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Abstract. Using linear similarity of a certain class of Volterra opera-
tors to the squared integration, we derive an important representation
of the general-type fundamental solutions of the canonical systems cor-
responding to matrix string equations. Explicit fundamental solutions
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Darboux transformation) as well. Examples and applications to dy-
namical canonical systems are given. Explicit solutions of the dynami-
cal canonical systems are constructed. Three appendices are dedicated
to the Weyl–Titchmarsh theory for canonical systems, to the transfor-
mation of a subclass of canonical systems into matrix string equations
(and of a smaller subclass of canonical systems into matrix Schrödinger
equations), and to a linear similarity problem for Volterra operators.

2020 Mathematics Subject Classification: 34A05, 34B20, 34L40,
37J06, 46N20, 81Q05
Keywords and Phrases: Canonical system, matrix string equation, dy-
namical canonical system, fundamental solution, Volterra operator,
Darboux matrix, explicit generalised eigenfunction

1 Introduction

Canonical (spectral canonical) systems have the form

w′(x, λ) = iλJH(x)w(x, λ), J :=

[
0 Ip
Ip 0

] (
w′ :=

d

dx
w
)
, (1.1)

where i is the imaginary unit (i2 = −1), λ is the so called spectral parameter,
Ip is the p × p (p ∈ N) identity matrix, N stands for the set of positive inte-
ger numbers, H(x) is a 2p× 2p matrix valued function (matrix function), and
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H(x) ≥ 0 (that is, the matrices H(x) are self-adjoint and the eigenvalues of
H(x) are nonnegative). Canonical systems are important objects of analysis,
being perhaps the most important class of the one-dimensional Hamiltonian sys-
tems and including (as subclasses) several classical equations. They have been
actively studied in many already classical as well as in various recent works (see,
e.g., [2,9,14,16,23,24,36–40,45,50,55,57] and numerous references therein). We
will also consider (and construct explicit solutions) for a more general class

w′(x, λ) = iλjH(x)w(x, λ), H(x) = H(x)∗, j :=

[
Im1

0
0 −Im2

]
, (1.2)

where m1,m2 ∈ N. Here, we set

m1 +m2 =: m,

H is anm×m locally integrable matrix function, and H(x)∗ means the complex
conjugate transpose of the matrixH(x). System (1.2) will be called a generalised
canonical system and the corresponding matrix function H will be called a
generalised Hamiltonian.
In the case m1 = m2 =: p, it is easily checked that j and J are unitarily similar:

J = ΘjΘ∗, Θ :=
1√
2

[
Ip −Ip
Ip Ip

]
, (1.3)

that is (assuming H(x) ≥ 0), system (1.2) is equivalent to (1.1) (see Appendix B
for details). We call the system

w′(x, λ) = iλjH(x)w(x, λ), H(x) ≥ 0 (m1 = m2 = p) (1.4)

canonical (as well as the equivalent system (1.1)). The matrix function H(x) is
called the Hamiltonian of this system.
In most works on canonical systems, the less complicated 2×2 Hamiltonian case
(i.e, the case p = 1) is dealt with although the cases with other values of p (p > 1)
are equally important. Interesting recent works [12, 33, 58] on 2 × 2 canonical
systems and string equations contain also some useful references. Here, we deal
with the case of 2p × 2p Hamiltonians (p ≥ 1) although many results are new
even for p = 1.
Well-known Dirac (or Dirac-type) systems are equivalent to a special subclass of
canonical systems (see [16, 18, 45, 50, 55] and references therein). The Hamilto-
nians corresponding to Dirac systems (after we switch from the representation
(1.1) to the representation (1.4)), have the form

H(x) = γ(x)∗γ(x), γ(x)jγ(x)∗ = −Ip, (1.5)

where γ are p×2p matrix functions. For instance, formulas (1.7), (1.11), (1.12),
and (1.26) in [50] lead to the representation (1.5).
The Hamiltonians, which we consider in this paper, have the form

H(x) = β(x)∗β(x), β(x)jβ(x)∗ = 0 (p ≥ 1), (1.6)

where β are again p× 2p matrix functions. Thus, canonical systems (1.4) with
Hamiltonians of the form (1.6) are dual in a certain way to the class of canon-
ical systems corresponding to Dirac systems. Under some natural conditions,
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systems (1.4), (1.6) are also equivalent to the matrix string equations (see [55,
Chapter 11] and Appendix B in our paper). Canonical systems (1.4) with some
special Hamiltonians of the form (1.6) appear, for instance, as the linear systems
auxiliary to nonlinear second harmonic generation equations [28, 29].
We note that first order symplectic systems y′(x) = F (x)y(x) are actively stud-
ied (see [5, 10, 11, 32] and the references therein). In the reformulation for our
case, simplecticity means the equality

F (x)∗j + jF (x) + µ(x)F (x)∗jF (x) = 0.

Thus, generalised canonical systems (1.2) (wherem1 = m2) are symplectic, with
µ ≡ 0. Canonical systems (1.4), (1.6), which are our main topic in this paper,
remain symplectic for any choice of µ(x).
The normalization condition

β′(x)jβ(x)∗ = iIp (1.7)

for Hamiltonians of the form (1.6) is essential for the construction of fundamen-
tal solutions and solving inverse problems. In Appendix B, we show that matrix
Schrödinger equations may be transformed into canonical systems (1.4), (1.6),
(1.7) satisfying certain additional condition. There is considerable interest in
the generalised Schrödinger equations (e.g., in Schrödinger equations with dis-
tributional potentials as well as with matrix and operator potentials, see some
references in [13, 20]). One can say that systems (1.4), (1.6), (1.7) present an
important generalization of the matrix Schrödinger equations. Canonical sys-
tems with Hamiltonians satisfying (1.6), (1.7) were briefly considered in [54,55].
However, local boundedness of β′′ was required there instead of the local square-
integrability of β′′, which we require in the next section. In Section 2, we rep-
resent the fundamental solutions for this case as the transfer matrix function
from [52, 54, 55]. For this purpose, we use the linear similarity of the operator
K = iβ(x)j

∫ x

0
β(t)∗ ·dt to the operator (2.2) of squared integration as well as the

form of the corresponding similarity transformation operator V (see Theorem
C.1 and its proof in Appendix C).
The representation of the fundamental solutions in Section 2 is important in
itself, and it presents also a crucial step in the study of the high energy asymp-
totics of Weyl–Titchmarsh functions [48] and in solving the inverse problem to
recover canonical system from the spectral or Weyl–Titchmarsh function [49].
Some basic results and notions on the Weyl-Titchmarsh theory of the general-
type canonical systems (1.4) are described in Appendix A. The results are conve-
niently reformulated in terms of system (1.4) instead of system (1.1), and, what
is essentially more important, certain redundant conditions contained in [50, Ap-
pendix A] are removed.
In other sections of the paper, we study explicit solutions of systems (1.2) with
generalised Hamiltonians dj + β(x)∗β(x) as well as explicit solutions and cor-
responding Weyl–Titchmarsh (Weyl) functions of the canonical systems (1.4),
(1.6). We note that explicit solutions of Dirac systems and the corresponding
Weyl–Titchmarsh theory have been studied sufficiently well (see, e.g., [22,41,50])
but the situation with the systems (1.4), (1.6) is quite different.
Explicit solutions of canonical systems and their properties are of essential theo-
retical and applied interest. Various versions of Bäcklund-Darboux transforma-
tions and related dressing and commutation methods [7,8,17,19,25,30,34,35,59]
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are fruitful tools in the construction of explicit solutions of linear and inte-
grable nonlinear equations. Bäcklund-Darboux transformations for canonical
and dynamical canonical systems, respectively, were constructed in [42] and [44].
More precisely, GBDT (generalised Bäcklund-Darboux transformation) was con-
structed for these systems. It is important that GBDT (see, e.g., [22,30,41,46,50]
and references therein) is characterized by the generalised matrix eigenvalues
(not necessarily diagonal) and the corresponding generalised eigenfunctions. In
Section 3, the generalised matrix eigenvalues and the generalised eigenfunctions
are denoted by A and Λ(x), respectively.
Although GBDT for canonical systems was obtained in [42], a crucial step of con-
structing the generalised eigenfunctions Λ(x) (which is necessary for construct-
ing explicitly Hamiltonians and fundamental solutions) is done in the present
paper. More precisely, the procedure works in the following way. We start with
some initial systems (1.2), where initial Hamiltonians H(x) are comparatively
simple, and construct explicitly the fundamental solutions and generalised eigen-
functions for these systems. (In particular, some considerations from [46] were
helpful for this purpose.) Using generalised eigenfunctions, the transformed gen-
eralised Hamiltonians and so called Darboux matrices are constructed as well.
Recall that Darboux matrix for generalised canonical systems is the matrix
function Ψ(x, λ) satisfying the equation

Ψ′(x, λ) = iλ
(
jH̃(x)Ψ(x, λ) −Ψ(x, λ)jH(x)

)
,

where H is the initial generalised Hamiltonian and H̃ the transformed one. In
this way, we obtain fundamental solutions W̃ for a wide class of the transformed
systems (i.e., systems with the transformed generalised Hamiltonians H̃(x)).

Indeed, it is easy to see that W̃ is expressed via the fundamental solution W of
the initial system and the Darboux matrix, namely, W̃ (x, λ) = Ψ(x, λ)W (x, λ).
Some preliminaries on GBDT for the generalised canonical systems are given,
and the transformed generalised Hamiltonians and Darboux matrices are con-
structed in Section 3. The generalised eigenfunctions are constructed explicitly
in Section 4. Explicit formulas for fundamental solutions of the initial systems
and for the Weyl functions of the transformed canonical systems on the semi-
axis [0,∞) are established in Section 5. In Section 6, it is shown that the second
equality in (1.6) (i.e., the equality β(x)jβ(x)∗ = 0) for the initial matrix function

β(x) yields the equalities β̃(x)jβ̃(x)∗ = 0 and β̃(x)′jβ̃(x)∗ = β(x)′jβ(x)∗ for

the transformed matrix function β̃(x). Some interesting examples are treated
in Section 7.
There are important connections between spectral and dynamical characteristics
as well as between spectral and dynamical systems (see, e.g., [3, 6, 27, 43, 44, 56]
and references therein). In particular, GBDT for the spectral canonical systems
(1.4) is closely related to the GBDT for the dynamical canonical system

H(x)
∂

∂t
Y (x, t) = j

∂

∂x
Y (x, t) (m1 = m2 = p), H(x) ≥ 0, x ≥ 0. (1.8)

We note that the invertibility of H(x) was assumed for the dynamical canonical
system considered in [44], and system (1.8) slightly differs from the one in [44].
Dynamical canonical systems are of interest in mechanics and control theory
(see, e.g., [26]). The GBDT formula for Y and some explicit examples of H
and Y are also discussed in Section 7.
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As usual, R stands for the real axis, R+ = {r : r ∈ R, r ≥ 0}, C stands for the
complex plane, the open upper half-plane is denoted by C+, and a means the
complex conjugate of a. The notation ℜ(a) stands for the real part of a, and
ℑ(a) denotes the imaginary part of a. The notation diag{d1, . . .} stands for the
diagonal (or block diagonal) matrix with the entries (or blocks) d1, . . . on the
main diagonal. The space of square-integrable functions on (0, b) (0 < b ≤ ∞)
is denoted by L2(0, b) and the corresponding space of p-dimensional column
vector functions is denoted by Lp

2(0, b). By Lp×q
2 (0, b) we denote the class of

p × q matrix functions with the entries belonging to L2(0, b). The notation I
stands for the identity operator. The norm ‖A‖ of the n × n matrix A means
the norm of A acting in the space ℓn2 of the sequences of length n. The class
of bounded operators acting from Hilbert space H1 into Hilbert space H2 is
denoted by B(H1,H2), and we set B(H) := B(H,H).

2 General-type fundamental solutions

In this section, we study canonical system (1.4) satisfying conditions (1.6) and
(1.7):

H(x) = β(x)∗β(x), β(x)jβ(x)∗ = 0, β′(x)jβ(x)∗ = iIp. (2.1)

Let us consider the system (1.4), (2.1) on some finite interval [0,T] (T > 0).
The linear similarity of the operators K ∈ B

(
Lp
2(0,T)

)
and A ∈ B

(
Lp
2(0,T)

)
,

where

Kf = iβ(x)j

∫ x

0

β(t)∗f(t)dt, Af =

∫ x

0

(t− x)f(t)dt, (2.2)

is essential for us. Here, the operator A is introduced as the squared integration
multiplied by −1. (Recall that in the case of Dirac systems the analog of A is
the integration multiplied by i.) It is easy to see that

K −K∗ = iβ(x)j

∫
T

0

β(t)∗ · dt. (2.3)

If β′′(x) ∈ Lp×2p
2 (0,T), we have (according to Theorem C.1) K = V AV −1,

which we substitute into (2.3). Multiplying both parts of the derived equality
by V −1 from the left and by (V ∗)−1 from the right, we obtain the operator
identity

AS − SA∗ = iΠjΠ∗, (2.4)

where

S = V −1(V ∗)−1 > 0, Πh = Π(x)h, Π(x) :=
(
V −1β

)
(x), (2.5)

Π ∈ B
(
C

2p, Lp
2(0,T)

)
, Π(x) ∈ Lp×2p

2 (0,T), h ∈ C
2p. (2.6)

Note that Π above is the operator of multiplication by the matrix function Π(x)
and the operator V −1 is applied to β (in the expression V −1β) columnwise.
The transfer matrix function corresponding to the so called S-node (i.e., to the
triple {A,S,Π} satisfying (2.4)) has the form

wA(λ) = wA(T, λ) = I2p − ijΠ∗S−1(A− λI)−1Π, (2.7)
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and was first introduced and studied in [52]. We introduce the projectors
Pℓ ∈ B

(
Lp
2(0,T), Lp

2(0, ℓ)
)
:

(
Pℓf

)
(x) = f(x) (0 < x < ℓ, ℓ ≤ T). (2.8)

Now, we set

Sℓ = PℓSP
∗
ℓ , Vℓ = PℓV P

∗
ℓ , Aℓ = PℓAP

∗
ℓ , Πℓ = PℓΠ, (2.9)

wA(ℓ, λ) = I2p − ijΠ∗
ℓS

−1
ℓ (Aℓ − λI)−1Πℓ. (2.10)

Since V is a triangular operator, V −1 is triangular as wel, and we have PℓV
−1 =

PℓV
−1P ∗

ℓ Pℓ. Hence, taking into account (2.5) and (2.9) we derive

PℓV
−1P ∗

ℓ Vℓ = PℓV
−1P ∗

ℓ PℓV P
∗
ℓ = PℓV

−1V P ∗
ℓ = I, (2.11)

Sℓ = PℓV
−1(V ∗)−1P ∗

ℓ = PℓV
−1P ∗

ℓ Pℓ(V
∗)−1P ∗

ℓ . (2.12)

It follows that

V −1
ℓ = PℓV

−1P ∗
ℓ , Sℓ = V −1

ℓ (V ∗
ℓ )

−1. (2.13)

We have also PℓA = PℓAP
∗
ℓ Pℓ. Thus, multiplying both parts of (2.4) by Pℓ

from the left and by P ∗
ℓ from the right (and using (2.9), (2.13), and the last

equality in (2.5)) we obtain

AℓSℓ − SℓA
∗
ℓ = iΠℓjΠ

∗
ℓ , Πℓ(x) =

(
V −1
ℓ β

)
(x) (0 < x < ℓ). (2.14)

Clearly wA(ℓ, λ) coincides with wA(T, λ) when ℓ = T.

Remark 2.1. Relations (2.10), (2.13) and (2.14) show that Sℓ and wA(ℓ, λ)
may be defined via Vℓ (and β(x) given on [0, ℓ]) precisely in the same way as
wA(T, λ) is constructed via V (and β(x) given on [0,T]). Moreover, according
to Remark C.2, Vℓ may be constructed in the same way as V , and so wA(ℓ, λ)
does not depend on the choice of β(x) for ℓ < x < T and the choice of T ≥ ℓ.
In particular, wA(ℓ, λ) is uniquely defined on the semi-axis 0 < ℓ <∞ for β(x)
considered on the semi-axis 0 ≤ x <∞.

The fundamental solution of the canonical system (1.4), where Hamiltonian
has the form (2.1) may be expressed via the transfer functions wA(ℓ, λ) using
continuous factorization theorem [55, p. 40] (see also [50, Theorem 1.20] as a
more convenient for our purposes presentation).

Theorem 2.2. Let the Hamiltonian of the canonical system (1.4) have the form
(2.1), where β(x) is a p× 2p two times differentiable matrix function. Assume
that β′′(x) ∈ Lp×2p

2 (0,T), if the canonical system is considered on the finite
interval [0, β], and that the entries of β′′(x) are locally square integrable, if the
canonical system is considered on [0,∞).

Then, the fundamental solution W (x, λ) of the canonical system (normalised by
W (0, λ) = I2p) admits representation

W (ℓ, λ) = wA

(
ℓ,

1

λ

)
. (2.15)

Documenta Mathematica 26 (2021) 583–615



Fundamental Solutions of Canonical Systems 589

Proof. First, we fix some 0 < T < ∞ and consider β(x) on [0,T]. It is easy
to see that the projectors Pℓ and the triple {A, S, Π} satisfy conditions of
[50, Theorem 1.20]. Hence, according [50, Theorem 1.20] the matrix function

wA

(
ℓ, 1

λ

)
is the normalised fundamental solution of the canonical system (1.4)

with Hamiltonian

H(ℓ) =
d

dℓ

∫ ℓ

0

Πℓ(x)
∗S−1

ℓ Πℓ(x)dx, (2.16)

where S−1
ℓ is applied to Πℓ(x) columnwise. Using the second equalities in (2.13)

and (2.14), we rewrite (2.16) in the form

H(ℓ) =
d

dℓ

∫ ℓ

0

β(x)∗β(x)dx = β(ℓ)∗β(ℓ), (2.17)

and the statement of the theorem is proved on [0,T]. Taking into account
Remark 2.1, we see that the statement of the theorem is valid on [0,∞) as
well.

Remark 2.3. The operators Sℓ satisfying (2.14) are so called structured op-
erators. The study of the structured operators in inverse problems takes roots
in the seminal note [31] by M.G. Krein and was developed by L.A. Sakhnovich
in [53–55].

3 GBDT: Darboux matrices for generalised canonical systems

Let us consider systems (1.2) on finite or semi-infinite intervals. Without loss of
generality, we choose either the intervals IT = [0,T] (T <∞) or the semi-axis
R+ = [0,∞). We fix also an initial generalised Hamiltonian H(x) = H(x)∗.
Given an initial m×m generalised Hamiltonian H(x), each GBDT is (as usual)
determined by some n × n matrices A and S(0) = S(0)∗ (n ∈ N) and by an
n×m matrix Λ(0) which satisfy the matrix identity

AS(0)− S(0)A∗ = iΛ(0)jΛ(0)∗. (3.1)

Taking into account the initial values Λ(0) and S(0) (and using the matrixA and
the matrix functionH(x)) we introduce matrix functions Λ(x) and S(x) = S(x)∗
via the equations:

Λ′(x) = −iAΛ(x)jH(x), S ′(x) = Λ(x)jH(x)jΛ(x)∗ . (3.2)

It is easy to see that (3.1) and (3.2) yield [42] the identity

AS(x) − S(x)A∗ ≡ iΛ(x)jΛ(x)∗. (3.3)

Remark 3.1. We note that, similar to the case of the general-type fundamen-
tal solutions in Section 2, we use also operator identities and transfer matrix
function in Lev Sakhnovich form in our GBDT constructions. However, instead
of the infinite-dimensional operators in Section 2, identities (3.1) and (3.3) are
written for matrices. Here, we use calligraphic letter A and S instead A and S
in Section 2 (and the notation Λ instead of Π) for the elements of the S-node
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(of the triple {A,S,Λ}). The so called Darboux matrix from Darboux transfor-
mations is represented in GBDT (for each x ) as the transfer matrix function.
More precisely, we will show that in the points of invertibility of S(x) (for the
case of the generalised canonical system) the Darboux matrix is expressed via

wA(x, λ) = Im − ijΛ(x)∗S(x)−1(A− λIn)
−1Λ(x) (3.4)

(see (3.11)). The dependence of S,Λ and wA on x is of basic importance and
greatly differs from the dependence of Sℓ, Πℓ and wA(ℓ, λ) on ℓ in Section 2.

According to [42], wA(x, λ) satisfies the equation

w′
A(x, λ) =

(
iλjH(x) − q̃0(x)

)
wA(x, λ) − iλwA(x, λ)jH(x); (3.5)

q̃0(x) := jΛ(x)∗S(x)−1Λ(x)jH(x) − jH(x)jΛ(x)∗S(x)−1Λ(x). (3.6)

Note that (3.5) follows directly from (3.2)–(3.4). Moreover, (3.3) yields (see [42]
or [50, (1.88)]):

wA(x, µ)
∗jwA(x, λ) =j + i(µ− λ)

× Λ(x)∗(A∗ − µIn)
−1S(x)−1(A− λIn)

−1Λ(x). (3.7)

Relation (3.8) shows that, under conditions det((A − λIn) 6= 0 and det(A∗ −
λIn) 6= 0, wA is invertible and

wA(x, λ)
−1 = jwA(x, λ)

∗j. (3.8)

Further we assume that

detA 6= 0, (3.9)

and so wA(x, 0) is well defined (in the points of invertibility of S(x)). We note
that (3.5) yields

w′
A(x, 0) = −q̃0(x)wA(x, 0), (3.10)

and we set

v(x, λ) := wA(x, 0)
−1wA(x, λ). (3.11)

Formulas (3.5), (3.10) and (3.11) imply that

v′(x, λ) = iλjH̃(x)v(x, λ) − iλv(x, λ)jH(x), (3.12)

jH̃(x) = wA(x, 0)
−1jH(x)wA(x, 0). (3.13)

Thus, one can see that jH̃ is linear similar to jH . Moreover, in view of (3.8)
we can rewrite (3.13) in the form

H̃(x) = wA(x, 0)
∗H(x)wA(x, 0). (3.14)

According to (3.14), the equality H̃(x) = H̃(x)∗ is valid. Hence, H̃(x) is the
transformed generalised Hamiltonian of the transformed generalised canonical
system

w̃′(x, λ) = iλjH̃(x)w(x, λ), H̃(x) = H̃(x)∗ (x ≥ 0). (3.15)
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Clearly, H̃ ≥ 0 if H ≥ 0, and H̃ > 0 if H > 0. Therefore, in the case of an
initial canonical system, the transformed system is also canonical. By virtue
of (3.12), a fundamental solution W̃ of the transformed system is given by the
formula

W̃ (x, λ) = v(x, λ)W (x, λ), (3.16)

where W is a fundamental solution of the initial system.

Remark 3.2. If H(x) ≥ 0 and S(0) > 0, the second equation in (3.2) implies
that S(x) > 0 for x ≥ 0. In particular, S(x) is invertible.

Remark 3.3. In view of (3.12) (or (3.16)) the matrix function v(x, λ) is the
so called Darboux matrix of the generalised canonical system.
According to (3.7), (3.8) and (3.11), the representation of v(x, λ) in terms of
Λ(x) and S(x) may be simplified. Namely, we have

v(x, λ) = jwA(x, 0)
∗jwA(x, λ)

= Im − iλjΛ(x)∗(A∗)−1S(x)−1(A− λIn)
−1Λ(x). (3.17)

4 Explicit solutions of the transformed generalised canonical

systems

Consider the case, where the initial generalised Hamiltonian H(x) has the form

H(x) = dj + β(x)∗β(x), β(x) :=
[
eicxIm1

e−icxα
]
. (4.1)

Here, β(x) is an m1 ×m matrix function, α is an m1 ×m2 matrix function and

c, d ∈ R; αα∗ = Im1
(m2 ≥ m1). (4.2)

In view of (4.1) and (4.2), we have

β(x)jβ(x)∗ ≡ 0. (4.3)

Recall that the matrix function Λ(x) is determined by Λ(0) and by the system

Λ′(x) = −iAΛ(x)jH(x). (4.4)

We construct generalised eigenfunction Λ(x) in the case (4.1) explicitly.

Proposition 4.1. Let (4.1) and (4.2) hold. Then, the matrix function

Λ(x) =
[
Φ1(x) Φ2(x)

]
,

such that

Φ1(x) = exp{ix(cIn − dA)}
(
eixQf1 + e−ixQf2

)
, (4.5)

Φ2(x) = exp{−ix(cIn + dA)}
(
eixQ(A+ cIn +Q)A−1f1

+ e−ixQ(A+ cIn −Q)A−1f2
)
α, (4.6)

where fk are n×m1 matrices, Q is an n× n matrix and

AQ = QA, Q2 = c(2A+ cIn), (4.7)

satisfies (4.4).

Documenta Mathematica 26 (2021) 583–615



592 A. Sakhnovich

Proof. Using (4.1)–(4.6), we derive

Λ(x)jβ(x)∗ = −e−idxA
(
eixQ(cIn +Q)A−1f1 + e−ixQ(cIn −Q)A−1f2

)
. (4.8)

It follows from (4.5) that

d

dx
Φ1(x) =− idAΦ1(x) + i exp{ix(cIn − dA)}

×
(
eixQ(cIn +Q)f1 + e−ixQ(cIn −Q)f2

)
. (4.9)

According to (4.6), we have also

d

dx
Φ2(x) =− idAΦ2(x) + i exp{−ix(cIn + dA)}

×
(
eixQ(Q − cIn)(A + cIn +Q)A−1f1

+ e−ixQ(Q + cIn)(Q −A− cIn)A−1f2
)
. (4.10)

Since Λ(x) =
[
Φ1(x) Φ2(x)

]
and H(x) has the form (4.1) (where (4.2) holds)

relations (4.7)–(4.10) imply (4.4).

It is easy to see that one can set Q = 0 (in the Proposition 4.1) in the case
c = 0. A more interesting case, where c = 0 and (4.7) holds, is generated by the
matrices A and Q of the form

A = ξI2r +

[
0 A12

0 0

]
(ξ ∈ C), Q =

[
0 Q12

0 0

]
(4.11)

(where A and Q are 2r× 2r matrices, A12 and Q12 are some r× r matrices) or
by the block diagonal matrices with the blocks of the same form as the matrices
on the right-hand sides of the equalities in (4.11).
The next immediate corollary of [46, Proposition B.1] and its proof (see also [47])
deals with the case c 6= 0.

Corollary 4.2. Let c 6= 0, let det(2A + cIn) 6= 0, and let E be the similarity
transformation matrix and J Jordan normal form in the representation

c(2A+ cIn) = EJ E−1. (4.12)

Then, Q satisfying (4.7) may be constructed explicitly and has the form

Q = EDE−1, (4.13)

where D is a block diagonal matrix with the blocks of the same orders as the cor-
responding Jordan blocks of J . Moreover, the blocks of D are upper triangular
Toeplitz matrices (or scalars if the corresponding blocks of J are scalars). If z
is the eigenvalue of some block of J , then the entries on the main diagonal of
the corresponding block of D are equal to

√
z (and one can fix any of the two

possible values of
√
z for this main diagonal).

Given generalised eigenfunction Λ(x), one can construct (explicitly) the funda-

mental solution W̃ (x, λ) of the transformed generalised canonical system using
relations (3.4), (3.11), (3.16) and the second equality in (3.2). We note that an
explicit expression for W (x, λ), which we need for this purpose, is constructed
similar to the way it is done in Proposition 5.1.
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5 The case of the spectral canonical systems

1. It follows from (3.8), (3.14), and (4.3) that the transformed generalised
Hamiltonians constructed in Section 4 have the form

H̃(x) = dwA(x, 0)
∗jwA(x, 0) + β̃(x)∗β̃(x) = dj + β̃(x)∗β̃(x), (5.1)

β̃(x) := β(x)wA(x, 0), β̃(x)jβ̃(x)∗ = β(x)jβ(x)∗ = 0. (5.2)

Here, β̃ is the corresponding transformation of β. Setting

d = 0, m1 = m2 =: p, (5.3)

we obtain a class of canonical systems

w̃′(x, λ) = iλjH̃(x)w̃(x, λ), H̃(x) = β̃(x)∗β̃(x) ≥ 0, β̃(x)jβ̃(x)∗ = 0. (5.4)

Further in the text we normalise the fundamental solutions W and W̃ of the
systems (1.2) and (3.15), respectively, setting

W (0, λ) = W̃ (0, λ) = I2p. (5.5)

We write down the Hamiltonian H(x) given by (4.1), (4.2), and (5.3) in the
form

H(x) = e−icxjKeicxj , K :=

[
Ip α
α∗ Ip

]
(αα∗ = Ip). (5.6)

Proposition 5.1. The fundamental solution of the canonical system (1.4),
where ℑ(λ) 6= 0, the Hamiltonian H is given by (5.6) and c 6= 0, has the
form

W (x, λ) = e−icxjE(λ)

[
eiz1(λ)xIp 0

0 eiz2(λ)xIp

]
E(λ)−1, E =

[
E1 E2

]
, (5.7)

Ei :=

[
−α

1
λ(λ+ c− zi)Ip

]
, z2i = c(2λ+ c) (i = 1, 2), ℑ(z1) > 0. (5.8)

Proof. It is easy to see that E is invertible (one may consider, for instance, the
linear span of the rows of E, which coincides with C2p). Moreover, using the
equality

λ− 1

λ
(λ+ c)(λ + c− zi) =

zi
λ
(λ+ c− zi),

we have

EZE−1E = EZ = (λjK + cj)E for Z = diag{z1Ip, z2Ip}. (5.9)

It follows that

EZE−1 = λjK + cj. (5.10)

Relations (5.7) and (5.10) yield

W (x, λ) = e−icxjeix(λjK+cj), (5.11)

Documenta Mathematica 26 (2021) 583–615



594 A. Sakhnovich

and for W (x, λ) of the form (5.11) we immediately obtain

W ′(x, λ) = iλje−icxjKeicxjW (x, λ), W (0, λ) = I2p. (5.12)

Taking into account (5.6) and (5.12), we see that W given by (5.7), (5.8) is,
indeed, the normalised fundamental solution of the canonical system described
in the proposition.

2. Further in this section, we assume that

S(0) > 0, c 6= 0, (5.13)

so that the statements of Remark 3.2 and Proposition 5.1 may be used. After
normalization (5.5) formula (3.16) takes the form

W̃ (x, λ) = v(x, λ)W (x, λ)v(0, λ)−1 . (5.14)

For system (5.1)–(5.3), in view of (3.11), (5.7) and (5.14) we obtain

β̃(x)W̃ (x, λ)v(0, λ)E1(λ) = eiz1(λ)xβ(x)wA(x, λ)e−icxjE1(λ). (5.15)

Taking into account (5.15) (and some definitions and considerations on Weyl–
Titchmarsh theory in Appendix A), we derive the following theorem.

Theorem 5.2. Canonical system (considered on on [0, ∞)) with the Hamilto-
nian of the form (5.1)–(5.3), where (5.13) holds, has a unique Weyl function
(Weyl’s limit point case). This Weyl function is given explicitly by the formula

ϕ(λ) =
[
0 Ip

]
v(0, λ)E1(λ)

( [
Ip 0

]
v(0, λ)E1(λ)

)−1
, (5.16)

where E1 has the form (5.8).

Proof. First, we note that formulas (3.7)–(3.11) (and [50, Corollary E.3]) yield

v(0, λ)∗jv(0, λ) ≥ j, v(0, λ)jv(0, λ)∗ ≥ j (λ ∈ C+). (5.17)

It easily follows from (5.8) and (5.17) that

E1

(
− c

2
+ εi

)∗
jE1

(
− c

2
+ εi

)
> 0,

[
Ip 0

]
v(0, λ)jv(0, λ)∗

[
Ip
0

]
> 0,

where the first inequality holds (at least) for small ε > 0 and the second in-
equality holds for all λ ∈ C+ (excluding the part of spectrum of A situated in
C+). Hence (see, e.g., [50, Proposition 1.43]),

det
( [
Ip 0

]
v(0, λ)E1(λ)

)
6≡ 0,

and so

det
( [
Ip 0

]
v(0, λ)E1(λ)

)
6= 0 for λ ∈ C+, (5.18)

excluding, possibly, some isolated points. In other words, ϕ(λ) in (5.16) is well
defined.
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Now, we will show that for such λ that ℑ
(
z1(λ)

)
is sufficiently large (excluding,

possibly, isolated points) the relation

β̃(x)W̃ (x, λ)

[
Ip
ϕ(λ)

]
∈ Lp×p

2 (0,∞) (5.19)

is valid. Indeed, the matrix functions β(x) and e−icxj on the right-hand side of
(5.15) are bounded. In view of (3.2), we have

∫ r

0

S(x)−1Λ(x)jβ(x)∗β(x)jΛ(x)∗S(x)−1 = S(0)−1 − S(r)−1 ≤ S(0)−1.

Therefore, we obtain

β(x)jΛ(x)∗S(x)−1 ∈ Lp×n
2 (0,∞). (5.20)

Finally, Proposition 4.1 and Corollary 4.2 show that the matrix function
eiz1(λ)xΛ(x) is bounded for sufficiently large values of ℑ

(
z1(λ)

)
. Taking into

account the definition (3.4) of wA and considerations above, we see that the
right-hand side of (5.15) belongs Lp×p

2 (0,∞) (for sufficiently large values of
ℑ
(
z1(λ)

)
). Thus, the left-hand side of (5.15) belongs Lp×p

2 (0,∞) as well, and
so (5.19) holds for ϕ(λ) given by (5.16).
Assume that for some λ = λ0 ∈ C+ we have (5.19) and have also

β̃(x)W̃ (x, λ0)

[
Ip

ϕ̂(λ0)

]
∈ Lp×p

2 (0,∞), ϕ(λ0) 6= ϕ̂(λ0). (5.21)

We will show (by contradiction) that this is impossible for sufficiently large
values of ℑ

(
z1(λ0)

)
. Indeed, since (5.19) implies

β̃(x)W̃ (x, λ0)v(0, λ0)E1(λ0) ∈ Lp×p
2 (0,∞),

additional relations (5.21) yield the existence of f ∈ Cp such that

β̃(x)W̃ (x, λ0)v(0, λ0)E2(λ0)f ∈ Lp×1
2 (0,∞) (f 6= 0). (5.22)

On the other hand, taking into account that z2(λ) = −z1(λ) we similar to (5.15)
derive

β̃(x)W̃ (x, λ)v(0, λ)E2(λ) = e−iz1(λ)xβ(x)wA(x, λ)e−icxjE2(λ). (5.23)

Next, we should consider g(x, λ) = β(x)wA(x, λ)e−icxj in a more detailed way,
and we note that according to (3.2), (3.4), (4.1), (4.2), (4.5), and (4.6) the
entries gik of g admit representation

gik(x, λ) =

N1∑

s=1

Ps(λ)x
ℓsehsx

/
(
P (λ)

N2∑

s=1

xnseζsx

)
. (5.24)

where P and Ps are polynomials, and N1, Ps, ℓs and hs depend on i, k. More-
over, similar to (5.18) one can show that (excluding isolated points λ) we have

det
(
g(x, λ)Ê(λ)

)
6= 0, Ê(λ) :=

[
−α(

(λ+ c)/λ
)
Ip

]
,
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where Ê is the “rational part” of E2. It follows that

g(x, λ)E2(λ)f 6= 0. (5.25)

Taking into account (5.23)–(5.25), we see that (5.22) (and so (5.21)) does not
hold for sufficiently large values of ℑ

(
z1(λ0)

)
.

Since (5.21) does not hold for sufficiently large values of ℑ
(
z1(λ0)

)
(excluding,

may be, isolated points), there is an open domain in C+, where ϕ(λ) (given by
(5.16)) is uniquely defined via (5.19). Thus, each Weyl function of our system
coincides with ϕ(λ) in this domain (see the Definition A.2 of the Weyl functions).
Recall that Weyl functions are holomorphic in C+. Hence, the Weyl function of
our system is unique (and its existence follows from Proposition A.1). We see
that the Weyl function exists, is unique and coincides with ϕ(λ) in some domain.
Therefore, ϕ(λ) given by (5.16) is the Weyl function and admits holomorphic
continuation in all C+.

Remark 5.3. In Proposition 5.1 and Theorem 5.2, we assume that c 6= 0.
The constructions are much simpler when c = 0. In particular, we recall that
βjβ∗ ≡ 0 (see (4.3)). Moreover, K given in (5.6) equals β∗β as c = 0. Hence,
KjK = 0. Therefore, using (5.6) we have:

H(x) ≡ K, W (x, λ) = eiλxjK = I2p + iλxjK

for the case c = 0.

Remark 5.4. The so called limit point/limit circle problem is of essential inter-
est in spectral theory. In Theorem 5.2, we deal with the limit point case of the
unique Weyl function. The Weyl function is also unique in the case of Dirac
system on the semi-axis and of the corresponding canonical system even assum-
ing that m1 does no necessarily equals m2 in (1.2) (see, e.g., [50, Section 2.2.1]
and references therein). For the canonical system of the form

u′(x) = zĴH(x)u(x), H(x) ≥ 0, Ĵ =

[
0 −1
1 0

]
, x ∈ [0,∞),

where H is a 2× 2 matrix function with real-valued entries, we have limit point
case if and only if H is not integrable near infinity or, equivalently, on [0,∞) [9]
(see also [1] and [37, Theorem 3.5]). For the canonical system (1.4), (1.6), (1.7),
the situation is more complicated. We plan to study it later in greater detail.

6 Matrix string equation

Consider again the case of the initial canonical systems

w′(x, λ) = iλjH(x)w(x, λ),

where H(x) = β(x)∗β(x) and β(x) are p × 2p matrix functions. According
to (3.14), the transformed Hamiltonians (of the GBDT-transformed canonical
systems (3.15)) have the form

H̃(x) = β̃(x)∗β̃(x), β̃(x) = β(x)wA(x, 0). (6.1)
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When the matrix functions β(x) have the form presented in (4.1) (and (4.2),
(5.3) hold), our assertions below show (in view of Appendix B) that the consid-
ered transformed canonical systems correspond to a special subclass of string
equations. Thus, our explicit formulas may be transferred for the case of string
equations as explained in Remark B.3.

Proposition 6.1. Let β(x) satisfy the equality

β(x)jβ(x)∗ = 0. (6.2)

Then, β̃(x) satisfies the relations

β̃(x)jβ̃(x)∗ = 0, β̃(x)′jβ̃(x)∗ = β(x)′jβ(x)∗. (6.3)

Proof. Recall (see, e.g., (3.8)) that

wA(x, 0)jwA(x, 0)
∗ = j. (6.4)

The first equality in (6.3) easily follows from (6.4) (and was already stated in
(5.2)). Formulas (3.10), (6.4) and the second equality in (6.1) imply that

β̃(x)′jβ̃(x)∗ = β(x)′wA(x, 0)jwA(x, 0)
∗β(x)∗ + β(x)w′

A(x, 0)jwA(x, 0)
∗β(x)∗

= β(x)′jβ(x)∗ − β(x)q̃0(x)jβ(x)
∗ . (6.5)

The definition (3.6) of q̃0 and the equality (6.2) yield

β(x)q̃0(x)jβ(x)
∗ = 0. (6.6)

The second equality in (6.3) is immediate from (6.5) and (6.6).

Corollary 6.2. Let β(x) be given by (4.1), where c = 1
2 and αα∗ = Ip. Then,

(6.2) holds and

β̃(x)′jβ̃(x)∗ = iIp. (6.7)

7 Examples and applications

1. Let us consider explicit examples of the Hamiltonians H̃(x) = β̃(x)∗β̃(x),

corresponding Darboux matrices v(x, λ), fundamental solutions W̃ (x, λ), and
Weyl functions ϕ(λ).

Example 7.1. In our first example, we assume that

p = n = 1, A = a 6= a (a ∈ C), c 6= 0, d = 0, (7.1)

where the condition a 6= a provides an easy recovery of S(x) from (3.3).

Recall that according to the second equalities in (4.1), (4.2), and (4.7), we have

β(x) :=
[
eicx e−icxα

]
, |α| = 1, Q =

√
2ac+ c2. (7.2)

In order to define the sign of the square root above, we assume that ℑ(Q) > 0.
By virtue of (4.5), (4.6)) and (7.1), we obtain

aΛ(x) =
[
a
(
f1e

ixQ + f2e
−ixQ

)
α
(
(a+ c+Q)f1e

ixQ + (a+ c−Q)f2e
−ixQ

)]

× eicxj, (7.3)
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where f1 and f2 are scalars and aΛ is written down more conveniently than Λ.
It follows from (3.3) and (7.3) that

S(x) = i

a− a

(∣∣f1eixQ + f2e
−ixQ

∣∣2

− 1

|a|2
∣∣(a+ c+Q)f1e

ixQ + (a+ c−Q)f2e
−ixQ

∣∣2
)
, (7.4)

and the requirement S(0) > 0 takes the form

i(a− a)
(
|a(f1 + f2)|2 −

∣∣(a+ c+Q)f1 + (a+ c−Q)f2
∣∣2) > 0. (7.5)

Relations (3.4), (5.2) and (7.1)–(7.3) yield

β̃(x) =β(x)− i

a|a|2S(x)
(
a
(
f1e

−ixQ + f2e
ixQ
)

− α
(
(a+ c+Q)f1e

−ixQ + (a+ c−Q)f2e
ixQ
))(

aΛ(x)
)
. (7.6)

According to (3.17) and (7.1), the corresponding Darboux matrix is given by
the formula

v(x, λ) = I2 −
iλ

a|a|2(a− λ)S(x) j
(
aΛ(x)

)∗(
aΛ(x)

)
. (7.7)

Formulas (5.7), (5.14) and (7.3), (7.7) give explicitly fundamental solutions of

the canonical systems with β̃ of the form (7.6). In view of (5.16) and (7.7), the
Weyl functions ϕ of such canonical systems on [0, ∞) have the form:

ϕ(λ) =ψ1(λ)
/
ψ2(λ), (7.8)

ψ1(λ) =a|a|2S(0)(a− λ)
(
λ+ c− z1(λ)

)

+ iα
(
(a+ c+Q)f1 + (a+ c−Q)f2

)
λh(λ), (7.9)

ψ2(λ) =αa|a|2S(0)(λ − a)λ− ia(f1 + f2)λh(λ), (7.10)

where z1(λ) =
√
c(2λ+ c) (ℑ(z1) > 0),

h(λ) := aΛ(0)E1(λ) =α
(
(a+ c+Q)f1 + (a+ c−Q)f2

)(
λ+ c− z1(λ)

)

− αa(f1 + f2)λ.

Example 7.2. Now, assume that

p = 1, n = 2, c = 0, d = 0, A =

[
ξ a
0 ξ

]
(ξ ∈ R, ξ 6= 0), (7.11)

Q =

[
0 q
0 0

]
, f1 =

[
f
0

]
f2 =

[
0
g

]
; q, f, g ∈ C, f 6= 0, g 6= 0.

In this case, we have

β =
[
1 α

]
, e±ixQ = I2 ± ixQ, (7.12)

(A− λI2)
−1 = (ξ − λ)−1I2 − (ξ − λ)−2

[
0 a
0 0

]
. (7.13)
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Hence, formulas (4.5), (4.6) and simple calculations yield

Λ(x) =

[
f − iqgx −qg

(
ix+ ξ−1

)

g g

]
. (7.14)

In view of (7.14), the required matrix identity (3.1) may be written in the form
[
aS21(0)− aS12(0) aS22(0)

−aS22(0) 0

]
= i

[|f |2 − |qgξ−1|2 g
(
f + gqξ−1

)

g
(
f + gqξ−1

)
0

]
, (7.15)

where Sik are the entries of S. Hence, we cannot choose an arbitrary entry a
in A but demand f+gqξ−1 6= 0 and choose a and S22(0) satisfying the following
conditions (which is always possible):

aS22(0) = g
(
f + gqξ−1

)
, a 6= 0, S22(0) > 0. (7.16)

Next, we choose S12(0) (and so S21(0) = S12(0)) such that (7.15) holds, and we
choose such S11(0) > 0 that S(0) > 0.
Since ξ ∈ R, we cannot use (3.3) in order to recover S(x) from Λ(x) and con-
struct S(x) in a different way. It follows from (4.1), (7.11) and (7.14) that

Λ(x)jβ∗ =

[
C1x+ C2

C3

]
, C1 = i(α − 1)qg, C2 = f + αqgξ−1, (7.17)

C3 = g(1− α). (7.18)

Therefore, the second equality in (3.2) yields

S(x) = S(0) +
∫ x

0

Λ(t)jβ∗
(
Λ(t)jβ∗

)∗
dt (7.19)

= S(0) +
[
1
3 |C1|2x3 + ℜ

(
C1C2

)
x2 + |C2|2x 1

2C1C3x
2 + C2C3x

1
2C1C3x

2 + C2C3x |C3|2x

]
.

Using (7.17), we rewrite the equality (5.2) for β̃ (transformed β) in the form

β̃(x) =
[
1 α

]
− i
[
C1x+ C2 C3

]
S(x)−1A−1Λ(x), (7.20)

where S(x), A and Λ(x) are given in (7.19), (7.11) and (7.14), respectively.
Finally, the Darboux matrix v(x, λ) is expressed via Λ(x) and S(x) in (3.17),

and the expression for the corresponding fundamental solution W̃ follows from
(5.14) and Remark 5.3.

2. Relations (3.2) and (3.3) imply an important equality (see [44, (2.13)]):

(
Λ∗S−1

)′
= iHjΛ∗S−1A+ q̃ ∗

0 Λ
∗S−1. (7.21)

We assume that S(0) > 0 and H(x) ≥ 0, that is, S(x) > 0 for x ≥ 0, and so
S(x)−1 is well defined (see Remark 3.2). In view of (3.8), (3.10) and (7.21),

for H̃ of the form (3.14) and Y given by

Y (x, t) = jwA(x, 0)
∗Λ(x)∗S(x)−1eitA, (7.22)

we have

H̃(x)
∂

∂t
Y (x, t) = j

∂

∂x
Y (x, t) (m1 = m2 = p), x ≥ 0. (7.23)
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In other words, the 2p × n matrix function Y (or, equivalently, the columns
of Y ) satisfies the dynamical canonical system (7.23).
Taking into account (3.3) and (3.4), we rewrite wA(x, 0)

∗Λ(x)∗S(x)−1 in a sim-
pler form (in terms of Λ(x) and S(x)):

wA(x, 0)
∗Λ(x)∗S(x)−1 = Λ(x)∗

(
A∗
)−1S(x)−1A−1.

Hence,

Y (x, t) = jΛ(x)∗
(
A∗
)−1S(x)−1eitAA−1. (7.24)

Proposition 7.3. Let the initial Hamiltonian H(x) ≥ 0 be given, and let the
relations (3.1), S(0) > 0, and detA 6= 0 hold. Then, Y of the form (7.24) sat-

isfies dynamical canonical system (7.23), where the transformed Hamiltonian H̃
is given by (3.14).

In this way, explicit expressions for Λ and S in Examples 7.1 and 7.2 give us
explicit expessions for Y (x, t). Moreover, it is immediate from (7.11) that eitA

in (7.24) takes under assumptions of Example 7.2 a simple form

eitA = eitξ
(
I2 + ita

[
0 1
0 0

])
. (7.25)

A Canonical systems: Weyl–Titchmarsh theory

Consider generalised canonical system (1.2). It is immediate that the funda-
mental solution W of (1.2) satisfies the equality

d

dx

(
W (x, µ)∗jW (x, λ)

)
= i(λ − µ)W (x, µ)∗H(x)W (x, λ). (A.1)

In view of (A.1) (for the case µ = λ) and of the normalization W (0, λ) = Im
always assumed in this appendix, we have

∫ r

0

W (x, λ)∗H(x)W (x, λ)dx =
i

λ− λ

(
j −W (r, λ)∗jW (r, λ)

)
, (A.2)

for λ 6∈ R and r ≥ 0. Moreover, (A.1) for the case µ = λ implies that

W (r, λ)∗jW (r, λ) ≡ j ≡W (r, λ)jW (r, λ)∗. (A.3)

Further in the appendix, we will deal with the general-type (i.e., not necessarily
related to explicit solutions) canonical system (1.4) on [0, ∞). Since H ≥ 0,
formula (A.2) yields

W (r2, λ)
∗jW (r2, λ) ≤W (r1, λ)

∗jW (r1, λ) ≤ j, (A.4)

j ≤W (r1, λ)
∗jW (r1, λ) ≤W (r2, λ)

∗jW (r2, λ) (r1 ≤ r2, λ ∈ C+). (A.5)

Next, introduce the families N (r) of linear-fractional (Möbius) transformations

φ(r, λ) =
(
W21(r, λ)P1(λ) +W22(r, λ)P2(λ)

)

×
(
W11(r, λ)P1(λ) +W12(r, λ)P2(λ)

)−1
, (A.6)
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where Wik and Pk are p× p matrix functions,

W(r, λ) = {Wik(r, λ)}2i,k=1 := jW (r, λ)∗j, (A.7)

and P1(λ), P2(λ) are pairs of meromorphic in C+ matrix functions (so called
nonsingular pairs with property-j) such that

P1(λ)
∗P1(λ) + P2(λ)

∗P2(λ) > 0,
[
P1(λ)

∗ P2(λ)
∗
]
j

[
P1(λ)
P2(λ)

]
≥ 0, (A.8)

where the first inequality holds in one point (at least) of C+, and the second
inequality holds in all the points of analyticity of Pk (k = 1, 2).
It follows from (A.8) by contradiction that

det
(
W11(r, λ)P1(λ) +W12(r, λ)P2(λ)

)
6≡ 0. (A.9)

Indeed, formulas (A.3), (A.4) and (A.7) imply that W(r, λ)∗jW(r, λ) ≥ j, which
yields

[
P1(λ)

∗ P2(λ)
∗
]
W(r, λ)∗jW(r, λ)

[
P1(λ)
P2(λ)

]
≥ 0 (A.10)

in the points of analyticity of Pk(λ) in C+. On the other hand, if we have

det
(
W11(r, λ)P1(λ) +W12(r, λ)P2(λ)

)
= 0, (A.11)

then (for some g 6= 0)
(
W11(r, λ)P1(λ) +W12(r, λ)P2(λ)

)
g = 0 (g ∈ C

p), (A.12)

and so we obtain (for such λ in C+ that (A.8) and (A.11) hold):

g∗
[
P1(λ)

∗ P2(λ)
∗
]
W(r, λ)∗jW(r, λ)

[
P1(λ)
P2(λ)

]
g < 0. (A.13)

Clearly, (A.13) contradicts (A.10).
Let us rewrite (A.6) in the form

[
Ip
φ(λ)

]
= jW (r, λ)∗j

[
P1(λ)
P2(λ)

] (
W11(r, λ)P1(λ) +W12(r, λ)P2(λ)

)−1
.

Now, setting

A(r, λ) :=W (r, λ)∗jW (r, λ), (A.14)

and using (A.3), we see that formulas (A.6) and (A.8) (i.e., the relation φ ∈
N (r)) yield

[
Ip φ(λ)∗

]
A(r, λ)

[
Ip
φ(λ)

]
≥ 0. (A.15)

Moreover, according to (A.4), (A.14) and (A.15), φ(λ) is holomorphic and con-
tractive in C+. On the other hand, if meromorphic φ satisfies (A.15), we set

[
P1(λ)
P2(λ)

]
=W (r, λ)

[
Ip
φ(λ)

]
, (A.16)
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and see that the relations (A.6) are (A.8) are valid. Thus,

φ(λ) ∈ N (r) (A.17)

is equivalent to (A.15). Therefore, according to (A.4), N (r2) is embedded in
N (r1):

N (r2) ⊆ N (r1) (r1 < r2). (A.18)

By virtue of Montel’s theorem, there is a sequence {φk(λ)} such that

φk ∈ N (rk), rk → ∞ (for k → ∞), (A.19)

and φk(λ) tend uniformly (on any compact in C+) to some matrix function
ϕ(λ). Thus, ϕ(λ) is holomorphic and satisfies (A.15) for any r > 0. In other
words,

ϕ(λ) ∈
⋂

r>0

N (r). (A.20)

Let us write down N (r) in the Weyl matrix disk form. Taking into account
(A.4) and (A.14), we obtain

− A22(r2, λ) ≥ −A22(r1, λ) ≥ Ip (r2 > r1); (A.21)

A(r2, λ)
−1 ≥ A(r1, λ)

−1 ≥ j, (A.22)
(
A(r, λ)−1

)
11

=
(
A11(r, λ) − A12(r, λ)A22(r, λ)

−1
A21(r, λ)

)−1 ≥ Ip, (A.23)

where Aik(r, λ) and
(
A(r, λ)−1

)
ik
, respectively, are p × p blocks of A(r, λ) and

A(r, λ)−1. The invertibility of A11 − A12A
−1
22 A21 in (A.23) follows from the

invertibility of A and A22 (for this and for the equality in (A.23) see, e.g., [55, p.
21]). In particular, we derive from (A.21) and (A.23) that the following positive
definite square roots are uniquely defined:

ρL(r, λ) =
(
− A22(r2, λ)

−1
)1/2

, (A.24)

ρR(r, λ) =
(
A11(r, λ) − A12(r, λ)A22(r, λ)

−1
A21(r, λ)

)1/2
. (A.25)

Here, ρL and ρR are the so called left and right semi-radii of the Weyl disk. The
inequality (A.15) may be rewritten in the form of the Weyl disk parametrization
of the values φ(r, λ) (similar, for instance, to the parametrization [15, (2.19)]
for Dirac systems):

φ(r, λ) = ρL(r, λ)ω(r, λ)ρR(r, λ) − A22(r, λ)
−1

A21(r, λ) (ω∗ω ≤ Ip), (A.26)

where ω(r, λ) are p× p matrices and φ ∈ Nr. Recall that the matrix inequality

B2 ≥ B1 ≥ 0 yields B
1/2
2 ≥ B

1/2
1 (see, e.g., [4]). Hence, in view of (A.21)–(A.25)

the left and right semi-radii are non-increasing.
By L2(H) we denote the space of vector functions on R+ with the scalar product

(f1, f2)H =

∫ ∞

0

f2(x)
∗H(x)f1(x)dx.
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Proposition A.1. Let H(x) (x ≥ 0) be the Hamiltonian of a canonical system.
Then, there is ϕ(λ), which satisfies (A.20), for this system. If (A.20) holds, the

columns of W (x, λ)

[
Ip
ϕ(λ)

]
belong L2(H), that is,

∫ ∞

0

[
Ip ϕ(λ)∗

]
W (x, λ)∗H(x)W (x, λ)

[
Ip
ϕ(λ)

]
dx <∞ (λ ∈ C+). (A.27)

Proof. We already proved that
⋂

r>0N (r) is non-empty. Moreover, in view of
(A.15), for any ϕ satisfying (A.20) and any r > 0 we have

[
Ip ϕ(λ)∗

]
A(r, λ)

[
Ip
ϕ(λ)

]
≥ 0. (A.28)

Taking into account (A.2) and (A.28), we derive

∫ r

0

[
Ip ϕ(λ)∗

]
W (x, λ)∗H(x)W (x, λ)

[
Ip
ϕ(λ)

]
dx

≤ i

λ− λ

[
Ip ϕ(λ)∗

]
j

[
Ip
ϕ(λ)

]
≤ i

λ− λ
Ip, (A.29)

and (A.27) follows.

Definition A.2. Holomorphic (in C+) p× p matrix functions ϕ(λ), such that
the inequality (A.27) holds, are called Weyl–Titchmarsh (Weyl) functions of the
canonical system (1.4) on [0, ∞).

Proposition A.1 implies that Weyl function always exists.

B Canonical systems and matrix string and Schrödinger equa-

tions: interconnections

1. In view of (1.3), canonical systems (1.4) with Hamiltonians H(x) of the form
(1.6) may be transformed into systems (1.1) with Hamiltonians H:

Υ′(x, λ) = iλJH(x)Υ(x, λ), H = ϑ(x)∗ϑ(x), ϑ(x)Jϑ(x)∗ = 0, (B.1)

using the transformation

Υ(x, λ) = Θw(x, λ), H(x) = ΘH(x)Θ∗, ϑ(x) = β(x)Θ∗. (B.2)

Clearly, the inverse transformation works as well, that is, systems (1.4), (1.6)
and systems (B.1) are equivalent.
It will be convenient to repeat here the transformation (from [53, Ch. 4] or [55,
Section 11.1]) of the system (B.1) into the matrix string equation. We partition
p × 2p matrix function ϑ(x) into p × p blocks ϑ(x) =

[
ϑ1(x) ϑ2(x)

]
. We

assume that det(ϑ1(x)) 6= 0, and we require also that ϑ1(x)
−1ϑ2(x) is absolutely

continuous and its derivative is invertible. We set

Y(x, λ) = ϑ(x)Υ(x, λ), Z(x, λ) = ϑ1(x)
−1ϑ(x)Υ(x, λ), (B.3)

κ(x) :=
(
i
(
ϑ1(x)

−1ϑ2(x)
)′)−1

= κ(x)∗. (B.4)
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The self-adjointness of κ(x) above follows from the last equality in (B.1). Ac-
cording to (B.1) and (B.3), we have

Υ′(x, λ) = iλJϑ(x)∗Y(x, λ), (B.5)

Z ′(x, λ) =
(
ϑ1(x)

−1ϑ(x)
)′
Υ(x, λ) =

[
0
(
ϑ1(x)

−1ϑ2(x)
)′]

Υ(x, λ). (B.6)

Finally, taking into account (B.4)–(B.6), we see that Z(x, λ) satisfies the matrix
string equation

d

dx

(
κ(x)

d

dx
Z(x, λ)

)
= λϑ1(x)

∗Y(x, λ) = λω(x)Z(x, λ), (B.7)

ω(x) := ϑ1(x)
∗ϑ1(x) > 0. (B.8)

2. Now, consider the matrix Schrödinger equation

− Z ′′(x, λ) + u(x)Z(x, λ) = λZ(x, λ)
(
u(x) = u(x)∗

)
, (B.9)

where u is a p×pmatrix function. The transformation of (B.9) into the canonical
system of the form (B.1), such that

ϑ′′(x) = u(x)ϑ(x), (B.10)

and ϑ(x) is normalised at x = 0 by

B(0) = Θ1 :=
1√
2

[
iIp Ip
iIp −Ip

]
, (B.11)

where

B(x) :=

[
ϑ(x)
ϑ′(x)

]
, (B.12)

is described in [55, Section 11.2]. The interconnections between the spectral
theories of systems (B.1), (B.10) and equations (B.9) are also studied there. It
is easily checked (see also [37] for the case p = 1) that the above-mentioned
transformation in [55, Section 11.2] works in the opposite direction as well.
Namely, starting from the canonical system (B.1), (B.10), (B.11) one comes to
the Schrödinger equation (B.9). Indeed, according to [55, (2.10)], we have

B(0)∗J1B(0) = Θ∗
1J1Θ1 = J, J1 := i

[
0 −Ip
Ip 0

]
, (B.13)

where J is given in (1.1). Moreover, the equalities (B.10) and (B.12) yield

B′(x) =

[
0 Ip

u(x) 0

]
B(x). (B.14)

The relations (B.13) and (B.14) imply that

B(x)∗J1B(x) = B(0)∗J1B(0) = J, (B.15)

and so

B(x)JB(x)∗ = J1. (B.16)
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Remark B.1. Formula (B.16) shows that the equalities

ϑ(x)Jϑ(x)∗ = 0, ϑ′(x)Jϑ(x)∗ = iIp (B.17)

follow from (B.10)–(B.12).

Finally, setting

Z(x, λ) = ϑ(x)Υ(x, λ) (B.18)

and taking into account (B.1), (B.10) and (B.17), we derive

Z ′′ = uZ − 2λZ + λZ,

that is, Z(x, λ) satisfies matrix Schrödinger equation (B.9). Formula (B.18)
describes the connection between the solutions of the canonical system (B.1),
(B.10), (B.11) and of the corresponding Schrödinger equation (B.9).

3. Since matrix Schrödinger equations may be transformed (see [55]) into canon-
ical systems satisfying (B.10)–(B.12) (and by virtue of Remark B.1), they are
also equivalent to a subclass of canonical systems (1.4) with Hamiltonians of
the form (2.1).

Remark B.2. It is easy to see that in the case of our explicit formulas (4.1),
(4.5), (4.6) the matrix function ϑ(x) = β(x)Θ∗ satisfies the equality (B.10),

where u = −c2Ip. However, ϑ̃(x) = β̃(x)Θ∗ does not satisfy (B.10) (excluding,
possibly, some special cases).

Remark B.3. Formulas (B.3), (B.4), (B.7), and (B.8) show that explicit ex-
pressions for the Hamiltonians and fundamental solutions constructed in this
paper generate explicit expressions for the matrix string equations and their so-
lutions as well.

C On linear similarity to squared integration

We will consider similarity transformations of linear integral operators K in
Lp
2(0,T) (0 < T <∞):

K = iβ(x)j

∫ x

0

β(t)∗ · dt, β(x)jβ(x)∗ ≡ 0, β′(x)jβ(x)∗ ≡ iIp, (C.1)

where β(x) is a p× 2p matrix function and

j =

[
Ip 0
0 −Ip

]
. (C.2)

Recall that the operator A is introduced in (2.2). The class of operators
K =

∫ x

0
K(x, t) · dt, which are linear similar to A above, was studied (for the

case of the scalar kernel function K(x, t)) in the essential for our considerations
paper [51]. Here, we study an important special subclass (C.1) of such operators
under reduced smoothness conditions on K(x, t). We include the matrix case
(i.e., the case p > 1) and present a complete proof of the similarity result.
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Theorem C.1. Let the operator K be given by the first equality in (C.1), and
let β(x) satisfy the second and the third equalities in (C.1). Assume that β(x)
is two times differentiable and the entries of β′′(x) are square-integrable, that
is, β′′(x) ∈ Lp×2p

2 (0,T). Then, K is linear similar to A :

K = V AV −1, V = u(x)
(
I +

∫ x

0

V(x, t) · dt
)
, (C.3)

where u(x) is a two times differentiable p×p matrix function (such that u∗ = u−1

and u′′ ∈ Lp×p
2 (0,T)), and

sup ‖V(x, t)‖ <∞ (0 ≤ t ≤ x ≤ T). (C.4)

Proof. In the proof, we construct an operator V , which satisfies theorem’s con-
ditions. This V is closely related to transformation operators in inverse spectral
and scattering theories.

Step 1. Together with K, we consider the operators:

K̆ := iβ′′(x)j

∫ x

0

β(t)∗ · dt, (I − K̆)−1 = I +

∫ x

0

R(x, t) · dt. (C.5)

The operator K̆ has a semi-separable kernel, and so (see, e.g., [21, Section IX.2])
the matrix function R in (C.5) has the form

R(x, t) = iβ′′(x)u1(x)u1(t)
−1jβ(t)∗ (0 ≤ t ≤ x), (C.6)

where the 2p× 2p matrix function u1 is the normalised fundamental solution of
the system

u′1(x) = ijβ(x)∗β′′(x)u1(x), u1(0) = I2p. (C.7)

Introduce the p× p matrix function g(x) by the equalities

g(0) = Ip, g′(0) =
i

2
β′(0)jβ′(0)∗, (C.8)

g′′(x) = i(I − K̆)
(
β′′(x)u1(x)

(
jβ′(0)∗ +

i

2
jβ(0)∗β′(0)jβ′(0)∗

))
, (C.9)

where the operator (I−K̆) on the right-hand side of (C.9) is applied columnwise
to the p× p matrix function above. Further in the proof, we study the matrix
function

y(x, z) := (I − z2K)−1g(x). (C.10)

(Since K has a semi-separable kernel, one can write down a more explicit ex-
pression for y as well.) Differentiating two times both parts of the equality
(I − z2K)y(x, z) = g(x) and taking into account (C.1), (C.5), we derive

y′′(x, z) = g′′(x)− z2y(x, z) + iz2β′′(x)j

∫ x

0

β(t)∗y(t, z)dt

= g′′(x)− z2(I − K̆)y(x, z). (C.11)
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It easily follows also from (C.1), (C.8), and (C.10) that

y(0, z) = Ip, y′(0, z) =
i

2
β′(0)jβ′(0)∗. (C.12)

Applying (columnwise) (I−K̆)−1 to both parts of (C.11), using (C.5) and (C.9),
and integrating by parts, we obtain

y′′(x, z) =−
∫ x

0

R(x, t)y′′(t, z)dt

+ iβ′′(x)u1(x)
(
jβ′(0)∗ +

i

2
jβ(0)∗β′(0)jβ′(0)∗

)
− z2y(x, z)

=−R(x, t)y′(t, z)
∣∣∣
x

0
+
(∂R
∂ t

(x, t)y(t, z)
)∣∣∣

x

0

+ iβ′′(x)u1(x)
(
jβ′(0)∗ +

i

2
jβ(0)∗β′(0)jβ′(0)∗

)
− z2y(x, z)

−
∫ x

0

( ∂2
∂t2

R(x, t)
)
y(t, z)dt. (C.13)

In view of the last equality in (C.1), we have
(
β′(x)jβ(x)∗

)′
= 0, which yields

u2(x) := iβ′′(x)jβ(x)∗ = −iβ′(x)jβ′(x)∗. (C.14)

Here, u2 is a p× p matrix function. Relations (C.6), (C.7), and (C.14) imply:

R(x, x) = u2(x);
∂

∂t
R(x, t)

∣∣∣
t=x

= −u2(x)2 + u3(x), (C.15)

u2(x)
′ = u3(x)

∗ − u3(x), u3(x) := iβ′′(x)jβ′(x)∗; (C.16)

∂

∂t
R(x, t)

∣∣∣
t=0

= iβ′′(x)u1(x)
(
jβ′(0)∗ − jβ(0)∗u2(0)

)
; (C.17)

R(x, 0) = iβ′′(x)u1(x)jβ(0)
∗. (C.18)

Taking into account (C.12) and (C.14)–(C.17), we rewrite (C.13) in the form:

y′′(x, z) + z2y(x, z) =− u2(x)y
′(x, z)−

(
u2(x)

2 − u3(x)
)
y(x, z)

−
∫ x

0

( ∂2
∂t2

R(x, t)
)
y(t, z)dt, (C.19)

where

∂2

∂t2
R(x, t) = h1(x)h2(t), h1 ∈ Lp×2p

2 (0,T), h2 ∈ L2p×p
2 (0,T); (C.20)

and

h1(x) := iβ′′(x)u1(x), h2(t) :=u1(t)
−1
(
jβ(t)∗u2(t)

2 − jβ(t)∗u3(t)
∗

− jβ′(t)∗u2(t) + jβ′′(t)∗
)
. (C.21)

We introduce the p× p matrix functions y1(x, z) and u(x) by the equalities

y1(x, z) = u(x)−1y(x, z); u′(x) = −1

2
u2(x)u(x), u(0) = Ip. (C.22)
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Since u∗2 = −u2 and u(0) = Ip, we obtain u∗ = u−1. Thus, using formulas
(C.16), (C.20), and (C.22), we rewrite (C.19) in the form

y′′1 (x, z) + z2y1(x, z) = u4(x)y1(x, z)− u(x)∗h1(x)

∫ x

0

h2(t)u(t)y1(t, z)dt,

(C.23)

u4(x) := u(x)∗
(1
2

(
u3(x) + u3(x)

∗
)
− 3

4
u2(x)

2
)
u(x). (C.24)

In view of (C.12) and (C.22), the initial conditions for y1 take the form

y1(0, z) = Ip, y′1(0, z) = y′(0, z)− u′(0) = 0. (C.25)

Step 2. Let us construct the solution of system (C.23) with the initial conditions
(C.25) as a series

y1(x, z) =

∞∑

k=0

ψk(x, z), ψ0(x, z) = cos(zx)Ip, (C.26)

ψk(x, z) :=

∫ x

0

cos
(
z(x− t)

) ∫ t

0

(
u4(s)ψk−1(s, z)

−
∫ s

0

F(s, η))ψk−1(η, z)dη
)
dsdt (k ≥ 1), (C.27)

F(x, t) :=u(x)∗h1(x)h2(t)u(t). (C.28)

Clearly, for k ≥ 1 we have

ψ′′
k (x, z) = −z2ψk(x, z) + u4(x, z)ψk−1(x, z)−

∫ x

0

F(x, η)ψk−1(η, z)dη.

Thus, if the corresponding series converge, the matrix function y1 given by
(C.26)–(C.28) satisfies (C.23). Convergences follow from the representation

ψk(x, z) =

∫ x

0

cos(zζ)Vk(x, ζ)dζ (k ≥ 1), (C.29)

which is proved by induction. Indeed, setting k = 1 in (C.27), taking into
account that ψ0(s, z) = cos(zs)Ip and

cos
(
z(x− t)

)
cos(zs) =

1

2

(
cos
(
z(x− t− s)

)
+ cos

(
z(x− t+ s)

))
, (C.30)

cos
(
z(x− t)

)
cos(zη) =

1

2

(
cos
(
z(x− t− η)

)
+ cos

(
z(x− t+ η)

))
,

and changing variables and order of integration, we derive:

ψ1(x, z) =

∫ x

0

cos(zζ)V1(x, ζ)dζ, (C.31)

V1(x, ζ) =
1

2

(∫ (x+ζ)/2

0

u4(t)dt+

∫ (x−ζ)/2

0

u4(t)dt−
∫ x

(x+ζ)/2

F̆(t, x− t+ ζ)dt

−
∫ x−ζ

(x−ζ)/2

F̆(t, x− t− ζ)dt−
∫ x

(x−ζ)

F̆(t, ζ + t− x)dt

)
, (C.32)

F̆(t, η) :=

∫ t

η

F(s, η)ds. (C.33)
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Assuming that (C.29) holds for k−1 and ψk is given by (C.27), we use a similar
procedure (i.e., formulas of the (C.30) type, change of variables and change of
order of integration) and obtain (C.29) for k, where

2Vk(x, ζ) =

∫ x

x−ζ

∫ t

ζ+t−x

u4(s)Vk−1(s, ζ + t− x)dsdt

+

∫ x

(x+ζ)/2

∫ t

ζ+x−t

u4(s)Vk−1(s, ζ + x− t)dsdt

+

∫ x−ζ

(x−ζ)/2

∫ t

x−t−ζ

u4(s)Vk−1(s, x− t− ζ)dsdt (C.34)

−
∫ x

x−ζ

∫ t

ζ+t−x

∫ s

ζ+t−x

F(s, η)Vk−1(η, ζ + t− x)dηdsdt

−
∫ x

(x+ζ)/2

∫ t

ζ+x−t

∫ s

ζ+x−t

F(s, η)Vk−1(η, ζ + x− t)dηdsdt

−
∫ x−ζ

(x−ζ)/2

∫ t

x−t−ζ

∫ s

x−t−ζ

F(s, η)Vk−1(η, x− t− ζ)dηdsdt.

Thus, the representation (C.29) is proved. Moreover, one can choose such
C(T ) = C > 0 that

∫
T

0

‖hk(t)‖dt ≤ C (k = 1, 2),

∫
T

0

‖u4(t)‖dt ≤ C2, (C.35)

sup
0≤ζ≤x≤T

‖V1(x, ζ)‖ ≤ C. (C.36)

We assume that the inequalities (C.35) and (C.36) hold. In particular, the
inequality

‖Vk(x, ζ)‖ ≤ (3C2)k−1

(k − 1)!
Cxk−1 (k ≥ 1) (C.37)

is fulfilled for k = 1. If (C.37) is valid for Vk−1, relations (C.34)–(C.36) imply
that (C.37) is valid for Vk. Hence, (C.37) is proved. Therefore, the series∑∞

k=1 ‖Vk(x, ζ)‖ is convergent. Thus, the series in (C.26) converges as well, and
(in view of (C.26), (C.29), (C.37)) we have

y1(x, z) = cos(zx)Ip +

∫ x

0

cos(zζ)V(x, ζ)dζ, (C.38)

V(x, ζ) :=
∞∑

k=1

Vk(x, ζ), sup
0≤ζ≤x≤T

‖V(x, ζ)‖ <∞. (C.39)

It is immediate from (C.38) and (C.39) that y1(0, z) = Ip. In order to calculate
the initial value y′1(0, z), we differentiate both sides of (C.27) and obtain

ψ′
k(x, z) =− z

∫ x

0

sin
(
z(x− t)

) ∫ t

0

(
u4(s)ψk−1(s, z)

−
∫ s

0

F(s, η))ψk−1(η, z)dη
)
dsdt (C.40)

+

∫ x

0

(
u4(s)ψk−1(s, z)−

∫ s

0

F(s, η))ψk−1(η, z)dη
)
ds (k ≥ 1).
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Now, the equality y′1(0, z) = 0 easily follows from (C.26) and (C.40). Summing
up, we have shown (in this step of the proof) that y1 of the form (C.38) satisfies
(C.23) and (C.25).

Step 3. Next, we show that the solution y1 of (C.23), (C.25) is unique. Multi-
plying both parts of (C.23) by the operator A (given in (2.2)) and using (C.25),
we derive

By1 = Ip + z2Ay1, (C.41)

Bf = f −
∫ x

0

B(x, t)f(t)dt := f +A(u4f)−A

∫ x

0

F(x, t)f(t)dt. (C.42)

From (2.2), (C.28), (C.41) and (C.42), after simple calculations we obtain

B(x, t) =
[
Ip xIp u7(x)

]


u5(t)− tu4(t)
u4(t) + u6(t)
h2(t)u(t)


 , (C.43)

u5(t) := −
∫ t

0

su(s)∗h1(s)ds h2(t)u(t), u6(t) :=

∫ t

0

u(s)∗h1(s)ds h2(t)u(t),

u7(x) :=

∫ x

0

(s− x)u(s)∗h1(s)ds. (C.44)

Here, u4 is given in (C.24) and the following transformation is used:

∫ x

0

(t− x)

∫ t

0

F(t, s) · dsdt =
∫ x

0

(s− x)

∫ x

t

F(s, t)ds · dt (C.45)

=

∫ x

0

∫ x

0

(s− x)u(s)∗h1(s)ds h2(t)u(t) · dt

−
∫ x

0

∫ t

0

(s− x)u(s)∗h1(s)ds h2(t)u(t) · dt.

Since B is a triangular operator and the integral part of B has a semi-separable
kernel, it easily follows (see, e.g., [21, Section IX.2]) that B is invertible and B−1

is a bounded operator. (In fact, the integral part of B is a Volterra operator
from Hilbert-Schmidt class and B−1 − I is again a triangular Volterra operator
with a semi-separable kernel.) Thus, we rewrite (C.41) as

y1 = (I − z2B−1A)−1B−1Ip. (C.46)

Now, it is easy to see that y1 is unique. Recall that this unique solution admits
representation (C.3), and so, taking into account (C.22), we obtain

y(x, z) = V
(
cos(zx)Ip

)
, (C.47)

where V is given by the second equality in (C.3) and is applied to cos(zx)Ip
columnwise. One easily checks that

(I − z2A)−1Ip = cos(zx)Ip. (C.48)

In view of (C.10), (C.47), and (C.48), we have

(I − z2K)−1g = V (I − z2A)−1Ip. (C.49)
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Presenting the resolvents in both parts of (C.49) as series, we rewrite (C.49) in
the form Kng = V AnIp. In particular, setting n = 0, we derive g = V Ip. The
substitution g = V Ip into Kng = V AnIp yields

KnV Ip = V AnIp (n ≥ 0). (C.50)

It follows that

(KV )AnIp = K(V AnIp) = Kn+1V Ip = V An+1Ip = (V A)AnIp. (C.51)

One can easily see (using, e.g., Weierstrass approximation theorem) that the
closed linear span of the columns of the matrix functions AnIp (n ≥ 0) coincides
with Lp

2(0,T). Therefore, (C.51) implies KV = V A, and (C.3) follows. The
required properties of u and V have already been proved.

Remark C.2. It is important for the study of the canonical systems on the semi-
axis [0,∞) that, according to (C.26)–(C.28), (C.29), and (C.39), the matrix
function V(x, ζ) in the domain 0 ≤ ζ ≤ x ≤ ℓ is uniquely determined by β(x) on
[0, ℓ] (and does not depend on the choice of β(x) for ℓ < x < T and the choice
of T ≥ ℓ).
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[5] M. Bohner and O. Došlý, Oscillation of symplectic dynamic systems,
ANZIAM J. 46 (2004), 17–32.

[6] J. Breuer, E. Ryckman, and B. Simon, Equality of the spectral and
dynamical definitions of reflection, Comm. Math. Phys. 295 (2010),
531–550.

[7] J.L. Cieslinski, Algebraic construction of the Darboux matrix revisited,
J. Phys. A 42 (2009), Art. 404003.

[8] A. Constantin and R. Ivanov, Dressing method for the Degasperis-
Procesi equation, Stud. Appl. Math. 138 (2017), 205–226.

Documenta Mathematica 26 (2021) 583–615



612 A. Sakhnovich

[9] L. de Branges, Hilbert spaces of entire functions, Prentice-Hall, Engle-
wood Cliffs, N.J., 1968.
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[27] V. Jakšić, B. Landon, and A. Panati, A note on reflectionless Jacobi
matrices, Comm. Math. Phys. 332 (2014), 827–838.

[28] D.J. Kaup, Simple harmonic generation: an exact method of solution,
Stud. Appl. Math. 59 (1978), 25–35.

[29] D.J. Kaup and H. Steudel, Recent results on second harmonic genera-
tion, Contemporary Math. 326 (2003), 33–48.

[30] A. Kostenko, A. Sakhnovich, and G. Teschl, Commutation methods for
Schrödinger operators with strongly singular potentials, Math. Nachr.
285 (2012), no. 4, 392–410.

[31] M.G. Krein, Continuous analogues of propositions on polynomials or-
thogonal on the unit circle (Russian), Dokl. Akad. Nauk SSSR (N.S.)
105 (1955), 637–640.
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