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scribes the evolution of the genetic type composition of a population
under selection and recombination in a law of large numbers regime.
So far, an explicit solution has seemed out of reach; only in the special
case of three sites with selection acting on one of them has an approx-
imate solution been found, but without an obvious path to general-
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approach for the case of an arbitrary number of neutral sites linked
to one selected site. This leads to a recursive integral representation
of the solution. Starting from a variant of the ancestral selection-
recombination graph, we develop an efficient genealogical structure,
which may, equivalently, be represented as a weighted partitioning
process, a family of Yule processes with initiation and resetting, and
a family of initiation processes. We prove them to be dual to the
solution of the differential equation forward in time and thus obtain a
stochastic representation of the deterministic solution, along with the
Markov semigroup in closed form.
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1 Introduction

The recombination equation is a well-known nonlinear system of ordinary dif-
ferential equations from mathematical population genetics (see [14] for the gen-
eral background), which describes the evolution of the genetic composition of
a population evolving under recombination. The genetic composition is iden-
tified with a probability measure on a space of sequences of finite length; and
recombination is the genetic mechanism by which, loosely speaking, two parent
individuals create the mixed sequence of their offspring during sexual repro-
duction, by means of one or several crossovers between the parental sequences.
Elucidating the underlying structure and finding solutions was a challenge for
a century, namely since the first studies by Jennings [30] in 1917 and Rob-
bins [47] in 1918. The matter finally became simple and transparent when the
corresponding stochastic backward (or dual) process was considered, which de-
scribes how the genetic material of an individual from the current population
is partitioned across an increasing number of ancestors when the lines of de-
scent are traced back into the past [6, 4]. This gives rise to a Markov process
on the set of partitions of the set of sequence sites; namely, a variant of the
ancestral recombination graph [28, 24, 25, 29, 12, 36], see also [18, Ch. 3.4].
With its help, one obtains a stochastic representation of the solution of the
(deterministic) recombination equation, and a recursive solution of the Markov
semigroup, see [4, 6], and [5] for a review. Furthermore, it provides the deeper
reason for the underlying linear structure, which had been observed previously
in the context of genetic algebras [40, 39]. The recombination equation may
therefore be considered solved.

We now take the next step and attack the selection-recombination equation,
which describes evolution under the joint action of recombination and selection,
where selection means that fit individuals flourish at the expense of less fit ones.
The selection-recombination equation first appeared in a paper by Kimura [32]
in 1956. This differential equation, as well as the analogous discrete dynamical
system, has since been studied intensely for a large variety of selection and
recombination mechanisms, see, for example, [31, 33], [39, Chs. 9.5,9.6], as well
as [14, Ch. II] and [10, Chs. 7,8] for comprehensive reviews. Most research has
focussed on the long-term behaviour, which can be complex and may display
subtle and counterintuitive dependence on the parameters; in particular, Hopf
bifurcations and stable limit cycles may occur [26, 2]. Much research has been
devoted to the case where recombination is much faster than selection, so that
time-scale separation applies and the dynamics is confined to a submanifold,
see [43, 46].

While a large body of knowledge has accumulated on the long-term behaviour,
explicit solutions have seemed out of reach even in the simplest nontrivial cases.
Indeed, the monograph [1] by Akin on the differential geometry of population
genetics starts with the sentence ‘The differential equations which model the
action of selection and recombination are nonlinear equations which are impos-
sible to solve explicitly.’ The only situation where an approximate solution has

Documenta Mathematica 26 (2021) 743–793



Ancestral Lines under Selection and Recombination 745

been found is a sequence of length three in a two-letter alphabet, where only
one of the sites is under selection, and recombination involves one breakpoint
(or crossover) at a time between the parental sequences (Stephan, Song, and
Langley 2006 [49]). The approximation (in terms of special functions) seems
sufficiently precise, but the derivation is cumbersome and does not reveal the
underlying mathematical structure; in particular, it does not convey any hope
for a generalisation beyond three sites.
The goal of this article is to reconsider the selection-recombination equation
with one selected site and single crossovers, to provide a systematic and trans-
parent approach that also generalises to an arbitrary number of sites, and to
establish an exact solution via a recursion. We do this in two ways that comple-
ment each other: firstly, we solve the differential equation in the usual (forward)
direction of time by analytic methods with a slight algebraic flavour. Secondly,
we extend the probabilistic approach used in [6, 4] for the pure recombina-
tion equation by tracing back the (potentially) ancestral lines of individuals
in the current population, this time by a variant of the ancestral selection-
recombination graph [17, 37, 13]. This gives rise to a Markov process on the
set of weighted partitions of the set of sequence sites, dual to the selection-
recombination equation. The corresponding Markov semigroup is available in
closed form, and the resulting stochastic representation yields deep insight into
the genealogical content of the solution of the differential equation. Moreover,
it gives access to the long-term behaviour.
The paper is organised as follows. Sections 2 and 3 introduce the selection-
recombination equation, both in its own right and in terms of a dynamical law
of large numbers of the corresponding Moran model, an interactive particle
system that describes a finite population under selection and recombination.
A recursive integral representation of the solution is given in Section 4. In
Sections 5 and 6, we construct the stochastic process backward in time and
provide the genealogical argument behind our recursion. The corresponding
dual process is formulated, and the formal duality result is proved, in Sec-
tion 7. Finally, the solution is presented in Section 8 in closed form, and its
long-term behaviour investigated. In the Appendix, we discuss marginalisation
consistency, which describes the forward dynamics when only a subset of the
sites is considered. This is a fairly obvious, but nevertheless powerful, property
in the case without selection [6]. In the presence of selection, however, it is
more subtle and only true for certain subsets, but all the more interesting.

2 The selection-recombination equation

We model the distribution of the genetic types in a sufficiently large (hence
effectively infinite) population under selection and recombination. The genetic
type of an individual is represented by a sequence x on the set S := {1, . . . , n}
of sites and in the type space

X :=×
i∈S

Xi = X1 × . . .×Xn with Xi = {0, 1}. (1)

Documenta Mathematica 26 (2021) 743–793



746 F. Alberti, E. Baake

The type distribution is identified with a probability measure ω ∈ P(X) on the
type space, where P(X) denotes the set of all probability measures on X . More
generally, we defineM(X) to be the set of all finite signed measures on X .
It is convenient to think of ω as an element of the vector space

V = VS :=
⊗

i∈S

Vi = V1 ⊗ . . .⊗ Vn, (2)

where each Vi is a copy of R2 and
⊗

denotes the tensor product of vector
spaces. Here, a vector vi ∈ R

2 of the form vi = (pi, 1− pi)
T for some pi ∈ [0, 1]

is identified with the probability distribution piδ0+(1−pi)δ1 on Xi with δ0 (δ1)
denoting the point measure on 0 (on 1). The elementary tensors v1 ⊗ . . .⊗ vn
correspond to products of one-dimensional marginals. Hence, it is easy to see
that the tensor product of vector spaces in (2) provides an equivalent descrip-
tion ofM(X).
For a subset A ⊆ S, we define the canonical projection

πA : X −−→×
i∈A

Xi =: XA, x 7→ (xi)i∈A =: xA. (3)

The push-forward of any ν ∈ M(X) by πA is denoted by πA.ν, which we
abbreviate by νA. Thus, νA is the marginal measure (or marginal distribution,
if ν is a probability measure) with respect to the sites in A. More explicitly,

νA(E) = ν
(
π−1
A (E)

)
for all E ⊆ XA. (4)

Note that XS = X and νS = ν. Moreover, X∅ is the set with the single ele-
ment e, which we think of as the empty sequence. Thus,M(X∅) is isomorphic
to R, and

ν∅ = ν(X). (5)

Furthermore, we write α ⊗ ν or ν ⊗ α instead of αν, for all ν ∈ M(XA) and
α ∈ R, in line with the usual identification of the empty tensor product with
the base field. In particular, if ν ∈ P(X∅), one has ν = 1, and the above
convention just means to omit such factors from products. Later, we need
to project not only from X , but also from factors XA. In order to keep the
notation simple, all these projections will be denoted by the same letter π.
In particular, we will write, for any two subsets A ⊆ S and B ⊆ S and any
ν ∈M(X),

πA.(πB.ν) = πB.(πA.ν) = πA∩B.ν. (6)

In line with Eq. (5), this implies that πA.ν = ν(XB) ∈ R for any finite signed
measure ν ∈ M(XB) and A ⊆ S with A ∩B = ∅.
To describe the action of selection, we first fix a site 1 6 i∗ 6 n, which we
will refer to as the selected site. An individual of type x ∈ X is deemed to be
fit or of beneficial type if xi∗ = 0 and unfit or of deleterious type otherwise,
regardless of the letters at all other sites. We also introduce

f(ν) := ν
(
π−1
i∗

(0)
)
= ν{i∗}(0) (7)
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for the proportion of fit individuals in a population with type distribution ν,
and the selection operator F : P(X)→ P(X) via

F (ν)(x) = (1 − xi∗)ν(x). (8)

Interpreting the type distribution as an element of V as given in (2), the selec-
tion operator can also be written in tensor notation as

F = Pi∗
⊗ idS∗ . (9)

Here

P :=

(
1 0
0 0

)
,

the subscripts indicate the site(s) at which the matrices act, and we set S∗ :=
S\i∗, where we use the shorthand S\i∗ for S\{i∗} (note that card(S

∗) = n−1).
In words, F is the canonical projection to the subspace spanned by all elements
of the form (

1
0

)
⊗ v with v ∈

⊗

i∈S∗

Vi,

and we recall that (1, 0)T and (0, 1)T correspond to the point measures δ0 and
δ1 on Xi∗ . Furthermore, we define

b(ν) :=

{
Fν
f(ν) if f(ν) 6= 0,

ν if f(ν) = 0,
(10)

and

d(ν) :=

{
(1−F )ν
1−f(ν) if f(ν) 6= 1,

ν if f(ν) = 1.
(11)

We will also write Fν instead of F (ν) where there is no risk of confusion.
The measure b(ν) (the measure d(ν)) is the type distribution in the beneficial
(deleterious) subpopulation.
Selection now works as follows. Unfit individuals reproduce at rate 1, while fit
individuals reproduce at rate 1 + s, s > 0. Put differently, every individual,
regardless of its type, has the neutral reproduction rate 1, while the fit indi-
viduals have an additional (selective) rate s. The net effect of this is that, in
each infinitesimal time interval of length dt, an infinitesimal portion sf(ωt) dt
of ωt is replaced by b(ωt). That is, the dynamics of the type distribution of our
population under selection alone can be described by the ordinary differential
equation

ω̇t = sf(ωt)
(
b(ωt)− ωt

)
. (12)

With the notation (10), Eq. (12) turns into the deterministic selection equation

ω̇t = s
(
F − f(ωt)

)
ωt =: Ψsel(ωt). (13)
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Figure 1: A sequence of length 10 with selected site, and two instances of
predecessor, head, and tail; see the text for more.

We will sometimes speak of s as the selection intensity.
Next, we describe the action of single-crossover recombination. To this end, it
is vital to introduce the following partial order on S.

Definition 2.1. For two sites i, j ∈ S, we say that i precedes j, or i 4 j,
if either i∗ 6 i 6 j or i∗ > i > j. We write i ≺ j if i 4 j and i 6= j. We
furthermore define the i-tail as the set

Di := {j ∈ S : i 4 j}

of all sites that succeed i, including i itself. We define the i-head Ci as the
complement of the i-tail, Ci := S \ Di = Di (throughout, the overbar will
denote the complement with respect to S); see Figure 1. Note that Di∗ = S

and Ci∗ = ∅. Finally, if i 6= i∗, we denote by
←−
i the predecessor of i; that is,

the maximal j ∈ S with j ≺ i (note that
←−
i = i∗ is possible).

Remark 2.2. 1. Definition 2.1 may appear awkward in that i∗ ∈ Di∗ but
i∗ ∈ Ci for i ∈ S

∗. However, it will become clear in Section 7 why this is
exactly how it must be.

2. In the limiting case s = 0, we may single out any site as the selected one;
say i∗ = n, so that Di = [1 : i] and Ci = [i + 1 : n], where [a : b] for
a, b ∈ S denotes the interval [a, a+1, . . . , b−1, b], which is empty if b < a.
♦

For i ∈ S∗, we now define the recombinator Ri : P(X)→ P(X) by

Ri(ν) := νCi ⊗ νDi , (14)

with the notation of (3) and (4); we will also write Riν instead of Ri(ν). Then,
the dynamics under the influence of single-crossover recombination is captured
by the deterministic recombination equation

ω̇t =
∑

i∈S∗

̺i(Ri − id)ωt =: Ψrec(ωt) (15)
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with recombination rates ̺i > 0 for i ∈ S∗; for consistency, we set ̺i∗ := 0.
On an intuitive level, Eq. (15) means that during each infinitesimal time interval
of length dt and for every i ∈ S∗, an infinitesimal portion of size ̺i dt of the
population is killed off and replaced by the offspring of two randomly chosen
parent individuals of types x = (x1, . . . , xn) and y = (y1, . . . , yn) (which occur
in the current population with frequencies ωt(x) and ωt(y), respectively); the
offspring then has type (xCi

, yDi
). This means that, for i < i∗ (i > i∗), a

single-crossover event takes place between sites i and i + 1 (sites i − 1 and i);
in any case, we say that recombination happens at site i. This way, we address
the links between neighbouring sites, as in [3], but in a way that depends on
the location of the selected site.
Occasionally (cf. Section 6), it will be handy to employ a more general notion
of recombinators in terms of partitions; a partition of S is a set A of nonempty,
disjoint subsets of S that exhaust S. We will refer to the elements of A as
blocks. We denote by P (S) the set of partitions of S (not to be confused with
P(X), the set of probability measures on X). A partition is called an interval
(or ordered) partition if all its blocks are intervals, that is, consist of contiguous
numbers. Given an (arbitrary) partition A of S and a nonempty subset U ⊆ S,
we define by A|U := {U ∩ A : A ∈ A} \ {∅} the partition induced by A on U .
Generalising Eq. (14), we define, for an arbitrary partition A of S,

R̃A(ν) :=
⊗

A∈A

νA. (16)

Clearly, Ri = R̃{Ci,Di} for i ∈ S∗. The formulation in terms of partitions is
natural because it describes how the offspring sequence is pieced together from
the parental sequences. We refer the interested reader to [6, 4] and the recent
review [5] for a comprehensive discussion of the properties of R̃A and for the
general recombination equation, which involves arbitrary partitions rather than
single crossovers only.
We now return to the single-crossover case and assume that selection and re-
combination act independently of each other. Combining (13) and (15), we
obtain the deterministic selection-recombination equation (SRE)

ω̇t = Ψ(ωt), where Ψ := Ψsel + Ψrec. (17)

The independence, as implied by the additivity, reflects the assumption that
both selection and recombination are rare, so that one can neglect the possibil-
ity that recombination happens during selective reproduction; see Remark 3.1
below, and [27] for the worked argument in the analogous case of the selection-
mutation equation.
We will throughout denote by ω := (ωt)t>0 the solution of Eq. (17). Let
us mention at this point that, for i∗ ∈ A ⊆ S, the SRE is marginalisation
consistent in the sense that the marginal ωA := (ωA

t )t>0 satisfies

ω̇A
t = πA.Ψsel(ωt) + πA.Ψrec(ωt) = ΨA

sel(ω
A
t ) + ΨA

rec(ω
A
t )
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with initial condition ωA
0 , for suitably defined ΨA

sel and ΨA
rec; this will be laid

out in Appendix A. Although this is not essential for the core of the paper,
it helps to understand the graphical constructions in Section 5, and is also of
independent interest. There is no such consistency for i∗ /∈ A, which is a source
of difficulties and pitfalls in the selective case.

3 The Moran model with selection and recombination

To gain a better understanding of Eq. (17) and to prepare for the genealogical
arguments in Section 5, we briefly recall the Moran model with selection and
recombination. This is a stochastic model that describes selection and recombi-
nation in a finite population, from which (17) is recovered via a dynamical law
of large numbers (LLN). We will use the representation as an interacting parti-

cle system (IPS). The Moran IPS is a Markov chain (Ξ
(N)
t )t>0 with state space

XN , the set of type configurations of a population of N individuals, labelled

by 1 6 α 6 N . Starting from some initial configuration
(
Ξ
(N)
0 (α)

)
α∈[1:N ]

, it

evolves as follows.

• Every individual β reproduces asexually at a fixed rate according to its
fitness. That is, unfit individuals reproduce at rate 1 whereas fit individ-
uals reproduce at rate 1 + s, where s > 0 is again the selection intensity.
Upon reproduction, the single offspring inherits the parent’s type and re-
places a uniformly chosen individual α in the population (possibly its own
parent). We will realise the different reproduction rates of the two types
by distinguishing between neutral reproduction events, which happen at
rate 1 to all individuals regardless of their type, and selective reproduc-
tion events, which are additionally performed by fit individuals at rate
s. This distinction is a crucial ingredient in the ancestral selection graph
[34].

• At rate ̺i, i ∈ S∗, every individual β reproduces sexually, choosing
a partner γ uniformly at random, possibly β itself. (Biologically, this
means that we include the possibility of selfing.) The offspring is of type(
Ξ
(N)
Ci

(β),Ξ
(N)
Di

(γ)
)
and replaces another uniformly chosen individual α,

possibly one of its own parents.

Formally, we can summarise the transitions in the Moran IPS, starting at
ξ ∈ XN , as follows.

ξ → ξ
{α,β}
neut at rate 1

N
for all 1 6 α, β 6 N,

ξ → ξ
{α,β}
sel at rate s

N
for all 1 6 α, β 6 N, and

ξ → ξ{α,β,γ,i}rec at rate
̺i
N2

for all 1 6 α, β, γ 6 N and i ∈ S∗,
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where, for 1 6 ε 6 N , the new state vectors explicitly read

ξ
{α,β}
neut (ε) =

{
ξ(β), ε = α,

ξ(ε), otherwise,

ξ
{α,β}
sel (ε) =

{
ξ(β), ε = α and ξi∗(β) = 0,

ξ(ε), otherwise,

(18)

and

ξ{α,β,γ,i}rec (ε) :=

{(
ξCi

(β), ξDi
(γ)

)
, ε = α,

ξ(ε), otherwise.

Remark 3.1. The reader may wonder why we include both sexual and asexual
reproduction. However, the ‘asexual’ reproduction events are actually sexual
ones in which no recombination has occurred; that is, C = ∅ and D = S, so the
offspring is a full copy of the first parent, and the second parent is irrelevant.
Selective reproduction never occurs together with recombination due to the
independence built into the SRE. ♦

Consider now the process Z(N) := (Z
(N)
t )t>0, where Z

(N)
t is the empirical

measure

Z
(N)
t := 1

N

N∑

α=1

δ
Ξ

(N)
t (α)

.

Proposition 3.1 in [15] in combination with Theorem 2.1 from [19] (see also [8])
shows that, as N → ∞ without rescaling of parameters or time, the processes
Z(N) converge almost surely locally uniformly to ω, the solution of the deter-
ministic SRE (17). This is because the Moran models, indexed with population
size, form a density-dependent family, for which a dynamical LLN applies; see
[20, Ch. 11].
For our purpose, it is particularly profitable to use the graphical representation
of the Moran IPS, see Figure 2. Here, individuals are represented by horizontal
lines, labelled 1 6 α 6 N from bottom to top, and reproduction events are
depicted as arrows between the lines with the parent at the tail, the offspring
at the tip, and the offspring replacing the individual at the target line (arrows
pointing to their own tails have no effect and are omitted). In line with (18) and
for reasons to become clear when taking the ancestral perspective in Section 5,
we distinguish two types of arrows: neutral arrows (with normal arrowheads),
which appear between every ordered pair of lines at rate 1/N regardless of the
types of the lines; and selective arrows (with star-shaped arrowheads), which
are laid down at rate s/N between every ordered pair of lines, again regardless
of types. Similarly, a recombination event in which the individual at line α
is replaced by the joint offspring of lines β and γ is encoded as a square (on
the α-th line) with the recombination site i inscribed. The square has two
arms connecting to β and γ and labelled C and D, indicating that β and γ
contribute the i-head and i-tail, respectively. These graphical elements appear
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Figure 2: Graphical representation of the Moran IPS. Time runs from left to
right. Arrows corresponding to neutral reproduction events are depicted with
normal arrowheads, selective arrows with star-shaped arrowheads; recombi-
nation events are symbolised by squares containing the recombination point,
and arms connecting to the parents that contribute the head (C) and tail (D)
segments. The selected site is marked in light brown.

at rate ̺i/N
2 for every ordered triple of lines and every i ∈ S∗. If β = γ, the

recombination event turns into a neutral reproduction event.

Remark 3.2. In view of this graphical construction, another perspective on
the transition rates in the Moran IPS is natural. We can say that, with rates ̺i,
each individual is replaced by the joint offspring of two uniformly chosen parents
with the crossover point at site i. Likewise, at rate 1, each individual is replaced

by the offspring of a single uniformly chosen parent; and with rate sf(Z
(N)
t ), it

is replaced by the offspring of a parent chosen uniformly from the subset of fit
individuals. This point of view will be particularly useful when looking back
in time in Section 5. ♦

Using different kinds of arrows for the two types of reproduction events (rather
than simply letting fit individuals shoot reproduction arrows at a faster rate)
allows for an untyped construction of the Moran IPS. That is, we first lay
down the graphical elements between the lines regardless of the types and only
then assign an initial type configuration. This type configuration is finally
propagated forward in time under the rule that only individuals of beneficial
type use the selective arrows to place their offspring, while neutral arrows and
recombination arms are used by all individuals, regardless of type.

4 Recursive solution of the selection-recombination equation

Our first main result will be a recursive solution of the SRE. The recursion
starts at i∗ and works along the site indices in agreement with the partial or-
der of Definition 2.1. If the original indices are used, the recursion must be
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01 2 3 45 6 7 89

1 2 3 4 5 6 7 8 9 10

Figure 3: A nondecreasing permutation of sites. The original labels of the
sites, 1 6 i 6 n, are at the top; below each site with label i, we have noted the
corresponding k for which ik = i.

formulated individually for every choice of i∗; in particular, it looks quite dif-
ferent depending on whether i∗ is at one of the ends or in the interior of the
sequence. To establish the recursion in a unified framework, we introduce a
relabelling; let us fix a nondecreasing (in the sense of the partial order from
Definition 2.1) permutation (ik)06k6n−1 of S (cf. Fig. 3) and denote the corre-
sponding heads and tails by upper indices, that is, C(k) := Cik and D(k) := Dik

(cf. Figure 1). Note that i0 = i∗, D
(0) = S and C(0) = ∅. Note also that this

definition implies that for all ℓ > k, one has either D(ℓ) ⊆ D(k) (if ℓ < k) or
D(ℓ) ⊆ C(k) (if ℓ and k are incomparable). Furthermore, we define ̺(k) := ̺ik
and R(k) = Rik for k > 0.
First, we recapitulate the solution of the pure selection equation, that is, we
solve (17) in the special case that all recombination rates vanish. Then, in
accordance with the labelling given by (ik)16k6n−1, we will successively add
sites at which we allow recombination. We set the scene as follows.

Definition 4.1. For ̺(1), . . . , ̺(n−1) as above and every k ∈ [0 : n− 1], we set

Ψ(k)
rec :=

k∑

ℓ=1

̺(ℓ)
(
R(ℓ) − id

)
, Ψ(k) := Ψsel +Ψ(k)

rec

(with the usual convention that the empty sum is 0, whence Ψ
(0)
rec = 0 and

Ψ(0) = Ψsel). We then define the SRE truncated at k as the differential equation

ω̇
(k)
t = Ψ(k)(ω

(k)
t ).

We understand (ω(k))06k6n−1 as the family of the corresponding solutions, all
with the same initial condition ω0. In particular, ω(0) is the solution of the pure

selection equation (13). We also define ψ(k) = (ψ
(k)
t )t>0 as the flow semigroup

associated to the differential equation defined via Ψ(k). In line with (17), we

have ω = ω(n−1) (which is to say ωt = ω
(n−1)
t for all t > 0) and Ψ = Ψ(n−1),

and we likewise set ψ = ψ(n−1). We also write ϕ instead of ψ(0).

Proposition 4.2. The solution of the pure selection equation (13) with initial
condition ω0 ∈ P(X) is given by

ω
(0)
t = ϕt(ω0) =

estF (ω0) + (1− F )(ω0)

estf(ω0) + 1− f(ω0)
, t > 0, (19)
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with f and F as given in (7) and (8). In particular,

f(ωt) =
estf(ω0)

estf(ω0) + 1− f(ω0)
(20)

is increasing over time and ω
(0)
t = ϕt(ω0) is a convex combination of the initial

type distributions of the fit (that is, beneficial) and unfit (that is, deleterious)
subpopulations introduced in Eqs. (10) and (11), namely,

ω
(0)
t = f(ω

(0)
t )b(ω0) + (1 − f(ω

(0)
t ))d(ω0).

This implies in particular

b
(
ϕt(ω0)

)
= b(ω0) and d

(
ϕt(ω0)) = d(ω0). (21)

Proof. A straightforward verification. To see Eq. (21), recall that F is a pro-
jection and b(ν) is in the image of F , while d(ν) is in the image of 1 − F for
any ν ∈ P(X).

Remark 4.3. Eq. (20) generalises the well-known solution of the selection
equation for a single site, which is simply a logistic equation, cf. [18, p. 198].
Eq. (21) reflects the plausible fact that, while the proportion of fit individuals
increases at the cost of the unfit ones (as quantified in Eq. (19)), the type
composition within the set of fit types remains unchanged, and likewise for the
set of unfit types. ♦

The main result in this section is the following recursion for the solutions of
the (truncated) SREs.

Theorem 4.4. The family of solutions (ω(k))16k6n−1 of Definition 4.1 satisfies
the recursion

ω
(k)
t = e−̺(k)tω

(k−1)
t + πC(k) .ω

(k−1)
t ⊗ πD(k) .

∫ t

0

̺(k)e−̺(k)τω(k−1)
τ dτ

for 1 6 k 6 n − 1 and t > 0, where ω(0) is the solution of the pure selection
equation given in Proposition 4.2.

We will first give an analytic proof, followed, in the next section, by a genealog-
ical proof based on the ancestral selection-recombination graph (ASRG); this
will provide additional insight.
To deal with the nonlinearity of recombination and to exploit the underlying
linear structure (see [4]) more efficiently, we now introduce a variant of the
product of two measures that are defined on XA and XB, where A and B need
not be disjoint. Namely, given sets I, J ⊆ S and finite signed measures νI , νJ
on XI and XJ , respectively, we define

νI ⊠ νJ := (πI\J .νI)⊗ νJ ,
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which is a finite signed measure on XI∪J (recall that π
∅
.ν = ν(XI) for all

finite signed measures ν on XI , I ⊆ S). Note that νI here means any finite
signed measure on XI , whereas ν

I stands for the specific measure on XI that
is obtained from ν on X via νI = πI .ν.

Proposition 4.5. For I, J,K ⊆ S and finite signed measures νI , νJ , νK on
XI , XJ , and XK , respectively, the operation ⊠ has the following properties.

(i) (νI ⊠ νJ)⊠ νK = νI ⊠ (νJ ⊠ νK) (associativity).

(ii) If I ∩ J = ∅, we have νI ⊠ νJ = νI ⊗ νJ = νJ ⊠ νI (reduction to product
measure and commutativity).

(iii) If I ⊆ J , then νI ⊠ νJ = νI(XI)νJ (cancellation property).

Proof. For associativity, note that

(νI ⊠ νJ )⊠ νK =
(
(πI\J .νI)⊗ νJ

)
⊠ νK

=
(
π(I∪J)\K .(πI\J .νI)⊗ νJ

)
⊗ νK

= πI\(J∪K).νI ⊗ πJ\K .νJ ⊗ νK

= πI\(J∪K) ⊗ (νJ ⊠ νK) = νI ⊠ (νJ ⊠ νK),

where we have used in the third step that
(
(I ∪ J) \K

)
∩ (I \ J) = I \ (J ∪K).

When I ∩ J = ∅, one has

νI ⊠ νJ = πI\J .νI ⊗ νJ = πI .νI ⊗ νJ = νI ⊗ νJ = νJ ⊗ νI ,

which implies the claimed reduction to ⊗ and thus commutativity. Finally, for
I ⊆ J ,

νI ⊠ νJ = (πI\J .νI)⊗ νJ = (π
∅
.νI)⊗ νJ = νI(XI)νJ

establishes the cancellation property.

Under the conditions of Proposition 4.5, we now denote by νJ ⊞ νK the formal
sum of νJ and νK (and use ⊟ for the corresponding formal difference). Note
that the formal sum turns into a proper sum (and hence ⊞ reduces +) when
J = K. Furthermore, we define

νI ⊠ (νJ ⊞ νK) := (νI ⊠ νJ)⊞ (νI ⊠ νK). (22)

Clearly, the right-hand side reduces to a proper sum when I ∪ J = I ∪K.
Generalising the formal sum above, let A(XU ) be the real vector space of formal
sums

ν := λ1νU1
⊞ . . .⊞ λqνUq

,

where q ∈ N, λ1, . . . , λq ∈ R, U1, . . . , Uq ⊆ U ⊆ S, and νU1
, . . . , νUq

are

finite signed measures on XU1
, . . . , XUq

, respectively. We also write ν(XU ) :=∑q
i=1 λiνUi

(XUi
).
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Remark 4.6. If one extends the definition of ⊠ canonically to all of A(XU )
(recalling that the projections are linear),

(
A(XU ),⊠,⊞

)
becomes an associa-

tive, unital algebra with neutral element 1, the measure with weight 1 on X∅.
Recall that, when multiplying ν ∈ A(XI) and µ ∈ A(XJ) for disjoint I and J ,
the multiplication ⊠ agrees with the measure product ⊗. ♦

Now, we can rewrite Ψ
(k)
rec of Definition 4.1 as

Ψ(k)
rec

(
ν
)
= ν ⊠

( k

⊞
ℓ=1

̺(ℓ)
(
πD

ℓ
.ν − 1

))
; (23)

note that the right-hand side indeed reduces to a proper (rather than a formal)
sum of measures via (22), because every summand is a measure on XS .
We shall see later that, when combined with selection, this representation is
superior to the use of recombinators because it nicely brings out the recur-
sive structure; this will streamline calculations and naturally connect to the
graphical construction. The fact that the head alone determines the fitness
of an individual manifests itself in the right multiplicativity of Ψsel and its
associated flow ϕ (compare Definition 4.1), as we shall see next.

Lemma 4.7. For all µ ∈ P(X) and all ν ∈ A(XS∗),

F (µ⊠ ν) = F (µ)⊠ ν.

If, in addition, ν(XS∗) = 1, one has

Ψsel(µ⊠ ν) = Ψsel(µ)⊠ ν

and therefore ϕt(µ⊠ ν) = ϕt(µ)⊠ ν for every t > 0.

Proof. To keep the notation simple, we assume U1, U2 ⊆ S
∗ and ν = νU1

⊞ νU2

with finite signed measures νU1
and νU2

on XU1 and XU2 , respectively. By the
tensor product representation of F from (9), we have

F (µ⊠ νU1
+ µ⊠ νU2

)

= F (µ⊠ νU1
) + F (µ⊠ νU2

) = F (π
U1
.µ⊗ νU1

) + F (π
U2
.µ⊗ νU2

)

= (Pi∗ ⊗ idU1\i∗
)(π

U1
.µ)⊗ idU1(νU1

)

= + (Pi∗ ⊗ idU2\i∗
)(π

U2
.µ)⊗ idU2(νU2

)

= π
U1
.(Pi∗ ⊗ idS∗)(µ)⊗ idU1(νU1

) + π
U2
. (Pi∗ ⊗ idS∗) (µ)⊗ idU2(νU2

)

= F (µ)⊠ νU1
+ F (µ)⊠ νU2

,

which gives the first claim. Taking the first claim together with the fact that
f(µ⊠ ν) = f(µ) if ν(XS∗) = 1, we get the second and the third claim.

Now, the postponed proof becomes straightforward.
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Proof of Theorem 4.4. Let Ψ(k) be as in Definition 4.1. With the shorthand

ν
(k−1)
t := π

D(k) .

∫ t

0

̺(k)e−̺(k)τω(k−1)
τ dτ,

one has ν
(k−1)
t (XD(k)) = 1 − e−̺(k)t, and the right-hand side of the recursion

formula from Theorem 4.4 can be expressed as

µ
(k)
t := ω

(k−1)
t ⊠ (e−̺(k)t

1⊞ ν
(k−1)
t ). (24)

First, we show that

µ
(k)
t ⊠ πD(ℓ) .µ

(k)
t =

(
ω
(k−1)
t ⊠ πD(ℓ) .ω

(k−1)
t

)
⊠(e−̺(k)t

1⊞ ν
(k−1)
t ) (25)

for all 1 6 ℓ 6 k. To see this, write the left-hand side as ω
(k−1)
t ⊠ κ⊠ χ, where

κ := e−̺(k)t
1⊞ ν

(k−1)
t and

χ := π
D(ℓ) .

(
ω
(k−1)
t ⊠(e−̺(k)t

1⊞ ν
(k−1)
t )

)
= π

D(ℓ) .µ
(k)
t .

Recall that, by our monotonicity assumption on the permutation of sites, we
have either D(k) ⊆ D(ℓ) or D(k) ∩ D(ℓ) = ∅. In the first case, (25) follows
by cancelling κ using Proposition 4.5 (note that κ(X

D(k)) = 1). In the second

case, χ is just π
D(ℓ) .ω

(k−1)
t , so κ⊠ χ = χ⊠ κ, again by Proposition 4.5. Now

we compute, using (23) and (24) in the first step, (25) and Lemma 4.7 in the
second, Definition 4.1 in the third, and Proposition 4.5 in the last:

Ψ(k)(µ
(k)
t )

= Ψsel(ω
(k−1)
t ⊠

(
e−̺(k)t

1⊞ ν
(k−1)
t )

)
+

k∑

ℓ=1

̺(ℓ)µ
(k)
t ⊠ (π

D(ℓ) .µ
(k)
t ⊟ 1)

=
(
Ψsel(ω

(k−1)
t )+

k∑

ℓ=1

̺(ℓ)ω
(k−1)
t ⊠ (π

D(ℓ) .ω
(k−1)
t ⊟ 1)

)
⊠ (e−̺(k)t

1⊞ ν
(k−1)
t )

=
(
Ψ(k−1)(ω

(k−1)
t )⊞ ̺(k)ω

(k−1)
t ⊠ (π

D(k) .ω
(k−1)
t ⊟ 1)

)
⊠(e−̺(k)t

1⊞ ν
(k−1)
t )

= ω̇
(k−1)
t ⊠ (e−̺(k)t

1⊞ ν
(k−1)
t )

= + ω
(k−1)
t ⊠ (̺(k)e−̺(k)tπ

D(k) .ω
(k−1)
t ⊟ ̺(k)e−̺(k)t

1).

Identifying ̺(k)e−̺(k)tπ
D(k) .ω

(k−1)
t with ν̇

(k−1)
t , we see that the last line is just

the time derivative of µ
(k)
t of (24).

Remark 4.8. We could have proved Theorem 4.4 also without the help of
formal sums and the new operations ⊞,⊟,⊠. However, we decided on the
current presentation in order to familiarise the reader with this — admittedly
somewhat abstract — formalism, as it is the key to stating the duality result
in Section 7 in closed form. It will also allow us later to state the solution itself
in closed form; see Corollary 8.2. ♦
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Remark 4.9. Note that the only property of Ψsel that entered the proof of
Theorem 4.4 is the second property in Lemma 4.7. Therefore, the result re-
mains true if Ψsel is replaced by a more general operator with this property.
In particular, Theorem 4.4 remains true when frequency-dependent selection
and/or mutation at the selected site is included. ♦

An important application of Theorem 4.4 is the following recursion for the

first-order correlation functions ω
(k)
t − R(k)ω

(k)
t between the type frequencies

at the sites contained in C(k) and those contained in D(k), for solutions of the
truncated equations. These objects are referred to as linkage disequilibria in
biology and also of independent interest [18, Ch. 3.3].

Lemma 4.10 (correlation functions). The family of solutions (ω(k))06k6n−1 of
Definition 4.1 satisfies, for 1 6 k 6 n− 1,

(id−R(k))ω
(k)
t = e−̺(k)t(id−R(k))ω

(k−1)
t .

Proof. The claim can be verified directly via Theorem 4.4 by using

R(k)ω
(k)
t = ω

(k)
t ⊠ π

D(k) .ω
(k)
t .

5 Looking back in time:

the ancestral selection-recombination graph

Our next goal is to reveal the genealogical content of the recursive solution
of Theorem 4.4. We will accomplish this by a change of perspective: Instead
of focusing on the evolution of the type distribution (of the entire population)
forward in time as described by the SRE (17), we will trace a single individual’s
genealogy back in time.
The crucial tool for this purpose is the ancestral selection-recombination graph
(ASRG) of [17, 37, 13]. As the name suggests, it combines the ancestral se-
lection graph (ASG) of [34] and the ancestral recombination graph (ARG) of
[28, 24, 25]. We will introduce the ASRG here as taylored for the SRE; it
allows to trace back, in a Markovian way, all lines that may carry information
about the type (and the ancestry) of an individual at present. This is similar
to [16, 7] for the selection part and to [6, 4] for the recombination part, where
the ancestral graphs consist of all potentially ancestral lines of an individual at
present. At this point, we understand the notion of potentially ancestral in a
broad sense, indicating lines that are potentially ancestral to some line in the
graph, but not necessarily to the individual at present. Indeed, some of these
lines are not potentially ancestral to the present individual itself (that is, the
notion of potential ancestry is not transitive); they will be pruned away later
on. Consider first a finite population of size N . Recalling the definition of the
Moran IPS in Section 3, we can sample from the type distribution at present
time t via the following procedure (see Figure 4).

(1) Select an arbitrary label α from {1, . . . , N} for the individual to be con-
sidered.
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CC

D

D
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forward time (IPS)

backward time (ASRG)

Figure 4: Sampling from the type distribution at present using the graphical
representation of the Moran IPS. The ASRG is marked in red and the selected
site in light brown. Notice the two different time axes for the IPS and the
ASRG, respectively; while the types are propagated through the IPS from left
to right, the genealogy is constructed in the opposite direction, starting with a
present-day individual on the right.

(2) Construct the untyped version of the Moran IPS.

(3) Start the graph by tracing back the single line emerging from the indi-
vidual at time t. Proceed as follows in an iterative way in the backward
direction of time until the initial time is reached; note that forward time 0
(forward time t) corresponds to backward time t (backward time 0).

(a) If a line currently in the graph is hit by the tip of a neutral arrow,
it is relocated to the line at the tail.

(b) If a line in the graph is hit by a selective arrow, we trace back both
its potential ancestors, namely the incoming branch (at the tail of
the arrow) and the continuing branch (at the tip). That is, we add
the incoming line to the graph, which results in a branching event.

(c) If a line is hit by a recombination square at site i, we have a split-
ting event and trace back the lines that contribute the head (Ci)
and the tail (Di), respectively, while the line hit by the square is
discontinued.

(4) Assign types to all lines in the graph at time 0 by sampling without

replacement from the initial counting measure NZ
(N)
0 . Then, propagate

the types forward along the lines obtained in step (3), according to the
same rules as in the Moran IPS. That is, selective branchings are resolved
by applying the pecking order derived from the Moran IPS and illustrated
in Fig. 5, namely: the incoming branch is parental to the descendant
line if it has a 0 at the selected site; otherwise, the continuing branch

Documenta Mathematica 26 (2021) 743–793



760 F. Alberti, E. Baake

0 0

0 0

0 0 0

1

1 1

1

1

continuing

continuing

continuing

continuing

incoming

incoming

incoming

incoming

descendant

descendant

descendant

descendant

Figure 5: The pecking order between incoming line and continuing line, and
the resulting type of the descendant. In each case, the ancestral line is bold.
To keep the picture simple, we have only indicated the letter at the selected
site. Likewise, the picture applies to the case n = i∗ = 1.

is parental. Splitting events are resolved by piecing together heads and
tails. This way, a type is associated with every line element of the graph.

The graph resulting from steps (1)–(3), along with the graphical elements indi-
cating reproduction and recombination, is called the untyped ASRG, whereas
the outcome of step (4) is the typed ASRG. While steps (3a) and (3c) are obvi-
ous, let us comment on the crucial branching step (3b). It reflects the fact that
whether the incoming or the continuing branch is the true parent depends on
the type of the incoming branch, which is not known in the untyped situation;
in this sense, every branching event encodes a case distinction. Let us also
mention that, in all events (3a)–(3c), it may happen that a line coalesces with
a line that is already in the graph. Likewise, it is possible that, in a splitting
event, the same parent contributes both the head and the tail; the event then
turns into a relocation.
Steps (1)–(4) yield the type of the present individual considered, but also serve
to elucidate the true ancestry of each site in this individual. In step (4), the
paths along which the individuals contributing to the type of the present-day
individual are propagated are called (true) ancestral lines, as opposed to the
potentially ancestral lines in the untyped ASRG. More precisely, for i ∈ S, the
path along which the type of the ancestor of site i is propagated is called the
ancestral line of site i. It is obtained explicitly by adding step

(5) Trace back the ancestry of site i by starting from the individual at present,
following back the true ancestral line (determined in step (4)) in every
branching event. This is the bold line in Fig. 5, and the one following
either the C or D branch at every splitting event, depending on whether
i ∈ C or i ∈ D. That is, we remove from the ASRG those lines that do
not contribute genetic material to site i in the present individual.

Clearly, in step (2), we need not construct the full graphical representation
of the interacting particle system. Instead, it suffices to consider those events
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that occur on the lines in the ASRG of the sampled individual, that is, the
lines (to be) traced back in step (3). We therefore obtain the same ASRG (in
distribution) if steps (2) and (3) are replaced by the following single one.

(2’&3’) Starting from the single line at forward time t, move backward and
independently at rates 1, s, and ̺i, let each line in the graph be hit
by neutral arrows, selective arrows, and recombination events at site i,
i ∈ S∗, with the (potential) parent individual(s) chosen uniformly with-
out replacement from [1 : N ]; update the graph accordingly.

Note that we use the homogeneity of the Poisson process here, which entails
that the graphical elements are laid down according to the same law in either
direction of time. Note also that the probability of choosing, for any kind of
event, parent(s) already contained in the genealogy is of order 1/N ; the same
is true for the probability to choose the same parent twice in a recombination
event. In the limit N → ∞, therefore, the coalescence rate vanishes. Like-
wise, selective reproduction (recombination) events always result in branching
(splitting), with the incoming branch (both arms) outside the current set of
lines. Furthermore, we disregard the position of the lines within the IPS; this
is allowed because the types associated with each line form a permutation-
invariant or exchangeable family of random variables. In particular, therefore,
relocations may safely be ignored. The resulting random graph is called the
ASRG in the LLN regime. Since we will only be concerned with this limit in
the remainder of the paper, we will often omit this specification.

Definition 5.1. For any given t > 0, the ancestral selection-recombination
graph (ASRG) in the LLN regime is a random graph-valued function in back-
ward time starting from a single node at time 0 and growing from right to left
until time t, where branching events

. . .
. . .

occur at rate s on every line, and splitting events

i . . .. . .

occur at rate ̺i, i ∈ S
∗, per line; all events are mutually independent. The

rightmost node is called the root of the ASRG and the leftmost nodes are called
the leaves.

The ASRG is almost surely finite, that is, an ASRG of finite length contains
only a finite number of branchings / splittings. Note that we dispense with
the star-shaped arrowheads used in the IPS for the selective events; rather, we
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Figure 6: Tracing back the ancestry of an individual with 4 sites i0 = 1, i1 = 2,
i2 = 3 and i3 = 4 under selection and recombination; the selected site i∗ = 1
is light brown. The bold line is ancestral to site 4, the thin solid lines are
ancestral to sites 1, 2, or 3, and the dashed lines are not ancestral to any site.
Each branch is decorated with its type, and the sites to which it is ancestral
are underlined.

use the convention that the incoming branch be placed below the continuing
branch. This is again allowed due to exchangeability. For the same reason,
we dispense with the labelling of the recombination arms and instead adopt
the convention that the sites in the head always come from the individual on
the upper line, which we place on the same level as the descendant line. The
sites in the tail are provided by the line attached from below. For an example
realisation of the ASRG and the construction of the type of an individual at
present along with the ancestral line of one specific site, see Fig. 6.

The ASRG implies the following sampling procedure for ωt. First, construct
a realisation of the ASRG, run for time t. Then, assign types to its leaves,
sampled independently from ω0, and propagate them through the graph as
described above.

Remark 5.2. In order to connect the graphical constructions in this section to
the viewpoint from the previous section, let us describe the type propagation
in slightly more formal terms. Given a realisation of the ASRG of length t, we
assign to each node a type distribution as follows. First, each leaf is assigned
the initial type distribution ω0. If an internal node v arises due to a branching,
we associate to v the distribution ωv := f(ωinc)b(ωinc) +

(
1 − f(ωinc)

)
ωcont,

that is,
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. . .

. . .

. . .
f(ωinc)b(ωinc

) +
(

1− f(ωinc)
)

ωcontωcont

ωinc

where ωinc and ωcont are the type distributions associated to the nodes that
connect to v via the incoming and continuing branch.

Likewise, if v is due to splitting (at site i, say), we associate with it ωhead ⊠ ωDi

tail,
where ωhead and ωtail are the distributions associated to the nodes that connect
to v via the ancestral lines of the head and tail, respectively,

. . .

. . .

. . .ωhead ⊠ ω
Di

tail
ωhead

ωtail

i

Finally, the distribution for the root equals that of the unique internal node
connected to it. ♦

Example 5.3. In the case of pure selection (k = 0), our ASRG reduces to an
ordered version of the ASG in the deterministic limit; this is equivalent to a
special case of the pruned lookdown ASG in the LLN regime, as introduced
in [16, 7] in the context of a probabilistic representation of the solution of
the deterministic selection-mutation equation. Since there are no coalescence
events in this regime, the number of lines in the graph, that is, the number of
potential ancestors of an individual sampled at time t, is a simple Yule process
K = (Kt)t>0 with branching rate s. This is a continuous-time branching
process where, at any time t, every individual branches into two at rate s,
independently of all others. In the case considered here, the process starts with
K0 = 1. Clearly, the pecking order implies that the individual at present will
be drawn from the unfit subpopulation d(ω0) if all Kt potential ancestors are
of deleterious type, which happens with probability (1 − f(ω0))

Kt . Otherwise

(with probability 1 −
(
1− f(ω0)

)Kt
), the individual will be sampled from the

fit subpopulation b(ω0). Thus, we obtain a stochastic representation of the
solution of the selection equation by averaging over all realisations of the Yule
process at time t:

ω
(0)
t = ϕt(ω0)

= E
[(
1− f(ω0)

)Kt
| K0 = 1

]
d(ω0)

+
(
1− E

[(
1− f(ω0)

)Kt
| K0 = 1

])
b(ω0).

(26)

It is well known that Kt, given K0 = 1, follows Geom(est) (cf. [22, Ch. II.4]
or [50, Ex. 2.19]), where Geom(σ) denotes the distribution of the number of
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independent Bernoulli trials with success probability σ up to and including the
first success. The probability generating function is given by

g(z) = E
[
zKt | K0 = 1

]
= e−stz

1− (1− e−st)z
. (27)

Consequently,

E
[(
1− f(ω0)

)Kt
| K0 = 1

]
=

e−st(1 − f(ω0)
)

e−st(1− f(ω0)
)
+ f(ω0)

= 1− f(ω
(0)
t ) (28)

with f(ω
(0)
t ) of Proposition 4.2. Inserting this into (26), we obtain ω

(0)
t of

Proposition 4.2.
Anticipating the results in Section 6, this can be viewed as a special case of the
general duality relation with respect to the duality function

h(m,µ) =
(
1− f(µ)

)m
d(µ) +

(
1−

(
1− f(µ)

)m)
b(µ) (29)

(cf. Definition 7.1 and Proposition 7.9), which is the distribution of an in-
dividual’s type at present, given it has m potential ancestors sampled from
µ ∈ P(X). ♦

Example 5.4. Likewise, in the case of pure recombination, the ASRG reduces
to a stochastic partitioning process Σ = (Σt)t>0; this is a special case of [6,
Sec. 6] or [4], where recombination is tackled as a more general partitioning
process, rather than the single-crossover case treated here. In our case, Σ is a
continuous-time Markov chain on the lattice of interval partitions of S whose
law is simply stated as follows. Start with Σ0 = {S} and, if the current state
is Σt, a transition to state Σ′

t := Σt ∧ {Ci, Di} occurs at rate ̺i for i ∈ S∗.
Here, A ∧ B denotes the coarsest common refinement of partitions A and B,
that is, A∧ B := {A ∩B : A ∈ A, B ∈ B} \ {∅}. Note that this includes silent
events, where Σ′

t = Σt. Given Σt, one can sample an individual of type x =
(x1, . . . , xn) from the distribution ωt as follows. First, construct a realisation
σ = {A1, . . . , Ak} of Σt. Then, sample individuals X (1), . . . ,X (k) i.i.d. from
the initial type distribution ω0 and set

x :=
(
πA1

(
X (1)

)
, . . . , πAk

(
X (k)

))
,

which has distribution R̃σ(ω0); see Eq. (16). Averaging over all realisations
of Σt gives

ωt = E
[
R̃Σt

(ω0) | Σ0 = {S}
]
. (30)

As in the previous example, this can again be interpreted as a special case of
a duality relation, this time with respect to the duality function H̃(A, µ) =
R̃A(µ), see Definition 7.1. ♦

We now turn to the genealogical proof of Theorem 4.4; recall that the start
of the recursion, the solution ω(0) of the pure selection equation, was already
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considered in Example 5.3. We reuse the permutation (ik)06k6n−1 of sites

defined in Section 4 and, in perfect analogy with the family (ω(k))06k6n−1,
define for 0 6 k 6 n − 1 the ASRG truncated at k to be an ASRG with
̺(ℓ) = 0 for all ℓ > k. We denote the ASRG truncated at k by ASRG(k),

or by ASRG
(k)
t if we want to indicate its duration. Clearly, the ASRG(k) is

the ASRG corresponding to ω(k). In particular, the ASRG(0) is just the ASG

(without recombination), and the type at the root of an ASRG
(k)
t follows ω

(k)
t .

The key ingredient to the genealogical proof of the recursion is the following
proposition, which links the type of the root of an ASRG(k) to the type at the
root of an ASRG(k−1), or two independent copies thereof.

Proposition 5.5. For 1 6 k 6 n−1 and any given t > 0, let B be a Bernoulli

variable with success probability 1− e−̺(k)t. Conditional on {B = 1}, let T be
an Exp(̺(k)) random variable conditioned on being 6 t, where Exp(σ) denotes
the exponential distribution with parameter σ. Furthermore, denote by X ∈ X

the type at the root of an ASRG
(k−1)
t , and by X̃ the type at the root of an

ASRG
(k−1)
T , independent of the ASRG

(k−1)
t that delivers X. The type Z at the

root of an ASRG
(k)
t is then, in distribution, given by

Z = (1 −B)X+B
(
πC(k)(X), πD(k)(X̃)

)
.

Before we prove this, let us give some intuition. We work with the untyped

ASRG
(k)
t and consider the line ancestral to D(k). It is clear that this is a

single line because, due to the partial order, none of the splitting events in the
ASRG(k) partition D(k). Note that the location of the true ancestral line is not
yet known, since this is only decided in step (4), when propagating the types
forward, as in Figure 6.

We distinguish two cases. With probability e−̺(k)t, no splitting at site ik
has occurred along this line, so the tail is ‘glued’ to the head. Thus, Z may
be constructed as in the absence of recombination at site ik, that is, via an

ASRG
(k−1)
t ; this gives the first term on the right-hand side. With probability

1 − e−̺(k)t, a splitting at site ik has occurred along the ancestral line of D(k).
We then consider the time of the last, that is, of the leftmost splitting event
at site ik on the line in question and identify this time with t− T (since such
splitting events occur at rate ̺(k) and due to the homogeneity of the Poisson
process, T is indeed distributed as stated). The ancestry of the sites in C(k)

is then unaffected by the split and thus follows an ASRG
(k−1)
t (in line with

marginalisation consistency, see Theorem A.2). But the sites contained in D(k)

now come from a different individual. Since t − T is the time of the leftmost
splitting event, we know that no further splits at site ik have occured at any
point further back in the past. This means that, at this point, the tail of the

individual at the root of an independent ASRG
(k−1)
T enters the ancestral line.

The combination of head and tail as described gives the second term on the
right-hand side.
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Figure 7: Determining the type at the root of a cASRG(4). The graph is a
cASRG(4), the selected site is light brown, ancestral lines in the ASRG(3) are
printed in bold, and ancestral letters are underlined. The shaded recombination
squares indicate splitting events at site 4, where a new copy of an ASRG(4) is
attached for the remaining time. Parentheses mark the 4th site in the ASRG(3)

that is replaced by the tail of the new copy. Thus, X is obtained by ignoring the
shaded squares as well as the parentheses, and Z is then obtained by replacing
the 0 in brackets in the type of the lower branch of the rightmost recombination
event by the 1 from Y1.

In order to turn these heuristics into a proof, we have to make the construction
of the ancestral line of D(k) explicit. To this end, we mimick the recursion

forward in time by coupling the ASRG
(k)
t to an ASRG

(k−1)
t . To keep things

transparent, we introduce the following simplified construction; see Fig. 7.

Definition 5.6 (collapsed ASRG). Let 1 6 k 6 n − 1 be given. A col-

lapsed ASRG truncated at k, or cASRG(k), is an ASRG(k−1) decorated with
ik-recombination squares laid down according to independent Poisson point
processes at rate ̺(k) on every horizontal line segment.

We can then construct a realisation of the ASRG
(k)
t by attaching to every ik-

recombination square of a cASRG(k) an independent copy of an ASRG(k) for
the remaining time; that is, for any ik-recombination square at time τ ∈ [0, t],

we attach an ASRG
(k)
t−τ . So splitting events take the form of attachment events.

In the subsequent sampling step, this attachment provides the k-tail, while the

k-head comes from the original ASRG
(k−1)
t . We now describe how to use the

collapsed ASRG to sample a root individual of an ASRG
(k)
t , that is, to sample

from ω
(k)
t . First, one constructs a realisation of the cASRG

(k)
t . Then, types

are assigned to the leaves according to ω0 in an i.i.d. fashion and propagated
forward, where selective branchings and splitting (attachment) events are re-
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solved as in the ASRG. Assume an ik-square is encountered on a given line at
some (forward) time τ ∈ [0, t], and the type just before the ik-square (that is,

at time τ − 0) is x. We then draw a type y from ω
(k)
τ , independently of x, for

the individual contributing the tail. The type on the line then jumps from x

at time τ − 0 to type z =
(
π
C(k)(x), πD(k) (y)

)
at time τ , see Fig. 8. Keeping

in mind the original motivation behind Definition 5.6 and thinking of the ik-
squares as splitting events (at site ik) at which a new realisation of an ASRG(k)

is attached, it is clear that this gives the correct result.

Proof of Proposition 5.5. Let 1 6 k < n and t > 0 be fixed and let a realisation

of the cASRG
(k)
t be given, together with an assignment of types to its leaves.

Elements of the proof are illustrated in Fig. 7. Note first that

• X is, in distribution, equal to the type of the root when ignoring the
ik-squares.

We consider the line ancestral to D(k) in the underlying ASRG
(k−1)
t . The

location of this line is now well defined, since we sample the types and can
perform steps (4) and (5). Note that the line ancestral to D(k) is, at the same

time, the line ancestral to
←−
ik , the predecessor of ik; this is because no splits

happen at ik in the ASRG
(k−1)
t . We consider the following quantities.

• Let B1 be the Bernoulli variable that takes the value 0 (the value 1) if
there is no (at least one) recombination square on the ancestral line of

D(k). Clearly, B1 has success probability 1− e−̺(k)t.

• Conditional on {B1 = 1}, let T1 be the waiting time for the first ik-square,
in the backward direction of time, on the line ancestral to D(k) (that
is, the rightmost ik-square on this line in our graphical representation).
Clearly, T1 is an Exp(̺(k))-random variable conditioned to be 6 t, and
independent of X.

• Let Y1 ∈ X be the type of the root of the independent ASRG
(k)
t−T1

at-
tached upon encountering the ik-square at time T1, that is, an indepen-

dent sample from ω
(k)
t−T1

.

x y

ik

z =
(

π
C(k)(x), πD(k)(y)

)

Figure 8: Upon encountering an ik-square, the head of type x is combined

with the tail of a newly sampled individual (from ω
(k)
τ ) to form the type of the

descendant.
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Figure 9: The ancestral line of D(k) after expanding all recombination events
arriving at elements of W ∩ [0, t] used in the proof of Proposition 5.5. The
ancestral lines of the corresponding heads (dashed) need not be considered any
further. Note that the maximal element A4 is the leftmost one.

We then have (cf. Fig. 7)

Z = (1−B1)X+B1

(
πC(k)(X), πD(k)(Y1)

)
. (31)

We now iterate Eq. (31), see Figure 9. In the first step, we draw X and B1 as
above. If B1 = 1, we also draw T1 according to Exp(̺(k)), conditioned on being
6 t. If B1 = 0, we set Z = X. If B1 = 1, by Eq. (31) we must construct Y1,

which contributes the tail. Since Y1 is the type at the root of an ASRG
(k)
t−T1

,
we do this by applying Eq. (31) to Y1 instead of Z, that is, we repeat the
first step but replace t by t − T1. So we determine whether or not there is a
recombination square on the ancestral line between 0 and t − T1; if there is
one, we determine the waiting time for it, and so forth. More explicitly, let
B2 be the new indicator variable, which is Bernoulli with success probability

1 − e−̺(k)(t−T1). If B2 = 0, let X1 be the type at the root of an independent

copy of the ASRG
(k−1)
t−T1

. If B2 = 1, let T2 be the waiting time for the new

event; T2 follows Exp(̺(k)) conditioned to be 6 t− T1; and let Y2 be the type

at the root of an independent ASRG
(k−1)
t−T1−T2

. Inserting this back into Eq. (31),
we obtain

Z = (1 −B1)X+B1(1−B2)
(
πC(k)(X), πD(k)(X1)

)

+B1B2

(
π
C(k)(X), πD(k)(Y2)

)
;

note that, if B1 = 0, B2 has not been declared, but the terms involving it
remain well-defined since B1 vanishes. Iterating this further gives

Z = (1−B1)X+
∑

i>1

B1 · . . . · Bi(1 −Bi+1)
(
πC(k)(X), πD(k)(Xi)

)
, (32)

where Xi is the type at the root of an independent ASRG
(k−1)

t−
∑

i
j=1 Tj

, and we

adhere to the above convention concerning undeclared Bi. Note that, with
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probability 1, exactly one of the terms on the right-hand side is nonzero; in
particular, B1 · . . . ·Bi = 0 whenever

∑i
j=1 Tj > t, so everything is well defined.

Let us now interpret the arrival times Tj of the ik-squares as arrival times
in a Poisson point set W with intensity measure ̺(k)1t>0 dt and elements

A1 < A2 < . . .. When Ai 6 t, we have Ai =
∑i

j=1 Tj . Furthermore,
B1 = 1{A16t} and, for i > 1,

B1 ·. . .·Bi = 1{Ai6t}, as well as B1 ·. . .·Bi(1−Bi+1) = 1{Ai6t<Ai+1}. (33)

We now rewrite B1 as B1 = 1{W∩[0,t] 6=∅}. Together with (33), this entails
that the nonzero term in (32) is the first one if W ∩ [0, t] is empty; and if
the set is nonempty, then the nonzero term is the one with the index i that
satisfies Ai = max(W ∩ [0, t]). Conditionally on B1 = 1, we therefore set
T := t−max(W ∩ [0, t]). The claim then follows by identifying B with B1, and
by noting that T has the same distribution as T1, namely Exp(̺(k)) conditioned
to be 6 t.

Remark 5.7. Remembering the motivation for the collapsed ASRG(k), we
think of every ik-square as the anchor point for a new independent copy of
the ASRG(k), which is collapsed to keep things tidy. In the above proof, we
iteratively expand the ik-squares on the ancestral line of D(k) until there are
no more recombination events left on that line. Therefore, the Poisson point
set W has an interpretation as the collection of all recombination events on
the ancestral line of D(k). The proof has made precise the previously heuristic
notion of the last splitting event at site ik encountered on the ancestral line
of D(k) in the backward direction of time; that is, the leftmost event in the
graphical representation, see Fig. 9. ♦

Remark 5.8. When sampling Y1 via the newly attached ASRG(k) in (31), one
might wonder whether it would suffice to construct the potential ancestry of
the tail alone — after all, the head of Y1 does not enter Z. However, it cannot
be overemphasised that this is not the case! Although Y1 only contributes
the tail, the branching events in its ancestry can only be resolved if the letter
at the selected site is known, whence we need to also trace back the ancestry
of the head attached to the new tail. We are haunted here by the fact that
marginalisation consistency does not hold for the tail, see the Appendix, in
particular Remark A.3. ♦

We are now all set to re-prove Theorem 4.4. Indeed, Proposition 5.5 connects
the random variable Z, delivered by an ASRG(k), with random variables X

and X̃ , delivered by an ASRG(k−1). This is the crucial observation that we
will now exploit.

Genealogical proof of Theorem 4.4. From Proposition 5.5, we can extract the
conditional distribution of Z given B and T :

P(Z = · | B, T ) = (1−B)ω
(k−1)
t +Bπ

C(k) .ω
(k−1)
t ⊗ π

D(k) .ω
(k−1)
T .
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Theorem 4.4 now follows by integrating out B and T , keeping in mind their
distributions (and denoting the distribution of the latter by λ):

ω
(k)
t = P(B = 0)ω

(k−1)
t

+ P(B = 1)πC(k) .ω
(k−1)
t ⊗

∫ ∞

0

πD(k) .ω(k−1)
τ dλ(T )

= e−̺(k)tω
(k−1)
t + πC(k) .ω

(k−1)
t ⊗

∫ t

0

̺(k)e−̺(k)tπD(k) .ω(k−1)
τ dτ,

and we are done.

6 Interlude

Using our insight from the proof of Proposition 5.5, we now informally describe
a more efficient version of the ASRG in order to motivate the more elegant dual
process and the formal duality result that are detailed and proved in the next
section. We start with an untyped ASG = ASRG(0), since this marks the be-
ginning of the recursion. Recall that, in the iteration leading from ω(0) to ω(1)

via the cASRG(1), i1-recombination squares are laid down at rate ̺(1) inde-
pendently on every line of the ASG. But at most one of these squares turns
out as relevant; namely the rightmost square on the ancestral line of D(1), if
there is such a square. Recall also that the head of the root of the ASRG(1),
that is its sites in C(1), are delivered by the initial ASG, independently of any
recombination squares; while the sites in the tail are delivered by an indepen-
dent copy of the ASRG(1), attached below the square for the remaining time
and processed in the same way as the initial one. This procedure stops when
no further recombination square is found on the ancestral line of the tail.
In order to reduce the ASRG(1) to its essential parts, we now start over and
decorate the ASG with at most one recombination event, which will play the role

of the relevant one, see Figure 10. Namely, with probability e−̺(1)t, we include
no event, and both head and tail are delivered by the ASG. With probability

1−e−̺(1)t, we include one event, which happens at time T1 distributed according
to Exp(̺(1)) conditioned to be 6 t. Since we are in an untyped setting and
do not know which of the lines in the ASG will be ancestral to the head, we
symbolise the event by an i1-box (that is, a box labelled i1) that covers all
lines. At the bottom of the box, we attach an independent copy of the ASG
starting with a single line and running for the remaining time. The new ASG
is processed in the analogous way, with t replaced by t − T1. This procedure
stops when no further i1-box is encountered; this is (almost surely) the case
after a finite number of steps, see Figure 10 (top left). The initial ASG delivers
the head, while the last ASG attached delivers the tail. In particular, at every
i1-box, the tail delivered by the ASG attached below is combined with the head
of whichever of the lines running through the box will turn out to be ancestral
to the root of the ASG it belongs to.
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Figure 10: Constructing the essential ASRG for three sites with i∗ = 1. Top
left: An ASG decorated with a 2-box to which decorated ASGs are attached
repeatedly; solid, dashed, and dotted lines correspond to steps 1, 2, and 3,
respectively. Top right: Labelling and pruning the resulting graph; green, blue
and red encode sites 1,2 and 3, respectively. Bottom: Adding 3-boxes to the
top right graph (two different realisations bottom left and bottom right).

We now label each line in the graph with the set of sites in the root to which
the line is (potentially) ancestral. This will finally allow us to prune away
those lines that are not informative for the type of the root, see Figure 10 (top
right). We start with the label A = S for the single line at the root. When
a branching event occurs to a line labelled A, both branches inherit the label.
Upon encountering an i1-box, the continuing line is ancestral to A∩C(1), while
the line attached below is ancestral to A∩D(1). If A∩C(1) = ∅ (this applies to
a second and any further i1-box), we prune the continuing line away, because
it is neither ancestral to any sites in A at the root, nor does it affect their
ancestry. The latter is true because now the same new tail is provided for all
potential ancestors of the head, at the same moment; in contrast to the original
ASRG, where a new tail may compete with others, see Figure 7.

We finally work up the recursion by decorating the set of lines potentially
ancestral to D(2) with i2-boxes, adding new ASGs, labelling, and pruning in

the analogous way, see Figure 10 (bottom). That is, with probability e−̺(2)t,

no i2-box appears. With probability 1 − e−̺(2)t, we add an i2-box, at a time
distributed according to Exp(̺(2)) conditioned to be 6 t. A new ASG labelled
D(2) is then attached below, starting with a single line, while the continuing
lines now carry the label D(1) ∩ C(2). If a second Exp(̺(2)) waiting time still
falls within the remaining time, a second i2-box occurs, with no lines running
through it and a single line labelled D(2) starting a new ASG below; and so on
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until no further i2-box is encountered.
We continue like this until S∗ is exhausted. The resulting graph is the essen-
tial ASRG. Rather than constructing it via recursion over S∗ with successive
addition of boxes, labelling, and pruning, it can also be produced in one go in
a Markovian manner as follows.

• Start with a single line labelled S.

• Every line independently branches at rate s; both offspring lines inherit
the label of the parent.

• Every set of lines that carry the same label, say A, independently receives
an i-box at rate ̺i for every i ∈ S

∗ with A ∩Di 6= ∅, upon which either
of the following happens.

– If A ∩Di 6= A, the lines continue through the box and change their
labels to A ∩ Ci; a single new line labelled A ∩Di starts below the
box.

– If A ∩Di = A, no lines continue through the box and a single new
line labelled A starts below the box.

• Stop when the time horizon t is reached.

Note that the resulting graph may be conceived as a collection of (conditionally)
independent ASGs, each with its own label, and joined together by recombi-
nation boxes. It is now easy to see that all the relevant information can be
condensed into a weighted partitioning process, namely a Markov process in
continuous time that holds, at any time, an interval partition A of S into the
blocks A ∈ A of potentially ancestral sites, together with weights vA giving the
number of lines in the respective ASGs. This will be formalised in the next
section.

7 Duality

For the genealogical proof of the recursive solution in Theorem 4.4, we relied
on the graphical construction, which implicitly assumes a duality between the
ASRG and the solution of the SRE. Since the ASRG is somewhat unwieldy from
a technical standpoint, our next goal is to construct a simpler dual process.
Let us begin with our definition of duality for Markov processes, which is a
straightforward extension of the standard concept (see [38, Ch. 3.4.4] or [35] for
thorough expositions, and [41] for an early application to population genetics).

Definition 7.1. Let X = (Xt)t>0 and Y = (Yt)t>0 be continuous-time Markov
processes with state spaces E and F , respectively. X and Y are said to be dual
with respect to some bounded measurable function H : E × F → R

d if

E[H(Xt, y) | X0 = x] = E[H(x,Yt) | Y0 = y]
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holds for all t > 0, x ∈ E, and y ∈ F . Furthermore, H is referred to as a duality
function for X and Y and we abbreviate the duality by (X ,Y, H).

Remark 7.2. The slight extension of the standard concept consists in allowing
for an R

d-valued duality function instead of the usual real-valued H . This is,
of course, equivalent to introducing a family of d real-valued duality functions.
It touches on the interesting problem of finding all duality functions for a given
pair of Markov processes. The corresponding duality space has been introduced
in [41] and investigated in [42]. ♦

Motivated by our observation at the end of Section 6, we now define a suitable
dual process for ω, and a corresponding duality function. More precisely, we
will find three different processes dual to ω, each providing different insight;
namely, the weighted partitioning process, a family of Yule processes with
initiation and resetting, and a family of initiation processes.

7.1 The weighted partitioning process

For the first dual process, we refer back to the essential ASRG, which can
be formalised as a weighted partitioning process. Just as in the case without
selection, the partitioning describes how the genotype of a given individual is
pieced together from the types of its ancestors. To include selection, a positive
integer (weight) is assigned to each block, denoting the number of lines in the
ASG labelled with this block. As in the single-site case (cf. Figure 5), the true
ancestor will be of deleterious type if and only if all potential ancestors are of
deleterious type.

Definition 7.3. The weighted partitioning process (WPP) is a continuous-time
Markov chain (Σ, V ) = (Σt, Vt)t>0 with (countable) state space

F :=
⋃

k>0

(
Ik(S)× N

k
+

)
,

where Ik(S) denotes the set of all interval partitions of S into exactly k blocks,
and transitions

(1) (A, v) −→ (A, w) at rate svA if wA = vA+1 for some A ∈ A and wB = vB
for all A 6= B ∈ A.

(2) (A, v) −→ (A ∧ {Ci, Di}, w) at rate ̺i if, for i ∈ S∗ and the unique
A ∈ A with A 6⊆ Ci, Di, wA∩Ci

= vA, wA∩Di
= 1, and wB = vB for all

A 6= B ∈ A.

(3) (A, v) −→ (A, w) at rate ̺
A∪{i∗}
min(A) if, for someA ∈ A, wA = 1 and wB = vB

for all B 6= A (the minimum is in the sense of 4).

Note that transition (3) is silent if wA = wB = 1.
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These transitions are a straightforward translation of the dynamics of the es-
sential ASRG at the end of Section 6; clearly, (Σt, Vt) = (A, v) represents the
set of ASGs present at time t, where each block A of A corresponds to one ASG
with vA lines. For every i ∈ S∗, every A splits into A∩Ci and A∩Di at rate ̺i
independently of all other blocks. If this split is nontrivial, then A∩Ci inherits
the weight of A (reflecting the continuing lines), while the weight of A ∩Di is
set to 1 (reflecting the new ASG attached below and starting with a single line);
this gives transition (2). If A ⊆ Ci, nothing happens. If A ⊆ Di, the weight
is reset to 1 (again reflecting the new ASG attached below); note that this
happens whenever the split leaves A intact but separates it from the selected

site, which gives rise to the total rate of ̺
A∪{i∗}
min(A) in transition (3). Note also

that the marginal Σ is the partitioning process of Example 5.4. Independently
of everything else, every block experiences branching at rate s (transition (1)).
Based on the WPP, we now define the corresponding candidate for our duality
function.
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Figure 11: Illustration of the duality function H for a WPP in state (A, v),
where A = {{1, 2, 3}, {4, 5, 6, 7}, {8, 9}} and v{1,2,3} = 3, v{4,5,6,7} = 2, and
v{8,9} = 4. The selected site is i∗ = 5 and highlighted in light brown. As pre-

scribed by (A, v), we sample 3 potential ancestors (displayed horizontally on
the left) for the first, 2 for the second, and 4 for the third block of sites, all i.i.d.
according to ν. The true ancestor (marked by an arrow) is then sampled uni-
formly at random from all individuals of beneficial type within the respective
samples, except in the case of the third block, since there are no individuals of
beneficial type. The resulting marginal types for the individual blocks (mid-
dle) are then merged into the sequence on the right. The distribution of this
sequence is H(A, v; ν).
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Definition 7.4. For an interval partition A of S, associated weights v :=
(vA)A∈A, and ν ∈ P(X), we define

H(A, v; ν) :=
⊗

A∈A

πA.
((

1− f(ν)
)vAd(ν) +

(
1−

(
1− f(ν)

)vA)b(ν)
)
.

The function H has the following meaning, which is illustrated in Figure 11.
For a given (A, v) and every A ∈ A, we sample one sequence according to ν
for each of the vA leaves of an ASG. The type at the root of this ASG is then
distributed according to b(ν) (according to d(ν)) if at least one of the leaves
(none of the leaves) carries a beneficial type, just as in the case of pure selection
in Example 5.3. Finally, the sequence at the root of the ASRG is pieced together
by taking, for every A ∈ A, the sites in A from the type delivered by the ASG
corresponding to A. The resulting sequence has distribution H(A, v; ν); note
that H(A, v; ν) may be understood as a probability vector on X , that is, a
vector in R

2n . Before proving the resulting duality, let us proceed to a more
convenient representation of the WPP.

7.2 The Yule process with initiation and resetting.

Since we are only dealing with single-crossover recombination (and, therefore,
only interval partitions), we will take advantage of the following one-to-one
correspondence between (weighted) partitions and assignments of nonnegative
integers to the sites (see Figure 12). Let a vector m = (mk)16k6n of non-
negative integers with mi∗ > 0 be given. We then obtain an (interval) partition
by the rule that two sites i ≺ j belong to the same block if and only if mk = 0
for all i ≺ k 4 j; intuitively, the nonzero integers tell us where to chop up
the sequence. We obtain in this way a partition A in which, for each block
A ∈ A, mmin(A) > 0, while mi = 0 for min(A) 6= i ∈ A (where the minimum
is with respect to ≺, and is unique since A is an interval partition). We then
assign a weight to block A by setting vA := mmin(A). Likewise, we may encode
a weighted partition as an integer vector m by assigning the weight of each
block to its minimal site and 0 to all others. Since i∗ is the unique minimal
element of S, one always has mi∗ > 0. Explicitly, mi∗

= vA for the unique A
that contains i∗ and, for i 6= i∗,

mi =

{
0, if

←−
i and i share a block,

vA for the unique A containing i, otherwise,

with
←−
i as in Definition 2.1. The new encoding allows us to rewrite H of Defi-

nition 7.4 in a convenient way, where we also take advantage of the formalism
introduced in Section 4.

Lemma 7.5. Let H be as in Definition 7.4. For m ∈ N
S
0 with mi∗ > 0, let(

A(m), v(m)
)
be the weighted partition associated with m, and define
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m

A

v 3 4 1 2

{{1, 2, 3}, {4, 5}, {6, 7, 8}, {9, 10}}

0 0 3 0 4 1 0 0 2 0

Figure 12: Encoding a weighted partition (top) by an integer vector (bottom).
The selected site is light brown.

H(m,µ) := H
(
(A(m), v(m)), µ

)
.

Then, one has

H(m,µ) =⊠
i∈S

h(mi, µ)
Di (34)

where

h(k, µ) :=
(
1− f(µ)

)k
d(µ) +

(
1−

(
1− f(µ)

)k)
b(µ) (35)

for k 6= 0 and h(0, µ) := 1. The factors are ordered nondecreasingly with respect
to 4.

Remark 7.6. When using the product sign ⊠ for products of elements of
A(X) indexed by S, we always understand the factors to be ordered nonde-
creasingly.

Remark 7.7. At this point, it becomes clear that the special role of Di∗ = S
in the definition of the Di (see Remark 2.2) makes perfect sense. Indeed, (34)
shows that the contributions to the sequence at the root of the ASRG come from
the ASGs associated to the ‘new’ tails Di that are attached to the original one
corresponding to Di∗ = S. This will become even more evident in the context
of the initiation process, see Eq. (39) and Fig. 13.

Proof. Recall that, by the minimality of the selected site, we have
Ci∗ = ∅, Di∗ = S and therefore H(m,µ) = h(mi∗ , µ) if mi = 0 for all
i 6= i∗. In all other cases, let i be a maximal site with mi 6= 0. The definitions
of H and H then entail

H(m,µ) = H(m′, µ)Ci ⊗ h(mi, µ)
Di = H(m′, µ)⊠ h(mi, µ)

Di ,

where m′ is obtained from m by setting mi to zero. The claim then follows via
induction.

The new encoding also allows us to represent the WPP as a collection of n
independent Yule processes with initiation and resetting. In the case s = 0,
this is similar to the representation of interval partitions in [5] in terms of the
sets of breakpoints.
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Definition 7.8. A Yule process with initiation and resetting (YPIR) with
branching rate s > 0, initiation rate ̺ > 0, and resetting rate r > 0 is a
continuous-time Markov chain on N>0 with transitions

(Y) k → k + 1 at rate sk for k > 0,
(I) 0→ 1 at rate ̺,
(R) k → 1 at rate r for k > 0.

Note that transition (R) is silent if k = 1.

Given the one-to-one correspondence between (A, v) and m, it is then easy
to see that (Σ, V ) is equivalent to a collection M = (Mi)i∈S of independent
YPIRs. Here, Mi

∗
= (Mi

∗
,t)t>0 is a basic Yule process with branching rate

s > 0, that is, the degenerate case of a YPIR with initiation and resetting rates
̺i∗ := ri∗ := 0; for i 6= i∗, Mi = (Mi,t)t>0 is a YPIR with branching rate s,
initiation rate ̺i and resetting rate

ri :=
∑

ℓ4i

̺ℓ; (36)

note, in particular, that ri > ̺i. Indeed, the equivalence is clear since the
transitions of (Σ, V ) and M can be matched in a unique way; compare Defi-
nitions 7.3 and 7.8. Note that ri is the total rate at which i is separated from
the selected site; it may be understood as the marginal recombination rate

ri = ̺
{i,i∗}
i , cf. (52).

Note that the Yule process K (cf. Example 5.3) has the law of Mi∗ . Let us
recapitulate from [7] the duality for the pure selection equation, which is a
slight extension of Example 5.3.

Proposition 7.9. Let K be a Yule process with branching rate s. For k > 1
and ω ∈ P(X), define h(k, ω) as in Eq. (35). Then,

h
(
k, ϕt(µ)

)
= E

(
h(Kt, µ) | K0 = k

)
,

where ϕ is the selection semigroup.

Proof. Combining Eqs. (35), (21) and (28), one gets

h
(
k, ϕt(µ)

)
=

(
E
[(
1− f(µ)

)Kt
| K0 = 1

])k
d
(
ϕt(µ)

)

+
(
1−

(
E
[(
1− f(µ)

)Kt
| K0 = 1

])k)
b
(
ϕt(µ)

)

= E
(
h(Kt, µ) | K0 = k

)
,

where the last step follows from the fact that a collection of m independent
Yule processes, each started with a single line, is equivalent to a Yule process
started with k lines.

Let us still postpone the duality result in the case with recombination to the
next section, since the proof is most convenient on the basis of the initiation
process.
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7.3 The initiation process.

Let us first gain some intuition by representing the duality function from
Lemma 7.5 in terms of products of elements of the selection semigroup at vari-
ous times. To this end, recall from Proposition 4.2 that ϕt(ν) is, for all ν and t,
a convex combination of the conditional type distributions d(ν) and b(ν), and
so is h(k, ν) for all k > 1, see Eq. (35). Since f(ϕt(ν)) is strictly increasing in
t (cf. Proposition 4.2), there exists, for all k > 1 and s > 0, a unique θ(k) ∈ R

such that
(
1− f(ν)

)k
= 1− f

(
ϕ
θ(k)(ν)

)
and thus,

h(k, ν) = ϕθ(k)(ν). (37)

Note that θ(1) = 0 since h(1, ν) = ν = ϕ0(ν). Then, setting θ(0) := ∆ and
ϕ∆(ν) := 1 for all ν (in line with h(0, ·) = 1 in Lemma 7.5), we can write, using
Lemma 7.5,

H(m, ν) =⊠
i∈S

h(mi, µ)
Di =⊠

i∈S

ϕθ(mi)
(µ)Di =: G

(
θ(m), µ

)
, (38)

where θ(m) := (θ(mi))i∈S . More generally, this leads to the ansatz

G(θ, ν) :=⊠
i∈S

ϕθi
(ν)Di (39)

for a third (putative) duality function. Here, θ = (θi)i∈S ∈ R
i∗
>0×(R>0∪{∆})

S∗

and the symbol ∆ is used to indicate that the factor is absent from the product.
Recall that the factors in the product are ordered nondecreasingly w.r.t. 4 and
note that its value is the same for all such orderings since incomparable factors
commute by virtue of being measures defined on projections of the type spaceX
with respect to disjoint subsets of S.
Recall that m in (34) corresponds to a partition of S in which each block is
weighted by a positive integer, counting the number of lines in the associated
ASG (as part of an essential ASRG, see Section 6). Similarly, θ in Eq. (39) also
encodes a partition of S (the role of 0 now being played by ∆), only this time,
the blocks are not weighted by the number of lines in the associated ASGs, but
by their runtimes (again, seen as part of an essential ASRG). In the sampling
step, we average over all realisations of the ASG with the indicated runtime,
and thus obtain G from H by replacing the factors h(mi, ν) in H(m, ν) by

ϕθi
(ν) = E[h(Kθi , ν) | K0 = 1];

this will later make the connection to the transformation (37).
We now give an informal description of the initiation process Θ, which will
take the role of the YPIR. It is a continuous-time Markov process, and its
transition rates relate to that of the YPIR as follows. As ∆ takes the role
of 0, the transition (I) (initiation) in Definition 7.8 corresponds to a transition
from ∆ to 0. Similarly, as 0 takes the role of 1, a reset (R) (to 1) of the YPIR
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time

t4 t3 t2 t1 0

(0,∆,∆)

ϕ0

(t1,0,∆)

ϕt1
⊠ ϕ

D2
0

(t2,t2−t1,0)

ϕt2
⊠ ϕ

D2
t2−t1

⊠ ϕ
D3
0

(t3,0,t3−t2)

ϕt3
⊠
✟

✟
✟❍

❍
❍

ϕ
D2
t3−t1

⊠ ϕ
D2
0 ⊠ ϕ

D3
t3−t2

(t4,t4−t3,t4−t2)

ϕt ⊠ ϕt4−t3
⊠ ϕ

D3
t4−t2

t4 2

32

t4−t3

t4−t2

Figure 13: A realisation of the essential ASRG, where every ASG is collapsed
into a single line. It describes the evolution of a partitioning process whose
blocks are weighted by the time since the corresponding ASG was attached.
The colours are as in Figure 10: green, blue and red for site 1,2 and 3; as before,
the first site is selected. Below the graph, we indicate the evolution of the
associated collection of initiation processes Θ. At the bottom, we see how the
function G(Θt, ·), defined in Eq. (39), evolves in time. Every factor corresponds
to a different line, and attachment of a new line due to an i-recombination event
corresponds to right multiplication by ϕDi

0 ; subsequently, the time index in each
factor evolves on its own. Notice the cancellation at time t3; it corresponds to
the discontinuation of the line at the box representing recombination and the
reset of the second component of Θ, due to {2} ∩D2 = {2}.
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corresponds to a reset (to 0) of the initiation process. Keeping in mind that
(Y) describes the branching of the ASG (and that we now only want to record
its runtime), we replace these random jumps by a deterministic and continuous
increase. Thus, Θt is either ∆, signifying that it has not yet been initiated, or
its value is just the time that has passed since the last reset. Finally, when no
resetting occurs, we have Θt = Θ0 + t.
This can be condensed into the following definition; for an illustration, see
Fig. 13.

Definition 7.10. The initiation process with initiation rate ̺ > 0 and resetting
rate r > 0 is the continuous-time Markov process with values in R>0 ∪ {∆}
and generator mapping u ∈ C1(R) to ū, defined via

ū(t) := u̇(t) + r
(
u(0)− u(t)

)
for t ∈ R>0,

ū(∆) := ̺
(
u(0)− u(∆)

)
.

(40)

We define a collection Θ = (Θi)i∈S of independent initiation processes where
Θi = (Θi,t)t>0 has initiation rate ̺i and resetting rate ri (cf. (36)). In
particular, since ̺i∗ = ri∗ = 0, all stochastic contributions in Eq. (40) van-
ish for this choice, and what remains is a purely deterministic drift, that
is, Θi∗,t = t + Θi∗,0. We denote by Li the generator of Θi. Furthermore,
L :=

∑
i∈S Li, where Li acts on the i-th component of the argument.

Note that Θ shares the parameters ̺i and ri with M , but does not depend
on s. Rather, for any given s, we will see that Θ and M are related at the
level of an expectation. First, we prove the duality (ω,Θ,G). From there, we
recover (ω,M,H) and, equivalently, (ω, (Σ, V ), H).

Proposition 7.11. For all i ∈ S, the YPIR Mi and the initiation process Θi

of Definition 7.10 satisfy

E
(
h(Mt, ν) |M0 = m

)
= E

(
ϕΘt

(ν) | Θ0 = θ(m)
)

for all mi ∈ N0 and t > 0.

Proof. It suffices to show that the left- and right-hand side of the statement
solve the same initial value problem (with globally Lipschitz continuous right-
hand side). By (37), the expressions agree at t = 0. It remains to be shown
that

Qih(·, ν)(mi) = Liϕ·
(ν)

(
θ(mi)

)
,

where Qi is the generator of Mi, and Li that of Θi. Comparing Definitions 7.8
and 7.10, it is obvious that the transitions from mi to 1 in the YPIR (at rate
̺i if mi = 0 and at rate ri if mi > 0) correspond to transitions to 0 in the
initiation process (at rate ̺i if Θi = ∆ and at rate ri if Θi ∈ R>0). The
identity (37) then implies the equality of the corresponding contributions to
the left and right-hand side, i.e.
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h(1, ν)− h(mi, ν) =

{
ϕ0(ν) − ϕ∆(ν) for mi = 0,

ϕ0(ν) − ϕθ(mi)
(ν) for mi > 0.

Furthermore, it is a direct consequence of Proposition 7.9 together with (37)
that the time derivative corresponds to branching of the YPIR, that is,

ϕ̇θ(mi)
(ν) = d

dt
E
(
h(Kt, ν) |M0 = mi)

)
|t=0

= smi

(
h(mi + 1, ν)− h(mi, ν)

)

by the Kolmogorov backward equation for the Yule process.

Returning now to H and G, we obtain immediately, by independence:

Corollary 7.12. The families M and Θ of independent YPIRs and initiation
processes satisfy

E
(
H(Mt, ν) |M0 = m

)
= E

(
G(Θt, ν) | Θ0 = θ(m)

)

for all m ∈ N
n
0 and t > 0.

We are now set to state the main result of this section, the duality (ω,Θ,G).

Theorem 7.13. Let Θ be the family of independent initiation processes intro-
duced in Definition 7.10. Then, with G as in (39), we have, for all ν ∈ P(X)
and all θ ∈ R

i∗
>0 × (R>0 ∪ {∆})

S∗

,

G
(
θ, ψt(ν)

)
= E

(
G(θ, ωt) | ω0 = ν) = E(G(Θt, ν) | Θ0 = θ

)
,

where ψ = (ψt)t>0 is the flow of the SRE introduced in Definition 4.1.

Proof. The first equality is clear because ψ is deterministic. For the proof of
the second equality (the actual duality relation), it will be useful to think of
the solution of the SRE (17) as a deterministic Markov process with generator
Ψ̃ = Ψ̃sel + Ψ̃rec given by

Ψ̃f(ν) := d
dt
f
(
ψt(ν)

)
|t=0 = d

dt
f
(
ν + tΨsel(ν) + tΨrec(ν)

)
t=0

= d
dt
f
(
ν + tΨsel(ν)

)
|t=0 +

d
dt
f
(
ν + tΨrec(ν)

)
|t=0

=: Ψ̃self(ν) + Ψ̃recf(ν)

for all f ∈ C1(P(X)).
As in the proof of Proposition 7.11, we will show that the left and right-hand
side satisfy the same initial value problem. As the values at t = 0 agree, see
Eq. (37), it suffices to show that

Ψ̃G(θ, ·)(ν) = LG(·, ν)(θ) (41)
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for all ν ∈ P(X) and all θ ∈ R
i∗
>0× (R>0 ∪{∆})

S∗

. (Indeed, if (41) is satisfied,

it trivially applies to all components of the R
2n -valued function G and thus

establishes duality also in our slightly extended sense; cf. Remark 7.2.) First
of all, let us note that, since Ψ̃ is a differential operator, we have

Ψ̃
(
G(θ, ·)

)
(ν)

=
∑

j∈S
θj 6=∆

(
⊠

j 6≺.i∈S\j

ϕθi
(ν)Di

)
⊠
(
Ψ̃(ϕθj

)(ν)
)Dj

⊠ ⊠
j≺.i∈S

ϕθi
(ν)Di (42)

by the product rule, where the underdot indicates the variable (in this case
i) with respect to which the product is performed; note that since ϕ∆(ν) = 1,
factors with θi = ∆ play no role. Hence, in order to evaluate the left-hand side

of Eq. (41), we only need to compute
(
Ψ̃(ϕθj

)(ν)
)Dj

for all j ∈ S such that
θj 6= ∆. Clearly,

(
Ψ̃sel(ϕθj

)(ν)
)Dj

=
(
ϕ̇θ

j
(ν)

)Dj
(43)

because ϕ is the flow of the pure selection equation. For the recombination
part, we calculate

(
Ψ̃rec(ϕθj

)(ν)
)Dj

=
(

d
dh
ϕθj

(
ν + hΨrec(ν)

)
|h=0

)Dj

=
(

d
dh
ϕθj

(
ν ⊠

(
1⊞ h

∑

ℓ∈S∗

̺ℓ(ν
Dℓ ⊟ 1)

))
|h=0

)Dj

=
(
ϕθj

(ν)⊠ d
dh

(
1⊞ h

∑

ℓ∈S∗

̺ℓ(ν
Dℓ ⊟ 1)

)
|h=0

)Dj

=
∑

ℓ∈S∗

̺ℓ
(
ϕθj

(ν)Dj ⊠ νDℓ∩Dj − ϕθj
(ν)Dj

)

=
∑

ℓ∈S∗

ℓ4j

̺ℓ
(
ϕ0(ν)

Dj − ϕθj
(ν)Dj

)

= +
∑

ℓ∈S∗

ℓ≻j

̺ℓ
(
ϕθj

(ν)Dj ⊠ ϕ0(ν)
Dℓ − ϕθj

(ν)Dj
)
.

(44)

Here, we have used Lemma 4.7 in the third step, and in the last that ϕ0(ν) = ν
together with the fact that the sum over sites incomparable to j vanishes be-
cause Dj ∩Dℓ = ∅ if ℓ is incomparable to j. To simplify the first sum, we took
advantage of the fact that ℓ 4 j implies Dj ⊆ Dℓ together with the cancellation
rule from Proposition 4.5. Similarly, ℓ ≻ j implies Dℓ ⊆ Dj , which simplifies
the second sum. Inserting (44) and (43) into (42) and recalling Eq. (36), we
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have shown so far that

Ψ̃G(θ, ·)(ν) =
∑

j∈S
θj 6=∆

(
rj
(
G((θ<j , 0, θ>j), ν)− G(θ, ν)

)

= + ∂
∂θj
G(θ, ν) +

∑

ℓ≻j

̺ℓ
(
Gj,ℓ(θ, ν)− G(θ, ν)

))
,

where we use the obvious convention that (θ<j , 0, θ>j) is obtained from θ by
setting θj to 0. Furthermore, Gj,ℓ(θ, ν) (for tj 6= ∆ and j ≺ ℓ) arises from
G(θ, ν) by inserting the factor ϕ0(ν)

Dℓ at the immediate right of ϕθj
(ν)Dj .

That is, if G(θ, ν) is of the form G(θ, ν) = κ⊠ ϕθj
(ν)Dj ⊠ χ, then

Gj,ℓ(θ, ν) = κ⊠ ϕθj
(ν)Dj ⊠ ϕ0(ν)

Dℓ ⊠ χ. (45)

Hence, if we can show that

∑

j∈S
θj 6=∆

∑

ℓ≻j

̺ℓ
(
Gj,ℓ(θ, ν)− G(θ, ν)

)
=

∑

ℓ∈S∗

θℓ=∆

̺ℓ
(
G((θ<ℓ, 0, θ>ℓ), ν)− G(θ, ν)

)
, (46)

it follows that

Ψ̃G(θ, ·)(ν) =
∑

j∈S

LjG
(
(θ<j , ·, θ>j), ν

)
(θj) = LG(·, ν)(θ).

To see Eq. (46), notice that, if j 6= max{j′ 4 ℓ : θj′ 6= ∆}) (in particular, this
is the case if θℓ 6= ∆), then Gj,ℓ(θ, ν) is of the form

κ⊠ ϕθj (ν)
Dj ⊠ ϕ0(ν)

Dℓ ⊠ ϕθj′
(ν)Dj′ ⊠ χ′ (47)

for some j′ 4 ℓ due to the site ordering (cf. Remark 7.6), where χ = ϕθj′
⊠ χ′.

Since j′ 4 ℓ means Dℓ ⊆ Dj′ , (47) is equal to

κ⊠ ϕθj
(ν)Dj ⊠ ϕθj′

(ν)Dj′ ⊠ χ′ = G(θ, ν)

by the cancellation rule from Proposition 4.5.
If j = max{j′ 4 ℓ : θj′ 6= ∆}, the factors in (45) are ordered strictly nonde-
creasingly w.r.t. 4, and no cancellations occur; hence we have Gj,ℓ(θ, ν) =
G((θ<ℓ, 0, θ>ℓ), ν). Thus, we have verified (46).

Remark 7.14. (i) Another approach to recover Theorem 7.13 would be to
prove the right multiplicativity for h(k, ·) for k > 1 by the same argument
as in Lemma 4.7, and to replace ϕt by h(k, ·) in the proof of Theorem 7.13.

(ii) Note that the particular form of the selection term was not used in the
proof of Theorem 7.13; the only property required was the second state-
ment in Lemma 4.7. Therefore, the same procedure can be applied to
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any single-locus model with linked neutral sites. Examples include the
deterministic mutation-selection equation, for which the dual process can
then be expressed as a collection of independent pruned lookdown ASGs
[7, 11] that are initiated and reset at random.

(iii) It is also instructive to relate the proof of Theorem 7.13 to the genealog-
ical construction detailed above; see Figure 13. Recall that the factors
ϕθj

(ν)Dj in G(θ, ν) correspond to the different independent ASGs that
make up the essential ASRG of Section 5, and which are ancestral to
different sets of sites. At rate ̺ℓ, ℓ ∈ S∗, each such ASG is hit inde-
pendently by an ℓ-box, at which a new ASG is started for the tail. This
corresponds to right multiplication of ϕtj (ν)

Dj by ϕtℓ(ν)
Dℓ . Recall that,

for such a multiplication, we had to distinguish the three cases of j being
either incomparable to ℓ, ℓ 4 j and ℓ ≻ j. In the genealogical picture,
these cases correspond to the recombination event being either ignored
(if ℓ and j are incomparable, which entails that the ASG in question is
only ancestral to sites in Cℓ); a resetting event if ℓ 4 j, which means that
the ASG is only ancestral to sites contained in Dℓ; or an initiation event
if ℓ ≻ j, where a new ASG is initiated for the tail. ♦

By Corollary 7.12 and (38), Theorem 7.13 also yields the duality of ω and M .

Corollary 7.15. The family M of YPIRs and the solution ω of the SRE (17)
are dual with respect to H of (29), namely

E
[
H(Mt, ν) |M0 = m

]
= E

[
H(m,ωt) | ω0 = ν

]
= H

(
m,ψt(ν)

)
(48)

for all ν ∈ P(X) and all initial values m ∈ N
S
0 with mi∗ > 0. Here, ψ is the

deterministic flow introduced in Definition 4.1.

The following representations analogous to (30) for the solution of the selection-
recombination differential equation are now immediate.

Corollary 7.16. Let ω = ψ(ω0) be the solution of the SRE (17). Then, for
all t > 0, we have the stochastic representations

ωt = E
[
H(Mt, ω0) |Mi,0 = δi,i∗ for i ∈ S

]

= E
[
G(Θt, ω0) | Θi∗,0 = 0,Θi,0 = ∆ for i ∈ S∗

]

with H of (29) and G of (39). That is, we average over all realisations of the
WPP, starting from the trivial partition with weight one, as represented by the
family of YPIRs, or the family of initiation processes, started in 0 for i = i∗
and started in ∆ for i ∈ S∗.

8 The explicit solution and its long-term behaviour

We have just seen that the solution of the SRE has a stochastic representation
in terms of a collection of independent YPIRs. Their semigroups are easily
expressed in terms of geometric distributions with random success probability.
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Proposition 8.1. Let i ∈ S and let Mi be a YPIR with branching rate s > 0,
initiation rate ̺i > 0 and resetting rate ri > 0. If ri > 0, let Ti be a random
variable with distribution Exp(ri); if ri = 0, set Ti := ∞ for consistency. The
Markov semigroup pi = (pi,t)t>0 corresponding to Mi is then given by

pi,t(1, ·) = E
[
Geom(e−s(Ti∧t))

]
,

pi,t(0, ni) =

∫ ∞

0

̺e−̺iτpi,t−τ (1, ni) dτ + δ0,ni
e−̺it,

pi,t(mi, ni) =

∫ ∞

0

rie
−riτpi,t−τ (1, ni) dτ + e−rit NegBin(mi, e

−st)(ni),

where ni > 0, mi > 1, and NegBin(mi, σ) is the negative binomial distribution
with parameters mi and σ, and we set pi,t(1, ·) ≡ 0 for t < 0.

Proof. For the first formula, we argue as in the genealogical proof of Theo-
rem 4.4. After the time of the last resetting event, which follows Exp(ri), the
YPIR experiences no further resetting and hence has the law of a Yule process
with branching rate s for the remaining time. The second and third formulae
follow from the first by waiting the Exp(̺i) (Exp(ri))-distributed time until
the process initiates (resets); recall that NegBin(mi, σ) is the distribution of
the number of independent Bernoulli trials (with success probability σ) up to
and including the mith success. In the degenerate case ri = 0 and ̺i = 0, the
statement reduces to

pi,t(mi, ni) = NegBin(mi, e
−st)(ni), ni > 0, mi > 1, pi,t(0, ni) = δ0,n

i
,

which is just the semigroup of the ordinary Yule process. The consistency in
the cases where only one of the parameters ̺i or ri vanishes is seen just as
easily.

Combining Proposition 8.1 with Corollary 7.16 yields a closed expression for
the solution.

Corollary 8.2. The solution of the SRE is given by

ωt = pi∗,th(·, ω0)
Di∗ (1)⊠⊠

i∈S∗

pi,th(·, ω0)
Di(0),

where pi = (pi,t)t>0 is the semigroup of Mi as in Proposition 8.1.

This explicit representation allows us to investigate the long-term behaviour of
the solution. We start with the asymptotics of the semigroup from Proposi-
tion 8.1.

Corollary 8.3. As in Proposition 8.1, let pi be the Markov semigroup of the
YPIR Mi. Then, for all mi > 0 and ni > 1,

pi,∞(ni) := lim
t→∞

pi,t(mi, ni) = E
[
Geom(e−sTi)(ni)

]
= αB(ni, α+ 1), (49)

where Ti follows Exp(ri), α := ri/si, and B denotes the beta function. If
̺i = 0, then pi,t(0, ni) = δ0,n

i
, and Eq. (49) applies for mi > 0.
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Proof. Since Mi is irreducible, positive recurrent, and non-explosive (since it is
stochastically dominated by a Yule process with branching rate s, which is non-
explosive), it has a unique asymptotic distribution pi,∞ such that pi,t(mi, ·)
converges to pi,∞ for all initial conditions mi > 0. To see that in fact
pi,∞ = E

(
Geom(e−sTi)

)
, it suffices in the case ̺i > 0 to simply let t → ∞

in pi,t(1, ·) in Proposition 8.1; note that even when starting in 0, the pro-
cess will jump to one almost surely. This is not the case if ̺i = 0; in this
case, the process started in 0 will stay there forever whence the convergence to
Geom(e−sTi) then only holds for strictly positive mi. To see the last equality
in Eq. (49), we write out the exponential mixture of geometric distributions
explicitly and substitute x = est to obtain

pi,∞(ni) =

∫ ∞

0

rie
−st(1− est)n−1rie

−rit dt

= α

∫ 1

0

xα(1− x)ni−1 dx = αB(ni, α+ 1)

as claimed.

Remark 8.4. In the degenerate case ̺i = ri = 0 (where the YPIR is an
ordinary Yule process), there is no stationary distribution because the number
of lines diverges almost surely. Nonetheless, one may still define (somewhat
informally) pi,∞(ni) := 0 for all ni ∈ N together with pi,∞(∞) = 1. ♦

Note that pi,∞ of (49) is the Yule distribution [51, 48] and may, for ni > 1, be
rewritten as

pi,∞(ni) = αB(ni, α+ 1) =
αΓ(ni)Γ(α+ 1)

Γ(ni + α+ 1)
=

α(ni − 1)!∏ni

k=1(k + α)
,

where Γ denotes the gamma function. In particular, pi,∞(1) = α/(1 + α). For
α ≫ 1, therefore, pi,∞ is close to a point measure on 1; whereas for α ≪ 1,
pi,∞(n) is close to α/ni and puts substantial mass on large values, in line with
intuition.
From the representation of the solution in Corollaries 8.1–8.3 together with
Eq. (35) and (1 − x)∞ = δx,0 for x ∈ [0, 1], the long-term behaviour of the
solution is now immediate.

Corollary 8.5. Assuming that ̺i > 0 for all i ∈ S∗, we have

ω∞ := lim
t→∞

ωt =
⊗

i∈S

πi.
((

1− γi(1− f(ω0))
)
b(ω0) + γi(1− f(ω0))d(ω0)

)

for all initial conditions ω0 ∈ P(X). As always, f(ω0) is the initial frequency
of the beneficial type. Furthermore, γi∗(x) = δx,0 (in line with Remark 8.4 and
(1 − x)∞ = δx,0), and for i ∈ S∗, γi is the probability generating function of
pi,∞, that is,

γi(x) :=

∞∑

ni=1

pi,∞(ni)x
ni .
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Figure 14: Asymptotic probability of site i being drawn from πi.d(ω0) as a func-
tion of ri/s. As recombination becomes stronger, the asymptotic probability
approaches the initial probability 1− f(ω0) = 1/2 assumed here.

Remark 8.6. From Corollary 8.5, it is clear that γi(1 − f(ω0)) is the proba-
bility that site i is drawn from πi.d(ω0), or equivalently, that it is associated
with i∗ = 1 at equilibrium; see Figure 14 for an illustration of its parameter
dependence. For a site i that is far away from i∗ in the sense that its to-
tal rate of separation from i∗ is large in comparison to the selection strength
(s ≪ ri), the dynamics is close to that of the pure recombination equation; in
particular, the marginals πi.ωt are approximately time invariant in line with
the marginalisation consistency (53) of the pure recombination equation. Ac-
cordingly, the long-term behaviour is governed by γi(x) ≈ x. In contrast, in
the regime s≫ ri, the behaviour is closer to that of the pure selection equation
in that p∞ places much weight on large values, which implies that γi(x) is very
small for small values of x, and the beneficial type prevails. ♦

A Marginalisation consistency

Let us consider the dynamics of the marginal type distributions under selection
and recombination. For A ⊆ S, we define the marginal recombinators RA

i :
P(XA)→ P(XA) by

RA
i ν := νA∩Ci ⊗ νA∩Di (50)

for i ∈ A \ i∗, where Ci and Di denote the head and tail for i as before.

Remark A.1. Note that πA.Riω = RA
i ω

A for all A ⊆ S and ω ∈ P(X), and
RA

i = id if A is contained in either Ci or Di, that is, if {Ci, Di}|A = {A}
(compare [6, Lemma 1]). ♦

Consider now the marginal ωA of ω. It is well known [6, Proposition 6] that
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i∗ i

{Ci,Di}|A

{

{Cj ,Dj} : {Cj ,Dj}|A = {Ci,Di}|A, j ∈ S∗

}

Figure 15: The partitions in Eq. (52) that define the marginal recombination
rates.

ωA satisfies the marginalised recombination equation

ω̇A
t = πA.Ψrec(ωt) =

∑

i∈A\i∗

̺Ai
(
RA

i ω
A
t − ω

A
t

)
=: ΨA

rec(ω
A
t ) (51)

with initial condition ωA
0 and marginal recombination rates

̺Ai :=
∑

j∈S∗

{Cj,Dj}|A={Ci,Di}|A

̺j for all i ∈ A \ i∗; (52)

see Figure 15 for an illustration. In particular,

ω̇
{i}
t = 0 for i ∈ S∗ (53)

since R
{i}
i = id. Eq. (51) follows from Remark A.1, the linearity of πA. and

Eq. (52).
Unfortunately, this property does not generalise to the selective case. The

reason is that Ψsel also depends on the proportion f(ωt) = ω
{i∗}
t (0) of fit

individuals and that we lose this information by projecting onto a factor with
respect to a subset of S not containing i∗. When A does contain i∗, however,
we clearly have

f(ν) = fA(νA) for any ν ∈ P(X), (54)

where fA is defined analogously to (7), but with S replaced by A. More-
over, the selection operator (8) acts consistently on subsystems that contain
the selected site, that is, πA.Fν = FAνA for A ∋ i∗, where the marginalised
selection operator is given by FA(νA)(xA) := (1− xi∗)ν

A(xA). We can thus

define ΨA
sel : P(XA)→ P(XA) via

ΨA
sel(νA) := s

(
FA − fA(νA)

)
νA
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such that

πA.Ψsel(ν) = ΨA
sel(ν

A) for A ∋ i∗ and all ν ∈ P(X).

Combining this with (51), we obtain the following result.

Theorem A.2 (marginalisation consistency of the SRE). Let ω be the solution
of the initial value problem for the SRE (17) with initial condition ω0. Let
A ⊆ S contain i∗. Then, the marginal ωA := (ωA

t )t>0 solves the marginal SRE,

ω̇A
t = s

(
FA(ωA

t )− f
A(ωA

t )ω
A
t

)
+

∑

i∈A\i∗

̺Ai
(
RA

i ω
A
t − ω

A
t

)
,

with initial condition ωA
0 and marginal recombination rates (52). In particular,

ωA is independent of all ̺i with i such that {Ci, Di}|A = {A}; or equivalently,
with i such that i ≻ j for all j ∈ A comparable to i.

Remark A.3. The problem of marginalisation (in)consistency was already ob-
served by Ewens and Thomson [21] in 1977 for the discrete-time SRE; see
also the review in [14, pp. 69–72]. For Theorem A.2 to hold, the assumption
that A contains the selected site is crucial: It is otherwise impossible to find a
closed expression for the projection of the selective part in (17) in terms of the
marginal measure, because we lose the information about the proportion of fit
individuals in the case that i∗ 6∈ A. It is indeed a common pitfall to assume
that Theorem A.2 holds for arbitrary A. This is also implicit in [3]; see the
corresponding erratum. ♦

There is an interesting connection between marginalisation consistency and the
recursive solution of the SRE of Theorem 4.4. Applying Theorem A.2 to A =
{i∗} shows that the marginal type frequency at the selected site is unaffected by
recombination. More generally, consider the set L(k) := {i0 = i∗, i1, . . . , ik} and
note that L(k) \ i∗ is exactly the set of recombination sites that are considered
up to and including the k-th iteration. Obviously, marginalisation consistency

holds for L(k) for all 0 6 k 6 n−1. Since ̺L
(k)

i = ̺i for i ∈ L
(k)\i∗, Remark A.1

and Eq. (52) together with Definition 4.1 give

π
L(k) .ω̇t = π

L(k) .
∑

i∈L(k)\i
∗

̺i(Riωt − ωt) = π
L(k) .Ψ

(k)
rec(ωt) = π

L(k) .ω̇
(k)
t ,

and so π
L(k) .ω

(k)
t = π

L(k) .ωt. This implies that if one is only interested in the

marginal with respect to L(k), then one may stop the iteration after the kth
step.
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