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Abstract. The motivic Mahowald invariant was introduced in [28]
and [30] to study periodicity in the C- and R-motivic stable stems.
In this paper, we define the motivic Mahowald invariant over any
field F of characteristic not two and use it to study periodicity in
the F -motivic stable stems. In particular, we construct lifts of some
of Adams’ classical v1-periodic families [1] and identify them as the
motivic Mahowald invariants of powers of 2 + ρη.
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1 Introduction

The Mahowald invariant

M : π∗(S
0) π∗(S

0), α 7→ M(α)

is a construction for producing nontrivial classes in the stable homotopy groups
of spheres from classes in lower stable stems. The chromatic filtration organizes
the stable stems into vn-periodic families [31]. These vn-families are completely
understood when n ≤ 1 and fairly well-understood when n ≤ 2, but they are
much more mysterious for larger n. Computations of Sadofsky [34], Mahowald
and Ravenel [23], Bruner [7], Behrens [5] [6], and the author [29] suggest that
the Mahowald invariant of a vn-periodic class is often vn+1-periodic. Therefore
the Mahowald invariant gives a (conjectural) means of studying mysterious
vn-periodic families, n ≥ 1, by relating them to less mysterious vn−1-periodic
families.
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The motivating example of this phenomenon comes from the pioneering work
of Mahowald and Ravenel [23]. Adams constructed v1-periodic elements
{v4i1 ηj , v4i1 8σ : 1 ≤ j ≤ 3, i ≥ 0} in [1]. These can be constructed using
the non-nilpotent v1-self-map on the mod two Moore spectrum, iterated Toda
brackets, and connective real K-theory. We review their definition in Section 3,
but for now we emphasize that their nontriviality depended on geometric in-
put related to connective real K-theory. Mahowald and Ravenel gave another
construction of these v1-periodic elements using the Mahowald invariant. More
precisely, they showed that for all i ≥ 0,

M(24i+j) ∋

{
v4i1 ηj if 1 ≤ j ≤ 3,

v
4(i−1)
1 8σ if j = 0.

Although this computation also uses connective real K-theory, we regard this
as an independent construction of Adams’ v1-periodic families since it does not
appeal to the existence of a non-nilpotent v1-self-map on the mod two Moore
spectrum.
Periodic phenomena in the motivic stable stems is not well-understood; we
briefly recall what is known in the C-motivic case. Work of Levine allows one
to lift classical vn-periodic families into the C-motivic stable stems. Subsequent
work of Andrews [3], Gheorghe [11], and Krause [20] shows that in addition to
these vn-periodic lifts, there exist “exotic periodic families” in the C-motivic
stable stems. For example, Andrews constructed exotic w1-periodic families of
elements analogous to Adams’ v1-periodic families mentioned above. Despite
these interesting results, we still lack a complete understanding of periodic
phenomena in the C-motivic stable stems. Over other fields of characteristic
zero, even less is known. We refer the reader to [19, Sec. 4-5] for an extensive
discussion of the R- and C-motivic stable stems.
The C-motivic Mahowald invariant

MC : πC
∗∗(S

0,0) → πC
∗∗(S

0,0), α 7→ MC(α)

was introduced in [28] to study these families over Spec(C). In particular, it
was shown that

MC(24i+j) ∋






v4i1 η if j = 1,

v4i1 τηj if j = 2, 3,

v
4(i−1)
1 8σ if j = 0.

and

MC(η4i+j) ∋






w4i
1 ν if j = 1,

w4i
1 νj if j = 2, 3,

w
4(i−1)
1 η2η4 if j = 0.

In [30], R-motivic lifts of these v1- and w1-periodic elements were constructed
and identified as R-motivic Mahowald invariants. The goal of this paper is

Documenta Mathematica 26 (2021) 561–582



General Base Field Motivic Mahowald Invariants 563

to obtain analogous computations over general base fields of characteristic not
two.
Very little is currently known about periodicity in the motivic stable stems
over a general base field F of characteristic not two. Work of Morel [25]
shows that πF

m,n(S
0,0) = 0 for m < n, and the 0-line

⊕
n∈Z π

F
n,n(S

0,0) is

Milnor-Witt K-theory KMW
∗ (F ). Röndigs-Spitzweck-Østvær computed the 1-

line
⊕

n∈Z π
F
n+1,n(S

0,0) in [33], and they showed that there is a short exact
sequence of Nisnevich sheaves

0 → KM
2−n(−)/24 → π

(−)
n+1,n(S

0,0) → π
(−)
n+1,nf0(KQ)

where KM is Milnor K-theory and f0(KQ) is the effective cover of Hermitian
K-theory. Other infinite computations have been done after inverting the Hopf
map η ∈ πF

1,1(S
0,0) by Guillou-Isaksen [16][14], Andrews-Miller [4], Röndigs

[32], and Wilson [36]. We refer the reader to [19, Sec. 6] for a survey of other
computations over general base fields.
Our first main theorem proves that many of Adams’ v1-periodic families can
be lifted to the F -motivic stable stems, where F is an arbitrary field of
characteristic not two. The first part of the theorem applies in the case
char(F ) > 2. Recall that over Spec(C), one has v1-periodic families of the
form {v4i1 η, v4i1 τη2, v4i1 τη2, v4i1 8σ}i≥0 which can be constructed as iterated Toda
brackets using [28]. Moreover, the Betti realization [26] of these classes recov-
ers Adams’ classical elements [1] with the same names. Let g : F → F be the

inclusion of F into its algebraic closure and note that πF
s,w(S

0,0) ∼= πC
s,w(S

0,0)
when s ≥ w ≥ 0 or s < w by [38].

Theorem (Theorem 4.5, Part (1)). Suppose that char(F ) > 2. Let α ∈

{v4i1 η, v4i1 τη2, v4i1 τη3, v4i1 8σ}i≥0 ⊂ πF
∗∗(S

0,0). There exists a nontrivial class

α̃ ∈ πF
∗∗(S

0,0) such that g∗(α̃) = α.

Perioidicity is more subtle in characteristic zero. Although one has motivic
analogs of the classical periodicity operators and v41-periodic families over
Spec(C) [28, Sec. 5], some of these are not well-defined over Spec(R) or
Spec(Q).

Example 1.1. The following three phenomena occur working over Spec(R) but
not over Spec(C).

1. The class 16σ ∈ πR
7,4(S

0,0) is nonzero [8, Fig. 3]. In particular, the Toda
bracket v41(−) = 〈σ, 16, α〉 cannot be defined.

2. Recall from [28, Thm. 5.12] that 8σ ∈ MC(24) ⊂ πC
7,4(S

0,0). As a

consequence of the previous fact, one can show that 8σ /∈ MR((2+ρη)4) ⊂
πR
7,4(S

0,0) but 16σ ∈ MR((2 + ρη)4) ⊂ πR
7,4(S

0,0). This suggests that
the F -motivic Mahowald invariant “detects” differences in the order of
(2+ρη)-torsion in the image of a conjectural F -motivic J-homomorphism.
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3. The class Ph1 ∈ Ext5,14,5
AC (MC

2 ,M
C
2 ) detects v

4
1η ∈ πC

9,5(S
0,0), but it is not

in the image of base change along R → C by [8, Lem. 5.7]. In particular,
the class Ph1 does not survive in the ρ-Bockstein spectral sequence which
calculates Ext∗∗∗

AR (M
R
2 ,M

R
2 ) from Ext∗∗∗

AC (M
C
2 ,M

C
2 ).

Despite these obstructions to defining v1-periodic families in characteristic zero,
we are able to construct two nontrivial infinite families. Let g : F → F be the
inclusion of F into its algebraic closure.

Theorem (Theorem 4.5, Part (2)). Suppose that char(F ) = 0. Let α ∈

{v4i1 τη2, v4i1 τη3}i≥0 ⊂ πF
∗∗(S

0,0). There exists a nontrivial class α̃ ∈ πF
∗∗(S

0,0)
such that g∗(α̃) = α.

Note that since τη4 = 0 in πF̄
∗∗(S

0,0), these classes cannot be seen using Wil-
son’s η-local computations over the rationals [36]. Therefore the theorem pro-
vides two new infinite families in the F -motivic stable stems for any field F of
characteristic zero.
In this work, we extend the definition of the motivic Mahowald invariant over
any field F of characteristic not two. Let MF (α) denote the F -motivic Ma-
howald invariant of a class α in the F -motivic stable stems. In [28] and [30], we
showed that the infinite families above are realized as the C-motivic Mahowald
invariants of 2i, i ≥ 1, and the R-motivic Mahowald invariants of (2 + ρη)i,
i ≡ 2, 3 mod 4. Our second main theorem is that this is true over any field of
characteristic not two.

Theorem (Theorem 4.6). Suppose that char(F ) > 2. Then the F -motivic

Mahowald invariant of (2 + ρη)i is given by

MF ((2 + ρη)4i+j) ∋






v4i1 η if j = 1,

v4i1 τη2 if j = 2,

v4i1 τη3 if j = 3,

v4i1 8σ if j = 4.

Suppose that char(F ) = 0. Then the F -motivic Mahowald invariant of (2+ρη)i

is given by

MF ((2 + ρη)4i+j ∋

{
v4i1 τη2 if j = 2,

v4i1 τη3 if j = 3.

1.1 Outline

In Section 2, we recall results from forthcoming work of Gepner-Heller [10] and
Gregersen-Heller-Kylling-Rognes-Østvær [13]. In particular, we discuss equiv-
ariant motivic homotopy theory, a motivic analog of Lin’s Theorem, and the
compatibility of both of these with base-change. We then extend the defini-
tion of the motivic Mahowald invariant to base fields F of characteristic not
two. We also prove the main technical lemma which is used in Section 4 to
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infer F -motivic Mahowald invariants from our computations over Spec(Fq) and
Spec(Q) (from Section 3), and Spec(C) (from [28]).

In Section 3, we discuss v1-periodicity over algebraically closed fields. We then
define v1-periodic families over Spec(Fq) (where q is an odd prime), Spec(Qν)
(where ν is any prime), and Spec(Q). Our primary tool is the ρ-Bockstein
spectral sequence introduced by Hill in [17]. We also prove that the map
(2 + ρη)4 is null on certain stunted motivic lens spectra using the Atiyah-
Hirzebruch spectral sequence and base-change.

In Section 4, we use our computations from Section 3.2 to compute MFq(2i),
i ≥ 1, and we use our computations from Section 3.4 to compute MQ((2+ρη)i)
for i ≡ 2, 3 mod 4. In both cases, we follow the proof from [30, Sec. 5] which
is modified from the proof of [23, Thm. 2.17]. We then use the key comparison
lemma from Section 2 to compute the motivic Mahowald invariants of (2+ρη)i

over any field F of characteristic not two. The key point is F fits into a sequence
of field extensions

Fq → F → F , if char(F ) = q 6= 0,

Q → F → F , if char(F ) = 0.

The motivic Mahowald invariants of (2 + ρη)i agree over Spec(Fq), Spec(Q),
and Spec(F ) in the congruence classes of i where we can calculate them, so by
compatibility with base-change, they must agree over Spec(F ) as well.

1.2 Notation

We employ the following notation and conventions throughout:

1. k, F , and L are fields of characteristic not two.

2. Fq is the finite field with q elements, where q is an odd prime.

3. SH(k) is the motivic stable homotopy category over Spec(k).

4. S0,0 is the motivic sphere spectrum.

5. Everything is implicitly (2, η)-complete.

6. Mk
2 is the mod two motivic cohomology of a point over Spec(k).

7. Ak (resp. Ak
∗) is the motivic (resp. dual motivic) Steenrod algebra over

Spec(k).

8. Exts,f,w
Ak denotes the cohomology of the k-motivic Steenrod algebra in

stem s, Adams filtration f , and motivic weight w.
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2 Motivic Lin’s Theorem and the motivic Mahowald invariant re-

visited

In this section, let f : k → F be a field extension and let f∗ : SH(k) → SH(F )
be the corresponding base-change functor.

2.1 Motivic Lin’s Theorem revisited

We begin by defining geometric universal spaces and geometric classifying
spaces following [10]. Let P(SmG

k ) be the category of motivic G-spaces over
Spec(k) [10].

Definition 2.1 ([10, Def. 3.2]). Let F be a family of subgroups of G. The
universal motivic F-space over Spec(k) is the object EgmFk ∈ P(SmG

k ) whose
value on X ∈ SmG

k is

EgmFk(X) =

{
∅ if XH 6= ∅ for some H /∈ F ,

pt else.

When F is the family of proper subgroups of G, we will use the notation
EgmG := EgmF . In this case, we define

BgmG := (EgmG)/G.

In this case, BgmG is the geometric classifying space originally defined by
Morel-Voevodsky [26] and Totaro [35].

Geometric universal spaces are preserved under base-change by [10, Prop. 3.8]
and satisfy motivic analogs of many useful properties of universal spaces in
classical homotopy theory.

Definition 2.2 ([12]). For all n ∈ Z, the stunted motivic lens spectrum L∞n is
defined by setting

L∞n := Th(nγ → BgmC2)
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where γ is the tautological line bundle over BgmC2. Define

L∞−∞ := holim
←−
n

L∞−n.

The key property of this construction is the following, which was proven by
Gregersen over fields of characteristic zero with finite virtual cohomological
dimension, and by Gregersen-Heller-Kylling-Rognes-Østvær over fields of char-
acteristic not two.

Theorem 2.3 ([12, Thm. 2.0.2][13]). The map

S−1,0 → L∞−∞

induces a π∗∗-isomorphism after (2, η)-completion.

We will use this in the next section to define the k-motivic Mahowald invariant.
We conclude this section by recording a useful property of stunted motivic lens
spectra.

Lemma 2.4 ([13]). Let n ∈ Z. Then L∞n is preserved under base-change.

2.2 The motivic Mahowald invariant revisited

Using the results of the previous section, we can extend the definition of the
motivic Mahowald invariant from [28, Sec. 2] to general base fields.

Definition 2.5. Let α ∈ πk
s,t(S

0,0). We define the k-motivic Mahowald in-

variant of α, denoted Mk(α), as follows. Consider the coset of completions of
the following diagram

Ss,t S−2N+1,−N ∨ S−2N+2,−N+1

S0,0 Σ1,0L∞−∞ Σ1,0L∞−N

α

≃

where N > 0 is minimal so that the left-hand composition is nontrivial. If the
composition of the dashed arrow with the projection onto the higher dimen-
sional sphere is nontrivial, we define the k-motivic Mahowald invariant Mk(α)
to be the coset of completions composed with the projection onto the higher
dimensional sphere. Otherwise, the composition of the dashed arrow with the
projection onto the higher dimensional sphere is trivial and we define the mo-
tivic Mahowald invariant Mk(α) to be the coset of completions composed with
the projection onto the lower dimensional sphere. We illustrate this convention
in the examples later in this section.

Recall that the “Squeeze Lemmas” from [30, Sec. 3] were used to compute
generalized Mahowald invariants by comparing them under functors such as
equivariant Betti realization and geometric fixed points. Since L∞−N is pre-
served by base-change, we obtain the following comparison lemma which will
be essential in the last section.
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Lemma 2.6. Let f : k → F . Suppose α, β ∈ πF
∗∗(S

0,0) such that β ∈ MF (α).
Suppose further that there exist α′, β′ ∈ πk

∗∗(S
0,0) such that f∗(α′) = α and

f∗(β′) = β. Then

|Mk(α′)| ≤ |β′|.

Further, if |Mk(α′)| = |β′|, then β′ ∈ Mk(α′).

Proof. Suppose that the F -motivic Mahowald invariant MF (α) is defined by
the commutative diagram

Ss,t S−2N+1,−N ∧ S−2N+2,−N+1

S0,0 Σ1,0L∞−∞ Σ1,0L∞−N ,

α

β

≃

so in particular N > 0 is minimal so that the left-hand composite is nontrivial.
Then the left-hand composite in the commutative diagram

Ss,t S−2N+1,−N ∧ S−2N+2,−N+1

S0,0 Σ1,0L∞−∞ Σ1,0L∞−N

α′

β′

≃

must also be nontrivial since the first commutative diagram can be obtained
from this one by applying f∗. Since there may be some N ′ < N such that
the left-hand composite is nontrivial, we only obtain an inequality as in the
statement of the lemma. However, if |β′| = |Mk(α′)|, then N is minimal and
β′ ∈ Mk(α′) by definition, which proves the last claim.

Applying the previous lemma to the a composite of base-change functors gives
the following.

Corollary 2.7. Let k
f
→ F

g
→ L be a sequence of field extensions. Suppose

that we have α, β ∈ πk
∗∗(S

0,0), α′, β′ ∈ πF
∗∗(S

0,0), and α′′, β′′ ∈ πL
∗∗(S

0,0) such

that g∗(α′) = α′′, g∗(β′) = β′′, f∗(α) = α′, f∗(β) = β′, β ∈ Mk(α), and

β′′ ∈ ML(α′′). Then β′ ∈ MF (α′).

3 v1-periodic families over prime fields

Over Spec(C), one can construct v1-periodic families via iterated Toda brackets
following [28]. We begin this section by constructing analogous families over
any algebraically closed field using a result of Wilson-Østvær [38]. We then
construct lifts of these infinite families in πF

∗∗(S
0,0) where F = Fq (q an odd

prime), F = Qν (ν any prime), and F = Q. That is, we construct families
which base-change to the v1-periodic families in the algebraic closure. We also
study the F -motivic homotopy of certain stunted motivic lens spectra.
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3.1 v1-periodicity over algebraically closed fields

In this section, we define some infinite families over the algebraically closed
fields. We begin by recalling the analogous families from the classical and
C-motivic settings.
In the classical setting, Adams constructed infinite families {v4i1 ηj , v4i1 8σ : 1 ≤
j ≤ 3, i ≥ 0} as the (nontrivial) composites

Sj η̃j

−→ S0/2
v4i
1−→ Σ−8iS0/2 → S−8i+1,

S0 →֒ S0/2
v4i
1−→ Σ−8iS0/2 → S−8i+1,

where S0/2 is the mod two Moore spectrum, η̃j : Sj → S0/2 is a lift of ηj ∈
πj(S

0) to the top cell of S0/2, and v41 : S0,0/2 → Σ−8S0,0/2 is a non-nilpotent

self-map of S0/2 [1]. These classes are detected by the classes {P ihj
1, P

ih3
0h3 :

1 ≤ j ≤ 3, i ≥ 0} in the Adams spectral sequence, where P i(−) is the Massey
product P (−) := 〈h3, h

4
0,−〉 iterated i-times.

We discussed C-motivic lifts of these infinite families in [28]. In particular,
one can define P (−) := 〈h3, h

4
0,−〉 in the C-motivic Adams spectral sequence

and define infinite families {v4i1 η, v4i1 τη2, v4i1 τη3, v4i1 8σ : i ≥ 0} as the classes
detected by {P ih1, P

iτh2
1, P

iτh3
1, P

ih3
0h3 : i ≥ 0}. All of these classes are

nontrivial since they are permanent cycles (for degree reasons) and their Betti
realizations are Adams’ classical families.
We can construct analogs of these classes over arbitrary algebraically closed
fields of characteristic not two using the following theorem of Wilson and
Wilson-Østvær:

Theorem 3.1. Let F be an algebraically closed field of exponential character-

istic q 6= 2. For all s ≥ w ≥ 0, there are isomorphisms πF
s,w(S

0,0)[q−1] ∼=
πC
s,w(S

0,0)[q−1].

Proof. If q > 2, this follows from [38, Thm. 1.1]. If q = 0, this follows from the
proof of [36, Prop. 7].

Definition 3.2. We define v4i1 η, v4i1 τη2, v4i1 τη3, and v4i1 8σ to be the classes in

πF
∗∗(S

0,0) corresponding to the classes with the same names in πC
∗∗(S

0,0) under
the isomorphism in Theorem 3.1.

Our primary goal in the remainder of this section is to construct lifts of these
to prime fields.

3.2 Computations over finite fields of prime order

We start by constructing some infinite families in π
Fq

∗∗(S
0,0) using the ρ-

Bockstein spectral sequence [17] and base-change along Fq → Fq. We break
the analysis into two cases (Lemmas 3.6 and 3.7) depending on the congruence
class of q modulo four; the results are summarized in Theorem 3.9 for future
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reference. We then study the Fq-motivic homotopy of a certain stunted lens
spectrum. The computations in this section serve as a warm-up for the analo-
gous computations over Spec(Qν) (ν any prime) in Section 3.3 and 3.4. They
will also be used in Section 4.1.
We note that the ρ-Bockstein spectral sequence converging to π

Fq

∗∗(kq) was

studied by Kylling [21] and the ρ-Bockstein spectral sequence for π
Fq

∗∗(S0,0)
was studied by Wilson [37] and Wilson-Østvær [38]. We refer the reader to
their work, as well as [17] and [15], for further applications of the ρ-Bockstein
spectral sequence.

Definition 3.3. The Milnor-Witt degree of a class α ∈ πk
s,w(S

0,0) is defined
to be MW (x) := s− w.

Recall that in [30, Sec. 5], we constructed classes v4i1 τηj ∈ πR
∗∗(S

0,0) for all i ≥ 0
and 2 ≤ j ≤ 3. The class v4i1 τηj is (by definition) detected by P iτhj

1 ∈ Ext∗∗∗
AR

where P (−) is the matric Massey product

P (x) :=

〈[
h3 ρ3h2

1

]
,

[
h4
0

c0

]
, x

〉
.

Note that if ρ3 = 0 in Mk
2 , then this operator simplifies to the Massey product

〈h3, h
4
0,−〉 studied in [28] which lifted the periodicity operator introduced by

Adams in [2].
The following lemma allows us to construct analogous classes in Ext∗∗∗

AF where F
is any field of characteristic not two. We refer the reader to [19, Sec. 2.1] for a
review of Milnor K-theory KM

∗ (F ).

Lemma 3.4 ([22, Lem. 4.1]). Let Exti denote the i-th Ext-group. Over a field

of characteristic not two, we have for each i an extension

0 → ExtiAR ⊗F2[ρ] K
M
∗ (F )/2 → ExtiAF → Tor

F2[ρ]
1 (Exti+1

AR ,KM
∗ (F )/2) → 0.

In particular, there is an injective map

φF : ExtiAR ⊗F2[ρ] K
M
∗ (F )/2 → ExtiAF

for any field F of characteristic not two.
We recall the following calculation of the Milnor K-theory of finite fields for
the reader’s convenience.

Theorem 3.5 ([24][19, Ex. 2.6]). The Milnor K-theory of a finite field Fq is

given by

KM
∗ (Fq) ∼= Z[u]/u2

where u = [a] is the class of any generator a ∈ F×q
∼= KM

1 (Fq). In particular,

we have

KM
∗ (Fq)/2 ∼=

{
F2[u]/u

2 if q ≡ 1 mod 4,

F2[ρ]/ρ
2 if q ≡ 3 mod 4,

where ρ = [−1].
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Lemma 3.6. The following statements hold over Spec(Fq) where q ≡ 1 mod 4:

1. For all i ≥ 0, the classes P ih1, P iτh2
1, P iτh3

1, and P ih3
0h3 are well-

defined classes in ExtFq
.

2. The classes above are permanent cycles in the Fq-motivic Adams spectral

sequence.

3. The classes above detect nontrivial classes in π
Fq

∗∗(S
0,0) which base-change

to the classes with the same name in π
Fq

∗∗(S0,0).

Proof. 1. We have ExtFq
∼= ExtC ⊗ E(u) where |u| = (0,−1,−1) by [38,

Prop. 7.1]. These classes are just the images under φF of the classes in
ExtC with the same name tensored with 1.

2. Adams differentials preserve motivic weight and decrease stem by one. It
follows from [28, Prop. 5.4] that there are no possible targets for Adams
differentials on these classes.

3. The statement about base-change is clear since π
Fq

∗∗(S
0,0) ∼= πC

∗∗(S
0,0) and

base-change sends clases in π
Fq

∗∗(S
0,0) to classes with the same name in

π
Fq

∗∗(S0,0). Since base-change induces a map of Adams spectral sequences
and the classes with the same name in the Fq-motivic Adams spectral
sequence are nonzero, it follows from Part (2) that the classes we are
interested in detect nonzero classes in the Fq-motivic Adams spectral
sequence.

Lemma 3.7. The following statements hold over Spec(Fq) where q ≡ 3 mod 4:

1. For all i ≥ 0, the classes P ih1, P
iτh2

1, P
iτh3

1, and P ih3
0h3 are permanent

cycles in the ρ-Bockstein spectral sequence.

2. There are no classes in higher ρ-Bockstein filtration which contribute to

the same tridegrees of ExtFq
as the classes above.

3. The classes above are permanent cycles in the Fq-motivic Adams spectral

sequence.

4. The classes above detect nontrivial classes in π
Fq

∗∗(S
0,0) which base-change

to the classes with the same name in π
Fq

∗∗(S
0,0).

Proof. We will implicitly use the fact that ρ2 = 0 in M
Fq

2 in this proof. In
particular, this implies that the ρ-Bockstein spectral sequence collapses at E2

so we only need to consider d1-differentials.
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1. We provide the proof for P ih1; the other cases are similar. The case
i = 0 and i = 1 follows from [9]. In general, we have MW (P ih1) = 4i,
stem(P ih1) = 8i + 1, and filt(P ih1) = 4i + 1. The possible targets of
a ρ-Bockstein differential have the form ρz where z ∈ Ext8i+1,4i+2,4i+2

AC ,
but this group is zero by [28, Prop. 5.4].

2. For P ih1, P
iτh2

1, and P ih3
0h3, this is clear from inspection of ExtC in [18]

along with [28, Prop. 5.4]. On the other hand, the class ρP ih0h2 in the
E1-page of the ρ-Bockstein spectral sequence converging to ExtFq

could
contribute to the same tridegree as P iτh2

1. However, we have d1(P
iτh2) =

ρP ih0h2 for all i ≥ 0, so this does not occur.

3. This follows from [28, Prop. 5.4] by similar arguments since Adams dif-
ferentials preserve motivic weight and decrease stem by one.

4. The base-change statement is clear from Part (1). Since base-change
induces a map of Adams spectral sequences and the classes with the
same name in the Fq-motivic Adams spectral sequence are nonzero, it
follows from Part (2) that the classes we are interested in detect nonzero
classes in the Fq-motivic Adams spectral sequence.

We summarize the key results from the previous two lemmas in the following
definition and theorem.

Definition 3.8. We define v4i1 η, v4i1 τη2, v4i1 τη3, and v4i1 8σ to be the classes in

π
Fq

∗∗(S0,0) detected by P ih1, P
iτh2

1, P
iτh3

1, and P ih3
0h3, respectively.

Theorem 3.9. The classes v4i1 η, v4iτη2, v4i1 τη3, and v4i1 8σ in π
Fq

∗∗(S0,0) are

nonzero.

Proposition 3.10. Let Lm be the subcomplex of L∞−∞ with cells in dimension

−5 + 8m ≤ d ≤ 2 + 8m. Over Fq, the degree 16 map is null on Lm for all

m ∈ Z.

Remark 3.11. The subcomplex L0 may be constructed as follows; the cases
m 6= 0 can be obtained by suspension. Let X = L∞−3 = Th(−3γ → BgmC2)
and let Y denote the simplicial 2-skeleton of X , so Y has cells in simplicial
dimensions −6 ≤ d ≤ 2. Then L0 is the cofiber of the inclusion of the −6-cell
into Y . A cell diagram for L0 can be produced from [28, Fig. 1] by restricting
to the values −5 ≤ d ≤ 2 along the horizontal axis.

Remark 3.12. We will freely use the computation of π
Fq

∗∗(S
0,0) in low dimensions

in the following proof. More precisely, we need to know π
Fq

−2k∓ǫ,−k∓ǫ for all
−3 ≤ k ≤ 3 and ǫ ∈ {0, 1}. There are no Adams differentials in the tridegrees
of the Fq-motivic Adams spectral sequence computing these groups [38, Sec.
7.3-7.4]. With this in mind, these groups can be obtained as follows:
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1. When q ≡ 1 mod 4, the relevant motivic homotopy groups satisfy

π
Fq

∗∗(S
0,0) ∼= πC

∗∗(S
0,0){1}⊕ πC

∗+1,∗+1(S
0,0){u}. This follows from the pre-

vious statement about Adams differentials and the calculation of the
Adams E2-page in [38, Prop. 7.1].

2. When q ≡ 3 mod 4, the relevant motivic homotopy groups can be ob-
tained from the E2-page of the ρ-Bockstein spectral sequence depicted in
[8, Fig. 2] by replacing infinite ρ-towers x[ρ] by x[ρ]/(ρ2) and inserting
classes yτ2i+1ρ, i ≥ 0, for any y ∈ πC

∗∗(S
0,0) which supports nontrivial

h0-multiplication but is not h0-divisible. This follows from the previ-
ous statement about Adams differentials and the ρ-Bockstein spectral
sequence d1-differential d1(τ) = ρh0 from [8, Prop. 3.2].

Proof. The isomorphism π
Fq

∗∗(S
0,0) ∼= πC

∗∗(S
0,0) and [28, Prop. 5.11] imply that

the result holds over Fq. Let X := Lm ∧DFqLm where DFq (−) := F (−, S0,0)
is the Fq-motivic Spanier-Whitehead dual functor. By the argument from the

proof of [30, Prop. 5.11], we see that the class detecting 16 in π
Fq

0,0(X) must

base-change to a τ -torsion class in π
Fq

∗∗(S
0,0).

The Fq-motivic homotopy group π
Fq

0,0(X) may be computed via the Atiyah-
Hirzebruch spectral sequence arising from the filtration of X by topological
dimension. As in the proof of [30, Prop. 5.11], the possible contributions to

π
Fq

0,0(X) in the Atiyah-Hirzebruch spectral sequence have the form α[2k±ǫ, k±ǫ]

with α ∈ π
Fq

−2k∓ǫ,−k∓ǫ(S
0,0) where −3 ≤ k ≤ 3 and ǫ ∈ {0, 1}.

In addition to the classes α which base-change to zero in π
Fq

∗∗(S
0,0), we may

omit classes which appeared in the proof of [30, Prop. 5.11] since the attaching
map structure of X is independent of the base-field.
When q ≡ 1 mod 4, the classes

α ∈ {uh3h
i
0, 1 ≤ i ≤ 3;uh2h0;uh

j
0, j ≥ 1}

lie in the correct bidegrees of π
Fq

∗∗(S
0,0), base-change to τ -torsion classes (ac-

tually to zero) in π
Fq

∗∗(S
0,0), and have not been considered in the proof of [30,

Prop. 5.11]. We rule them out using the Atiyah-Hirzebruch spectral sequence.
Recall that the differentials in the Atiyah-Hirzebruch spectral sequence corre-
spond to the attaching maps in X . The d1-differentials correspond to attaching
maps detected by h0, which in turn correspond to a nontrivial action of Sq1

in H∗∗(X). The action of Sq1 on H∗∗(X) may be calculated using the Cartan
formula, the known action of Sq1 on H∗∗(L0) (as depicted in [28, Fig. 1]), and
the known action of Sq1 on H∗∗(DL0) (calculated for a Spanier-Whitehead
dual using the action of Sq1 on H∗∗(X) and the fact that χSq1 = Sq1, where
χ is conjugation in the motivic Steenrod algebra).

1. The classes uh3h
i
0, 1 ≤ i ≤ 3, are the targets of d1- and d8-differentials.

We verify this claim in the case m = 0 for simplicity; the other cases
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follow from 8-fold periodicity of the action of Sqi on H∗∗(L∞−N ) (where
N is any integer) for i ≤ 4.

The classes uh3h
i
0, 1 ≤ i ≤ 3, all lie in π

Fq

6,3(S
0,0), so we must study the

action of Sq1, Sq2, Sq4, and Sq8 on the generators for an additive basis of
H−6,−3(X). Any such generator has the form ei⊗fk where ei ∈ Hi,j(L0)
and fk ∈ Hk,ℓ(DL0) with i+ k = −6 and j + ℓ = −3. The only options
are then e−5 ⊗ f−1 and e−4 ⊗ f−2. We have

Sq1(e−5 ⊗ f−1) = Sq1(e−5)⊗ f−1 + e−5 ⊗ Sq1(f−1) = e−4 ⊗ f−1,

Sq1(e−4 ⊗ f−2) = Sq1(e−4)⊗ f−2 + e−4 ⊗ Sq1(f−2) = e−4 ⊗ f−1.

Wemay take a basis to be {e−5⊗f−1, e−5⊗f−1+e−4⊗f−2}, so then we see
that the classes uhi

0h3 on the cell e−5⊗f−1 are targets of d1-differentials.

We claim that the remaining classes uhi
0h3 on the cell corresponding

e−5 ⊗ f−1 + e−4 ⊗ f−2 are the targets of d8-differentials. To see this, we
apply the Cartan formula to calculate

Sq8(e−5 ⊗ f−1 + e−4 ⊗ f−2) = e0 ⊗ f2.

We therefore have the claimed d8-differential if we can show that the
classes uhi

0 survive on the cell corresponding to e0⊗f2 up to the E8-page
of the Atiyah-Hirzebruch spectral sequence.

2. The class uh2h0 supports a d1-differential.

3. The classes uhj
0, j ≥ 1, are the targets of d1-differentials.

When q ≡ 3 mod 4, there are no classes which lie in the correct bidegrees,

base-changes to a τ -torsion class in π
Fq

∗∗(S
0,0), and were not considered in the

proof of [30, Prop. 5.11].

We have ruled out any classes which could detect 16 in π
Fq

0,0(X), so it must
be zero.

3.3 Computations over the ν-adic rationals

We now make the analogous computations over Spec(Qν). The computations
of this section serve as input for Section 3.4.
The mod two Milnor K-theory of Qν is given below; see [36, Pg. 10] for details.

KM
∗ (Qν)/2 ∼=





F2[π, u]/(π
2, u2) if ν ≡ 1 mod 4,

F2[π, ρ]/(ρ
2, ρπ + π2) if ν ≡ 3 mod 4,

F2[π, ρ, u]/(ρ
3, u2, π2, ρu, ρπ, ρ2 + uπ) if ν = 2.
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Lemma 3.13. The following statements hold over Spec(Qν) for ν ≡ 1 mod 4:

1. For all i ≥ 0, the classes P ih1, P iτh2
1, P iτh3

1, and P ih3
0h3 are well-

defined classes in ExtQν
.

2. The classes above are permanent cycles in the Qν-motivic Adams spectral

sequence.

3. The classes above detect nontrivial classes in πQν
∗∗ (S

0,0) which base-change

to the classes with the same name in π
Qν
∗∗ (S

0,0).

Proof. This follows from the same argument as Lemma 3.6; the key point is
that adjoining one more power of u does not carry us out of the isomorphism
range in [28, Prop. 5.4].

Lemma 3.14. The following statements hold over Spec(Qν) where ν = 2 or

ν ≡ 3 mod 4:

1. For all i ≥ 0, the classes P ih1, P
iτh2

1, P
iτh3

1, and P ih3
0h3 are permanent

cycles in the ρ-Bockstein spectral sequence.

2. There are no classes in higher ρ-Bockstein filtration which contribute to

the same tridegrees of ExtQν
as the classes above.

3. The classes above are permanent cycles in the Qν-motivic Adams spectral

sequence.

4. The classes above detect nontrivial classes in πQν
∗∗ (S

0,0) which base-change

to the classes with the same name in π
Qν
∗∗ (S

0,0).

Proof. This follows from the same argument as Lemma 3.7.

Definition 3.15. Let ν be any prime. We define v4i1 η, v4i1 τη2, v4i1 τη3, and
v4i1 8σ to be the classes in πQν

∗∗ (S
0,0) detected by P ih1, P iτh2

1, P iτh3
1, and

P ih3
0h3, respectively.

Theorem 3.16. The classes v4i1 η, v4iτη2, v4i1 τη3, and v4i1 8σ in πQν
∗∗ (S

0,0) are

nonzero.

Proof. A slight modification of the proof from the case F = Fq implies that
the classes P ih1, P

iτh2
1, P

iτh3
1, and P ih3

0h3, i ≥ 0, are permanent cycles in
the Qν-motivic Adams spectral sequence. The images of these classes under
base-change along f : Qν → Qν detect nonzero classes in the Qν-motivic
Adams spectral sequence. Therefore they must detect nonzero classes in the
Qν-motivic Adams spectral sequence.

Proposition 3.17. Let Lm be the subcomplex of L∞−∞ with cells in dimensions

−5 + 8m ≤ d ≤ 2 + 8m. Over Qν , the degree 16 map is null on Lm for all

m ∈ Z.
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Proof. The reductions from the proof of Proposition 3.10 carry over mutatis

mutandis. Let X := Lm ∧DQνLm. We split the analysis into three cases.
When ν ≡ 1 mod 4, the classes

α ∈ {πuτh3h
2
1;πuτc0h1;πuh3h

i
0, 1 ≤ i ≤ 3;πuh2h0}

lie in the correct bidegrees of πQν
∗∗ (S

0,0), base-change to τ -torsion classes (ac-

tually to zero) in π
Qν
∗∗ (S

0,0), and have not been considered in the proof of [30,
Prop. 5.11].

1. The classes πuτh3h
2
1 and πuτc0h1 are the targets of d2-differentials.

2. The classes πuh3h
i
0, 1 ≤ i ≤ 3, are the targets of d1-differentials.

3. The class πuh2h0 is the target of a d1-differential.

When ν ≡ 3 mod 4 (resp. ν = 2), the only new classes are the ones appearing
in the case where ν ≡ 1 mod 4, with πu replaced by πρ (resp. πu replaced by
ρ2). The same argument carries through to eliminate these classes.
We have ruled out any classes which could detect 16 in πQν

0,0(X), so it must
be zero.

3.4 v1-periodic families over the rationals

In this section, we construct the infinite families v4i1 τη2 and v4i1 τη3 in πQ
∗∗(S

0,0).
We also study the Q-motivic homotopy of Lm. In both cases, we employ
previous calculations along with the motivic Hasse principle developed in [27,
Sec. 4-5].
The construction of the R-motivic May spectral sequence [30, Sec. 4.3] may be
modified by replacing MR

2 by M
Q
2 and (AR)∨ by (AQ)∨ to obtain the Q-motivic

May spectral sequence. The discussion in [30, Sec. 5.1] carries over to define a
Q-motivic periodicity operator

PQ(x) :=

〈[
h3 ρ3h2

1

]
,

[
h4
0

c0

]
, x

〉

on the elements x ∈ Ext∗∗∗
AQ (M

Q
2 ,M

Q
2 ) which are both h4

0 and c0-torsion.

Lemma 3.18. The following statements hold over Spec(Q):

1. For all i ≥ 0, the classes P i
Qτh

2
1 and P i

Qτh
3
1 are nontrivial in

Ext∗∗∗
AQ (M

Q
2 ,M

Q
2 ).

2. The classes above are permanent cycles in the Q-motivic Adams spectral

sequence.

3. The classes above detect nontrivial classes in πQ
∗∗(S

0,0) which base-change

to the classes with the same name in πQ
∗∗(S

0,0).
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Proof. The analogous statements hold over every completion Qν of Q:

• Over R, the statements follow from [30].

• Over Qν with ν a prime, the statements follow from Section 3.3. The
identification of the relevant elements as (matric) Massey products in
Ext∗∗∗

AQν
(MQν

2 ,MQν

2 ) follows from the construction of φF in the proof of
[22, Lem. 4.1].

The map KM
∗ (Q)/2 →

∏
ν K

M
∗ (Qν)/2 induces an injective map between the

E1-pages of the motivic May spectral sequences converging to Ext∗∗∗
AQ and∏

ν Ext∗∗∗
AQν

. Then (1) is clear since the same results hold over every com-
pletion of Q. The motivic Hasse map also induces a map of motivic Adams
spectral sequences, so (2) follows similarly. Finally, (3) follows from quotienting
by ρ as in [30, Sec. 5.1].

Definition 3.19. We define v4i1 τη2 and v4i1 τη3 to be the classes in πQ
∗∗(S

0,0)
detected by P iτh2

1 and P iτh3
1, respectively.

Theorem 3.20. The classes v4i1 τη2 and v4i1 τη3 are nonzero in πQ
∗∗(S

0,0).

Proposition 3.21. Let Lm be the subcomplex of L∞−∞ with cells in dimensions

−5 + 8m ≤ d ≤ −2 + 8m. Over Q, the degree 16 map is null on Lm for all

m ∈ Z.

Proof. The analogous results hold over every completion Qν of Q:

1. Over R, this follows from [30, Sec. 5.2].

2. Over Qν with ν a prime, this follows from Section 3.3.

The result then follows from base-change and the motivic Hasse map. In par-
ticular, we see that the induced map from the E2-page of the Q-motivic Adams
spectral sequenceto the product over all completions of the E2-page of the Qν-
motivic Adams spectral sequence is injective in the relevant tridegrees. Since
there are no differentials in this range (by base-change and the analogous state-
ments over Spec(R) and Spec(Qν)), the map in homotopy groups is injective
in the relevant bidegrees. The result follows.

4 Motivic Mahowald invariant of (2 + ρη)i

We now apply the computations from Section 3 to compute MF ((2 + ρη)i) for
all i ≥ 0 if char(F ) > 2 and for all i ≡ 2, 3 mod 4 if char(F ) = 0.

4.1 Prime field Mahowald invariants

We begin by computing over prime fields. That is, we compute the Fq-
Mahowald invariant of 2i, i ≥ 1, where q > 2 is prime, and the Q-Mahowald
invariant of (2 + ρη)i, i ≡ 2, 3 mod 4.
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Theorem 4.1. Let i ≥ 1. The Fq-Mahowald invariant of 2i is given by

MFq(24i+j) ∋






v4i1 8σ j = 0,

v4i1 η j = 1,

v4i1 τη2 j = 2,

v4i1 τη3 j = 3.

Proof. The proof is analogous to the proof of [30, Thm. 5.12]; we summarize
the necessary changes below.

1. The isomorphism π
Fq

∗∗(S0,0) ∼= πC
∗∗(S

0,0) implies that MFq (24i+j) has the
desired form. Base-change along Fq → Fq and Lemma 2.6 then give the

upper bound |MFq(24i+j)| ≤ |MFq (24i+j)| = |MC(24i+j)|. Moreover, if

bound is tight, then MFq (24i+j) must base-change to MFq (24i+j). By
Section 3.2, the classes in the theorem statement are the only classes
which do this.

2. Proposition 3.10 and low-dimensional computations show that the in-
equality is an equality; compare with the proof of [23, Thm. 2.17].

Theorem 4.2. Let i ≥ 0 and let j ∈ {2, 3}. The Q-Mahowald invariant of

24i+j is given by

MQ((2 + ρη)4i+j) ∋

{
v4i1 τη2 j = 2,

v4i1 τη3 j = 3.

Proof. We follow the same proof idea as above.

1. Lemma 2.6 applied to the isomorphism πQ
∗∗(S

0,0) ∼= πC
∗∗(S

0,0) implies

that MQ((2 + ρη)4i+j) has the desired form. Base-change along Q → Q

and Lemma 2.6 then give the upper bound |MQ(24i+j)| ≤ |MQ(24i+j)| =
|MC(24i+j)|. Moreover, if this inequality is actually an equality, then

MQ(24i+j) must base-change to MQ(24i+j); by Section 3.4, the classes in
the theorem statement are the only possible classes with this property.

2. Proposition 3.21 and low-dimensional computations show that the in-
equality is an equality; compare with the proof of [23, Thm. 2.17].

4.2 F -Mahowald invariants of 2i

We now apply the base-change functor, Lemma 2.6, and our computations over
Spec(Fq), Spec(Q), and Spec(C) to compute the F -Mahowald invariants of 2i

for any field F of characteristic not two.
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Notation 4.3. We will use the notation

k
f
→ F

g
→ L

to denote any of the following sequences of field extensions:

Fq → F → F or Q → F → F .

The classes in the F -motivic Adams spectral sequence may be defined by com-
parison with the ρ-Bockstein spectral sequence in SH(k) and SH(L).

Definition 4.4. Let F be any field as above.

1. Suppose char(F ) > 2. We define v4i1 η, v4iτη2, v4i1 τη3, and v4i1 8σ to be
the classses in πF

∗∗(S
0,0) detected by P ih1, P

iτh2
1, P

iτh3
1, and P ih3

0h3,
respectively, in the F -motivic Adams spectral sequence.

2. Suppose F be a field with char(F ) = 0. We define v4i1 τη2 and v4i1 τη3 to
be the classes in πF

∗∗(S
0,0) detected by P iτh2

1 and P iτh3
1, respectively, in

the F -motivic Adams spectral sequence.

Theorem 4.5. Let F be any field as above.

1. Suppose char(F ) > 2. The classes v4i1 η, v4i1 τη2, v4i1 τη3, and v4i1 8σ in

πF
∗∗(S

0,0) are nonzero.

2. Suppose char(F ) = 0. The classes v4i1 τη2 and v4i1 τη3 in πF
∗∗(S

0,0) are

nonzero.

Proof. The classes are all permanent cycles by base-change along k → F and
the results of Section 3. They are nonzero by base-change along F → L along
with the isomorphism πL

∗∗(S
0,0) ∼= πC

∗∗(S
0,0) from Theorem 3.1.

Theorem 4.6. Suppose that char(F ) > 2. Then the F -motivic Mahowald

invariant of (2 + ρη)i is given by

MF ((2 + ρη)4i+j) ∋






v4i1 η if j = 1,

v4i1 τη2 if j = 2,

v4i1 τη3 if j = 3,

v4i1 8σ if j = 4.

Suppose that char(F ) = 0. Then the F -motivic Mahowald invariant of (2+ρη)i

is given by

MF ((2 + ρη)4i+j ∋

{
v4i1 τη2 if j = 2,

v4i1 τη3 if j = 3.

Proof. Applying Lemma 2.6 shows that

|Mk(2i)| ≤ |MF (2i)| ≤ |ML(2i)|.

Theorem 4.1 identifies the left-hand side and Theorem 3.1 identifies the right-
hand side with |MC(2i)| which was computed in [28]. These sides agree; the
theorem follows.
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