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Abstract. We consider in this paper covering groups and Fourier
coefficients of Eisenstein series for induced representations from cer-
tain distinguished theta representations. It is shown that one has
global factorization of such Fourier coefficients, and the local unram-
ified Whittaker function at the identity can be computed from the
local scattering matrices. For a special family of covering groups of
the general linear groups, we show that the Fourier coefficients of such
Eisenstein series are reciprocals of Hecke L-functions, which recovers
an earlier result by Suzuki for Kazhdan–Patterson covering groups.
We also consider covers of the symplectic group and carry out a de-
tailed analysis in the rank-two case.
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1 Introduction

For a linear algebraic group, Fourier coefficients of Eisenstein series for induced
representations from a parabolic subgroup are important objects for the study
of automorphic forms and L-functions. In particular, the Casselman–Shalika
formula [Shi76,CS80] is a cornerstone for the subject. The formula expresses
the value of the unique Whittaker function of a generic unramified representa-
tion in terms of L-functions for certain representations of the L-group on the
dual side (see for example [Tam91, Proposition 1]). The uniqueness of such
Whittaker function for local representations then further enables one to apply
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the Casselman–Shalika formula to obtain a uniform description of the partial
global L-function that appears in the Fourier coefficients of Eisenstein series
for linear algebraic groups. Such results, for example, were exploited in the
work of Shahidi (see [Sha78,Sha81,Sha88,Sha90]) to develop and complete the
theory of Langlands–Shahidi L-functions arising from Eisenstein series.

However, for finite degree central coverings of linear algebraic groups, the
uniqueness of Whittaker functionals fails in general. This has the direct con-
sequence that the analogous Casselman–Shalika formula takes a more sophis-
ticated form. This failure was first systematically studied in [KP84,KP86] for
certain covers of GLr, which are naturally called Kazhdan–Patterson covers
of GLr. The investigation in [KP84] relies on the so-called scattering matrix
arising from a map between two Whittaker spaces (i.e., the space of Whit-
taker functionals) induced from intertwining operators, while the method of
[KP86] is via trace formula. With the same focus on such scattering matri-
ces, the Casselman–Shalika formula in the covering setting was generalized in
[Pat87, CO13,McN16, Suz97,GSS]. In a somewhat different direction, various
forms of the Casselman–Shalika formula were also proved in connection with
the theory of crystal basis, Demazure operators and representations of quan-
tum groups, see [BBF11a,BN10,McN11, LLS14, LLL19,KL11]. Working with
universal principal series, there are also other formulations of the Casselman–
Shalika formula as in [BBF16,Pus,PP17,PP19], some including covers on the
Kac-Moody groups.

As a result of such non-uniqueness, the computation of the Fourier coefficients
of covering Eisenstein series becomes not as accessible as in the linear alge-
braic case. Indeed, if one considers the covering Borel Eisenstein series, then
its Fourier coefficients are conjecturally just the Weyl group multiple Dirich-
let series (WMDS), the theory of which has been developed and studied in
much depth as in [BBC+06,BBF06,BBF08,BBFH07,BBFH12]. The theory of
WMDS has proved to be important even for the theory of automorphic forms
and L-functions for linear algebraic groups, especially concerning the analytic
properties. See [BFH05,CFH06]. Such Weyl group multiple Dirichlet series (at
least conjecturally) possess functional equations and meromorphic continua-
tions; however, they are not Eulerian in general, a consequence of the fact that
the covering torus is not abelian. Therefore, the difficulty of studying such
Dirichlet series arises not only from the local representations, but also from
the way (i.e., the twisted multiplicativity for WMDS) such local information
manifests globally.

This multiplicity of Whittaker functionals lies in the heart of obstacles and
difficulties of extending the theory of L-functions from linear algebraic groups to
covering groups. This is especially the case for the Langlands–Shahidi method.
However, in another direction of generalizing the classical doubling method
of Piatetski-Shapiro and Rallis [GPSR87], there has been recent advance for
studying L-functions for classical groups, including in the covering setting, see
[CFGK19,CFK,Kap]. One crucial point is that in loc. cit., no assumption on
the dimension of theWhittaker space is needed, and thus is especially applicable
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to genuine representations of covering groups.

Nevertheless, it is natural to consider the subclass of representations for which
such uniqueness holds. It is also reasonable to explore finer structure of the
Whittaker space and consider some variants of the usual notion of Whittaker
functionals. For this purpose, we briefly recall some notations in the local
setting. Let G be an n-fold covering group over a non-archimedean local field F ,
which is a central extension of G by the group of n-th roots of unity in F ,
denoted by µn. Let B = TU be its covering Borel subgroup. Let Z(G) be the
center of G, and Z(G) ⊂ G the covering of Z(G). Let ψ be a generic character
of U . Let (π, Vπ) be a genuine irreducible representation of G, on which µn
acts by a fixed embedding into C×. We mention below some typical classes of
groups and approaches considered in the literature.

• The twisted Jacquet module Jπ,ψ, whose dual is the space Whψ(π) of ψ-

Whittaker functionals of π, is naturally a U × Z(G)-module. Here Z(G)
is a Heisenberg type group, and its genuine irreducible representations
are finite dimensional with the same dimension. If the uniqueness of ψ-
Whittaker functionals for π holds, then Z(G) is necessarily abelian. The
converse may not hold. However, assume that Z(G) is abelian. Let ψ×µ
be the representation of U × Z(G), where µ is a fixed genuine character
of Z(G). Consider π such that

dimHom
U×Z(G)

(Jπ,ψ, ψ × µ) ≤ 1. (1)

If the equality holds, then π is said to possess a unique (ψ, µ)-Whittaker
functional. For the two-fold Kazhdan–Patterson covering GL2 with twist-
ing parameter 0 (in the notation of [KP84]), it was shown by Gelbart,
Howe, and Piatetski-Shapiro [GHPS79] that every irreducible genuine
representation of this GL2 has a unique (ψ, µ)-Whittaker functional up
to a scalar. This fact was used in [GPS80] to study distinguished theta
representations. Unfortunately, for covers of general linear groups, such
(ψ, µ)-uniqueness does not hold for all genuine representations. In fact,
it already fails for (appropriate) higher degree covers of GL2.

• For a fixed n-fold covering G, one can also study the subclass of repre-
sentations where uniqueness of ψ-Whittaker functionals (or even (ψ, µ)-
Whittaker functionals as above) holds. For instance, for coverings of the
general linear groups, Kazhdan–Patterson initiated a representation the-
oretic analysis of the theta representations in [KP84] after the work of
Kubota [Kub69]. In particular, the dimension of the space of ψ-Whittaker
functionals for such a theta representation was determined in terms of the
rank and degree of the covering group. We note that theta representa-
tions and their analogues, for example the Weil representations of the

metaplectic double cover Sp
(2)

2r , have been extensively studied. In par-
ticular, as the Weil representation is the underlying key for the theta
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correspondence, it has been exploited to establish links between repre-

sentations of Sp
(2)

2r and the linear groups SO2m+1 or their inner forms.
As the literature on this is vast, we simply refer the reader to [Gan14]
and references therein for a quick review.

The theta representations we focus in this paper are just residues of the cov-
ering Borel Eisenstein series, as in [KP84]. Locally, the theta representation is
the Langlands quotient of the “most reducible” standard module. Presumably,
the family of theta representations should be the easiest one to study among all
genuine representations of covering groups, as they should arise from liftings of
characters of an appropriate linear group (see [Fli80] in the case of GL2). Such
theta representations not only play a special role for understanding genuine rep-
resentations of covering groups, they are in fact very useful for understanding
representations on linear algebraic groups.
For example, Bump and Hoffstein formulated several related conjectures [BH89]
regarding the usage of theta representations in obtaining L-functions via the
Rankin–Selberg method for genuine representations. One of their conjec-
tures was extensively studied in the work of Suzuki [Suz91, Suz97]; in this
direction, we also mention [FG15, Goe98, Gin18a]. Moreover, the work of
Bump–Ginzburg [BG92] gives a Rankin–Selberg integral for the symmetric
square L-functions of cuspidal representations π of GLr, and their method re-
lies crucially on properties of theta representations studied in [KP84]. The
case of twisted symmetric square L-functions was treated by Takeda [Tak14].
See yet another recent work [FK19] of obtaining (quotient of) L-functions
of π by using a Godement–Jacquet type integral involving theta represen-
tations. In another direction, starting with the work of Savin [Sav92] on
representations distinguished by theta representations, the investigation was
continued in [Kab01, Kab02]. Furthermore, in a series of works by Kaplan
[Kap15,Kap16a,Kap16b,Kap17a,Kap17b], the theory was further studied and
the author also found applications to the problems of computing certain peri-
ods. Notably, determining unipotent orbits of theta representations has also
important applications, which is already clear in the work [BG92,Tak14,FK19]
mentioned above, and is also one of the foci in the study by Friedberg and
Ginzburg [FG18,FG17], Y.-Q. Cai [Cai19] and Leslie [Les19]. We also mention
that the problem of the existence of cuspidal theta representations remains to
be of interest and of challenge, see [PPS84,FG16] and references therein.
Compared to the above, our goal in this paper is of a different nature and is
motivated from [BBL03]. It is to compute the Fourier coefficients of covering
Eisenstein series induced from a genuine representation π = ⊗vπv which possess
unique nontrivial local and global Whittaker models. That is, locally we assume

dimWhψv
(πv) = 1,

and globally up to scalar there is a unique nonzero ψ-Whittaker functional λ
A

afforded by the Whittaker–Fourier coefficients. In this context, the ψ-Fourier
coefficient of the Eisenstein series has a global factorization, and it is natural
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to ask what the Fourier-coefficient should be in terms of L-functions associated
to the inducing data. Our paper concentrates on the case where the inducing
representation is a global theta representation Θ(M

A

, χ) satisfying the above
multiplicity-one property. We call such Θ(M

A

, χ) distinguished (see Definition
3.2). We briefly review some earlier work on this topic.

• In [BBL03], Banks, Bump and Lieman considered the case of degree
n global Kazhdan–Patterson covering GLn and the covering parabolic
subgroup P =MN with

M = GLn−1 ×GL1.

The representation ofM is essentially a certain theta representation Θ(χ)
ofM , where χ is a genuine exceptional character. The ψ-Whittaker func-
tionals for Θ(χ) are not unique, and therefore for the induced represen-
tation I(s,Θ(χ)) of GLn, uniqueness for ψ-Whittaker functionals also
fails. However, in this case, Z(GLn) is abelian and it is shown in [BL94]
that (ψ, µ)-Whittaker functional for I(s,Θ(χ)) is unique. This is the
first key ingredient in [BBL03], which gives that the Fourier coefficients
of Eisenstein series could be factorized into local Whittaker functions.
The second key ingredient in [BBL03] is the local unramified computa-
tion, where the authors showed that the analogous Casselman–Shalika
formula for I(s,Θ(χ)) involves a quotient of two Hecke L-functions for
linear characters associated to χ.

• The main result of [BBL03], as remarked by the authors, is just a special
case of the Bump–Hoffstein conjecture [BH89]. To recall the conjecture,
we fix n and let 1 ≤ r′ ≤ r ≤ n − 1. Let Θr denote a theta repre-
sentation of the n-fold Kazhdan–Patterson cover GLr. Then Bump and
Hoffstein conjectured that L(s,Θr×Θ∨

n−r′) differs from L(s,Θr′ ×Θ∨
n−r)

by several Hecke L-functions in a precise way. Moreover, they conjec-
tured that L(s,Θr ×Θ∨

n−r′) could be identified as the Fourier coefficient

of an Eisenstein series of parabolic type (r, r′) on the n-fold cover GLr+r′ .
We refer the reader to the work of Bump and Hoffstein [BH87] for some
early evidence and the proof by Suzuki [Suz97] for the Bump–Hoffstein
conjecture in the function field case. The result in [BBL03] is just the
Bump–Hoffstein conjecture in the case r = 1, r′ = n − 1. It should be
noted that the proof in [BBL03] is different from that given in Suzuki
[Suz97].

• It is important for our purpose to remark also that Suzuki [Suz97, §7.6]
actually showed (as a special case of his general results) that if one con-
siders degree n − 1 covers of GLn and the Eisenstein series built from
theta representation of the degree n − 1 cover of M = GLn−1 × GL1;
then its Fourier coefficients involve just the reciprocal of a single Hecke
L-function. It thus brings up contrast when we compare this with the
degree n cover of GLn treated in [BBL03].
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• For the odd n-fold Savin coverings of GLr (see [Sav]) such that r = kn,
Kaplan [Kap] considered the Levi subgroup M = GLn×GLn× ...×GLn
(k-copies). In this case, every theta representation of M is distinguished
and the formula for the local unramified Whittaker function of I(s,Θ(χ))
involves several Hecke L-functions, see [Kap, Theorem 43]. For general
Brylinski–Deligne covers of GLr, Y.-Q. Cai [Cai20] obtained a formula
for unramified Whittaker functions of GLr for certain representations in-
duced theta representations, even without assuming the uniqueness condi-
tion. His work generalizes that in [Suz97, §7] and [Kap, §2.3]. The meth-
ods in [Kap] and [Cai20] are the same, by adopting a crystal graph (and
also Gelfand-Tsetlin pattern) description of the Whittaker function for
covering groups, as developed in [BBF11b,BBC+12,McN11]. In fact, the
methods used in [Kap,Cai20] was already employed by Ginzburg [Gin18b]
to compute the value of a general unramified Whittaker function without
assuming the uniqueness property, in order to verify a certain conjecture
on the non-generic unramified representation of a covering group.

As alluded to above, in this paper we study the occurrence of Hecke L-functions
as the Fourier coefficients of Eisenstein series induced from theta representa-
tions for general covering groups. In particular, we show that the setup is
quite general, as expected. More precisely, with the assumption that the in-
ducing theta representation Θ(χ) is distinguished, the ψ-Fourier coefficient
Eψ(1, fs,Θ(χ)) of the Eisenstein series can be factorized into a product of local
Whittaker functions for the induced representations. To this end, we show in §4
that the local unramified computation is completely reduced to some combina-
torial problems arising from the local scattering matrix [τ(w, χ, γ, γ′)]γ,γ′∈T/A.
The main result for this part includes Proposition 4.3 and Theorem 4.5.

Theorem 1.1 (Theorem 4.5). Let WG
v,1T

be the ψ-Whittaker functional of

IGv

Bv
(s · ωP , i(

wMχv)). If τ(wM , χv, 1T , 1T ) 6= 0, then as the unramified local

component of Eψ(1, fs,Θ(χ)), we have

WG
f0
s,v

(1) =
WG
v,1T

(1)

τ(wM , χv, 1T , 1T )
.

Here WG
v,1T

(1) can be written in terms of τ(w, χ, γ, γ′) as well, see

Proposition 3.5. To compute WG
f0
s,v

(1), the key of Suzuki’s work [Suz97]

mentioned above is his overcoming the combinatorial difficulties with
[τ(w, χ, γ, γ′)]γ,γ′∈T/A for Kazhdan–Patterson coverings of GLr by imple-
menting some direct and sophisticated analysis of the matrix. On the other
hand, the novelties in [Gin18b,Kap,Cai20] rely on an efficient application of
the formula of unramified Whittaker functions in terms of the crystal graph
descriptions.
As examples of computing WG

f0
s,v

(1), we will first consider in §5 a special family

of “nice” coverings of GLr (see Definition 5.1) and show that the reciprocal
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of a Hecke L-function appears as the Fourier coefficients of Eisenstein series
induced from parabolic subgroup of type (r − 1, 1). Thus, our result is a
generalization for the case of Kazhdan–Patterson coverings treated by Suzuki
[Suz97]. However, our unramified computation follows [BBL03]. The main
result in §5 is the following.

Theorem 1.2 (Theorem 5.11). Let (n,GLr) be a “nice” cover over F . Let ψ
be a nontrivial character of A/F . Let Θ(χ) be the global theta representation
of M

A

associated with an exceptional character χ for M
A

. Let S ⊂ |F | be
a finite set of places such that: (i) S contains the archimedean places and
|n|v = 1 for all v ∈ |F | − S; (ii) χv and ψv are both unramified outside S. Let
E(g, fs,Θ(χ)) be the Eisenstein series on GLr,A associated with I(s,Θ(χ)).
Assume µ2n ⊂ F×. Then

Eψ(1, fs,Θ(χ)) = LS
(
(r − 1)(s+ 1), χαr−1

)−1
·
∏

v∈S

WGLr

fs,v
(1),

where LS(s, χαr−1) =
∏
v/∈S L(s, (χαr−1)v) is the partial Hecke L-function at-

tached to χαr−1 .

There are several features of our treatment compared to that in [BBL03,Suz97,
Kap,Cai20], which we would like to highlight below.

• Our formulation is for a nice class (see Definition 5.1) of covering groups of
GLr, which is captured by combinatorial constraints. In fact, we describe
in §2 the covering groups in the Brylinski–Deligne framework and apply
results in [Gao17]. Kazhdan–Patterson covers form a special family in
the Brylinski–Deligne category. We hope that the usage of the Brylinski–
Deligne language adds some transparency to the class of groups we focus
on in this paper. For instance, the reader could readily specialize to the
Kazhdan–Patterson covering groups and compare our result with [BBL03,
Theorem 3.2] and [Suz97, §7.6]. See Example 5.12.

• For Kazhdan–Patterson coverings, the consideration of degree (n − 1)
cover of GLn (instead of n-fold covers considered in [BBL03]) is actu-
ally the crucial starting point. This family fits into the set-up described
in §3–§4. More precisely, for degree (n − 1)-cover of the Levi subgroup
GLn−1 ×GL1, the theta representation Θ(χ) is always ψ-distinguished
(see Proposition 5.7). Therefore, we could refrain from considering the
Z(GLn)-structure of the ψ-Whittaker functionals for the induced repre-
sentations I(s,Θ(χ)) on GLn. In this regard, we do not need to prove
the uniqueness of (ψ, µ)-Whittaker functionals for I(s,Θ(χ)) as in [BL94].
See Remark 5.6.

• Theorem 1.2 is parallel to [Kap, Theorem 43] but does not follow from it.
On the other hand, the main result in [Cai20, Theorem 8.1] does recover
Theorem 1.2 here. However, as mentioned above, the strategy for our
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proof is different, as we adopt the approach from [BBL03]. We also give
an interpretation of the result on the dual side in §5.5. In particular,
the Fourier coefficient could be interpreted in terms of certain adjoint
L-function and zeta functions.

In the last section §6 of the paper, we consider covers of Sp2r and induction
from the Siegel parabolic subgroup. Under a certain condition on the degree
of the covering group, we show that the theta representation of the Siegel Levi
subgroup is distinguished. Thus the results in §3–§4 can be applied. However,
we only carry out the detailed computation for r = 2, and the main result is
Theorem 6.5, which shows that the reciprocal of a Hecke L-function appears
in this case. In general, a difference between the cases when r is even or odd
is expected. We mention some of these expected subtleties at the end of the
paper.

We believe that for general covering groups, the Fourier coefficients of Eisen-
stein series induced from distinguished theta representations involve just Hecke
L-functions. However, it seems to be still mysterious regarding the pattern of
the occurrence of such L-functions. Indeed, the works of [BBL03, Suz97] and
some covers of Sp4 considered in this paper already suggest that at the mo-
ment one does not seem to have a uniformly simple description of the (even
conjectural) pattern. The rank, degree and type of the covering group and the
parabolic subgroups involved all play sensitive role and obey certain resonant
relations here. We hope that the resonant relation between these data and the
L-functions that could appear as Fourier coefficients of Eisenstein series will be
predicted from a unified solution of the combinatorial problem involved in the
future.

Lastly, we remark that at various places where we make the assumption that
µ2n ⊂ F× to avoid technical complications in our computations, we will ex-
plicate such assumption. However, the results are expected to hold under the
(minimal and necessary) assumption µn ⊂ F× as well.

Acknowledgement

The author is grateful to the referee for his or her very careful reading and
many expertizing comments on earlier versions of the paper.

2 Central extensions and covering groups

In this section, let F be a number field with the ring of adeles A. Denote by
|F | the set of all places of F . Let Fv be the local field of F for a place v ∈ |F |.
For a non-archimedean place v, denote by Ov ⊂ Fv the ring of integers of Fv
and ̟v ∈ Ov a fixed uniformizer. To introduce covering groups, we follow the
framework of Brylinski–Deligne [BD01], which is also based on the earlier work
of Moore, Steinberg and Mastumoto etc. We refer the reader to [GGW18] for
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a historical review. Meanwhile, we also follow some notations and recall some
results from [Wei18], [GG18] and [Gao17].

2.1 K2-extensions

Let G be a split connected linear algebraic group over F with maximal split
torus T. Let

{X, ∆, Φ; Y, ∆∨, Φ∨}

be the based root datum of G. Here X (resp. Y ) is the character lattice
(resp. cocharacter lattice) for (G,T). Choose a set ∆ ⊆ Φ of simple roots
from the set of roots Φ, and ∆∨ the corresponding simple coroots from Φ∨.
Write Y sc ⊆ Y for the sublattice generated by Φ∨. Let B = TU be the Borel
subgroup associated with ∆. Denote by U− ⊂ G the unipotent subgroup
opposite U.
Fix a Chevalley system of pinnings for (G,T). That is, we fix a set of compat-
ible isomorphisms

{eα : Ga → Uα}α∈Φ ,

where Uα ⊆ G is the root subgroup associated with α. In particular, for each
α ∈ Φ, there is a unique homomorphism ϕα : SL2 → G which restricts to e±α
on the upper and lower triangular subgroup of unipotent matrices of SL2.
Denote by W the Weyl group of (G,T), which we identify with the Weyl
group of the coroot system. In particular, W is generated by simple reflections
{wα : α∨ ∈ ∆∨} for Y ⊗Q. Let l :W → N be the length function. Let wG be
the longest element in W .
Consider the algebro-geometric K2-extension G of G, which is categorically
equivalent to the pairs {(D, η)} (see [GG18, §2.6]). Here

η : Y sc → F×

is a homomorphism. On the other hand,

D : Y × Y → Z

is a (not necessarily symmetric) bilinear form on Y such that

Q(y) := D(y, y)

is a Weyl-invariant integer-valued quadratic form on Y . We call D a bisector
following [Wei14, §2.1]. Let BQ be the Weyl-invariant bilinear form associated
to Q by

BQ(y1, y2) = Q(y1 + y2)−Q(y1)−Q(y2).

Clearly, D(y1, y2) + D(y2, y1) = BQ(y1, y2). Any G is, up to isomorphism,
incarnated by (i.e. categorically associated to) a pair (D, η) for a bisector D
and η.
The couple (D, η) plays the following role for the structure of G.
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• First, the group G splits canonically over any unipotent subgroup of G.
For α ∈ Φ and a ∈ Ga, denote by eα(a) ∈ G the canonical lifting of
eα(a) ∈ G. For α ∈ Φ and a ∈ Gm, define

wα(a) := eα(a)·e−α(−a
−1)·eα(a) and wα(a) := eα(a)·e−α(−a

−1)·eα(a).
(2)

This gives natural representatives wα := wα(1) in G, and also wα :=
wα(1) in G, of the Weyl element wα ∈ W . Moreover, for any hα(a) :=
α∨(a) ∈ T, there is a natural lifting

hα(a) := wα(a) · wα(−1) ∈ T, (3)

which depends only on the pinnings and the canonical unipotent splitting.

• Second, there is a section s of T over T such that

s(y1(a)) · s(y2(b)) = {a, b}
D(y1,y2) · s(y1(a) · y2(b)) (4)

for any a, b ∈ Gm. Moreover, for α ∈ ∆ and the natural lifting hα(a) of
hα(a) above, one has

hα(a) = {η(α∨), a} · s(hα(a)) ∈ T. (5)

• Third, let wα ∈ G be the above natural representative of wα ∈ W . For
any y(a) ∈ T with y ∈ Y and a ∈ Gm, one has

wα · y(a) · w−1
α = y(a) · hα(a

−〈y,α〉), (6)

where 〈−,−〉 is the canonical paring between Y and X .

For every w = wr...w2w1 in a minimal expansion, we choose representative
w ∈ G and w ∈ G by

w := wr...w2w1 ∈ G and w = wr · ...w2w1 ∈ G.

Here wi and wi are defined in (2) above. The representatives w and w are
independent of the minimal expansion of w. We write wG for the representative
of the longest wG ∈W .
We remark that if the derived group of G is simply-connected, then the iso-
morphism class of G is determined by the Weyl-invariant quadratic form Q. In
particular, for such G, any extension G is incarnated by (D, η = 1) for some
bisector D, up to isomorphism. In this paper, we assume that the composition

ηn : Y sc → F×
։ F×/(F×)n (7)

of η with the obvious quotient is trivial.
Let n ≥ 1. We assume that F contains the full group of n-th roots of unity,
denoted by µn. An n-fold cover of G, in the sense of [Wei18, Definition 1.2], is
just the pair (n,G). The above relations among generators of G will eventually
give rise to some relations for the topological coverings.
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2.2 Dual group and L-group

For a cover (n,G) associated to (D, η), with Q and BQ arising from D, we
define

YQ,n := {y ∈ Y : BQ(y, y
′) ∈ nZ for all y′ ∈ Y } ⊂ Y. (8)

For every α∨ ∈ Φ∨, define

nα :=
n

gcd(n,Q(α∨))

and
α∨
Q,n := nαα

∨, αQ,n := n−1
α α.

Let Y scQ,n ⊂ YQ,n be the sublattice generated by Φ∨
Q,n := {α∨

Q,n : α∨ ∈ Φ∨}.
Denote XQ,n := HomZ(YQ,n,Z) and ΦQ,n = {αQ,n : α ∈ Φ}. We also write

∆∨
Q,n := {α∨

Q,n : α∨ ∈ ∆∨} and ∆Q,n := {αQ,n : α ∈ ∆} .

Then (
YQ,n, Φ

∨
Q,n, ∆

∨
Q,n; XQ,n, Φ

∨
Q,n,∆Q,n

)

forms a root datum. It gives a unique (up to unique isomorphism) pinned

reductive group G
∨

over Z, called the dual group of (n,G). In particular,

YQ,n is the character lattice for G
∨

and ∆∨
Q,n the set of simple roots. Let

G
∨
:= G

∨
(C) be the associated complex dual group.

In [Wei14,Wei18], Weissman constructed the global L-group for (n,G) which
is an extension

G
∨ LG

A

WF ,

where WF is the Weil group of F . There is also the local L-group

G
∨ LGv WFv

,

which is compatible with the global L-group. Moreover, the construction of
L-group is functorial, and in particular it behaves well with respect to the
restriction of G to parabolic subgroups. For details on the construction and
some properties regarding the L-group, we refer the reader to [Wei14,Wei18,
GG18].

2.3 Weyl orbits

Let

ρ :=
1

2

∑

α∨>0

α∨

be the half sum of all positive coroots of G. Denote by w(y) the natural Weyl
group action on Y and Y ⊗ Q generated by the reflections wα. We consider
the twisted Weyl-action

w[y] := w(y − ρ) + ρ.
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Clearly Y is stable under this twisted action. Throughout the paper, we denote

yρ := y − ρ ∈ Y ⊗Q

for any y ∈ Y , and thus w[y]−y = w(yρ)−yρ. From now on, by Weyl orbits in
Y or Y ⊗Q we always refer to the ones with respect to the action w[y]. Write
O̥ for the set of free W -orbits in Y .
Let

℘ : Y → Y/YQ,n and ℘sc : Y → Y/Y scQ,n

be the natural quotient maps. We call Oy ∈ O̥ a YQ,n-free orbit if |Oy| =
|℘(Oy)|, that is, ifOy and ℘(Oy) have the same size. Similarly, we callOy ∈ O̥

a Y scQ,n-free orbit if |Oy| = |℘sc(Oy)|. Denote

O̥

Q,n :=
{
Oy ∈ O̥ : Oy is YQ,n-free

}

and
O̥

Q,n,sc :=
{
Oy ∈ O̥ : Oy is Y scQ,n-free

}
.

Clearly, the inclusions O̥

Q,n ⊂ O̥

Q,n,sc ⊂ O̥ hold.

2.4 Topological coverings

Write G
A

for G(A) and Gv for G(Fv) for any place v ∈ |F |. We also denote
G(F ) by GF . Recall that we assume µn ⊂ F×.
The K2-extension G gives rise to an n-fold global topological central covering

µn G
A

G
A

,
φ

which splits over GF , and the splitting can be chosen in a canonical way (see
[BD01, §10.4]). In fact it arises from (and thus is compatible with) the local
covering

µn Gv Gv.
iv φv

(9)

More precisely, let
(−,−)n,v : Fv × Fv → µn

be the local n-th Hilbert symbol. Then the local extension Gv arises from the
central extension

K2(Fv) G(Fv) G(Fv)
φv

by push-out via the natural map K2(Fv) → µn given by {a, b} 7→ (a, b)n,v.
The extension (9) is a central extension of locally compact topological groups
(with µn a finite and discrete group). The maps iv and φv are continuous. We
have topological isomorphisms µn ≃ iv(µn) and Gv/iv(µn) ≃ Gv. Now G

A

is
obtained from “gluing” the Gv together. For more details, see [BD01, §10].
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For a subset H ⊂ Gv, denote H := φ−1
v (H). The relations for G described

in §2.1 give rise to the corresponding relations for Gv. For example, inherited
from (4), the group law on the covering torus T v is given by

s(y1(a)) · s(y2(b)) = (a, b)D(y1,y2)
n · s(y1(a) · y2(b)), (10)

where yi ∈ Y and a, b ∈ F×
v . The commutator [t1, t2] := t1t2t

−1
1 t

−1
2 on T v,

which descends to a map [−,−] : Tv × Tv → µn, is thus given by

[y1(a), y2(b)] = (a, b)BQ(y1,y2)
n .

For any group H , let Z(H) be its center. We note that by [Wei09, Proposition
4.1] the center Z(T v) of the covering torus T v is equal to φ−1

v (Im(iQ,n)) where

iQ,n : YQ,n ⊗ F×
v → Tv

is the isogeny induced from the embedding YQ,n ⊂ Y .

2.5 Local unramified representations

Let v ∈ |F | be a non-archimedean place such that |n|v = 1. Let Kv ⊂ Gv be
the hyperspecial maximal compact subgroup generated by T(Ov) and eα(Ov)
for all root α. With our assumption that ηn as in (7) is trivial, the group Gv
splits over Kv (see [GG18, Theorem 4.2]) and we fix such a splitting sKv

; call
Gv an unramified group in this case. If no confusion arises, we will omit sKv

and write Kv ⊂ Gv instead.
A genuine representation (π, Vπ) of the n-fold cover Gv (or G

A

) is such that
µn acts on Vπ by a fixed embedding µn ⊂ C×. For an unramified group
Gv, the representation (π, Vπ) called unramified if V Kv

π 6= 0. By the Satake
isomorphism, we know that dimV Kv

π = 1 if π is unramified.
Since eα(Ov) is a pro-p group and |n|v = 1, we see that Gv splits canonically
and uniquely over the unipotent subgroup eα(Ov) (and not only over eα(Fv)),
which is then also given by eα(x) 7→ eα(x). Hence,

sKv
(eα(u)) = eα(u)

for every u ∈ Ov. Therefore,

hα(u) = sKv
(hα(u)) ∈ sKv

(Kv) ⊂ Gv (11)

for every u ∈ O×
v by the definition of hα(u) in (3). For GLr, properties of such

a splitting sKv
are discussed more extensively in [KP84,Tak16].
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3 Theta representations

In this section, we first introduce the global theta representations for G
A

. For
a discussion on general analytic properties of Eisenstein series, we refer the
reader to [MW95]. For theta representations, which are residues of the Eisen-
stein series at the farthest hyperplanes, Kazhdan and Patterson carried out a
detailed analysis for GLr,A in [KP84, Section II]. Though the covering groups
we consider here are general, the formulation in [KP84, §II] for GLr applies and
we follow closely the exposition on theta representations there. Following this,
we will compute for unramified local data the Whittaker function evaluated at
dominant torus element for local theta representations, which generalizes the
work of [KP84,Pat87].

3.1 Theta representations

By [Wei16, Theorem 4.15], TF · Z(T
A

) is a maximal abelian subgroup of T
A

,
where Z(T

A

) = ⊗vZ(T v). Let

χ = ⊗vχv : Z(T
A

) → C×

be a genuine character which is trivial on TF ∩ Z(T
A

). Therefore, we could
view χ as a genuine character of TF · Z(T

A

) which is trivial on TF ; that is, χ
is a genuine automorphic character.
For any α ∈ Φ, the map F×

v → T v given by av 7→ hα(a
nα
v ) is a homomorphism.

Therefore, we have a linear character

χα : A× → C×

given by
χα((av)v) := χ

(
(hα(a

nα
v ))v

)
.

For x ∈ F , since the canonical lifting of eα(x) ∈ GF ⊂ Gv into Gv agrees with
the canonical lifting of GF into G

A

(cf. [MW95, Appendix I]), and that hα(x)
is defined in terms of the unipotent elements, we see that (hα(x))v ∈ G

A

is the
lifting of hα(x) ∈ GF . Therefore, χα is an automorphic character; that is, it is
trivial on F×.

Definition 3.1 ([KP84, page 113]). For any subset ∆′ ⊂ ∆, a genuine char-
acter χ is called ∆′-exceptional (resp. ∆′-anti-exceptional) if χα = | · |

A

(resp.
χα = | · |−1

A

) for every α ∈ ∆′, where | · | : A× → C× is the idele norm of
A

×. In the case ∆′ = ∆, it is simply called exceptional or anti-exceptional
respectively.

Let P = MN be the parabolic subgroup associated to ∆′. If χ is ∆′-
exceptional, we may call χ an exceptional character for M

A

.
For a general χ, consider the induced representation

i(χ) = IndTA
TFZ(T

A

)
χ
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of T
A

. For each χv, let χ′
v be an extension of χv to an maximal abelian

subgroupAv ⊂ T v, where for almost all finite v we haveAv = T(Ov)Z(T v). Let
i(χv) = IndTv

Av
χ′
v be the irreducible induced representation. The isomorphism

class of i(χv) is independent of the choice of Av and the extension χ′
v. We have

i(χ) = ⊗vi(χv).
Now we define the induced representation of G

A

as follows. Recall that B =
TU is the Borel subgroup of G. Let δB be the modular character of B

A

.

Then we have the induced representation I(i(χ)) = IndGA
B
A

(
i(χ)⊗ 1

)
, where 1

denotes the trivial representation of U
A

. One has I(i(χ)) = ⊗vI(i(χv)), where
the local space I(i(χv)) consists of smooth functions fv : Gv → i(χv) satisfying

f(bv · gv) = δ
1/2

Bv
(bv) · i(χv)(bv)f(gv)

for all bv ∈ Bv and gv ∈ Gv. Here δBv
is the pull-back of the modular character

δBv
on Bv via the quotient Bv ։ Bv. By induction in stages, we also identify

I(i(χ)) as the representation I(χ) induced from χ ⊗ 1 on (TFZ(TA)) ⋉ U
A

.
We may use I(χ) for I(i(χ)) interchangeably.
For the general notions of admissible and automorphic representations of G

A

,
which are derived from proper modification as in the linear algebraic case, we
refer the reader to [Wei18, §8]. In particular, I(χ) defined above is an admissible
representation.
Let K =

∏
vKv ⊂ G

A

be a maximal compact subgroup, where Kv is the
hyperspecial maximal compact subgroup of Gv in §2.5 for almost all finite
v ∈ |F |. The representation space of I(χ) could be identified with the space of
right K-finite functions (see [MW95, II.1] and also [KP84, page 108-109])

f : U
A

TF \GA = (TF \TA) ·K C (12)

such that for each k ∈ K, the function t 7→ f(t · k) belongs to i(χ). With this
identification, for f ∈ I(χ) we define the Eisenstein series on G

A

by

E(g, χ, f) =
∑

γ∈BF \GF

f(γ · g) for g ∈ G
A

,

where GF is identified as a subgroup of G
A

via the canonical splitting.
For any w = wα1 ...wαl

∈ W in a minimal decomposition, let w = wα1 ...wαl
∈

GF be the representative which could be viewed as in G
A

. For almost all v, we
have w = w, where w ∈ Gv is the element given by (2). The two representations
wi(χ) and i(wχ) are isomorphic albeit not canonically. Let

rw,χ = ⊗vrw,χv
: wi(χ) → i(wχ)

be an isomorphism where for almost all finite v ∈ |F |, the isomorphism rw,χv
:

wi(χv) → i(wχv) is the canonical one given by rw,χv
(fv)(t) = fv(w

−1tw),
see [GSS, §3.6]. We also denote by rw,χ : I(wi(χ)) → I(i(wχ)) the induced
isomorphism.
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Let Tw,χ =
⊗

v Tw,χv
: I(χ) → I(wχ) be the intertwining operator given by

Tw,χ(f)(g) =

∫

Uw
A

rw,χ(f(w
−1ug))du,

where Uw
A

= U
A

∩ wU−
A

w−1. That is, Tw,χ = rw,χ ◦ T (w, i(χ)), where
T (w, i(χ)) : I(i(χ)) → I(wi(χ)) is the usual intertwining operator. Locally,
the operator Tw,χv

= rw,χv
◦ T (w, i(χv)) is defined by analytic continuation of

the integral

Tw,χv
(fv)(gv) =

∫

Uw
v

rw,χv
(fv(w

−1uvgv))duv, (13)

where Uwv = Uv ∩ wU
−
v w

−1.
For w ∈ W , denote Φ

w

:= {α ∈ Φ : α > 0 and w(α) < 0}. For a non-
archimedean v such that |n|v = 1 and χv is an unramified character for
an unramified group Gv, denote the Gindikin-Karpelevich coefficient (see
[Cas80,McN16,Gao18a]) by

cgk(w, χ) :=
∏

α∈Φ
w

cgk(wα, χv), where cgk(wα, χv) =
1− q−1χv(hα(̟

nα
v ))

1− χv(hα(̟
nα
v )

.

(14)
The intertwining operator Tw,χ : I(χv) → I(wχv) gives

Tw,χv
(f0) = cgk(w, χv) · f

′
0,

where f0 ∈ I(χv) and f
′
0 ∈ I(wχv) are the normalized unramified vectors.

The set of genuine automorphic characters χ on Z(T
A

) affords an analytic
structure. The Eisenstein series E(g, χ, f) can be meromorphically contin-
ued as an operator on χ, and satisfies the following functional equation
E(g, χ, f) = E(g,wχ, T (w, χ)(f)) for w ∈ W . Moreover, the Eisenstein se-
ries have their “greatest” singularity for exceptional characters. Let χ be an
exceptional character, define

θ(g, f, χ) = lim
χ′→χ

∏

α∈Φ
α>0

L(|·|
A

· χ′
α) · ε(0, χ

′
α)

L(χ′
α)

· E(g, χ, f),

where L(χ′) (resp. ε(0, χ′)) is the Hecke L-function (resp. ε-factor) associated
with a Hecke character χ′. Let Θ(G

A

, χ) be the automorphic representation
generated by f 7→ θ(g, f, χ). One has

Θ(G
A

, χ) = ⊗vΘ(Gv, χv),

where the local representation Θ(Gv, χv) is realized as the unique Langlands
quotient of I(χv), which is also the image of the local intertwining intertwining
operator T (wG, χv) : I(χv) → I(wGχv).
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3.2 Whittaker models

Fix a nontrivial character ψ : A/F → C×. By abuse of notation, denote by ψ
the character on U

A

such that its restriction to every Uα,A for α ∈ ∆ is given
by ψ ◦ e−1

α . For an irreducible genuine automorphic representation (Π, VΠ) of
G
A

, consider the global ψ-Whittaker functional on VΠ by

λ
A

(f) =

∫

UF \U
A

f(w−1
G u)ψ(u)−1du, (15)

where f ∈ VΠ is any function in the space.

On the other hand, for v ∈ |F | and an irreducible genuine representation (π, Vπ)
of Gv, denote by Whψv

(π) the space of continuous ψv-Whittaker functionals
of Vπ, i.e. the set of all continuous functionals

λv : Vπ → C

such that λv(π(u)f) = ψv(u)·f for all f ∈ Vπ and u ∈ Uv. A remark is necessary
on the topology on Vπ and thus the continuity of such λv, see [Shal74, §3]. If v
is non-archimedean, then Vπ is endowed with the trivial locally convex topology
for which every semi-norm is continuous. If v is an archimedean place, then
by a genuine representation (π, Vπ) we mean a genuine (gC,Kv)-module with
commuting action by the complexified Lie algebra gC of Gv and a maximal
compact subgroup Kv ⊂ Gv (as the preimage of a maximal compact subgroup
Kv of Gv), i.e.,

(Ad(k)X)(v) = (kXk−1)(v)

for every X ∈ gC, k ∈ Kv and v ∈ Vπ. For archimedean v, we assume Vπ
is pre-unitary with respect to a norm || · ||, which then gives rise to a family
of semi-norms {||v||X = ||X(v)|| : X ∈ gC}; this gives a weak topology on Vπ .
Thus, we have specified the topology on Vπ and also the expected continuity
of λv for every v ∈ |F |.

If π is an unramified representation of Gv with a chosen unramified vector f0,
then one has the unramified Whittaker function

Wλv
(g) = λv(π(g)f0), g ∈ Gv (16)

associated to λv.

Definition 3.2. A theta representation Θ(G
A

, χ) is called ψ-distinguished if
the following two conditions hold:

• λ
A

on Θ(G
A

, χ) is nonzero, and

• dimWhψv
(Θ(Gv, χv)) = 1 for every v ∈ |F |.

As in the linear algebraic case, we have
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Proposition 3.3. Let Θ(G
A

, χ) be a ψ-distinguished theta representation.
Then λ

A

(θ) =
∏
v λv(θv) for θ = ⊗vθv ∈ ⊗vΘ(Gv, χv), where for almost all

v, λv ∈ Whψv
(Θ(Gv, χv)) is the unique normalized Whittaker functional such

that λv(θ
0
v) = 1 for the unramified vector θ0v ∈ Θ(Gv, χv).

Remark 3.4. For a fixed ψ, an irreducible automorphic representation (Π, VΠ)
of G

A

is called globally ψ-generic if λ
A

(f) 6= 0 for some f ∈ VΠ. Moreover,
it is called locally ψ-generic if dimWhψv

(Θ(Gv, χv)) > 0 for every v ∈ |F |. If
G
A

= G
A

, i.e., n = 1, then it is expected that global and local ψ-genericity
are equivalent (see [Sha11]). For covering groups, Gelbart and Soudry [GS87]
showed that locally ψ-generic (but not globally ψ-generic) cuspidal genuine rep-
resentation of the double cover SL2,A exists. However, it is expected that for
theta representations of covering groups, local and global ψ-genericity agree.
In particular, it should be sufficient to assume the second condition in Defini-
tion 3.2.

3.3 Unramified Whittaker function

We assume in this subsection that v is a non-archimedean place such that
Gv is an unramified group. We first summarize some results from [Gao17]
regarding values of Whittaker functions for principal series and local theta
representations. For simplicity of notation, we omit the subscript v and write
F, T , χ, ψ for Fv, T v, χv, ψv etc. Thus, we assume that χ is unramified and ψ
has conductor O.
Recall that χ is a genuine unramified character of Z(T ) and A ⊂ T a maximal
abelian subgroup. By abuse of notation, denote by χ an extension to A. Let
Ftn(i(χ)) be the vector space of functions c on T satisfying

c(t · z) = c(t) · χ(z), t ∈ T and z ∈ A.

The support of c ∈ Ftn(i(χ)) is a disjoint union of cosets in T/A.
Let {γi} ⊂ T be a chosen set of representatives of T/A, and consider cγi ∈
Ftn(i(χ)) which has support γi · A and cγi(γi) = 1. It gives rise to a linear
functional lγi ∈ i(χ)∨ such that lγi(φγj ) = δij , where φγj ∈ i(χ) is the unique

element such that supp(φγj ) = A · γ−1
j and φγj (γ

−1
j ) = 1. Then there is a

natural isomorphism of vector spaces Ftn(i(χ)) ≃ i(χ)∨ given by

c 7→ lc :=
∑

γi∈T/A

c(γi) · lγi .

It can be checked easily that this isomorphism does not depend on the choice
of representatives for T/A.
Furthermore, there is an isomorphism between i(χ)∨ and the space Whψ(I(χ))
of ψ-Whittaker functionals on I(χ) given by

l 7→ λl
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with

λl : I(χ) → C, f 7→ l

(∫

U

f(w−1
G u)ψ(u)−1du

)
,

where f ∈ I(χ) is now viewed as an i(χ)-valued function on G. For any
c ∈ Ftn(i(χ)), write λc ∈ Whψ(I(χ)) for the ψ-Whittaker functional of I(χ)
associated to lc. Therefore, c 7→ λc gives an isomorphism between Ftn(i(χ))
and Whψ(I(χ)). For any γ ∈ T , we will write

λγ := λcγ .

To avoid confusion, we may write λχ instead of λ for any λ ∈ Whψ(I(χ)) to
emphasize the underlying representation I(χ) involved.
The operator Tw,χ : I(χ) → I(wχ) induces a homomorphism of vector spaces

T ∗
w,χ : Whψ(I(

wχ)) → Whψ(I(χ))

given by 〈
λ

wχ
c ,−

〉
7→
〈
λ

wχ
c , Tw,χ(−)

〉

for any c ∈ Ftn(i(wχ)). Let
{
λ

wχ
γ

}
γ∈T/A

be a basis for Whψ(I(
wχ)), and{

λχγ′

}
γ∈T/A

a basis for Whψ(I(χ)). The map T ∗
w,χ is then determined by the

square matrix [τ(w, χ, γ, γ′)]γ,γ′∈T/A such that

T ∗
w,χ(λ

wχ
γ ) =

∑

γ′∈T/A

τ(w, χ, γ, γ′) · λχγ′ .

We call the matrix [τ(w, χ, γ, γ′)] a scattering matrix (see [GSS, §3.6]). It
satisfies some immediate properties:

• For w ∈ W and z, z′ ∈ A, the identity

τ(w, χ, γ · z, γ′ · z′) = (wχ)−1(z) · τ(w, χ, γ, γ′) · χ(z′) (17)

holds.

• For w1,w2 ∈ W such that l(w2w1) = l(w2) + l(w1), one has

τ(w2w1, χ, γ, γ
′) =

∑

γ′′∈T/A

τ(w2,
w1χ, γ, γ′′) · τ(w1, χ, γ

′′, γ′), (18)

which is referred to as the cocycle relation.

In view of the cocycle relation in (18), the understanding of τ(χ,w, γ, γ′) in
principle is reduced to the case where w = wα for some α ∈ ∆. For this
purpose, we proceed to introduce first the Gauss sum.
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Let du be the self-dual Haar measure of F such that du(O) = 1; thus, du(O×) =
1− q−1. The Gauss sum is defined by

Gψ(a, b) =

∫

O×

(u,̟)an · ψ(̟bu)du for a, b ∈ Z.

In particular, we are interest in

gψ(k) := Gψ(k,−1),

where k ∈ Z is any integer. We write henceforth

ξ := (−1, ̟)n ∈ C×.

It is known that

gψ(k) =





ξk · gψ(−k) for any k ∈ Z,

−q−1 if n|k,

gψ(k) with |gψ(k)| = q−1/2 if n ∤ k.

(19)

Here z denotes the complex conjugation of a complex number z. For any y ∈ Y ,
we write

sy := s(y(̟)) ∈ T .

If µ2n ⊂ F× and thus ξ = 1, then the map s : Y → T defined above is a
homomorphism by (10).
Suppose that γ = sy1 and γ′ = sy. Then it is shown in [KP84,McN16] (with
some refinement from [Gao17]) that τ(χ,wα, γ, γ

′) is determined as follows:

• We can write τ(χ,wα, γ, γ
′) = τ1(χ,wα, γ, γ

′)+ τ2(wα, χ, γ, γ
′) such that

τ i(wα, χ, γ · z, γ′ · z′) = (wαχ)−1(z) · τ i(wα, χ, γ, γ
′) · χ(z′) for z, z′ ∈ A.

• One has τ1(wα, χ, γ, γ
′) = 0 unless y1 ≡ y mod YQ,n. Moreover,

τ2(wα, χ, γ, γ
′) = 0 unless y1 ≡ wα[y] mod YQ,n.

• If y1 = y, then

τ1(wα, χ, γ, γ
′) = (1 − q−1)

χ(hα(̟
nα))ky,α

1− χ(hα(̟nα))
, where ky,α =

⌈
〈y, α〉

nα

⌉
.

If y1 = wα[y], then

τ2(wα, χ, γ, γ
′) = ξ〈yρ,α〉·D(y,α∨) · gψ−1(〈yρ, α〉Q(α∨)).

The above is a generalization for the GLr case considered in [KP84].
Let f0 ∈ I(χ) be the normalized unramified vector such that f0(1) ∈ i(χ) is
the unramified vector taking value 1 at 1T . For any λ ∈ Whψ(I(χ)), consider
the associated unramified Whittaker function Wλ in (16). We also denote

Wc := Wλc
and Wγ := Wλγ

,

for any c ∈ Ftn(i(χ)) and γ ∈ T .

An element t ∈ T is called dominant if t · (U ∩K) · t
−1

⊂ K.
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Proposition 3.5 ([Pat87,CO13]). Let I(χ) be an unramified principal series
of G and γ ∈ T . Let Wγ be the Whittaker function associated to f0. Then,
Wγ(t) = 0 unless t ∈ T is dominant. Moreover, for dominant t, one has

Wγ(t) = δ
1/2
B (t) ·

∑

w∈W

cgk(wGw
−1, χ) · τ(w,w

−1

χ, γ, wG · t · w−1
G ),

where δB is the modular character of B.

Proof. For Kazhdan–Patterson covers of GLr, the formula is given in
[Pat87, CO13]. For general Brylinski–Deligne covers of GLr, the details of
the proof are given in [Gao18b, Proposition 3.3 and 3.4]. However, as noted
there, the argument actually applies to covers of general reductive group, since
the ingredients used in the proof are [McN16, Lemma 6.1, Theorem 8.1] and
[Gao17, Corollary 3.5], which all hold for Brylinski–Deligne coverings of general
reductive groups.

Note that the above Proposition holds for any χ (not necessarily exceptional).
Now if χ is exceptional, then every λc ∈ Whψ(I(χ)) that factors through the
map

TwG,χ : I(χ) → I(wGχ),

gives a ψ-Whittaker functional of Θ(G,χ). Moreover, it is shown in [Gao17]
that we always have the bounds

∣∣∣℘(O̥

Q,n)
∣∣∣ ≤ dimWhψ(Θ(G,χ)) ≤

∣∣∣℘(O̥

Q,n,sc)
∣∣∣ . (20)

The proof of the first inequality in (20) is constructive. More precisely, it
is shown in [Gao17] that any orbit Oy ∈ O̥

Q,n gives rise to an element
cOy

∈ Ftn(i(χ)), whose associated nontrivial ψ-Whittaker functional λOy
of

I(χ) factors through TwG,χ. That is, λOy
can be viewed as a ψ-Whittaker

functional on Θ(G,χ). In this case, let WOy
:= WcOy

be the Whittaker func-

tion associated to the unramified vector θ0 := TwG,χ(f
0) in Θ(G,χ).

As investigated in [Gao17], the case when the two bounds in (20) do not agree
is quite subtle. However, we will consider in §5 and §6 of this paper only the
case where O̥

Q,n = O̥

Q,n,sc. Therefore, we only recall below the construction

of cOy
∈ Ftn(i(χ)) and some results for WOy

when Oy ∈ O̥

Q,n, which are
essentially already proved in [Gao18b].
The element cOy

for Oy ∈ O̥

Q,n is given in several steps as follows.

• For any x ∈ R, let ⌈x⌉ be the minimal integer such that ⌈x⌉ ≥ x. For
any y ∈ Y and α∨ ∈ ∆∨, write

t(wα, y) := ξ〈yρ,α〉·D(y,α∨) · qky,α−1 · gψ−1(〈yρ, α〉Q(α∨))−1,

where

ky,α =

⌈
〈y, α〉

nα

⌉
.
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For w = wk...w2w1 ∈ W in a minimum decomposition, define

t(w, y) :=
k∏

i=1

t(wi,wi−1...w1[y]),

which is well-defined and independent of the minimum expansion of w
(see [Gao17, Proposition 3.10]).

• Assign cOy
(sy) = 1. For any w ∈W , define

cOy
(s
w[y]) := t(w, y) · cOy

(sy) = t(w, y).

If l(wαw) = 1 + l(w) for some α ∈ ∆, then one sees immediately that

cOy
(s
wαw[y]) = t(wα,w[y]) · cOy

(s
w[y]).

• Extend cOy
to a function on T by

cOy
(s
w[y] · z) = cOy

(s
w[y]) · χv(z), z ∈ A.

and

cOy
(t) = 0 if t /∈

⋃

w∈W

s
w[y] ·A. (21)

Then cOy
is a well-defined element in Ftn(i(χ)). For the values of the Whittaker

function WOy
, we have the following.

Proposition 3.6. Let Oy ∈ O̥

Q,n and the Whittaker function WOy
as above.

If t ∈ T is not dominant, then WOy
(t) = 0. For dominant t ∈ T , one has

WOy
(t) = cgk(wG, χ) · δ

1/2
B (t) · cOy

(wG · t · w−1
G ).

In particular, for dominant sz with z ∈ Y , if µ2n ⊂ F×, then

WOy
(sz) = cgk(wG, χ) · δ

1/2
B (sz) · cOy

(
s
wG(z)

)
.

Proof. Again, for covers of the general linear groups, a detailed proof for the
first equality is given in [Gao18b, Proposition 3.4]. However, the same as
mentioned in the proof for Proposition 3.5, the argument in [Gao18b] actually
applies to Brylinski–Deligne covers of general reductive group.

For the second equality, it follows from (6) and our assumption µ2n ⊂ F× that
w · sz ·w

−1 = s
w(z) for any w ∈W ; see [Gao18b, Lemma 2.1] for details. This

completes the proof.
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4 Eisenstein series induced from theta representations

In this section, we consider a theta representation of the Levi subgroup of a
maximal parabolic subgroup and Eisenstein series induced from it. If the theta
representation is ψ-distinguished, then the Fourier coefficient of the Eisenstein
series has a global factorization and thus the computation is completely re-
duced to the local case. For unramified places, we will show that the local
computation can be reduced to some quantities involving the scattering matrix
[τ(w, χ, γ, γ′)].

4.1 Maximal parabolic subgroup

We continue to use (X,Φ,∆;Y,Φ∨,∆∨) to denote the root datum of G. Con-
sider a simple root β ∈ ∆. Let P = MN be the maximal parabolic subgroup
of G associated with ∆\ {β}. We write

(X,ΦM ,∆M ; Y,Φ∨
M ,∆

∨
M )

for the root datum of M. Since T ⊂ M, the character and cocharacter lattices
X and Y respectively are unchanged. However, we have ∆M = ∆\ {β} and
∆∨
M = ∆∨\ {β∨}. Denote by Y scM the coroot lattice of M, which is then the

sublattice of Y sc spanned by ∆∨
M . Let BM = TUM be the Borel subgroup of

M corresponding to ∆M .
Denote by WM ⊂ W the Weyl group of (M,T), where we reserve W for the
Weyl group of G. In general, to avoid confusion, we will use subscript to
differentiate some structural data associated to M and G. For example, wG
(resp. wM ) denotes the longest element in W (resp. WM ).
Let G be a K2-extension associated to (D, η). Then by restriction, we obtain
P = MN. Thus, M is associated to the pair (D, η|Y sc

M
), where the quadratic

form Q(x) = D(x, x) carries only the WM -invariance by applying the “forget-
ful” functor from the W -invariance. From G

A

, we obtain by restriction the
covering groups P

A

,M
A

and their local analogues P v and Mv, which also
arise from P and M.

4.2 Fourier coefficients of Eisenstein series

Let 2ρP be the sum of positive roots in N, define

ωP = 〈ρP , β
∨〉

−1
· ρP .

Then ωP ∈ X ⊗Q is the fundamental weight associated with β. It is known
that there exists a unique wl ∈W such that

wl(∆M ) ⊆ ∆ and wl(β) ∈ Φ−.

Let P′ = M′N′ be the maximal parabolic subgroup of G associated with
wl(∆M ). Then, wl(ωP ) = −ωP ′ .
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Consider the character group X∗(M) of M, and also the real and complex
vector space

X∗(M)R = X∗(M)⊗Z R, X∗(M)C = X∗(M)⊗Z C.

Any νo ∈ X∗(M) could be viewed as a character on M(A) valued in A×.
Further composition with the valuation of A× gives us a character of M(A)
valued in C×. Similarly, for any ν = νo ⊗ s ∈ X∗(M)C, we denote by δδδν the
following character of M(A):

δδδν : M(A) → C, m 7→ |νo(m)|s
A

.

The relation between δδδ and the modular character δP is δδδρN⊗1 = δ
1/2
P . In the

case of maximal parabolic subgroup, X∗(M/Z(G)) ⊗ C is of dimension one
over C with ωP ⊗ 1 or ρP ⊗ 1 as a basis vector. Henceforth, we will write

δδδs := δδδωP⊗s, s ∈ C.

We have δδδs =
∏
v δδδ

s
v. For example for SL2 with positive root β, ρP = β/2

and ωP = ρP ; then δδδs = δ
s/2
P , with δP the modular character of the Borel

subgroup P .
Let (π, Vπ) be a genuine irreducible automorphic representation of M

A

. We
take δδδs to be a character of the coveringM

A

by the inflation via the surjection
M
A

։M
A

. Now we consider the induced representation

I(s, π) := IndGA
P
A

(δδδsπ)⊗ 1.

We have the tensor product decomposition I(s, π) =
⊗

v I(s, πv), where
I(s, πv) is unramified for almost all v. Similar to (12), an element f0 ∈ I(0, π)
is identified with a right K-finite function

f : N
A

MF \GA = (MF \MA

) ·K C (22)

such that for every k ∈ K the function m 7→ f0(m · k) lies in Vπ. For every
s ∈ C, we define

fs(m · k) := δδδs(m) · f0(m · k) ∈ I(s, π),

and call such fs a flat section. Consider the Eisenstein series

E(g, fs, π) =
∑

γ∈PF \GF

fs(γg),

whose ψ-Fourier coefficient is given by

Eψ(g, fs, π) =

∫

UF \U
A

E(ug, fs, π)ψ(u)
−1du.
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Suppose fv = ⊗vfs,v ∈
⊗

v I(s, πv). Locally, let λv be a ψv-Whittaker func-
tional of πv (which may be zero). Define λGv on I(s, πv) by

λGv (fs,v) :=

∫

N ′
v

λv
(
fs,v(w

−1
l u)

)
ψv(u)

−1du.

Note that wl and ψ are compatible, i.e., ψ and wlψ agree on UM,A. Thus λGv
is a well-defined ψv-Whittaker functional on I(s, πv). Associated to λGv is the
Whittaker function

WG
fs,v (gv) := λGv

(
I(s, πv))(gv)fs,v)

)

for any gv ∈ Gv.
Now we specialize to the case π = Θ(M

A

, χ). More precisely, let χ :
Z(T

A

) → C× be a genuine automorphic character. Assume also that χ is
∆M -exceptional, i.e., χ is an exceptional character for the covering group M

A

.
One has the theta representation Θ(M

A

, χ) discussed in §3. Since we never con-
sider theta representation of G

A

in this paper, we may write Θ(χ) := Θ(M
A

, χ)
whenever no confusion arises.

Proposition 4.1. Let Θ(M
A

, χ) be a ψ-distinguished theta representation.
Then, for fs = ⊗vfs,v ∈ I(s,Θ(M

A

, χ)), we have

Eψ(g, fs,Θ(M
A

, χ)) =
∏

v

WG
fs,v (gv),

where g =
∏
v gv ∈ G

A

.

Proof. This follows from the factorization of the Whittaker functional
λ
A

=
∏
v λv in Proposition 3.3 and the standard unfolding process for

Eψ(g, fs,Θ(M
A

, χ)). The argument, which follows the same line as in the
linear algebraic case, can be found in [Sha10, Theorem 7.1.2 and Proposi-
tion 7.1.3].

Remark 4.2. The key for Proposition 4.1 is that the inducing theta represen-
tation is distinguished. Therefore, one could consider general (not necessarily
maximal) parabolic subgroups and distinguished theta representations on the
Levi subgroups. The analogous global factorization for the Fourier coefficients
of Eisenstein series still holds.

4.3 Reduction of the unramified computation

In this subsection, assume Θ(M
A

, χ) is ψ-distinguished. Recall that for almost
all v, we have λv(θ

0
v) = 1 for the unramified vector θ0v ∈ Θ(Mv, χv). Consider

v such that Gv is an unramified group and χv is an unramified character. Let
f0
s,v ∈ I(s,Θ(Mv, χv)) be the normalized unramified vector such that

f0
s,v(1) = θ0v.
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We would like to compute the local unramified component WG
f0
s,v

(1) of

Eψ(1, fs,Θ(χ)):

WG
f0
s,v

(1) =

∫

N ′
v

λv
(
f0
s,v(w

−1
l u)

)
ψv(u)

−1du. (23)

Recall that we use Wλv
to denote the Whittaker function on Mv associated to

θ0v and the ψv-Whittaker functional λv : Θ(Mv, χv) → C. That is,

Wλv
(m) = λv

(
Θ(Mv, χv)(m)θ0v

)

such that Wλv
(1) = 1. There are two approaches of computing the integration

in (23) we will use in this paper. The first approach relies on an explicit
decomposition of w−1

l u as mû · k where m ∈ Mv, û ∈ Nv and k ∈ Kv. Then
for each u, λv(f

0
s,v(w

−1
l u)) is essentially the Whittaker value Wλv

(m). This

approach is adapted in [BBL03] for Kazhdan–Patterson covers of GLr, though
the covers and theta representations considered there do not exactly fit in our
context, as the key ingredient used in [BBL03] is the uniqueness of (ψv, µv)-
Whittaker functionals for I(s,Θ(χv)).
The second approach of computing WG

f0
s,v

is from adapting the idea in the

linear algebraic case with proper modification. We will concentrate on this
approach in the remaining part of this section. Let χv : Z(T v) → C× be an
exceptional character for Mv, i.e., it is ∆M -exceptional. Write I(wMχv) :=

IndMv

BM,v

wM i(χv).

From the embedding

Θ(Mv, χv) →֒ I(wMχv),

we have the surjective homomorphism of vector spaces

R : Whψv
(I(wMχv)) ։ Whψv

(
Θ(Mv, χv)

)
,

where the image is of dimension one by the distinguished-ness of Θ(M
A

, χ).
Let λ′v ∈ Whψv

(I(wMχv)). We see that λ′v ∈ R
−1(λv) if and only if λ′v(θ

0
v) = 1.

One has the embeddings

I(s,Θ(Mv, χv)) →֒ I (s, I(wMχv)) →֒ IGv

Bv
(s · ωP , i(

wMχv)), (24)

where s · ωP : T v → C× is the natural character obtained from the restriction
s ·ωP ∈ Hom(Mv,C

×). The first two induced representations in (24) are from
P v to Gv. Let λ

′
v ∈ R

−1(λv). Then it follows from the first embedding of (24)
that

λv
(
f0
s,v(w

−1
l u)

)
= λ′v

(
f0
s,v(w

−1
l u)

)
,

where on the right hand side we view f0
s,v as the normalized unramified vector

in I (s, I(wMχv)). Note that f0
s,v(1) = θ0v is the unramified vector in I(wMχv).
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Let c ∈ Ftn(i(wMχv)) be the element such that we have the correspondence

c ↔ lc ↔ λ′v,

which is described in §3.3. Suppose w−1
l u = mûk with m ∈ Mv, û ∈ Nv and

k ∈ K. Temporarily, denote σ := I(wMχv). It then follows that

λ′v
(
f0
s,v(w

−1
l u)

)
=λ′v

(
f0
s,v(m · û · k)

)

=λ′v

(
(δδδsv · δ

1/2
P )(m) · σ(m) · f0

s,v(1)
)

=(δδδsv · δ
1/2
P )(m) · λ′v

(
σ(m) · θ0v

)

=(δδδsv · δ
1/2
P )(m) · lc

(∫

UM,v

(
σ(m)θ0v

)
(w−1

M x)ψ−1
v (x)dx

)
(25)

Therefore,

WG
f0
s,v

(1) =

∫

N ′
v

λv
(
f0
s,v(w

−1
l u)

)
ψv(u)

−1du

=

∫

N ′
v

lc

(
(δδδsv · δ

1/2
P )(m) ·

∫

UM,v

θ0v(w
−1
M x ·m)ψ−1(x)dx

)
ψv(u)

−1du

=lc

(∫

N ′
v

(δδδsv · δ
1/2
P )(m) ·

∫

UM,v

θ0v(w
−1
M x ·m)ψ−1(x)dxψv(u)

−1du

)

=lc

(∫

N ′
v

∫

UM,v

f0
s,v(w

−1
M x ·m)(1) · ψ−1(x)ψv(u)

−1dxdu

)

=lc

(∫

N ′
v

∫

UM,v

f0
s,v(w

−1
M x · w−1

l u)(1) · ψ−1(x)ψv(u)
−1dxdu

)

(26)

Note that the function f ′
s,v : g 7→ f0

s,v(g)(1) is the unramified vector in IGv

Bv
(s ·

ωP , i(
wMχv)), which is the image of f0

s,v in the second embedding of (24) above.
By a change of variable, we get that

WG
f0
s,v

(1) = lc

(∫

Uv

f ′
s,v(w

−1
G u)ψv(u)

−1du

)
,

where wG is the longest Weyl element inWG. By abuse of notation, we still use

f0
s,v to denote the i(wMχv)-valued unramified vector in IGv

Bv
(s · ωP , i(

wMχv)).

In summary, we have shown the following.

Proposition 4.3. Let c ∈ Ftn(i(wMχv)) be such that the associated ψM -
Whittaker functional λ′v,c of I(wMχv) is normalized, i.e. λ′v,c(θ

0
v) = 1. Let

λGv,c be ψ-Whittaker functional of IGv

Bv
(s · ωP , i(

wMχv)) associated to c. Then

WG
f0
s,v

(1) = WG
v,c(1),
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where WG
v,c is the Whittaker function on Gv associated to f0

s,v and λGv,c. In

particular, for any γ ∈ T v such that WM
v,γ(1) 6= 0, where WM

v,γ is the Whittaker
function associated to θ0v and λv,γ : I(wMχv) → C, one has

WG
f0
s,v

(1) =
WG
v,γ(1)

WM
v,γ(1)

.

We note that the values of both WG
v,γ(1) and WM

v,γ(1) are given by Proposi-
tion 3.5. A special case is to consider γ = 1T = 1G.

Lemma 4.4. We have λ′v,1T (θ
0
v) = τ(wM , χv, 1T , 1T ); or equivalently,

WM
v,1T

(1) = τ(wM , χv, 1T , 1T ).

Proof. For the proof we temporarily denote χ′
v := wMχv, which is an anti-

exceptional for Mv. It follows from Proposition 3.5 that

WM
v,1T

(1) =
∑

w∈WM

cgk(wMw
−1, χ′

v) · τ(w,
w−1

χ′
v, 1T , 1T ).

For any nontrivial w ∈ WM , the set ΦM,w contains an element α ∈ ∆M .
Fix such an α. It then follows from (14) and the fact χ′(hα(̟

nα)) = q that
cgk(wα, χ

′) = 0. Therefore cgk(w, χ
′) = 0 as well. Thus,

Wv,1T
(1) = τ(wM , χv, 1T , 1T ).

This completes the proof.

We remark that it is not clear if τ(wM , χv, 1T , 1T ) 6= 0 in general. Moreover,
even if it is nonzero, it is not always equal to 1. However, by assuming its
nonvanishing, we obtain the following more explicit form for WG

f0
s,v

(1) from

Proposition 4.3

Theorem 4.5. Keep the above notations. Let WG
v,1T

be the ψ-Whittaker func-

tional of IGv

Bv
(s ·ωP , i(

wMχv)). If τ(wM , χv, 1T , 1T ) 6= 0, then as the unramified

local component of Eψ(1, fs,Θ(χ)), we have

WG
f0
s,v

(1) =
WG
v,1T

(1)

τ(wM , χv, 1T , 1T )
.

In view of Proposition 3.5 and Theorem 4.5, we see that to obtain an explicit
form for WG

f0
s,v

(1) amounts to some computation involving the scattering ma-

trix. However, there are difficulties with high-rank groups. For covers of the
general linear groups, such difficulties were overcome in the work by Suzuki
[Suz97]. In §6, we will elaborate on Theorem 4.5 by considering the rank-two
symplectic groups.

Documenta Mathematica 26 (2021) 465–522



Hecke L-functions and Fourier Coefficients 493

5 Covering groups of GLr

In this section, we treat the case of certain “nice” covers (n,GLr). Our main
result is Theorem 5.11. When specialised to topological Kazhdan–Patterson
covers, these nice covers are just degree n − 1 covers of GLn,A, in which case
the result was first proved in [Suz97, §7.6].

5.1 Coverings of GLr

Recall the set-up and notations in §2.1. Let

{X, ∆, Φ; Y, ∆∨, Φ∨}

be the root datum of GLr, r ≥ 2 with a maximal split torus T. To facilitate
computation, we fix a basis

{e1, e2, ..., er}

for the cocharacter lattice Y of T, and a basis {e∗1, e
∗
2, ..., e

∗
r} for the character

lattice X of T such that for the natural pairing

〈−,−〉 : Y ×X → Z,

one has
〈
ei, e

∗
j

〉
= δij . Denote α∨

i := ei − ei+1 and αi := e∗i − e∗i+1. We choose
simple coroots

∆∨ = {α∨
i : 1 ≤ i ≤ r − 1}

and corresponding simple roots ∆ = {αi : 1 ≤ i ≤ r − 1}. Let B = TU be the
Borel subgroup of GLr associated with ∆.
Any coroot is of the form α∨

i,j := ei − ej for i 6= j. In particular, with this
notation, α∨

i = α∨
i,i+1. The positive coroots are

Φ∨
+ =

{
α∨
i,j : i < j

}
.

Let {eα : Ga → Uα}α∈Φ be a Chevalley-Steinberg system of pinnings for GLr.
For any a ∈ Ga, we write ei,j(a) with i 6= j for the unipotent element associated
with α∨

i,j . Similarly, for any a ∈ Gm, we write hi,j(a) or hαi,j
(a) for the element

α∨
i,j(a).

Since the derived group of GLr is simply-connected, the isomorphism classes
of K2-extensions of GLr over F are determined by Weyl-invariant integer-
valued quadratic forms on Y . Let Q be such a quadratic form and BQ the
associated bilinear form. The quadratic form Q is determined from BQ by
Q(x) = BQ(x, x)/2. For GLr, any Weyl-invariant integer-valued bilinear form
BQ is determined by two integers p,q ∈ Z such that

BQ(ei, ei) = 2p and BQ(ei, ej) = q if i 6= j. (27)

For any coroot α∨ ∈ Φ∨, one hasQ(α∨) = 2p−q. LetGLr be theK2-extension
of GLr with the underlying p and q understood.
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In fact, we may choose (without loss of generality on the isomorphism class) a
bisector D of the symmetric bilinear form BQ as follows:

D(ei, ej) =





0 if i < j,

Q(ei) = p if i = j,

BQ(ei, ej) = q if i > j.

(28)

Also take η = 1. The group structure of GLr is described as in (2) to (6).
We remark that for any p,q such that 2p − q = −1, we have the Kazhdan–
Patterson extensions ofGLr, whose topological coverings are studied in [KP84].
The parameter p is just the twisting parameter c in the notation of [KP84].
Note that the numbers Q(α∨) and nα are both independent of the choice of
α∨, since GLr is simply-laced.

Definition 5.1. An n-fold cover (n,GLr) is called nice if the following two
conditions hold:

• n divides 2p, and

• nα = r − 1.

For example, the Kazhdan–Patterson extension (n,GLn+1) with p = 0,q = −1
is a nice cover. As another example, (n = 1,GL2) is nice for any p and q.

5.2 Weyl orbits

Let P = MN ⊂ GLr be the maximal parabolic subgroup associated with the
subset ∆\

{
α∨
r−1

}
. Here, M ≃ GLr−1 ×GL1. The root datum of M is

(X,ΦM ,∆M ; Y,Φ∨
M ,∆

∨
M ),

where ∆M = ∆GLr−1 and ∆∨
M = ∆∨

GLr−1
and similarly for ΦM and Φ∨

M . Also,
WM =WGLr−1

is the Weyl group of M with wM ∈WM the longest element.
The unique wl ∈ W such that wl(∆M ) ⊆ ∆ and wl(α) < 0 for every α ∈ N in
this case is

wl = wα1 ·wα2 · ... ·wαr−1 .

Let P′ = M′N′ be the parabolic associated with wl(∆M ).
Temporarily, let G be either GLr, M or GLr−1 ⊂ M. Let YG be the cocharac-
ter lattice of G. Then from the data (G, Q, n), we have the lattice YQ,n,G ⊂ Y
given by (8), that is,

YQ,n,G := {y ∈ YG : BQ(y, z) ∈ nZ for all z ∈ YG} .

Since GLr and M have the same torus, we simply denote by YQ,n for
YQ,n,GLr

= YQ,n,M. An easy computation with (8) and (27) gives that

YQ,n =

{
r∑

i=1

kiei ∈ Y : Q(α∨) · kj + q ·
( r∑

i=1

ki

)
∈ nZ for all j

}
. (29)

Documenta Mathematica 26 (2021) 465–522



Hecke L-functions and Fourier Coefficients 495

Recall that Y scQ,n,M ⊆ YQ,n is the sublattice generated by
{
α∨
Q,n : α ∈ ΦM

}
.

We apply the discussion of Weyl orbits in §2.3 to the group M. In particular,
we consider in this section only WM -orbits for the twisted action. If

ρ =
1

2

∑

α∨∈Φ∨

M

α∨>0

α∨

is the half sum of the positive coroots in Φ∨
M ; then O̥ denote the set of all free

WM -orbits in Y with respect to the action w[y] := w(y − ρ) + ρ. Moreover,
O̥

Q,n ⊂ O̥ denotes the set of YQ,n-free orbits and and O̥

Q,n,sc ⊂ O̥ the
Y scQ,n,M-free orbits.

If (n,GLr) is a nice cover, then it follows from (29) that

YQ,n =

{
r∑

i=1

kiei : k1 ≡ k2 ≡ ... ≡ kr mod nα

}
, (30)

where nα = r − 1 for a nice cover. Clearly, nα · YGLr−1 is a sublattice of YQ,n.
We see that

YQ,n,GLr−1 = nα · YGLr−1
.

On the other hand, define

Y0 =

{
x ·
( r∑

i=1

ei
)
+ k · nαer : x and k ∈ Z

}
.

It then follows easily:

Lemma 5.2. Let (n,GLr) be a nice cover. Then Y = YGLr−1
+ Y0. Moreover,

YQ,n = YQ,n,GLr−1 + Y0,

where the intersection of YQ,n,GLr−1 and Y0 is the one-dimensional lattice

spanned by nα ·
∑r−1

i=1 ei.

The following lemma plays a pivotal role in this section.

Lemma 5.3. Let (n,GLr) be a nice cover. Then O̥

Q,n = O̥

Q,n,sc and ℘(Oy) =

℘(O0) for every Oy ∈ O̥

Q,n. In particular,
∣∣∣℘(O̥

Q,n)
∣∣∣ = 1.

Proof. The argument is analogous to [Gao18b, Proposition 3.5], where covers
of GLr are treated (instead of the semisimple M here). For completeness, we
give the details.
First, to show O̥

Q,n = O̥

Q,n,sc, it suffices to show O̥

Q,n ⊃ O̥

Q,n,sc. Let Y scM =
Y scGLr−1

be the coroot lattice of M. We have Y scQ,n,M = nα · Y scM . In view of
Lemma 5.2, it is easy to see that

YQ,n ∩ Y scM = Y scQ,n,M.
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Now let Oy ∈ O̥ be a Y scQ,n,M-free orbit. Suppose that it is not YQ,n-free, then
there exists a nontrivial w ∈ WM such that w[y] − y ∈ YQ,n. However, since
w[y] − y lies in Y scM , we see that w[y] − y lies in Y scQ,n,M. That is, Oy is not

Y scQ,n,M-free, and this is a contradiction. Therefore, O̥

Q,n = O̥

Q,n,sc.
Lastly, a straightforward combinatorial computation as in [Gao17, §3], which
relies crucially on the fact that nα = r−1 for a nice cover, shows that ℘(O̥

Q,n) =
{℘(O0)} in this case. This completes the proof.

We also record the following result which is important for the unramified com-
putation in §5.4.

Lemma 5.4. Let (n,GLr) be a nice cover. Let k be a natural number such that

1 ≤ k ≤ r−2. Let zk be the element zk =
∑r−1

i=r−k ei+(−ker) ∈ Y . Then there
exists a nontrivial element w ∈ WM such that w[zk] − zk ∈ YQ,n. Therefore,
Ozk is not YQ,n-free in this case.

Proof. Let yk =
∑r−1
i=r−k ei be the element in YGLr−1

. It suffices to show that
w[yk]− yk lies in Y scQ,n,M for some nontrivial w ∈ WM . For this, we note that

ρ = −
r−1∑

i=0

(i− 1) · ei +
r − 2

2
·
( r−1∑

i=1

ei
)
.

Thus,

yk − ρ =
r−1−k∑

i=1

(i − 1)ei +
r−1∑

i=r−k

i · ei.

It is clear that for any w ∈ WM we have w[y] − y = w(y − ρ) − (y − ρ). Let

w ∈ WM be corresponding to the permutation of x1 and xr−1 in
∑r−1
i=1 xiei ∈

YGLr−1
. Then it follows that

w(yk − ρ)− (yk − ρ) = (r − 1)(er−1 − e1) ∈ Y scQ,n,M ⊂ YQ,n,

since nα = r − 1 for nice covers. Therefore zk is not YQ,n-free. This completes
the proof.

Let n ≥ 1 be a natural number with µ2n ⊂ F×. We have the global n-fold cover
GLr,A and the local GLr,v. The covering GLr,A restricts to give the covering
M r,A ofMr,A. There are local coveringsM r,v ofMr,v = GLr−1,v×GL1,v from
the restriction of GLr,v. In general,

M r,A ≇ GLr−1,A ×µn
GL1,A.

That is, the coverings GLr−1,A and GL1,A do not commute in general. How-
ever, we do not rely on this property or its contrary, since we will carry out the
analysis directly on Mr,A and its local analogue. Let T

A

and T v be the global
and local covering torus.
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Proposition 5.5. Let (n,GLr) be a nice cover. Then, M
A

= GLr−1,A ·
Z(M

A

), which is equivalent to the equality T
A

= T r−1,A · Z(M
A

), where
T r−1,A ⊂ GLr−1,A is the n-fold cover of the torus Tr−1,A ⊂ GLr−1,A. More-
over,

Z(T
A

) = Z(T r−1,A) · Z(MA

).

The same holds for the local covering groups as well.

Proof. In fact, we will show that locally the two equalities T v = T r−1,v ·Z(Mv)

and Z(T v) = Z(T r−1,v) · Z(Mv) hold. We have Z(Mv) = Z(T v) ∩Z(Mv). As
noted in §2.4, Z(T v) = φ−1

v (Im(iQ,n)) where iQ,n : YQ,n ⊗ F×
v → Tv is the

isogeny induced from YQ,n →֒ Y . By using the explicit form of YQ,n in (30),
we see that Z(Mv) is equal to the preimage in T v of

iQ,n(Y0 ⊗ F×) ⊂ Tv.

Since Y = YGLr−1
+ Y0 by Lemma 5.2, we have T v = T r−1,v · Z(Mv) and

therefore Mv = GLr−1,v · Z(Mv).
On the other hand, we have Z(T r−1,v) = φ−1

v (Im(iQ,n,GLr−1)), where

iQ,n,GLr−1 : YQ,n,GLr−1 ⊗ F× → Tr−1,v

is induced from YQ,n →֒ YGLr−1 . It then follows from Lemma 5.2 that Z(T v) =

Z(T r−1,v) · Z(Mv). This completes the proof.

The above proposition shows that representations of M
A

and GLr−1,A differ
only by a central character of Z(M

A

). Such difference is insignificant for our
purpose in this paper.

Remark 5.6. The covering groups which appear in [BBL03] could be placed in
the Brylinski–Deligne framework as follows. Consider the Kazhdan–Patterson
K2-extension GLn with p = 0 and q = 1. Let ♭ : GLn−1 → GLn be the

embedding given by ♭(g) = (g, det(g)−1) ∈ SLn ⊂ GLn. Denote by GL
♭

n−1

the pull-back ofGLn via ♭. The extensionGL
♭

n−1 also belongs to the Kazhdan–
Patterson family, but is the one associated to p = −1,q = −1. We consider

M = GLn−1 ×GL1. Since ♭(GLn−1) ⊂ M, we have GL
♭

n−1 ⊂ M.
Now consider the arising topological n-fold covering groups. We have

GL
♭

n−1,A · Z(M
A

) ⊂M
A

,

which however is not an equality in general. In fact, locally for v ∈ |F |, the

quotientMv/
(
GL

♭

n−1,v ·Z(Mv)
)
is equal to Fv/(Fv)

n. This explains the multi-
dimension of ψ-Whittaker functionals for the representation πs (in the notation
of [BBL03, p. 171]) parabolically induced from theta representations. However,
as a rectification, it is shown in [BL94] that the (ψ, µ)-Whittaker functional for
πs, where µ is any genuine character of the abelian group Z(GLn,v), is unique.
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We also remark that the reason for considering GL
♭

n−1 in [BBL03] instead of

GLn−1, which is obtained from the restriction of GLn, is that theta repre-

sentations on the n-fold cover GL
♭

n−1,A have a unique ψ-Whittaker functional.

However, this is not true for the n-fold cover GLn−1,A in general.

5.3 Theta representations and Eisenstein series

In view of Proposition 5.5, the automorphic representation forM
A

is essentially
the same for GLr−1,A. From the general set-up in §3 and §4, recall that

χ = ⊗vχv : Z(T
A

) → C×

is a genuine character which is trivial on TF ∩Z(T
A

), which could be viewed as
a genuine character on TF · Z(T

A

) trivial on TF . Then we have the Eisenstein
series E(g, χ, f) on M

A

. Moreover, assume that χ is an exceptional character
for M

A

, i.e. χα = | · |
A

for all α ∈ ∆∨
M . We obtain the theta representation

Θ(M
A

, χ) = ⊗vΘ(Mv, χv) as the residue of the Eisenstein series E(g, χ, f).

Proposition 5.7. Let M be arising from a nice cover (n,GLr), and keep
notations as above. Then Θ(M

A

, χ) is ψ-distinguished.

Proof. Let v be a place such that |n|v = 1. Then by [Gao17, Theorem 3.14]

coupled with Lemma 5.3, we have dimWhψv
(Θ(Mv, χv)) =

∣∣∣℘(O̥

Q,n)
∣∣∣ = 1. For

this, we note that the computation in [Gao17] is based on assuming that χv
is an exceptional and unramified character of Z(T v). However, examining the
argument shows that the “unramified” assumption on the whole center Z(Tv)
is not necessary. Instead, what is used is just that χv is exceptional and that
there exists an extension χ′

v to the maximal abelian subgroup Z(T v) · T(Ov)
such that χ′

v is trivial on hα(O
×
v ) ⊂ sKv

(Kv) for α ∈ ∆. However, as shown in
[KP84, page 77], such an extension χ′

v is always possible for |n|v = 1. More-
over, since Θ(Mv, χv) ⊂ I(wMχv) is a subrepresentation of the principal series
induced from the character χv, therefore the dimension of Whψv

(Θ(Mv, χv)) is
independent of the nontrivial character ψv, and is computed in [Gao17] under
the harmless assumption that ψv has conductor Ov.
By Proposition 5.5, we have χ = χo · ω, where χo (respectively ω) is an au-
tomorphic character of Z(T r−1,A) (respectively Z(M

A

)) such that χo and ω
agrees on the domain of intersection. Note that χ is an exceptional character
for M

A

if and only if χo is an exceptional character for GLr−1,A. Therefore,
Θ(M

A

, χ) = Θ(GLr−1,A, χ
o) ⊗ ω, where the tensor is the standard one by

Proposition 5.5. Locally, χv = χov ⊗ωv and Θ(Mv, χv) = Θ(GLr−1,v, χ
o
v)⊗ωv.

Thus we have:

(C) dimWhψv
Θ(GLr−1,v, χ

o
v) = 1 for all v such that |n|v = 1.

Though we are considering more general covering groups GLr−1,A here, ex-
amining the proof for [KP84, Theorem II 2.5] shows that the global argument
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applies in our context. Indeed, if p = 0 and q = 1, then GLr−1,A is the
(r − 1)-fold Kazhdan–Patterson covering group. Note that the proof of loc.
cit. only relies on (C) above and it gives that dimWhψv

Θ(GLr−1,v, χ
o
v) = 1 for

all v ∈ |F |. This in turn shows that dimWhψv
Θ(Mv, χv) = 1 for all v ∈ |F |.

The nonvanishing of λ
A

follows from [KP84, Theorem II 2.2 and 2.5]. This
completes the proof.

Remark 5.8. If we assume µ2n ⊂ F×, then Mv splits canonically over
Mv for archimedean place v and thus Mv ≃ µn × Mv; in this case, one
has dimWhψv

(Θ(Mv, χv)) ≤ 1. It can be shown that if Mv arise from

a nice cover, then IndGLr

MvNv
(χ) is irreducible for archimedean v, and thus

dimWhψv
(Θ(Mv, χv)) = 1. We refer the reader to [KP84, Theorem I.6.4,

I.6.5] for discussions in the case of Kazhdan–Patterson covers.

In the rest of this section, we will assume that (n,GLr) is a nice cover. Also,
χ is an exceptional character for M

A

.
Let δP : P

A

→ C× be the modular character of P
A

. More explicitly, consider
m · u ∈ P

A

with m ∈ M
A

and u ∈ N
A

. Suppose that m = (m1,m2) ∈
GLr−1,A ×GL1,A; then explicitly,

δP (m · u) = | det(m1)|A · |m2|
−(r−1)
A

.

We have I(s,Θ(χ)) = IndGA
P
A

(δ
s/r
P · Θ(χ)) in this case, where the latter is the

normalized induced representation. Taking fs ∈ I(s,Θ(χ)) to be a flat section,
consider the Eisenstein series E(g, fs,Θ(χ)). Then, Proposition 5.7 coupled
with Proposition 4.1 give that

Eψ(1, fs,Θ(χ)) =
∏

v

WGLr

fs,v
(1)

where

WGLr

fs,v
(1) =

∫

N ′
v

λv
(
fs,v(w

−1
l u)

)
ψv(u)

−1du.

Moreover, the results in §4 apply; in particular, Theorem 4.5 gives a description
of WGLr

fs,v
(1). However, to obtain a more explicit formula of WGLr

fs,v
(1) in terms

of L-functions, we carry out an alternate computation following the idea in
[BBL03]. This will be the focus of the remaining part of this section.

5.4 Local unramified computations

We will carry out the computation with unramified data. Thus, we suppress the
subscript v for all notations. In particular, F denotes a non-archimedean local
field such that |n| = 1. We assume that χ is an unramified ∆M -exceptional
character and ψ has conductor OF . We assume in this subsection µ2n ⊂ F×.
Let fs ∈ I(s,Θ(χ)) be the unramified vector such that fs(1) = θ0 is the normal-
ized unramified vector in Θ(χ). By Lemma 5.3 and the proof of Proposition 5.7,
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let λO0 be the unique Whittaker functional of Θ(M,χ) such that λO0(θ
0) = 1.

Recall that λO0 arises from cO0 ∈ Ftn(i(χ)) and gives rise to the Whittaker
function WO0 on M associated to θ0. We would like to compute

WGLr

fs
(1) =

∫

N ′

λO0

(
fs(w

−1
l u)

)
ψ(u)−1du, (31)

where wl = wα1wα2 ...wαr−1 . We follow closely the paper [BBL03] to decompose

explicitly w−1
l u = p · k for some p ∈ P and k ∈ K.

Note that N ′ is abelian and any element u in N ′ can be written uniquely as

ux = e1,r(xr−1) · ... · e1,3(x2) · e1,2(x1)

for x = (x1, ..., xr−1) ∈ F r−1. Now it is easy to see that for any i with
1 ≤ i ≤ r − 2, we have

eαi+1(xi+1) = (wα1wα2 ...wαi
)−1 · e1,i+2(xi+1) · (wα1wα2 ...wαi

) ∈ U.

Since the splitting of unipotent subgroup U is GLr-equivariant, it follows that

eαi+1(xi+1) = (wα1wα2 ...wαi
)−1 · e1,i+2(xi+1) · (wα1wα2 ...wαi

) ∈ U.

Inductively, one obtains that

w−1
l ux =

1∏

i=r−1

w−1
αi
eαi

(xi). (32)

We also note that for any root α and x ∈ F×, we have

w−1
α eα(x) = hα(x

−1)eα(−x) · e−α(−x
−1). (33)

Moreover, for any 1 ≤ i ≤ r − 1 and x ∈ F×, one has

r−1∏

j=i

hαj
(x) =

r−1∏

j=i

s
(
hαj

(x)
)
= s
(
hi,r(x)

)
, (34)

where the first equality follows from (5) and our assumption that ηn is trivial,
the second equality follows from (4) and (x, x)n = 1 (since we have assumed
µ2n ⊂ F×). In particular, we see that

s(hi,r(x)) ∈ sK(K)

for any x ∈ O×, since haj (x) ∈ sK(K), see (11).
The domain of integration of (31) is identified with F r−1. Moreover, we could
restrict to the domain to (F −{0})r−1. For any f = (f1, ..., fr−1) ∈ Zr−1, define

R(f) =
{
(x1, x2, ..., xr−1) ∈ F r−1 : val(xi) = fi for all i

}
.
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Thus the integration in (31) is equal to

∑

f∈Zr−1

∫

x∈R(f)

λO0

(
fs(w

−1
l ux)

)
ψ(ux)

−1dux. (35)

For each 1 ≤ i ≤ r − 1, define

δi =

{
0, if fi ≥ 0,

1, if fi < 0.

To simplify notation, we write

Int(R(f)) :=

∫

x∈R(f)

λO0

(
fs(w

−1
l ux)

)
ψ(ux)

−1dux.

The relations (32)-(34) and (6) allow us to argue as in [BBL03, page 173-174].
We therefore obtain that Int(R(f)) is equal to

∫

x∈R(f)

λO0

(
fs

( r−1∏

i=1

s
(
hi,r(x

−δi
i )

))
)
·

r−1∏

i=1

|xi|
δi(r−i−1)
F ·ψ(x1)·

r−1∏

j=2

ψ(δj−1xj)dx,

(36)
where we write dx for

∏
i dxi. A change of variables xi 7→ ̟fixi for all 1 ≤ i ≤

r − 1 gives that (36) is equal to

r−1∏

i=1

q−δifi(r−i−1)−fi

·

∫

xi∈O×

λO0

(
fs

( r−1∏

i=1

s
(
hi,r(̟

−δifix−δii )
))
)

· ψ(̟f1x1) ·

r−1∏

j=2

ψ(̟δj−1fjxj)dx.

(37)
Note that for any 1 ≤ i, j ≤ r − 1, it follows from (4) that

s
(
hi,r(uv)

)
= s
(
hi,r(u)

)
· s
(
hi,r(v)

)
· (v, u)

Q(α∨

i,r)
n

and

s
(
hi,r(u)

)
· s
(
hj,r(v)

)
= s
(
hj,r(v)

)
· s
(
hi,r(u)

)
· (u, v)

B(α∨

i,r ,α
∨

j,r)
n .

Write Q(α∨) for the number which is independent of any coroot α∨. By using
the two equalities above, a simple computation gives that

r−1∏

i=1

s
(
hi,r(̟

−δifix−δii )
)

=

(
r−1∏

i=1

s
(
hi,r(̟

−δifi)
)
)

·

(
r−1∏

i=1

s
(
hi,r(x

−δi
i )

)
)

·

r−1∏

i=1

i∏

j=1

(̟δifi , x
δj
j )−Q(α∨)

n
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and therefore

fs

(
r−1∏

i=1

s
(
hi,r(̟

−δifix−δii )
)
)

=fs

(
r−1∏

i=1

s
(
hi,r(̟

−δifi)
)
)

·

r−1∏

i=1

i∏

j=1

(̟δifi , x
δj
j )−Q(α∨)

n .

Let δf ∈ Zr−1 ≃ YGLr−1
be the element such that

(δf)i := δifi = min(fi, 0)

for all 1 ≤ i ≤ r − 1. Let δf∗ ∈ Zr ≃ Y be the element such that

(δf∗)i = (δf)i for 1 ≤ i ≤ r − 1 and (δf∗)r = −

r−1∑

i=1

(δf)i.

We have
r−1∏

i=1

s
(
hi,r(̟

−δifi)
)
= s(−δf∗(̟)).

As a summary, from (36) we see that

Int(R(f))

=
( r−1∏

i=1

q−δifi(r−i−1)−fi
)
· δ

s
r
+ 1

2

P (s−δf∗) · WO0(s−δf∗)

·

∫

xi∈O×

r−1∏

i=1

i∏

j=1

(̟δifi , x
δj
j )−Q(α∨)

n · ψ(̟f1x1) ·

r−1∏

j=2

ψ(̟δj−1fjxj)dx.

(38)

Proposition 5.9. The integration Int(R(f)) is zero unless δf = 0 ∈ Zr−1 or
δf is such that (δf)i = −1 for all 1 ≤ i ≤ r − 1.

Proof. Note that WO0(s−δf∗) = 0 unless −δf∗ is ∆M -dominant, that is, unless

(δf)1 ≤ (δf)2 ≤ ... ≤ (δf)r−1.

This implies that Wλ(s−δf∗) vanishes unless there exists some 0 ≤ k ≤ r − 1
such that

f1 ≤ ... ≤ fk < 0 and fk+1 ≥ ... ≥ fr−1 ≥ 0.

On the other hand, an observation at the formula (38) shows that the integral
is zero unless f1 ≥ −1. Therefore, we may assume 1 ≤ k ≤ r − 2 and that f

takes the form
f = (−1,−1, ...,−1, fk+1, ..., fr−1), (39)

where the first k-coordinates are −1, and fk+1, ..., fr−1 ≥ 0. Then it suffices to
show that WO0(s−δf∗) = 0 for such f.
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For f in (39), we have that δi = 1 if 1 ≤ i ≤ k and δi = 0 for k + 1 ≤ i ≤ r− 1.
Therefore

−δf∗ = (1, 1, ..., 1︸ ︷︷ ︸
k

, 0, 0, ..., 0︸ ︷︷ ︸
r−1−k

,−k) ∈ Zr ≃ Y,

which gives

w0(−δf
∗) = (0, 0, ..., 0︸ ︷︷ ︸

r−1−k

, 1, 1, ..., 1︸ ︷︷ ︸
k

,−k) ∈ Y.

By Proposition 3.6 and the defining property of cO0 in (21), we deduce that
WO0(s−δf∗) = 0 unless w0(−δf

∗) lies in O0+YQ,n. By Lemma 5.4, we see that
this is not possible if 1 ≤ k ≤ r − 2. This completes the proof.

Thus, to compute (35), we only need to consider two cases in the above Propo-
sition.

First, let

P =
{
f ∈ Zr−1 : fi ≥ 0 for all i

}
⊂ Zr−1.

Then it follows from (38) that

∑

f∈P

Int(R(f))

=
∑

f∈P

q−
∑r−1

i fi ·

∫

xi∈O×

ψ(xi)dx = (1− q−1)r−1 ·
∑

f∈P

q−
∑r−1

i fi = 1.
(40)

Now for the second case, we have f = (−1,−1, ....,−1) ∈ Zr−1 with all coordi-
nates equal to 1. This gives that

−δf = (1, 1, ..., 1︸ ︷︷ ︸
r−1

,−(r − 1)) ∈ Zr.
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It then follows from (38) that in this case

Int(R(f))

=
( r−1∏

i=1

qr−i
)
· δ

s
r
+ 1

2

P (s−δf∗) · WO0(s−δf∗)

·

∫

xi∈O×

r−1∏

i=1

i∏

j=1

(̟−1, xj)
−Q(α∨) ·

r−1∏

j=1

ψ(̟−1xj)dx

=q−(r−1)s · WO0(s−δf∗)

∫

xi∈O×

r−1∏

j=1

r−1∏

i=j

(̟, xj)
Q(α∨)
n ·

r−1∏

j=1

ψ(̟−1xj)dx

=q−(r−1)s · WO0(s−δf∗) ·

r−1∏

j=1

(∫

xi∈O×

(̟, xj)
(r−j)Q(α∨)
n · ψ(̟−1xi)dxj

)

=q−(r−1)s · WO0(s−δf∗) ·

nα−1∏

j=0

gψ−1(j ·Q(α∨))

=q−(r−1)s · δ
1/2
BM

(s−δf∗) · cO0(sw0(−δf∗)) ·

nα−1∏

j=0

gψ−1(j ·Q(α∨))

=q−(r−1)s · cO0(s−δf∗) ·

nα−1∏

j=0

gψ−1(j ·Q(α∨)),

where the second last equality follows from Proposition 3.6. It is easy to see
that

−δf = wαr−2 ...wα2wα1 [0] + (r − 1) · α∨
r−1.

We also note the equality snαα∨
r−1

= hαr−1(̟)nα = hαr−1(̟
nα). Therefore, it

follows that

cO0(s−δf)

=cO0

(
s
wαr−2

...wα2wα1 [0]

)
· χ
(
hαr−1(̟

nα)
)

=
( r−2∏

i=1

t(wαi
,wαi−1 ...wα1 [0])

)
· ·χ
(
hαr−1(̟

nα)
)

=
( r−2∏

i=1

q⌈
−(i−1)

nα
⌉−1 · gψ−1(−iQ(α∨))−1

)
· χ
(
hαr−1(̟

nα)
)

=q−(r−2) · χ
(
hαr−1(̟

nα)
)
·

nα−1∏

i=1

gψ−1(−iQ(α∨))−1

=q−(r−2) · χ
(
hαr−1(̟

nα)
)
·

nα−1∏

j=1

gψ−1(jQ(α∨))−1.
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Hence, in the second case,

Int(R(f)) =q−(r−1)s · cO0(s−δf) ·

nα−1∏

j=0

gψ−1(j ·Q(α∨))

=q−(r−1)s · q−(r−2) · χ
(
hαr−1(̟

nα)
)
· gψ−1(0)

=− q−(r−1)(s+1) · χ
(
hαr−1(̟

nα)
)
.

(41)

By combining (40) and (41), we get

Proposition 5.10. Let fs ∈ I(s,Θ(χ)) be the normalized unramified vector.
Then

WGLr

fs
(1) = L

(
(r − 1)(s+ 1), χαr−1

)−1

.

We note that the above result also follows from [Cai20, Theorem 8.1] with a
proper interpretation of the result there. See [Cai20, Remark 8.2 (3)].

5.5 An interpretation

We would like to interpret the Hecke L-function L(s, χαr−1) on the dual side.

For a cover (n,GLr) and the cover T obtained from restriction, one has the
(local) compatible L-group extensions

G
∨ LG WF

T
∨ LT WF .

Let B
∨
= T

∨
U

∨
⊂ G

∨
be the Borel subgroup associated to the simple roots

∆∨
Q,n of G

∨
. Let Lie(U

∨
) be the Lie algebra of U

∨
. Let

Ad : LT → GL(Lie(U
∨
))

be the adjoint representation. The space Lie(U
∨
) is spanned by eigenvectors

for Ad denoted by Eα∨

Q,n
, α ∈ Φ+. For any α ∈ Φ+, the one-dimensional space

C ·Eα∨

Q,n
is invariant under Ad and thus we have a character

Adα : LT → GL(C ·Eα∨

Q,n
).

Now let χ : Z(T ) → C× be an unramified genuine character and i(χ) the
irreducible representation of T . By the local Langlands correspondence for
covering torus (see [Wei18, §10] or [GG18, §8]), we have an associated splitting
of LT over WF :

ρχ : WF → LT .
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This gives rise to an Artin representation Adα◦ρχ :WF → C×. Let Frob ∈WF

be the geometric Frobenius class in WF . We define the local Artin L-function
as

L(s, Adα ◦ ρχ) =
(
1− q−s · ρχ ◦Adα(Frob)

)−1
.

It follows from [Gao18a, Theorem 7.8] that

ρχ ◦Adα(Frob) = χ(hα(̟
nα))

and therefore
L(s, χα) = L(s, Adα ◦ ρχ). (42)

In particular, it applies to the case α = αr−1. We note that if χ is an ∆M -
exceptional character, then for all 1 ≤ i ≤ r − 2,

L(s, χαi
) = L(s, Adαi

◦ ρχ) = ζ(s+ 1). (43)

In view of this, one may also give another interpretation of L(s, χαr−1) as fol-

lows. LetM
∨
and LM be the dual and L-group for the covering Levi subgroup

(n,M) respectively. Let N
∨

⊂ G
∨
be the unipotent subgroup generated by

{Eα∨

i,Q,n
: 1 ≤ i ≤ r − 1}. Then M

∨
N

∨
is a parabolic subgroup of G

∨
, and

the adjoint representation AdM : LM → GL(Lie(N
∨
)) is irreducible. From the

natural inclusion LT →֒ LM (arising from the construction of L-groups), one
has an unramified representation

AdM ◦ ρχ :WF → LT →֒ LM → GL(Lie(N
∨
)).

Now suppose χ is ∆M -exceptional. It then follows from (42) and (43) that

L(s, χαr−1) =
L(s, AdM ◦ ρχ)

ζ(s + 1)r−2
, (44)

where L(s, AdM ◦ ρχ) denotes the Artin L-function for AdM ◦ ρχ.
Since the above discussion is for unramified characters, it could be globalised
to give global partial L-functions.

5.6 Main result

The main result in this section thus follows immediately from combining Propo-
sition 4.1 and Proposition 5.10. We restore the global notations and give a
summary as follows.

Theorem 5.11. Let (n,GLr) be a nice cover over F . Let ψ be a nontrivial
character of A/F . Let Θ(χ) be the global theta representation ofM

A

associated
with an exceptional character χ for M

A

. Let S ⊂ |F | be a finite set of places
such that: (i) S contains the archimedean places and |n|v = 1 for all v ∈
|F | − S; (ii) χv and ψv are both unramified outside S. Let E(g, fs,Θ(χ)) be
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the Eisenstein series on GLr,A associated with I(s,Θ(χ)). Assume µ2n ⊂ F×.
Then

Eψ(1, fs,Θ(χ)) = LS
(
(r − 1)(s+ 1), χαr−1

)−1
·
∏

v∈S

WGLr

fs,v
(1),

where LS(s, χαr−1) =
∏
v/∈S L(s, (χαr−1)v) is the partial Hecke L-function at-

tached to χαr−1 .

The above formula for Eψ(1, fs,Θ(χ)) is expected to be the same with just the
assumption µn ⊂ F×.

Example 5.12. Let p = 0,q = 1. In this case, n = nα. Let r = n + 1. This
is the case of n-fold cover of GLn+1,A with twisting parameter c = 0 (in the
notation of [KP84]). Then Theorem 5.11 yields that

Eψ(1, fs,Θ(χ)) = LS (n(s+ 1), χαn
)−1 ·

∏

v∈S

WGLr

fs,v
(1).

In particular, for n = 1, Θ(χ) is just the linear character χ of T
A

⊂ GL2,A.
Then the formula for Eψ(1, fs, χ) is just the Casselman–Shalika formula for
GL2,A.

Besides the linear GL2,A case in the above example, there is another rank-
one example arising from the Savin’s class of extension of GLr (see [Sav] and
[Gao18b, §2.1]).

Example 5.13. Let r = 2, n = 2 and p = 1,q = 0. The associated (n =
2,GL2) is a nice cover. Note that the covering torus T

A

is abelian in this
case, which however does not split over T

A

, since T v does not split over Tv for
general places v ∈ |F |. Therefore, the covering group

µ2 GL2,A GL2,A

is nontrivial. To give another description of GL2,A, we consider the extension
GL1 of GL1 determined by Q(e) = p = 1. Let GL1,A be the double cover,
which is then abelian. Then GL2,A is the pull-back from GL1,A via the deter-
minant map GL2,A → GL1,A. In view of this, there is an automorphic genuine
character of GL2,A. Therefore, representation theory of GL2,A can be reduced
to that of GL2,A.

In any case, let χ be a genuine character of T
A

, and χα the associated linear
character of A/F×. Here α = α1 is the unique simple root with Q(α∨) = 1
and nα = 1. Then Theorem 5.11 gives that

Eψ(1, fs, χ) = LS (s+ 1, χα)
−1

·
∏

v∈S

WGL2

fs,v
(1).
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Remark 5.14. The class of nice covers (n,GLr) is singled out in this section for
the sole reason that we are considering parabolic subgroup with Levi subgroup
GLr × GL1. However, one may consider other maximal parabolic subgroup
with Levi subgroup M = GLr1 × GLr2 such that r1 + r2 = n. For instance,
if r = 2n, we could consider the Kazhdan–Patterson cover (n,GL2n) and the
n-fold covering group M

A

with M = GLn × GLn. Then the analogue of
Proposition 5.7 holds, i.e., theta representation of M

A

is distinguished in this
case. This example thus fits into the set-up in §3 and §4, and results there apply.
In fact, it follows from [Suz97, §7.6] that in this case, the Fourier coefficients
will involve n Hecke L-functions associated to the exceptional character.

Moreover, as mentioned in Remark 4.2, one could consider general parabolic
subgroups. For example, consider the Kazhdan–Patterson cover (n,GL3n).
Let P = MN with M = GLn × GLn × GLn. Any theta representation of
the n-fold cover M

A

is also distinguished. However, the Fourier coefficients of
Eisenstein series, which have global factorization as well, are presumably even
more difficult to compute than the maximal parabolic case.

6 Covering groups of Sp2r

In this section, we will consider covers of Sp2r. For the computation of the
Fourier coefficients, we will invoke Theorem 4.5. However, we will eventually
concentrate on covers of Sp4 for combinatorial difficulties.

6.1 K2-extensions and covering groups

Let

(X,Φ,∆;Y,Φ∨,∆∨)

be the root datum of Sp2r. Consider the Dynkin diagram for the simple coroots
for Sp2r:

❡ ❡ ❡ ❡ ❡♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ >
α
∨

1
α
∨

2
α
∨

r−2
α
∨

r−1
α
∨

r

Thus, α∨
r is the unique short simple coroot. Let Y = Y sc be the cocharacter

lattice of Sp2r generated by ∆∨ = 〈α∨
1 , α

∨
2 , ..., α

∨
r−1, α

∨
r 〉. The isomorphism

class of K2-extensions Sp2r is determined by the Weyl-invariant quadratic
form Q on Y . Let Q be the unique Weyl-invariant quadratic form on Y such
such Q(α∨

r ) = −1. Then the bilinear form BQ is given by

BQ(α
∨
i , α

∨
j ) =





−2 if i = j = r;

−4 if 1 ≤ i = j ≤ r − 1;

2 if j = i+ 1;

0 if α∨
i , α

∨
j are not adjacent.

Documenta Mathematica 26 (2021) 465–522



Hecke L-functions and Fourier Coefficients 509

Let P = MN be the Siegel parabolic subgroup associated to ∆M := ∆\ {α∨
r }.

We have M ≃ GLr. The restriction of Sp2r to M gives rise to the extension
GLr associated with p = −1 and q = 0. This extension GLr does not belong
to the Kazhdan–Patterson class (since 2p − q = −2 in this case); however, it
was already studied by Savin [Sav].
For a general cover (n,Sp2r), define

n0 =

{
n if n is odd,

n/2 otherwise.

A simple computation for (8) gives that

YQ,n = n0 · Y
sc =

{
r∑

i=1

kiα
∨
i : n0|ki

}
.

Again, since YQ,n,Sp2r
= YQ,n,M, we have omitted the subscript in YQ,n. On

the other hand,
Y scQ,n,M = n0 · Y

sc
M .

Consider WM -free orbits in Y . Let ℘ : Y ։ Y/YQ,n and ℘ : Y ։ Y/Y scQ,n,M
be the quotient maps. Consider the YQ,n-free and Y scQ,n,M-free orbits defined

exactly as in §2.3. Let O̥

Q,n (resp. O̥

Q,n,sc) be the set of free orbits in Y which
are also YQ,n-free (resp. Y scQ,n,M-free).

Definition 6.1. An n-fold cover (n,Sp2r) is called nice if the following con-
ditions hold:

• if r is odd, then n = r or 2r;

• if r is even, then n = 2r.

Lemma 6.2. For a general cover (n,Sp2r), we have YQ,n ∩ Y scM = Y scQ,n,M
and therefore O̥

Q,n = O̥

Q,n,sc. Moreover, if (n,Sp2r) is a nice cover, then∣∣∣℘(O̥

Q,n)
∣∣∣ = 1.

Proof. This follows from [Gao18b, Proposition 3.5] by noting that YQ,n = n0 ·
YM for any cover (n,Sp2r), and moreover n0 = r if (n,Sp2r) is nice.

6.2 Fourier coefficient of Eisenstein series

Let Sp2r,A and M
A

be the n-fold covering groups arising from Sp2r and M.
In fact, such covers (of semisimple and simply-connected groups) were already
studied earlier by Moore [Moo68] , Steinberg [Ste62], Matsumoto [Mat69] and
others.
Let χ be a ∆M -exceptional automorphic character of Z(T

A

). That is,

χαi
= | · |

A

for all 1 ≤ i ≤ r−1. Let Θ(M
A

, χ) = ⊗vΘ(Mv, χv) be the theta representation
of M

A

associated to χ.
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Proposition 6.3. If (n,Sp2r) is a nice cover, then the theta representation
Θ(M

A

, χ) is ψ-distinguished.

Proof. The proof is the same as Proposition 5.7. Note that the essential ingre-
dient used is that for v such that |n|v = 1, we have

dimWhψv
(Θ(Mv, χv)) = 1,

which follows from [Gao17, Theorem 3.14] and Lemma 6.2.

Let (n,Sp2r) be a nice cover. Let I(s,Θ(M
A

, χ)) = Ind
Sp4,A

P
A

(
|det(·)|

s
A

·

Θ(M
A

, χ) ⊗ 1
)
be the induced representation and E(s, fs,Θ(χ)) the Eisen-

stein series from I(s,Θ(M
A

, χ)). Note that the parabolic subgroup P is self-
associated, i.e. P′ = P = MN. It thus follows from Proposition 4.3 that

Eψ(1, fs,Θ(χ)) =
∏

v

WG
fs,v (1)

where

WG
fs,v (1) =

∫

Nv

λv
(
fs,v(w

−1
l u)

)
ψv(u)

−1du.

We will compute the value WG
fs,v

(1) for almost all v when r = 2.

6.3 Local unramified computation

In the rest of this section, we consider the nice cover (n = 4,Sp4). Denote

α∨
3 := 2α∨

2 + α∨
1 , and α

∨
4 := α∨

1 + α∨
3 .

The element wl ∈ W such that wl(α
∨
1 ) ∈ ∆ and wl(α

∨
i ) < 0 for all i = 2, 3, 4

is
wl = wα2wα1wα2 .

For simplicity, we suppress the subscript v for all notations. Again, F denotes
a non-archimedean local field such that |n| = 1. Also, χ is an unramified
exceptional character and ψ has conductor OF .
Recall that χ is an unramified character of Z(T ) such that χα1 = | · |. Note
that in this case,

wM = wα1 .

By Lemma 4.4, we have

WM
1T
(1) = τ(wM , χ, s(0), s(0)) =

1− q−1

1− χ
(
hα1(̟

nα)
) = 1,

where the last equality follows from the fact that χ is ∆M -exceptional. It
follows from Theorem 4.5 that

WG
f0
s
(1) = WG

1T
(1),

where WG
1T

is the Whittaker function on Sp4 arising from the Whittaker func-

tional λG1T on I(sωP ,
wMχ).
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6.4 Computation of WG
1T
(1)

For convenience, we write χ′ = wMχ, which is ∆M -anti-exceptional. First we
note that

I(sωP , χ
′) ≃ I(χ′

s)

where χ′
s is the genuine character of Z(T ) given by

χ′
s(t) = χ′(t) · |det(t)|

s
for t ∈ Z(T ).

In particular, χ′
s is ∆M -anti-exceptional. By Proposition 3.5, for the principal

series I(χ′
s) on Sp4, one has

WG
1T
(1) =

∑

w∈WG

cgk(wGw
−1, χ′

s)τ(w,
w−1

χ′
s, 1T , 1T ). (45)

From now, we write

wi := wαi

for the Weyl element corresponding to the simple coroot α∨
i for i = 1, 2. Set

W ♭ := {w1,w1w2,w1w2w1,w1w2w1w2} ⊂WG.

The longest wG ∈WG is just w1w2w1w2.

Lemma 6.4. If w ∈ WG −W ♭, then cgk(wGw
−1, χ′

s) = 0.

Proof. Assume w ∈ WG −W ♭, then α∨
1 ∈ Φ

wGw
−1 . It then follows from (14)

that cgk(w1, χ
′
s) = 0 and therefore cgk(wGw

−1, χ′
s) = 0.

By the above Lemma, it suffices to compute the terms in (45) for w ∈ W ♭. For
this purpose, for any root α ∈ Φ of Sp4, denote

χ′
s,α := χ′

s

(
hα(̟

nα)
)
.

There are relations as follows:

χ′
s,α4

= q · χ′
s,α3

, χ′
s,α3

= q · χ′
s,α2

. (46)

It also follows that χ′
s,α4

= q2 · χ′
s,α2

.

From now on, we assume µ2n ⊂ F× to simplify the computation. Note that in
this case ξ = (−1, n) = 1.
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6.4.1 For w = w1

In this case, one has

cgk(wGw
−1
1 , χ′

s) · τ(w1,
w−1

1 χ′
s, 1T , 1T )

=
1− q−1χ′

s,α2

1− χ′
s,α2

·
1− q−1χ′

s,α3

1− χ′
s,α3

·
1− q−1χ′

s,α4

1− χ′
s,α4

· τ(w1,
w−1

1 χ′
s, 1T , 1T )

=
1− q−1χ′

s,α2

1− χ′
s,α4

·
1− q−1

1− (χ′
s,α1

)−1

=
1− q−1χ′

s,α2

1− χ′
s,α4

.

6.4.2 For w = w1w2

We first compute

τ(w1w2,
(w1w2)

−1

χ′
s, 1T , 1T )

=
∑

γ∈T/A

τ(w1,
w−1

1 χ′
s, 1T , γ) · τ(w2,

(w1w2)
−1

χ′
s, γ, 1T ) by (18)

=τ(w1,
w−1

1 χ′
s, s0, s0) · τ(w2,

(w1w2)
−1

χ′
s, s0, s0)

+ τ(w1,
w−1

1 χ′
s, s0, sw1[0]) · τ(w2,

(w1w2)
−1

χ′
s, sw1[0], s0)

=τ(w2,
(w1w2)

−1

χ′
s, s0, s0)

=
1− q−1

1− (χ′
s,α4

)−1
.

It follows that in this case

cgk(wG(w1w2)
−1, χ′

s) · τ(w1w2,
(w1w2)

−1

χ′
s, 1T , 1T )

=
1− q−1χ′

s,α2

1− χ′
s,α2

·
1− q−1χ′

s,α3

1− χ′
s,α3

·
1− q−1

1− (χ′
s,α4

)−1

=
1− q−1χ′

s,α2

1− χ′
s,α3

·
1− q−1

1− (χ′
s,α4

)−1
by (46).
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6.4.3 For w = w1w2w1

In this case, we obtain

τ(w1w2w1,
(w1w2w1)

−1

χ′
s, 1T , 1T )

=
∑

γ∈T/A

τ(w1w2,
(w1w2)

−1

χ′
s, 1T , γ) · τ(w1,

(w1w2w1)
−1

χ′
s, γ, 1T )

=τ(w1w2,
(w1w2)

−1

χ′
s, s0, s0) · τ(w1,

(w1w2w1)
−1

χ′
s, s0, s0)

+ τ(w1w2,
(w1w2)

−1

χ′
s, s0, sw1[0]) · τ(w1,

(w1w2w1)
−1

χ′
s, sw1[0], s0)

=
1− q−1

1− (χ′
s,α4

)−1
·

1− q−1

1− (χ′
s,α3

)−1
+ gψ−1(Q(α∨

1 )) · τ(w1w2,
(w1w2)

−1

χ′
s, s0, sw1[0])

=
1− q−1

1− (χ′
s,α4

)−1
·

1− q−1

1− (χ′
s,α3

)−1
+ q−1 ·

1− q−1

1− (χ′
s,α4

)−1

=
1− q−1

1− (χ′
s,α4

)−1
·
1− q−1(χ′

s,α3
)−1

1− (χ′
s,α3

)−1

=
1− q−1

1− (χ′
s,α3

)−1
.

It follows that

cgk(wG(w1w2w1)
−1, χ′

s) · τ(w1w2w1,
(w1w2w1)

−1

χ′
s, 1T , 1T )

=
1− q−1χ′

s,α2

1− χ′
s,α2

·
1− q−1

1− (χ′
s,α3

)−1
.

6.4.4 For w = wG

In this case, we have cgk(wG(wG)
−1, χ′

s) = 1. Now,

τ(wG,
w−1

G χ′
s, 1T , 1T )

=
∑

γ∈T/A

τ(w1w2w1,
(w1w2w1)

−1

χ′
s, 1T , γ) · τ(w2,

w−1
G χ′

s, γ, 1T )

=τ(w1w2w1,
(w1w2w1)

−1

χ′
s, s0, s0) · τ(w2,

w−1
G χ′

s, s0, s0)

+ τ(w1w2w1,
(w1w2w1)

−1

χ′
s, s0, sw2[0]) · τ(w2,

w−1
G χ′

s, sw2[0], s0)

=
1− q−1

1− (χ′
s,α3

)−1
·

1− q−1

1− (χ′
s,α2

)−1

+ gψ−1(−Q(α∨
2 )) · τ(w1w2w1,

(w1w2w1)
−1

χ′
s, s0, sw2[0]).

A simple computation as in §6.4.3 gives that

τ(w1w2w1,
(w1w2w1)

−1

χ′
s, s0, sw2[0]) = gψ−1(Q(α∨

2 )) ·
1− q−1χ′

s,α3

1− (χ′
s,α3

)−1
.
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It follows that

cgk(wG(wG)
−1, χ′

s) · τ(wG,
w−1

G χ′
s, 1T , 1T )

=
1− q−1

1− (χ′
s,α3

)−1
·

1− q−1

1− (χ′
s,α2

)−1
+ q−1 ·

1− q−1χ′
s,α3

1− (χ′
s,α3

)−1
.

Combining the four terms above corresponding to the elements in W ♭, and
simplifying the formula, we obtain that

WG
1T
(1) = 1− q−1χ′

s,α2
= 1− q−4s−3 · χ(hα2(̟

nα2 )) = L(4s+ 3, χα2)
−1.

One can give an interpretation of L(s, χα2) on the dual side as in §5.5. However,
we will omit the details.

6.5 Summary of result

We summarize the discussion above in the following theorem.

Theorem 6.5. Let Sp4,A be the 4-fold cover determined by Q(α∨
2 ) = −1. Let ψ

be a nontrivial character of A/F . Let Θ(χ) be the global theta representation of
the covering Siegel Levi subgroup M

A

associated with an exceptional character
χ. Let S ⊂ |F | be a finite set of places such that: (i) S contains the archimedean
places and |n|v = 1 for all v ∈ |F | − S; (ii) χv and ψv are both unramified
outside S. Let E(g, fs,Θ(χ)) be the Eisenstein series on Sp4,A associated with
I(s,Θ(χ)). Assume µ2n ⊂ F×. Then

Eψ(1, fs,Θ(χ)) = LS (4s+ 3, χα2)
−1

·
∏

v∈S

WG
fs,v (1),

where LS(s, χα2) =
∏
v/∈S L(s, (χα2)v) is the partial Hecke L-function associ-

ated to χα2 .

Remark 6.6. For r an even number, we could consider the 2r-fold cover of
Sp2r,A associated to Q(α∨) = −1 for any short coroot α∨. Let Θ(GLr,A, χ) be

a theta representation of the Siegel Levi subgroup GLr,A. It is expected that
Theorem 6.5 generalizes to this case. That is, Eψ(1, fs,Θ(χ)) can be expressed
as the reciprocal of the L-function L(s, χαr

).

For r an odd number, we could consider both r-fold cover Sp
(r)

2r,A and 2r-

fold cover Sp
(2r)

2r,A. For both coverings, the theta representation of GLr,A is
distinguished. However, it is expected that in the formula for Eψ(1, fs,Θ(χ)),

the reciprocal of a single L-function appears in the Sp
(r)

2r,A case, while a quotient

of two Hecke L-functions in the case of Sp
(2r)

2r,A. Indeed, this dichotomy already

appears in the case r = 1. For the double cover SL2,A, one has (see [Szp09])

Eψ(1, fs, χ) =
LS(s+ 1

2 , χ
♭)

LS(2s+ 1, χα)
·
∏

v∈S

WG
fs,v (1).
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Here the linear character χ♭v for v /∈ S is given by

χ♭v(u) = χv(hα(u)) · γψ(u),

where γψ(u) ∈ µ4 is the Weil-factor. Also χα(u) = χv(hα(u
2)).

Remark 6.7. We could consider the cover (n = 2,Sp4) and the non-Siegel
parabolic subgroup P = MN with M = GL1 × SL2. Note that M

A

≃
GL1,A ×µ2 SL2,A in this case. Moreover, the covering torus T

A

⊂ Sp4,A is

abelian and T
A

= GL1,A ×µ2 T SL2,A. Therefore, a genuine character χ of T
A

is of the form
χ = ξ ⊗ µ,

where ξ is a genuine character of GL1,A and µ for T SL2,A. The character χ is
exceptional if and only if µ is exceptional.
For fixed ψ, there is a ψ-distinguished theta representation Θ(M

A

, χ) ≃ ξ ⊗
Θ(SL2,A, µ). One could consider the Fourier coefficients Eψ(1, fs,Θ(M

A

, χ)).
Then it follows from [Szp09] that

Eψ(1, fs,Θ(χ)) =
LS(s+ 1

2 , ξ
♭)

LS(2s+ 1, ξα)LSψ(s+ 1, ξ ×Θ(µ))
·
∏

v∈S

W
Sp4

fs,v
(1),

where Θ(µ) := Θ(SL2,A, µ) is the theta representation for SL2,A and ξ♭ is as
in the preceding remark.

The above consideration shows that the “pattern” of L-functions that could
appear in Eψ(1, fs,Θ(χ)) is a delicate issue. However, we hope that it could
be predicted from a unified solution to the combinatorial problem arising from
Theorem 4.5.
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