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Abstract. Let k be a field of characteristic 0. Let G be a reductive
group over the ring of Laurent polynomials R = k[x±1

1 , ..., x±1
n ]. We

prove that G is isotropic over R if and only if it is isotropic over the
field of fractions k(x1, . . . , xn) ofR, and if this is the case, then the nat-
ural map H1

ét
(R,G)→ H1

ét
(k(x1, . . . , xn), G) has trivial kernel and G

is loop reductive. In particular, we settle in positive the conjecture
of V. Chernousov, P. Gille, and A. Pianzola that H1

Zar(R,G) = ∗ for
such groups G. We also deduce that if G is a reductive group over R
of isotropic rank ≥ 2, then the natural map of non-stable K1-functors
KG

1 (R)→ KG
1

(

k((x1))...((xn))
)

is injective, and an isomorphism if G
is moreover semisimple.
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1 Introduction

Let k be a field of characteristic 0. LetR = k[x±1
1 , ..., x±1

n ] be the ring of Laurent
polynomials over k. Let G be a reductive group scheme over R in the sense
of [SGA3]. V. Chernousov, P. Gille, and A. Pianzola [ChGP17, Theorem 1.1]
showed that classifying étale-locally trivial G-torsors over R is equivalent to
classifying Zariski-locally trivial torsors over R for all twisted R-forms of G
that are loop reductive.
The notion of a loop reductive group (see § 2 for the definition) was introduced
by P. Gille and A. Pianzola in [GP13] for the purpose of studying extended
affine Lie algebras (EALAs), which are higher nullity generalizations of affine
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Kac-Moody algebras [AABGP]. Any EALA can be reconstructed from its
centerless core, which is a Lie torus in the sense of [Y, N]. The Realization
theorem [ABFP, Theorem 3.3.1], together with [GP07, Theorem 5.13], implies
that all Lie tori of nullity n over an algebraically closed field k of characteris-
tic 0, except for just one class called quantum tori, are Lie algebras of isotropic
adjoint simple loop reductive groups over k[x±1

1 , ..., x±1
n ]. Recall that a reduc-

tive group G over R is called isotropic if all semisimple quotients of G contain
Gm,R. It is known that a reductive group G over R is loop reductive if and
only if G contains a maximal torus [GP13, Corollary 6.3].
With respect to the classification of G-torsors for loop reductive groups G,
V. Chernousov, P. Gille, and A. Pianzola proposed the following conjecture.

Conjecture 1.1. [ChGP17, Conjecture 5.4] Let k be a field of characteristic 0.
Let G be an isotropic loop reductive group over the ring of Laurent polynomials
R = k[x±1

1 , ..., x±1
n ]. Then H1

Zar(R,G) is trivial.

If G = GLn, the conjecture amounts to the fact that all finitely generated
projective modules over k[x±1

1 , ..., x±1
n ] are free, and it was established (in ar-

bitrary characteristic) by R.G. Swan [Swa78] relying on D. Quillen’s proof of
Serre’s conjecture [Q76]. More generally, if G is defined over k, the conjecture
was proved by P. Gille and A. Pianzola [GP08] relying on a theorem of M. S.
Raghunathan on the triviality of k[x1, . . . , xn]-torsors [Rag89]. Apart from
that, the conjecture was previously known for several classes of groups if k is
algebraically closed and n = 2 (see Corollary 1.4 below); for some twisted forms
of GLn [Art95, ChGP17] and for orthogonal groups [Par83]. The isotropy con-
dition in the statement is necessary, since there are anisotropic forms of PGLn

over k[x±1
1 , x±2

2 ] with non-trivial Zariski cohomology [GP07, Corollary 3.22].
We establish the above conjecture in full by proving the following more general
statement.

Theorem 1.2. Let k be a field of characteristic 0, and let G be a reductive group
over R = k[x±1

1 , . . . , x±1
n ]. Set K = k(x1, . . . , xn) and F = k((x1)) . . . ((xn)).

1. The following conditions on G are equivalent:

(a) G is isotropic;

(b) the algebraic K-group GK is isotropic;

(c) the algebraic F -group GF is isotropic.

2. If G satisfies the equivalent conditions of (1), then G is loop reductive
and for any regular ring A containing k, the natural map

H1
ét

(

k[x±1
1 , . . . , x±1

n ]⊗k A,G
)

→ H1
ét

(

k(x1, . . . , xn)⊗k A,G
)

has trivial kernel.

Corollary 1.3. Let k be a field of characteristic 0, and let G be an isotropic
reductive group over R = k[x±1

1 , . . . , x±1
n ]. Then H1

Zar

(

R,G
)

= 1.
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The proof of Theorem 1.2 relies on the “diagonal argument” trick for loop reduc-
tive groups [St16], on the established cases of the Serre–Grothendieck conjec-
ture [PStV15, FP15], and on the classification results [ChGP17, Theorem 1.2].
The equivalence (1) was previously known for loop reductive groups [GP13,
Corollary 7.4].
Using the above results and a known case of Serre’s conjecture II [CTGP04],
we also establish another conjecture of P. Gille and A. Pianzola.

Corollary 1.4. [GP07, Conjecture 6.1] Let k be an algebraically closed field of
characteristic 0. Let G be a semisimple reductive group over R = k[x±1

1 , x±1
2 ]

having no semisimple normal subgroups of type An, n ≥ 1. Let 1 → µ →
Gsc → G → 1 be the simply connected cover of G. Then the boundary map
H1

ét
(R,G) → H2

ét
(R, µ) is bijective. In particular, if G is simply connected,

then H1
ét
(R,G) is trivial.

In [GP07] P. Gille and A. Pianzola established this conjecture for groups of
types G2, F4 and E8. The case of groups of type Bn, n ≥ 2, and of some
groups of type Dn, follows from [Par83]. The groups of types Cn, n ≥ 6, and
Dn, n ≥ 8, were covered in [SZ12]. Our proof covers all cases except for E8,
where we refer to [GP07].
As another corollary, we remove the assumption of loop reductivity in a previ-
ous result of the author concerning non-stable K1-functors of isotropic reduc-
tive groups. For any commutative ring R, once a reductive group G over R
is isotropic, then it contains a pair of opposite strictly proper parabolic R-
subgroups P and P− [SGA3, Exp. XXVI]. Under this assumption one can
consider the following ”large” subgroup of G(R) generated by unipotent el-
ements, EP (R) = 〈UP (R), UP−(R)〉 where UP and UP− are the unipotent
radicals of P and P−. The set of (left) cosets

G(R)/EP (R) = KG,P
1 (R)

is called the non-stable K1-functor associated to G (and P ), or the Whitehead
group of G.
We say that G has isotropic rank ≥ 2, if all semisimple quotients of G con-
tain (Gm,R)

2. If this is the case, then KG,P
1 (R) is independent of the choice

of P± [PSt1] and we denote it by KG
1 (R). The following result is a combi-

nation of [St16, Theorem 1.2] and Theorem 1.2. Its surjectivity part follows
from [ChGP14, Theorem 14.3].

Corollary 1.5. Let k be a field of characteristic 0, and let G be a reductive
group of isotropic rank ≥ 2 over R = k[x±1

1 , . . . , x±1
n ]. Then the natural map

KG
1 (R)→ KG

1

(

k((x1))...((xn))
)

is injective. If G is moreover semisimple, the map is an isomorphism.

The author heartily thanks Vladimir Chernousov and Philippe Gille for illumi-
nating discussions and kind attention to the present work.
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664 A. Stavrova

2 Preliminaries on loop reductive groups

Let X be a connected locally noetherian scheme. Let Ω be an algebraically
closed field, and let a : Spec(Ω)→ X be a geometric point of X .
Let FÉtX be the category of finite étale covers of X , and let Fa be the covariant
functor from FÉtX to the category of finite sets defined as follows. Let Y be an
object of FÉtX with the structure morphism f : Y → X . Then Fa(Y ) is the set
of all Ω-points of Y above a, that is, the set of all morphisms y : Spec (Ω)→ Y
for which the diagram

Y
y

ր ↓f
Spec (Ω) →

a
X

commutes. The group of automorphisms of the functor Fa is called the (étale)
fundamental group of X at a, and is denoted by π1(X, a). If X is noetherian,
then there is anX-schemeX that represents Fa, that is, Fa(Y ) = HomX(X,Y )
for any object Y of FÉtX [GP13, Ch. 2, 2.1].
Assume, moreover, that X is a geometrically connected noetherian k-scheme,
where k is a field, and Ω = k is an algebraic closure of k. Let a0 : Spec(k) →
Spec(k) be the morphism obtained by composing a with the structure morphism
X → Spec(k). Set X = X ×k k, and let a : Spec(k) → X be the induced
geometric point of X . Then there is a canonical short exact sequence of group
homomorphisms

1→ π1(X, a)→ π1(X, a)→ π1(Spec(k), a0)→ 1, (2.1)

and π1(Spec(k), a0) ∼= Gal(ks/k), the Galois group of the separable closure ks

of k in k [SGA1, Exp. IX, Théorème 6.1].
Furthermore, let G be a group scheme locally of finite presentation over k. The
right action of π1(X, a) on X induces an action of π1(X, a) on G(Xsc). One
can show that this action is continuous with respect to the discrete topology
on G(Xsc) [GP13, Proposition 2.3], and thus one may consider the non-abelian
cohomology set H1

(

π1(X, a), G(X
sc)

)

in the sense of Serre [Se]. The group
π1(X, a) acts on G(ks) via the homomorphism π1(X, a) → π1(Spec(k), a0)
of (2.1), and we denote by H1

(

π1(X, a), G(k
s)
)

the usual non-abelian Galois
cohomology.
Let H1

fppf (X,G) be the faithfully flat Čech style cohomology of X with values
in G, i.e. the set of isomorphism classes of G-torsors over X that are locally
trivial with respect to the fppf topology.

Definition 2.1. [GP13, Definition 3.1] An fppf-locally trivial G-torsor E
over X is called a loop torsor, if the isomorphism class of E in H1

fppf (X,G) is
in the image of the natural composite map

H1
(

π1(X, a), G(k
s)
)

→ H1
(

π1(X, a), G(X
sc)

)

→ H1
fppf

(

X,G
)

.

Cocycles in the corresponding cocycle classes in H1
fppf

(

X,G
)

are called loop
cocycles.

Documenta Mathematica 26 (2021) 661–673



Torsors of Isotropic Reductive Groups 665

From now on, let k be a field of characteristic 0, and let X be the k-scheme

X = Spec
(

k[x±1
1 , . . . , x±1

n ]
)

.

We fix once and for all an algebraic closure k̄ of k and a compatible set of
primitive m-th roots of unity =ξm ∈ k̄, m ≥ 1.
P. Gille and A. Pianzola [GP08, Corollary 2.13], [GP13, Ch. 2, 2.3] computed
the étale fundamental group ofX at the natural geometric point e : Spec k̄→ X
induced by the evaluation x1 = x2 = . . . = xn = 1. Namely,

π1(X, e) = Ẑ(1)n ⋊Gal(k̄/k), (2.2)

where Ẑ(1) denotes the profinite group lim
←−
m

µm(k̄) equipped with the natural

action of Gal(k̄/k).
For any reductive group scheme G over X , we denote by G0 the split, or
Chevalley—Demazure reductive group in the sense of [SGA3] of the same type
as G. The group G is an étale-locally trivial twisted form of G0 [SGA3, Exp.
XXII, Corollaire 2.3], corresponding to a cocycle class ξ in the étale cohomology
set H1

ét
(X,Aut(G0)) ⊆ H

1
fppf (X,Aut(G0)).

Definition 2.2. [GP13, Definition 3.4] The group scheme G is called loop
reductive, if it corresponds to a loop cocycle class, i.e. if ξ is in the image of
the natural map

H1
(

π1(X, e),Aut(G0)(k̄)
)

→ H1
ét

(

X,Aut(G0)
)

.

The nature of the cocycles used to define loop reductive groups and the de-
scription (2.2) of the fundamental group of Laurent polynomials are used in
the proof of the following result that is key to the proof of our Theorem 1.2.

Lemma 2.3 (”diagonal argument”). [St16, Lemma 4.1] Let k be a field of char-
acteristic 0. Let G be a loop reductive group scheme over R = k[x±1

1 , . . . , x±1
n ].

For any integer d > 0, denote by fz,d (respectively, fw,d) the composition of
k-homomorphisms

R→ k[z±1
1 , . . . , z±1

n , w±1
1 , . . . , w±1

n ]

→ k[z±1
1 , . . . , z±1

n , (z1w
−1
1 )±

1

d , . . . , (znw
−1
n )±

1

d ]

sending xi to zi (respectively, to wi) for every 1 ≤ i ≤ n. Then there is d > 0
such that

f∗

z,d(G)
∼= f∗

w,d(G)

as group schemes over k[z±1
1 , . . . , z±1

n , (z1w
−1
1 )±

1

d , . . . , (znw
−1
n )±

1

d ].

It turns out that loop reductive groups also admit the following internal char-
acterisation.
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Theorem. [GP13, Corollary 6.3] A reductive group scheme G over X is loop
reductive if and only if G has a maximal torus.

The definition of a maximal torus is as follows.

Definition 2.4. [SGA3, Exp. XII Définition 1.3] Let S be a scheme, let G be
a group scheme of finite type over S, and let T be a subgroup scheme of G.
Then T is a maximal torus of G, if T is an S-torus and Tk(s) is a maximal torus

of Gk(s) for all s ∈ S, where k(s) denotes an algebraic closure of k(s).

3 Some corollaries of the Serre–Grothendieck conjecture for

isotropic groups

Throughout this section, A denotes a regular ring containing an infinite field k,
and G denotes an isotropic reductive group over A.
The following statement was obtained in [St19] as a joint corollary of the corre-
sponding statement for simply connected semisimple reductive groups [PStV15,
Theorem 1.6], and of the result of I. Panin and R. Fedorov on the Serre–
Grothendieck conjecture [FP15].
Theorem. [St19, Theorem 4.2] Assume that A is a semilocal domain, and
let K be its fraction field. Then for any n ≥ 1 the natural map

H1
ét
(R[x1, . . . , xn], G)→ H1

ét
(K[x1, . . . , xn], G)

has trivial kernel.

Lemma 3.1. Assume that A is local. Let f(x) ∈ A[x] be a non-zero polynomial.
Then H1

ét
(A1

A, G)→ H1
ét
((A1

A)f , G) has trivial kernel.

Proof. Let K be the fraction field of A. By [St19, Theorem 4.2] the map
H1

ét
(A[x], G) → H1

ét
(K[x], G) has trivial kernel. By [CTO92, Proposition 2.2]

the map H1
ét
(K[x], G)→ H1

ét
(K(x), G) has trivial kernel. Hence the claim.

The following lemma combines the previous one with a classical trick of
Quillen [Q76].

Lemma 3.2. Let f(x) ∈ A[x] be a monic polynomial. Then H1
ét
(A1

A, G) →
H1

ét
((A1

A)f , G) has trivial kernel.

Proof. Let ξ ∈ H1
ét
(A1

A, G) be in the kernel. Since f is monic, for any maximal
ideal m of A the image of f in Am[x] is non-zero. Then by Lemma 3.1 the G-
bundle ξ|A1

Am

is trivial. Since A is regular, G is A-linear by [Tho87, Corollary

3.2]. Then by [AHW18, Theorem 3.2.5] (see also [Mos08, Korollar 3.5.2]) the
fact that for any maximal ideal m of A the G-bundle ξ|A1

Am

is trivial implies

that ξ is extended from A.
Set y = x−1 and choose g(y) ∈ A[y] so that xdeg(f)g(y) = f(x). Then g(0) ∈ A×

and A[x]xf = A[y]yg. We have P1
A = A

1
A∪Spec(A[y]g), and A

1
A∩Spec(A[y]g) =
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(A1
A)xf . Hence we can extend ξ to a bundle ξ̂ on P

1
A by gluing it to a trivial

bundle on Spec(A[y]g). Let η = ξ̂|Spec(A[y]). By assumption, η is trivial on
Spec(A[y]g). Since g(0) ∈ A×, by the same argument as above η is extended
from A. However, g(0) is invertible and η is trivial at y = 0, hence η is trivial.
Hence ξ is trivial at x = y = 1. Hence ξ is trivial.

Lemma 3.3. Let f(x) ∈ A[x] be a monic polynomial such that f(0) ∈ A×.
Then H1

ét
((A1

A)x, G)→ H1
ét
((A1

A)xf , G) has trivial kernel.

Proof. Since f(0) ∈ A×, any G-bundle in the kernel can be extended to A
1
A

by gluing it to a trivial G-bundle on (A1
A)f . Then it is trivial by Lemma 3.2

applied to xf .

Lemma 3.4. For any n ≥ 0 the natural map

H1
ét

(

A[t±1
1 , . . . , t±1

n ], G
)

→ H1
ét

(

A⊗k k(t1, . . . , tn), G
)

has trivial kernel.

Proof. We prove the claim by induction on n; the case n = 0 is trivial. Set
l = k(t1, . . . , tn−1). By the inductive hypothesis, the map

H1
ét

(

A[t±1
1 , . . . , t±1

n ], G
)

→ H1
ét

(

A[t±1
n ]⊗k l, G

)

= H1
ét

(

A⊗k l[t
±1
n ], G

)

has trivial kernel, so it remains to prove the triviality of the kernel for the map

H1
ét

(

A⊗k l[t
±1
n ], G

)

→ H1
ét

(

A⊗k l(tn), G
)

.

We have l(tn) = lim
−→
g

l[tn]tng, where g ∈ l[tn] runs over all monic polynomials

with g(0) ∈ l×. Since H1
ét
(−, G) commutes with filtered direct limits, it remains

to show that every map

H1
ét(A⊗k l[t

±1
n ], G)→ H1

ét(A⊗k l[tn]tng, G) (3.1)

has trivial kernel. This is the claim of Lemma 3.3.

Lemma 3.5. Let F be an isotropic reductive group over A[z±1
1 , . . . , z±1

n ]. Fix
a set of integers di > 0, 1 ≤ i ≤ n, and consider the A[t1, . . . , tn]-algebra
homomorphism

ψ : A[z±1
1 , . . . , z±1

n , t1, . . . , tn]
zi 7→wit

di

i−−−−−−→ A⊗k k(w)[t±1
1 , . . . , t±1

n ],

where w stands for w1, . . . , wn. Then the induced map

H1
ét

(

A[z±1
1 , . . . , z±1

n , t1, . . . , tn], F
)

→ H1
ét

(

A⊗k k(w)[t±1
1 , . . . , t±1

n ], ψ∗(F )
)

has trivial kernel.
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Proof. We prove the claim by induction on n ≥ 0. The case n = 0 is trivial.
To simplify the notation, set

B = A[z±1
2 , . . . , z±1

n , t2, . . . , tn]

and z = z1, t = t1, w = w1. Let φ : B[z±1, t] → B ⊗k k(w)[t
±1] be the

B[t]-algebra homomorphism sending z to wtd. To prove the induction step for
n ≥ 1, it is enough to show that the induced map of étale cohomology

h : H1
ét

(

B[z±1, t], F
) z 7→wtd
−−−−→ H1

ét

(

B ⊗k k(w)[t
±1], φ∗(F )

)

has trivial kernel, where F is defined over B[z±1]. Indeed, after that we can
apply the induction assumption with k substituted by k(w1) and A substituted
by A⊗k k(w1)[t

±1
1 ].

We have

B ⊗k k(w)[t
±1] = lim

−→
g

B ⊗k k[w
±1]g[t

±1] = lim
−→
g

B ⊗k k[w
±1, t±1]g,

where g = g(w) runs over all monic polynomials in k[w] with g(0) 6= 0. Let
N = deg(g) ≥ 1. Since φ(z) = wtd, we have g(w) = g(φ(z)t−d) = t−Ndf(t),
where f(t) is a polynomial in t with coefficients in k[φ(z)±1] such that its
leading coefficient is in k \ 0, and f(0) = φ(z)N . Then

B ⊗k k[w
±1, t±1]g = B ⊗k k[φ(z)

±1, t]tf .

The group scheme φ∗(F ) is defined over B ⊗k k[φ(z)
±1]. Both terminal coeffi-

cients of tf(t) are invertible in k[φ(z)±1], hence by Lemma 3.2 applied to the
regular ring B ⊗k k[φ(z)

±1] the map

H1
ét

(

B[z±1, t], F
) z 7→wtd
−−−−→ H1

ét

(

B ⊗k k[w
±1, t±1]g, φ

∗(F )
)

= H1
ét

(

B ⊗k k[φ(z)
±1, t]tf , φ

∗(F )
)

has trivial kernel.
Since H1

ét
(−, F ) commutes with filtered direct limits [Mar07], we conclude that

h has trivial kernel.

4 Proof of the main results

Lemma 4.1. Let k be a field of characteristic 0, and let G be an isotropic loop
reductive group over R = k[x±1

1 , . . . , x±1
n ]. For any regular ring A containing k,

the natural map

H1
ét

(

k[x±1
1 , . . . , x±1

n ]⊗k A,G
)

→ H1
ét

(

k(x1, . . . , xn)⊗k A,G
)

has trivial kernel.
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Torsors of Isotropic Reductive Groups 669

Proof. We apply Lemma 2.3 to G. Set

ti = (ziw
−1
i )1/d, 1 ≤ i ≤ n,

where zi, wi, and d are as in that Lemma. Note that this is equivalent to

zi = wit
d
i , 1 ≤ i ≤ n.

We denote by Gz the group scheme over k[z±1
1 , . . . , z±1

n ] which is the pull-back
of G under the k-isomorphism

k[x±1
1 , . . . , x±1

n ]
xi 7→zi−−−−→ k[z±1

1 , . . . , z±1
n ].

The group scheme Gw over k[w±1
1 , . . . , w±1

n ] is defined analogously. By
Lemma 2.3 Gz and Gw are isomorphic after pull-back to

k[z±1
1 , . . . , z±1

n , t±1
1 , . . . , t±1

n ] = k[w±1
1 , . . . , w±1

n , t±1
1 , . . . , t±1

n ].

Consider the following commutative diagram, where x stands for x1, . . . , xn, z
stands for z1, . . . , zn, etc.

H1
ét

(

k[x±1
1 , . . . , x±1

n ]⊗k A,G
)

H1
ét

(

k(x) ⊗k A,G
)

H1
ét

(

k[z±1
1 , . . . , z±1

n , t1, . . . , tn]⊗k A,Gz

)

H1
ét

(

k(z, t) ⊗k A,Gz

)

H1
ét

(

k(w)[t±1
1 , . . . , t±1

n ]⊗k A,Gz

)

H1
ét

(

k(w)[t±1
1 , . . . , t±1

n ]⊗k A,Gw

)

H1
ét

(

k(w, t)⊗k A,Gw

)

j1

j2

f2 : xi 7→zif1 : xi 7→zi

h : zi 7→wit
d

i

g1 ∼=

g2 : zi 7→wit
d

i
∼=

The horizontal maps j1 and j2 are the natural ones, and all maps always take
variables ti to ti, 1 ≤ i ≤ n, and A to A. The bijections g1 and g2 exist by
Lemma 2.3.
In order to prove that j1 has trivial kernel, it is enough to show that all maps
j2, g1, h, f1 have trivial kernels. The map j2 has trivial kernel by Lemma 3.4. As
explained above, g1 is bijective. The map h is has trivial kernel by Lemma 3.5.
Finally, the map f1 has trivial kernel, since it has a retraction. Therefore, the
map j1 has trivial kernel.

Proof of Theorem 1.2. To prove the first statement of the theorem, it is enough
to show that if GF is isotropic, then the same holds for G. Also, we can assume
from the start that G is an adjoint reductive group over R. Then G is an inner
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twisted form of a uniquely determined quasi-split adjoint reductive R-group
Gqs, given by a cocycle class ξ ∈ H1

ét
(S, Gqs) [SGA3, Exp. XXIV 3.12.1]. By

definition, Gqs contains a maximal R-torus, hence it is loop reductive.

By [ChGP17, Theorem 5.2] there is a cocycle η ∈ H1
ét
(R,Gqs) such that the cor-

responding twisted groupH = ηGqs is also loop reductive, and ξ ∈ H1
Zar(R,H).

Then GK
∼= HK and GF

∼= HF . Since H is loop reductive, by [GP13, Corollary
7.4] H is isotropic if and only if HK is isotropic if and only if HF is isotropic.
Thus, if GF is isotropic, then H is isotropic over R. Then by Lemma 4.1 we
have H1

Zar(R,H) = 1. Then G ∼= H . Consequently, G is isotropic over R and
also G is loop reductive.

To prove the second statement of the theorem, we note that the adjoint group
Gad = G/Cent(G) is loop reductive by the above argument. ThenG is also loop
reductive, since the maximal tori of G and Gad are in bijective correspondence
by [SGA3, Exp. XII 4.7.c]. Then the rest of the second statement holds by
Lemma 4.1.

Proof of Corollary 1.4. It was proved in [GP07, Theorem 3.17] that boundary
map

δG : H1
ét
(R,G)→ H2

ét
(R, µ)

induces a bijection between H1
loop(R,G) and H1

ét
(R, µ), where H1

loop(R,G) ⊂

H1
ét
(R,G) is the subset of loop torsors, i.e. such G-torsors that the correspong-

ing twisted form of G is loop reductive. In particular, the boundary map is
surjective, and it remains to prove that it is injective. Also, [GP07, Theo-
rem 2.7] implies the conjecture for groups of pure type E8. If groups of this
type occur as normal subgroups in G, then they are necessarily direct factors,
since they have trivial centers. Hence we can assume that G does not have
semisimple normal subgroups of types E8 or An, n ≥ 1.

SetK = k(x1, x2). SinceK has cohomological dimension 2, and for central sim-
ple algebras over a finite extension of K index coincides with exponent [dJ04],
the group GK is subject to [CTGP04, Theorems 1.2 and 2.1]. The latter
theorems imply that GK is isotropic over K, and that H1

ét
(K,Gsc) = 1. In

particular, H1
ét
(K,G)→ H2

ét
(K,µ) is bijective.

By Theorem 1.2 the fact that GK is isotropic implies that G is also isotropic
and is loop reductive. Then Gsc is loop reductive as well, and isotropic, since
the maximal tori and parabolic subgroups of G and Gsc are in bijective cor-
respondence. Then Theorem 1.2 applied to Gsc implies that H1

ét
(R,Gsc) →

H1
ét
(K,Gsc) has trivial kernel. Hence H1

ét
(R,Gsc) is trivial and δG has trivial

kernel. Since all fibers of δG are in bijective correspondence with kernels of δG′

for suitable twisted forms G′ of G, we conclude that δG is injective.

Proof of Corollary 1.5. Under the additional assumption that G is loop re-
ductive, the claim holds by [St16, Theorem 1.2]. This assumption is made
redundant by Theorem 1.2.
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