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ABSTRACT. We consider in this paper covering groups and Fourier
coefficients of Eisenstein series for induced representations from cer-
tain distinguished theta representations. It is shown that one has
global factorization of such Fourier coefficients, and the local unram-
ified Whittaker function at the identity can be computed from the
local scattering matrices. For a special family of covering groups of
the general linear groups, we show that the Fourier coefficients of such
Eisenstein series are reciprocals of Hecke L-functions, which recovers
an earlier result by Suzuki for Kazhdan—Patterson covering groups.
We also consider covers of the symplectic group and carry out a de-
tailed analysis in the rank-two case.
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1 INTRODUCTION

For a linear algebraic group, Fourier coefficients of Eisenstein series for induced
representations from a parabolic subgroup are important objects for the study
of automorphic forms and L-functions. In particular, the Casselman—Shalika
formula [Shi76, CS80] is a cornerstone for the subject. The formula expresses
the value of the unique Whittaker function of a generic unramified representa-
tion in terms of L-functions for certain representations of the L-group on the
dual side (see for example [Tam91, Proposition 1]). The uniqueness of such
Whittaker function for local representations then further enables one to apply
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the Casselman—Shalika formula to obtain a uniform description of the partial
global L-function that appears in the Fourier coefficients of Eisenstein series
for linear algebraic groups. Such results, for example, were exploited in the
work of Shahidi (see [Sha78,Sha81,Sha88,Sha90]) to develop and complete the
theory of Langlands—Shahidi L-functions arising from Eisenstein series.
However, for finite degree central coverings of linear algebraic groups, the
uniqueness of Whittaker functionals fails in general. This has the direct con-
sequence that the analogous Casselman—Shalika formula takes a more sophis-
ticated form. This failure was first systematically studied in [KP84, KP86] for
certain covers of GL,, which are naturally called Kazhdan—Patterson covers
of GL,. The investigation in [KP84] relies on the so-called scattering matrix
arising from a map between two Whittaker spaces (i.e., the space of Whit-
taker functionals) induced from intertwining operators, while the method of
[KP86] is via trace formula. With the same focus on such scattering matri-
ces, the Casselman—Shalika formula in the covering setting was generalized in
[Pat87,CO13, McN16, Suz97, GSS]. In a somewhat different direction, various
forms of the Casselman—Shalika formula were also proved in connection with
the theory of crystal basis, Demazure operators and representations of quan-
tum groups, see [BBF11a, BN10, McN11,LLS14,LLL19,KL11]. Working with
universal principal series, there are also other formulations of the Casselman—
Shalika formula as in [BBF16,Pus, PP17, PP19], some including covers on the
Kac-Moody groups.

As a result of such non-uniqueness, the computation of the Fourier coefficients
of covering Eisenstein series becomes not as accessible as in the linear alge-
braic case. Indeed, if one considers the covering Borel Eisenstein series, then
its Fourier coefficients are conjecturally just the Weyl group multiple Dirich-
let series (WMDS), the theory of which has been developed and studied in
much depth as in [BBCT06, BBF06, BBF08, BBFH07, BBFH12]. The theory of
WMDS has proved to be important even for the theory of automorphic forms
and L-functions for linear algebraic groups, especially concerning the analytic
properties. See [BFHO05, CFHO6]. Such Weyl group multiple Dirichlet series (at
least conjecturally) possess functional equations and meromorphic continua-
tions; however, they are not Eulerian in general, a consequence of the fact that
the covering torus is not abelian. Therefore, the difficulty of studying such
Dirichlet series arises not only from the local representations, but also from
the way (i.e., the twisted multiplicativity for WMDS) such local information
manifests globally.

This multiplicity of Whittaker functionals lies in the heart of obstacles and
difficulties of extending the theory of L-functions from linear algebraic groups to
covering groups. This is especially the case for the Langlands—Shahidi method.
However, in another direction of generalizing the classical doubling method
of Piatetski-Shapiro and Rallis [GPSR87], there has been recent advance for
studying L-functions for classical groups, including in the covering setting, see
[CFGK19,CFK, Kap]. One crucial point is that in loc. cit., no assumption on
the dimension of the Whittaker space is needed, and thus is especially applicable
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to genuine representations of covering groups.

Nevertheless, it is natural to consider the subclass of representations for which
such uniqueness holds. It is also reasonable to explore finer structure of the
Whittaker space and consider some variants of the usual notion of Whittaker
functionals. For this purpose, we briefly recall some notations in the local
setting. Let G be an n-fold covering group over a non-archimedean local field F,
which is a central extension of G by the group of n-th roots of unity in F,
denoted by pi,,. Let B = TU be its covering Borel subgroup. Let Z(G) be the
center of G, and Z(G) C G the covering of Z(G). Let ¢ be a generic character
of U. Let (m,Vy) be a genuine irreducible representation of G, on which u,
acts by a fixed embedding into C*. We mention below some typical classes of
groups and approaches considered in the literature.

o The twisted Jacquet module J ,, whose dual is the space Why, () of -
Whittaker functionals of , is naturally a U x Z(G)-module. Here Z(G)
is a Heisenberg type group, and its genuine irreducible representations
are finite dimensional with the same dimension. If the uniqueness of -
Whittaker functionals for 7 holds, then Z(G) is necessarily abelian. The
converse may not hold. However, assume that Z(G) is abelian. Let ¢ x p
be the representation of U x Z(G), where p is a fixed genuine character
of Z(G). Consider 7 such that

dimHomUXW(qub,i/) x ) <1. (1)

If the equality holds, then 7 is said to possess a unique (¢, u)-Whittaker
functional. For the two-fold Kazhdan—Patterson covering GLg with twist-
ing parameter 0 (in the notation of [KP84]), it was shown by Gelbart,
Howe, and Piatetski-Shapiro [GHPS79] that every irreducible genuine
representation of this GLy has a unique (1, u)-Whittaker functional up
to a scalar. This fact was used in [GPS80] to study distinguished theta
representations. Unfortunately, for covers of general linear groups, such
(¢, p)-uniqueness does not hold for all genuine representations. In fact,
it already fails for (appropriate) higher degree covers of GL.

e For a fixed n-fold covering G, one can also study the subclass of repre-
sentations where uniqueness of -Whittaker functionals (or even (v, u)-
Whittaker functionals as above) holds. For instance, for coverings of the
general linear groups, Kazhdan—Patterson initiated a representation the-
oretic analysis of the theta representations in [KP84] after the work of
Kubota [Kub69]. In particular, the dimension of the space of 1-Whittaker
functionals for such a theta representation was determined in terms of the
rank and degree of the covering group. We note that theta representa-
tions and their analogues, for example the Weil representations of the

metaplectic double cover S_pgi), have been extensively studied. In par-
ticular, as the Weil representation is the underlying key for the theta
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correspondence, it has been exploited to establish links between repre-

. (2 . o
sentations of SpgT) and the linear groups SOg,,4+1 or their inner forms.
As the literature on this is vast, we simply refer the reader to [Ganl4]
and references therein for a quick review.

The theta representations we focus in this paper are just residues of the cov-
ering Borel Eisenstein series, as in [KP84]. Locally, the theta representation is
the Langlands quotient of the “most reducible” standard module. Presumably,
the family of theta representations should be the easiest one to study among all
genuine representations of covering groups, as they should arise from liftings of
characters of an appropriate linear group (see [F1i80] in the case of GL3). Such
theta representations not only play a special role for understanding genuine rep-
resentations of covering groups, they are in fact very useful for understanding
representations on linear algebraic groups.

For example, Bump and Hoffstein formulated several related conjectures [BH89]
regarding the usage of theta representations in obtaining L-functions via the
Rankin—Selberg method for genuine representations. One of their conjec-
tures was extensively studied in the work of Suzuki [Suz91, Suz97]; in this
direction, we also mention [FG15, Goe98, Ginl8a]. Moreover, the work of
Bump-Ginzburg [BG92] gives a Rankin—Selberg integral for the symmetric
square L-functions of cuspidal representations 7 of GL,., and their method re-
lies crucially on properties of theta representations studied in [KP84]. The
case of twisted symmetric square L-functions was treated by Takeda [Tak14].
See yet another recent work [FK19] of obtaining (quotient of) L-functions
of m by using a Godement—Jacquet type integral involving theta represen-
tations. In another direction, starting with the work of Savin [Sav92] on
representations distinguished by theta representations, the investigation was
continued in [Kab01,Kab02]. Furthermore, in a series of works by Kaplan
[Kapl5,Kapl6a, Kapl6b, Kapl7a, Kap17b], the theory was further studied and
the author also found applications to the problems of computing certain peri-
ods. Notably, determining unipotent orbits of theta representations has also
important applications, which is already clear in the work [BG92, Tak14,FK19]
mentioned above, and is also one of the foci in the study by Friedberg and
Ginzburg [FG18,FG17], Y.-Q. Cai [Cail9] and Leslie [Les19]. We also mention
that the problem of the existence of cuspidal theta representations remains to
be of interest and of challenge, see [PPS84, FG16] and references therein.
Compared to the above, our goal in this paper is of a different nature and is
motivated from [BBL03]. It is to compute the Fourier coefficients of covering
Eisenstein series induced from a genuine representation 7 = ®,,m, which possess
unique nontrivial local and global Whittaker models. That is, locally we assume

dim Why,, (7,) = 1,

and globally up to scalar there is a unique nonzero 1»-Whittaker functional Ap
afforded by the Whittaker—Fourier coefficients. In this context, the ¥-Fourier
coefficient of the Eisenstein series has a global factorization, and it is natural
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to ask what the Fourier-coefficient should be in terms of L-functions associated
to the inducing data. Our paper concentrates on the case where the inducing
representation is a global theta representation ©(M a, x) satisfying the above
multiplicity-one property. We call such ©(M a, x) distinguished (see Definition
3.2). We briefly review some earlier work on this topic.

e In [BBLO3], Banks, Bump and Lieman considered the case of degree
n global Kazhdan-Patterson covering GL;,, and the covering parabolic
subgroup P = M N with

M = GLn,1 X GL1

The representation of M is essentially a certain theta representation © ()
of M, where x is a genuine exceptional character. The ¢-Whittaker func-
tionals for ©(x) are not unique, and therefore for the induced represen-
tation I(s,©0(x)) of GL,, uniqueness for 1)-Whittaker functionals also
fails. However, in this case, Z(GL,,) is abelian and it is shown in [BL94]
that (¢, u)-Whittaker functional for I(s,©(x)) is unique. This is the
first key ingredient in [BBLO03], which gives that the Fourier coefficients
of Eisenstein series could be factorized into local Whittaker functions.
The second key ingredient in [BBLO03] is the local unramified computa-
tion, where the authors showed that the analogous Casselman—Shalika
formula for I(s,O(x)) involves a quotient of two Hecke L-functions for
linear characters associated to x.

e The main result of [BBL03], as remarked by the authors, is just a special
case of the Bump-Hoffstein conjecture [BH89]. To recall the conjecture,
we fix nand let 1 < 7 < r < n—1. Let O, denote a theta repre-
sentation of the n-fold Kazhdan-Patterson cover GL,. Then Bump and
Hoffstein conjectured that L(s, O, x ©)_ ) differs from L(s, 0, x ©,/_))
by several Hecke L-functions in a precise way. Moreover, they conjec-
tured that L(s,©, x ©)_,,) could be identified as the Fourier coefficient
of an Eisenstein series of parabolic type (r,7’) on the n-fold cover GL, .
We refer the reader to the work of Bump and Hoffstein [BH87] for some
early evidence and the proof by Suzuki [Suz97] for the Bump—Hoffstein
conjecture in the function field case. The result in [BBLO3] is just the
Bump-Hoffstein conjecture in the case r = 1,7/ = n — 1. It should be
noted that the proof in [BBLO03] is different from that given in Suzuki
[Suz97].

e It is important for our purpose to remark also that Suzuki [Suz97, §7.6]
actually showed (as a special case of his general results) that if one con-
siders degree n — 1 covers of GL,, and the Eisenstein series built from
theta representation of the degree n — 1 cover of M = GL, -1 x GLj;
then its Fourier coefficients involve just the reciprocal of a single Hecke
L-function. It thus brings up contrast when we compare this with the
degree n cover of GL,, treated in [BBLO03].
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e For the odd n-fold Savin coverings of GL, (see [Sav]) such that r = kn,
Kaplan [Kap] considered the Levi subgroup M = GL,, X GL,, X ... X GL,,
(k-copies). In this case, every theta representation of M is distinguished
and the formula for the local unramified Whittaker function of I(s, ©(x))
involves several Hecke L-functions, see [Kap, Theorem 43]. For general
Brylinski-Deligne covers of GL,, Y.-Q. Cai [Cai20] obtained a formula
for unramified Whittaker functions of GL, for certain representations in-
duced theta representations, even without assuming the uniqueness condi-
tion. His work generalizes that in [Suz97, §7] and [Kap, §2.3]. The meth-
ods in [Kap] and [Cai20] are the same, by adopting a crystal graph (and
also Gelfand-Tsetlin pattern) description of the Whittaker function for
covering groups, as developed in [BBF11b,BBCT12,McN11]. In fact, the
methods used in [Kap,Cai20] was already employed by Ginzburg [Ginl8b]
to compute the value of a general unramified Whittaker function without
assuming the uniqueness property, in order to verify a certain conjecture
on the non-generic unramified representation of a covering group.

As alluded to above, in this paper we study the occurrence of Hecke L-functions
as the Fourier coefficients of Eisenstein series induced from theta representa-
tions for general covering groups. In particular, we show that the setup is
quite general, as expected. More precisely, with the assumption that the in-
ducing theta representation ©(x) is distinguished, the v-Fourier coefficient
Ey(1, fs,0(x)) of the Eisenstein series can be factorized into a product of local
Whittaker functions for the induced representations. To this end, we show in §4
that the local unramified computation is completely reduced to some combina-
torial problems arising from the local scattering matrix [r(w, x, 7, 71)]7,y/67/2-
The main result for this part includes Proposition 4.3 and Theorem 4.5.

THEOREM 1.1 (Theorem 4.5). Let ngT be the -Whittaker functional of
Ig: (s -wp,i("™xw)). If T(wrr, Xo, 15, 155) # 0, then as the unramified local
component of Ey(1, fs,0(x)), we have

Wi (1)

T(wMa Xv 1T7 1T> .

W,%,U(l) =

Here WflT(l) can be written in terms of T(w,x,7v,7) as well, see
Proposition 3.5. To compute chf) (1), the key of Suzuki’s work [Suz97]

mentioned above is his overcoming the combinatorial difficulties with
[T(w, X, 7,7, re7/a for Kazhdan-Patterson coverings of GL, by imple-
menting some direct and sophisticated analysis of the matrix. On the other
hand, the novelties in [Gin18b, Kap, Cai20] rely on an efficient application of
the formula of unramified Whittaker functions in terms of the crystal graph
descriptions.

As examples of computing WCE) . (1), we will first consider in §5 a special family

of “nice” coverings of GL, (sewe Definition 5.1) and show that the reciprocal
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of a Hecke L-function appears as the Fourier coefficients of Eisenstein series
induced from parabolic subgroup of type (r — 1,1). Thus, our result is a
generalization for the case of Kazhdan—Patterson coverings treated by Suzuki
[Suz97]. However, our unramified computation follows [BBL03]. The main
result in §5 is the following.

THEOREM 1.2 (Theorem 5.11). Let (n, GL,) be a “nice” cover over F. Let 1)
be a nontrivial character of A/F. Let ©(x) be the global theta representation
of M p associated with an exceptional character x for Mpa. Let S C |F| be
a finite set of places such that: (i) S contains the archimedean places and
[n|, =1 for allv € |F| —S; (ii) xo» and ¥, are both unramified outside S. Let
E(g, fs,0©(x)) be the Eisenstein series on GL,a associated with I1(s,0(x)).
Assume pon, C F*. Then

Ey(1, £,000)) = L% (r = 1)(s + 1), xa, ) - [[WE (1),
veES

where L°(8, Xa,_,) = [Togs L(s, (Xa,_1)v) is the partial Hecke L-function at-
tached to Xa, .-

There are several features of our treatment compared to that in [BBL03,Suz97,
Kap, Cai20], which we would like to highlight below.

e Our formulation is for a nice class (see Definition 5.1) of covering groups of
GL,, which is captured by combinatorial constraints. In fact, we describe
in §2 the covering groups in the Brylinski-Deligne framework and apply
results in [Gaol7]. Kazhdan—Patterson covers form a special family in
the Brylinski-Deligne category. We hope that the usage of the Brylinski-
Deligne language adds some transparency to the class of groups we focus
on in this paper. For instance, the reader could readily specialize to the
Kazhdan—Patterson covering groups and compare our result with [BBL03,
Theorem 3.2] and [Suz97, §7.6]. See Example 5.12.

e For Kazhdan—Patterson coverings, the consideration of degree (n — 1)
cover of GL,, (instead of n-fold covers considered in [BBLO03]) is actu-
ally the crucial starting point. This family fits into the set-up described
in §3-84. More precisely, for degree (n — 1)-cover of the Levi subgroup
GL,,—1 x GL1, the theta representation O(x) is always t-distinguished
(see Proposition 5.7). Therefore, we could refrain from considering the
Z(GLy,)-structure of the ¢-Whittaker functionals for the induced repre-
sentations I(s,0(x)) on GL,. In this regard, we do not need to prove
the uniqueness of (¢, 11)-Whittaker functionals for I(s, ©(x)) as in [BL94].
See Remark 5.6.

e Theorem 1.2 is parallel to [Kap, Theorem 43] but does not follow from it.
On the other hand, the main result in [Cai20, Theorem 8.1] does recover
Theorem 1.2 here. However, as mentioned above, the strategy for our
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proof is different, as we adopt the approach from [BBL03]. We also give
an interpretation of the result on the dual side in §5.5. In particular,
the Fourier coefficient could be interpreted in terms of certain adjoint
L-function and zeta functions.

In the last section §6 of the paper, we consider covers of Sp,, and induction
from the Siegel parabolic subgroup. Under a certain condition on the degree
of the covering group, we show that the theta representation of the Siegel Levi
subgroup is distinguished. Thus the results in §3—§4 can be applied. However,
we only carry out the detailed computation for r = 2, and the main result is
Theorem 6.5, which shows that the reciprocal of a Hecke L-function appears
in this case. In general, a difference between the cases when r is even or odd
is expected. We mention some of these expected subtleties at the end of the
paper.

We believe that for general covering groups, the Fourier coefficients of Eisen-
stein series induced from distinguished theta representations involve just Hecke
L-functions. However, it seems to be still mysterious regarding the pattern of
the occurrence of such L-functions. Indeed, the works of [BBL03, Suz97] and
some covers of Sp, considered in this paper already suggest that at the mo-
ment one does not seem to have a uniformly simple description of the (even
conjectural) pattern. The rank, degree and type of the covering group and the
parabolic subgroups involved all play sensitive role and obey certain resonant
relations here. We hope that the resonant relation between these data and the
L-functions that could appear as Fourier coefficients of Eisenstein series will be
predicted from a unified solution of the combinatorial problem involved in the
future.

Lastly, we remark that at various places where we make the assumption that
ton, C F* to avoid technical complications in our computations, we will ex-
plicate such assumption. However, the results are expected to hold under the
(minimal and necessary) assumption u,, C F* as well.
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2 CENTRAL EXTENSIONS AND COVERING GROUPS

In this section, let F' be a number field with the ring of adeles A. Denote by
|F'| the set of all places of F. Let F, be the local field of F for a place v € |F]|.
For a non-archimedean place v, denote by O, C F, the ring of integers of F,
and w, € O, a fixed uniformizer. To introduce covering groups, we follow the
framework of Brylinski-Deligne [BD01], which is also based on the earlier work
of Moore, Steinberg and Mastumoto etc. We refer the reader to [GGW18] for
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a historical review. Meanwhile, we also follow some notations and recall some

results from [Weil8], [GG18] and [Gaol7].

2.1 Ky-EXTENSIONS

Let G be a split connected linear algebraic group over F' with maximal split
torus T. Let
{X, A, ®; Y, AY, &V}

be the based root datum of G. Here X (resp. Y) is the character lattice
(resp. cocharacter lattice) for (G,T). Choose a set A C & of simple roots
from the set of roots ®, and AV the corresponding simple coroots from ®V.
Write Y5¢ C Y for the sublattice generated by ®V. Let B = TU be the Borel
subgroup associated with A. Denote by U~ C G the unipotent subgroup
opposite U.

Fix a Chevalley system of pinnings for (G, T). That is, we fix a set of compat-
ible isomorphisms

{ea:Ga = Uslpca

where U, C G is the root subgroup associated with «. In particular, for each
a € P, there is a unique homomorphism ¢, : SLy — G which restricts to e4,
on the upper and lower triangular subgroup of unipotent matrices of SLs.
Denote by W the Weyl group of (G, T), which we identify with the Weyl
group of the coroot system. In particular, W is generated by simple reflections
{wq :a¥ € AV} for Y ® Q. Let [ : W — N be the length function. Let wg be
the longest element in W.

Consider the algebro-geometric Ko-extension G of G, which is categorically
equivalent to the pairs {(D,n)} (see [GG18, §2.6]). Here

n:YS — FX
is a homomorphism. On the other hand,
D:Y XY —>Z

is a (not necessarily symmetric) bilinear form on Y such that

Q) :== D(y,y)

is a Weyl-invariant integer-valued quadratic form on Y. We call D a bisector
following [Weil4, §2.1]. Let Bg be the Weyl-invariant bilinear form associated
to @ by

Ba(y1,42) = Qyr +y2) — Qy1) — Q(y2)-

Clearly, D(y1,v2) + D(y2,y1) = Bg(y1,v2). Any G is, up to isomorphism,
incarnated by (i.e. categorically associated to) a pair (D,n) for a bisector D
and 7.

The couple (D,n) plays the following role for the structure of G.
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e First, the group G splits canonically over any _unipotent subgroup of G.
For « € ® and a € G,, denote by €,(a) € G the canonical lifting of
eq(a) € G. For a € @ and a € G,,, define

we(a) == eq(a)-e_o(—a"1)-eq(a) and Wy (a) := €n(a)-e_a(—a"')2u(a).

Q

This gives 1 natural representatives w, := wq (1) in G, and also W, :=
We (1) in G, of the Weyl element w, € W. Moreover, for any hq(a) :=
aY(a) € T, there is a natural lifting

ho(a) :=Ws(a) - Wa(—1) € T, (3)
which depends only on the pinnings and the canonical unipotent splitting.

e Second, there is a section s of T over T such that
s(y1(a)) - s(y2(0)) = {a, b} - s(y1 (a) - y2(b)) (4)

for any a,b € G,,. Moreover, for & € A and the natural lifting A (a) of
ha(a) above, one has

ha(a) = {n(a"),a} - s(ha(a)) € T. (5)

e Third, let w, € G be the above natural representative of w, € W. For
any y(a) € T with y € Y and a € Gy, one has

Wey '@'w;l :w%a(a_@’a)), (6)

where (—, —) is the canonical paring between Y and X.

For every w = w,...wow; in a minimal expansion, we choose representative
w € G and w € G by

W = Wy.. w2w1 € G and W = W, - .. wWaw1 € G.

Here w; and w; are defined in (2) above. The representatives w and w are
independent of the minimal expansion of w. We write wg for the representative
of the longest wg € W.

We remark that if the derived group of G is simply-connected, then the iso-
morphism class of G is determined by the Weyl-invariant quadratic form Q. In
particular, for such G, any extension G is incarnated by (D,n = 1) for some
bisector D, up to isomorphism. In this paper, we assume that the composition

N Y= FX — FX/(F*)" (7)

of n with the obvious quotient is trivial.

Let n > 1. We assume that F' contains the full group of n-th roots of unity,
denoted by . An n-fold cover of G, in the sense of [Weil8, Definition 1.2], is
just the pair (n, G). The above relations among generators of G will eventually
give rise to some relations for the topological coverings.
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2.2 DUAL GROUP AND L-GROUP

For a cover (n,G) associated to (D,n), with Q and Bg arising from D, we
define

Yon ={y€Y :Bg(y,y) EnZiforaly eY}CY. (8)
For every o € ®V, define

" ged(n, Q(aY))

and

Voo v -1
QG p =N, QQu =Ny .

Let Y3, C Ygn be the sublattice generated by @) , := {ag), : a¥ € &V}
Denote Xg n := Homz(Yg n, Z) and g, = {agn : a € &}. We also write

A, ={ab,, ' € AV} and Ag = {agn : a € A},
Then
(Yo, ®dms Adni XQins PHon Agum)
forms a root datum. It gives a unique (up to unique isomorphism) pinned
reductive group G’ over Z, called the dual group of (n,G). In particular,
Yo, is the character lattice for G’ and Aé,n the set of simple roots. Let
G’ = éV(C) be the associated complex dual group.

In [Weil4d, Weil8], Weissman constructed the global L-group for (n, G) which

is an extension
v

G LGa Wr,
where Wy is the Weil group of F'. There is also the local L-group
G’ LG, W,

which is compatible with the global L-group. Moreover, the construction of
L-group is functorial, and in particular it behaves well with respect to the
restriction of G to parabolic subgroups. For details on the construction and
some properties regarding the L-group, we refer the reader to [Weild, Weil8,
GG18].

2.3 WEYL ORBITS

Let 1
— v
TS
aVv>0
be the half sum of all positive coroots of G. Denote by w(y) the natural Weyl

group action on Y and Y ® Q generated by the reflections w,. We consider
the twisted Weyl-action

wly] == w(y —p) + p.
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Clearly Y is stable under this twisted action. Throughout the paper, we denote

Yp=y—peEYR®Q

for any y € Y, and thus wly] —y = w(y,) —y,. From now on, by Weyl orbits in
Y or Y ® Q we always refer to the ones with respect to the action wly|. Write
OF for the set of free W-orbits in Y.
Let

p:Y =2 Y/Yq,and p*° Y = Y/YS,

be the natural quotient maps. We call O, € OF a Yg ,-free orbit if |O,| =
lp(O,)], that is, if O, and p(O,) have the same size. Similarly, we call O, € OF
a Y5¢,-free orbit if |O,[ = |p**(O,)|. Denote

Og,n = {(’)y cof . O, is YQm—free}

and
Og,n,sc ={0, € O : 0, is Y§°,-free} .

Clearly, the inclusions Og,n c of C OF hold.

,n,sc

2.4 TOPOLOGICAL COVERINGS

Write Gp for G(A) and G, for G(F,) for any place v € |F|. We also denote
G(F) by GF. Recall that we assume p, C F*.
The Ks-extension G gives rise to an n-fold global topological central covering

M ‘—)éﬂ\ *d)» GA,

which splits over G, and the splitting can be chosen in a canonical way (see
[BDO1, §10.4]). In fact it arises from (and thus is compatible with) the local
covering
N Do
n —— Gy —» G,. (9)
More precisely, let
(757)71,71 : Fv X Fv 4>,Ufn

be the local n-th Hilbert symbol. Then the local extension G, arises from the
central extension

Ks(F,) —— G(F,) —2% G(F,)

by push-out via the natural map Ko(F,) — u, given by {a,b} — (a,b)n s
The extension (9) is a central extension of locally compact topological groups
(with u,, a finite and discrete group). The maps i, and ¢, are continuous. We
have topological isomorphisms ji,, =~ i, (i) and Gy /iy(pn) ~ G,. Now Gp is
obtained from “gluing” the G, together. For more details, see [BD01, §10].
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For a subset H C G,, denote H := ¢ '(H). The relations for G described
in §2.1 give rise to the corresponding relations for G,. For example, inherited
from (4), the group law on the covering torus T', is given by

s(y1(a)) - s(y2(b) = (a, )2 ¥2) - s(yy(a) - y2(b)), (10)
where y; € Y and a,b € F,*. The commutator [t1,%s] := E@Zl‘lfgl on T,
which descends to a map [—, —] : T, X T\, — pn, is thus given by

[y1(a), y2(b)] = (a, b)Bewrv2),

For any group H, let Z(H) be its center. We note that by [Wei09, Proposition
4.1] the center Z(T,) of the covering torus T, is equal to ¢, ' (Im(ig,,)) where

Z'Qyn : YQyn X FU>< — T,

is the isogeny induced from the embedding Yo, C Y.

2.5 LOCAL UNRAMIFIED REPRESENTATIONS

Let v € |F| be a non-archimedean place such that |n|, = 1. Let K, C G, be
the hyperspecial maximal compact subgroup generated by T(O,) and e, (O,)
for all root a. With our assumption that 7, as in (7) is trivial, the group G,
splits over K, (see [GG18, Theorem 4.2]) and we fix such a splitting sg,; call
G, an unramified group in this case. If no confusion arises, we will omit sg,
and write K, C G, instead.

A genuine representation (7, V;) of the n-fold cover G, (or Ga) is such that
W acts on Vi by a fixed embedding u, C C*. For an unramified group
G, the representation (7, V;) called unramified if VX # 0. By the Satake
isomorphism, we know that dim VXv = 1 if 7 is unramified.

Since e4(O,) is a pro-p group and |n|, = 1, we see that G, splits canonically
and uniquely over the unipotent subgroup e, (0O,) (and not only over e, (Fy)),
which is then also given by e, () — €, (z). Hence,

sk, (€a(u)) = Ea(u)
for every u € O,. Therefore,
ha(u) = sk, (ha(u)) € sk, (K,) C G, (11)

for every u € O by the definition of h,(u) in (3). For GL,., properties of such
a splitting sx, are discussed more extensively in [KP84, Tak16].
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3 THETA REPRESENTATIONS

In this section, we first introduce the global theta representations for G . For
a discussion on general analytic properties of Eisenstein series, we refer the
reader to [MWO95]. For theta representations, which are residues of the Eisen-
stein series at the farthest hyperplanes, Kazhdan and Patterson carried out a
detailed analysis for GL, a in [KP84, Section II]. Though the covering groups
we consider here are general, the formulation in [KP84, §I1] for GL, applies and
we follow closely the exposition on theta representations there. Following this,
we will compute for unramified local data the Whittaker function evaluated at
dominant torus element for local theta representations, which generalizes the
work of [KP84, Pat87].

3.1 THETA REPRESENTATIONS

By [Weil6, Theorem 4.15], T - Z (T'a) is a maximal abelian subgroup of Ta,
where Z(T'a) = ®,Z(T,). Let

X = ®uXo: Z(Tp) = C*

be a genuine character which is trivial on Tr N Z(Ta). Therefore, we could
view x as a genuine character of T - Z(Ta) which is trivial on Tr; that is, x
is a genuine automorphic character.

For any a € ®, the map F.* — T, given by a,, + Ea(aﬂ“) is a homomorphism.
Therefore, we have a linear character

Xa : A — C*

given by _
Xa((@v)y) = x((halal*))y).

For x € F, since the canonical lifting of e, (z) € Gr C G, into G, agrees with
the canonical lifting of G into Ga (cf. [MW95, Appendix 1]), and that h, ()
is defined in terms of the unipotent elements, we see that (hq(z)), € Ga is the
lifting of h,(z) € Gp. Therefore, x, is an automorphic character; that is, it is
trivial on F'*.

DEFINITION 3.1 ([KP84, page 113]). For any subset A’ C A, a genuine char-
acter y is called A’-exceptional (resp. A’-anti-exceptional) if x, =|-|a (resp.
Xa = |- |a") for every a € A’, where |-|: AX — C* is the idele norm of
A*. In the case A’ = A, it is simply called exceptional or anti-exceptional
respectively.

Let P = MN be the parabolic subgroup associated to A’. If x is A'-
exceptional, we may call y an exceptional character for Mp .
For a general x, consider the induced representation

. o Ta
Z(X) - IndTFZ(TA)X
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of Tp. For each x,, let X, be an extension of x, to an maximal abelian
subgroup A, C T, where for almost all finite v we have A, = T(0,)Z(T,). Let
i(xw) = Ind}; X, be the irreducible induced representation. The isomorphism
class of i(x,) is independent of the choice of A, and the extension x/. We have
’L(X) = ®vi(Xv)' _

Now we define the induced representation of Gp as follows. Recall that B =
TU is the Borel subgroup of G. Let ép be the modular character of Ba.
Then we have the induced representation I(i(x)) = Indgi (i(x) ® 1), where 1

denotes the trivial representation of Up. One has I(i(x)) = ®,I(i(xv)), where

the local space I(i(xy)) consists of smooth functions f, : G, — i(x») satisfying
F®o-7,) =612 (b0) - i0x0) (B2) £ (3,)

for all b, € B, and g, € G,. Here 5§v is the pull-back of the modular character
dp, on B, via the quotient B, — B,. By induction in stages, we also identify
I(i(x)) as the representation I(x) induced from xy ® 1 on (TrZ(Ta)) x Un.
We may use I(x) for I(i(x)) interchangeably.

For the general notions of admissible and automorphic representations of Ga,
which are derived from proper modification as in the linear algebraic case, we
refer the reader to [Weil8, §8]. In particular, I(x) defined above is an admissible
representation.

Let K = [[, K, C Ga be a maximal compact subgroup, where K, is the
hyperspecial maximal compact subgroup of G, in §2.5 for almost all finite
v € |F|. The representation space of I(x) could be identified with the space of
right K-finite functions (see [MWO95, II.1] and also [KP84, page 108-109])

f: UATF\EA = (TF\TA) K —— C (12)

such that for each k € K, the function  — f(Z - k) belongs to i(x). With this
identification, for f € I(x) we define the Eisenstein series on Gp by

E(g,x,f)= >, [f(y-g)forgeGa,

yeBr\Gr

where G is identified as a subgroup of G via the canonical splitting.

For any w = wq,...Wo, € W in a minimal decomposition, let w = wq,...Wq, €
Gr be the representative which could be viewed as in Ga. For almost all v, We
have w = W, where w € G, is the element given by (2). The two representations
“i(x) and i(*x) are isomorphic albeit not canonically. Let

Twyx = @uTwxe ¢ 1(X) = 1(*x)

be an isomorphism where for almost all finite v € |F|, the isomorphism 7, y, :
“i(xv) — i(*Xv) is the canonical one given by 7y ., (fo)(&) = fo(w™'tw),
see [GSS, §3.6]. We also denote by 7y : I(*i(x)) = I(i("x)) the induced

isomorphism.
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Let Ty = @, Tw,x. - 1(x) = I(*x) be the intertwining operator given by

Tunl$le) = [ run(f(w ug))du
where U} = Up NwUxw™. That is, Ty = Twy o T(w,i(x)), where
T(w,i(x)) : I(i(x)) — I(*i(x)) is the usual intertwining operator. Locally,
the operator Ty v, = Tw,y, © T(w,i(xy)) is defined by analytic continuation of
the integral

T (F)0) = [ o, (oo™ ), (13)
where UY = U, NwU,; w™!
For w € W, denote &, = {¢ €P:a>0and w(a) <0}. For a non-
archimedean v such that |n|, = 1 and x, is an unramified character for

an unramified group G,, denote the Gindikin-Karpelevich coefficient (see
[Cas80,McN16,Gaol8al) by

1- v(ho (e
Cgk(w7X) = H Cgk(waaXv>a where Cgk(wa7Xv> - ¢ X ( (na >>
AED 1- X'U(h/ ( )
(14)
The intertwining operator Ty, y : I(xv) = I(*x0) gives

vaXv (fO) = Cgk(waX’lJ) : féa

where fo € I(xy) and f§ € I(*x.) are the normalized unramified vectors.
The set of genuine automorphic characters x on Z(Tpa) affords an analytic
structure. The Eisenstein series F(g, X, f) can be meromorphically contin-
ued as an operator on Yy, and satisfies the following functional equation
E(g,x, f) = E(9,"x, T(w, x)(f)) for w € W. Moreover, the Eisenstein se-
ries have their “greatest” singularity for exceptional characters. Let x be an
exceptional character, define

0(g, f,x) = lim H L(la - X”‘ =0X0) gy, ),

X’ ‘>X a)

where L(x') (resp. £(0,’)) is the Hecke L-function (resp. e-factor) associated
with a Hecke character x'. Let ©(Ga, x) be the automorphic representation
generated by f +— 6(g, f,x). One has

6(6A,X> = ®’u®(av; X’U);

where the local representation ©(G,, X, ) is realized as the unique Langlands
quotient of I(x,), which is also the image of the local intertwining intertwining
operator T(wa, xv) : L(xv) = 1(*Cxy).
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3.2 WHITTAKER MODELS

Fix a nontrivial character ¢ : A/F — C*. By abuse of notation, denote by 1
the character on Up such that its restriction to every U, a for a € A is given
by 1 o e, . For an irreducible genuine automorphic representation (II, Vi1) of
G, consider the global ¢-Whittaker functional on Vi by

Ma(f) = /U g ™, (15)

where f € Vi is any function in the space.

On the other hand, for v € |F| and an irreducible genuine representation (m, V7)
of G, denote by Why, (7) the space of continuous v,-Whittaker functionals
of V., i.e. the set of all continuous functionals

A Ve = C

such that A, (7(u) f) = ¢y (u)-f forall f € V; and u € U,,. A remark is necessary
on the topology on V, and thus the continuity of such \,, see [Shal74, §3]. If v
is non-archimedean, then V; is endowed with the trivial locally convex topology
for which every semi-norm is continuous. If v is an archimedean place, then
by a genuine representation (7, V) we mean a genuine (gc, K,)-module with
commuting action by the complexified Lie algebra gc of G, and a maximal
compact subgroup K, C G, (as the preimage of a maximal compact subgroup
K, of Gy), i.e.,

(Ad(R)X)(v) = (kXE™")(v)

for every X € gc,E € K, and v € V,. For archimedean v, we assume Vj
is pre-unitary with respect to a norm | - |, which then gives rise to a family
of semi-norms {|v|x =X (v)| : X € gc}; this gives a weak topology on V.
Thus, we have specified the topology on V, and also the expected continuity
of \, for every v € |F].

If 7 is an unramified representation of G, with a chosen unramified vector fq,
then one has the unramified Whittaker function

Wi, (9) = Mu(m(9)fo), g € G (16)

associated to A, .

DEFINITION 3.2. A theta representation ©(Ga, x) is called ¢-distinguished if
the following two conditions hold:

e \p on O(Gp, x) is nonzero, and

o dim Why, (©(Gy, xv)) =1 for every v € |F|.

As in the linear algebraic case, we have
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PROPOSITION 3.3. Let O(Gp,x) be a 1-distinguished theta representation.

Then Ap(0) = HU_/\U(HU) for 6 = ®,0, € ®,0(Gy, Xxv), where for almost all

v, Ay € Why, (O(Gy, Xv)) is the unique normalized Whittaker functional such
that \,(09) = 1 for the unramified vector 09 € ©(Gy, xv)-

REMARK 3.4. For a fixed v, an irreducible automorphic representation (II, Vi)
of G is called globally w-generic if Aa(f) # O for some f € Vi1. Moreover,
it is called locally t-generic if dim Why, (©(G,, X)) > 0 for every v € |F|. If
Gp = G, ie, n = 1, then it is expected that global and local 1/-genericity
are equivalent (see [Shall]). For covering groups, Gelbart and Soudry [GS87]
showed that locally ¢-generic (but not globally ¥-generic) cuspidal genuine rep-
resentation of the double cover S_L21 A exists. However, it is expected that for
theta representations of covering groups, local and global 1-genericity agree.
In particular, it should be sufficient to assume the second condition in Defini-

tion 3.2.

3.3 UNRAMIFIED WHITTAKER FUNCTION

We assume in this subsection that v is a non-archimedean place such that
G, is an unramified group. We first summarize some results from [Gaol7]
regarding values of Whittaker functions for principal series and local theta
representations. For simplicity of notation, we omit the subscript v and write
F.T,x, for Fy, Ty, Xv,¥s etc. Thus, we assume that y is unramified and
has conductor O.

Recall that x is a genuine unramified character of Z(T) and A C T a maximal
abelian subgroup. By abuse of notation, denote by x an extension to A. Let
Ftn(i(x)) be the vector space of functions ¢ on T satisfying

c(t-z)=c(t)-x(z), t€Tandzc A.
The support of ¢ € Ftn(i(x)) is a disjoint union of cosets in T/A.
Let {7i} C T be a chosen set of representatives of 7'/A, and consider c,, €
Ftn(i(x)) which has support v; - A and c,(v;) = 1. It gives rise to a linear
functional 1,, € i(x)" such that l,,(¢,,) = d;;, where ¢, € i(x) is the unique

element such that supp(¢,,) = A ’yj_l and ¢, (fyj_l) = 1. Then there is a
natural isomorphism of vector spaces Ftn(i(x)) =~ i(x)" given by

c o= Z c(yi) - 1y,

Yi GT/Z

It can be checked easily that this isomorphism does not depend on the choice
of representatives for T /A.

Furthermore, there is an isomorphism between i(x)" and the space Why, (I(x))
of 1-Whittaker functionals on I(x) given by

=N
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with
N:I(x) = C, fel (/ f(@glu)w(u)ldu),
U
where f € I(x) is now viewed as an i(x)-valued function on G. For any
c € Ftn(i(x)), write Ac € Why(I(x)) for the -Whittaker functional of I(yx)

associated to l.. Therefore, ¢ > Ac gives an isomorphism between Ftn(i(x))
and Why (I(x)). For any v € T, we will write

Ay = Ac, -

To avoid confusion, we may write A\X instead of A for any A € Why(I(x)) to
emphasize the underlying representation () involved.
The operator T, : I(x) = I(*x) induces a homomorphism of vector spaces

T x = Why(I1(*x)) = Why (1(x))

<)‘:Xa _> = <)‘:XaTw,x(_)>
for any ¢ € Ftn(i(*x)). Let {/\:X}WET/Z be a basis for Why,(I("x)), and
{/\X/} 7/ a basis for Why,(I(x)). The map T}; | is then determined by the
e :

given by

5
square matrix [7(w, X, 7, 7/)]v &7 /7 such that

To )= 30w Ay
v ET/A

We call the matrix [7(w,x,7,7’)] a scattering matrix (see [GSS, §3.6]). It
satisfies some immediate properties:

o For w e W and Z,7 € A, the identity
T(w,x,7 %7 - 7) = (“x) @) - T(w,x,7,7) - x(7) (17)
holds.

o For wy,we € W such that I(wawy) = [(w2) + [(w1), one has

T(wawy, 7, 7) = Y T(we, "X, 7,9") (w7 (18)
v"'€T/A

which is referred to as the cocycle relation.

In view of the cocycle relation in (18), the understanding of 7(x,w,~,v’) in
principle is reduced to the case where w = w, for some a € A. For this
purpose, we proceed to introduce first the Gauss sum.
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Let du be the self-dual Haar measure of F' such that du(O) = 1; thus, du(O*) =
1 — ¢ '. The Gauss sum is defined by

Gy(a,b) = / (u,@)® - p(wbu)du for a,b € Z.
(02

In particular, we are interest in

gw(k) = Gw(k’ _1)’
where k € Z is any integer. We write henceforth
&:=(-1,w), € C*~.
It is known that
¢* - gy,(—k) for any k € Z,
gy(k)={—¢" if nk, (19)
gy (k) with |gy (k)| = ¢ /% if n{k.
Here Z denotes the complex conjugation of a complex number z. For any y € Y,
we write _
sy =s(y(w)) € T.
If f1o0, C F* and thus & = 1, then the map s : Y — T defined above is a
homomorphism by (10).

Suppose that v = s,, and 7' = s,. Then it is shown in [KP84, McN16] (with
some refinement from [Gaol7]) that 7(x, wa,7,7’) is determined as follows:

o We can write 7(x, wa,7,7) = 7' (X, Wa, 7, 7) + 7% (Wa, X, 7,7') such that
(W, X7 7,7 Z) = (YX) T Z) - T (wa, x,7,7") - x(F) for 7,7 € A

e One has 7'(wa,X,7,7') = 0 unless y; = y mod Yg,. Moreover,
72 (Wa, X, 7,7) = 0 unless y1 = w,[y] mod Yg .

o If y; =y, then

T Na \\Ky, o
Tl(wa”)(,'}’,')/) —_ (1 o q71> X(ha(w )) where ky,a — ’7<y,04>—‘ .

1 *X(Ea(wna)), Na
If y1 = wqy], then

72 (Wa, X, 7, 7)) = Ve PWT) L ((y,, ) Q(aV)).

The above is a generalization for the GL,. case considered in [KP84].

Let f9 € I(x) be the normalized unramified vector such that fO(1) € i(x) is
the unramified vector taking value 1 at 1. For any A € Why, (I(x)), consider
the associated unramified Whittaker function W in (16). We also denote

We := Wy, and W, 1= W,
for any ¢ € Ftn(i(x)) and v € T
An element T € T is called dominant if 7- (UNK)-T ' C K.
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PROPOSITION 3.5 ([Pat87,CO13]). Let I(x) be an unramified principal series
of G and v € T. Let W, be the Whittaker function associated to f°. Then,
W, (t) = 0 unless t € T is dominant. Moreover, for dominant t, one has

W) =670 Y calwaw™, x) - T(w,” Xy, we - Ewgh),
weW

where dp is the modular character of B.

Proof. For Kazhdan—Patterson covers of GL,, the formula is given in
[Pat87, CO13]. For general Brylinski-Deligne covers of GL,, the details of
the proof are given in [Gaol8b, Proposition 3.3 and 3.4]. However, as noted
there, the argument actually applies to covers of general reductive group, since
the ingredients used in the proof are [McN16, Lemma 6.1, Theorem 8.1] and
[Gaol7, Corollary 3.5], which all hold for Brylinski-Deligne coverings of general
reductive groups. O

Note that the above Proposition holds for any x (not necessarily exceptional).
Now if x is exceptional, then every Ac € Why,(I(x)) that factors through the
map

Twe.x : T(x) = 1(Y9X),

gives a 1)-Whittaker functional of ©(G,x). Moreover, it is shown in [Gaol7]
that we always have the bounds

0(0h,,) (20)

< dim Why(0(G. ) < [9(0h 0.00)|

The proof of the first inequality in (20) is constructive. More precisely, it
is shown in [Gaol7] that any orbit O, € (9 O.n 8lves rise to an element
co, € Ftn(i(x)), whose associated nontr1v1a1 ¢-Whittaker functional Ao, of
I(x) factors through T, . That is, Ao, can be viewed as a 1)- Whlttaker
functional on ©(G, x). In this case, let Wo, = Weo, be the Whittaker func-
tion associated to the unramified vector 6° := T, , (f°) in O(G, x).

As investigated in [Gaol7], the case when the two bounds in (20) do not agree
is quite subtle. However, we will consider in §5 and §6 of this paper only the
case where Og,n = Og n.sc- Lherefore, we only recall below the construction
of co, € Ftn(i(x)) and some results for Wo, when O, € Og,n’ which are
essentially already proved in [Gaol8b].

The element co, for O, € Ogm is given in several steps as follows.

e For any = € R, let [z] be the minimal integer such that [z] > z. For
any y €Y and oV € AV, write

t(wa,y) = W) PO ghoe =g ((y,,0) Qa¥) 7

where ( >
Yy, &
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For w = wg...wow; € W in a minimum decomposition, define
k
t(W, y) = H t(W“ Wi—1...W1 [y])a

i=1

which is well-defined and independent of the minimum expansion of w
(see [Gaol7, Proposition 3.10]).

e Assign co, (sy) = 1. For any w € W, define
co, (Swiy)) := t(w,y) - co, (sy) = t(w,y).

If i(wow) =1+ [(w) for some o € A, then one sees immediately that

o, (Swawly)) = t(Wa, W[y]) - co, (Sw(y))-
e Extend cop, to a function on T by

co, (Sw[y] -E) =co, (Sw[y]) . XU(E), ze A

and

co,() =0ift ¢ | supy -4 (21)

weW

Then cp, is a well-defined element in Ftn(i(x)). For the values of the Whittaker
function Wo, , we have the following.

ProPOSITION 3.6. Let O, € of . and the Whittaker function Wo, as above.
Ift € T is not dominant, then Wo,(t) = 0. For dominant t € T, one has

Wo, (B) = cg(wa, x) - 6 °(F) - co, (wa - T wg").

In particular, for dominant s, with z € Y, if poy, C F*, then

W(Qy (Sz) = Cgk(va X) ' 5}3/2(52) - Co, (ch(z))'

Proof. Again, for covers of the general linear groups, a detailed proof for the
first equality is given in [Gaol8b, Proposition 3.4]. However, the same as
mentioned in the proof for Proposition 3.5, the argument in [Gaol8b] actually
applies to Brylinski-Deligne covers of general reductive group.

For the second equality, it follows from (6) and our assumption ps, C F* that
w-s, w = Sw(z) for any w € W; see [Gaol8b, Lemma 2.1] for details. This
completes the proof. O
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4 EISENSTEIN SERIES INDUCED FROM THETA REPRESENTATIONS

In this section, we consider a theta representation of the Levi subgroup of a
maximal parabolic subgroup and Eisenstein series induced from it. If the theta
representation is ¢-distinguished, then the Fourier coefficient of the Eisenstein
series has a global factorization and thus the computation is completely re-
duced to the local case. For unramified places, we will show that the local
computation can be reduced to some quantities involving the scattering matrix

[7(w, x,7,7")]-

4.1 MAXIMAL PARABOLIC SUBGROUP

We continue to use (X, ®,A; Y, ®V, AV) to denote the root datum of G. Con-
sider a simple root § € A. Let P = MN be the maximal parabolic subgroup
of G associated with A\ {5}. We write

(X, @, Anr; Y, @), AY))

for the root datum of M. Since T C M, the character and cocharacter lattices
X and Y respectively are unchanged. However, we have Ay = A\ {8} and
A, = AV\{BY}. Denote by Y3 the coroot lattice of M, which is then the
sublattice of Y*¢ spanned by AY,. Let By; = TU); be the Borel subgroup of
M corresponding to Ajyy.

Denote by Wy € W the Weyl group of (M, T), where we reserve W for the
Weyl group of G. In general, to avoid confusion, we will use subscript to
differentiate some structural data associated to M and G. For example, wg
(resp. was) denotes the longest element in W (resp. Way).

Let G be a Ka-extension associated to (D,n). Then by restriction, we obtain
P = MN. Thus, M is associated to the pair (D, Nlyge), where the quadratic
form Q(x) = D(z,x) carries only the W),-invariance by applying the “forget-
ful” functor from the W-invariance. From @A, we obtain by restriction the
covering groups Pa,Mpa and their local analogues P, and M,, which also
arise from P and M.

4.2 FOURIER COEFFICIENTS OF EISENSTEIN SERIES
Let 2pp be the sum of positive roots in IN, define
—1
wp = (pp,BY)"" - pp.

Then wp € X ® Q is the fundamental weight associated with 8. It is known
that there exists a unique w; € W such that

\WZ(A]\/]) C A and Wl(ﬁ) c o

Let P/ = M'N’ be the maximal parabolic subgroup of G associated with
wi(Apr). Then, wi(wp) = —wpr.
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Consider the character group X*(M) of M, and also the real and complex
vector space

X*(M)R:X*(M) ®ZR, X*(M)C:X*(M)®Z C.

Any v, € X*(M) could be viewed as a character on M(A) valued in A*.
Further composition with the valuation of A* gives us a character of M(A)
valued in C*. Similarly, for any v = v, ® s € X*(M)c, we denote by §” the
following character of M(A):

6" :M(A) - C, mw— |vo(m)|a-

The relation between § and the modular character §p is §°V®1 = 5113/2. In the
case of maximal parabolic subgroup, X*(M/Z(G)) ® C is of dimension one
over C with wp ® 1 or pp ® 1 as a basis vector. Henceforth, we will write

6% :=6vr®. scC.

We have 6° = [[,65. For example for SLy with positive root 3, pp = /2

and wp = pp; then 6° = (5153/2, with dp the modular character of the Borel

subgroup P.

Let (m,Vy) be a genuine irreducible automorphic representation of Mp. We
take 8° to be a character of the covering M a by the inflation via the surjection
Mpa — Mp. Now we consider the induced representation

I(s,m) = Indgi (0°7) ® 1.

We have the tensor product decomposition I(s,m) = ), I(s,m), where
I(s,m,) is unramified for almost all v. Similar to (12), an element fo € I(0, )
is identified with a right K-finite function

f : NAMF\GA = (MF\M/A) F — C (22)

such that for every k € K the function m ~ fo(m - k) lies in V. For every
s € C, we define

fs(@m-k) :=6°(m) - fo(m k) € I(s,7),
and call such f; a flat section. Consider the Eisenstein series

E(g,fs,ﬁ): Z fs(79)7

YEPr\Gr

whose 1-Fourier coefficient is given by

Ey(g, form) = / B(ug, fo m)(u) " du.

Ur\Ua
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Suppose f, = @y fsw € @, I(s,7,). Locally, let A, be a 1),-Whittaker func-
tional of 7, (which may be zero). Define AG on I(s,7,) by

)‘f(fsw) = /N’ )‘v(fS,v(Eflu))wv(u)_ldu'

Note that w; and v are compatible, i.e., 1) and ¢ agree on Ups a. Thus G
is a well-defined t,-Whittaker functional on I(s,,). Associated to A& is the
Whittaker function

chi,v (gv) = )‘1? (I(S’ WU))(gv)fs,U))

for any g, € G,.

Now we specialize to the case 1 = ©(Mapa,x). More precisely, let x :
Z(Tp) — C* be a genuine automorphic character. Assume also that  is
A jr-exceptional, i.e., x is an exceptional character for the covering group M 4.
One has the theta representation ©(M a, ) discussed in §3. Since we never con-
sider theta representation of G a in this paper, we may write ©(y) := ©(Ma, x)
whenever no confusion arises.

PROPOSITION 4.1. Let G(M/A’l) be a -distinguished theta representation.
Then, for fs = Qyfsw € I(s,0(Ma, X)), we have

Ey(g, f,©(Ma, x)) = [[WF , (90),

where g =[], gv € Ga.

Proof. This follows from the factorization of the Whittaker functional
Aa = [[, A in Proposition 3.3 and the standard unfolding process for
Ey(g, fs;©(Ma,x)). The argument, which follows the same line as in the
linear algebraic case, can be found in [ShalO, Theorem 7.1.2 and Proposi-
tion 7.1.3]. O

REMARK 4.2. The key for Proposition 4.1 is that the inducing theta represen-
tation is distinguished. Therefore, one could consider general (not necessarily
maximal) parabolic subgroups and distinguished theta representations on the
Levi subgroups. The analogous global factorization for the Fourier coefficients
of Eisenstein series still holds.

4.3 REDUCTION OF THE UNRAMIFIED COMPUTATION

In this subsection, assume O (M pa, ) is ¥-distinguished. Recall that for almost
all v, we have A, (6)) = 1 for the unramified vector 6 € ©(M.,, x,). Consider
v such that G, is an unramified group and x, is an unramified character. Let
f2, € I(s,©(M,, xv)) be the normalized unramified vector such that

v.(1) = 6.

S,V v
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We would like to compute the local unramified component W% (1) of
Ey(1, f5,0(x)):

Wfi;,va):/N Xo (2, (@) M) )by (u) ' du. (23)

’
v

Recall that we use W,, to denote the Whit@{er function on M, associated to
0% and the 1),-Whittaker functional \, : ©(M,, x,) — C. That is,

Wi, () = Ao (O(M., X0 ) (77)60)

such that Wy, (1) = 1. There are two approaches of computing the integration
in (23) we will use in this paper. The first approach relies on an explicit
decomposition of wl_lu as Mt - k where m € M,,4 € N, and k € K,. Then
for each wu, /\U(fg,v(wl_lu)) is essentially the Whittaker value Wy, (). This
approach is adapted in [BBL03] for Kazhdan-Patterson covers of GL,, though
the covers and theta representations considered there do not exactly fit in our
context, as the key ingredient used in [BBLO03] is the uniqueness of (¥, iy )-
Whittaker functionals for I(s, ©(xy)).

The second approach of computing WC;:,U is from adapting the idea in the
linear algebraic case with proper modification. We will concentrate on this
approach in the remaining part of this section. Let x, : Z(T,) — C* be an
exceptional character for M,, i.e., it is Ajs-exceptional. Write I(“My,) =

My warg
IndEM Mi(Xp)-

From t%e embedding

O(My, xv) = 1(*“MXo),

we have the surjective homomorphism of vector spaces

R:Why, (I(""xv)) = Why, (0(My, xv)) ,

where the image is of dimension one by the distinguished-ness of ©(Ma, x)-
Let A, € Why,, (I(“*x,)). We see that A, € R™1(\,) if and only if \,(69) = 1.
One has the embeddings

I(S’ @(MU, XU)) =1 (S’ I(WMXU)) — Ig: (S cwp, i(wMXv))’ (24)

where s - wp :zj — C* 1is the natural character obtained from the restriction
s-wp € Hom(M,, C*). The first two induced representations in (24) are from
P, to G,. Let X, € R71()\,). Then it follows from the first embedding of (24)
that

-1 ——1
/\71 ( g,v(wl u)) = /\2} ( g,v(wl u)) )
where on the right hand side we view f_ as the normalized unramified vector

in I (s,1("xy)). Note that f2 (1) = 93 is the unramified vector in I(“y,,).
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Let ¢ € Ftn(i(“x,)) be the element such that we have the correspondence
corle e N,

which is described in §3.3. Suppose w; 'u = Tk with m € M,,4 € N, and
k € K. Temporarily, denote o := I(** ). It then follows that

Ny (fou (@ M) =X, (f0, (- k)
=X, (65 - 01/ m) - o) - 12,(1))
=82 - 61/%)(m) - X, (a(m) - 0°) (25)

=(85 - 6/%)(m) - e ( /U (a<m>98)<wM1w>w;1<x>dx>

Therefore,

(/N (6i.5113/2)(m)./UM,U eg(m]—wlx.m)wl(x)dwv(U)1du>
=te (/N /UMU gv(mﬁ'm)(l)-Wl(w)%(u)‘ldxdu)

=l¢ (/N; /UM,U so,v(w&lx . w;lu)(l) . lﬂ_l(iﬂ)%(U)_ldxdu)

(26)
Note that the function f], : g+~ f,(g)(1) is the unramified vector in Ig” (s-

wp,i(“Mxy)), which is the image of f, in the second embedding of (24) above.
By a change of variable, we get that

Wi =te ([ 2.t tin).

where wg is the longest Weyl element in W¢. By abuse of notation, we still use
2, to denote the i(*™ x,)-valued unramified vector in Ig: (s-wp,i("Mxy,)).

In summary, we have shown the following.

PROPOSITION 4.3. Let ¢ € Ftn(i(*™xy)) be such that the associated as-
Whittaker functional X, . of I(*™x,) is normalized, i.e. X, (09) = 1. Let

v,C

/\g*:C be - Whittaker functional of Ig;’ (s-wp,i(“My,)) associated to c. Then
W (1) = Wie(1),

DOCUMENTA MATHEMATICA 26 (2021) 465-522



492 F. Gao

where WEC is the Whittaker function on G, associated to fg,v and /\ﬁc. In

particular, for any v € T, such that Wéw,y(l) £ 0, where Wéw,y is the Whittaker
function associated to 6% and Ay~ : I(*™x,) — C, one has

WE (1)
WG (1) = 2,
o WM (1)

We note that the values of both va(l) and W%(l) are given by Proposi-
tion 3.5. A special case is to consider v = 17 = 1.

LEMMA 4.4. We have )\;,1?(93) = T(Wn, Xv, L3, 15); or equivalently,

W’Li\,/IlT(1> = T(wMa Xv, 1?7 1?)

Proof. For the proof we temporarily denote X, = “Mx,, which is an anti-
exceptional for M,. It follows from Proposition 3.5 that

-1
WH_() = D cglwnw™ X)) - T(w,” X, I, 1),
weWn

For any nontrivial w € Wy, the set ®p/ contains an element a € Ayy.

Fix such an «. It then follows from (14) and the fact x'(ho(w™)) = ¢ that
Cgk(Wa, X') = 0. Therefore cg(w, x') = 0 as well. Thus,

Wv,17(1> = T(U}Ma Xvs 1?7 1?)
This completes the proof. o

We remark that it is not clear if 7(was, xv, 17, 177) # 0 in general. Moreover,
even if it is nonzero, it is not always equal to 1. However, by assuming its
nonvanishing, we obtain the following more explicit form for W% (1) from

Proposition 4.3

THEOREM 4.5. Keep the above notations. Let ngl? be the - Whittaker func-
tional of Igv (s-wp, i("™xw)). If T(wrr, Xo, 17, 155) # 0, then as the unramified
local component of Eqy(1, fs,0(x)), we have

G
W’U,lf(l)

T(’LU]\/], Xwvs 1?3 1?) .

wgyvu) =

In view of Proposition 3.5 and Theorem 4.5, we see that to obtain an explicit
form for WC;:,U (1) amounts to some computation involving the scattering ma-
trix. Howevér, there are difficulties with high-rank groups. For covers of the
general linear groups, such difficulties were overcome in the work by Suzuki
[Suz97]. In §6, we will elaborate on Theorem 4.5 by considering the rank-two
symplectic groups.
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5 COVERING GROUPS OF GL,.

In this section, we treat the case of certain “nice” covers (n, GL,). Our main
result is Theorem 5.11. When specialised to topological Kazhdan—Patterson
covers, these nice covers are just degree n — 1 covers of GL,, a, in which case
the result was first proved in [Suz97, §7.6].

5.1 COVERINGS OF GL,

Recall the set-up and notations in §2.1. Let
{X, A, &; Y, AY, &V}

be the root datum of GL,,r > 2 with a maximal split torus T. To facilitate
computation, we fix a basis

{e1,ea,...,e,}

for the cocharacter lattice Y of T, and a basis {e}, e}, ..., e’} for the character
lattice X of T such that for the natural pairing

(—, =) Y xX > Z,

one has <ei, e;f> = ;5. Denote oaiv =e¢; —e;y1 and oy := ef —ej, ;. We choose
simple coroots
AV ={a):1<i<r-—1}

and corresponding simple roots A = {@; : 1 <i <r —1}. Let B ="TU be the
Borel subgroup of GL, associated with A.

Any coroot is of the form az\-fj = e; —e; for i # j. In particular, with this
notation, a = a/;+1- The positive coroots are

@X_:{axj:i<j}.

Let {eq : Ga — Uqa},cq be a Chevalley-Steinberg system of pinnings for GL;..
For any a € G, we write e; j(a) with ¢ # j for the unipotent element associated

with ;. Similarly, for any a € Gy, we write h; j(a) or hq, ;(a) for the element
%

o ().

Sifljce the derived group of GL, is simply-connected, the isomorphism classes
of Ks-extensions of GL, over F' are determined by Weyl-invariant integer-
valued quadratic forms on Y. Let @ be such a quadratic form and Bg the
associated bilinear form. The quadratic form @ is determined from Bg by
Q(z) = Bg(z,z)/2. For GL,., any Weyl-invariant integer-valued bilinear form
Bg is determined by two integers p,q € Z such that

Bg(ei,e;) = 2p and Bg(e;,ej) = q if i # j. (27)

For any coroot o € ®V, one has Q(a") = 2p—q. Let GL, be the Ky-extension
of GL, with the underlying p and q understood.
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In fact, we may choose (without loss of generality on the isomorphism class) a
bisector D of the symmetric bilinear form Bg as follows:

0 if i<,
D(ei,e;) = { Q(ei) = p if i = j, (28)
BQ(ei,ej):q 1f’L>]

Also take n = 1. The group structure of GL, is described as in (2) to (6).
We remark that for any p,q such that 2p — q = —1, we have the Kazhdan—
Patterson extensions of GL,., whose topological coverings are studied in [KP84].
The parameter p is just the twisting parameter ¢ in the notation of [KP84].
Note that the numbers Q(a") and n, are both independent of the choice of
aV, since GL, is simply-laced.

DEFINITION 5.1. An n-fold cover (n, GL,.) is called nice if the following two
conditions hold:

e n divides 2p, and

e n,=1r—1.
For example, the Kazhdan—Patterson extensi(ﬂn, GL, ;1) withp=0,q=—1
is a nice cover. As another example, (n = 1, GLy) is nice for any p and q.
5.2  WEYL ORBITS

Let P = MN C GL, be the maximal parabolic subgroup associated with the
subset A\ {e,_; }. Here, M ~ GL,_; x GL;1. The root datum of M is

(Xv (I)Ma AMa Y7 (I)\]<4a A\]<4)7

where Ay = Agr, , and A}, = Aéerl and similarly for ®,; and ®Y,. Also,
Wy = War,_, is the Weyl group of M with wys € Wy the longest element.
The unique w; € W such that w;(Ay) € A and w;(a) < 0 for every o € N in
this case is

W = Wa, - Way © eee - Wa, -

Let P’ = M'N’ be the parabolic associated with w;(Axy).

Temporarily, let G be either GL,.,, M or GL,_; C M. Let Yg be the cocharac-
ter lattice of G. Then from the data (G, @, n), we have the lattice Yo, CY
given by (8), that is,

YQ,n,G = {y eYae: BQ(y,Z) enZ for all z € Yg}.

Since GL, and M have the same torus, we simply denote by Yp, for
Yo n,cL, = Yo nMm. An easy computation with (8) and (27) gives that

Yon= {i;kiei €Y : Q) kj+q- (zr;ki) € nZ for allj}. (29)
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Recall that Yé‘me C Yp,n is the sublattice generated by {aé,n o€ <I)M}.
We apply the discussion of Weyl orbits in §2.3 to the group M. In particular,
we consider in this section only Wy -orbits for the twisted action. If

> o
avedy,
aV>0
is the half sum of the positive coroots in ®Y,; then Of denote the set of all free
Wr-orbits in Y with respect to the action wly] := w(y — p) + p. Moreover,
OF C OF denotes the set of Yy ,-free orbits and and (’)Q s Cc OF the
Yécn M—free orbits.

If (n, GL,) is a nice cover, then it follows from (29) that

Yon= {Zkiei:kl =ky=..=k mod na}, (30)

=1

where n, = r — 1 for a nice cover. Clearly, n, - YoL
We see that

is a sublattice of Yg .

r—1

yigﬂh(;Lr71 = Na ')Q}Lr,l-
On the other hand, define

Yoz{x-(Zei)—i—k-naeT: xandkEZ}.

i=1
It then follows easily:
LEMMA 5.2. Let (n, GL,) be a nice cover. Then' Y = Ygr,_, + Yy. Moreover,

Yon =YoncL, ., + Yo,

where the intersection of Yg n.cL,_, and Yy is the one-dimensional lattice
spanned by n, - Z:;ll €;.
The following lemma plays a pivotal role in this section.

LEMMA 5.3. Let (n,GL,) be a nice cover. Then Og,n = Og n.se and p(Oy) =

©(Og) for every O, € Og,n. In particular, p(Ogn) =

Proof. The argument is analogous to [Gaol8b, Proposition 3.5], where covers
of GL, are treated (instead of the semisimple M here). For completeness, we
give the details.

First, to show OF = OF O.n,sco 1t suffices to show OF > 0k s Let Yyr =
Y&L, | be the coroot lattice of M. We have YoM = Na - Yf/f In view of
Lemma 5.2, it is easy to see that

Yo N Yar = Y50 M
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Now let O, € OF be a Y5, m-free orbit. Suppose that it is not Yq »-free, then
there exists a nontrivial w € Wy, such that wly] —y € Yp,,,. However, since
w(y] — y lies in Y3f, we see that wly] — y lies in Yécn m- That is, O, is not
Y55, mfree, and this is a contradiction. Therefore, OQ = OF Q.n,sc”

Lastly, a straightforward combinatorial computation as in [G aol? 3], which
relies crucially on the fact that n, = r—1 for a nice cover, shows that p(OF n) =
{p(Op)} in this case. This completes the proof. ©

We also record the following result which is important for the unramified com-
putation in §5.4.

LEMMA 5.4. Let (n,GL,) be a nice cover. Let k be a natural number such that
1<k<r—2. Let z;, be the element zj, = Z:;Tl_k e;+ (—ke.) € Y. Then there
exists a nontrivial element w € Wy such that wizi] — zr € Yg.n. Therefore,
0., 1is not Yo n-free in this case.

Proof. Let y, = Zr_l e; be the element in Ygr,, ,. It suffices to show that

i=r—k
w(yk] — yi lies in Y3, \y for some nontrivial w € Wiy For this, we note that

r—1 r—1

p:—Z(i—l)- r—2 Zez
=0 i=1
Thus,
r—1—k
Ye — P = Z 2—161 Zlel
=1 i=r—k

It is clear that for any w € Wy, we have wly] —y = w(y — p) — (y — p). Let
w € Wy be corresponding to the permutation of z; and z,_; in Z:;ll Te; €
YgL,_,. Then it follows that

wW(yk —p) — (Y —p) = (1 = 1)(er—1 —€1) € Y% m C Yoo,

since o = r — 1 for nice covers. Therefore zj, is not Yy ,-free. This completes
the proof. O

Let n > 1 be a natural number with p9, C F*. We have the global n-fold cover
GLT A and the local GLT ». The covering ﬁT A restricts to give the covering
MT A of M, a. There are local coverings MT v of My, = GL,_1 , x GL; ,, from
the restriction of GLNJ In general,

M’F,A 9—£ ﬁrfl,ﬂ X pim @1,A-

That is, the coverings GL,_; A and GL,; A do not commute in general. How-
ever, we do not rely on this property or its contrary, since we will carry out the
analysis directly on M ra and its local analogue. Let Tpa and T, be the global
and local covering torus.
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PROPOSITION 5.5. Let (n,GL,) be a nice cover.  Then, Mp :_ﬁT,LA .
Z(M/A), which is equivalent to the equality Ta = Tr—1 . - Z(Mp), where
Tr_1,an C GLy_1,a is the n-fold cover of the torus T._1 o C GL,_1,a. More-
over,

Z(Tp)=Z(Tr—1.n) - Z(Mp).
The same holds for the local covering groups as well.

Proof. In fact, we will show that locally the two equalities T', = TT_LU -Z(M,)
and Z(T,) = Z(Tr—1.4) - Z(M,) hold. We have Z(M,) = Z(T,) N Z(M,). As
noted in §2.4, Z(T,) = ¢, (Im(ig,)) where ig, : Yo, ® F)} — T, is the
isogeny induced from Yy, < Y. By using the explicit form of Yg , in (30),

we see that Z(M,) is equal to the preimage in T, of

ign(Yo @ F*) C T,.

Since Y = YgL,_, + Yo by Lemma 5.2, we have T\, = T,_1, - Z(M,) and
therefore M, = GL,_1 , - Z(Mv_)
On the other hand, we have Z(T,_1,) = ¢, (Im(ig n,cL,_,)), where

. . X
1Qn,GL, 1 : YQn,GL,_; ® F" = Tr1,

is induced from Yy ,, < Ygr, ;. It then follows from Lemma 5.2 that Z(T,) =

Z(Ty—1.) - Z(M,). This completes the proof. O

The above proposition shows that_representations of Mp and ﬁr,L a differ
only by a central character of Z(Mp). Such difference is insignificant for our
purpose in this paper.

REMARK 5.6. The covering groups which appear in [BBL03] could be placed in
the Brylinski-Deligne framework as follows. Consider the Kazhdan-Patterson
Ks-extension GL,, with p = 0 and q = 1. Let b : GL,_; — GL,, be the

embedding given by b(g) = (g,det(g)~!) € SL, C GL,. Denote by GL

n—1
the pull-back of GL,, via b. The extension ﬁi% also belongs to the Kazhdan—
Patterson family, but is the one associated to p = —1,q = —1. We consider
M = GL,_; x GL;. Since b(GL,_1) € M, we have GL.,_, C M.

Now consider the arising topological n-fold covering groups. We have

— — S
GLn—l,A . Z(M/A) C MA)

which however is not an equality in general. In fact, locally for v € |F|, the
- -
quotient M, /(GL Z(M,)) is equal to F,/(F,)™. This explains the multi-

n—1,0"
dimension of 1-Whittaker functionals for the representation 75 (in the notation
of [BBL03, p. 171]) parabolically induced from theta representations. However,
as a rectification, it is shown in [BL94] that the (¢, 11)-Whittaker functional for

Ts, where 1 is any genuine character of the abelian group Z(GLy, ), is unique.
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We also remark that the reason for considering ﬁiﬂ in [BBLO03] instead of
GL,,_;, which is obtained from the restriction of GL,, is that theta repre-

. =T . . .
sentations on the n-fold cover GL,,_; 5 have a unique ¥-Whittaker functional.
However, this is not true for the n-fold cover @n—L A in general.

5.3 THETA REPRESENTATIONS AND EISENSTEIN SERIES

In view of Proposition 5.5, the automorphic representation for M p is essentially
the same for GL,_; a. From the general set-up in §3 and §4, recall that

X = QuXo * Z(Tﬂ-\) — C*

is a genuine character which is trivial on Tr N Z (TA), which could be viewed as
a genuine character on Tr - Z (TA) trivial on 7. Then we have the Eisenstein
series E(g,x, f) on M a. Moreover, assume that y is an exceptional character
for Mp, i.e. xo = |-|a for all @ € AY,. We obtain the theta representation
O(Ma,x) = ®,0(M,,x,) as the residue of the Eisenstein series E(g, x, f).

PROPOSITION 5.7. Let M be_arising from a mnice cover (n,GL,), and keep
notations as above. Then ©(M p,x) is ©-distinguished.

Proof. Let v be a place such that |n|, = 1. Then by [Gaol7, Theorem 3.14]

coupled with Lemma 5.3, we have dim Why,, (©(M, xv)) = ‘p(Ogn)‘ = 1. For

this, we note that the computation in [Gaol7] is based on assuming that x,
is an exceptional and unramified character of Z(T,). However, examining the
argument shows that the “unramified” assumption on the whole center Z(T,)
is not necessary. Instead, what is used is just that x, is exceptional and that
there exists an extension Y/ to the maximal abelian subgroup Z(T,) - T(O,)
such that x/, is trivial on h,(0)) C sk, (K,) for a € A. However, as shown in
[KP84, page 77], such an extension Y/ is always possible for |n|, = 1. More-
over, since O(M,, x,) C I(*™,) is a subrepresentation of the principal series
induced from the character x,,, therefore the dimension of Why,, (©(M,, x,)) is
independent of the nontrivial character 1, and is computed in [Gaol7] under
the harmless assumption that v, has conductor O,,.

By Proposition 5.5, we have x = x° - w, where x° (respectively w) is an au-
tomorphic character of Z(T,_1 a) (respectively Z(Mpa)) such that x° and w
agrees on the domain of intersection. Note that x is an exceptional character
for M if and only if x° is an exceptional character for GL,_1 a. Therefore,
O(Mna,x) = @(@T_LA,XO) ® w, where the tensor is the standard one by
Proposition 5.5. Locally, x, = X @ w, and O(M,, x») = O(GLr_1.4, X%) @ w,.
Thus we have:

(C) dim Why,, ©(GL,_14,x2) = 1 for all v such that |n|, = 1.

Though we are considering more general covering groups GL,_; a here, ex-
amining the proof for [KP84, Theorem II 2.5] shows that the global argument
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applies in our context. Indeed, if p = 0 and q = 1, then @PLIA is the
(r — 1)-fold Kazhdan—Patterson covering group. Note that the proof of loc.
cit. only relies on (C) above and it gives that dim Why, ©(GL,_1,,,%%) = 1 for
all v € |F|. This in turn shows that dim Why, ©(M,, x,,) = 1 for all v € |F].
The nonvanishing of Ap follows from [KP84, Theorem II 2.2 and 2.5]. This
completes the proof. O

REMARK 5.8. If we assume ps, C F X_, then M, splits canonically over
M, for archimedeﬂl place v and thus M, ~ u, x M,; in ihis case, one
has dim Why, (©(My,x»)) < 1. It can be shown that if M, arise from

a nice cover, then Ind%LTN (x) is irreducible for archimedean v, and thus

dim Why,, (©(M,, x,)) = 1. We refer the reader to [KP84, Theorem 1.6.4,
1.6.5] for discussions in the case of Kazhdan—Patterson covers.

In the rest of this section, we will assume that (n,ﬁT) is a nice cover. Also,
X is an exceptional character for Mp.

Let 6p : Pp — C* be the modular character of Pa. More explicitly, consider
m-u € Pp with m € Mp and v € Np. Suppose that m = (my,ma) €
GL,_1,a X GL1 a; then explicitly,

5p(m - u) = |det(my)|a - |malg" .

We have I(s,0(x)) = Indgi (53" - ©(x)) in this case, where the latter is the

normalized induced representation. Taking fs € I(s,©(x)) to be a flat section,
consider the Eisenstein series E(g, fs,0(x)). Then, Proposition 5.7 coupled
with Proposition 4.1 give that

Ey(L, f5,© HW

where

WELr (1) = / N (o 7 ) o )

Moreover the results in §4 apply; in particular, Theorem 4.5 gives a description
of W "(1). However, to obtain a more explicit formula of WGL (1) in terms
of L- funct1ons we carry out an alternate computation followmg the idea in
[BBLO3]. This will be the focus of the remaining part of this section.

5.4 LOCAL UNRAMIFIED COMPUTATIONS

We will carry out the computation with unramified data. Thus, we suppress the
subscript v for all notations. In particular, F’ denotes a non-archimedean local
field such that |n| = 1. We assume that x is an unramified As-exceptional
character and ¥ has conductor Op. We assume in this subsection pg,, C F*.

Let fs € I(s,©(x)) be the unramified vector such that fs(1) = 6° is the normal-
ized unramified vector in ©(x). By Lemma 5.3 and the proof of Proposition 5.7,
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let Ao, be the unique Whittaker functional of ©(M, x) such that Ao, (8°) = 1.
Recall that Ao, arises from co, € Ftn(i(x)) and gives rise to the Whittaker
function We, on M associated to §°. We would like to compute

Wil (1) = /N Ao, (fs (@7 u)) ()~ du, (31)

where w; = Wq, Way ... Wa,._, . We follow closely the paper [BBL03] to decompose
explicitly wflu =7k for somep € Pand k € K.
Note that N’ is abelian and any element u in N’ can be written uniquely as

Uy = 61,r($r71) Cee 61,3(ZE2) : 61,2(~T1>

for * = (z1,...,2,—1) € F'~1. Now it is easy to see that for any i with
1 <i<r—2, we have

Carp (Tit1) = (Wa, Wz Wa,) ™" - e1i42(Tit1) - (Way Way - Wa,) € UL
Since the splitting of unipotent subgroup U is GL,-equivariant, it follows that
Caipr (Tit1) = (Way Wy Wa, )T - Brit2(Tis1) - (Way Way - Way) € U.

Inductively, one obtains that
1
;' = [ wa) e, (@) (32)
i=r—1
We also note that for any root o and x € F'*, we have
W, e () = ha(z Hea(—2) -e_o(—271). (33)

Moreover, for any 1 <i <r —1 and x € F*, one has

1:[%%' (x) = 1:[ s(haj (x)) = S(hi,r(ﬂﬁ)), (34)

where the first equality follows from (5) and our assumption that 7, is trivial,
the second equality follows from (4) and (z,x), = 1 (since we have assumed
tan C F*). In particular, we see that

s(hir(x)) € sk (K)
for any x € O*, since hq,(z) € si(K), see (11).
The domain of integration of (31) is identified with F"~1. Moreover, we could

restrict to the domain to (F —{0})"~!. For any f = (f1, ..., fr—1) € Z" !, define

R(f) = {(z1, 22, ....xp—1) € F"" ' i val(z;) = ; for all i} .
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Thus the integration in (31) is equal to

j/ Ao, (fs(@; M ug) )Y (ug) ™  dug. (35)
z€R(f)

jezr—1

For each 1 <i <r — 1, define

540 iffi>0,
1, iffi <O,

To simplify notation, we write

Int(R(f)) == / e 200 17 ) )

The relations (32)-(34) and (6) allow us to argue as in [BBL03, page 173-174].
We therefore obtain that Int(R(f)) is equal to

r—1 r—1 r—1
L (f (10 S(hi,rwi)))) Ll ) TT 906,12y,
z€R(F) i=1 i=1 j=2

(36)
where we write dx for [], dz;. A change of variables z; — whig; forall1 <i<
r — 1 gives that (36) is equal to

r—1 ]
H q—5if¢(T—l—1)—fi
i=1
r—1 r—1
. / Ao, (fs( H S(hi,r(waifix;éi)))> .1/)(wf1$1) . H 1/)(w5j—1szj)d$_
z,€0% i=1 j=2

(37)
Note that for any 1 <i,5 <r — 1, it follows from (4) that
_ Q)
S(hm(uv)) = S(hiyr(u)) ~s(hiyr(v)) (v, u)n

and

B(aj,.aj,)

s(hiyr(u)) ~s(hjyr(v)) = s(hjyr(v)) . s(hm(u)) (u,v)p

Write Q(«) for the number which is independent of any coroot a¥. By using
the two equalities above, a simple computation gives that

r—1
H s(hi,T(w_‘smx;Si ))
i=1

= <1:[ S(hi,r(w_5ifi))> . (H S(hi,r($i5i))> . H H(w&fi’x?j );Q(av)
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and therefore

fs (ﬁ S(hi,r<w“”“:ci“i>)>

r—1 r—1 1
=fs (H S(hiﬂ_(w_(sifi))) . H H(w&fi,wjj );Q(av)-
=1 i=1j=1

Let 6f € Z"~! ~ Ygr,_, be the element such that
(6f); == dif; = min(f;, 0)
forall 1 <i<r—1. Let f* € Z" ~ Y be the element such that

r—1

(0§%); = (6f); for 1 <i <r —1 and (6f), = —Z(éf)i.

i=1

We have .
[Ts(ir(@ 7)) = s(=5f" (==)).
i=1

As a summary, from (36) we see that

Int(£(F))

r—1
=(TLa* o=m070) 65" o) - Won(s-ar°)
i=1

r—1 1 r—1
S S _O(aY X s
/ 5 | | | |(w51f1,zj’)nQ( )~1/)(w’t x1) - I I 1/)(726] fij)dz.
z;,€0X

i=1j=1 j=2

(38)

PROPOSITION 5.9. The integration Int(R(f)) is zero unless 6f = 0 € Z"~1 or
of is such that (6f); = —1 for all1 <i<r—1.

Proof. Note that Wo, (s_sj+) = 0 unless —df* is Ajs-dominant, that is, unless

(6f)1 < (6f)2 < oo < (6f)r-1

This implies that W\ (s_ss«) vanishes unless there exists some 0 < k < r —1
such that
fl <..< fk < 0 and karl > .2 fT,1 > 0.

On the other hand, an observation at the formula (38) shows that the integral
is zero unless f; > —1. Therefore, we may assume 1 < k < r — 2 and that f
takes the form

f=(=1,—-1, e, =1, fkt1, oo, fro1), (39)

where the first k-coordinates are —1, and fx41,...,fr—1 > 0. Then it suffices to
show that Wo, (s—_s-) = 0 for such f.
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For §in (39), we have that §; =1if 1 <i<kand §; =0fork+1<i<r—1.
Therefore

—6f* = (1,1,...,1,0,0,...,0, —k) € Z" ~ Y,
——— ——

k r—1—=k

which gives

wo(—6§*) = (0,0, ...,0,1,1,...,1,—k) € Y.
——— ——

r—1—k k

By Proposition 3.6 and the defining property of co, in (21), we deduce that
Wo, (s—sp+) = 0 unless wo(—df*) lies in Og + Yy . By Lemma 5.4, we see that
this is not possible if 1 < k <7 — 2. This completes the proof. O

Thus, to compute (35), we only need to consider two cases in the above Propo-
sition.

First, let

P={feZ " :f;>0foralli} cZ "

Then it follows from (38) that

> Int(R(f)
fe?
r—1 r—1 (40)
=) > f/ Yla)de =1 —q )Y g > T=1
fe'@ z;,EOX fegp
Now for the second case, we have f = (=1, —1,....,—1) € Z"~! with all coordi-

nates equal to 1. This gives that

—6f=(1,1,..,1,—(r — 1)) € Z".

r—1
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It then follows from (38) that in this case

Int(R(f))
r—1
r—i) . s5+3s
:( q ) op *(s—sp=) - Woy(s—s)
=1
r—1 i r—1
[ e )@ T o s
z; €0 i=1j=1 Jj=1
r—1r—1 r—1
7q7(r71)s WOU(S*(W*)/ HH(W,:CJ)”(O‘ ) H’l/)(w 1:L'])dsc
z,€0% 51— j=1
r—1
o T e i
=1 z,€0%
Ne—1
=g~ "D Wo, (s_sp+) - H gy (7 Q(a"))
§=0
nag—1
:q—(r—l)S.(;B/M(S 6f*) co, S\wo 5]:* H gy—1 (J-Qa ))

nag—1

=¢~ "% o, (s_sp+) H gy-1(j-Q(aY)),

where the second last equality follows from Proposition 3.6. It is easy to see
that

We also note the equality s, o = ha,_, (@)™ = hq,_, (@"=). Therefore, it
follows that

([[1t oty Wy W [0])) X (i, (7))
=(quf 1 gy (<iQ(a) ™) X (o, ()
¢ " X (P (@) -nﬁllgwl(—@Q(av))_l
) - T sl
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Hence, in the second case,

na—1
It (R(f)) =¢~ "% - coy(s—s) - [] 8o - Q"))
=0 (41)
=q " Dy (R, (@) - gy-1(0)
= —q "Iy (B, (@),

By combining (40) and (41), we get

PROPOSITION 5.10. Let fs € I(s,0(x)) be the normalized unramified vector.
Then

W (1) = L((r = 1)(s + 1),Xm71)71.

We note that the above result also follows from [Cai20, Theorem 8.1] with a
proper interpretation of the result there. See [Cai20, Remark 8.2 (3)].

5.5 AN INTERPRETATION

We would like to interpret the Hecke L-function L(s, xq,_,) on the dual side.

For a cover (n,GL,) and the cover T obtained from restriction, one has the
(local) compatible L-group extensions

G s G —— Wp

[

T S LT — % Wp.

Let B' =T U’ ¢ G be the Borel subgroup associated to the simple roots
AP, of G’ Let Lie(Uv) be the Lie algebra of U . Let

Ad : “T = GL(Lie(T "))
be the adjoint representation. The space Lie(U ") is spanned by eigenvectors
for Ad denoted by Eay o € ®T. For any o € ®T, the one-dimensional space
C- Eaé . 1s invariant under Ad and thus we have a character

Ady : *T — GL(C - E,v ).
Q,n
Now let x : Z(T) — C* be an unramified genuine character and i(x) the
irreducible representation of 7. By the local Langlands correspondence for
covering torus (see [Weil8, §10] or [GG18, §8]), we have an associated splitting
of LT over Wp:
Px - WF — LT.
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This gives rise to an Artin representation Ad,op, : Wp — C*. Let Frob € Wp
be the geometric Frobenius class in Wp. We define the local Artin L-function
as

L(s, Adg 0 py) = (1= g - py 0 Ady(Frob)) ™.

It follows from [Gaol8a, Theorem 7.8] that
px © Adq (Frob) = X (ha(w"))

and therefore
L(s,xa) = L(s, Ady 0 py). (42)

In particular, it applies to the case a = «a,_1. We note that if y is an Ayy-
exceptional character, then for all 1 < i <r — 2,

L(vafli) = L(Sa Adll-; ° px) = C(S + 1) (43)

In view of this, one may also give another interpretation of L(s, Xa,_,) as fol-
lows. Let M and L3 be the dual and L-group for the covering Levi subgroup
(n, M) respectively. Let N’ c G’ be the unipotent subgroup generated by
{E%V,Q,n :1<i<r—1} Then M'N isa parabolic subgroup of @v, and
the adjoint representation Adys : LM — GL(Lie(Nv)) is irreducible. From the

natural inclusion T — I'M (arising from the construction of L-groups), one
has an unramified representation

Adys o py : W — “T < U — GL(Lie(N "))
Now suppose x is Apr-exceptional. It then follows from (42) and (43) that

L(S, AdM e} pX)

L(vaar—l) = C(S + 1)7‘—2 I

(44)
where L(s, Adps o py) denotes the Artin L-function for Adas o py.

Since the above discussion is for unramified characters, it could be globalised
to give global partial L-functions.

5.6 MAIN RESULT

The main result in this section thus follows immediately from combining Propo-
sition 4.1 and Proposition 5.10. We restore the global notations and give a
summary as follows.

THEOREM 5.11. Let (n,GL,) be a nice cover over F. Let v be a nontrivial
character of A/F. Let ©(x) be the global theta representation of M p associated
with an exceptional character x for Mp. Let S C |F| be a finite set of places
such that: (i) S contains the archimedean places and |n|, = 1 for all v €

|F| — S; (i) xv and 1, are both unramified outside S. Let E(g, fs,0(x)) be
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the Eisenstein series on GL,. p associated with I(s,0(x)). Assume pig, C F*.
Then

Ey(1, £.0(x)) = L5 ((r = 1)(s + 1), xa, ) [[WE (D),
veES

where L (8, Xa,_,) = [Togs L(s, (Xa,—1)v) is the partial Hecke L-function at-
tached to Xa, .-

The above formula for Ey (1, fs, ©(x)) is expected to be the same with just the
agsumption u, C F*.

EXAMPLE 5.12. Let p = 0,q = 1. In this case, n = nq,. Let r =n + 1. This
is the case of n-fold cover of GL, 1 a with twisting parameter ¢ = 0 (in the
notation of [KP84]). Then Theorem 5.11 yields that

Ey(1, f0,0(0) = L% (n(s + 1), xa,) " [] WS (1).
veS

In particular, for n = 1, ©(x) is just the linear character x of Ta C GLg a.
Then the formula for Ey(1, fs, x) is just the Casselman—Shalika formula for
GLa.A.

Besides the linear GLy a case in the above example, there is another rank-
one example arising from the Savin’s class of extension of GL, (see [Sav] and
[Gaol8b, §2.1]).

EXAMPLE 5.13. Let r = 2,n = 2 and p = 1,q = 0. The associated (n =
Q,ﬁg) is a nice cover. Note that the covering torus Tp is abelian in this
case, which however does not split over T, since T, does not split over T, for
general places v € |F|. Therefore, the covering group

Mo — @27A —d GLQJA

is nontrivial. To give another description of @2, A, we consider the extension
GL; of GL; determined by Q(¢) = p = 1. Let @I,A be the double cover,
which is then abelian. Then @21 A is the pull-back from @1, A via the deter-
minant map GLa o — GL1 a. In view of this, there is an automorphic genuine
character of ﬁg A- Therefore, representation theory of ﬁg, A can be reduced
to that of GLa a.

In any case, let y be a genuine character of T'a, and . the associated linear
character of A/F*. Here a = « is the unique simple root with Q(a¥) =1
and n, = 1. Then Theorem 5.11 gives that

Ey(1, fox) = L8 (s + Lxa) - [[ WS (1),
veS
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REMARK 5.14. The class of nice covers (n, GL,.) is singled out in this section for
the sole reason that we are considering parabolic subgroup with Levi subgroup
GL, x GL;. However, one may consider other maximal parabolic subgroup
with Levi subgroup M = GL,, x GL,, such that r; + o = n. For instance,
if 7 = 2n, we could consider the Kazhdan-Patterson cover (n, GLy,) and the
n-fold covering group Mp with M = GL, x GL,. Then the analogue of
Proposition 5.7 holds, i.e., theta representation of M p is distinguished in this
case. This example thus fits into the set-up in §3 and §4, and results there apply.
In fact, it follows from [Suz97, §7.6] that in this case, the Fourier coefficients
will involve n Hecke L-functions associated to the exceptional character.
Moreover, as mentioned in Remark 4.2, one could consider general parabolic
subgroups. For example, consider the Kazhdan-Patterson cover (n,GLsz,,).
Let P = MN with M = GL,, x GL, x GL,,. Any theta representation of
the n-fold cover Mp is also distinguished. However, the Fourier coefficients of
Eisenstein series, which have global factorization as well, are presumably even
more difficult to compute than the maximal parabolic case.

6 COVERING GROUPS OF Sp,,

In this section, we will consider covers of Sp,,. For the computation of the
Fourier coefficients, we will invoke Theorem 4.5. However, we will eventually
concentrate on covers of Sp, for combinatorial difficulties.

6.1 Ko-EXTENSIONS AND COVERING GROUPS

Let
(X, ®,A;Y, 0", AY)

be the root datum of Sp,,.. Consider the Dynkin diagram for the simple coroots
for Sp,,:

Vv \ \
g Qg QAp_o R Ay
O——0 O——O0—0

Thus, .’ is the unique short simple coroot. Let Y = Y*¢ be the cocharacter
lattice of Sp,,. generated by AY = (af,ady,...,a’_;,a)). The isomorphism
class of Ks-extensions Sp,, is determined by the Weyl-invariant quadratic
form @ on Y. Let @ be the unique Weyl-invariant quadratic form on Y such

such Q(a,’) = —1. Then the bilinear form B is given by

-2 ifi=j=nm

—4 ifl1<i=j<r-—-1;
Bo(af,aj) = Lo TI=TTE

2 if j=1i41;

v

TNV
0 ifo, )

are not adjacent.
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Let P = MN be the Siegel parabolic subgroup associated to Ay := A\ {o)’ }.
We have M ~ GL,. The restriction of Sp,, to M gives rise to the extension
GL, associated with p = —1 and q = 0. This extension GL, does not belong
to the Kazhdan—Patterson class (since 2p — q = —2 in this case); however, it
was already studied by Savin [Sav].
For a general cover (n, Sps,.), define

n if n is odd,
ng =
n/2  otherwise.

A simple computation for (8) gives that

YQ," =ng- Y = {Z kzla;/ : 7’Lo|ki} .
=1

Again, since Y n,sp, = YQ,n,M, We have omitted the subscript in Yg . On
the other hand,

YoM =no- Yar-
Consider Wy-free orbits in Y. Let p: Y — Y/Yg ., and p 1 Y — Y/YES, g
be the quotient maps. Consider the Yq ,-free and Y9, \;-Iree orbits defined

exactly as in §2.3. Let (’)Fm (resp. (’)57",80) be the set of free orbits in Y which
are also Yq n-free (resp. Y3, pp-free).

DEFINITION 6.1. An n-fold cover (n,Sp,,) is called nice if the following con-
ditions hold:

e if r is odd, then n = r or 2r;
e if r is even, then n = 2r.

LEMMA 6.2. For a general cover (n,Sp,,), we have Yo, N Y = YoM

and therefore (’)Fm = 0h Moreover, if (n,Sp,,) is a nice cover, then

Q,n,sc’
‘p(ogm) —1.
Proof. This follows from [Gaol8b, Proposition 3.5] by noting that Yg ,, = ng -
Ym for any cover (n, Sp,,.), and moreover ng = r if (n, Sp,,.) is nice. O

6.2 FOURIER COEFFICIENT OF EISENSTEIN SERIES

Let S_p% A and Mp be the n-fold covering groups arising from Sp,, and M.
In fact, such covers (of semisimple and simply-connected groups) were already
studied earlier by Moore [Moo68] , Steinberg [Ste62], Matsumoto [Mat69] and
others.

Let x be a Ajs-exceptional automorphic character of Z(Ta). That is,

Xlli:|'|/A

forall 1 <4 <r—1. Let O(Ma,x) = ®,0(M,, x») be the theta representation
of M p associated to .
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PROPOSITION 6.3. If (n,Spy,.) is a nice cover, then the theta representation
O(Ma, x) is -distinguished.

Proof. The proof is the same as Proposition 5.7. Note that the essential ingre-
dient used is that for v such that |n|, = 1, we have

dim Why, (O(M,, xv)) =1,
which follows from [Gaol7, Theorem 3.14] and Lemma 6.2. O

Let (n,Sp,,) be a nice cover. Let I(s5,0(Ma,x)) = IndSFI:'A“det(-)ﬁA .

O(Ma,x) ® 1) be the induced representation and E(s, fs,O(x)) the Eisen-
stein series from I(s,©(Ma,x)). Note that the parabolic subgroup P is self-
associated, i.e. P/ = P = MN. It thus follows from Proposition 4.3 that

Ey(1, f,0(0) = [[Wf. ()

where

Wﬁ,u(l):/ Xo (Fs,0(@; M) )by (u) " du.

NU

We will compute the value Wﬁ (1) for almost all v when 7 = 2.

6.3 LOCAL UNRAMIFIED COMPUTATION
In the rest of this section, we consider the nice cover (n = 4,Sp,). Denote
ay =2ay +ay, and o == af + ay.

The element w; € W such that w;(ay) € A and w;(a)) < 0 for all i = 2,3,4
is
Wi = Wap Wa, Wasy-

For simplicity, we suppress the subscript v for all notations. Again, F' denotes

a non-archimedean local field such that |n| = 1. Also, x is an unramified
exceptional character and ¢ has conductor Op.
Recall that x is an unramified character of Z(T) such that x,, = |- |- Note

that in this case,
Wp = Wy -
By Lemma 4.4, we have
_ g
1- X (hal (wn(‘z))
where the last equality follows from the fact that x is Aps-exceptional. It
follows from Theorem 4.5 that

Wi (1) = WL (1),

=1

Wf\;(l) = 7(wnr, x,(0),s(0))

)

where ch; is the Whittaker function on Sp, arising from the Whittaker func-
tional )\f; on I(swp, ™™ y).
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6.4 CoMPUTATION oF W (1)

For convenience, we write x’ = My, which is Ajs-anti-exceptional. First we
note that

I(SwPa X/) = I(X;‘)
where X/, is the genuine character of Z(T) given by

Xo(@) = Y'(@) - |det(t)|® for T € Z(T).

In particular, x’s_is A pr-anti-exceptional. By Proposition 3.5, for the principal
series I(x%) on Sp,, one has

—1
WE(1) = Y calwaw™ x)(w,” x4 Iy 1), (45)
weWg

From now, we write

Wi = W,

for the Weyl element corresponding to the simple coroot o) for i = 1,2. Set
Wb = {W1, W1 Wo, W1 WoW, Wy Wow Wa } C We.

The longest wg € W is just wiwow;wo.

LEMMA 6.4. Ifw e Wg — W, then cek(wew™, x%) = 0.

Proof. Assume w € W — W, then af € @y, 1. It then follows from (14)
that cgx(w1,x%) = 0 and therefore cg(wgw ™1, x%) = 0. O

By the above Lemma, it suffices to compute the terms in (45) for w € W". For
this purpose, for any root a € ® of Sp,, denote

X;,a = X; (ha(wna)) .
There are relations as follows:
Xoos =@ Xoazr Xeas = 4 Xean- (46)
It also follows that X/ ., = ¢* - X} a,-
From now on, we assume p2, C F* to simplify the computation. Note that in

this case £ = (—1,n) = 1.
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6.4.1 FOR w = wy

In this case, one has

_ —1
cgk(wGwl 1) X/s) : T(wla “ X/sa 1Ta 1T)

. 1 - q71X;7a2 1 - qilx/s,ag 1 - qilx/s,aq wfl /
- 1 ] ! 1 / ' 1 ] ! T(U}l, XS7 ]‘T’ 1?)
- Xs,ag - Xs,ag - Xs,a4
1= X, 1-q7!
1- X{s,ou; 1- (X{s,al)_l
. 1 - q_lxls,OLQ

1- X{s,ou;

6.4.2 FOR w = wiwsy

We first compute

T(wiwg, @102\ 1 1)
1 —1
= Z T(wlawl Xlsa 17”7) : T(wQa (w1w2) X;a’% 1T) by (18)
YET/A
:T(wlawflxlsa S0,80) - T(wa, (wlwz)ilxls, S0,50)

1 -1
+ T(wla W1 X/sa S0, Swl[O]) . T(wQa (wle) Xlsa Swl[O] ) SO)
=r(wz, ") X! 50, 50)

1—q7t

1= (e

It follows that in this case

—1
ck(wa (wiwz) 71 xL) - T(wiws, Ty 1, 1)

fl _ q71X;7042 . 1- qilxgaas . 1 - qil
1- X{s‘,ag 1- X/s,ag 1- (X/s,a4)_1

1= X, 1-¢7!

1-—- X;,Ots 1- (X{s,ou;)_

- by (46).
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6.4.3 FOR w = wiwow;
In this case, we obtain

wiwawi) " 1
T(wiwawy, W1 1 1)

= Z T(wlea (W1w2)7lxlsa 1Ta ’Y) . T(wla (wleWI)ilxlsa v, 1?)
~ET/A

=7(wiw, (wlwﬁlx’s, s0,80) - T(w1, (wmwl)ilxly S0,50)
1 -1
+ T(’LUl’LUQ, (wrw2) Xlsa So, Swl[O]) : T(’LUl, (wrwaw) X/sa Swl[O] ) SO)
1 - q71 1- qil \ (wrwa) ™t 1
= . _ . ,S0, S
1 _ (Xlsyo%)_l 1_ (Xlsﬁas)_l + gy 1(Q(O&1 )) 7'(’11.)1’11.)2, Xs» S0 W1[0])
1—¢! 1—q7t _ 1—q7t
= ’ -1 / - T4 b / -1
1- (Xs,a4) 1- (Xs,ag) 1- (Xs,a4)

. 1—qt . 1- q_l(X/s,ag,)_l
1= (ha) Tt T (X))t
__l-q!

1= (o)

It follows that

(’UJ1’UJ2wl)71

cer(wa (wiwawr) ™t x4) - T(wiwawy, Xs» L7, 177)

1-q e, 1-¢g7!

1 =X, 1= (hay)™t

6.4.4 FOR w = wg

In this case, we have cg(we(wg) ™, x4) = 1. Now,

—1
T(wa, e X5, 17, 1)

—1 —1
w1 wWaw ’ w !
= T(’UJ1’U_}2’UJ1,( 1w2w1) Xs» 1?5 ’Y) ' T(w27 ¢ Xs» s 1?)
~NET/A
(w1w2w1)71 / wal /
Xsas()aSO) 'T(w27 XsasO;SO>

(wiwawy)™

=7(wwaw1,

Lo wit s
+ T(w1w2w17 Xs1 50, SWZ[O]) . T(U}?a ¢ Xs» SwQ[O]aS())

1 -1

1 —q 1—gq
1- (X/s,ag)il 1- (X’S,OL2)71

+ gy-1(—Q(0y)) - T(wrwawy,

-1
(wiwawr) Xs» 505 Suy f0])-

A simple computation as in §6.4.3 gives that

. 1—q¢
T(wiwawy, 12N 80, S, 01) = 8u-1(Q(ay)) - 1_()(,75;31
S,3
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It follows that

-1

cg(wa(wa) ™ XL - T(wa, e X, I, 1)
_1-g¢'  1-g7 e 1= Xia,
L= (Xhag)™t 1= (Xha,) 7t 1= (X))t

S,x3

Combining the four terms above corresponding to the elements in W?°, and
simplifying the formula, we obtain that

WE (1) =1=¢""Nn, =1 = ¢ X(hay (@"2)) = L(45 + 3, Xa,) "

One can give an interpretation of L(s, X, ) on the dual side as in §5.5. However,
we will omit the details.

6.5 SUMMARY OF RESULT
We summarize the discussion above in the following theorem.

THEOREM 6.5. Let Spy p be the 4-fold cover determined by Q(cw) = —1. Let ¢
be a nontrivial character of A/F. Let ©(x) be the global theta representation of
the covering Siegel Levi subgroup M p associated with an exceptional character
x. Let S C |F| be a finite set of places such that: (i) S contains the archimedean
places and |n|, = 1 for all v € |F| —S; (i) x» and v, are both unramified
outside S. Let E(g, fs,0(x)) be the Eisenstein series on Sp, p associated with
I(s,0(x)). Assume pion, C F*. Then

Ey(1,£5,0(x) = L (4s + 3, xas) - [ WE (1),
vES

where L% (8, Xay) = [To¢s L(s, (Xaz)v) is the partial Hecke L-function associ-
ated to Xas-

REMARK 6.6. For r an even number, we could consider the 2r-fold cover of
Spy,. a associated to Q(a") = —1 for any short coroot . Let ©(GLy,a, ) be
a theta representation of the Siegel Levi subgroup @T, A. It is expected that
Theorem 6.5 generalizes to this case. That is, Ey (1, fs,©(x)) can be expressed
as the reciprocal of the L-function L(s, x4, )-

For » an odd number, we could consider both r-fold cover S_pé:) a and 2r-

—(2 J—
fold cover Spg:/z\. For both coverings, the theta representation of GL, a is

distinguished. However, it is expected that in the formula for Ey (1, fs, ©(x)),

the reciprocal of a single L-function appears in the S_pg:) A case, while a quotient

of two Hecke L-functions in the case of %gﬁ% Indeed, this dichotomy already

appears in the case 7 = 1. For the double cover SLy a, one has (see [Szp09])
L5(s +3,x°)

E, (1, fs =——0>=""""". ¢ (1),
’L/J( aféax) LS(28+1,XQ) gwfs,v( )
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Here the linear character XE; for v ¢ S is given by

X (W) = xo(ha (w)) - (),
where v, (u) € p1q is the Weil-factor. Also o (u) = xu(ha(u?)).

REMARK 6.7. We could consider the cover (n = 2,Sp,) and the non-Siegel
parabolic subgroup P = MN with M = GL; x SLy;. Note that Mp ~
GL1,A X, SLoa in this case. Moreover, the covering torus Ta C %MA is
abelian and Tp = @LA X 11 TSL%A. Therefore, a genuine character y of Ta
is of the form

X=8®pu,

where £ is a genuine character of @1, A and p for TSL2, a. The character x is
exceptional if and only if u is exceptional.

For fixed 1, there is a 1-distinguished theta representation ©(Ma,x) ~ ¢ ®
O(SLa,a, 1t). One could consider the Fourier coefficients Ey (1, fs, ©(Ma, x))-
Then it follows from [Szp09] that

. LS(SWlegb) Spy
E“Lﬁxxn)_L%%+&@@L$§+L§x@WD'££W£A”’

where ©(p1) := ©(SLa.a, 1) is the theta representation for SLy o and &° is as
in the preceding remark.

The above consideration shows that the “pattern” of L-functions that could
appear in Ey(1, fs,0(x)) is a delicate issue. However, we hope that it could
be predicted from a unified solution to the combinatorial problem arising from
Theorem 4.5.
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