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Abstract. We first construct a pairing on the space of analytic dis-
tributions associated with GSp2g. By considering the overconvergent
parabolic cohomology groups and following the work of Johansson–
Newton, we construct the cuspidal eigenvariety for GSp2g. The pair-
ing on the analytic distributions then induces a pairing on some co-
herent sheaves of the cuspidal eigenvariety. As an application, we
follow the strategy of Bellaïche to study the ramification locus of the
cuspidal eigenvariety over the corresponding weight space.
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1 Introduction

1.1 Overview

After the introduction of the eigencurve by R. Coleman and B. Mazur in
[CM98], there were many other mathematicians who contributed to its study.
The eigencurve is a rigid analytic curve which parameterises overconvergent
Hecke eigenforms of finite slope and its geometry is very interesting and quite
mysterious. For example we don’t know even in an example if the eigencurve
has finitely or infinitely many irreducible components.

It is a natural question to ask whether one can generalise the notion of the
eigencurve to p-adic automorphic forms on other Shimura variety. In [AIP15],
F. Andreatta, A. Iovita and V. Pilloni construct sheaves of (families of) over-
convergent Siegel modular forms. As an application, they construct an eiegn-
variety EAIP, parametrising overconvergent cuspidal Siegel eigenforms of finite
slope and raise the following question:

Question 1.1.1 ([AIP15, Open Problem 1]). Let W be the weight space. Is
the weight map EAIP →W unramified at classical points?

On the other hand, G. Stevens introduced in [Ste94] the overconvergent modu-
lar symbols as a new tool to study the eigencurve, method of study which was
taken over by other authors, for instance, [Bel12], [Bel21], [Kim06] and [Par10].
By using the overconvergent modular symbols, W. Kim constructed a pairing
on the cuspidal eigencurve and applied it to the study of the ramification locus
of the cuspidal eigencurve over the weight space in his Ph.D. thesis [Kim06].
Such a construction and results were rewritten in a more conceptual way by
J. Bellaïche in [Bel21, Chapter VIII].

The idea of overconvergent modular symbols turns out to be a powerful tool
to generalise the results to more general reductive groups by considering the
overconvergent cohomology. One names [AS08], [Urb11] and [Han17] for the
generalisation in such a direction. Furthermore, C. Johansson and J. Newton
stepped further to give such a formalism in the language of adic spaces in
[JN19], which consequently allows one to read the information over the p = 0
locus of the weight space.
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The work presented in this paper is motivated by Question 1.1.1 and is highly
inspired by [Bel21, Chapter VIII] and [JN19]. More precisely, we construct
a pairing on the overconvergent cohomology groups for GSp2g and adapt the
formalism in op. cit. to construct the corresponding cuspidal eiegnvariety E0
by working with the parabolic cohomology. Following the philosophy pre-
sented in [Bel21, Chapter VIII], we attempt to use such a pairing to detect the
ramification locus of E0 over the weight spaceW , aiming to provide a (partial)
answer to Question 1.1.1.

The results are summarised in the following theorem.

Theorem 1.1.2. Fix a g ∈ Z>0, an odd prime number p and an integer N > 3
such that p ∤ N . Let XIw+(C) be the C-points of the Siegel modular vari-
ety parametrising principally polarised abelian varieties of genus g with level
structure given by

Γ(N) = {γ ∈ GSp2g(Ẑ) ∶ γ ≡ 1g mod N} and

Iw+GSp2g
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ∈ GSp2g(Zp) ∶ γ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ⋯ ∗
. . .

...
...∗ ∗ ⋯ ∗∗

. . .

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

mod p

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We have the following

1. There exists a cuspidal eigenvariety E0 wtÐ→ W, parametrising the eigen-
vectors of finite slope parabolic cohomology groups H●par(XIw+(C),D†

κ)≤h.
Denote by E the eigenvariety constructed in [JN19] by using the algebraic
group GSp2g, then there is a closed immersion E0 ↪ E of adic spaces
over W and E0 is the cuspidal part of E (see §3.3).

2. Let Z be the Fredholm hypersurface in §3.3 and let πE0

Z ∶ E0 → Z be the
structure morphism. Let H

tol
par be the coherent sheaf associated to (finite-

slope) total parabolic cohomology groups Htol
par(XIw+(C),D†

κ)<h on Z.
Then there is a pairing

(πE0

Z )∗H
tol
par ×(πE0

Z )∗H
tol
par → OE0 (resp. H

tol
par ×H

tol
par → OZ)

of coherent sheaves on E0 (resp., Z) (see Corollary 3.3.9).

3. Suppose x ∈ Efl0 is a good classical point (see Corollary 4.3.5) Then there
exists a function L

adj
V on a small enough clean neighbourhood V of x ,

determined uniquely by the above pairing up to a unit in the eigenalgebra,
such that

L
adj
V (x) = 0 if and only if wt is ramified at x

(see Theorem 4.2.8 and Corollary 4.3.5).
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4. Retain the situation as above and assume further that x is a smooth point
in Efl0 . Let e(x) be the quantity depending on x and wt defined in Theo-
rem 4.2.9, then

ordx L
adj
= e(x)

(see Theorem 4.2.9 and Corollary 4.3.5).

1.2 Some remarks

The works presented have their connections to some known results. We sum-
marise them in the following remarks:

1. We should remark first that the p-adic subgroup considered in this paper
is slightly different from the other authors. This is due to an issue when
constructing the pairing. However, the underlying distribution spaces
Dr

κ(T0,R) appearing in the present paper are isomorphic to the ones
considered in [JN19] (in the case of GSp2g). Thus, the strategies of the
known literature can go through after changing the underlying locally
symmetric space. In particular, one can expect the comparisons of eigen-
varieties in the next remark.

2. There are comparisons of the cuspidal eigenvariety E0 considered in this
paper with the other eigenvarietyies constructed by others. As mentioned
above, E0 is the cuspidal part of the eigenvariety E constructed in [JN19]
when considering GSp2g. By [op. cit., Remark 4.1.9], the eigenvariety

EHan constructed by D. Hansen in [Han17] is the open locus of E on
which p ≠ 0. On the other hand, there is a closed immersion mapping
from the eigenvariety EUrb constructed by E. Urban in [Urb11] to EHan

by the introduction of [Han17]. Denote by EUrb
0 the cuspidal part ofEUrb and let EUrb

0,red be the reduced cuspidal eigenvariety of EUrb, then it

coincides with the eigenvariety EAIP constructed in [AIP15] (see [AIP15,
pp. 627]). In conclusion, the comparisons among these eigenvarieties can
be summarised in the following diagram

EAIP EUrb
0,red EHan

0 E0

EUrb EHan E

closed immersion

reduced
cuspidal part

open immersion

p≠0

cuspidal
part

cuspidal
part

closed immersion

p≠0

open immersion

.

During the study of the present work, we also encounter the following (natural)
questions that are worth for further studies:

3. The function Ladj in the GL2 case was justified to p-adically interpolate
the adjoint L-values associated to a family of eigen-newforms in [Kim06].
We analogously call Ladj an “adjoint p-adic L-function” in our case, hence
the justification is required . In [GT05, §12], A. Genestier and J. Tilouine
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established a pairing of the parabolic cohomology groups for GSp4 by
using the symplectic pairing on the algebraic representations of GSp4

and the cup product. Such a pairing is related to the cardinality of the
Selmer group for the adjoint Galois representation attached to GSp4 by
[op.cit., Théorème 12.0.1]. Moreover, the cardinality of the Selmer group
is suggested to be related to the adjoint L-value in the discussion after
loc. cit. This suggested that once one can relate our pairing with the
pairing introduced in [op. cit., §12], then the justification of the name
can be done. However, such a relation is unknown to us due to the fact
that the authors of [GT05] work with the Siegel modular variety without
level structure at p (in order to apply the Taylor–Wiles method) while
the Siegel modular variety with Iw+GSp2g

-level structure at p is considered

in our case. The comparison between the Petersson norms of a Siegel
modular form of prime-to-p level and of a p-stabililsed Siegel modular
form is conjectured to be involved in solving this problem.

4. A key ingredient to obtain the results in Corollary 4.3.5 is the non-
degeneracy of the pairing. We remark that the author of [Bel21] can
prove such a non-degeneracy for more general weights in the GL2 case
while we can only show this for classical weights. It is difficult to adapt
the proof in op. cit. since it relies on a straight forward computation and
such a computation becomes messier and messier as g grows.

5. Following the strategy in [Bel21], we defined the notion of “good points”.
The author of op. cit. could show that the set of good points is not empty
in the case of GL2 by using the Eichler–Shimura isomorphism. However,
we do not know if the set of good points in our situation is nonempty.

Outline of the paper

The article is organised as follows. In Section 2, we introduce the coefficients
of the cohomology groups in our concern, the analytic distributions. Our mod-
ules of analytic distributions are defined by combining the formalisms in both
[AIS15] and [JN19]. Then, a pairing on the analytic distributions is constructed.
Such a pairing is essential for the pairing on the overconvergent cohomology
groups in Section 3. Additionally, we also construct the cuspidal eigenvariety
in Section 3 after recalling a sufficient amount of terminologies from [JN19]. As
mentioned before, our cuspidal eigenvariety sits inside the whole eigenvariety
constructed in op. cit. by considering the algebraic group GSp2g. In the final
section, we apply the pairing we constructed to detect the ramification locus
of the cuspidal eigenvariety over the weight space by following the strategy of
[Bel21, Chapter VIII] closely.
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Notations and conventions

Throughout this paper, we fix the following notations and conventions:

● g ∈ Z>0 (we are in particular interested in the case when g > 1),

● p ∈ Z>0 an odd prime number,

● we fix once and forever an algebraic isomorphism Cp ≃C,

● for any matrix α, we write tα for its transpose,

● for any n ∈ Z>0, we denote by 1n the n × n identity matrix and by 1̆n

the n×n-matrix whose entries are 1 on the anti-diagonal positions and 0

elsewhere, i.e.,

1̆n =

⎛⎜⎜⎝
1

. .
.

1

⎞⎟⎟⎠ ,

● in principle, symbols in Gothic font (e.g., X,Y,Z) stand for formal
schemes; symbols in calligraphic font (e.g., X ,Y,Z) stand for adic spaces;
and symbols in script font (e.g., O,F ,E ) stand for sheaves (over certain
geometric object).

2 Analytic distributions

2.1 Algebraic and p-adic groups

Let VZ be the finite free Z-module Z
2g. By viewing elements in VZ as column

vectors, we equip VZ with the symplectic pairing

⟨ ⋅, ⋅ ⟩ ∶VZ ×VZ → Z, (v⃗, v⃗′) ↦ tv⃗ ( − 1̆g

1̆g
) v⃗′.

Then, the algebraic group GSp2g is defined to be the subgroup of the automor-
phisms on VZ that preserves this pairing up to a unit. In particular, for any
ring R,

GSp2g(R) ∶= {γ ∈ GL2g(R) ∶ tγ ( − 1̆g

1̆g
)γ = ς(γ)( − 1̆g

1̆g
) for some ς(γ) ∈ R×} .
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Equivalently, for any γ = (γa γb

γc γd

) ∈ GL2g, γ ∈ GSp2g if and only if

tγa 1̆g γc =
tγc 1̆g γa,

tγb 1̆g γd =
tγd 1̆g γb, and

tγa 1̆g γd − tγc 1̆g γb = ς(γ) 1̆g for some ς(γ) ∈ Gm.

In the paper, we shall consider the following algebraic and p-adic subgroups of
GLg and GSp2g:

● We consider the Borel subgroups BGLg
and BGSp2g

for GLg and GSp2g
respectively, defined by

BGLg
∶= the Borel subgroup of upper triangular matrices in GLg

BGSp2g
∶= the Borel subgroup of upper triangular matrices in GSp2g.

Remark that one can take the Borel subgroup of upper triangular matrices
in GSp2g because of the choice of the symplectic pairing on VZ.

● The corresponding unipotent radicals are of the form

UGLg
∶= the upper triangular g × g matrices

whose diagonal entries are all 1

UGSp2g
∶= the upper triangular 2g × 2g matrices in GSp2g

whose diagonal entries are all 1.

● The maximal tori for both algebraic groups are considered to be the
maximal algebraic tori of diagonal matrices. Then the Levi decomposition
yields

BGLg
= UGLg

TGLg
and BGSp2g

= UGSp2g
TGSp2g

.

● Denote by Uopp
GLg

and Uopp
GSp2g

the opposite unipotent radical of UGLg
and

UGSp2g
respectively.

● To simplify the notation, we write

TGLg ,0 = TGLg
(Zp), UGLg,0 = UGLg

(Zp),
TGSp2g ,0

= TGSp2g
(Zp) UGSp2g ,0

= UGSp2g
(Zp).

For any s ∈ Z>0, we define

TGLg,s ∶= ker(TGLg
(Zp) → TGLg

(Z /psZ)),
UGLg,s ∶= ker(UGLg

(Zp)→ UGLg
(Z /psZ))

TGSp2g ,s
∶= ker(TGSp2g

(Zp)→ TGSp2g
(Z /psZ)),

UGSp2g ,s
∶= ker(UGSp2g

(Zp)→ UGSp2g
(Z /psZ)),

where the all maps above are reduction maps.
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● The Iwahori subgroups of GLg(Zp) and GSp2g(Zp) are

IwGLg
∶= the preimage of BGLg

(Fp) under the reduction map

GLg(Zp) → GLg(Fp)
IwGSp2g

∶= the preimage of BGSp2g
(Fp) under the reduction map

GSp2g(Zp)→ GSp2g(Fp).
Then the Iwahori decomposition gives

IwGLg
= U

opp
GLg ,1

TGLg,0UGLg ,0 and IwGSp2g
= U

opp
GSp2g ,1

TGSp2g ,0
UGSp2g ,0

,

where Uopp
GLg,s

and Uopp
GSp2g ,s

are defined in the same way as above for any

s ∈ Z>0.

● We shall consider the “strict Iwahori subgroups” of GLg(Zp) and
GSp2g(Zp), defined as

Iw
+
GLg
∶= the preimage of TGLg

(Fp) under the reduction map

GLg(Zp)→ GLg(Fp)

Iw
+
GSp2g

∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ∈ GSp2g(Zp) ∶ γ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ⋯ ∗
. . .

...
...∗ ∗ ⋯ ∗∗

. . .

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

mod p

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We caution the readers that the strict Iwahori subgroups Iw+GLg

and

Iw+GSp2g
are not defined analogously. We abuse the similar symbol to

simplify the notations.

Observe that for any (γa γb

γc γd

) ∈ Iw+GSp2g
, we have γa ∈ IwGLg

. More-

over, Iw+GLg
is stable under transpose.

Obviously, we have Iw+GLg
⊂ IwGLg

and Iw+GSp2g
⊂ IwGSp2g

. Thus, the

Iwahori decompositions for IwGLg
and IwGSp2g

induce the Iwahori de-

compositions for Iw+GLg
and Iw+GSp2g

:

Iw+GLg
= U

opp
GLg,1

TGLg ,0UGLg ,1

Iw
+
GSp2g

= U
opp
GSp2g ,1

TGSp2g ,0
U+GSp2g ,0

,

where U+GSp2g ,0
= Iw+GSp2g

∩UGSp2g ,0
.
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2.2 Analytic distributions

The analytic functions and distributions that will be considered here are heavily
inspired by the notions in [AIS15] and [JN19]; we indeed combine their ideas
to define the objects that we are interested in. Before everything, we recall the
terminology of Banach–Tate Zp-algebra defined in [JN19]:

Definition 2.2.1. A Zp-algebra R (with the structure morphism Zp → R) is a
Banach–Tate Zp-algebra if and only if it satisfies the following properties

1. R is a completed normed ring with norm ∣ ⋅ ∣R;

2. there exists a multiplicative pseudouniformiser ̟ ∈ R, i.e., ̟ ∈ R× such
that ∣̟∣R < 1 and ∣̟a∣ = ∣̟∣R∣a∣R for any a ∈ R; and

3. the structure morphism Zp → R is norm-decreasing where we equip Zp

with the usual norm ∣x∣ = p−vp(x).
Let R be a complete Tate Zp-algebra, i.e., R is a complete topological ring
admitting a multiplicative pseudouniformiser ̟. We assume that R admits a
noetherian ring of definition. Notice that Uopp

GSp2g ,1
≃ Zd0

p as a p-adic manifold

for some d0 ∈ Z>0, then we consider the continuous functions and distributions

Cont(Uopp
GSp2g ,1

,R) ∶= {f ∶ Uopp
GSp2g ,1

→ R ∶ f is continuous}
Dist(Uopp

GSp2g ,1
,R) ∶= Homcts

R (Cont(Uopp
GSp2g ,1

,R),R).
On the other hand, define

T0 ∶= {(γ,υ) ∈ Iw+GLg
×Mg(pZp) ∶ tγ 1̆g υ =

tυ 1̆g γ} .
The defining condition of T0 means that there exists αb,αd ∈ Mg(Zp) such
that

(γ αb

υ αd
) ∈ GSp2g(Qp) ∩M2g(Zp).

In fact, (γ,υ) ∈ T0 can be seen as an element in Iw+GSp2g
via

T0 ∋ (γ,υ)↦ (γ
υ 1̆g

tγ−1 1̆g
) ∈ Iw+GSp2g

.

Moreover, one can view T0 as a p-adic closed submanifold of Iw+GLg
×Mg(pZp).

There are two actions on T0:

1. The right action of B+GLg ,0
∶= TGLg ,0UGLg ,1 on T0 is defined by

T0 ×B+GLg ,0
→ T0, ((γ,υ),β)↦ (γ β,υβ).
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Indeed, by embedding B+GLg ,0
into Iw+GSp2g

via β ↦ (β
1̆g

tβ
−1
1̆g
), this

action is given by

(γ ∗
υ ∗)(β

1̆g
tβ−1 1̆g

) = (γ β ∗
υβ ∗) .

2. The left action of Ξ ∶= ( Iw+GLg
Mg(Zp)

Mg(pZp) Mg(Zp)) ∩GSp2g(Qp) on T0 is de-

fined by

Ξ ×T0 → T0, ((αa αb

αc αd
) , (γ,υ))↦ (αa γ +αb υ,αc γ +αd υ).

To verify this is indeed a left action, one considers

(αa αb

αc αd
)(γ ∗

υ ∗) = (αa γ +αb υ ∗
αc γ +αd υ ∗) .

In particular, T0 admits a left action of Iw+GSp2g
as Iw+GSp2g

⊂ Ξ.

Inside T0, there is a special subset

T00 ∶= {(γ,υ) ∈ T0 ∶ γ ∈ Uopp
GLg ,1

}.
One can identify T00 with Uopp

GSp2g ,1
via

T00
∼Ð→ U

opp
GSp2g ,1

, (γ,υ)↦ (γ
υ 1̆g

tγ−1 1̆g
) .

Let κ ∶ TGLg ,0 → R× be a p-adic weight and we assume that one can choose a
norm ∣ ⋅ ∣R on R making R a Banach–Tate Zp-algebra and that ∣ ⋅ ∣R is adapted
to κ, i.e., the norm ∣ ⋅ ∣R satisfies

● κ(TGLg ,0) ⊂ R0 ∶= the unit ball of R with respect to ∣ ⋅ ∣R and

● ∣κ(τ) − 1∣R < 1 for all τ ∈ TGLg ,1.

We write rκ ∶= min{r ∈ [1/p,1) ∶ ∣κ(τ ) − 1∣R ≤ r for all τ ∈ TGLg ,1}. Finally,
define

Aκ(T0,R) ∶= {f ∶ T0 → R ∶ f is continuous
f(γ β,υβ) = κ(β)f(γ,υ) ∀(γ,υ) ∈ T0, β ∈ B

+
GLg,0

} .
One sees immediately that there is an isomorphism

Aκ(T0,R) ∼Ð→ Cont(Uopp
GSp2g ,1

,R), f ↦ f ∣T00
.
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Remark 2.2.2. Our continuous functions Aκ(T0,R) are the same as the con-
tinuous functions “Aκ” defined in [JN19] in the case of GSp2g, for which we
recall

Aκ ∶= {f ∶ IwGSp2g
→ R ∶ f is continuous

f(γ β) = κ(β)f(γ) ∀(γ,β) ∈ IwGSp2g
×BGSp2g ,0

} .
By the restriction to Uopp

GSp2g ,1
, we have an isomorphism Aκ ≃ Cont(Uopp

GSp2g ,1
,R)

and hence Aκ is isomorphic to Aκ(T0,R). We chose to work in this way due
to some technicality when defining the pairing in §2.3. We remark that the
continuous functions Aκ considered in op. cit. has its advantage for considering
analytic functions and distributions for general reductive groups. We should
also point out that we are not considering general weights associated to TGSp2g ,0

but weights associated to TGLg ,0 via the embedding

TGLg ,0 ↪ (TGLg,0

1̆g T
−1
GLg ,0

1̆g
) ⊂ TGSp2g ,0

.

This explains why we can use T0 to rewrite the continuous functions Aκ con-
sidered in op. cit.

Evidently, we define

Dκ(T0,R) ∶= Homcts
R (Aκ(T0,R),R).

Then we have a sequence of isomorphisms

R[[Uopp
GSp2g ,1

]] ∼Ð→ Dist(Uopp
GSp2g ,1

,R) ∼Ð→Dκ(T0,R),
where the last isomorphism obviously follows from the isomorphism
Aκ(T0,R) ≃ Cont(Uopp

GSp2g ,1
,R). The first isomorphism follows from [JN19,

Proposition 3.1.4] for which one sends each γ ∈ U
opp
GSp2g ,1

to

δγ ∶= the Dirac distribution at γ,

i.e., the evaluation at γ. The ring structure on Dist(Uopp
GSp2g ,1

,R) is given by

the usual convolution product; that is,

µ1 ∗ µ2 ∶ f ↦ ∫
γ1∈U

opp

GSp2g,1

∫
γ2∈U

opp

GSp2g,1

f(γ1 γ2) µ2(γ2)µ1(γ1),
which yields δγ1

∗ δγ2
= δγ1 γ2

.

Recall that Uopp
GSp2g ,1

≃ Z
d0

p as p-adic manifolds, thus we can fix topological

generators υ○1, ...,υ
○
d0

for Uopp
GSp2g ,1

. For i = (i1, ..., id0
) ∈ Zd0

≥0, we write υi
○ ∶=
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(υ○1 −1)i1⋯(υ○d0
−1)id0 . Let r ∈ [rκ,1), we define the r-norm on R[[Uopp

GSp2g ,1
]]

by RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
∑

i∈Z
d0
≥0

aiυ
i
○

RRRRRRRRRRRRRR

RRRRRRRRRRRRRRr
∶= sup{∣ai∣R ⋅ r∑d0

j=1 ij ∶ i = (i1, ..., id0
) ∈ Zd0

≥0} .
Via the above isomorphisms, we defined an r-norm on Dκ(T0,R). Following
[op. cit., §3], we define

Dr
κ(T0,R) ∶= the completion of Dκ(T0,R) with respect to the r-norm

D†
κ(T0,R) ∶= lim

←Ð
r

Dr
κ(T0,R).

Remark 2.2.3. By [JN19, Lemma 3.2.3], for any r < s, one has a compact
inclusion

Ds
κ(T0,R)↪Dr

κ(T0,R).
Hence one thinks of D†

κ(T0,R) = ∩rDr
κ(T0,R).

Remark 2.2.4. Following [JN19], we denote by Dr,○
κ (T0,R) the unit ball of

Dr
κ(T0,R). Moreover, we also consider their dual spaces

A<r,○κ (T0,R) and A<rκ (T0,R),
which can be viewed as subspaces in Aκ(T0,R). We refer the readers to the
end of [op. cit., §3] for more detail discussions.

2.3 A pairing on the analytic distributions

In this subsection, we establish a pairing on the analytic distributions
Dr

κ(T0,R). Our strategy is the same as the strategy in [Bel21, Chapter VIII].
That is, we first build a map from Dr

κ(T0,R) to A<rκ (T0,R) and then use the
natural pairing between Dr

κ(T0,R) and A<rκ (T0,R) to obtain the desired one.

An algebraic model. Our pairing is modelled on an algebraic version
inspired by the one in [Han17, pp. 18], which we now explain.

Let k = (k1, ..., kg) ∈ Zg
>0 with k1 ≥ ⋯ ≥ kg. One can view k as a character on

TGLg
via

k ∶ TGSp2g
→ Gm, diag(τ 1, ...,τ g,τ 0 τ

−1
g , ...,τ 0 τ

−1
1 )↦

g∏
i=1

τ ki

i .

One extends k to BGSp2g
by setting k(UGSp2g

) = {1}. Consider the irreducible
representation for GSp2g

V
alg
GSp2g ,k

∶= {φ ∶ GSp2g → A
1 ∶ φ is a morphism of schemes

φ(γ β) = k(β)φ(γ) for any (γ,β) ∈ GSp2g ×BGSp2g

} .
One can consider the following actions of GSp2g on V

alg
GSp2g ,k

:
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(i) The right action given by

(φ ⋅ γ)(γ′) = φ(γ γ′).
(ii) The left action given by

(γ ⋅φ)(γ′) = φ(tγ γ ′).
(iii) The left action given by

(γ ⋅φ)(γ ′) = φ(γ−1 γ′).
Notice that the second action is valid since GSp2g is stable under transpose.
In fact, one deduces easily from the definition that

tγ = ς(γ)( − 1̆g

1̆g
)γ−1 ( 1̆g− 1̆g

)
for any γ ∈ GSp2g. Therefore, the second action is nothing but a twisted action

of the third one. In what follows, we equip V
alg
GSp2g ,k

with the left GSp2g-action

given by (ii).

Let V
alg,∨
GSp2g ,k

be its linear dual. We equip V
alg,∨
GSp2g ,k

with a left action induced

by (i). Then, we have a morphism

Φ
alg

k
∶Valg,∨

GSp2g ,k
→V

alg

GSp2g ,k
, µ↦ (γ′ ↦ ∫

γ∈GSp2g

ehstk (tγ ′ γ) dµ) ,
where ehstk ∈V

alg

GSp2g ,k
is defined by

ehstk ∶ (Xij)1≤i,j≤2g ↦Xk1−k2

11 ×det(X11 X12

X21 X22
)
k2−k3×⋯×det

⎛⎜⎜⎝
X11 ⋯ X1g

...
...

Xg1 ⋯ Xgg

⎞⎟⎟⎠

kg

.

One sees that Φ
alg

k
is GSp2g-equivariant with respect to the left GSp2g-actions

on both spaces. Indeed, for any α,γ ′ ∈ GSp2g and µ ∈Valg,∨
GSp2g,k

, we have

Φ
alg

k
(α ⋅µ)(γ′) = ∫

γ∈GSp2g

ehstk (tγ′αγ) dµ

= ∫
γ∈GSp2g

ehstk (t(tαγ′)γ) dµ

= (α ⋅Φalg
k
(µ)) (γ′).

Consequently, Φalg
k

defines a pairing on V
alg,∨
GSp2g ,k

by

(µ1, µ2) ↦ ∫
γ1,γ2∈GSp2g

ehstk (tγ2 γ1) dµ1(γ1)dµ2(γ2).
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Remark 2.3.1. Notice that Valg,∨
GSp2g ,k

is an irreducible representation of GSp2g,

thus it admits a pairing induced by the symplectic pairing ⟨ ⋅, ⋅ ⟩ on VZ. This
pairing can be viewed by the following formula

⟨ ⋅, ⋅ ⟩k ∶ (µ1, µ2) ↦ ∫
γ1,γ2∈GSp2g

ehstk (tγ2 ( − 1̆g

1̆g
)γ1) dµ1(γ1)dµ2(γ2).

Indeed, for any α ∈ GSp2g, we have

⟨α ⋅µ1, µ2 ⟩k = ∫
γ1,γ2∈GSp2g

ehstk (tγ2 ( − 1̆g

1̆g
)αγ1) dµ1(γ1)dµ2(γ2)

= ∫
γ1,γ2∈GSp2g

ehstk (tγ2 ς(α) tα−1 ( − 1̆g

1̆g
)γ1) dµ1(γ1)dµ2(γ2)

= ς(α)∑ki ∫
γ1,γ2

ehstk (t(α−1 γ2)( − 1̆g

1̆g

)γ1) dµ1(γ1)dµ2(γ2)
= ς(α)∑ki ⟨µ1,α

−1 ⋅µ2 ⟩k,

where the second equality follows from the definition of GSp2g.

The pairing on the analytic distributions. Let κ ∶ TGLg ,0 → R× be a p-
adic weight and we keep the assumption on the fixed norm on the Banach–Tate
Zp-algebra R as before. Notice that we can write

κ ∶ TGLg ,0 → R×, diag(τ 1, ...,τ g)↦ κ1(τ 1) ×⋯ × κg(τ g)
for some p-adic weight κi ∶ Z×p → R×.

Define the function ehstκ on Iw
+
GLg

by

ehstκ ∶ (Xij)1≤i,j≤g ↦ κ1(X11)
κ2(X11) ×

κ2(det(Xij)1≤i,j≤2)
κ3(det(Xij)1≤i,j≤2) ×⋯ × κg(det(Xij)1≤i,j≤g).

One sees that ehstκ ∈ Aκ(T0,R) via

ehstκ (γ,υ) = ehstκ (γ).
Lemma 2.3.2. For r ∈ [rκ,1), ehstκ ∈ A<rκ (T0,R)
Proof. Note that ehstκ (γ,υ) = 1 for any (γ,υ) ∈ T00. The assertion then follows
from the explicit description of A<rκ (T0,R) in [JN19, §3.2 & 3.3].

Therefore, we can define

Φκ ∶ Dr
κ(T0,R) → A<rκ (T0,R),

µ ↦ ((γ′,υ′)↦ ∫
(γ,υ)∈T00

ehstκ ((tγ′ tυ′)(1g

p−1 1g
)(γ

υ
)) dµ).

Documenta Mathematica 26 (2021) 675–711



Pairing on the Cuspidal Eigenvariety for GSp2g 689

Notice that

ehstκ ((tγ ′ tυ′)(1g

p−1 1g
)(γ

υ
)) = ehstκ (tγ′ γ + tυ′ υ /p)

is valid since (tγ ′ γ + tυ′ υ /p) ∈ Iw+GLg
(this is because Iw+GLg

is stable under
transpose and both υ and υ′ are divisible by p).

Consequently, we have the pairing

[ ⋅, ⋅ ]○κ ∶ Dr
κ(T0,R) ×Dr

κ(T0,R)→ R

given by the formula

[µ1, µ2]○κ = ∫
T2

00

ehstκ ((tγ2
tυ2)(1g

p−1 1g
)(γ1

υ1
)) dµ1(γ1,υ1)dµ2(γ2,υ2).

Proposition 2.3.3. For any α = (αa αb

αc αd
) ∈ Ξ, write

αし = ( tαa
tαc /p

p tαb
tαd

) ∈ Ξ.
Then, for any µ1, µ2 ∈D

r
κ(T0,R), we have

[α ⋅µ1, µ2 ]
○
κ = [µ1,α

し ⋅µ2 ]
○
κ .

Proof. The assertion follows from the computation

(tγ2
tυ2)(1g

p−1 1g
)(αa αb

αc αd
)(γ1

υ1
)

= (tγ2
tυ2)( αa pαb

αc /p αd
)(1g

p−1 1g
)(γ1

υ1
)

=
t(( tαa

tαc /p
p tαb

tαd
)(γ2

υ2
))(1g

p−1 1g
)(γ1

υ1
) .

Remark 2.3.4. When comparing with our algebraic model, one notices that
the definition of the pairing [ ⋅, ⋅ ]○κ involves a “normalisation” by p−1. Such
a normalisation is due to our model for g = 1. More precisely, when g = 1,
elements in T0 can be written as (1, pc)a for some a ∈ Z×p and c ∈ Zp. Then,
for any µ1, µ2 ∈ D

r
κ(T0,R), we have

[µ1, µ2 ]
○
κ = ∫

T2
00

κ(1 + pc1c2) dµ1(1, c1)dµ2(1, c2),
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which then coincides with the interpretation in Hansen’s unpublished notes
[Han12]. In particular, by applying [Bel21, Definition VIII.2.4], we have the
formula

[µ1, µ2 ]
○
κ =

∞∑
i=0

pi (κi)µ1(ci1)µ2(ci2),
which is (almost) the same formula given by [op. cit., (VIII.2.4)]. Here, for
j = 1,2, we view cij as a function on T0 via

cij ∶ T0 ∋ (a, pc)↦ κ(a)(c/a)i.
Remark 2.3.5. Following Remark 2.3.1, for any dominant k ∈ Zg

>0, we may
consider the pairing [ ⋅, ⋅ ]○k to be the twist of ⟨ ⋅, ⋅ ⟩k by an Atkin–Lehner operator.
More precisely, let

wp ∶= ( −p−1 1̆g

1̆g

) ,
then

[µ1, µ2 ]
○
k = ∫

T2
00

ehstk ((tγ2
tυ2)(1g

p−1 1g
)(γ1

υ1
)) dµ1(γ1,υ1)dµ2(γ2,υ2)

= ∫
T2

00

ehstk ((tγ2
tυ2)( 1̆g−p−1 1̆g

)( − 1̆g

1̆g
)(γ1

υ1
)) dµ1(γ1,υ1)dµ2(γ2,υ2)

= ∫
T2

00

ehstk (t(wp (γ2

υ2
))( − 1̆g

1̆g
)(γ1

υ1
)) dµ1(γ1,υ1)dµ2(γ2,υ2).

In particular, this viewpoint coincides with the perspectives in [Kim06, Bel21,
Han12] when g = 1.

3 The overconvergent cohomology and the eigenvariety

3.1 A pairing on cohomology groups

Let N ∈ Z>3 such that p ∤ N and we fix an N -th primitive root of unity ζN (and
so we fixed an isomorphism µN ≃ Z /N Z). Equip on (Z /N Z)2g a symplectic
pairing induced by the pairing on VZ in the previous section. Let SchZp[ζN ]

be the category of locally noetherian schemes over Zp[ζN ], then the moduli
problem

SchZp[ζN ] → Sets,

S ↦ ⎧⎪⎪⎪⎨⎪⎪⎪⎩(A/S , λ,αN ) ∶
A/S is a principally polarised abelian scheme over S
λ ∶ A→ A∨ is the principal polarisation

αN ∶ A[N] ∼Ð→ (Z /N Z)2g is a symplectic isomorphism

⎫⎪⎪⎪⎬⎪⎪⎪⎭
/ ≃

is representable by a scheme XZp[ζN ], where the symplectic isomorphism αN

is taken with respect to the Weil pairing on A[N] and the pairing induced by
⟨ ⋅, ⋅ ⟩ on (Z /N Z)2g. We let

X =XCp
∶=XZp[ζN ] ×Zp[ζN ] SpecCp .
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Let ζp be a primitive p-th root of unity. We also consider the
scheme XIw+,Qp[ζp,ζN ]

, paramatrising the isomorphism classes of tuples

(A,λ,αN ,Fil●A[p],{Ci ∶ i = 1, ..., g}), where

● (A,λ,αN ) ∈XQp[ζp,ζN ]
=XZp[ζN ] ×Zp[ζN ] SpecQp[ζp, ζN ],

● Fil●A[p] is a full flag of A[p] such that

(Fil●A[p])⊥ ≃ Fil2g−●A[p]
with respect to the Weil pairing, and

● {Ci ∶ i = 1, ..., g} is a collection of subgroups of A[p] of order p such that
FiliA[p] = ⟨C1, ...,Ci⟩ for i = 1, ..., g.

Again, we write XIw+ ∶= XIw+,Qp[ζp,ζN ]
×Qp[ζp,ζN ]

SpecCp. Obviously, we have
a natural forgetful map

πIw+ ∶XIw+ →X, (A,λ,αN ,Fil●A[p],{Ci ∶ i = 1, ..., g})↦ (A,λ,αN ).
Via the fixed (algebraic) isomorphism Cp ≃ C, we consider the locally sym-
metric space XIw+(C) in the rest of this article, which admits an alternative
description

XIw+(C) = GSp2g(Q)/GSp2g(Af ) ×Hg / Iw+GSp2g
Γ(N),

where

● Af is the ring of finite adèles of Q,

● Hg is the disjoint union of the Siegel upper- and lower-half spaces of genus
g,

● Γ(N) ∶= {γ ∈ GSp2g(Ẑ) ∶ γ ≡ 12g mod N}.
Fix a p-adic weight κ ∶ TGLg ,0 → R× satisfying the assumptions on the Banach–
Tate Zp-algebra norm ∣ ⋅ ∣R on R together with a fixed multiplicative pseudouni-
formiser ̟ ∈ R. Recall the analytic distributionsDr

κ(T0,R) that we introduced
in the previous section. From now on, we simplify the notation by writing

Dr
κ =D

r
κ(T0,R).

Since Dr
κ admits a left Iw+GSp2g

-action, we can follow the strategy in [Han17]

to compute the Betti cohomology groups Ht(XIw+(C),Dr
κ). That is, we con-

sider the so-called Borel–Serre cochain complex C●(Iw+GSp2g
,Dr

κ), constructed

by fixing a triangulation on the Borel–Serre compactification X
BS

Iw+(C) of the
locally symmetric space XIw+(C) (see [BS73]). The Borel–Serre cochain com-
plex admits the following nice properties (see also [Han17, §2.1]):
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1. There is a homotopy between the singular cochain complex and the Borel–
Serre cochain complex and hence the reason why one can compute the
cohomology groups by considering the Borel–Serre cochain complex.

2. The total space Ctol
κ,r ∶= ⊕tC

t(Iw+GSp2g
,Dr

κ) is a potentially ON-able Ba-

nach module over R since C●(Iw+GSp2g
,Dr

κ) is a finite cochain complex

and Dr
κ(T0,R) is potentially ON-able with an explicit potential ON-basis

described in [JN19, §3.2].

The fixed triangulation onX
BS

Iw+(C) provides also a triangulation on the bound-

ary ∂X
BS

Iw+(C) ∶= XBS

Iw+(C) ∖ XIw+(C) and hence defines a cochain complex
C●∂(Iw+GSp2g

,Dr
κ) that computes the cohomology groups at the boundary. The

natural closed embedding ∂X
BS

Iw+(C) ↪ X
BS

Iw+(C) then induces a morphism of
cochain complexes

π ∶ C●(Iw+GSp2g
,Dr

κ)→ C●∂(Iw+GSp2g
,Dr

κ).
Following [BS18, §3.1.3], we define C●c (Iw+GSp2g

,Dr
κ) ∶= Cone(π) the mapping

cone of π, i.e.,

Cone(π)t = Ct(Iw+GSp2g
,Dr

κ)⊕Ct−1
∂ (Iw+GSp2g

,Dr
κ) with

dtc ∶ Cone(π)t → Cone(π)t+1, (σ,σ∂) ↦ (−dtσ,−πiσ + dt−1∂ σ∂),
where d and d∂ are differentials on C●(Iw+GSp2g

,Dr
κ) and C●(Iw+GSp2g

,Dr
κ) re-

spectively. The strategy of the proof of [BS18, Proposition 3.5] applies here and
one sees that C●c (Iw+GSp2g

,Dr
κ) computes the compactly supported cohomology

groups Ht
c(XIw+(C),Dr

κ). Moreover, the natural morphism

C●c (Iw+GSp2g
,Dr

κ)→ C●(Iw+GSp2g
,Dr

κ)
induces a morphism on the cohomology groups

Ht
c(XIw+(C),Dr

κ)→Ht(XIw+(C),Dr
κ).

For each t, we let

Ht
par(XIw+(C),Dr

κ) ∶= image(Ht
c(XIw+(C),Dr

κ)→Ht(XIw+(C),Dr
κ)) ,

and call them the parabolic cohomology groups.

Proposition 3.1.1. Let n0 = g(g+1)/2 be the C-dimension of XIw+(C). Then,
we have a well-defined pairing

[ ⋅, ⋅ ]κ ∶Ht
par(XIw+(C),Dr

κ) ×H2n0−t
par (XIw+(C),Dr

κ)→ R

for any 0 ≤ t ≤ 2n0.
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Proof. Recall the pairing [ ⋅, ⋅ ]○κ defined in §2.3. Together with the cup product
on cohomology groups, one obtains a pairing [ ⋅, ⋅ ]∗κ defined as the composition

Ht
c(XIw+(C),Dr

κ) ×H2n0−t(XIw+(C),Dr
κ) H2n0

c (XIw+(C),Dr
κ⊗̂RD

r
κ)

H2n0

c (XIw+(C),R)

R,

⌣

[ ⋅, ⋅ ]∗κ

[ ⋅, ⋅ ]○κ

≃

where “⌣” denotes the cup product.

The compatibility of cup products (see, for example, [Mun84, Chapter 5, §48,
Exercise 2]) yields the commutative diagram

Ht
c(XIw+(C),Dr

κ) ×H2n0−t(XIw+(C),Dr
κ) H2n0

c (XIw+(C),Dr
κ⊗̂RD

r
κ)

Ht
c(XIw+(C),Dr

κ) ×H2n0−t
c (XIw+(C),Dr

κ) H2n0
c (XIw+(C),Dr

κ⊗̂RD
r
κ)

Ht(XIw+(C),Dr
κ) ×H2n0−t

c (XIw+(C),Dr
κ) H2n0

c (XIw+(C),Dr
κ⊗̂RD

r
κ)

⌣

⌣

⌣

.

In particular, if [µ1] ∈ Ht
par(XIw+(C),Dr

κ) and [µ2] ∈ H2n0−t
par (XIw+(C),Dr

κ)
with [µ′1] ∈ Ht

c(XIw+(C),Dr
κ) and [µ′2] ∈ H2n0−t

c (XIw+(C),Dr
κ) such that[µ′i]↦ [µi] for i = 1,2, then

[µ1] ⌣ [µ′2] = [µ′1] ⌣ [µ′2] = [µ′1] ⌣ [µ2].
Hence we define

[[µ1], [µ2] ]κ = [[µ′1], [µ2] ]∗κ = [[µ1], [µ′2] ]∗κ .
We see that [ ⋅, ⋅ ]κ is well-defined, i.e., independent of the choice of the lifting,
due to the commutativity of the above diagram.

3.2 Hecke operators

Hecke operators outside pN . Let q be a prime number not dividing pN .
We consider the set of double cosets

Υq ∶= {[GSp2g(Zq)δGSp2g(Zq)] ∶ δ ∈ GSp2g(Qq) ∩M2g(Zq)}.
For any fixed δ, we have the coset decomposition

GSp2g(Zq)δGSp2g(Zq) = ⊔j δj GSp2g(Zp)
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for finitely many δj ∈ GSp2g(Qq) ∩M2g(Zq). By letting δj ’s act trivially on
Dr

κ, we have a left action of the double coset [GSp2g(Zq)δGSp2g(Zq)] on
C●(Iw+GSp2g

,Dr
κ) by

[GSp2g(Zq)δGSp2g(Zq)] ⋅ σ =∑
j

δj ⋅σ
for any σ ∈ C●(Iw+GSp2g

,Dr
κ). Then the Hecke algebra at q (over Zp) is defined

to be Tq = Tq,Zp
= Zp[Υq].

Hecke operators at N . We ignore the Hecke actions at N , i.e., for ℓ∣N ,
we only consider the trivial action and hence the Hecke algebra at ℓ is Tℓ =

Tℓ,Zp
∶= Zp.

Hecke operator at p. Let

up,0 ∶= (1g

p1g
)

up,i ∶=
⎛⎜⎜⎜⎝

1g−i

p1i

p1i

p2 1g−i

⎞⎟⎟⎟⎠
∈ TGSp2g

(Qp) ∩M2g(Zp) for 1 ≤ i ≤ g − 1

up ∶= g−1∏
i=0

up,i

and consider the set of double cosets

Υp ∶= {[Iw+GSp2g
up,i Iw

+

GSp2g
] ∶ i = 0, ..., g − 1}.

We immediately see that [Iw+GSp2g
up Iw

+

GSp2g
] =∏g−1

i=0 [Iw+GSp2g
up,i Iw

+

GSp2g
]. A

direct computation shows that the coset decomposition of Iw+GSp2g
up,i Iw

+

GSp2g

can be given by
Iw+GSp2g

up,i Iw
+

GSp2g
= ⊔j δi,j Iw+GSp2g

for some δi,j ∈ GSp2g(Qp) ∩M2g(Zp); in particular, δi,j = λi,j up,i for some
λi,j ∈ Iw

+

GSp2g
.

For any (γ,υ) ∈ T0, write (γ,υ) = (γ0,υ0)β for some β ∈ B+GLg ,0
such that

γ0 ∈ U
opp
GLg,1

. Then, the left action of up,i on T0 is defined by the formula

up,i ⋅(γ,υ) = (u◻p,i γ0 u
◻,−1
p,i ,u∎p,i υ0 u

◻,−1
p,i )β,

where we write

up,i = (u◻p,i u∎p,i
) .
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Consequently, this defines a left action of up,i on Dr
κ. On the other hand, the

right multiplication of δi,j on GSp2g(Af) gives a left action on the homomor-

phisms between the free abelian group of simplical complexes on X
BS

Iw (C). The
two actions then combine to an action on C●(Iw+GSp2g

,Dr
κ) and hence defines

the action of [Iw+GSp2g
up,i Iw

+

GSp2g
] on C●(Iw+GSp2g

,Dr
κ) by

[Iw+GSp2g
up,i Iw

+

GSp2g
] ⋅ σ ∶=∑

j

δi,j σ =∑
j

λi,j ⋅ (up,i ⋅σ)
for any σ ∈ C●(Iw+GSp2g

,Dr
κ). We shall denote by Up,i and Up the op-

erators on C●(Iw+GSp2g
,Dr

κ) corresponding to the classes of double cosets

[Iw+GSp2g
up,i Iw

+

GSp2g
] and [Iw+GSp2g

up Iw
+

GSp2g
]. The Hecke algebra at p is

then defined to be Tp = Tp,Zp
= Zp[Υp].

Definition 3.2.1. We define

T
p ∶= ⊗q≠p Tq = the Hecke algebra outside p

T ∶= Tp⊗Zp
Tp = the total Hecke algebra.

Lemma 3.2.2. The parabolic cohomology groups Hr
par(XIw+(C),Dr

κ) are T-
stable.

Proof. Due to the nature of the Borel–Serre compactification, C●∂(IwGSp+
2g
,Dr

κ)
admits Hecke actions as the ones defined above. Hence

π ∶ C●(Iw+GSp2g
,Dr

κ) → C●∂(Iw+GSp2g
,Dr

κ)
is a Hecke equivariant morphism of cochain complexes and hence

C●c (IwGSp+
2g
,Dr

κ)→ C●(IwGSp+
2g
,Dr

κ)
is also Hecke equivariant and induces a Hecke equivariant map on cohomology
groups

Ht
c(XIw+(C),Dr

κ)→Ht(XIw+(C),Dr
κ).

This then shows the desired result.

3.3 The cuspidal eigenvariety

In this subsection, we extract out the cuspidal part of the eigenvarieties con-
structed in [JN19]. Although this is an easy consequence of op. cit. for experts,
we write down the construction after recalling sufficiently amount of materials.

Lemma 3.3.1. The functor assigning each sheafy complete affinoid (Zp,Zp)-
algebra (R,R+) to the set Homcts(TGLg ,0,R

×) is represented by the affinoid
algebra (Zp[[TGLg ,0]],Zp[[TGLg ,0]]).
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Proof. For any sheafy complete affinoid (Zp,Zp)-algebra (R,R+), we have a
bijection

Homcts(TGLg,0,R
×) ≃ Homcts

Zp
(Zp[[TGLg ,0]],R).

The bijection is obtained by extending the characters on the left-hand-side Zp-
linearly. Note that any continuous character TGLg ,0 → R automatically lands
in (A+)× as discussed in [JN19, Definition 4.1].

Definition 3.3.2. The weight space in our concern is then defined to be

W ∶= Spa(Zp[[TGLg ,0]],Zp[[TGLg ,0]])an,
where the superscript “●an” means that we are taking the analytic locus of the
corresponding adic space.

For any open affinoid U ⊂ W , we will always write the corresponding affinoid
algebra to be (RU ,R+U) and the universal weight on U to be κU ∶ TGLg ,0 → R×U .
In the following, we will always assume that the universal weight κU and RU
admit the previous assumptions that we made for p-adic weights. That is, we
assume that one can choose a norm ∣ ⋅ ∣RU on RU so that RU is a Banach–Tate
Zp-algebra and that ∣ ⋅ ∣RU is adapted to κU .

Let A
1,ad
Zp
∶= Spa(Zp[T ],Zp), we write A

1
U ∶= U ×Spa(Zp,Zp)A

1,ad
Zp

for any open

affinoid U ⊂W . We have the following explicit description

A
1
U = ∪m Spa (RU ⟨̟mT ⟩,R+U ⟨̟mT ⟩) ,

where ̟ is a fixed pseudouniformiser of RU . Moreover, the global functions on
A

1
U is the ring

RU{{T }} ∶= {∑
n≥0

anT
n
∈ RU [[T ]] ∶ ∣an∣RMn → 0 for all M ∈R≥0} .

Fix an open affinoid U ⊂W , recall that the total Borel–Serre cochain complex
Ctol

κU ,r
is a potentially ON-able Banach RU -module. Moreover, Up acts on Ctol

κU ,r

compactly by [JN19, Corollary 3.3.10], hence we can consider the Fredholm
determinant

F r
κU
(T ) ∶= det (1 − TUp∣Ctol

κU ,r
) ∈ RU{{T }}.

According to [op.cit., Proposition 4.1.2 & Proposition 4.1.4], the Fredholm
determinant doesn’t depend on r ∈ [rκ,1) and the chosen norm on RU ,
thus we write FκU . By [op. cit., Corollary 4.1.5], the Fredholm determi-
nants (FκU )U , where U ranges over all open affinoid U ⊂ W , glue together
to FW ∈ OW(W){{T }} and hence we define the Fredholm hypersurface

(or the spectral variety)

Z ∶= the zero locus of FW in A
1
W

and denote by wtZ ∶ Z →W the structure morphism.
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Definition 3.3.3. Let h = m
n
∈Q≥0 and define

BU,h ∶= {x ∈ A1
U ∶ ∣T n∣x ≤ ∣̟−m∣x}.

We also define ZU to be the zero locus of FκU in A
1
U . Then, we say the pair(U , h) is a slope datum if and only if

ZU ,h ∶= ZU ∩BU ,h → U
is finite of constant degree.

Proposition 3.3.4 ([JN19, Theorem 2.3.2]). Keep the above notations. We
have the following

1. The pair (U , h) is a slope data if and only if FκU admits a factorisation
FκU = QS, where

● Q is a polynomial whose leading coefficient is a unit in RκU and its
corresponding Newton polygon has slope ≤ h (see [JN19, Definition
2.2.4]),

● S = 1 +∑n>0 anT
n ∈ RκU{{T }} and

● the ideal generated by Q and S in RκU {{T }} it the unit ideal.

2. The collection Covsd(Z) ∶= {ZU ,h ∶ (U , h) is a slope datum} is an open
cover for Z.

Remark 3.3.5. Recall that the cochain complex C●c (Iw+GSp2g
,Dr

κ) computes

the compactly supported cohomology groups. By definition, the total complex
Ctol

c,κ,r ∶= ⊕tC
t
c(Iw+GSp2g

,Dr
κ) is a finite number of copies of Dr

κ(T0,R) as an

R-module. Therefore, it is a potentially ON-able module and the above also
applies to Ctol

c,κ,r. In particular, we have a Fredholm hypersurface Zc when
considering the compactly supported cohomology groups and for any slope
datum (U , h) for Zc, we have a slope decomposition Ctol

c,κU ,r
= Ctol,≤h

c,κU ,r
⊕Ctol,>h

c,κU ,r
.

Let (U , h) be a slope datum for Z and let Ctol
κU
= ⊕tC

t(Iw+GSp2g
,D†

κU
). As the

above discussions hold for all r ∈ [rκ,1), the results also apply to Ctol
κU

. In par-

ticular, when considering the Up-operator acting on Ctol
κU

, we have the factori-
sation of the corresponding Fredholm determinant FκU and the decomposition
Ctol

κU
= Ctol,≤h

κU
⊕Ctol,>h

κU
. Define Ht(XIw+(C),D†

κU
)≤h to be the t-th cohomology

group of the cochain complex Ctol,≤h
κU

and let Htol,≤h
κU

= ⊕tH
t(XIw+(C),D†

κU
)≤h.

From the construction of the eigenvarieties in [JN19], we know that the assign-
ment

Covsd(Z) ∋ ZU ,h ↦Htol,≤h
κU

is a coherent sheaf on Z .
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We use the similar notation when considering the cohomology groups with
compact supports. If (U , h) is a slope datum for both Z and Zc, we have

Ctol,≤h
c,κU

→ Ctol,≤h
κU

due to the definition of the slope ≤ h-decomposition and the Hecke-equivariance
of the map Ctol

c,κU
→ Ctol

κU
. Hence we have a Hecke-equivariant map

Htol,≤h
c,κU

→Htol,≤h
κU

which preserves the degrees. We then define

Htol,≤h
par,κU

∶= image(Htol,≤h
c,κU

→Htol,≤h
κU

)
as well as the analogous notation for each degree.

Proposition 3.3.6. The assignment

Covsd(Z) ∋ ZU,h ↦Htol,≤h
par,κU

defines a coherent sheaf on Z, denoted by H
tol
par.

Proof. We need to show that for any slope data (U , h) and (V, h) for Z withV ⊂ U being a rational open subset, we have Htol,≤h
par,κU

⊗RU RV = H
tol,≤h
par,κV

. This
is the same to show the existence of the commutative diagram

Htol,≤h
c,κU

⊗RU RV Htol,≤h
κU

⊗RU RV

Htol,≤h
c,κV

Htol,≤h
κV

whose vertical arrows are isomorphisms.

Observe that

D†
κU
(T0,RU)⊗̂RURV ≃ RU[[Uopp

GSp2g ,1
]]∧,† ⊗̂RURV ≃ RV[[Uopp

GSp2g ,1
]]∧,† ≃D†

κV
(T0,RV),

where the superscript “●∧,†” means taking the completion with respect to the
family of norms (∣∣⋅∣∣r)r. Since both Ctol,≤h

κU
and Ctol,≤h

c,κU
are of finite presentation

over RU , taking cohomology commutes with flat base change, so

Ht(XIw+(C),D†
κU
)≤h ⊗RU RV ≃ H

t(XIw+(C),D†
κU
(T0,RU)⊗̂RURV)≤h

≃ Ht
c(XIw+(C),D†

κV
)≤h

Ht
c(XIw+(C),D†

κU
)≤h ⊗RU RV ≃ H

t
c(XIw+(C),D†

κU
(T0,RU)⊗̂RURV)≤h

≃ Ht(XIw+(C),D†
κV
)≤h,

where the first isomorphisms for both rows follow from that we are considering
the finite slope parts.
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For any slope datum (U , h), the action of T on Htol,≤h
par,κU

yields a morphism

of commutative algebras T → EndOW(U)(Htol,≤h
par,κU

) whose image is denoted by

T
U,h
par , which is a finite algebra over RU since Htol,≤h

par,κU
is finitely generated. Since

H
tol
par is a coherent sheaf, the assignment

Tpar ∶ Covsd(Z) ∋ ZU ,h ↦ T
U ,h
par

is a coherent sheaf of OZ -algebras. Then the cuspidal eigenvariety E0 is defined
to be

E0 ∶= SpaZ(Tpar,T
○

par),
where the sheaf of integral elements T

○

par is determined by [JN19, Lemma A.3].
We name the structure morphisms

E0 Z Wπ
E0
Z

wt

wtZ
.

We further let Zpar ∶= imageπE0

Z to be the Fredholm hypersurface corresponding
to E0.
Remark 3.3.7. By applying the eigenvariety construction in [JN19] directly
to GSp2g, one obtains the eigenvariety E , parametrising the Hecke eigenvectors

of finite slope cohomology groups H●(XIw+(C),D†
κ)≤h. Recall that we have a

Hecke-equivariant diagram

Ht
c(XIw+(C),D†

κ) Ht(XIw+(C),D†
κ) Ht

∂(XIw(C),D†
κ)

Ht
par(XIw+(C),D†

κ)

π

for each t such that

Ht
par(XIw+(C),D†

κ) = image (Ht
c(XIw+(C),Dr

κ)→Ht(XIw+(C),D†
κ)) = kerπ,

where the last equation is given by the exactness of the long exact sequence of
cohomology groups. Let T

U ,h be the image of T in EndOW(U)(Htol,≤h
κU

), then

there is a surjection T
U ,h↠ T

U,h
par given by the restriction. Hence, one sees that

there is a closed immersion E0 ↪ E of adic spaces over W and one views E0 as
the “cuspidal part” of E since π∣

Ht
par(XIw+(C),D

†
κ)

is the zero map.

Remark 3.3.8. As pointed out in [JN19, Remark 4.1.9], the eigenvariety con-
structed in [Han17] is the open locus of p ≠ 0 inside E . Consequently, the
cuspidal part of the eigenvariety in op. cit. is the open locus of p ≠ 0 inside our
cuspidal eigenvariety E0.
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Corollary 3.3.9. The pairing in Proposition 3.1.1 induce pairings

[ ⋅, ⋅ ] ∶H tol
par ×H

tol
par → OZ and [ ⋅, ⋅ ] ∶ πE0,∗

Z H
tol
par ×πE0,∗

Z H
tol
par → OE0

of coherent sheaves on Z and E0 respectively. Moreover, the first pairing is
T-equivariant.

Proof. First of all, we claim that the pairing [ ⋅, ⋅ ]○κ is up,i-equivariant for any
i = 0,1, ..., g−1 and for any p-adic weight κ ∶ TGLg ,0 → R. Take any µ1, µ2 ∈D

†
κ,

we have

[up,i ⋅µ1, µ2 ]
○

κ

= ∫
T2

00

ehstκ ((tγ2
tυ2)(1g

p−1 1g
)(γ1

υ1
)) dup,i ⋅µ1(γ1,υ1)dµ2(γ2,υ2)

= ∫
T00

ehstκ (tγ2 γ1 + tυ2 υ1 /p) dup,i ⋅µ1(γ1,υ1)dµ2(γ2,υ2)
= ∫

T2
00

ehstκ (tγ2(u◻p,i γ1 u
◻,−1
p,i ) + tυ2(u∎p,i υ1 u

◻,−1
p,i )/p) dµ1(γ1,υ1)dµ2(γ2,υ2)

= ∫
T2

00

ehstκ ((tγ2 u
◻

p,i γ1 + tυ2 u
∎

p,i υ1 /p)u◻,−1p,i ) dµ1(γ1,υ2)dµ2(γ2,υ2)
= ∫

T00

ehstκ (u◻,−1p,i
tγ2 u

◻

p,i γ1 +u◻,−1p,i
tυ2 u

∎

p,i υ1 /p) dµ1(γ1,υ1)dµ2(γ2,υ2)
= ∫

T00

ehstκ (t(u◻p,i γ2 u
◻,−1
p,i )γ1 + t(u∎p,i υ2 u

◻,−1
p,i )υ1 /p) dµ1(γ1,υ1)dµ2(γ2,υ2)

= [µ1,up,i ⋅µ2 ]
○

κ,

where the antepenultimate equation follows from the nature of determinants
(which was used in the definition of ehstκ ).

This claim then implies that we have a Up,i-equivariant pairing

[ ⋅, ⋅ ]κU ∶Htol,≤h
par,κU

×Htol,≤h
par,κU

→ RU .

Thus, by gluing, one obtains the first desired pairing. It is furthermore T
p-

equivariant since the Hecke operators outside p acts on the ananlytic distribu-
tions trivially. The second one follows immediately.

4 The ramification locus of the cuspidal eigenvariety

In this section, we apply our pairing to the study of the ramification locus of the
cuspidal eigenvariety for GSp2g. We will first set up a formalism by following
the strategy in [Bel21]. Then, the main results of this paper are proven in
Theorem 4.2.8, Theorem 4.2.9 and Corollary 4.3.5.

4.1 Some commutative algebra

In this subsection, we recollect some ingredients of commutative algebra
from [Bel21].
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Let A be a noetherian domain and B be a finite flat A-algebra. Consider

mult ∶ B ⊗A B → B, b⊗ b′ ↦ bb′

and write mult = ker(mult). Let

(B ⊗A B)[mult] ∶= {x ∈ B ⊗A B ∶ y ⋅ x = 0 ∀y ∈ mult},
then the Noether’s different of B over A is defined to be the ideal

d(B/A) ∶= image((B ⊗A B)[mult] multÐÐ→ B)
in B.

Theorem 4.1.1 (Auslander–Buchsbaum). A prime ideal P of B is ramified
over A if and only if d(B/A) ⊂P. Equivalently, SpecB/d(B/A) is the ramifi-
cation locus of SpecB over SpecA.

Proof. See [AB59, Theorem 2.7].

Suppose M,N are two B-modules which are finite flat over A and assume we
are in the following situation:

● There exists an A-linear pairing

β ∶M ×N → A

such that β is B-equivariant.

● We have isomorphisms M ≃ N ≃ B∨ ∶= HomA(B,A) of B-modules.

Lemma 4.1.2 ([Bel21, Proposition VIII.1.11]). Denote by βB the base change
of β to B on M ⊗A B ×N ⊗A B. Let

(M ⊗A B)[mult] = {x ∈M ⊗A B ∶ y ⋅ x = 0 ∀y ∈ mult}
(N ⊗A B)[mult] = {x ∈ N ⊗A B ∶ y ⋅ x = 0 ∀y ∈ mult}.

Then the ideal

Lβ ∶= image (βB ∶ (M ⊗A B)[mult] × (N ⊗A B)[mult]→ B)
is a principal ideal in B.

Proof. We claim first that for any B-module M which is finite flat over A,
we have an isomorphism M∨ ⊗A B[mult] ≃ HomB(M,B), where M∨ =

HomA(M,A). Notice that M∨ also admits a B-module structure by bψ ∶m ↦
ψ(bm) for all b ∈ B, ψ ∈M∨ and m ∈M . We have a natural isomorphism

M∨ ⊗A B = HomA(M,A) ⊗A B → HomA(M,B), ψ ⊗ b↦ (m↦ ψ(m)b).
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Since mult = ∑b∈B(b⊗ 1 − 1⊗ b)B ⊗A B, thus

ψ ⊗ b ∈M∨ ⊗A B[mult]⇔ (b′ ⊗ 1 − 1⊗ b′)ψ ⊗ b = 0 ∀b′ ∈ B
⇔ b′ψ ⊗ b = ψ ⊗ bb′ ∀b′ ∈ B
⇔ ψ(b′m)b = ψ(m)bb′ ∀b′ ∈ B,m ∈M
⇔ (m↦ ψ(m)b) ∈ HomB(M,B).

Apply the claim in our situation, we have isomorphisms of B-modules

(M ⊗A B)[mult] ≃ (B∨ ⊗A B)[mult] ≃ HomB(B,B) ≃ B
and same for (N ⊗A B)[mult]. Hence, let m̃ and ñ be generators of(M ⊗A B)[mult] and (N ⊗A B)[mult] respectively as B-modules. Then
Lβ = βB(m̃, ñ)B.

Proposition 4.1.3 ([Bel21, Corollary VIII.1.13]). Suppose B is Gorenstein
over A, i.e., B∨ is flat of constant rank 1 over B, and M,N are B-modules
which are finite flat over A and flat of rank 1 over B. Assume there is an
A-linear pairing β ∶M ×N → A which is B-equivariant. We retain the notation
βB and Lβ as in Lemma 4.1.2. Then

1. Both ideals d(B/A) and Lβ are locally principal. Moreover, there exists
b0 ∈ B such that Lβ = b0 d(B/A).

2. We have Lβ = d(B/A) if and only if β is non-degenerate.

Proof. We are in a special case of Lemma 4.1.2 that we can identify (locally)
M ≃ N ≃ B∨ ≃ B and hence we know Lβ is principal. Moreover, the identifica-
tion B ⊗A B[mult] ≃ HomB(B,B) ≃ B implies that d(B/A) is also principal.

Observe that we can identify β ∶M×N → A as a linear morphismB∨⊗AB
∨ → A.

Hence by duality, we identify β with an element b ∈ B ⊗A B. We claim that
Lβ = mult(b)B. As we are working locally, we assume b1, ..., bn is a basis of B
over A, then b∨1 , ..., b

∨

n is a basis of B∨ over A. Observe that b◻ ∶= ∑i b
∨

i ⊗ bi
is a generator of B∨ ⊗A B[mult] ≃ HomB(B,B) as it maps to the identity in
HomB(B,B). Hence by definition

Lβ = βB(b◻, b◻)B = ⎛⎝∑i,j β(b
∨

i , b
∨

j )bibj⎞⎠B.
On the other hand, by the above construction, we see that b =∑i,j β(b∨i , b∨j )bi⊗
bj with mult(b) = ∑i,j β(b∨i , b∨j )bibj.
Let b̃◻ = ∑i bi ⊗ bi, then it is a generator of B ⊗A B[mult] ≃ B. Thus, there
exists b0 ∈ B such that b0b̃

◻ = b. We conclude that

Lβ =mult(b)B =mult(b0b̃◻)B = b0mult(̃b◻)B = b0 d(B/A).
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Finally, we have

Lβ = d(B/A)⇔ b0 ∈ B
×

⇔ β(b∨i , b∨j ) = { b0 ∈ B
× i = j

0 i ≠ j

⇔ β is non-degenerate.

4.2 The ramification locus of the cuspidal eigenvariety

Recall the weight map wt ∶ E0 → W and πE0

Z ∶ E0 → Z. For each slope datum

(U , h), let EU ,h0 ∶= (πE0

Z )−1(ZU,h). We adapt the definitions of “clean neigh-
bourhoods” and “good points” in [Bel21] in our situation:

Definition 4.2.1. 1. Let x ∈ E0 and V = Spa(RV ,R+V) be an open affinoid
neighbourhood of x . We say V is a clean neighbourhood of x if it
satisfies the following properties:

● wt(V) = Y = Spa(RY ,R+Y) ⊂ W is an open affinoid subset of W and
there exists a slope datum (U , h) for Z such that V is the connected
component of x in EU,h0 ;

● x is the only point of V sitting above wt(x);
● the map wt ∶ V → Y is flat and is moreover étale except perhaps at x .

In this case, there exists an idempotent η = ηV ∈ T
U ,h
par such that V is

defined by the equation η = 1 and the module ηHtol,≤h
par,κU

is a direct summand
of Htol,≤h

par,κU
.

2. A point x ∈ E0 is said to be a good point if it admits a sufficiently small
clean neighbourhood V with wt(V) = Y such that the modules ηVHtol,≤h

par,κU

and (ηVHtol,≤h
par,κU

)∨ are free of rank one over RV , where the dual is taken
to be an RY-dual.

Remark 4.2.2. We remark the following:

1. In the GL2 case, the eigencurve is finite flat over the weight space ([Bel21,
§VI.1.4]) and so the author of op. cit. can consequently deduce that the
collection of clean neighbourhoods of points on the eigencurve gives a
open cover of the eigencurve. In our case, the Fredholm hypersurface Z
is finite flat over W by [AIP18, Theorem B.1]. However, we don’t know
if E0 is flat over Z . Therefore, instead of considering E0, we consider
E
fl
0 ⊂ E0 the flat locus over W , which is open over W , and let Covcl(Efl0)

be the open cover of clean neighbourhoods.

2. In the definition of good points, we see immediately that RV is Gorenstein
over RY .
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Following [Bel21, §VIII. 4], we study the adjoint L-ideal and define the p-adic
adjoint L-function here. Let x ∈ Efl0 and V be a clean neighbourhood of x with
weight wt(V) = Y. There is a natural multiplication map

mult ∶ RV ⊗̂RYRV → RV , b⊗ b′ ↦ bb′.

Let mult ∶= kermult and define

M ⊗̂RYRV[mult] ∶= {m ∈M ⊗̂RYRV ∶ mult ⋅m = 0}
for any Banach RV -module M .

Definition 4.2.3. Keep the above notation. The adjoint L-ideal of V is
defined to be

L
adj(V) ∶= image([ ⋅, ⋅ ]κU ∶ ηVHtol,≤h

par,κU
⊗̂RYRV[mult] × ηVHtol,≤h

par,κU
⊗̂RYRV[mult]→ RV) .

Remark 4.2.4. Since the clean neighbourhoods cover Efl0 , the collection

{L adj(V) ∶ V ∈ Covcl(Efl0)} glues to a coherent sheaf L
adj on Efl0 .

Proposition 4.2.5. Let x ∈ Efl0 be a good point. Then there exists a sufficiently
small clean neighbourhood V of x with wt(V) = Y such that L

adj(V) is a
principal ideal in RV .

Proof. The assertion follows from Lemma 4.1.2.

Definition 4.2.6. Let x ∈ Efl0 be a good point and V be a sufficiently small
clean neighbourhood such that L

adj(V) is principal. We define the adjoint

p-adic L-function on V to be Ladj
V ∈ RV such that Ladj

V generates L
adj(V).

The value of Ladj
V at x is denoted by Ladj(x) as it doesn’t depend on the clean

neighbourhood.

Remark 4.2.7. We point out that the adjoint p-adic L-function Ladj
V is defined

up to a unit in RV . In the case of GL2, the name “adjoint p-adic L-function”
is justified in [Kim06, Proposition 3.9.2] and [Bel21, §VIII.5]. However, the
justification of the name is unknown to us in our situation as discussed in the
introduction.

Let x ∈ Efl0 be a good point and let V be a sufficiently small clean neighbourhood

of x such that Ladj
V is defined. Let (U , h) be the slope datum that defines V

and let wt(V) = Y . Corollary 3.3.9 yields an RV-equivariant pairing

[ ⋅, ⋅ ]κU ∶ ηVHtol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY .

Together with the definition of good points, we are in the situation of Propo-
sition 4.1.3.
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Theorem 4.2.8. Let x ∈ Efl0 be a good point and let κ = wt(x). Suppose the
pairing

[ ⋅, ⋅ ]κU ∶ ηVHtol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY

is non-degenerate at wt(x), then

Ladj(x) = 0 if and only if wt is ramified at x .

Proof. Let V be a sufficiently small clean neighbourhood of x which is defined
by the slope datum (U , h) and wt(V) = Y. Since the pairing

[ ⋅, ⋅ ]κU ∶ ηVHtol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY

is assumed to be non-degenerate, then by Proposition 4.1.3, L
adj(V) =

d(RV/RY). Thus,

Ladj(x) = 0⇔ Ladj
∈ supp x ⇔ d(RV/RY) ⊂ supp x ⇔ wt is ramified at x ,

where the last equivalence is due to Auslander–Buchsbaum’s theorem.

Theorem 4.2.9. Let x ∈ Efl0 be a good and smooth point and let κ = wt(x). We
further assume x lives in the open locus of Efl0 where p ≠ 0. Assume again that
the pairing

[ ⋅, ⋅ ]κU ∶ ηVHtol,≤h
par,κU

× ηVHtol,≤h
par,κU

→ RY

is non-degenerate at wt(x). Let Rwt(x ) and Rx be the local rings at wt(x)
and x respectively and denote by mwt(x ), mx their maximal ideals respectively.
Let Fittx be the 0-th Fitting ideal of Ω1

Rx /Rwt(x ) and define

e(x) ∶=max{e ∈ Z≥0 ∶ Fittx ⊂ me
x }.

Then, we have
ordx L

adj
= e(x).

Proof. By [Bel21, Theorem VIII. 1.4], we have d(Rx /Rκ) = Fittx (since x is a
smooth point) and so

e(x) =max{e ∈ Z≥0 ∶ d(Rx /Rκ) ⊂ me
x }.

On the other hand,

ordx L
adj ∶=max{e ∈ Z≥0 ∶ Ladj(x) ∈ me

x }.
In our situation, we see that

m
e(x )
x ⊃ d(Rx /Rκ) = Ladj(x)Rx ⊂ m

ordx Ladj

x .

As the inclusions on both sides satisfy the same condition, the exponents coin-
cide.

Remark 4.2.10. We remark that the above two theorems have their roots in
the GL2 case. Theorem 4.2.8 is an analogue of [Bel21, Theorem VIII.4.7] while
Theorem 4.2.9 is inspired by [op. cit., Theorem VIII.4.8(i)].
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4.3 Non-degeneracy of the pairing

In the statements of Theorem 4.2.8 and Theorem 4.2.9, we assumed that the
pairing [ ⋅, ⋅ ]wt(x ) is non-degenerate at wt(x). In this subsection, we justify
that such an assumption is not vacuous.

Let κ ∶ TGLg ,0 → R be any p-adic weight. Recall the pairing [ ⋅, ⋅ ]κ on the
parabolic cohomology groups is defined by the pairing

[ ⋅, ⋅ ]○κ ∶D†
κ(T0,R) ×D†

κ(T0,R)→ R,

(µ1, µ2) ↦ ∫
T2

00

ehstκ ((tγ2
tυ)(1g

p−1 1g
)(γ1

υ1
)) dµ1dµ2.

When κ = k ∈ Z
g
>0 is a dominant algebraic weight, recall that we also have

algebraic representations Valg

GSp2g ,k
and V

alg,∨

GSp2g ,k
defined in §2.3. From now on,

we abuse the notation, writing V
alg

GSp2g ,k
and V

alg,∨

GSp2g ,k
for their Qp-realisation.

That is,

V
alg

GSp2g ,k
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ ∶ GSp2g(Qp) →Qp ∶

● φ is a polynomial function● φ(γ β) = k(β)φ(γ)∀(γ,β) ∈ GSp2g(Qp) ×BGSp2g
(Qp)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
V

alg,∨
GSp2g ,k

= HomQp
(Valg

GSp2g ,k
,Qp).

There is an obvious injective morphism

V
alg

GSp2g ,k
→ Ar

k(T0,Qp), φ↦ ((γ,υ) ↦ k(β)φ((γ0

υ0 1̆g
tγ−10 1̆g

)))
for any r, where (γ,υ) = (γ0,υ0)β with γ0 ∈ U

opp
GLg,1

and β ∈ B+GLg ,0
. There-

fore, there is a natural surjection D
†
k
(T0,Qp) → V

alg,∨

GSp2g ,k
, which is Iw

+

GSp2g
-

equivariant. We then descend the pairing [ ⋅, ⋅ ]○k to V
alg,∨
GSp2g ,k

by the same for-

mula

[ ⋅, ⋅ ]○k ∶Valg,∨
GSp2g ,k

×Valg,∨
GSp2g ,k

→Qp,

(µ1, µ2) ↦ ∫
γ1,γ2∈U

opp

GSp2g,1

ehstk (tγ2 (1g

p−1 1g
)γ1) dµ1(γ1)dµ2(γ2).

Proposition 4.3.1. Let k ∈ Zg
>0 be a dominant weight. Then the pairing [ ⋅, ⋅ ]○k

on V
alg,∨

GSp2g ,k
is non-degenerate.

Proof. Recall the symplectic pairing ⟨ ⋅, ⋅ ⟩k on V
alg,∨

GSp2g ,k
from Remark 2.3.1

⟨µ1, µ2 ⟩k = ∫
γ1,γ2∈GSp2g(Qp)

ehstk (tγ2 ( − 1̆g

1̆g
)γ1) dµ1(γ1)dµ2(γ2).
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Since the symplectic pairing ⟨ ⋅, ⋅ ⟩ on VZ is non-degenerate, we know that
⟨ ⋅, ⋅ ⟩k is non-degenerate.

Define

⟨ ⋅, ⋅ ⟩′k ∶Valg,∨

GSp2g ,k
×Valg,∨

GSp2g ,k
→Qp,

(µ1, µ2) ↦ ∫
γ1,γ2∈U

opp

GSp2g
(Qp)

ehstk (tγ2 ( − 1̆g

1̆g
)γ1) dµ1(γ1)dµ2(γ2).

Then ⟨ ⋅, ⋅ ⟩′k is a non-degenerate pairing. Indeed, we have

⟨µ1, µ2 ⟩k = ∫
γ1,γ2∈GSp2g(Qp)

ehstk (tγ2 ( − 1̆g

1̆g

)γ1) dµ1(γ1)dµ2(γ2)
= ∫

γ1,γ2∈GSp2g(Qp)
k(β1)k(β2)ehstk (tγ′2 ( − 1̆g

1̆g
)γ ′1) dµ1(γ1)dµ2(γ2),

where γi = γ
′

i β with γ′i ∈ U
opp
GSp2g

(Qp) and βi ∈ BGSp2g
(Qp) for i = 1,2. As k is

non-zero on BGSp2g
(Qp), we see that ⟨µ1, µ2 ⟩k = 0 if and only if ⟨µ1, µ2 ⟩

′

k = 0.

Now, let [ ⋅, ⋅ ]′k be the pairing on V
alg,∨

GSp2g ,k
defined by

[µ1, µ2 ]
′

k ∶= ⟨µ1,wp ⋅µ2 ⟩
′

k

= ∫
γ1,γ2∈U

opp

GSp2g
(Qp)

ehstk (tγ2 (1g

p−1 1g
)γ1) dµ1(γ1)dµ2(γ2).

Then, [ ⋅, ⋅ ]′k is again a non-degenerate pairing since wp ∈ GSp2g(Qp). Recall

that Uopp
GSp2g ,1

≃ Z
d0

p , for some d0 ∈ Z>0, as p-adic manifolds, thus Uopp
GSp2g

(Qp) ≃
Qd0

p . However, Valg,∨

GSp2g ,k
is defined algebraically and Zd0

p ⊂Q
d0

p is Zariski dense,

thus the non-degeneracy of [ ⋅, ⋅ ]′k implies the non-degeneracy of [ ⋅, ⋅ ]○k.
Theorem 4.3.2 (Control theorem). For g ∈ Z>0, let k = (k1, ..., kg) ∈ Zg

>0 be a
dominant algebraic weight. Then, there exists hk ∈R>0 (depending on k) such
that for any Q>0 ∋ h < hk, we have a canonical isomorphism

Ht
par(XIw+(C),D†

k)≤h ≃Ht
par(XIw+(C),Valg,∨

GSp2g ,k
)≤h

(see also [AS08, Theorem 6.4.1]).

Proof. Let K ∶= ker(D†
k(T0,Qp) →V

alg,∨
GSp2g ,k

) and so we have an exact sequence

0→ C●(Iw+GSp2g
,K) → C●(Iw+GSp2g

,D
†
k
) → C●(Iw+GSp2g

,V
alg,∨

GSp2g ,k
) → 0.

Define the [Iw+GSp2g
up,i Iw

+

GSp2g
]-action on V

alg,∨

GSp2g ,k
as the same formula on

D
†
k
(T0,Qp) but with up,i acting on V

alg,∨

GSp2g ,k
via the conjugation

up,i ⋅γ = up,i γ u−1p,i
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on GSp2g(Qp). We then see that the map

C●(Iw+GSp2g
,D

†
k
) → C●(Iw+GSp2g

,V
alg,∨

GSp2g ,k
)

is Hecke equivariant and so C●(Iw+GSp2g
,K) is Hecke stable. Denote

by Ctol
K and Ctol

k,alg the total cochain complexes of C●(Iw+GSp2g
,K) and

C●(Iw+GSp2g
,V

alg,∨

GSp2g ,k
) respectively. Additionally, let F †

k
and F alg

k
be the Fred-

holm determinant of Up acting on Ctol
k and Ctol

k,alg respectively. We define

hK ∶= sup{h ∈Q>0 ∶ ∣∣Up∣∣K ∶= sup{ ∣∣Up ⋅ σ∣∣†∣∣σ∣∣† ∶ ∀σ ∈ Ctol
K } ≤ p−h} ,

where ∣∣ ⋅ ∣∣† is the norm on Ctol
k

h† ∶= sup{h ∈Q>0 ∶ F †
k
= Q†S† satisfying conditions in Proposition 3.3.4 w.r.t. h}

halg ∶= sup{h ∈Q>0 ∶ F alg

k
= QalgSalg satisfying conditions in Proposition 3.3.4 w.r.t. h}

hk ∶=min{hK, h†, halg}.
Now, we claim the following: Fix Q>0 ∋ h < hK, if Q ∈Qp[X] with Q∗(0) ∈Q×p
and the slope of Q is ≤ h, then Q∗(Up) acts on Ctol

K invertibly. Write Q =
a0 + a1X +⋯+ anXn. The two conditions on Q means

● an ∈Q×p
● vp(an) − vp(ai) ≤ (n − i)h for all i = 0, ..., n − 1.

Therefore, we have

∣ai/an∣ < p(n−i)h and ∣∣ ai
an
Un−i
p ∣∣

K

< 1.

Let P (X) = − a0

an
Xn− a1

an
Xn−1−⋯− an−1

an
X , then 1

an
Q∗(X) = 1−P (X). We can

deduce that ∣∣P (Up)∣∣K < 1 and so Q∗(Up) acts on Ctol
K invertibly with inverse

given explicitly by

Q∗(Up)−1 = 1

an
∑
j≥0

P (Up)j .
Now fix h < hk, then we have the corresponding decomposition F †

k
= Q

†
h
S

†
h

and

F
alg
k
=Q

alg
h
S
alg
h

and

C
tol,≤h
k

↠ C
tol,≤h
k,alg

with C
tol,≤h
k

= kerQ
†,∗
h
(Up∣Ctol

k
) and C

tol,≤h
k,alg

= kerQ
alg,∗
h
(Up∣Ctol

k,alg
). Let Ctol,≤h

K

be the kernel of the surjection, then, by taking cohomology, we have the corre-
sponding long exact sequence

⋯ Ht(XIw+(C),K)≤h Ht(XIw+(C),D†
k
)≤h

Ht(XIw+(C),Valg,∨
GSp2g ,k

)≤h Ht+1(XIw+(C),K)≤h ⋯
.
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The above claim shows that both Q
†,∗
h
(Up) and Q

alg,∗

h
(Up) act on

Ht(XIw+(C),K)≤h invertibly. Take any σ ∈ Ht(XIw+(C),K)≤h, the

image of Q
†
h
(Up)σ in Ht(XIw+(C),D†

k
)≤h is zero, thus there exists

σ′ ∈ Ht−1(XIw+(C),Valg,∨
GSp4,k

)≤h whose image in Ht(XIw+(C),K)≤h is

Q
†,∗
h
(Up)σ. Since Q

alg,∗
h
(Up)σ′ = 0, thus Q

alg,∗
h
(Up)Q†,∗

h
(Up)σ = 0. This

implies σ = 0 so the desired isomorphism follows.

Remark 4.3.3. The above control theorem is basically [AS08, Theorem 6.4.1]
with only a slight modification. There is another version of the control theorem
by [Urb11, Proposition 4.3.10] (see also [Han17, Theorem 3.2.5]), which gives
a more explicit description of the bound hk. However, the control theorem in
[Urb11] requires a modification on the Shimura varieties while this is not the
case in our version.

Corollary 4.3.4. Let κ = k ∈ Zg
>0 be a dominant algebraic weight. Then the

pairing
[ ⋅, ⋅ ]k ∶Htol,≤h

par,k
×Htol,≤h

par,k
→Qp

is non-degenerate when h < hk.

Proof. This is an easy consequence of Proposition 4.3.1 and Theorem 4.3.2.

We conclude the paper by the following immediate consequence of Theo-
rem 4.2.8, Theorem 4.2.9 and Corollary 4.3.4.

Corollary 4.3.5. Suppose x ∈ Efl0 is a good classical point, i.e., x satisfies the
following conditions

● x is a good point;

● wt(x) = k ∈ Z>0 is a dominant algebraic weight; and

● there is a slope datum (U , h) such that x ∈ U and h < hk.

Then

1. The adjoint p-adic L-function Ladj vanishes at x if and only if the weight
map wt ∶ E0 →W is ramified at x .

2. If x is furthermore a smooth point of Efl0 , let e(x) be as defined in Theorem
4.2.9, then we have ordx Ladj = e(x).
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