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Abstract.

Motivated by the weight part of Serre’s conjecture we consider the
following question. Let K/Qp be a finite extension and suppose
ρ : GK → GLn(Fp) admits a crystalline lift with Hodge–Tate weights
contained in the range [0, p]. Does ρ admit a potentially diagonalis-
able crystalline lift of the same Hodge–Tate weights? We answer this
question in the affirmative when K = Qp and n ≤ 5, and ρ satisfies a
mild ‘cyclotomic-free’ condition. We also prove partial results when
K/Qp is unramified and n is arbitrary.
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1 Introduction

Let p be a prime and K/Qp a finite extension. A potentially diagonalisable
p-adic representation of GK is one which is potentially crystalline and which,
possibly after restriction to GK′ for an extension K ′/K, lies in the same irre-
ducible component of a potentially crystalline deformation ring as a represen-
tation which is a sum of crystalline characters. The notion was introduced in
[BLGGT14] where very general change of weight theorems for automorphic Ga-
lois representations were proven under the assumption that the representations
in question are potentially diagonalisable above p, cf. [BLGGT14, Theorem E].
One motivation for these theorems comes from the following question, which
is a generalisation of Serre’s classical modularity conjecture. If F is a CM
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field and r : GF → GLn(Fp) is continuous and irreducible, then what are the
possible weights for which there exists an automorphic representation giving
rise to r? Very little is currently known about this question. However if one
assumes that r is automorphic of some weight then the outlook is better—in
this case if rv admits a potentially diagonalisable crystalline lift at each place
v | p of F then, under a Taylor–Wiles hypothesis, it can be shown that r is
automorphic with weight equal to the Hodge–Tate weights of the lifts of rv,
cf. [BLGG18, Theorem 3.1.3] or [BG19, Theorem 5.2.1]. Since representations
associated to automorphic forms which are unramified above p are crystalline
above p, one is led to the following, purely local, question:

Question. Let K/Qp be a finite extension and let ρ : GK → GLn(Fp) be
a continuous representation. If ρ has a crystalline lift1 then does ρ have a
potentially diagonalisable crystalline lift with the same Hodge–Tate weights?

Hui Gao and Tong Liu [GL14] have shown that, when K/Qp is unramified, any
crystalline representation with Hodge–Tate weights contained in [0, p − 1] is
potentially diagonalisable, answering our question in the affirmative. A positive
answer is also known when n = 2 and the weights are contained in [0, p],
by work of Toby Gee, Tong Liu and David Savitt [GLS14, GLS15] (see also
[Wan] which extends their proof to the case p = 2). These methods have
since been generalised in [Bar20a] to answer our question in the affirmative
for representations in any dimension which are semi-simple and have weights
contained in [0, p].

In this paper we discuss extensions of these results to representations which are
not necessarily semi-simple. Progress in this direction has previously been made
by Hui Gao [Gao17,Gao18] assuming that every Jordan–Holder factor of ρ is
one-dimensional (and under some additional technical assumptions). The main
innovation of this paper is to put these calculations in a more conceptual frame-
work. This allows us to consider representations whose Jordan–Holder factors
are not one-dimensional, and to remove some of the conditions appearing in
Gao’s work.

A crucial assumption that is necessary for our methods is that ρ be cyclotomic-
free (cf. Definition 2.1.1). This is an n-dimensional generalisations of the
avoidance of representations of the shape ( χcyc ∗

0 1 ). Our first theorem is then
the following.

Theorem 1.0.1. Let ρ : GK → GLn(F) be continuous and cyclotomic-free.
Suppose there exists a crystalline representation ρ : GK → GLn(Zp) with ρ ∼=
ρ⊗Zp

Fp and with Hodge–Tate weights ∈ [0, p].

If K = Qp and n ≤ 5 then there exists a potentially diagonalisable crystalline
representation ρ′ with ρ ∼= ρ′⊗Zp

Fp and with Hodge–Tate weights equal to those
of ρ.

1By a crystalline lift we mean a crystalline representation ρ : GK → GLn(Zp) such that
ρ⊗

Zp
Fp

∼= ρ.
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In particular the question has the answer yes for ρ as in Theorem 1.0.1. As
we shall explain below, the assumptions K = Qp and n ≤ 5 ensure that cer-
tain irreducible semilinear objects have a particularly simple form and admit
crystalline lifts. Beyond these low dimensional cases the situation is more
complicated; this is what prevents us from answering the question in greater
generality. However, when the Jordan–Holder factors of r are one-dimensional
this issue does not arise and we are also able to prove:

Theorem 1.0.2. Suppose K/Qp is unramified. Let ρ : GK → GLn(F) be con-
tinuous and cyclotomic-free. Suppose there exists a crystalline representation
ρ : GK → GLn(Zp) with ρ ∼= ρ⊗

Zp
Fp and with τ-Hodge–Tate weights in [0, p]

for each τ ∈ HomFp
(k,Fp).

If every Jordan–Holder factor of ρ is one-dimensional then there exists a poten-
tially diagonalisable crystalline representation ρ′ with ρ ∼= ρ′ ⊗

Zp
Fp and with

τ-Hodge–Tate weights equal to those of ρ for every τ ∈ HomFp
(k,Fp).

This gives a more general version of the main results of [Gao17,Gao18].
We now explain how potentially diagonalisable lifts may be produced. Every
mod p representation is a successive extension of irreducible representations,
each of which is induced over an unramified extension of K from a charac-
ter. Thus the standard method for producing potentially diagonalisable lifts
is to consider lifts obtained in the same way, by taking successive crystalline
extensions of irreducible representations obtained by inducing crystalline char-
acters. Such lifts are called obvious lifts (following terminology introduced
in [GHS18, Subsection 7.1]) and it is straightforward to see that obvious lifts
are potentially diagonalisable (see the beginning of Section 7). In both Theo-
rem 1.0.1 and 1.0.2 the ρ′ constructed will be obvious lifts.

Remark 1.0.3. Since writing this paper the author has used the technique de-
veloped here to substantially generalise Theorems 1.0.1 and 1.0.2. In [Bar20b]
it is shown that, under a cyclotomic-freeness assumption on the reduction mod-
ulo p (a slight variant of that considered in this paper), every crystalline rep-
resentation with Hodge–Tate weights contained in [0, p] is potentially diago-
nalisable. This is done by showing that every such crystalline representation
is contained in the same component of a crystalline deformation ring as one
which is an obvious lift. A key step is to prove that certain moduli spaces of
Breuil–Kisin modules over these deformation rings are smooth, and this relies
on the extension group computations made in Section 4.

There are two issues with this method of producing obvious lifts. Firstly,
it is probably not true that every mod p representation has an obvious lift.
Recent work of Matthew Emerton and Toby Gee [EG] shows, using geometric
methods, that potentially diagonalisable lifts can always be obtained, but their
methods involve an inductive process where obvious lifts are allowed to vary
inside irreducible components of deformation rings. We avoid this problem by
restricting attention to cyclotomic-free representations. Secondly, even if one
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can produce obvious lifts, the Hodge–Tate weights of such lifts seem to be very
restrictive. They depend upon ρ in a non-obvious way, and it is unclear that
if ρ has a crystalline lift of some weight then it will be possible to construct an
obvious lift of the same weight.

In this paper we resolve the second issue, not by producing obvious crystalline
lifts of ρ, but instead by producing lifts of a semilinear object related to ρ.
More precisely, if ρ admits a crystalline lift then Kisin’s work in integral p-
adic Hodge theory [Kis06] associates to this lift a Breuil–Kisin module. We
produce obvious crystalline lifts of the mod p reduction of this Breuil–Kisin
module (i.e. we produce obvious lifts whose associated Breuil–Kisin module is
congruent modulo p to the one arising from the previous crystalline lift). Our
assumption that ρ is cyclotomic-free means that this obvious lift will also be
an obvious lift of ρ. The key ingredient which makes this possible is a theorem
of Gee–Liu–Savitt which says that the Breuil–Kisin module of a crystalline
representation with Hodge–Tate weights contained in [0, p] is of a particularly
nice form; in particular its reduction modulo p sees the Hodge–Tate weights of
the crystalline representation it was obtained from.

We conclude our introduction by explaining the content of this paper. Section 2
discusses the cyclotomic-freeness condition and its consequences. The main
result is that, if K∞ is the extension of K obtained by adjoining a compatible
system of p-th power roots of a uniformiser of K, then any GK∞

-equivariant
morphism between cyclotomic-free GK-representations is GK-equivariant.
In Section 3 we recall the notion of a Breuil–Kisin module. We state Kisin’s
construction which associates a Breuil–Kisin module to a crystalline repre-
sentation and the result of Gee–Liu–Savitt which controls the shape of such
Breuil–Kisin modules. We also recall from [Bar20a] the notion of strong di-
visibility for p-torsion Breuil–Kisin modules, and some of the properties such
modules satisfy.
In Section 4 we compute the space of extensions of strongly divisible Breuil–
Kisin modules. The dimension is closely related to the dimension of crystalline
extensions in characteristic zero, and in Section 5 we use this to show that
extensions between strongly divisible Breuil–Kisin modules admit lifts by crys-
talline extensions.

Section 5 reduces the problem of lifting strongly divisible Breuil–Kisin mod-
ules to that of lifting irreducible such modules. In general the structure of
such modules is complicated, and we do not know how to produce such lifts.
However we show in Section 6, by explicit computation, that in low dimen-
sional situations (when K = Qp and n ≤ 4) their structure can be controlled so
that crystalline lifts can be produced. In the final section we put these results
together to prove the theorems stated above.
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2 Cyclotomic-free representations

For this section let K/Qp be any finite extension. Let K∞ = K(π1/p∞

) where
π1/p∞

is a fixed choice of compatible system of p-th power roots of a uniformiser
π ∈ K. Our aim is to understand restriction from GK to GK∞

for a class of
representations we call cyclotomic-free.
If G is a topological group denote by Rep(G) the category of continuous rep-
resentations of G on finite dimensional Fp-vector spaces. In this section all
unadorned tensor products are over Fp.

2.1 Cyclotomic-free representations

For any field F of characteristic p let F(1) denote the GK-representation whose
underlying vector space is F, with GK-action given by the mod p cyclotomic
character χcyc.

Definition 2.1.1. V ∈ Rep(GK) is cyclotomic-free if V admits a composition
series 0 = Vn ⊂ . . . ⊂ V0 = V such that Vi/Vi+1⊗Fp(1) is not a Jordan–Holder
factor of Vi+1 for any i. Pictorially

V ∼



. . . ∗ ∗
0 V1/V2 ∗
0 0 V0/V1




and we ask that for each i no block above Vi/Vi+1 is isomorphic to Vi/Vi+1 ⊗
Fp(1). In particular cyclotomic-freeness is ruling out representations of the
form

( χcyc ∗
0 1

)
.

Note in the definition of cyclotomic-freeness we require that one composition
series of V satisfies the conditions describes in (2.1.1), not that every one does.

Lemma 2.1.2. If V ∈ Rep(GK) is cyclotomic-free then any subquotient of V is
cyclotomic-free also.

Proof. Suppose f : V → W is surjective and let (Vi)i be a composition series
as in Definition 2.1.1. Set Wi = f(Wi). Then f induces surjective maps
Vi/Vi+1 → Wi/Wi+1 and so Wi/Wi+1

∼= Vi/Vi+1 or Wi/Wi+1 = 0. Thus,
after re-indexing, the (Wi)i form a composition series as in Definition 2.1.1,
and W is cyclotomic-free. If instead W ⊂ V is a GK-stable subspace set
Wi = W ∩Vi. Then Wi/Wi+1 →֒ Vi/Vi+1 and so either Wi/Wi+1 is isomorphic
to Vi/Vi+1, or is zero. Re-indexing we obtain a composition series (Wi)i as in
Definition 2.1.1.
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The class of cyclotomic-free representations is not closed under extensions. For
example, if the mod p cyclotomic character is trivial it is not even closed under
direct sums.
The main result of this section is:

Theorem 2.1.3. Let V and W be cyclotomic-free GK -representations and f :
V →W a morphism of GK∞

-representations. Then f is GK-equivariant.

The proof is given over the next three subsections. Results in a similar direction
appear in [LLHLM18, Lemmas 3.10 and 3.11], and can be compared with
Lemma 2.3.5.

2.2 Restriction for irreducibles

Let Kt be the maximal tamely ramified extension of K. Since K∞ is totally
wildly ramifiedK∞∩K

t = K. Galois theory then tells us that, ifKt
∞ = K∞Kt,

then the restriction map

Gal(Kt
∞/K∞)→ Gal(Kt/K)

is an isomorphism. By [Ser72, Proposition 4] the action of GK on any semi-
simple object of Rep(GK) factors through Gal(Kt/K). Likewise the GK∞

-
action on any semi-simple object of Rep(GK∞

) factors through Gal(Kt
∞/K∞).

Thus we deduce:

Lemma 2.2.1. Restriction induces an equivalence between the category of semi-
simple V ∈ Rep(GK) and the category of semi-simple V ∈ Rep(GK∞

).

This implies Theorem 2.1.3 holds when V and W are irreducible. It also implies
that any GK-composition series of V ∈ Rep(GK) is also a GK∞

-composition
series. In particular, if V is cyclotomic-free in the sense of Definition 2.1.1 then
V |GK∞

is cyclotomic-free in the following sense.

Definition 2.2.2 (Cyclotomic-freeness for GK∞
-representations). V ∈

Rep(GK∞
) is cyclotomic-free if V admits a composition series 0 = Vn ⊂ . . . ⊂

V0 = V such that Vi/Vi+1 ⊗ Fp(1) is not a Jordan–Holder factor of Vi+1.

2.3 Restriction on Galois cohomology

The following lemma is well-known (cf. for example. [Bar20a, Lemma 2.1.2]).

Lemma 2.3.1. Every irreducible V ∈ Rep(GK) is isomorphic to IndKL χ where

L/K is an unramified extension and χ : GL → F
×

p is a continuous character.

We have written IndK
L in place of IndGK

GL
and we continue with this notation

throughout.
If G is a topological group and V,W ∈ Rep(G) write Hom(V,W ) ∈ Rep(G)
for the representation with underlying vector space HomFp

(V,W ) and G-action
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given by σ · f = σ ◦ f ◦ σ−1. Note that Hom(V,W ) = V ∨ ⊗W where V ∨ =
Hom(V,Fp). We shall use that if W ∈ Rep(GL) and V ∈ Rep(GK) then there

are isomorphisms IndKL (V |L ⊗W ) ∼= V ⊗ IndKL W .
If G is profinite we let H∗(G, V ) denote the continuous cohomology groups
valued in V .

Lemma 2.3.2. If V,W ∈ Rep(GK) are irreducible then the restriction map

H1(GK ,Hom(V,W ))→ H1(GK∞
,Hom(V,W )) (2.3.3)

is injective unless W ∼= V ⊗ Fp(1).

Proof. First, suppose that Hom(V,W ) in (2.3.3) is replaced by IndKL Z with Z
one dimensional. Recall that IndKL Z is the vector space of continuous functions
f : GK → Z such that f(hg) = h · f(g) for all h ∈ GL, g ∈ GK . Since
GL∞

= GK∞
∩GL, restriction of functions describes a map IndKL Z → IndK∞

L∞
Z

fitting into the GL∞
-equivariant diagram

IndKL Z IndK∞

L∞
Z

Z Z|L∞

in which the vertical arrows are evaluation at 1. After taking cohomology,
the vertical arrows induce isomorphisms and the horizontal arrows induce re-
striction, cf. [Ser02, Section 2.5]. By [GLS15, Lemma 5.4.2] H1(GL, Z) →
H1(GL∞

, Z) is injective unless Z ∼= Fp(1), and so the same is also true for the

restriction map H1(GK , IndKL Z)→ H1(GK∞
, IndKL Z).

Return to the statement of the lemma. As W is irreducible W ∼= IndKL Z for
a one-dimensional Z. The projection formula gives Hom(V,W ) ∼= IndKL (Z ⊗
V ∨|L). Since V is irreducible V ∨ is irreducible also, and so V ∨ ∼= IndKF Y for a
one-dimensional Y . Mackey’s theorem implies V ∨|L ∼=

⊕
γ Ind

L
FL Y (γ) with γ

running over a subset of GL and Y (γ) = Y as vector spaces with GFL-action
given by σ(y) = (γσγ−1)(y). Therefore

Hom(V,W ) ∼=
⊕

γ

IndKL (Z ⊗ IndLFL Y (γ)) =
⊕

γ

IndKFL(Z ⊗ Y (γ)). (2.3.4)

Thus (2.3.3) is a direct sum of restriction maps H1(GK , IndK
FL(Z ⊗ Y (γ))) →

H1(GK∞
, IndKFL(Z ⊗ Y (γ))). By the previous paragraph, these maps are injec-

tive unless Z ⊗ Y (γ) ∼= Fp(1). However if this is the case then (2.3.4) implies
Hom(V ⊗ Fp(1),W ) has GK-fixed points, i.e. W ∼= V ⊗ Fp(1).

Lemma 2.3.5. Suppose W is cyclotomic-free, V is irreducible, and V ⊗ Fp(1)
is not a Jordan–Holder factor of W . Then

Hi(GK ,Hom(V,W ))→ Hi(GK∞
,Hom(V,W ))

is an isomorphism if i = 0 and is injective if i = 1.
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Proof. Induct on the length of W . If W is irreducible then the claim fol-
lows from Lemma 2.2.1 and Lemma 2.3.2. If W is not irreducible we can
fit W into an exact sequence 0 → W1 → W → W2 → 0 where W1 is
cyclotomic-free, W2 is irreducible and non-zero, and where W2 ⊗ Fp(1) not
a Jordan–Holder factor of W1. Setting Hi(Wj) = Hi(GK ,Hom(V,Wj)) and
Hi

∞(Wj) = Hi(GK∞
,Hom(V,Wj)) and passing to cohomology gives the com-

mutative diagram

H0(W2) H1(W1) H1(W ) H1(W2)

H0
∞(W2) H1

∞(W1) H1
∞(W ) H1

∞(W2),

which commutes and has exact rows. By the inductive hypothesis the first

vertical arrow is an isomorphism, and the second and fourth are injective. A
diagram chase shows that the third vertical arrow is injective also. Similarly
we obtain the diagram

H0(W1) H0(W ) H0(W2) H1(W1)

H0
∞(W1) H0

∞(W ) H0
∞(W2) H1

∞(W1)

(with Hi(Wj) and Hi
∞(Wj) are before) which commutes and has exact rows.

Again the inductive hypothesis implies the first and third vertical arrows are
isomorphisms, and the fourth is injective. A diagram chase shows the second
vertical arrow is an isomorphism, which finishes the proof.

Corollary 2.3.6. Let V and W be as in Lemma 2.3.5 and let 0→W → Z →
V → 0 be an exact sequence in Rep(GK). Then any GK∞

-equivariant splitting
s : V → Z of this sequence is GK-equivariant.

Proof. If such a splitting s exists then the i = 1 part of Lemma 2.3.5 implies
0 → W → Z → V → 0 is split in Rep(GK), say by a GK -equivariant map
s′ : V → Z. Then s′ − s ∈ H0(GK∞

,Hom(V,W )) and so, by the i = 0 part of
Lemma 2.3.5,

s′ − s ∈ H0(GK ,Hom(V,W )).

Thus s is GK-equivariant.

2.4 Proving the theorem

Lemma 2.4.1. Let W be a cyclotomic-free GK-representation and V an irre-
ducible GK-representation. Then any GK∞

-equivariant map f : V → W is
GK-equivariant.
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Proof. Let (Wj)j be a composition series as in Definition 2.1.1. There is a
largest j such that f factors through Wj →֒ W ; so long as f 6= 0 (in which

case the lemma is trivial) the composite g : V
f
−→Wj →Wj/Wj+1 is then non-

zero. Lemma 2.2.1 implies g is a GK-equivariant isomorphism. Now f ◦ g−1

is a GK∞
-splitting of 0 → Wj+1 → Wj → Wj/Wj+1 → 0 and so f ◦ g−1 is

GK-equivariant by Corollary 2.3.6. Thus f is GK-equivariant.

Proof of Theorem 2.1.3. Induct on the length of V . When V is irreducible the
theorem is given by Lemma 2.2.1. If V is not irreducible choose a composition
series (Vi)i as in Definition 2.1.1. As V1 is cyclotomic-free our inductive hy-
pothesis implies f : V1 → W is GK -equivariant. In particular ker(f |V1) ⊂ V
is GK-stable. If ker(f |V1) 6= 0 then, as f factors through V → V/ ker(f |V1)
and V/ ker(f |V1) is cyclotomic-free by Lemma 2.1.2, the result follows from our
inductive hypothesis. Thus we can assume f |V1 is injective. Set W1 = f(V1);
again since f |V1 is GK-equivariant W1 ⊂W is GK -stable.

Now consider the commutative diagram

0 V1 V V/V1 0

0 W1 W W/W1 0

f

with the rows exact in Rep(GK). As W/W1 is cyclotomic-free by Lemma 2.1.2,
V/V1 →W/W1 is GK -equivariant. Thus f(σ(v))− σ(f(v)) ∈ W1 for all v ∈ V
and σ ∈ GK , and so f(V ) ⊂ W is GK-stable. As f(V ) is cyclotomic-free we
may assume f is surjective. This implies V/V1 → W/W1 is surjective, and so
is a GK-isomorphism since V/V1 is irreducible.

If we identify V/Vn−1 = W/Wn−1 and Vn−1 = Wn−1 via the outer ar-
rows of the above diagram, the map f shows that the two horizontal
rows in the diagram define the same class in Ext1Rep(GK∞ )(V/Vn−1, Vn−1) =

H1(GK∞
,Hom(V/Vn−1, Vn−1)). By Lemma 2.3.5 these two rows define the

same class in Ext1Rep(GK)(V/Vn−1, Vn−1). Hence there exists a GK-equivariant
h : V → W fitting into the diagram as f does. Thus h − f describes a GK∞

-
equivariant map V/V1 → W1. By induction h− f is GK-equivariant and so f
is GK-equivariant also.

2.5 Stable lattices

Fix a finite E/Qp with ring of integers O and residue field F. We conclude
the section by using the above to show that certain GK∞

-stable lattices inside
E-representations of GK are GK-stable.

If G is a topological group acting linearly and continuously on a topological
abelian group M then let Z1(G,M) denote the group of continuous 1-cocycles
G→M , and let B1(G,M) ⊂ Z1(G,M) denote the group of 1-coboundaries.
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Lemma 2.5.1. Let V,W be continuous representations of GK on finite free O-
modules. Assume W = W ⊗O Fp is cyclotomic-free, that V = V ⊗O Fp is
irreducible, and that V ⊗

Fp
Fp(1) is not a Jordan–Holder factor of W .

If c ∈ Z1(GK ,Hom(V,W )[ 1p ]) is such that c(σ) ∈ Hom(V,W ) for all σ ∈ GK∞

then c ∈ Z1(GK ,Hom(V,W )).

Proof. To prove the lemma it suffices to do so with V and W replaced by
V ⊗O O

ur and W ⊗O O
ur, where O

ur denotes the ring of integers inside the
maximal unramified extension of E. Thus we may assume that F = Fp.
Put H = Hom(V,W ) (the representation of O-linear homomorphisms) and
H = Hom(V ,W ) = H ⊗O F. Lemma 2.3.5 implies H0(GK , H) = H0(GK∞

, H)
and H1(GK , H)→ H1(GK∞

, H) is injective.
Let m denote the maximal ideal of O. We claim there exists µ ∈ m such
that µc ∈ Z1(GK , H). Recall from [Tat76, Proposition 2.3] that the map
H1(GK , H) → H1(GK , H [ 1p ]), coming from H →֒ H [ 1p ], induces an isomor-

phism H1(GK , H)[ 1p ]
∼= H1(GK , H [ 1p ]). It follows that there exists a µ′ ∈ m so

that the class of µ′c inside H1(GK , H [ 1p ]) is represented by c̃ ∈ Z1(GK , H).

Thus µ′c − c̃ ∈ B1(GK , H [ 1p ]). Clearly our claim holds for cocycles in

B1(GK , H [ 1p ]), so the claim holds in general.

To prove the lemma assume c 6∈ H1(GK , H). By the previous paragraph there is
a µ ∈ m so that µc ∈ Z1(GK , H). Since E/Qp is finitely ramified we can assume
that µ is such that vp(µ) is minimal. Since c(σ) ∈ H for σ ∈ GK∞

the image
µc of µc in Z1(GK , H) must vanish on GK∞

. Injectivity of H1(GK , H) →
H1(GK∞

, H) therefore implies µc ∈ B1(GK , H), so µc = (σ − 1)h for some
h ∈ H . As µc|GK∞

= 0, h ∈ H0(GK∞
, H) and so h ∈ H0(GK , H). Thus

µc = 0 on GK which contradicts the minimality of vp(µ).

Corollary 2.5.2. Let V and W be as in Lemma 2.5.1, and

0→W → Z → V → 0 (2.5.3)

be an exact sequence of GK∞
-representations. If the GK∞

-action on Z[ 1p ] ex-

tends to a continuous GK -action so that (2.5.3) becomes GK-equivariant after
inverting p, then Z is GK -stable inside Z[ 1p ].

Proof. In the usual way, choosing an O-module splitting of (2.5.3) produces a
continuous 1-cocycle c : GK∞

→ Hom(V,W ) in Z1(GK∞
,Hom(V,W )). The

extension of (2.5.3) to GK after inverting p produces an extension of c to
an element of Z1(GK ,Hom(V,W )[ 1p ]). To show Z is GK-stable it suffices to

show this extension of c lies in Z1(GK ,Hom(V,W )), and this follows from
Lemma 2.5.1.

3 Breuil–Kisin modules

In this section we recall the theory of Breuil–Kisin modules and their relation-
ship to crystalline Galois representations.
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Throughout let k denote a finite field of characteristic p. Write K0 = W (k)[ 1p ]
and let K be a totally ramified extension of K0 of degree e. Let C denote the
completion of a fixed algebraic closure of K, with ring of integers OC .

3.1 Breuil–Kisin modules

Let S = W (k)[[u]]. We equip this ring with the Zp-linear endomorphism ϕ
which acts on W (k) by the Witt vector Frobenius and which sends u 7→ up.
Fix a uniformiser π ∈ K and let E(u) ∈ S denote the minimal polynomial of
π over K0.

Definition 3.1.1. A Breuil–Kisin module M is a finitely generated S-module
equipped with an isomorphism

ϕM : M ⊗ϕ,S S[ 1E ] ∼= M [ 1E ].

When there is no risk of confusion we write ϕ in place of ϕM . We can identify
ϕM with the semilinear map M → M [ 1E ] given by m 7→ ϕM (m ⊗ 1). Denote

the category of Breuil–Kisin modules by ModBK
K .

We now recall the connection between Breuil–Kisin modules and crystalline
representations. As in the previous section choose a compatible system π1/pn

of pn-th roots of π in C, and let K∞ = K(π1/p∞

). Let Ainf = W (OC♭) where
OC♭ = lim

←−
OC/p with transition maps given by x 7→ xp. Our choice of π1/pn

defines an element π♭ ∈ OC♭ and we embed S→ Ainf via
∑

aiu
i 7→

∑
ai[π

♭]i.
This inclusion is compatible with ϕ on S and the Witt vector Frobenius on
Ainf . Note that the GK-action on OC/p induces a GK-action on Ainf , and via
this action the image of S→ Ainf is GK∞

-stable

Lemma 3.1.2. There is an exact functor M 7→ T (M) = (M ⊗S W (C♭))ϕ=1

from ModBK
K to the category of finitely generated Zp-modules equipped with a

continuous Zp-linear action of GK∞
. Further, there are ϕ,GK∞

-equivariant
identifications

M ⊗S W (C♭) ∼= T (M)⊗Zp
W (C♭),

which are functorial in M .

Proof. This is proven in [Fon90]. We refer to [Bar20a, Proposition 4.1.5] and
[Bar20a, Construction 4.2.3] for more details.

In the following theorem a crystalline Zp-lattice is a GK-stable Zp-lattice inside
a crystalline (in the sense of [Fon94]) Qp-representation of GK .

Theorem 3.1.3 (Kisin). There is a fully faithful functor T 7→ M(T ) from
the category of crystalline Zp-lattices into the category of Breuil–Kisin modules
finite free over S. The module M(T ) is characterised up to isomorphism by
T (M(T )) ∼= T as GK∞

-representations.

Proof. The functor T 7→ M(T ) was first constructed by Kisin in [Kis06]. The
formulation we give here is taken from [BMS18, Theorem 4.4].
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3.2 Coefficients

In practice it is sometimes necessary to consider crystalline representations
valued in extensions of Zp. Kisin’s construction can be suitably adapted to
allow this, provided the coefficient ring is finite over Zp.

Notation 3.2.1. Let E/Qp be a finite extension with ring of integers O and
residue field F. Assume that K0 ⊂ E.

By a crystalline O-lattice we mean an O-lattice inside a GK-representation on
an E-vector space, which is crystalline when viewed as a representation on a
Qp-vector space. By functoriality, if T is a crystalline O-lattice then M(T ) is
a Breuil–Kisin module with O-action as defined below.

Definition 3.2.2. A Breuil–Kisin module with O-action is a pair (M, ι) where
M ∈ ModBK

K and ι is a Zp-algebra homomorphism ι : O → EndBK(M).
Equivalently a Breuil–Kisin module with O-action is a finitely generated
SO := S⊗Zp

O-module equipped with an isomorphism

M ⊗ϕ⊗1,SO
SO[

1
E ] ∼= M [ 1E ].

Let ModBK
K (O) denote the category of Breuil–Kisin modules with O-action.

Construction 3.2.3. Our assumption that K0 ⊂ E has the following con-
sequence. Since S ⊗Zp

O is a finite S-module it is u-adically complete, and
so the inclusion O[u] → S ⊗Zp

O given by
∑

aiu
i 7→

∑
ui ⊗ ai extends to

O[[u]]→ S⊗Zp
O. In this way we view S⊗Zp

O as an O[[u]]-module. The map

(
∑

aiu
i)⊗ b 7→ (

∑
τ(ai)bu

i)τ

then describes an isomorphism of O[[u]]-algebras S ⊗Zp
O →

∏
τ O[[u]], the

product running over τ ∈ HomFp
(k,F) (we abusively write τ also for its exten-

sion to an embedding τ : W (k) → O). Let ẽτ ∈ S ⊗Zp
O be the idempotent

corresponding to τ . As ẽτ is determined by the property (a⊗1)ẽτ = (1⊗τ(a))ẽτ
for a ∈ W (k), the map ϕ⊗ 1 sends

ẽτ◦ϕ 7→ ẽτ .

If M ∈ ModBK
K (O) we set Mτ = ẽτM which we view as an O[[u]]-algebra. By

the above ϕM restricts to a map

Mτ◦ϕ ⊗ϕ,O[[u]] O[[u]]→Mτ [
1

τ(E) ], (3.2.4)

which becomes an isomorphism after inverting τ(E). Here ϕ on O[[u]] is that
induced by ϕ⊗ 1 on S⊗Zp

O, i.e. is given by
∑

aiu
i 7→

∑
aiu

ip.

Corollary 3.2.5. If M ∈ ModBK
K (O) is free as an S-module then M is free

over S⊗Zp
O.
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Proof. If M is free over S then the O-module M/uM is free over W (k), is
torsion-free, and is therefore free over O. By Nakayama’s lemma, any lift of an
O-basis of M/uM generates M ; there is therefore a surjection F →M where F
is O[[u]]-free of S-rank equal to that of M . As surjective maps between free-
modules of the same rank are isomorphisms, M is free over O[[u]]. By (3.2.4)
each Mτ has the same O[[u]]-rank which proves M is free over S ⊗Zp

O =∏
τ O[[u]].

3.3 Strong divisibility

We now explain what it means for a p-torsion Breuil–Kisin module to be
strongly divisible. After a result of Gee–Liu–Savitt (Theorem 3.3.9) strong
divisibility is closely related to the reduction modulo p of crystalline represen-
tations.
Note that since E ≡ ue modulo p, a p-torsion Breuil–Kisin module is a finitely
generated k[[u]]-module M equipped with an isomorphism M⊗ϕ,k[[u]]k((u))→

M [ 1u ].
From now on all Breuil–Kisin modules will be considered with O-action.

Definition 3.3.1. Let ModBK
k (O) be the full sub-category of M ∈ModBK

K (O)
which are free modules over k[[u]]⊗Fp

F.

If M ∈ ModBK
k (O) set Mϕ equal to the image of M ⊗ϕ,k[[u]] k[[u]]

ϕ
−→ M [ 1u ].

Equivalently Mϕ is the k[[u]]-sub-module of M [ 1u ] generated by the k[[up]]-
module ϕ(M)

Construction 3.3.2. Equip Mϕ with the filtration F iMϕ = Mϕ ∩ uiM .
Similarly define a filtration on M by F iM = {m ∈ M | ϕ(m) ∈ uiM}. Note
that the semi-linear map ϕ : M →Mϕ is compatible with these filtrations.
Set Mϕ

k = Mϕ/uMϕ and Mk = M/uM . These are both k ⊗Fp
F-modules and

we equip both with the quotient filtration coming from Mϕ and M respectively.
In other words F iMϕ

k equals the image of F iMϕ underMϕ →Mϕ
k , and likewise

F iMk is the image of F iM under M →Mk.

The filtration on Mk is by k⊗Fp
F-sub-modules. Thus, as in Construction 3.2.3,

there are decompositions Mk =
∏

τ∈HomFp (k,F)
Mk,τ of filtered modules. Like-

wise Mϕ
k =

∏
τ M

ϕ
k,τ . Each of Mk,τ and Mϕ

k,τ is a filtered F-vector space.

Remark 3.3.3. Note that the map ϕ : M → Mϕ induces a semi-linear map
Mk →Mϕ

k , which is compatible with filtrations. This latter map is a bijection
but not necessarily an isomorphism of filtered modules.

Lemma 3.3.4. The map Mk → Mϕ
k is a semi-linear isomorphism of filtered

modules if and only if for each τ ∈ HomFp
(k,F) there exist an F[[u]]-basis (fi) of

Mτ and integers (ri) such that (urifi) is an F[[up]]-basis of ϕ(M)τ = ϕ(Mτ◦ϕ).

Proof. This is [Bar20a, Lemma 5.3.4].
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Definition 3.3.5. For M ∈ ModBK
k (O) and τ ∈ HomFp

(k,F) define
Weightτ (M) to be the multiset of integers which contains i with multiplicity

dimF gr
i(Mϕ

k ).

Definition 3.3.6 (Strong divisibility). M ∈ModBK
k (O) is strongly divisible if

Weightτ (M) ⊂ [0, p] for each τ and if Mk →Mϕ
k is a semi-linear isomorphism

of filtered modules. Let ModSDk (O) denote full subcategory of strongly divisible
Breuil–Kisin modules.

Remark 3.3.7. Recall that any matrix X ∈ GLn(F((u))) can be written
uniquely as Adiag(uri)B for some ri ∈ Z and A,B ∈ GLn(F[[u]]). If
M ∈ ModBK

k (O) and if we choose F[[u]]-bases of Mτ◦ϕ and Mτ then the with
respect to these bases ϕ : Mτ◦ϕ →Mτ may be represented by a matrix

Adiag(uri)B

with A,B ∈ GLn(F[[u]]). Then {ri} = Weightτ (M). Moreover the conditions
of Lemma 3.3.4 are equivalent to asking that B ∈ GLn(F[[u

p]]). In particular
M ∈ModSDk (O) if and only if ri ∈ [0, p] and B ∈ GLn(F[[u

p]]).

Proposition 3.3.8. Let 0 → M → N → P → 0 be an exact sequence in
ModBK

k (O).

1. If N ∈ ModSDk (O) then M and P ∈ ModSDk (O). Further, Weightτ (N) =
Weightτ (M) ∪Weightτ (P ).

2. If M,P ∈ ModSDk (O) then N ∈ModSDk (O) if and only if the map N → P
is a strict2 map of filtered modules.

Proof. This is [Bar20a, Proposition 5.4.7].

Recall that if V is a crystalline representation of GK on an E-vector space
and Dcrys(V ) = (V ⊗Qp

Bcrys)
GK is the associated filtered ϕ-module, then

Dcrys(V ) is a free K0 ⊗Qp
E-module, and so Dcrys(V )K =

∏
τ Dcrys(V )K,τ as

filtered modules. Each Dcrys(V )K,τ is a K⊗K0E-module; the τ -th Hodge–Tate
weights of V are the elements of a multiset HTτ (V ) defined by the condition
that i ∈ HTτ (V ) appears with multiplicity equal to

dimE gri(Dcrys(V )K,τ ).

Thus HTτ (V ) contains e dimE V integers and our normalisations are such that
the Hodge–Tate weight of the cyclotomic character is −1 (or rather e copies
of −1).
The following theorem relates ModSDk (O) to reductions of crystalline represen-
tations. Here we must assume that K = K0 and that if p = 2 then π is chosen
so that K∞∩K(µp∞) = K. That such π exist follows from [Wan, Lemma 2.1].

2Recall that a map f : M → N of filtered modules is strict if f(F iM) = F iN ∩ f(M) for
every i ∈ Z.
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Theorem 3.3.9 (Gee–Liu–Savitt, Wang). Assume K and π are as in the
previous paragraph. Let T be a crystalline O-lattice and let V = T ⊗O E.
If HTτ (V ) ⊂ [0, p] for each τ then M := M(T ) ⊗O F ∈ ModSDk (O) and
Weightτ (M) = HTτ (V ).

Proof. When p > 2 this follows by reducing the description of M(T ) given in
[GLS14, Theorem 4.22] modulo a uniformizer of O. The case p = 2 is proven
in [Wan, Theorem 4.2].3

4 Strongly divisible extensions

We maintain the notation from the previous subsection. Our aim here is to
compute dimensions of the space of extensions of strongly divisible Breuil–Kisin
modules.
Throughout we shall use the following construction. If M,N ∈ ModBK

K (O)
define a Breuil–Kisin module Hom(M,N)O with underlying module
HomSO

(M,N) and with Frobenius given by f 7→ ϕN ◦f◦ϕ
−1
M (see [Bar20a, Con-

struction 4.2.5 and 4.3.3]).

4.1 Cohomology and ext groups

If M ∈ModBK
k (O) let Hi(M) denote the cohomology of the complex

M
ϕ−1
−−−→M [ 1u ].

The Hi(M) are F-vector spaces.

Construction 4.1.1. If P,M ∈ ModBK
k (O) then there is an F-linear isomor-

phism
H1(Hom(P,M)O)→ Ext1F(P,M) (4.1.2)

into the first Yoneda extension group in the exact category ModBK
k (O). This

map sends a class represented by f ∈ Hom(P,M)O[ 1u ] onto a class represented

by an extension 0 → M → Nf → P → 0 in ModBK
k (O) where Nf is the

Breuil–Kisin module with underlying k[[u]] ⊗Fp
F-module M ⊕ P and with

Frobenius given by (ϕM + f ◦ ϕP , ϕP ). This map is injective and functorial in
P and M , in particular it is a map of F-vector spaces. Since every extension in
ModBK

k (O) of P by M splits as a k[[u]]⊗Fp
F-module (4.1.2) is surjective, and

so an isomorphism.

If M ∈ModBK
k (O) let Hi

SD(M) denote the cohomology of the complex

F 0M
ϕ−1
−−−→M.

3When using results from [GLS14,Wan] it is important to keep track of normalisations.
In both references Hodge–Tate weights are normalised to be the opposite of ours. Also
Breuil–Kisin modules are attached contravariantly to crystalline representations; from the
Breuil–Kisin module M associated to T in [GLS14,Wan] one recovers M(T ) as the dual of M
(for the dual of a Breuil–Kisin module see the construction at the start of Subsection 4.1).
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ThenH0
SD(M) = H0(M). The inclusionM →M [ 1u ] induces a mapH1

SD(M)→
H1(M). If m ∈M can be written as ϕ(m′)−m′ with m′ ∈M then ϕ(m′) ∈M
and so m′ ∈ F 0M ; therefore H1

SD(M)→ H1(M) is injective. Let

Ext1SD(P,M) ⊂ Ext1F(P,M)

denote the image of H1
SD(Hom(P,M)O) under (4.1.2).

Lemma 4.1.3. Let 0 → M → N → P → 0 be an extension in ModBK
k (O) and

suppose that M,P ∈ ModSDk (O). Then N ∈ ModSDk (O) if and only if the class
of this extension lies in Ext1SD(P,M).

Proof. As in Construction 4.1.1, we may assume N = Nf for f ∈
Hom(P,M)O[ 1u ]. Thus, as a module N = M

⊕
P and ϕN = (ϕM +f ◦ϕP , ϕP ).

Proposition 3.3.8 implies N ∈ ModSDk (O) if and only if N → P is strict as a
map of filtered modules. We have to show that if f ∈ Hom(P,M)O then
N → P is strict, and conversely that N → P being strict implies the existence
of g ∈ Hom(P,M)O satisfying f + ϕ(g)− g ∈ Hom(P,M)O.
The map N → P is strict if and only if for every τ ∈ HomFp

(k,F) and every
z ∈ F iPτ◦ϕ, there exists (m, z) ∈ Nτ◦ϕ such that

ϕ((m, z)) = (ϕM (m) + f(ϕP (z)), ϕP (z)) ∈ uiNτ .

If f ∈ Hom(P,M)O then f(ϕP (z)) ∈ uiMτ , since ϕP (z) ∈ uiPτ , and so we can
take m = 0. This shows f ∈ Hom(P,M)O implies N → P is strict.
For the converse, since P ∈ ModSDk (O), Lemma 3.3.4 implies that, for each
τ ∈ HomFp

(k,F), there exists a basis (zi) of Pτ and integers ri such that urizi
forms a basis of ϕP (P )τ . If N → P is strict then, as in the previous paragraph,
we may choose mi ∈ Mτ◦ϕ such that ϕM (mi) + f(urizi) ∈ uriMτ . Since the
urizi form an F[[up]]-basis of ϕP (Pτ◦ϕ), the ni := ϕ−1

P (urizi) form an F[[u]]-
basis of Pτ◦ϕ. Define g ∈ Hom(P,M)O by asserting that on Pτ◦ϕ this map
sends ni 7→ mi. Then f + ϕ(g)− g sends

urizi 7→ f(urizi) + ϕM ◦ g ◦ ϕ
−1
P (urizi)− g(zi)

= f(urizi) + ϕM (mi) + g(urizi) ∈ uriMτ .

Thus f + ϕ(g)− g ∈ Hom(P,M)O.

4.2 Dimension calculations

We now compute the dimensions of H1
SD. Our proof will use that for M ∈

ModBK
k (O) there are exact sequences

0→ gri−p(M)
u
−→ gri(M)→ gri(Mk)→ 0

(here gri(N) = F iN/F i+1N for any filtered module N). The exactness of this
sequence follows from the observation that F iM ∩ uM = u(F i−pM).
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Lemma 4.2.1. Let M be an object of ModBK
k (O). Then both H1

SD(M) and
H0(M) are finite dimensional over F and

χ(M)− χ(uM) =
∑

i6∈pZ≤0∪Z≥0

dimF gr
i(Mk),

when χ(M) := dimFH
1
SD(M)− dimFH

0(M).

Proof. As H0(M) ⊂ T (M) finiteness of H0(M) is clear. For the rest of the
proof consider the inclusion uM → M . It induces the following commutative
diagram, whose rows are exact.

0 F 0(uM) F 0M Q1 0

0 uM M Mk 0.

ϕ−1 ϕ−1 α

The snake lemma yields a long exact sequence

0→ H0(uM)→ H0(M)→ kerα→ H1
SD(uM)→ H1

SD(M)→ cokerα→ 0.

Provided we have finiteness of the H1
SD(uM) and H1

SD(M), consideration of
the alternating sums of the dimensions in this long exact sequence gives that
χ(N)− χ(uN) = dimF cokerα− dimF kerα, which is equal to the F-dimension
of Mk minus the F-dimension of Q1. We claim that non-canonically

Q1 =
⊕

i∈pZ≤0∪Z≥1

gri(Mk) (4.2.2)

as an F-vector space. This will imply the second part of the lemma.
To verify (4.2.2) choose a splitting (as F-vector spaces) of the exact sequence
0→ F 1M → F 0M → gr0(M)→ 0. Then we can write F 0M = F 1M⊕gr0(M).
Observe that F 0(uM) = (uM) ∩ F 1M and that this is the kernel of F 1M →
F 1Mk. Therefore

F 0M/F 0(uM) = F 1Mk ⊕ gr0(M).

Choosing splitting’s of 0 → F i+1Mk → F iMk → gri(Mk) → 0 allows us
to identify the first term of the above sum with

⊕
i∈Z≥1

gri(Mk). For the

second term: splitting the exact sequences 0 → gri−p(M) → gri(M) →
gri(Mk)→ 0 described at the beginning of the subsection shows that gr0(M) =⊕

i∈pZ≤0
gri(Mk). This verifies (4.2.2).

It remains to prove that H1
SD(M) is finite. Observe that, except for H1

SD(M)
and H1

SD(uM), all the terms in the long exact sequence above are finite. There-
fore finiteness ofH1

SD(M) can be deduced from finiteness ofH1
SD(u

nM) for large
enough n. In fact H1

SD(u
nM) will vanish for n large enough, as we now show.

We need the following lemma, whose proof is straightforward.
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Lemma 4.2.3. Multiplication by u describes a bijection F i+1−p(M)→ F i(uM).

Continuing with the proof of Lemma 4.2.1, Lemma 4.2.3 implies that F 1N = N
when N = unM and n is large enough. In this case to show H1

SD(N) = 0 it
suffices to show ϕ− 1 is surjective as a map N → N . To do this note that for
any x ∈ N we have ϕ(x) ∈ uN because F 1N = N ; thus

∑
i≥0 ϕ

i(−x) converges
to an element y ∈ N which satisfies ϕ(y) − y = x. This shows surjectivity of
ϕ− 1 and completes the proof.

Corollary 4.2.4. Let M be an object of ModBK
k (O) and assume that

gri(Mk) = 0 for i < −p. Then

χ(M) =
∑

i<0

dimF gr
i(Mk)

(with χ as in Lemma 4.2.1).

Proof. Lemma 4.2.3 implies dimF gr
i((uM)k) = dimF gr

i+1−p(Mk). Note also
that H0(unM) = 0 for large enough n. Thus Lemma 4.2.1 shows (without
using that gri(Mk) = 0 for i < −p)

χ(M) =
∑

n≥0

( ∑

i6∈pZ≤0∪Z≥0

dimF gr
i+n(1−p)(Mk)

)
.

Since gri(Mk) = 0 for i < −p the inner sum for n = 0 counts the dimensions of
gri(Mk) for i < 0 and 6= −p. The inner sum for n = 1 counts the dimension of
gr−p(Mk). The remaining inner sums are all zero, which finishes the proof.

Proposition 4.2.5. If P and M are objects of ModSDk (O) then

dimF Ext
1
SD(P,M)− dimFHomBK(P,M) =

∑

τ

Card({i− j < 0 | i ∈Weightτ (M), j ∈Weightτ (P )}).

Proof. First we show

{i− j | i ∈Weightτ (M), j ∈Weightτ (P )} = Weightτ (Hom(P,M)O).

To see this choose a basis (mi) ofMτ such that (urimi) is a basis of ϕ(M)τ . The
integers ri are the elements of Weightτ (M). Likewise choose a basis (pj) of Pτ

such that (usjpj) are a basis of ϕ(P )τ . One checks that if fij is the element of
Hom(P,M)O which is zero everywhere except that it maps pj 7→ mi then the fij
form a basis of Hom(P,M)Oτ and uri−sjfij forms a basis of ϕ(Hom(P,M)O)τ .
Now appeal to the comment made after Lemma 2.2.1.
The previous paragraph shows that Hom(P,M)O satisfies the equiv-
alent conditions of Lemma 2.2.1 and so dimF gr

i(Hom(P,M)Ok ) =

dimF gr
i(Hom(P,M)O,ϕ

k ). Since Weight(Hom(P,M)O) ⊂ [−p, p] it follows
that gri(Hom(P,M)Ok ) = 0 for i < −p. Thus Corollary 4.2.4 applies with
M = Hom(P,M)O. Using Construction 4.1.1 to identify Ext1SD(P,M) and
H1

SD(Hom(P,M)O) the result follows.
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Remark 4.2.6. This proposition should be compared with the number of pos-
sible extensions described in [GLS14, Theorem 7.9].

5 Lifting extensions

In this section we show how to produce crystalline lifts of some exact sequences
in ModSDk (O). We maintain the notation from the previous two sections.

5.1 Isogeny categories of Breuil–Kisin modules

When attempting to produce lifts of extensions in ModSD
k (O) the functor T 7→

M(T ) not being exact causes problems. However, as the following lemma
shows, this problem disappears after inverting p.

Lemma 5.1.1. If 0→ T1 → T → T2 → 0 is an exact sequence of crystalline Zp-
lattices then 0→ M(T1)[

1
p ]→ M(T )[ 1p ] →M(T2)[

1
p ] → 0 is an exact sequence

of S[ 1p ]-modules.

Proof. Let C denote the complex 0→M(T1)→M(T )→M(T2)→ 0. Since C
is ϕ-equivariant its cohomology groups H• are objects of ModBK

K . By [BMS18,
Proposition 4.3] each Hi fits into an exact sequence

0→ Hi
tor → Hi → Hi

free → H̃i → 0

of S-modules with

• Hi
free free over S,

• Hi
tor killed by a power of p,

• H̃i is killed by (p, u).

The lemma will follow if eachHi
free is zero since thenH•[ 1p ] = 0. To see this note

that Lemma 3.1.2 implies C ⊗S W (C♭) identifies with 0 → T1 ⊗Zp
W (C♭) →

T⊗Zp
W (C♭)→ T2⊗Zp

W (C♭)→ 0 and so C⊗SW (C♭) is exact. SinceW (C♭) is

S-flat (which is a special case of [EG, 2.2.11]) it follows that H•⊗SW (C♭) = 0.
This implies each Hi

free = 0 and so the lemma follows.

Consider the category ModBK-iso
K (O) of SE := S ⊗Zp

E-modules M equipped
with isomorphisms ϕM : M ⊗ϕ,SE

SE [
1
E ] ∼= M [ 1E ], such that ϕ-equivariantly

M ∼= M◦[ 1p ] for some M◦ ∈ ModBK
K (O). This category can be identified with

the isogeny category of ModBK
K (O), in particular it is abelian.

By [BMS18, Proposition 4.3] every object of ModBK-iso
K (O) is free as an S-

module; arguing as in Corollary 3.2.5 we see they are free as S⊗Zp
E-modules.

Corollary 5.1.2. The functor T 7→ M(T ) induces an exact fully faithful
functor V 7→ M(V ) from the category of crystalline E-representations to
ModBK-iso

K (O).
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Proof. This follows from Lemma 5.1.1, and the fact that T 7→ M(T ) is fully
faithful.

5.2 More ext groups

As in Subsection 4.1, if M ∈ ModBK
K (O) we can define H1(M) as the cokernel

of M
ϕ−1
−−−→M [ 1E ]. Arguing as in Construction 4.1.1, if P ∈ModBK

K (O) there is
a functorial inclusion

H1(Hom(P,M)O) →֒ Ext1O(P,M),

where Ext1
O
(P,M) denotes the Yoneda extension group in the abelian category

ModBK
K (O). In particular this is a map of O-modules. This map is surjective if

P is projective as an SO-module (for then every extension of P by M splits as
an SO-module).
Suppose P and M are free SO-modules, so that P = P ⊗OF and M = M ⊗OF

are objects of ModBK
k (O). There is a map

Ext1
O
(P,M) = H1(Hom(P,M)O)→ H1(Hom(P ,M)O) = Ext1F(P ,M)

(5.2.1)
induced by Hom(P,M)O → Hom(P ,M)O. On the level of exact sequences this
map is given by tensoring with F over O. Via Hom(P,M)O → Hom(P ,M)O

we can identify Hom(P,M)O ⊗O F = Hom(P ,M)O. Therefore, since

Hom(P,M)O ⊗O F→ Hom(P,M)O[ 1E ]⊗O F→ H1(Hom(P,M)O)⊗O F→ 0

is exact, it follows that via (5.2.1) we can identify Ext1
O
(P,M) ⊗O F =

Ext1F(P ,M).
Analogously, for M ∈ ModBK-iso

K (O) we define H1(M) as the cokernel of ϕ−1 :
M → M [ 1E ]. Just as in Construction 4.1.1, if P ∈ ModBK-iso

K (O) there are
inclusions

H1(Hom(P,M)E) →֒ Ext1E(P,M),

where Ext1E(P,M) denotes the Yoneda extension group in ModBK-iso
K (O). Since

P is free as an SE-module this inclusion is an isomorphism. Choose P ◦,M◦ ∈
ModBK

K (O) such that P ◦ ⊗O E = P,M◦ ⊗O E = M . Suppose P ◦ and M◦ are
free over SO, then the inclusion Hom(P,M)O →֒ Hom(P,M)E induces maps

Ext1
O
(P ◦,M◦) = H1(Hom(P ◦,M◦)O)→ H1(Hom(P,M)E) = Ext1E(P,M).

(5.2.2)
On the level of exact sequences this map is given by applying ⊗OE. Similarly
to above (5.2.2) induces identifications Ext1

O
(P ◦,M◦)⊗O E = Ext1E(P,M).
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5.3 Lifting extensions

Our aim is to prove the following.

Proposition 5.3.1. Suppose K = K0 and if p = 2 suppose further that π is
chosen so that K∞ ∩ K(µp∞) = K. Let T2, T1 be crystalline O-lattices with
Hodge–Tate weights contained in [0, p]. Set T i = Ti ⊗O F. Assume T 1 is
cyclotomic-free, that T 2 is irreducible, and that T 2 ⊗F F(1) is not a Jordan–
Holder factor of T 1.
Set M i = M(Ti)⊗O F and suppose

0→M1 →M →M2 → 0 (5.3.2)

is an exact sequence in ModSDk (O). Then there exists a crystalline extension
0→ T1 → T → T2 → 0 such that 0→M(T1)→M(T )→M(T2)→ 0 is exact
and recovers (5.3.2) after applying ⊗OF.

Proof. Let Vi = Ti ⊗O E and let Ext1crys(V2, V1) ⊂ Ext1(V2, V1) de-
note the subset whose elements are represented by exact sequences 0 →
V1 → V → V2 → 0 with V crystalline. Under the usual identification
Ext1(V2, V1) = H1(GK ,Hom(V2, V1)), the subspace Ext1crys(V2, V1) identifies
with H1

f (GK ,Hom(V,W )), i.e. with the kernel

ker
(
H1(GK ,Hom(V2, V1))→ H1(GK ,Hom(V2, V1)⊗Qp

Bcrys)
)
.

Since the Hodge–Tate weights of Hom(V2, V1) are equal to i − j where i
is a weight of V1 and j a weight of V2, [Nek93, Proposition 1.24] implies
H1

f (GK ,Hom(V2, V1)) has E-dimension

∑

τ∈HomFp (k,F)

Card
(
{i− j < 0 | i ∈ HTτ (V1), j ∈ HTτ (V2)}

)

+ dimE HomE[GK ](V2, V1).

Now consider the diagram

Ext1O(M(T2),M(T1)) Ext1F(M2,M1)

Ext1crys(V2, V1) Ext1E(M(V2),M(V1)),

β

α

γ

where the maps α and β are those described in (5.2.2) and (5.2.1) respectively.
The map γ is obtained by applying V 7→ M(V ) (from Corollary 5.1.2) to
exact sequences representing classes in Extcrys(V2, V1). This makes sense since
V 7→ M(V ) is exact. Exactness of M 7→ M(V ) also implies that this functor
preserves pushouts and pullbacks; thus γ is E-linear. Since V 7→M(V ) is fully
faithful we see that γ is injective.
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Let Θ′ denote the image of γ and let Θ denote the preimage of Θ′ under α. If
0 → M(T1) → M◦ → M(T2) → 0 represents a class in Θ then by definition
M◦ ⊗O E = M(V ) where V is a crystalline E-representation fitting into an
extension 0 → V1 → V → V2 → 0. Thus T = T (M◦) is a GK∞

-stable O-
lattice inside V which, since M 7→ T (M) is exact, sits in a GK∞

-equivariant
exact sequence 0 → T1 → T → T2 → 0. Our assumption on T 2 and T 1

allows us to apply Corollary 2.5.2; thus T is a GK-stable lattice in V and so
M◦ = M(T ). Theorem 3.3.9 therefore implies β maps every element of Θ into
Ext1SD(M2,M1).
The map β can be identified with the reduction map

Ext1
O
(M(T2),M(T1))→ Ext1

O
(M(T2),M(T1)⊗O F.

Since αx ∈ Θ for any α ∈ O implies x ∈ Θ, the cokernel of Θ ⊂
Ext1O(M(T2),M(T1)) is free over O and so Θ →֒ Ext1O(M(T2),M(T1)) induces
an inclusion Θ ⊗O F →֒ Ext1O(M(T2),M(T1)) ⊗O F. As β maps every element
of Θ into Ext1SD(M2,M1), we have

Θ⊗O F →֒ Ext1SD(M2,M1).

On the other hand, since α is given by inverting p, the image of α is an O-
lattice inside Ext1E(M(V2),M(V1)) and its kernel equals the torsion subgroup
Ext1O(M(T2),M(T1))tors. Thus, we can decompose Θ as

Θfree ⊕ Ext1O(M(T2),M(T1))tors,

where Θfree is a free O-module of rank equal to the E-dimension of
Ext1crys(V2, V1). Using Lemma 5.3.4 below, and the formula we stated above

for the dimension of Ext1crys(V2, V1) = H1
f (GK ,Hom(V2, V1)), we deduce

dimF(Θ ⊗O F)−dimFHomBK(M2,M1) =
∑

τ

Card({i− j < 0 | i ∈ HTτ (V1), j ∈ HTτ (V2)}).

By Theorem 3.3.9 we have HTτ (Vi) = Weightτ (M i). Therefore, by Proposi-
tion 4.2.5, each of Ext1SD(M2,M1) and Θ ⊗O F have the same F-dimension.
Hence

Θ⊗O F = Ext1SD(M2,M1),

which shows that any extension 0 → M1 → M → M2 → 0 which represents
a class in Ext1SD(M1,M2) arises as the reduction of 0 → M(T1) → M(T ) →
M(T2)→ 0 for some crystalline extension 0→ T1 → T → T2 → 0.

Remark 5.3.3. We emphasise that Proposition 5.3.1 does not assert that, for
T1, T2 as above, any exact sequence of crystalline representations 0 → T1 →
T → T2 → 0 remains exact after applying T 7→M(T ).
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Lemma 5.3.4. If T1 and T2 are crystalline O-lattices then

dimF(Ext
1
O(M(T2),M(T1))tors ⊗O F) = dimFHomBK(M2,M1)

− dimE HomE[GK ](V2, V1).

Proof. The F-dimension of Ext1O(M(T2),M(T1))tors ⊗O F equals the F-
dimension of the ̟-torsion subgroup of Ext1O(M(T2),M(T1)). To compute this

latter group consider the exact sequence 0→M(T1)
̟
−→M(T1)→ M1 → 0 in

ModBK
K (O); the associated long exact sequence reads

0→ HomBK(M(T2),M(T1))
̟
−→ HomBK(M(T2),M(T1))

→ HomBK(M(T2),M1)→ Ext1O(M(T2),M(T1))
̟
−→ Ext1O(M(T2),M(T1)).

Identifying HomBK(M(T2),M1) = HomBK(M2,M1) we see that the F-
dimension of the ̟-torsion subgroup of Ext1O(M(T2),M(T1)) equals

dimFHomBK(M2,M1)− dimFHomBK(M(T2),M(T1))/̟.

By full faithfulness of T 7→ M(T ) we have HomBK(M(T2),M(T1)) =
HomO[GK ](T2, T1). Since HomO[GK ](T2, T1) is free over O and equals
HomE[GK ](V2, V1) after inverting p the lemma follows.

6 Lifting irreducibles

In this section we study simple objects of ModSDk (O) in low dimensions and
show they arise from crystalline representations.

6.1 Rank ones

Recall from Construction 3.2.3 how S⊗Zp
O is made into an O[[u]]-algebra. In

this way we view k[[u]]⊗Fp
F as an F[[u]]-algebra. Let eτ ∈ k[[u]]⊗Fp

F denote
the image of the idempotent ẽτ ∈ S⊗Zp

O defined in Construction 3.2.3.

Lemma 6.1.1. After possibly enlarging F, every M ∈ ModBK
k (O) of rank one

over k[[u]]⊗Fp
F is isomorphic to a Breuil–Kisin module

N = k[[u]]⊗Fp
F, ϕN (1) = x

∑

τ∈HomFp (k,F)

urθeθ (6.1.2)

for some rθ ∈ Z and some x ∈ F×.

Proof. For any f ∈ 1 + uF[[u]] and n ≥ 0 it is easy to check the equation
ϕn(z) = fz has a solution in F[[u]]× (here ϕ on F[[u]] denotes the Frobenius∑

aiu
i 7→

∑
aiu

ip). Thus, after possibly enlarging F, if f ∈ F[[u]]× there exists
z ∈ F[[u]]× and x ∈ F such that ϕn(z) = xnfz.
Now consider the statement of the lemma. For each τ choose a generator xτ

of Mτ over F[[u]]. There are integers rτ and fτ ∈ F[[u]]× such that ϕ(xτ◦ϕ) =
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urτ fτeτ . Recall that ϕM : Mτ◦ϕ →Mτ [
1
u ] is semi-linear for the endomorphism

ϕ of F[[u]] described in the previous paragraph. Choose z ∈ F[[u]]× and x ∈ F×

so that

ϕ[k:Fp](z)

z
= x[k:Fp]

(
fτϕ(fτ◦ϕ−1) . . . ϕ[k:Fp]−1(fτ◦ϕ−[k:Fp]−1)

)−1

. (6.1.3)

Set y−1 = zxτ◦ϕ−1 and for i > 1 set

y−i =
ϕi−1(z)

xi−1
fτ◦ϕ−iϕ(fτ◦ϕ−i+1) . . . ϕi−2(fτ◦ϕ−2)xτ◦ϕ−i .

Then y−i generates Mθ◦ϕ−i. By construction ϕ(y−i+1) = xy−i for 2 ≤ i ≤ [k :
Fp], also ϕ(y−[k:Fp]) = xy−1 because x and z satisfy (6.1.3). Thus the mapM →
N sending y−i onto eτ◦ϕ−i is an isomorphism of Breuil–Kisin modules.

Proposition 6.1.4. Assume K = K0 and N ∈ ModBK
k (O) is as in (6.1.2).

Then there exists a rank one crystalline O-lattice T with τ-Hodge–Tate
weight rτ and such that M(T )⊗O F ∼= N .

Proof. This is proven in [GLS14, Lemma 6.3].

6.2 Induction and restriction

Let L/K be the unramified extension corresponding to a finite extension l/k,
and let L∞ = K∞L. Set SL = W (l)[[u]]. Extension of scalars along the
inclusion f : S→ SL describes a functor

f∗ : ModBK
K → ModBK

L .

For M ∈ ModBK
K the module f∗M = M ⊗S SL is made into a Breuil–Kisin

module via the semilinear map m⊗ s 7→ ϕM (m) ⊗ ϕ(s). Similarly, restriction
of scalars along f induces a functor

f∗ : ModBK
L → ModBK

K .

If M ∈ModBK
L we equip f∗M with the obvious semilinear map m 7→ ϕM (m).

Lemma 6.2.1. Let N ∈ ModBK
L and M ∈ ModBK

K . Then there are functorial
identifications HomBK(M, f∗N) ∼= HomBK(f

∗M,N), T (f∗M) ∼= T (M)|GL∞
,

and T (f∗N) ∼= IndK∞

L∞
T (N) making the following diagram commute.

HomBK(M, f∗N) HomBK(f
∗M,N)

HomGK∞
(T (M), IndK∞

L∞
T (N)) HomGL∞

(T (M)|GL∞
, T (N)).

T T
(Frob)

The lower horizontal arrow is given by Frobenius reciprocity.

Proof. This is [Bar20a, Lemma 6.2.4].

By functoriallity f∗ and f∗ induce functors on ModBK
K (O) and ModBK

L (O). The
following lemma shows how they also preserve strong divisibility.
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Lemma 6.2.2. Assume k ⊂ l ⊂ F.

1. If M ∈ ModSDk (O) then f∗M ∈ ModSDl (O) and for each θ ∈ HomFp
(l,F)

we have
Weightθ(f

∗M) = Weightθ|k(M).

2. If N ∈ModSDl (O) then f∗N ∈ ModSDk (O) and

Weightτ (f∗N) =
⋃

θ|k=τ

Weightθ(N).

Proof. This is [Bar20a, Lemma 6.2.6].

6.3 Approximation by rank ones

For this subsection fix an irreducible M ∈ ModSDk (O). Irreducible here means
the only non-trivial sub-Brueil–Kisin module M ′ ⊂ M in ModBK

k (O) with
torsion-free cokernel is M itself. Let L/K be the unramified extension of de-
gree dimF T (M) with residue extension l/k, and let f : S → SL be as in
Subsection 6.2.

Proposition 6.3.1. After enlarging F there exists a rank one N ∈ ModSDl (O)
and an inclusion M → f∗N whose image contains u(f∗N).
Further, if for θ ∈ HomFp

(l,F) we set δθ = 0 if the image of M contains Nθ,
and δθ = 1 otherwise, then

rθ, rθ + pδθ◦ϕ − δθ ∈Weightθ|k(M),

where {rθ} = Weightθ(N).

The construction is identical to that given in [Bar20a, §6.3]. For the convenience
of the reader we repeat the arguments. After Lemma 6.1.2 we may describe N
explicitly as

N = k[[u]]⊗Fp
F, ϕN (1) = x

∑
urθeθ

for some x ∈ F×, with the sum running over θ ∈ HomFp
(l,F).

Proof. First we show that M being irreducible implies T (M) is irreducible as
a GK∞

-representation. This follows from the next lemma.

Lemma 6.3.2. Let M ∈ ModBK
k (O) and let 0 → T1 → T (M) → T2 → 0 be an

exact sequence of GK∞
-representations. Then there exists an exact sequence

0→M1 →M →M2 → 0 in ModBK
k (O) which recovers the first exact sequence

after applying M 7→ T (M).

Proof. Since T (M)⊗Zp
W (C♭) = M ⊗S W (C♭) we obtain a surjection M ⊗S

W (C♭) → T2 ⊗Zp
W (C♭). Let M2 be the image of M under this surjection.

Then M2⊗SW (C♭) = T2⊗Zp
W (C♭) so T (M2) = T2. Take M1 to be the kernel

of M →M2.
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Enlarging F if necessary we can suppose l ⊂ F and that T (M) ∼= IndK∞

L∞
χ (using

Lemma 2.3.1 and Lemma 2.2.1) for a character χ. Frobenius reciprocity gives a
non-zero map T (M)|GL∞

→ χ. Lemma 6.2.1 implies T (M)|GL∞

∼= T (f∗M), so

Lemma 6.3.2 produces a surjection f∗M → N for a rank one N ∈ ModBK
l (O)

with T (N) = χ. Lemma 6.2.1 then implies there exists a map

M → f∗N,

which, after applying T , induces the isomorphism T (M) ∼= IndK∞

L∞
χ. In other

words M → f∗N becomes an isomorphism after inverting u; and so is injective.
Lemma 6.2.2 and Proposition 3.3.8 imply N ∈ ModSDl (O) and Weightθ(N) ⊂
Weightθ(f

∗M) = Weightθ|k(M).
Now let us assume that N is as in Lemma 6.1.2, so that N is generated over
F[[u]] by eθ satisfying ϕN (eθ◦ϕ) = xurθeθ. Since M → f∗N is an isomor-
phism after inverting u we may consider the smallest integer δθ ≥ 0 satisfying
uδθeθ ∈ M . We shall show that δθ ∈ [0, 1] which shows δθ is equal to the δθ de-
fined in the proposition. Let P ∈ ModBK

l (O) be the sub-Breuil–Kisin module of
N generated by the uδθeθ. The map P → f∗M given by uδθeθ 7→ eθ(u

δθeθ⊗1) is
ϕ-equivariant and has u-torsion-free cokernel, by definition of the δθ. Therefore
Proposition 3.3.8 implies P ∈ ModSDl (O) and Weightθ(P ) ⊂Weightθ(f

∗M) =
Weightθ|k(M). Since Weightθ(P ) = {rθ + pδθ◦ϕ − δθ} it just remains to prove
δθ ∈ [0, 1].
Since rθ, rθ + pδθ◦ϕ− δθ are both contained in Weightθ|k(M) both are in [0, p].
Thus pδθ◦ϕ − δθ ≤ p and so

(p[l:Fp] − 1)δθ =

[l:Fp]∑

i=1

pi−1(pδθ◦ϕi − δθ◦ϕi−1) ≤ p(p[l:Fp] − 1)/(p− 1),

which shows δθ ∈ [0, 1] unless p = 2, in which case we deduce δθ ∈ [0, 2]. If p = 2
and δθ◦ϕ = 2 then as rθ + pδθ◦ϕ − δθ ∈ [0, p] it follows that rθ = 0 and δθ = 2.
Thus if δθ 6∈ [0, 1] for some θ then rθ = 0 for all θ; this implies T (N) is an
unramified character and so IndK∞

L∞
T (N) is not irreducible, a contradiction.

Remark 6.3.3. The surjection f∗M → N can be recovered from the inclusion
M → f∗N explicitly. On (f∗M)θ = Mθ|k it is given by

∑
θ′|k=θ|k

αθ′eθ′ 7→

αθeθ. In particular, for every θ there exist αθ′ ∈ F[[u]] such that

eθ +
∑

θ′ 6=θ

αθ′eθ′ ∈M.

6.4 Low dimensional cases

For weights in the Fontaine–Laffaille range [0, p − 1] the inclusion M ⊂ f∗N
from Proposition 6.3.1 is an equality:

Lemma 6.4.1. Suppose M ∈ ModSDk (O) is irreducible and Weightτ (M) ⊂
[0, p− 1] for every τ . Then M = f∗N for a rank one N ∈ModSDl (O).
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Proof. With notation as in Proposition 6.3.1, if δθ◦ϕ = 1 and δθ = 0 then
rθ + p ∈ Weightθ|k(M) ⊂ [0, p − 1] which is impossible. Therefore either all
δθ = 0 (in which caseM = f∗N) or all δθ = 1. In the later case, since rθ+p−1 ∈
[0, p − 1] it follows that rθ = 0 for all θ, contradicting the irreducibility of
T (f∗N).

On the other hand the previous lemma does not hold for every irreducible
M ∈ ModSDk (O). In [Bar20a, §6.4] an example is given when K = Qp and
dimFp

T (M) = 5. We conclude this section by showing this is the lowest di-
mensional counterexample. We do this by an explicit calculation.

Proposition 6.4.2. Suppose k = Fp. Let M ∈ ModSDk (O) be irreducible with
dimF T (M) ≤ 4. After possibly enlarging F, M ∼= f∗N for a rank one N ∈
ModSDl (O).

Proof. We only consider the case dimF T (M) = 4, the two and three dimen-
sional cases being much easier. We put ourselves in the situation of Proposi-
tion 6.3.1.
First suppose eθ 6∈M for all θ (i.e. δθ = 1). Then rθ+p−1 ∈ [0, p] so rθ ∈ [0, 1].
Fix θ ∈ HomFp

(l,F) and set r := (rθ◦ϕ3 , rθ◦ϕ2 , rθ◦ϕ, rθ). By replacing θ with
θ ◦ ϕi we may assume r is one of the following:

(0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (0, 0, 1, 1).

Note that in the first three cases f∗N is not irreducible (consider the sub-Breuil–
Kisin module generated by eθ + e2θ◦ϕ and eθ◦ϕ + eθ◦ϕ3), so only the last case is
possible. Since u(f∗N) ⊂M , Remark 6.3.3 implies there exist α, β, γ ∈ F, not
all zero, such that γeθ◦ϕ3 + βeθ◦ϕ2 + αeθ◦ϕ + eθ ∈ M . Applying ϕ gives that
x(γeθ◦ϕ2 +βueθ◦ϕ+αueθ+eθ◦ϕ3) ∈M and so eθ◦ϕ3 +γeθ◦ϕ2 ∈M . Applying ϕ
again gives eθ◦ϕ2 + γueθ◦ϕ ∈M , so eθ◦ϕ2 ∈M , a contradiction.
Now suppose eθ ∈ M and eθ◦ϕ 6∈ M (i.e. δθ = 0, δθ◦ϕ = 1). The requirement
of Remark 6.3.3 restricts the possible image of M/u(f∗N) →֒ (f∗N)/u(f∗N);
it must be an F-subspace V ⊂ (f∗N)/u(f∗N) not containing eθ◦ϕ and such

that each projection V → (f∗N)/u(f∗N)
proj
−−→ Feθ◦ϕi is surjective. One eas-

ily checks any V satisfying these properties is one of the following, for some
α, β ∈ F×:

1. V = F(eθ◦ϕ3 + αeθ◦ϕ2 + βeθ◦ϕ) + Feθ,

2. V = F(eθ◦ϕ3 + αeθ◦ϕ) + F(eθ◦ϕ2 + βeθ◦ϕ) + Feθ,

3. V = Feθ◦ϕ3 + F(eθ◦ϕ2 + αeθ◦ϕ) + Feθ,

4. V = F(eθ◦ϕ3 + αeθ◦ϕ) + Feθ◦ϕ2 + Feθ.

In each of (1)-(4) we write eθ◦ϕi when we mean the image of eθ◦ϕi in
(f∗N)/u(f∗N). To ease notation we now write ei in place of eθ◦ϕi, likewise
we write ri = rθ◦ϕi and δi = δθ◦ϕi . We now show each of (1)-(4) cannot occur.
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• In case (1) the elements e3+αe2+βe1, ue2, ue1 and e0 ofM form an F[[u]]-
basis. Note then that δ0 = 0, δ1 = δ2 = δ3 = 1 and so r0 = 0, r1, r2 ∈ [0, 1]
and r3 > 0. Further, since ϕ(e3+αe2+βe1) = x(ur2e2+ur1αe1+βe0) ∈
M we must have r1 = r2 = 1. Therefore, with respect to the above basis,
the matrix of ϕM is

x




0 0 0 ur3

1 0 0 −αur3−1

α up 0 −βur3−1

β 0 up 0


 = x




0 0 0 1
β

0 − β
α 1 β−α2

αβ

αβ βu 0 −u
0 − 1

α 0 1
αβ




−1


1 0 0 0
0 up 0 0
0 0 up+1 0
0 0 0 ur3−1







1 0 up

β 0

0 1 −α2+β
αβ 0

0 0 −1 0

0 0 up+r3−1

αβ 1




−1

Remark 3.3.7 implies p+1 is a weight ofM , soM is not strongly divisible.

• In case (2) the elements e3 + αe1, e2 + βe1, ue1, e0 form a basis of M
over F[[u]]. In this case δ3 = δ2 = δ1 = 1 and δ0 = 0 so again r0 = 0,
r1, r2 ∈ [0, 1], and r3 > 0. Since ϕ(e3 + αe1) ∈ M we deduce r2 = 1.
Similarly r1 = 1 because ϕ(e2+βe1) ∈M . With respect to this basis the
matrix of ϕM is given by

x




0 0 0 ur3

u 0 0 0
−β 1 0 −αur3−1

α β up 0


 = x




0 0 0 1
α

0 0 α
α+β2

β
α+β2

−αβ −(α+ β2) −βu u
1 0 0 0




−1


1 0 0 0
0 1 0 0
0 0 up+1 0
0 0 0 ur3







1 − β
α − up

α+β2 −αβur3−1

α+β2

0 1 − βup

α+β2
α2ur3−1

α+β2

0 0 1 0
0 0 0 1




−1

if α+ β2 6= 0, or

x




0 0 0 ur3

u 0 0 0
−β 1 0 −αur3−1

α β up 0


 = x




0 0 0 − 1
β2

0 β 0 u
β

β3 0 −βu u
0 0 1

β2 − 1
β3




−1


1 0 0 0
0 u 0 0
0 0 up+1 0
0 0 0 ur3−1







1 1
β 0 0

0 1 −up

β 0

0 0 1 0

0 0 up−r3+1

β3 1




−1

if α+β2 = 0. Again p+1 is a weight of M so M is not strongly divisible.

• In case (3) the elements e3, e2 + αe1, ue1, e0 form a F[[u]]-basis of M .
Since δ0 = 0 and δ1 = δ2 = 1 we have r0 = 0, r1 ∈ [0, 1] and r2 > 0.
Further, since ϕ(e2 + αe1) ∈ M we must have r1 = 1. With respect to
this basis the matrix of ϕM is given by

x




0 0 0 ur3

ur2 0 0 0
−αur2−1 1 0 0

0 α up 0


 = x




0 0 − 1
α

1
α2

0 0 0 1
α

0 −α2 −αu u
1 0 0 0




−1


ur2−1 0 0 0
0 1 0 0
0 0 up+1 0
0 0 0 ur3







1 0 −up−r2+1

α2 0

0 1 −up

α 0
0 0 1 0
0 0 0 1




−1

Once more M is not strongly divisible.

• In case (4) the elements e3 + αe1, e2, ue1, e0 form an F[[u]]-basis of M .
Since δ0 = δ2 = 0 and δ1 = δ3 = 1 we have r0 = r2 = 0 and r1, r3 > 0.
With respect to this basis the matrix of ϕM is given by

x




0 0 0 ur3

1 0 0 0
0 ur1−1 0 −αur3−1

α 0 up 0


 = x




0 1 0 0
0 0 1 0
0 −a 0 1
1 0 0 0




−1


1 0 0 0
0 ur1−1 0 0
0 0 up 0
0 0 0 ur3







1 0 0 0
0 1 0 αur3−r1

0 0 1 0
0 0 0 1




−1

If M is strongly divisible then the rightmost matrix must be an element

of GLn(F[[u
p]]). Therefore p | r3 − r1; as both lie in [1, p] we must have

r3 = r1. However then f∗N is not irreducible (consider the sub-Breuil–
Kisin module generated by e3 + e1 and e2 + e0).

We conclude that eθ ∈M for every θ. In other words, M = f∗N .
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6.5 Crystalline liftings

We deduce the following.

Corollary 6.5.1. Assume K = K0. Let M ∈ ModSDk (O) be irreducible and
assume that one of the following holds.

1. M has rank one over k[[u]]⊗Fp
F.

2. Weightτ (M) ⊂ [0, p− 1] for every τ ∈ HomFp
(k,F).

3. k = Fp and dimF T (M) ≤ 4.

Then, after possibly extending F, there exists a crystalline O-lattice T such that
M(T )⊗O F ∼= M and such that HTτ (T ) = Weightτ (M). Further, T is induced
over an unramified extension from a crystalline character.

Proof. If M is an in (1) then this follows from Proposition 6.1.4. If M is as in
(1) or (2) then by Lemma 6.4.1 and Proposition 6.4.2, after possibly enlarging
F, we have that M ∼= f∗N where N is a rank one Breuil–Kisin module over L.
Using Proposition 6.1.4 again, there exists a crystalline character χ : GL → O

×

with associated Breuil–Kisin module M(χ) satisfying N = M(χ) ⊗O F and
HTθ(χ) = Weightθ(N). Since L/K is unramified, IndKL χ is again crystalline
and

HTτ (Ind
K
L χ) =

⋃

θ|k=τ

HTθ(χ) =
⋃

θ|k=τ

Weightθ(N) = Weightτ (M)

cf. [GHS18, Corollary 7.1.2]. Since T (f∗M(χ)) = IndK∞

L∞
χ, which equals the

restriction to GK∞
of IndK

L χ, we deduce that f∗M(χ) = M(IndKL χ), and so

M(IndKL χ)⊗O F = f∗

(
M(χ)⊗O F

)
∼= M.

Therefore we can take T = IndKL χ.

7 Potentially diagonalisable lifts

We use the notation of potential diagonalisability as described in [BLGGT14]
(the definition is given in the paragraph before [BLGGT14, Lemma 1.4.1]).
In practice we shall only use the following elementary observations regarding
potential diagonalisability.

• If a crystalline O-lattice T admits a GK -stable filtration F iT whose
graded pieces are free O-modules then T is potentially diagonalisable if
and only if gr(T ) :=

⊕
gri(T ) is potentially diagonalisable, cf. property

(7) in the list preceding [BLGGT14, Lemma 1.4.1].
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• If a crystalline O-lattice T is induced from a character then T is poten-
tially diagonalisable. This is because if T is induced over an extension
L/K then T |GL

admits a GL-stable filtration whose graded pieces are
characters and so T |GL

is potentially diagonalisable by the previous bul-
let point (cf. [BLGGT14, Lemma 1.4.3]). Thus T is potentially diago-
nalisable also.

7.1 Obvious lifts

The previous two bullet points imply that, with the following definition, obvi-
ous4 crystalline O-lattices are potentially diagonalisable.

Definition 7.1.1. A crystalline O-lattice is obvious if it admits a filtration
F iT by GK -stable submodules such that each graded piece gri(T ) is irreducible
after inverting p and induced from a crystalline character over an unramified
extension of K.

Theorem 7.1.2. Assume K = K0 and π is chosen so that K∞∩K(µp∞) = K.

Let M ∈ ModSDk (O) and assume T (M) is cyclotomic-free (as in Defini-
tion 2.2.2) and that one of the following conditions is satisfied.

• Every irreducible subquotient of M is of rank one.

• Weightτ (M) ⊂ [0, p− 1] for every τ ∈ HomFp
(k,F).

• k = Fp and every irreducible subquotient of M has rank ≤ 4.

Then, after possibly enlarging F, there exists an obvious crystalline O-lattice T
such that M(T )⊗O F ∼= M .

Proof. We argue by induction on the length of T (M). If T (M) is irreducible
then M is irreducible and the theorem follows from Corollary 6.5.1. If T (M)
has length > 1 then there is an exact sequence 0 → T 1 → T (M) → T 2 → 0
with neither T 1, T 2 = 0. Since T (M) is cyclotomic-free we can assume T 1 is
cyclotomic-free, T 2 is irreducible, and T 2⊗ F(1) is not a Jordan–Holder factor
of T 1. Lemma 6.3.2 gives an exact sequence 0 → M2 → M → M1 → 0 in
ModBK

k (O) with T (M i) = Ti. Since M ∈ ModSDk (O) so are the M i by Propo-
sition 3.3.8. Proposition 3.3.8 also implies Weightτ (M1)

⋃
Weightτ (M2) =

Weightτ (M). Thus both M i satisfy the conditions of the theorem. Our induc-
tive hypothesis provides obvious crystalline O-lattices Ti such that M(Ti) ⊗O

F = M i. This puts us in the situation of Proposition 5.3.1, and this proposition
provides us with a crystalline O-lattice T as desired.

As in the introduction, a crystalline lift of a representation ρ : GK → GLn(Fp)
is a crystalline representation ρ : GK → GLn(Zp) such that ρ⊗

Zp
Fp
∼= ρ. We

say ρ is an obvious crystalline lift if ρ is an obvious crystalline O-lattice.

4Our terminology comes from [GHS18, Subsection 7.1] where the notion of an obvious
weight is introduced.
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Corollary 7.1.3. Suppose K = K0. Suppose ρ : GK → GLn(Fp) is continu-
ous, cyclotomic-free, and has one-dimensional Jordan–Holder factors. Then ρ
admits a crystalline lift ρ with HTτ (ρ) ⊂ [0, p] for each τ , if and only if ρ
admits an obvious crystalline lift ρ′ with HTτ (ρ) = HTτ (ρ

′).

Proof. Choose π so that K∞ ∩K(µp∞) = K. Suppose such a ρ exists. Choos-
ing our coefficient field E sufficiently large we may suppose ρ factors through
GLn(O). Theorem 3.3.9 implies M(ρ) ∈ ModSDk (O) and Weightτ (M) =
HTτ (ρ). Put M = M(ρ) ⊗O F. Then T (M) ∼= ρ as GK∞

-representations,
so T (M) is cyclotomic-free as a GK∞

-representation. Theorem 7.1.2 implies
there exists a potentially diagonalisable ρ′ with M(ρ′) ⊗O F ∼= M and with
HTτ (ρ

′) = Weightτ (M). Thus ρ′ ⊗O F ∼= ρ as GK∞
-representations. By Theo-

rem 2.1.3 they are isomorphic as GK-representations and we are done.

If we assume K = Qp we can also prove:

Corollary 7.1.4. Let ρ : GQp
→ GLn(Fp) be continuous and cyclotomic-free,

with n ≤ 5. Then ρ admits a crystalline lift ρ with HT(ρ) ⊂ [0, p] for each τ ,
if and only if ρ admits an obvious crystalline lift ρ′ with HT(ρ) = HT(ρ′).

Proof. When every Jordan–Holder factor of ρ has dimension ≤ 4 this follows
from Theorem 7.1.2 by the argument used in the above corollary. If ρ is irre-
ducible this fact follows from the main result of [Bar20a], cf. Theorem 7.2.1.
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