3: Numerical data of possible syzygy schemes with a+ b = 4.

a b dim deg gen Betti table

1 4 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

2 3 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

3 2 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1
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4 1 1 21 12

1 . . . . . . . . .
. 35 151 279 210 30 . . . .
. . . . 6 156 414 399 45 1
. . . . . . . . . 1

5 0 2 15
1 . . . . . . . .
. 30 120 210 169 25 . . .
. . . 1 25 120 105 40 6

Table 4: Numerical data of possible syzygy schemes with a+ b = 5.

a b dim deg gen Betti table

2 4 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

3 3 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

4 2 1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

5 1 1 21 12

1 . . . . . . . . .
. 35 151 279 210 30 . . . .
. . . . 6 156 414 399 45 1
. . . . . . . . . 1

Table 5: Numerical data of possible syzygy schemes with a+ b = 6.

a b dim deg gen Betti table

1 20 11

1 . . . . . . . . .
. 36 160 315 288 45 . . . .
. . . . 45 288 315 160 36 .
. . . . . . . . . 1

Table 6: Numerical data of possible syzygy schemes with a+ b ≥ 7.
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