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1 Introduction

1.1 Multizeta values in positive characteristic

Let Fq be a fixed finite field with q elements, where q is a power of a prime
number p. Let P1 be the projective line defined over Fq with a fixed point
at infinity ∞ ∈ P1(Fq). Let A be the ring of regular functions away from ∞,
and let k be its fraction field. Let k∞ be the completion of k at ∞, and let
C∞ be the completion of a fixed algebraic closure of k∞. Let θ be a variable.
We identify A with the polynomial ring Fq[θ] and k with the rational function
field Fq(θ).
The ∞-adic multizeta values (∞-adic MZVs) were defined by Thakur in [Th04]
as a generalization of Carlitz zeta values [Ca35]. For any index s = (s1, . . . , sr) ∈
Zr
>0, ∞-adic MZVs are defined by the following series:

ζA(s) ∶= ∑ 1

as11 ⋯a
sr
r

∈ k∞, (1.1)

Documenta Mathematica 26 (2021) 537–559



538 Y.-T. Chen, R. Harada

where the sum is over (a1, . . . , ar) ∈ Ar with ai monic and deg a1 > deg a2 >
⋯ > deg ar. The second author introduced and studied ∞-adic alternating
multizeta values (∞-adic AMZVs) [H20], which are a generalization of ∞-adic
MZVs defined by the following series:

ζA(s;ǫ) ∶= ∑ ǫ
dega1

1 ⋯ǫdegar
r

as11 ⋯a
sr
r

∈ k∞, (1.2)

where ǫ ∶= (ǫ1, . . . , ǫr) ∈ (A×)r = (F×q )r and the sum is over (a1, . . . , ar) ∈ Ar

with ai monic and deg a1 > deg a2 > ⋯ > deg ar. The weight and depth of
the presentation ζA(s) and ζA(s;ǫ) are defined by wt(s) ∶= s1 + ⋯ + sr and
dep(s) ∶= r, respectively. Note that both ∞-adic MZVs and AMZVs are in-
troduced as positive characteristic counterparts of real-valued multizeta values
(real-valued MZVs) and real-valued alternating multizeta values (real-valued
AMZVs), which researchers have conducted a variety of interesting studies (for
details, see [Zh16]).
The ∞-adic MZVs (resp. ∞-adic AMZVs) are non-vanishing according to
[Th09a] (resp. [H20]). Additionally, both ∞-adic MZVs [AT09] and ∞-adic
AMZVs [H20] appear as periods of certain pre-t-motives introduced in [P08].
Let Z (resp. AZ) be the k-vector space spanned by 1 and all ∞-adic MZVs
(resp. ∞-adic AMZVs). For w ≥ 1, let Zw (resp. AZw) be the k-vector space
spanned by ∞-adic MZVs (resp. ∞-adic AMZVs) of weight w. In [Th10] (resp.
[H20]), it was shown that the product of two ∞-adic MZVs (resp. ∞-adic
AMZVs) can be written as an Fp-linear combination of ∞-adic MZVs (resp.
∞-adic AMZVs) of the same weight, where Fp is the prime field of k. Thus,
Z (resp. AZ) forms a k-algebra. Specifically, one has Zw1

Zw2
⊂ Zw1+w2

(resp.
AZw1

AZw2
⊂ AZw1+w2

) for w1 ≥ 1 and w2 ≥ 1. Further, an analogue of Gon-
charov’s direct sum conjecture [G97] for ∞-adic MZVs (resp. ∞-adic AMZVs)
was established in [C14] (resp. [H20]), namely, Z (resp. AZ) forms a graded
k-algebra (graded by weights). In other words, all k-linear relations among
∞-adic MZVs (resp. ∞-adic AMZVs) are generated by these k-linear relations
among ∞-adic MZVs (resp. ∞-adic AMZVs) with the same weight.
To study k-linear relations among the ∞-adic MZVs with the same weight,
Todd [To18] used the power sum and lattice reduction methods to produce
k-linear relations. Based on his result, an analogue of Zagier’s dimension con-
jecture, which predicts the dimension of the Q-vector space generated by the
same weight real-valued MZVs over Q (see [W12]), has been formulated in the
positive characteristic setting. Although some k-linear relations among the ∞-
adic MZVs with the same weight have been discovered (see [LRT14], [Ch17],
[To18] and [GP20]), only a few results (see [C16], [CPY19], [CY07], [Mi15a]
and [Mi17]) are known about the k-linear independence of ∞-adic MZVs with
the same-weight. Let w, r ∈ Z>0. We set

Z
r
w ∶= Spank{ζA(s) ∣ wt(s) = w, dep(s) = r}

and
Z

r

w ∶= Spank{ζA(s) ∣ wt(s) = w, dep(s) = r}
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to be the k-vector space (resp. k-vector space) spanned by ∞-adic MZVs of

weight w and depth r. Also, we set Z1,r
w ∶= Z1

w +Z
r
w (resp. Z

1,r

w ∶= Z
1

w +Z
r

w).
Note first that Chang [C14] showed the k-linear independence of ∞-adic MZVs

implies the k-linear independence of them, whence dimkZ
r
w = dim

k
Z

r

w and

dimkZ
1,r
w = dim

k
Z

1,r

w . Furthermore, Chang [C16] proved a necessary condition
for the linear dependence of depth 2 ∞-adic MZVs, which can be stated as
follows.

Theorem 1.1 ([C14, Thm. 2.2.1], [C16, Thm. 3.1.1]). Let w ∈ Z>0 with w ≥ 2.
For each i = 1, . . . ,m, let si ∶= (si1, si2) ∈ Z2

>0 be chosen with si1+si2 = w. Then,
all k-linear relations among {ζA(w), ζA(s1), . . . , ζA(sm)} are those coming from
the k-linear relations among {ζA(w)} ∪ {ζA(sj) ∣ sj2 is divisible by q − 1}.
Specifically, we have

dimk Z
1,2
w = dim

k
Z

1,2

w ≥ w − ⌊w − 1q − 1
⌋.

In particular,

dimkZ
2
w = dimk

Z
2

w ≥ w − 1 − ⌊w − 1
q − 1

⌋.
One of the goals of the present paper is to study the generalization of Theo-
rem 1.1 in the higher depth case.

1.2 Statement of the main theorem

Set L0 ∶= 1 and Li ∶= (θ − θq)⋯(θ − θqi) for each i ≥ 1. For an r-tuple s =(s1, . . . , sr) ∈ Zr
>0, the Carlitz multiple polylogarithms (CMPLs) are defined as

follows (see [C14]):

Lis(z1, . . . , zr) ∶= ∑
i1>⋯>ir≥0

z
q
i1

1 ⋯z
qir

r

Ls1
i1
⋯Lsr

ir

∈ kJz1, . . . , zrK. (1.3)

CMPLs can be viewed as an analogue of classical multiple polylogarithms

Ls(z1, . . . , zr) ∶= ∑
n1>⋯>nr>0

zn1

1 ⋯z
nr
r

ns1
1 ⋯n

sr
r

∈ QJz1, . . . , zrK

in the positive characteristic setting. The specializations at (1, . . . ,1) of classi-
cal multiple polylogarithms with several variables give the real-valued MZVs.
This phenomenon becomes delicate in the positive characteristic setting.
In [AT90], it is shown that depth 1 MZVs can be written as k-linear combina-
tions of same-weight Carlitz polylogarithms (CMPLs with r = 1) at algebraic
points. This is generalized to higher depth MZVs case in [C14]. Addition-
ally, some interesting algebraic relations between ∞-adic MZVs and Carlitz
logarithms at algebraic points were discovered by Thakur in [Th09b, Thm. 6].
Using the stuffle relations of CMPLs (see [C14, Sec. 5.2]), we deduce some
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k-linear relations between ∞-adic MZVs and CMPLs of the same weight at
algebraic points. With these relations in mind, one may naturally ask whether
we can extend the linear independence results, such as Theorem 1.1, to special
values in the higher depth case, including ∞-adic MZVs, ∞-adic AMZVs, and
CMPLs at algebraic points.
In what follows, we first introduce some terminology used to formulate our
main result. For a fixed w ∈ Z>0, let

I(w) ∶= {s = (s1, . . . , sr) ∈ Zr
>0 ∣ wt(s) = w, 1 ≤ r ≤ w} (1.4)

be the collection of all weight w indices and let

J(w) ∶= {T ⊂ {1, . . . ,w − 1} ∣ T ≠ ∅} ∪ {{0}}. (1.5)

Let si = (si1, . . . , sir) ∈ Zr
>0 and Qi ∶= (Qi1, . . . ,Qir) ∈ k[t]r for i ∈ Z≥0. There

is a family of power series L[i],j in the variable t with coefficients in k and
depending on datum (si,Qi) that defines entire functions on C∞ such that the
specialization of these series at t = θ recovers ∞-adic MZVs, ∞-adic AMZVs,
and CMPLs at algebraic points. More precisely, for n ∈ Z we define the n-fold
Frobenius twisting

C∞((t))→ C∞((t))
f ∶= ∑

i

ait
i
↦∑

i

a
qn

i ti =∶ f (n)

and consider the entire power series

Ω(t) ∶= (−θ) −qq−1

∞

∏
i=1

(1 − t

θq
i
) ∈ kJtK (1.6)

where (−θ) 1

q−1 is a fixed (q−1)-th root of −θ such that 1/Ω(θ) = π̃ (See [ABP04,
Cor. 5.1.4]) and π̃ is the Carlitz period. Then

L[i],j ∶= ∑
ℓ1>⋯>ℓj≥0

(ΩsijQij)(ℓj)⋯(Ωsi1Qi1)(ℓ1) ∈ kJtK. (1.7)

For example, the Carlitz logarithm is the CMPL for s = (1), which is given by

logC(z) = Li(1)(z) = ∑
i≥0

zq
i

Li

∈ kJzK. (1.8)

Carlitz essentially proved that logC(1) = ζA(1) in [Ca35], but see [AT90, p. 181].
Let u ∈ k be such that logC(z) converges at z = u. Then, we consider the power
series (see [P08, Sec. 6.1.1]):

Lu(t) ∶= u +∑
i>0

uq
i

(t − θq)⋯(t − θqi) ∈ kJtK.
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It can be shown that Lu(t) converges at t = θ and that the evaluation recovers
the Carlitz logarithm at z = u, namely,

Lu(t) ∣t=θ= logC(z) ∣z=u .
One may see from the definition that the product Ω(t)Lu(t) provides an ex-
ample of the special series L[i],j (see Proposition 2.12 for further details).
We characterize our linear independence criterion from the information of the
r-tuple s ∈ Zr

>0 of these special values. Therefore, the r-tuple s reflects the

vanishing order of the corresponding family of the power series at t = θq
i

with
i ∈ Z>0. This fact allows us to introduce a certain notion for the r-tuple s.
Specifically, we define the following map:

g ∶ I(w) → J(w)
(s1, . . . , sr) ↦ {w − s1,w − s1 − s2, . . . ,w − s1 −⋯− sr−1}, for r ≥ 2

(w) ↦ {0}.
Then, for each collection of weight w indices S ⊂ I(w), we say S is g-
independent if g(s) ∩ g(s′) = ∅ for any s, s′ ∈ S with s ≠ s′. In fact, we
will see in Lemma 2.5 that g(s) is a collection of the vanishing orders of certain

entire series at t = θq
i

with i ∈ Z>0. Note that the difference in the vanishing or-
ders implies the k(t)-linear independence of these entire series (see Lemma 2.9).
Then, an application of [ABP04, Thm. 3.1.1] provides the desired k-linear in-
dependence of these special values. Now, we state our main theorem as follows;
it will later be restated as Theorem 3.1.

Theorem 1.2. For w ∈ Z>0, let S = {s0, . . . , sm} ⊂ I(w) be g-independent with
s0 = (w). Let Qi ∈ k[t]dep(si), which satisfies conditions (2.2) and (2.3) and
then if we set L[i] ∶=L[i],dep(si) for i = 0, . . . ,m, the following set

{L[0](θ), . . . ,L[m](θ)}
is k-linearly independent.

For suitable choices of Qi, the specialization of L[i] at t = θ recovers MZVs,
AMZVs, and CMPLs at algebraic points (see Proposition 2.12). Moreover, it
is easily seen from the definition that Sw

≤2 ∶= {w} ∪ {s ∶= (s1, s2) ∣ s1 + s2 =
w, s2 is not divisible by q − 1} is g-independent. In the case of S = Sw

≤2 with
suitable choices of Qi, Theorem 1.2 shows that

{ζA(w)} ∪ {ζA(sj) ∣ sj = (sj1, sj2), sj1 + sj2 = w, sj2 is not divisible by q − 1}
is a k-linearly independent set. In particular, Theorem 1.2 recovers Theo-
rem 1.1.
Additionally, Theorem 1.2 provides many k-linearly independent ∞-adic MZVs
of the same weight in the higher-depth case. As a consequence, we deduce the
following corollary, which provides a lower bound on the dimension of Zr

w and

Z
r

w with the given weight w and depth r ≥ 2. This will later be restated as
Corollary 3.5.
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Corollary 1.3. For given w ∈ Z>0 and r ∈ Z>1, we have

dimkZ
1,r
w = dim

k
Z

1,r

w ≥ 1 + ⌊w − 1 − ⌊
w−1
q−1
⌋

r − 1
⌋.

In particular,

dimkZ
r
w = dimk

Z
r

w ≥ ⌊w − 1 − ⌊
w−1
q−1
⌋

r − 1
⌋.

In the case of q ≠ 2, given an arbitrary n ∈ Z>0 and r ∈ Z>1, we can find
w ∶= wq,n,r ∈ Z>0, which depends on q, n and r, such that there are at least n

distinct k-linearly independent ∞-adic MZVs with the same depth r and the
same weight w.

One motivation of our main theorem arises from the study of the Q-vector
space generated by real-valued MZVs. Zagier [Z94] gave a conjecture on the
dimension of the Q-vector space spanned by depth 2 real-valued MZVs of fixed
weight n ≥ 3 in terms of the dimension of cusp forms of weight n for SL2(Z).
This conjecture is partially solved in [Z93] by giving the upper bound of the
dimension, but the lower bound remains unknown. For the higher-depth case,
Broadhurst and Kreimer proposed a conjecture in [BK97] that predicts the
dimensions of the weight- and depth-graded parts of the Q-vector space gener-
ated by real-valued MZVs are given in the specific generating series. In their
conjecture, the generating series is explicitly described using the dimensions of
the weight-graded parts of the Q-vector space generated by cusp forms. The
Broadhurst-Kreimer conjecture in the general depth case remains an open prob-
lem. However, Goncharov [G98] proved that in the depth 3 case, the conjecture
provides the upper bound of the dimension. Another proof was presented by
Ihara and Ochiai [IO08]. In the depth ≥ 4 case, we do not even know if their
conjecture provides the upper bound of the dimension.

We end this section by outlining this paper. In §2.1, we provide the notation
of the basic objects used in our exposition. In §2.2, we review the definitions
of Anderson dual t-motives and introduce a specific one constructed by means
of the fiber coproduct, which was developed in [CM21]. In §2.3, we present
the definitions and results of Anderson t-modules and certain Ext1-modules.
In §2.4, we revisit the definition of Anderson-Thakur polynomials and that the
deformation series can be specialized to CMPLs, ∞-adic MZVs and ∞-adic
AMZVs. We prove our main theorem in §3 based on the preliminaries in §2
and conclude with applications that provide linear independence sets of special
values and Corollary 1.3.
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2 Preliminaries

2.1 Notations

We now define the following notation.

q = a power of a prime number p.

Fq = a finite field with q elements.

θ, t = independent variables.

A = the polynomial ring Fq[θ].
A+ = the set of monic polynomials in A.

Ad+ = the set of elements in A+ of degree d.

k = the rational function field Fq(θ).
k∞ = the completion of k at the infinite place ∞, Fq(( 1θ )).
k∞ = a fixed algebraic closure of k∞.

C∞ = the completion of k∞ at the infinite place ∞.

k = a fixed algebraic closure of k in C∞.

ksep = a fixed separable closure of k in k.

∣ ⋅ ∣∞ = a fixed absolute value for the completed field C∞ such that ∣θ∣∞ = q.
T = the Tate algebra over C∞, the subring of C∞JtK consisting of

power series convergent on the closed unit disc ∣t∣∞ ≤ 1.
E = {∑∞i=0 aiti ∈ kJtK ∣ limi→∞ ∣ai∣1/i∞ = 0, [k∞(a0, a1, . . . ) ∶ k∞] <∞}.

ordα(f) = the vanishing order of f ∈ E at α ∈ C∞.

Di = ∏i−1
j=0(θqi − θqj ) ∈ A+, where D0 ∶= 1.

Γn+1 = the Carlitz gamma, ∏iD
ni

i (n = ∑i niq
i ∈ Z≥0 (0 ≤ ni ≤ q − 1)).

2.2 Anderson dual t-motives and Frobenius modules

In this section, we recall the notion of Frobenius modules and Anderson dual
t-motives. Here, we use the term Anderson dual t-motives for those called dual
t-motives in [ABP04, Def. 4.4.1] and Anderson t-motives in [P08, Def. 3.4.1].
We denote by k[t, σ] the non-commutative k[t]-algebra generated by σ subject
to the following relation:

σf = f (−1)σ, f ∈ k[t].
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Definition 2.1 ([CPY19, Sec. 2.2]). A Frobenius module is a left k[t, σ]-
module that is free of finite rank over k[t]. We define morphisms of Frobenius
modules by left k[t, σ]-module homomorphisms and denote by F the category
of Frobenius modules.

Let M be a Frobenius module with a fixed k[t]-basis m = (m1, . . . ,mr)tr,
where r = rank

k[t]M . Then, the σ-action can be represented by a matrix

Φ ∈Matr(k[t]). In other words, we have σm = Φm. Conversely, once we fix a
free k[t]-module M of rank r with a fixed k[t]-basis m = (m1, . . . ,mr)tr and
Φ ∈ Matr(k[t]), we can naturally obtain a Frobenius module structure on M

by setting σm = Φm. In this case, we call M the Frobenius module defined
by Φ.

Definition 2.2. An Anderson dual t-motive is a left k[t, σ]-module M satis-
fying that

(i) M is a free left k[t]-module of finite rank,

(ii) M is a free left k[σ]-module of finite rank,

(iii) (t − θ)sM ⊂ σM for all sufficiently large s ∈ Z.

Example 2.3. The trivial Frobenius module is defined by 1 = k[t] with the
σ-action given by σf = f (−1) for each f ∈ k[t]. Note that 1 is not an Anderson
dual t-motive, as it is not of finite rank as a left k[σ]-module.

Example 2.4. Let n ∈ Z>0. Then, the n-th tensor power of the Carlitz motive
is defined by C⊗n = k[t] with the σ-action given by σf = f (−1)(t − θ)n for each
f ∈ k[t]. Note that C⊗n is an Anderson dual t-motive, the set {1} forms a
k[t]-basis of C⊗n and the set {(t − θ)n−1, . . . , (t − θ),1} forms a k[σ]-basis of
C⊗n.

Next, we construct the Anderson dual t-motive M ′
⋆ via the fiber coproduct

method, which was introduced in [CM21]. To begin, let us introduce some
notions. We first recall the power series defined in (1.6)

Ω(t) = (−θ) −qq−1

∞

∏
i=1

(1 − t

θq
i
) ∈ E .

Note that Ω(t) satisfies the Frobenius difference equation

Ω(−1) = (t − θ)Ω. (2.1)

Given a polynomialQ ∶= ∑i cit
i ∈ k[t], we define ∣∣Q∣∣∞ ∶=maxi{∣ci∣∞}. For an r-

tuple s = (s1, . . . , sr) ∈ Zr
>0, we set Ds as the collection of all Q ∶= (Q1, . . . ,Qr) ∈

k[t]r satisfying the following two conditions:

(∣∣Q1∣∣∞/∣θ∣qs1/(q−1)∞ )qi1⋯ (∣∣Qr ∣∣∞/∣θ∣qsr/(q−1)∞ )qir → 0 (2.2)

as 0 ≤ ir <⋯ < i1 and i1 →∞,
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aQr /∈ (σ − 1)C⊗sr for all a ∈ Fq[t] with a ≠ 0. (2.3)

Condition (2.2) guarantees that the series L[i],j given in (1.7) defines an en-
tire function, and condition (2.3) implies that the special point we consider
in Theorem 3.1 and Proposition 3.3 is not an Fq[t]-torsion element under the
isomorphism given in Theorem 2.7.

Next, we set Anderson dual t-motives {M ′
[i]} and construct the fiber coproduct

over C⊗w of them. Let w ∈ Z>0, S = {s0, . . . , sm} ⊂ I(w) with s0 = (w). Let
ri ∶= dep(si) for each 0 ≤ i ≤ m. For si = (si1, . . . , siri) ∈ I(w) and Qi =(Qi1, . . . ,Qiri) ∈ Dsi , we define the square matrix Φ[i] ∈Matri+1(k[t]) and the
column vector ψ[i] ∈Mat(ri+1)×1(E) as follows:

Φ[i] ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(t − θ)si1+⋯+siri 0 0 ⋯ 0

Q
(−1)
i1 (t − θ)si1+⋯+siri (t − θ)si2+⋯+siri 0 ⋯ 0

0 Q
(−1)
i2 (t − θ)si2+⋯+siri ⋱ ⋮

⋮ ⋱ (t − θ)siri 0

0 ⋯ 0 Q
(−1)
iri
(t − θ)siri 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

ψ[i] ∶=

⎛⎜⎜⎜⎜⎜⎝

Ωsi1+⋯+siri

Ωsi2+⋯+siri L[i],1

⋮

Ωsiri L[i],ri−1

L[i],ri

⎞⎟⎟⎟⎟⎟⎠
.

Here, we recall the special series defined in (1.7)

L[i],j ∶= ∑
ℓ1>⋯>ℓj≥0

(ΩsijQij)(ℓj)⋯(Ωsi1Qi1)(ℓ1) ∈ E . (2.4)

We remark that this series satisfies the Frobenius difference equation:

L
(−1)

[i],j
=L[i],j + (ΩsijQsij−1)(−1)L[i],j−1. (2.5)

Here, we set L[i],0 = 1. For later convenience, we set L[i] ∶= L[i],ri . Impor-
tantly, the deformation series L[i],j has the property that

L[i],j(θqN ) = (L[i],j(θ))qN (2.6)

for all N ∈ Z>0 (See [C14, Lem. 5.3.5], [CPY19, Prop. 2.3.3]).

To simplify our notation, for ri ≥ 2, we express

Φ[i] =
⎛⎜⎝
(t − θ)w 0 0

D[i] Φ′′[i] 0

0 ν[i] 1

⎞⎟⎠ ,Φ
′
[i] = ( (t − θ)

w 0

D[i] Φ′′[i]
) .
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where D[i] ∈ Mat(ri−1)×1(k[t]), ν[i] ∈ Mat1×(ri−1)(k[t]) and Φ′′[i] ∈

Matri−1(k[t]). We further set

ψ[i] =
⎛⎜⎝

Ωw

ψ′′[i]
L[i]

⎞⎟⎠ , ψ
′
[i] = ( Ωw

ψ′′[i]
)

where ψ′′[i] ∈Mat(ri−1)×1(E).
For ri = 1, we express

Φ[i] = ((t − θ)w 0

ν[i] 1
) , Φ′[i] = ((t − θ)w)

and

ψ[i] = ( Ωw

L[i]
) , ψ′[i] = (Ωw) .

For each H = (h1, . . . , hm) ∈ Mat1×m(E), we denote by ordα(H) ∶={ordα(hj)}mj=1 for α ∈ C∞. The following lemma is crucial in the proof of
our main theorem.

Lemma 2.5. Suppose that ri ≥ 2, L[i],j(θ) ≠ 0 for all 1 ≤ i ≤m and 1 ≤ j ≤ ri−1.
We thus have

ord
θqN (ψ′′[i]) = {w − si1, . . . ,w − si1 −⋯− siri−1} = g(si)

for all N ∈ Z>0.

Proof. Recall from the definition that

ψ′′[i] =
⎛⎜⎝

Ωsi2+⋯+siri L[i],1

⋮

Ωsiri L[i],ri−1

⎞⎟⎠ .

Since L[i],j(θ) ≠ 0 for all 1 ≤ i ≤m and 1 ≤ j ≤ ri−1, we can use (2.6) to deduce
that

ord
θqN (Ωsi(j+1)+⋯+siri L[i],j) = ordθqN (Ωsi(j+1)+⋯+siri ) = w − si1 −⋯− sij .

Then, the desired result immediately follows.

Now, we consider the Frobenius difference equation associated with Fq[t]-linear
combinations a0L[0] + ⋯ + amL[m] for some a0, . . . , am ∈ Fq[t]. The result is
given by

Φ⋆ ∶=

⎛⎜⎜⎜⎜⎜⎜⎝

(t − θ)w 0 0 ⋯ 0

D[1] Φ′′[1] 0 ⋯ 0

⋮ ⋱ ⋮

D[m] Φ′′[m] 0

a0ν[0] ⋯ ⋯ amν[m] 1

⎞⎟⎟⎟⎟⎟⎟⎠
(2.7)
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and

ψ⋆ ∶=

⎛⎜⎜⎜⎜⎜⎜⎝

Ωw

ψ′′[1]
⋮

ψ′′[m]
a0L[0] +⋯ + amL[m]

⎞⎟⎟⎟⎟⎟⎟⎠
. (2.8)

One can check that ψ
(−1)
⋆ = Φ⋆ψ⋆ by direct computation using (2.1) and (2.5).

To simplify the notation, we set

Φ⋆ = (Φ′⋆ 0

ν⋆ 1
) . (2.9)

Let M ′
[i] (resp. M ′

⋆) be the Frobenius module defined by Φ′[i] (resp. Φ′⋆). Then,

one can check directly that M ′
[i] defines an Anderson dual t-motive and M ′

⋆ is

the fiber coproduct [CM21, Sec. 2.4] of {M ′
[i]} over C⊗w. Therefore, M ′

⋆ also

defines an Anderson dual t-motive by [CM21, Prop. 2.4.5].

2.3 The Ext1-module and Anderson t-modules

In this section, we recall the isomorphism between certain Ext1-modules and
Anderson t-modules due to Anderson’s idea.
First, we review the definition of Anderson t-modules. Let L be an A-field
with A ⊂ L ⊂ C∞, and let τ ∶= (x ↦ xq) ∶ L → L be the Frobenius q-th power
operator. Let L[τ] be the twisted polynomial ring in τ over L subject to the
relation τα = αqτ for α ∈ L.

Definition 2.6 ([A86]). Let L be an A-field with A ⊂ L ⊂ C∞. For a fixed
d ∈ Z>0, a d-dimensional Anderson t-module defined over L is a pair E = (Gd

a, ρ)
where Gd

a is the d-dimensional additive group scheme over L and ρ is an Fq-
linear ring homomorphism

ρ ∶ Fq[t]→Matd(L[τ])
a↦ ρa

such that when we write ρt = α0 + ∑i αiτ
i with αi ∈ Matd(L), α0 − θId is

a nilpotent matrix. A morphism of Anderson t-modules defined over L is
a morphism of additive group schemes over L commuting with Fq[t]-action.
That is, for Anderson t-modules E = (Gd

a, ρ) and F = (Gm
a , µ) over L, the

morphism f satisfies fρa = µaf (a ∈ Fq[t]).
Later on, supposing that L ⊂ F is a field extension, we consider the F -valued
points of the Anderson t-module E defined over L and denote it by E(F ):
that is, a pair (Gd

a(F ), ρ) of the F -valued points of Gd
a and the Fq-linear ring

homomorphism ρ such that ρ(Fq[t]) ⊂Matd(F [τ]).
We fix an Anderson dual t-motive M ′ of rank d over k[t], which is defined
by the matrix Φ′ ∈ Matd(k[t]). Then, we define Ext1F (1,M ′) to be the left
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Fq[t]-module of equivalence classes [M] of Frobenius modules M , which fits
into the following short exact sequence of Frobenius modules:

0→M ′
→M → 1→ 0.

The left Fq[t]-module structure of Ext1F (1,M ′) comes from the Baer sum and
pushout of morphisms of M ′. Specifically, the structure is described as follows.
We assume that M1,M2 ∈F are defined by

(Φ′ 0

v1 1
) ,(Φ′ 0

v2 1
) ∈Matd+1(k[t])

respectively, and both fit into the above short exact sequence. Then, the Baer
sum M1 +B M2 of M1 and M2 is a Frobenius module defined by the matrix

( Φ′ 0

v1 + v2 1
) .

Moreover, by taking the scalar product with a ∈ Fq[t], we obtain an endomor-
phism a ∶ M ′ → M ′. Then, the pushout a ∗M1 of the endomorphism is a
Frobenius module defined by

( Φ′ 0

av1 1
) .

Then, Ext1F(1,M ′) forms an Fq[t]-module with

[M1] + [M2] ∶= [M1 +B M2], a[M1] ∶= [a ∗M1] (a ∈ Fq[t])
for representatives [M1], [M2] ∈ Ext1F (1,M ′). Anderson proved the following
result involving Ext1F (1,M ′).
Theorem 2.7 (Anderson, [CPY19, Thm. 5.2.1]). Let M ′ be an Anderson dual
t-motive. Then, we have the following Fq[t]-module isomorphism:

Ext1F (1,M ′) ≅M ′/(σ − 1)M ′ ≅ E′(k) (2.10)

where E′ is the Anderson t-module associated with M ′ defined over k in the
sense that the k-valued point of E′ is isomorphic to M ′/(σ−1)M ′ as Fq-vector
spaces and the Fq[t]-module structure on E′ via ρ is induced by the Fq[t]-action
on M ′/(σ − 1)M ′.

For more details about the construction of these isomorphisms, see [CPY19,
Sec. 5.2]. We also refer readers to [PR03], [HP04], [Ta10] and [HJ16] for a
related discussion.

For the n-th tensor power of the Carlitz motive, the isomorphisms (2.10) are
described in the following example.
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Example 2.8. Let n ∈ Z>0. The n-th tensor power of the Carlitz module is
the associated Anderson t-module of C⊗n, which is given by C

⊗n
∶= (Gn

a , [⋅]n),
where [⋅]n is uniquely determined by

[t]n ∶=
⎛⎜⎜⎜⎝

θ 1 ⋯ 0

θ ⋱ ⋮

⋱ 1

τ θ

⎞⎟⎟⎟⎠
∈Matn(C∞[τ]).

Recall that C⊗n has a k[σ]-basis {(t − θ)n−1, . . . , (t − θ),1}; thus, every f ∈
C⊗n/(σ − 1)C⊗n has a unique representative with t-degree less than or equal
to n − 1 of the form

f1(t − θ)n−1 + f2(t − θ)n−2 +⋯ + fn, fi ∈ k.
Then, the isomorphisms (2.10) can be explicitly described as follows:

Ext1F (1,C⊗n) ≅ C⊗n/(σ − 1)C⊗n ≅C⊗n(k)
[Mf ]↦ f + (σ − 1)C⊗n ↦ (f1, . . . , fn)tr

where Mf is the Frobenius module defined by the matrix

Φf ∶= ( (t − θ)n 0

f (−1)(t − θ)n 1
) .

Next, we present two lemmas that enable us to consider linear independence of
certain special values via the torsion elements of Anderson t-modules and Ext1-
modules. The first lemma concerns the k(t)-linear independence of elements
in E .

Lemma 2.9. Let f1, . . . , fm ∈ E be non-zero elements and c1, . . . , cm ∈ k(t) such
that c1f1 + ⋯ + cmfm = 0. Suppose that there are infinitely many α ∈ C∞ such
that ordα(fi) is different for each i. Then, we have ci = 0 for all 1 ≤ i ≤m.

Proof. We prove this lemma by induction. In the case m = 1, on the basis
of the assumption that f1 ≠ 0 and f1 ∈ E , it follows that there are infinitely
many α ∈ C∞ that satisfy f1∣t=α ≠ 0 or otherwise f1 must vanish identically by
the entireness. Indeed, non-zero elements in E only admit finitely many zeros
in any bounded disc centred on 0 according to [Go96, Prop.2.11]. Therefore,
there are infinitely many α ∈ C∞ such that c1∣t=α = 0 since c1f1 = 0. Then,
because c1 ∈ k(t) and every non-zero element in k(t) has only finitely many
zeros, we conclude that c1 vanishes identically and we complete the case of
m = 1. In the case m = N , based on the assumptions, we can choose 1 ≤ j ≤ N
such that there are infinitely many α ∈ C∞ with ordα(fj) < ordα(fi) for all
1 ≤ i ≠ j ≤ N . Without loss of generality, we may assume that j = N . Since
c1, . . . , cN are rational functions, they only admit finitely many poles. Thus,
there are infinitely many α ∈ C∞ such that

(c1f1 +⋯ + cNfN)(t − α)−ordα(fN)
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is defined at t = α. By evaluating the above quantity at t = α, we obtain
cN ∣t=α = 0 for infinitely many α ∈ C∞ since

fi(t − α)−ordα(fN) ∣t=α= 0
for all 1 ≤ i < N and

fN(t − α)−ordα(fN) ∣t=α≠ 0.
Hence, cN vanishes identically, and the desired result follows immediately from
the induction hypothesis.

In what follows, we establish a criterion for elements being a torsion element
in certain Ext1-modules.

Lemma 2.10 (cf. [CPY19, Thm. 2.5.2]). Let S = {s0, . . . , sm} ⊂ I(w) be g-
independent with s0 = (w), and let Qi ∈ Dsi such that L[i],j(θ) ≠ 0 for each
0 ≤ i ≤ m and 1 ≤ j ≤ ri. Let M⋆ be the Frobenius module defined by Φ⋆. If
a0L[0] +⋯ + amL[m] vanishes at t = θ, then [M⋆] is an Fq[t]-torsion element

in Ext1F(1,M ′
⋆).

Proof. It suffices to show that there exists a non-zero b ∈ Fq[t] such that b[M⋆]
represents the trivial class in Ext1F (1,M ′

⋆). Consider the associated Frobenius

difference equation ψ
(−1)
⋆ = Φ⋆ψ⋆ defined in (2.7) and (2.8). Then, according

to [ABP04, Thm. 3.1.1], there exists f = (f0, f⃗1, . . . , f⃗m, fm+1) with f0, fm+1 ∈
k[t] and f⃗i ∈ Mat1×(ri−1)(k[t]) for each 1 ≤ i ≤ m such that fψ⋆ = 0 and

f(θ) = (0, . . . ,0,1). We set f
′
∶= (f ′0, f⃗ ′1, . . . , f⃗ ′m,1), where

f ′0 = f0/fm+1 ∈ k(t) and f⃗ ′i =
1

fm+1
f⃗i ∈Mat1×(ri−1)(k(t))

for each 1 ≤ i ≤m−1. Note that f ′ψ⋆ = 0; thus, (f ′−f ′(−1)Φ⋆)ψ⋆ = 0. Therefore,
by setting

f
′
− f
′(−1)Φ⋆ = (R0, R⃗1, . . . , R⃗m,0),

we obtain
R0Ω

w
+ R⃗1 ⋅ ψ

′′
[1] +⋯+ R⃗m ⋅ψ

′′
[m] = 0.

Lemma 2.5 yields

ord
θqN (ψ′′[i]) ∩ ordθqN (ψ′′[j]) = g(si) ∩ g(sj) = ∅

for all N ∈ Z≥0 1 ≤ i ≠ j ≤m. One can now check directly that

ord
θqN ((Ωw, ψ′′[1], . . . , ψ

′′
[m])tr) = {w} ∪ g(s1) ∪⋯ ∪ g(sm)

is a disjoint union for all N ∈ Z≥0. Then, Lemma 2.9 shows that R0 = 0 and
R⃗i = 0⃗ for all 1 ≤ i ≤m. If we consider

γ ∶=

⎛⎜⎜⎜⎜⎜⎝

1

Ir1−1
⋱

Irm−1

f ′0 f⃗ ′1 ⋯ f⃗ ′m 1

⎞⎟⎟⎟⎟⎟⎠
,

Documenta Mathematica 26 (2021) 537–559



Dimensions of Multizeta Values 551

where In denote by n × n identity matrix, then we have

γ(−1) (Φ′⋆
ν⋆ 1

) = (Φ′⋆
1
)γ,

where Φ′⋆ and ν⋆ are given in (2.9). Now, according to [CPY19, Prop. 2.2.1],
there exists a non-zero b ∈ Fq[t] such that bf ′0 ∈ k[t] and bf⃗ ′i ∈Mat1×(ri−1)(k[t])
for all 1 ≤ i ≤m. If we consider

δ ∶=

⎛⎜⎜⎜⎜⎜⎝

1

Ir1−1
⋱

Irm−1

bf ′0 bf⃗ ′1 ⋯ bf⃗ ′m 1

⎞⎟⎟⎟⎟⎟⎠
,

then we have

δ(−1) (Φ′⋆
bν⋆ 1

) = (Φ′⋆
1
) δ.

Consequently, by changing the k[t]-basis of b ∗M⋆ with δ, we conclude that
b[M⋆] represents the trivial class in Ext1F(1,M ′

⋆), and the desired result follows
immediately.

2.4 Anderson-Thakur polynomials and special values

Before we move to the main theorem, let us first briefly review Anderson-
Thakur polynomials [AT90]. These polynomials are needed to describe the
applications of Theorem 3.1 to ∞-adic MZVs, ∞-adic AMZVs and CMPLs at

algebraic points. Set F0 ∶= 1 and Fi ∶=
i

∏
j=1
(tqi − θqj ) and define the Anderson-

Thakur polynomials Hn ∈ A[t] by the following generating function:

(1 − ∞∑
i=0

Fi

Di ∣θ=tx
qi)
−1

=
∞

∑
n=0

Hn

Γn+1 ∣θ=tx
n.

In [Ch17, Thm. 3.3], Hn is explicitly given for some specific n ∈ Z, as follows:

Example 2.11.

H0(t) = 1,Hq2−q−1(t) = Γq2−q ∣θ=t,Hq3−1(t) = Γq3 ∣θ=t.
Let n ∈ Z>0 and i ∈ Z≥0. We set the power sum to be

Si(n) ∶= ∑
a∈Ai+

1

an
∈ k.

Then, an important identity established in [AT90] is the following:

(ΩnHn−1)(i) ∣t=θ= ΓnSi(n)
π̃n

. (2.11)
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Based on (2.11), it has been shown that many special values appear in the
specialization of the deformation series given in (1.7). We collect some results
from [AT90], [P08], [AT09], [C14], [C16], [CPY19], and [H20] to state the
following proposition.

Proposition 2.12. Let s = (s1, . . . , sr) ∈ Zr
>0 and Q = (Q1, . . . ,Qr) ∈ k[t]r. We

set
L ∶=Ls,Q ∶= ∑

ℓ1>⋯>ℓr≥0

(ΩsrQr)(ℓr)⋯(Ωs1Q1)(ℓ1) ∈ kJtK.
1. If Q = (u1, . . . , ur) ∈ Ds ∩ (k)r, then

L ∣t=θ= Lis(u1, . . . , ur)
π̃s1+⋯+sr

.

2. If Q = (Hs1−1, . . . ,Hsr−1), then

L ∣t=θ= Γs1⋯ΓsrζA(s)
π̃s1+⋯+sr

.

3. If Q = (γ1Hs1−1, . . . , γrHsr−1), where γi is a fixed (q−1)-th root of ǫi ∈ F×q
for ǫ = (ǫ1, . . . , ǫr) ∈ (F×q )r, then

L ∣t=θ= γ1⋯γrΓs1⋯ΓsrζA(s;ǫ)
π̃s1+⋯+sr

.

Remark 2.13. For our purpose, the identity of∞-adic AMZVs given in Propo-
sition 2.12 is slightly different than the original version given in [H20, Thm. 3.4].
To derive Proposition 2.12 (3), we combine (2.11) with the fact that for each
ǫ ∈ F×q and fixed (q − 1)-th root γ of ǫ, we have γ(i) = γ ⋅ ǫi for all i ∈ Z≥0. Then,
an argument similar to that of [H20, Thm. 3.4] gives the desired identity.

3 The main result and applications

In this section, we first state our main theorem and then present some appli-
cations.

3.1 Main Theorem

In what follows, we describe and prove our main result, a linear independence
criterion for special values that appear in the specialization at t = θ of the
deformation series given in (1.7).

Theorem 3.1. For w ∈ Z>0, let S = {s0, . . . , sm} ⊂ I(w) be g-independent with
s0 = (w) and let Qi ∈ Dsi such that L[i],j(θ) ≠ 0 for each 0 ≤ i ≤ m and
1 ≤ j ≤ ri. If we set L[i] ∶=L[i],dep(si), then the following set

{L[0](θ), . . . ,L[m](θ)}
is k-linearly independent.
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Proof. We first note that the k-linear independence of {L[0](θ), . . . ,L[m](θ)} is
equivalent to the k-linear independence of {π̃w

L[0](θ), . . . , π̃w
L[m](θ)}. Also,

we note that each element in {π̃wL[0](θ), . . . , π̃wL[m](θ)} has the MZ (multi-
zeta) property with weightw in the sense of [C14, Def. 3.4.1] (cf. [H20, Sec. 4.2]).
Hence, on the basis of [C14, Prop. 4.3.1], we conclude that the k-linear inde-
pendence of {L[0](θ), . . . ,L[m](θ)} is equivalent to the k-linear independence
of {L[0](θ), . . . ,L[m](θ)}.
Thus, to prove the theorem, it suffices to show the k-linearly indepen-
dence of the set {L[0](θ), . . . ,L[m](θ)}. Suppose on the contrary that{L[0](θ), . . . ,L[m](θ)} is a k-linearly dependent set. Then, there exists
a0, . . . , am ∈ Fq[t] not all zero such that

a0(θ)L[0](θ) +⋯ + am(θ)L[m](θ) = 0. (3.1)

Now, we consider the Frobenius difference equation associated with the Fq[t]-
linear combinations a0L[0] + ⋯ + amL[m] given in (2.7) and (2.8). Let M⋆
be the Frobenius module defined by Φ⋆. Then, Lemma 2.10 shows that [M⋆]
represents a torsion element in Ext1F (1,M ′

⋆). Thus, there is a non-zero ele-
ment b ∈ Fq[t] such that b[M⋆] represents the trivial class in Ext1F(1,M ′

⋆).
Let {x0, x11, . . . , x1r1 , . . . , xm1, . . . , xmrm} be a k[t]-basis of M ′

⋆ such that the
σ-action is represented by Φ′⋆. Then, we have the following Fq[t]-module iso-
morphism (see [CPY19, Thm. 5.2.1]):

Ext1F (1,M ′
⋆) ≅M ′

⋆/(σ − 1)M ′
⋆

[b ∗M⋆]↦ ba0Q
(−1)
01 (t − θ)wx0 +

m

∑
i=1

baiQ
(−1)
iri
(t − θ)sirixiri + (σ − 1)M ′

⋆.

Now, we consider the natural projection map

π ∶M ′
⋆↠ ⊕

m
i=1C

⊗siri

g0x0 +
m

∑
i=1

ri

∑
j=1

gijxij ↦ (g1r1 , . . . , gmrm).
Since π ○ (σ − 1) = (σ − 1) ○ π and π is surjective, we deduce that

∆ ∶ E′⋆(k) ≅M ′
⋆/(σ − 1)M ′

⋆↠ ⊕
m
i=1 (C⊗siri /(σ − 1)C⊗siri ) ≅ ⊕m

i=1C
⊗siri (k).

(3.2)

Let v[i] be the point in C
⊗siri (k) corresponding toQ

(−1)
iri
(t−θ)siri in C⊗siri /(σ−

1)C⊗siri for each 1 ≤ i ≤ m. Note that v[i] ≠ 0 for each 1 ≤ i ≤ m by (2.3).
Then, the trivial class b[M⋆] is mapped to ([ba1]s1r1v[1], . . . , [bam]smrm

v[m])
in ⊕m

i=1C
⊗siri (k) by ∆ in (3.2). If there is an ai that is non-zero, then v[i] is a

non-zero Fq[t]-torsion element in C
⊗siri (k) because b ≠ 0, ai ≠ 0 and v[i] ≠ 0,

while [bai]siriv[i] = 0. This situation leads to a contradiction since v[i] is not
a torsion element according to (2.3). Consequently, we must have ai = 0 for
each 1 ≤ i ≤ m. Thus, by (3.1), a0 also vanishes, and we obtain the desired
result.
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Remark 3.2. Let r ∈ Z>0. Let s = (s1, . . . , sr) ∈ Zr
>0 and Q = (Q1, . . . ,Qr) ∈

k[t]r. The difficulty in applying Theorem 3.1 is checking whether Q satisfies
(2.3). Note that checking condition (2.3) is equivalent to showing that the
corresponding point of Qr in C⊗sr/(σ − 1)C⊗sr ≅ C

⊗sr(k) is not an Fq[t]-
torsion point. In general, it is not easy to determine whether a point is an
Fq[t]-torsion in the tensor powers of a Carlitz module. However, in the case
of Q = (Q1, . . . ,Qr) ∈ k[t]r, we may use [AT90, Prop. 1.11.2] to study the
k-rational Fq[t]-torsion points in the tensor powers of a Carlitz module. A
detailed discussion of this topic is presented in the next subsection.

3.2 Some applications

As an application, we describe how to associate a partition of {1, . . . ,w − 1}
to a k-linearly independent set of weight w special values, including MZVs.
Consider the inverse map of g

g−1 ∶ g(I(w)) ⊂ J(w) → I(w)
{x1 > ⋯ > xr−1}↦ (w − x1, x1 − x2, . . . , xr−2 − xr−1, xr−1).

A partition P of {1, . . . ,w − 1} is a subset of J(w) such that for all P ∈ P and
P ′ ∈ P , it satisfies that P ∩P ′ = ∅ and ⋃P∈P P = {1, . . . ,w − 1}. A partition P
of {1, . . . ,w − 1} is called q-admissible if for each P ∈ P the minimal element of
P is not divisible by q − 1. For example, we can give the following k-linearly
independent set of ∞-adic MZVs and CMPLs at rational points whose indices
come from the q-admissible partition.

Proposition 3.3. For w ∈ Z>0, let S = {s0, . . . , sm} ⊂ I(w) be g-independent
with s0 = (w) and si = (si1, . . . , siri). Suppose that ri ∶= dep(si) and siri is not
divisible by q−1; then, Qi = (Qi1, . . . ,Qiri) ∈ k[t]r satisfying (2.2) automatically
satisfies (2.3). In particular, let P = {P1, . . . ,Pm} be a q-admissible partition
of {1, . . . ,w − 1}. We set s0 ∶= (w) and si ∶= g−1(Pi) for 1 ≤ i ≤ m. Then, the
following collection of ∞-adic MZVs of weight w

{ζA(w), ζA(s1), . . . , ζA(sm)}
is a k-linearly independent set.

Proof. Since we know that the k-rational torsion elements C
⊗siri (k)tor = {0}

unless q − 1 divides siri according to [AT90, Prop. 1.11.2], the assumption siri
is not divisible by q − 1 implies that Qi = (Qi1, . . . ,Qiri) ∈ k[t]r such that
Qi satisfying (2.2) automatically satisfies (2.3). Thus, we complete the first
assertion.
For the second assertion, we first note that P being q-admissible implies
that siri is not divisible by q − 1. Additionally, it is clear that S = {s0 =(w), s1, . . . , sm} ⊂ I(w) forms a g-independent set. Thus, the desired k-linearly
independent result of∞-adic MZVs follows directly from Proposition 2.12, The-
orem 3.1, and the first assertion.
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Remark 3.4. For w ∈ Z>0, let S be the collection of all indices of depth less
than or equal to two and of weight w such that the last entry of each index in
S is not divisible by q − 1. Then, the same argument as that in the proof of
Proposition 3.3 recovers Theorem 1.1.

Next, we present another application of Theorem 3.1. Recall that for r, w ∈ Z>0,
Zr

w (resp. Z
r

w) is the k-vector space (resp. k-vector space) spanned by ∞-adic

MZVs of weight w and depth r, and Z1,r
w = Z1

w +Z
r
w (resp. Z

1,r

w = Z
1

w +Z
r

w).
Then, we have the following:

Corollary 3.5. Let w ∈ Z>0 and r ∈ Z>1 be given. Then, we have

dimkZ
1,r
w = dim

k
Z

1,r

w ≥ 1 + ⌊w − 1 − ⌊
w−1
q−1
⌋

r − 1
⌋.

In particular,

dimkZ
r
w = dimk

Z
r

w ≥ ⌊w − 1 − ⌊
w−1
q−1
⌋

r − 1
⌋.

Proof. Consider the set

S ∶= {n ∈ Z>0 ∣ 1 ≤ n ≤ w − 1, n is not divisible by q − 1}.
Clearly, the cardinality of S is

∣S ∣ ∶= w − 1 − ⌊w − 1
q − 1

⌋.
Let ℓ ∶= ⌊∣S ∣/(r−1)⌋. Then, it is clear that we can find ℓ many subsets S1, . . . ,Sℓ
of S with cardinality r−1 and Si∩Sj = ∅ for all i ≠ j. Now, we set si ∶= g−1(Si)
for all 1 ≤ i ≤ ℓ. Then, dep(si) = r and {s0 ∶= (w), s1, . . . , sℓ} forms a g-
independent set. Thus, Theorem 3.1 together with the second part of Proposi-
tion 2.12 shows that {ζA(w), ζA(s1), . . . , ζA(sℓ)} is a k-linearly independent set.

The desired lower bound of dimkZ
1,r
w and dim

k
Z

1,r

w follows immediately.

We obtain the following linearly independent set between the same-weight ∞-
adic MZVs and the CMPLs at rational points using Proposition 3.3.

Example 3.6. Let q = 5, w = 6, P1 = {1,3,5} and P2 = {2,4}. Then, P ={P1,P2} is a q-admissible partition of {1, . . . ,5}. Let s1 = g−1(P1) = (1,2,2,1)
and s2 = g−1(P2) = (2,2,2). Let u ∈ k such that Li6(z) converges at z = u and
Li6(u) ≠ 0. Then, {Li6(u), ζA(1,2,2,1), ζA(2,2,2)}
is a k-linearly independent set.

We end our exposition by noting some further studies on the algebraic indepen-
dence of ∞-adic MZVs by Chang and Yu [CY07] and Mishiba [Mi15a, Mi17].
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Remark 3.7. In [CY07], Chang and Yu proved that the following elements are
algebraically independent over k:

π̃, ζA(n1), ζA(n2), . . . , ζA(nd)
where n1, . . . , nd are d distinct positive integers such that ni is not divisible
by q − 1 for each i and ni/nj is not an integral power of p for each i ≠ j. In
[Mi15a], Mishiba showed that π̃, ζ(n), ζ(n,n) with 2n not divisible by q−1 are
algebraically independent and in [Mi17], showed that the following 1+d(d+1)/2
elements are algebraically independent over k:

{π̃} ∪ {ζA(ni) ∣ 1 ≤ i ≤ d} ∪ {ζA(ni, ni+1) ∣ 1 ≤ i ≤ d − 1} ∪⋯ ∪ {ζA(n1, . . . , nd)}
where n1, . . . , nd satisfy the same condition as that in Chang and Yu’s result.
Moreover, Mishiba proved a refined version of [Mi17]; we refer the reader to
[Mi15b] for details.
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