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Abstract. We study the cohomology theory and the canonical
Milnor-Witt cycle module associated to a motivic spectrum. We prove
that the heart of Morel-Voevodsky stable homotopy category over a
perfect field (equipped with its homotopy t-structure) is equivalent to
the category of Milnor-Witt cycle modules, thus generalising Déglise’s
thesis. As a corollary, we recover a theorem of Ananyevskiy and Neshi-
tov, and we prove that the Milnor-Witt K-theory groups are birational
invariants.
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1 Introduction

In the fundamental paper [Ros96], Rost introduced the notion of a cycle module.
The idea was to find a good axiomatization of the main properties encountered
in the study of Milnor K-theory, Quillen K-theory or Galois cohomology. Ac-
cording to [Ros96], a cycle module M over a perfect field k is the data of a
Z-graded abelian group M(E) for every finitely generated field extension E/k,
equipped with restriction maps, corestriction maps, a Milnor K-theory mod-
ule action and residue maps ∂. Moreover, these data are subject to certain
compatibility relations (r1a), . . . , (r3e), (fd) and (c). The theory results in the
construction of Gersten type complexes whose cohomology groups are called
Chow groups with coefficients and can be used, for instance, to extend to the left
the localization sequence of Chow groups associated with a closed embedding.

In order to construct the derived category of motives DM(k,Z), Voevodsky
introduced the so-called homotopy sheaves (with transfers) which are homotopy
invariant Nisnevich sheaves with transfers. One important example is given by
Gm, the sheaf of global units. Voevodsky proved that any homotopy sheaf F has
a Gersten resolution, implying that F is determined in some sense by the data
of its fibers in every function fields. This statement was made more precise in
Déglise’s thesis: the heart of DM(k,Z) with respect to its homotopy t-structure
has a presentation given by the category of Rost cycle modules over k.

Morel’s point of view on the heart of DM(k,Z) is given by the category of
oriented homotopy modules. We recall that a homotopy module is a strictly
A1-invariant Nisnevich sheaf with an additional structure defined over the cat-
egory of smooth schemes (see Definition 4.1.2); it is called oriented when the
Hopf map η acts on it by 0. Déglise’s theorem proves that oriented homotopy
modules form a subcategory of the category of homotopy modules which is
equivalent to the category of Rost cycle modules. Morel’s natural conjecture
[Mor12, Remark 2.49] was that there is a presentation of the heart of the stable
homotopy category SH(k) (or equivalently, the category of homotopy modules)
in terms of some non-oriented version of cycle modules.
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1.1 Current work

In [Fel20a], we introduced the theory of Milnor-Witt cycle modules, generalising
the work of Rost [Ros96] on cycle modules and Schmid’s thesis [Sch98]. Indeed,
we have studied general cycle complexes C∗(X,M,VX) and their (co)homology
groups A∗(X,M,VX) (called Chow-Witt groups with coefficients) in a quadratic
setting over a perfect base field of any characteristic. The general coefficient
systems M for these complexes are called Milnor-Witt cycle modules. The
main example of such a cycle module is given by Milnor-Witt K-theory (see
[Fel20a, Theorem 4.13]); other examples will be deduced from Theorem 4.0.1 or
Theorem 5.2.4 (e.g. the representability of hermitian K-theory in SH(k) will
lead to a MW-cycle module, associated with hermitian K-theory). A major
difference with Rost’s theory is that the grading to be considered is not Z but
the category of virtual bundles (or, equivalently, the category of virtual vector
spaces), where a virtual bundle V is, roughly speaking, the data of an integer n
and a line bundle L (see [Fel20a, Appendix A]). Intuitively, Milnor-Witt cycle
modules are given by (twisted) graded abelian groups equipped with extra data
(restriction, corestriction, KMW -action and residue maps).
For any scheme X , any virtual bundle VX and any Milnor-Witt cycle mod-
ule M , we have proved that there exists a complex C∗(X,M,VX) equipped
with pushforwards, pullbacks, a Milnor-Witt K-theory action and residue maps
satisfying standard functoriality properties. A fundamental theorem is that the
associated cohomology groups A∗(X,M,VX) satisfy the homotopy invariance
property (see [Fel20a, Theorem 9.4]).
In this paper, we prove that Milnor-Witt cycle modules are closely related to
Morel’s A1-homotopy theory: they can be realized geometrically as elements
of the stable homotopy category. Precisely, we prove the following theorem.

Theorem 1 (Theorem 4.0.1). Let k be a perfect field. The category of Milnor-
Witt cycle modules is equivalent to the heart of Morel-Voevodsky stable homo-
topy category (equipped with the homotopy t-structure):

MMW
k ≃ SH(k)

♥
.

In order to prove this theorem, we study the cohomology theory associated
with a motivic spectrum. This notion is naturally dual to the bivariant theory
developed in [DJK21] and recalled in Section 2 (see Theorem 2.3.1). A motivic
spectrum E leads to a functor Ê from the category of finitely generated fields
over k to the category of graded abelian groups (be careful that the grading is
not Z but is given by the category of virtual vector spaces). We prove that the
functor Ê is a Milnor-Witt cycle premodule (see [Fel20a, Definition 3.1]). In-
deed, most axioms are immediate consequences of the general theory [DJK21].
Moreover, in Theorem 2.2.2 we prove a ramification theorem of independent
interest that can be applied to prove rule R3a. Furthermore, we check axioms
(FD) and (C) so that Ê is a Milnor-Witt cycle module. These two axioms
follow from the study of a spectral sequence defined in Section 3 (see Theo-
rem 3.3.2); another – more elementary – proof may result from an adaptation
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of [Ros96, Theorem 2.3] to the context of Milnor-Witt cycle modules but this
method would rely heavily on the fact that the base field is perfect.
In Section 4, we construct a homotopy module for any Milnor-Witt cycle mod-
ule and proceed to prove that the heart of the stable homotopy category (which
is known to be equivalent to the category of homotopy module) is equivalent
to the category of Milnor-Witt cycle modules.
This result generalizes Déglise’s thesis (see Theorem 5.2.3) and answers af-
firmatively an old conjecture of Morel (see [Mor12, Remark 2.49]). An im-
portant corollary is the following result (which was proved independently by
Ananyevskiy and Neshitov in [AN19, Theorem 8.12]):

Theorem 2 (Theorem 5.2.2). The heart of Morel-Voevodsky stable homotopy
category is equivalent to the heart of the category of MW-motives [DF17] (both
equipped with their respective homotopy t-structures):

SH(k)
♥ ≃ D̃M(k)

♥
.

Finally, we give an application of our theory to birational questions:

Theorem 1.1.1 (Theorem 5.3.1). Let X be a proper smooth integral scheme
over k, let Vk a virtual vector bundle over k and let M be a Milnor-Witt cycle
module. Then the group A0(X,M,−ΩX/k +VX) is a birational invariant of X
in the sense that, if X 99K Y is a birational map, then there is an isomorphism
of abelian groups

A0(Y,M,−ΩY/k +VY ) → A0(X,M,−ΩX/k +VX).

In particular for M = KMW , we obtain the fact that the Milnor-Witt K-theory
groups K

MW
n are birational invariants.

Moreover, if F ∈ HI(k) be a homotopy sheaf, then F (X) is a birational invari-
ant.

We hope that the ‘quadratic’ nature of these new invariants will lead to more
refined theorems in the domain.

1.2 Outline of the paper

In Section 2, we follow [DJK21] and define the bivariant theory associated to a
motivic spectrum. We extend the main results for the associated cohomology
theory. We study the basic properties of fundamental classes and prove a
ramification formula.
In Section 3, we recall the theory of Milnor-Witt cycle modules developed in
[Fel20a]. For any motivic spectrum, we then construct a Milnor-Witt cycle
modules in a functorial way.
The heart of the paper is Section 4 where we define a homotopy module for
any Milnor-Witt cycle module and prove our main theorem: the heart of the
stable homotopy category (which is known to be equivalent to the category
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of homotopy module according to [Mor03]) is equivalent to the category of
Milnor-Witt cycle modules.
Finally in Section 5, we give some corollaries of the main theorem. In particular,
we show that the heart of stable homotopy category is equivalent to the heart of
the category of MW-motives [DF17]. We also prove that Milnor-Witt K-theory
groups and homotopy sheaves are birational invariants of smooth projective k-
schemes.

1.3 Notation

Throughout the paper, we fix a (commutative) field k and we assume moreover
that k is perfect (of arbitrary characteristic). We consider only schemes that are
noetherian and essentially of finite type1 over k. All schemes and morphisms
of schemes are defined over k.
We denote by S = Spec k the spectrum of k.
By a field E over k, we mean a k-finitely generated field E. Since k is perfect,
notice that SpecE is essentially smooth over S.
Let f : X → S be a morphism of schemes and VS be a virtual bundle over S.
We denote by VX or by f∗VS or by VS ×S X the pullback of VS by f .
Let f : X → Y be a morphism of schemes. Denote by Lf or by LX/Y the
virtual vector bundle over Y associated with the cotangent complex of f . If
p : X → Y is a smooth morphism, then Lp is (isomorphic to) ΩX/Y the space
of (Kähler) differentials. If i : Z → X is a regular closed immersion, then Li

is the normal cone −NZX . If f is the composite Y
i // Pn

X

p
// X with p

and i as previously (in other words, if f is lci projective), then Lf is isomorphic
to the virtual tangent bundle i∗ΩPn

X/X −NY (P
n
X) (see also [Fel20a, Section 9]).

Let X be a scheme and x ∈ X a point, we put Lx = (mx/m
2
x)

∨.
Let E be a field (over k) and v a (discrete) valuation on E. We denote by Ov

its valuation ring, by mv its maximal ideal and by κ(v) its residue class field.
We consider only valuations of geometric type, that is we assume: k ⊂ Ov, the
residue field κ(v) is finitely generated over k and satisfies tr. degk(κ(v)) + 1 =
tr. degk(E).
For E a field (resp. X a scheme), we denote by 〈n〉 the affine space An

E (resp.
An

X) seen in the category of virtual spaces (see [Del87, §4] or [Fel20a, Appendix
A] for the definition of the category of virtual spaces).
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2 Bivariant theory

2.1 Recollection and notations

In this subsection, we recall some results from [DJK21, §2]. Let S be a base
scheme. Denote by V(S) the Picard groupoid of virtual vector bundles on S (see
[Del87, §4] or [Fel20a, Appendix A]). If VS is a virtual vector bundle over S, we
denote by ThS(VS) its associated Thom space (this is an ⊗-invertible motivic
spectra over S, see [CD19, Remark 2.4.15]).

Definition 2.1.1. Let E ∈ SH(S) be a motivic spectrum. Given a separated
morphism of finite type p : X → S, an integer n ∈ Z and a virtual bundle
VX ∈ V(X), we define the bivariant theory of X/S in bidegree (n,VX), with
coefficients in E, as the abelian group:

En(X/S,VX) = [ThX(VX)[n], p!(E)] = [p!ThX(VX)[n],E].

The cohomology theory represented by E is defined by the formula:

E
n(X,VX) = E−n(X/X,−VX) = [1X ,EX ⊗ ThX(VX)[n]]

for any scheme X over S and any pair (n,VX) ∈ Z× V(X).
In the special case where E = 1 is the sphere spectrum, we will use the notation

Hn(X/S,VX) = 1n(X/S,VX) = [ThX(VX)[n], p!(1S)]

and we will refer to this simply as the bivariant A1-theory.
Similarly, we set Hn(X,VX) = 1

n(X,VX) and refer to this as the A1-
cohomology.
More generally, if i : Z → X is a closed immersion, then we denote by

E
n
Z(X,VZ) = E−n(Z/X,−VZ)

the cohomology with support in Z.

2.1.2. base change. For any cartesian square

Y
g

//

q

��

∆

X

p

��

T
f

// S,

one gets a map

∆∗ : En(X/S,VX) → En(Y/T,VT )
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by applying the functor g∗ : SH(X) → SH(Y ) and using the exchange trans-
formation Ex∗! : g∗p! → q!f∗ associated with the square ∆.

2.1.3. Covariance for proper morphisms. Let f : Y → X be a proper
morphism. We have a map

f∗ : En(Y/S,VY ) → En(X/S,VX)

coming from the unit map f!f ! → Id and the fact that f! = f∗ since f is proper.

2.1.4. Contravariance for étale morphisms. Let f : Y → X be an étale
morphism, we have a map

f∗ : En(X/S,VX) → En(Y/S,VY )

obtained by applying the functor f ! : SH(X) → SH(S) and using the purity
isomorphism f ! = f∗ as f is étale.

2.1.5. Products. Consider a multiplication map µ : E ⊗ E′ → E′′ between

motivic spectra. For any s-schemes Y
q

// X
p

// S , any integers n,m and
any virtual vector bundles WY /Y and VX/X , there is a multiplication map

Em(Y/X,WY )⊗ E′
n(X/S,VX) → E′′

m+n(Y/S,WY + VY ).

Definition 2.1.6. Let X → S be a separated morphism of finite type.

• A fundamental class2 of f is an element

ηf ∈ H0(X/S,Vf)

for a given virtual vector bundle Vf over X .

• Let C be a subcategory of the category of (quasi-compact and quasi-
separated) schemes. A system of fundamental classes for C is the data,
for each morphism f : X → Y in C, of a virtual bundle Vf ∈ V(X) and
an orientation ηCf ∈ H0(f,Vf ) such that the following relations hold:

1. Normalisation. If f = IdS , then Vf = 0 and the orientation ηCf ∈
H0(IdS , 0) is given by the identity Id : 1S → 1S .

2. Associativity formula. For any composable morphisms f and g in C,
one has an isomorphism:

Vf◦g ≃ Vg + g∗Vf

and, modulo this identification, the following relation holds:

ηCg .η
C
f = ηCf◦g

• Suppose the category C admits fibred products. We say that a system
of fundamental classes (ηCf )f is stable under transverse base change if it
satisfies the following condition: for any cartesian square

2Also called orientation in [DJK21, Definition 2.3.2].
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624 N. Feld

Y
g

//

q

��

∆

T

p

��

X
f

// S.

such that f and g are in C and p is transverse to f , then one has Vg = q∗Vf

and the following formula holds in H0(g,Vg): ∆∗(ηCf ) = ηCg .

In [DJK21, Theorem 3.3.2], the authors prove the following theorem.

Theorem 2.1.7. There exists a unique system of fundamental classes ηf ∈
H0(X/S,Lf ) associated with the class of quasi-projective lci morphisms f such
that:

1. For any smooth separated morphism of finite type p, the class ηp agrees
with the fundamental class defined in [DJK21, Example 2.3.9] thanks to
the purity isomorphism.

2. For any regular closed immersion i : Z → X, the class ηi agrees with the
fundamental class defined in [DJK21, Theorem 3.2.21] by deformation to
the normal cone.

Thanks to this system of fundamental classes, we can define Gysin morphisms
as follows.

2.1.8. Contravariance for lci morphisms. Let f : Y/S → X/S be an lci
quasi-projective morphism of separated S-schemes of finite type with virtual
cotangent bundle Lf . For any motivic spectrum E ∈ SH(S), for any integer n
and any virtual bundle VX over X , there exists a Gysin morphism:

f∗ : En(X/S,VX) → En(Y/S,Lf + VY )
x 7→ ηf .x

using the product defined in 2.1.5. These Gysin morphisms satisfy the following
formulas:

1. Functoriality: For any suitable morphisms f and g, one has (fg)∗ = g∗f∗.

2. Base change: For any cartesian square

Y
g

//

q

��

∆

T

p

��

X
f

// S.

such that f is quasi-projective lci and transverse to p, one has f∗p∗ =
q∗g

∗.
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2.1.9. Localization long exact sequence. Another essential property is
the following long exact sequence following from the usual localization triangle
in the six functors formalism in SH.
Indeed, let E ∈ SH(S) be a motivic spectrum. For any closed immersion
i : Z → X of separated schemes over S, with (quasi-compact) complementary
open immersion j : U → X , there exists a canonical localization long exact
sequence of the form:

. . . // En(Z/S,VZ)
i∗ // En(X/S,VX)

j∗
// En(U/S,VU )

∂i // En−1(Z/S,VZ) // . . . .

We will need the following properties of localizations long exact sequences.

Proposition 2.1.10. Let E ∈ SH(S) be a motivic spectrum and consider the
following commutative square

T �
� k //
� _

q

��

Y � _

p

��

Z � �

i
// X

of closed immersions of separated schemes over S. For VX a virtual vector
bundle over X, we have the following diagram

En(T/S,VT )
k∗ //

q∗

��

En(Y/S,VY )
k′∗

// //

p∗

��

En(Y − T,VY−T )
∂k //

p̃∗

��

En−1(T/S,VT )

q∗

��

En(Z/S,VZ)
i∗ //

q′∗

��

En(X/S,VX)
i′∗ //

p′

∗

��

En(X − Z/S,VX−Z)

p̃′∗

��

∂i // En+1(Z/S,VZ)

q′∗

��

En(Z − T/S,VZ−T )
ĩ∗
//

∂k

��

En(X − Y/S,VX−Y )
ĩ′∗
//

∂p

��

En(X − (Z ∪ Y )/S,VX−(Z∪Y ))

(∗)∂p̃

��

∂ĩ

// En−1(Z − T/S,VZ−T )

∂k̃

��

En−1(T/S,VT )
k∗

// En−1(Y/S,VY )
k′∗

// En(Y − T/S,VY−T )
∂k

// En−2(T/S,VT )

with obvious maps. Each squares of this diagram is commutative except for (∗)
which is anti-commutative.

Proof. See [DJK21, Corollary 2.2.11].

Proposition 2.1.11 (Base change for lci morphisms). Consider a cartesian
square of schemes

X ′ f ′

//

g′

��

Y ′

g

��

X
f

// Y
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with f proper, and g (quasi-projective) lci. Suppose moreover that the square
is tor-independent, that is for any x ∈ X, y′ ∈ Y ′ with y = f(x) = g(y′) and
for any i > 0 we have

Tor
OY,y

i (OX,x,OY ′,y′) = 0.

Up to the canonical isomorphism f ′∗Lg ≃ Lg′ ,we have:

f ′
∗ ◦ g

′∗ = g∗ ◦ f∗.

Proof. See [DJK21, Theorem 4.1.4].

The bivariant theory of a spectrum satisfies some A1-homotopy invariance prop-
erty.

Proposition 2.1.12. Let E ∈ SH(S) be a motivic spectrum. Let X be an
s-scheme over S and let p : V → X be a vector bundle with virtual tangent
bundle Lp = p∗〈V 〉. Then the Gysin morphism

p∗ : En(X/S,VX) → En(V/S,Lp + VV )

is an isomorphism for any integer n and any virtual bundle VX over X.

Proof. See [DJK21, Lemma 2.4.4] when E is the sphere spectrum 1. The
general case follows from the definitions.

Definition 2.1.13. Keeping the notations of 2.1.12, we define the Thom iso-
morphism

ΦV/X : En(V/S,VV ) → En(X/S,V − 〈V 〉),

associated with V/X , as the inverse of the Gysin morphism p∗ : En(X/S,VX −
〈E〉) → En(V/S,VV )

Remark 2.1.14. The Thom isomorphism is compatible with base change and
direct sums (see [DJK21, Remark 2.4.6]).

2.2 Ramification formula

2.2.1. Consider a square

T �
� k //

q

��

∆

Y

p

��

Z
� �

i
// X

where k and i are regular closed immersions of codimension 1 and T is a reduced
connected scheme. Moreover, assume that the square is topologically cartesian,
i.e. (by definition) we have an isomorphism T = (Z ×X Y )red. Denote by K′

the ideal of the immersion Z×X Y → Y , by K the ideal of k and by I the ideal
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of i. Assume moreover that the square is ramified with ramification index e
in the sense that there exists a nonzero natural number e such that K′ = Ke.
We consider the morphism of deformation spaces ν(e) : DTY → DZX defined
as the spectrum of the composite

⊕
n∈Z

In · t−n //
⊕

n∈Z
(Ke)n · t−n //

⊕
m∈Z

Km · t−m

x · t−n ✤ // p̃(x) · t−n ✤ // p̃(x) · t−en

where the first map is induced by the morphism p̃ : I → K′ defined via p and
where the second map takes the parameter t to its power te.
The map ν(e) factors naturally making the following diagram commutative:

NTY
� � //

��

DTY

��

GmY? _oo

q∗NZX
� � //

��

q∗DZX

��

GmY

��

? _oo

NZX
� � // DZX GmX.? _oo

Hence, we have the following commutative diagram:

H1(GmY/Y, ∗)

(1)

∂T/Y
// H0(NTY/Y, ∗)

��

(3)

ΦNT Y/T

∼
// H0(T/Y,−NTY + ∗)

ν(e)
∗

��

H1(GmY/Y, ∗) //

(2)

H0(q
∗NZX/Y, ∗)

Φq∗NZX/T

∼
//

(4)

H0(T/Y,−q∗NZX + ∗)

H1(GmX/X, ∗)

∆∗

OO

∂Z/X

// H0(NZX/X, ∗)
ΦNZX/Z

∼ //

∆∗

OO

H0(Z/X,−NZX + ∗)

∆∗

OO

where the arrows ∆∗ denote the obvious maps induced by the corresponding
squares. Square (1) (resp. square (2)) is commutative because of the naturality
of localization long exact sequences with respect to the proper covariance (resp.

base change). The map ν(e)∗ is defined so that the square (3) commutes. Square
(4) commutes by compatibility of Thom isomorphisms with respect to base
change (2.1.14).
From this, we can deduce the following theorem:

Theorem 2.2.2. Keeping the previous notations, the following holds in
H0(T/Y,−q∗NZX)

∆∗(ηi) = ν
(e)
∗ (ηk).
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Proof. We keep the previous notations. We remark that the image of {t} ∈
H1(GmX/X, ∗) by the counter-clockwise composition in the above diagram
is the element ∆∗(ηi) ∈ H0(T/Y,−q∗NZX + ∗). Similarly, the image of the

clockwise composition is ν(e)∗ (ηk) ∈ H0(T/Y,−q∗NZX + ∗).

Corollary 2.2.3. Consider the topologically cartesian square

T
� � k //

q

��

∆

Y

p

��

Z � �

i
// X

where k and i are regular closed immersions of codimension 1 and T is a
reduced connected scheme. Assume moreover that the square is ramified with
ramification index e as before, and assume that p and q are proper. Then we
have the following ramification formula:

i∗ ◦ p∗ = q∗ ◦ ν
(e)
∗ ◦ k∗

Proof. This follows from the commutativity of square (1) (i.e. Theorem 2.2.2)
and square (2) (i.e. base change property of the fundamental class proved in
[DJK21, 2.2.7] or [Dé18, 1.2.8]) in the following diagram:

En(Y/X, ∗)
k∗

//

(1)

En(T/X,−NTY + ∗)
ν(e)

// En(T/X,−q∗NZX + ∗)

En(Y/X, ∗)
∆∗(ηi)·−

//

p∗

��

(2)

En(T/X,−q∗NZX + ∗)

q∗

��

En(X/X, ∗) ηi·−
// En(Z/X,−NZX + ∗).

Remark 2.2.4. One could say that ν(e)∗ represents the defect of transversality.

2.3 Application to cohomology

For a spectrum E ∈ SH(S), a natural number n ∈ N, a morphism p : X → S
of schemes and VX a virtual vector bundle over X , we define the cohomology
group

En(X,VX) = HomSH(X)(1X ,EX ⊗ ThX(VX)[n])

where EX = p∗ES .
It is dual to the bivariant theory E∗(−, ∗) defined previously. Indeed, we have
the following theorem:
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Theorem 2.3.1. Let f : X → S be an essentially smooth scheme and E ∈
SH(S) a motivic spectrum. Then for any integer n and any virtual bundle VX

over X, there is a canonical isomorphism

En(X,VX) ≃ E−n(X/S,Lf − VX)

which is contravariantly natural in X with respect to étale morphisms.

Proof. We have the following (canonical) isomorphisms

E−n(X/S,Lf − VX) = [ThX(Lf − VX)[−n], f !E]SH(X)

≃ [1X , f
!E⊗ ThX(−Lf + VX)[n]]SH(X)

≃ [1X , f
∗E⊗ ThX(VX)[n]]SH(X)

= En(X,VX)

where the last isomorphism comes from the purity isomorphism (see [DJK21,
§2.1.7]):

f∗E ≃ f !E⊗ Th(−Lf ).

We remark that Déglise-Jin-Khan [DJK21] worked only with separated S-
schemes of finite type but we can extend in a canonical way most of the results
for separated S-schemes essentially of finite type (see [DFJK21, Appendix B]
or[ADN20, §2.1.1]).

Example 2.3.2. A crucial example follows from the work of Morel: if E is the
unit sphere 1 and X = SpecE is the spectrum of a field, then the group
Hn(X, 〈n〉) is isomorphic to the Milnor-Witt theory K

MW
n (E).

In the following, we give the usual properties of the (bivariant) cohomology
theory, which can be proven in a similar manner than their homological coun-
terpart. In practice (since our base field k is perfect) we work mainly with
essentially smooth schemes, hence we could also apply Theorem 2.3.1.

2.3.3. Contravariance. Let f : Y → X be a morphism of schemes and VX

be a virtual bundle over X . There exists a pullback map

f∗ : En(X,VX) → En(Y,VY ).

2.3.4. Covariance. Let f : Y → X be an lci projective map. There exists a
Gysin morphism

f∗ : En(Y,Lf + VY ) → En(X,VX).

As always, the definition follows from general considerations using the six
functors formalism. For instance, assume f smooth. By adjunction, the
set HomSH(Y )(1Y ,EY ⊗ Th(Lf )) is in bijection with HomSH(X)(1X , f∗(EY ⊗
Th(Lf ))). The purity isomorphism and the fact that f∗ = f! (since f is proper)
lead a bijection with the set HomSH(X)(1X , f!f

!EX). Any element of this set
can be composed with the counit map f!f ! → Id so that we obtain an element
in HomSH(X)(1X ,EX).
More generally, the group Er(Y,Lf + VY ) is isomorphic to
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[f∗(1X), f∗(EX ⊗ Th(VX)[r]) ⊗ Th(Lf )]Y

which is, by adjunction, isomorphic to

[1X , f∗(f
∗(EX ⊗ Th(VX)[r])⊗ Th(Lf ))]X .

We can then compose with the trace map Trf : f∗Σ
Lf f∗ → Id defined in

[DJK21, §2.5.3] in order to obtain a map whose target is the group E
r(X,VX).

2.3.5. Milnor-Witt action. Any motivic spectrum E is equipped with a
unit isomorphism 1⊗E → E and thus defines an action by composition on the
left

γ : Hm(X,WX)⊗ En(X,VX) → Em+n(X,WX + VX).

2.3.6. Localization long exact sequence. Another essential property is
the following long exact sequence deduced from the usual localization triangle
of the six functors formalism in SH.
Indeed, let E ∈ SH(S) be a motivic spectrum. Let i : Z → X be a closed
immersion of separated S-schemes with (quasi-compact) complementary open
immersion j : U → X , there exists a canonical localization long exact sequence
of the form:

. . . // E
n
Z(X,VZ)

i∗ // E
n(X,VX)

j∗
// E

n(U,VU )
∂i // E

n+1
Z (X,VZ) // . . .

where the residue map ∂i can be defined as the following composition

En(X − Z,VX−Z)

∂i

��

E−n(X − Z/X − Z,−VX−Z)
∼ // E−n(X − Z/X,−VX−Z)

∂

��

E
n+1
Z (X,VZ) E−n−1(Z/X,−VZ).

Proposition 2.3.7. Let E ∈ SH(S) be a motivic spectrum and consider the
following commutative square

T �
� k //
� _

q

��

Y � _

p

��

Z
� �

i
// X

of closed immersions of separated schemes over S. For VX a virtual vector
bundle over X, we have the following diagram
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En
T (X, ∗)

k∗ //

q∗

��

En
Y (X, ∗)

k′∗

// //

p∗

��

En
Y−T (X, ∗)

∂k //

p̃∗

��

E
n+1
T (X, ∗)

q∗

��

E
n
Z(X, ∗)

i∗ //

q′∗

��

E
n(X, ∗)

i′∗ //

p′

∗

��

E
n
X−Z(X, ∗)

p̃′∗

��

∂i // E
n+1
Z (X, ∗)

q′∗

��

En
Z−T (X, ∗)

ĩ∗ //

∂k

��

En
X−Y (X, ∗)

ĩ′∗ //

∂p

��

En
X−(Z∪Y )(X, ∗)

(∗)∂p̃

��

∂ĩ // E
n+1
Z−T (X, ∗)

∂k̃

��

E
n+1
T (X, ∗)

k∗

// E
n+1
Y (X, ∗)

k′∗

// E
n+1
Y−T (X, ∗) ∂k

// E
n+2
T (X, ∗)

with obvious maps. Each square of this diagram is commutative except for (∗)
which is anti-commutative.

Proof. This follows from Proposition 2.1.10.

Proposition 2.3.8. Let E ∈ SH(S) be a motivic spectrum. Let i : Z → X
be a closed immersion of smooth schemes with complementary open immersion
j : U → X. Let x ∈ Hm(X,VX). Then the following diagram is commutative:

En(Z,Li +WZ)
ε◦γi∗(x)

//

i∗

��

En+m(Z,Li + VZ +WZ)

i∗

��

En(X,WX)

j∗

��

γx
// En+m(X,VX +WX)

j∗

��

En(U,WU )

∂Z,X

��

γj∗(x)
// En+m(U,VU +WU )

∂Z,X

��

En−1(Z,Li +WZ)
ε◦γi∗(x)

// En+m−1(Z,Li + VZ +WZ)

where γ? is the multiplication map defined in 2.3.5 (see also 2.1.5) and where
ε is the isomorphism induced by the switch isomorphism Li + VZ ≃ VZ + Li.

Proof. This follows from [DJK21, Proposition 2.2.12].

Proposition 2.3.9 (Base change for lci morphisms). Consider a cartesian
square of schemes

X ′ f ′

//

g′

��

Y ′

g

��

X
f

// Y
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with f proper, and g (quasi-projective) lci. Suppose moreover that the square
is tor-independent, that is for any x ∈ X, y′ ∈ Y ′ with y = f(x) = g(y′) and
for any i > 0 we have

Tor
OY,y

i (OX,x,OY ′,y′) = 0.

Up to the canonical isomorphism f
′∗Lg ≃ Lg′ , we have:

f ′
∗ ◦ g

′∗ = g∗ ◦ f∗.

Proof. See Proposition 2.1.2.

We will need the following proposition:

Proposition 2.3.10. Let ν : Z → X a closed immersion of smooth schemes.
Consider the canonical decomposition Z = ⊔i∈IZi and X = ⊔j∈JXj into con-

nected components. Denote by Ẑj = Z ×X Xj. For any i ∈ I, let j ∈ J be

the unique element such that Zi ⊂ Xj and denote by νji : Zi → Zj the induced

immersion. Consider the complement Z ′
i such that Ẑi = Zi⊔Z ′

i. The following
diagram is commutative:

En−1(X − Z, ∗)
∂X,Z

//

≃

��

En
Z(X, ∗)

ν∗ //

≃

��

En(X, ∗)

≃

��⊕
j∈J En−1(Xj − Ẑj , ∗)

(∂ij)i∈I,j∈J
//
⊕

i∈I E
n
Zi
(Xi, ∗)

(νij)i∈I,j∈J
//
⊕

j∈J En(Xj , ∗)

where the vertical maps are the canonical isomorphisms and where, for any
(i, j) ∈ I × J , if Zi ⊂ Xj, then vij = (νji )∗ and ∂ij = ∂Xj−Z′

j ,Zi
; otherwise

vij = 0 and ∂ij = 0.

Proof. Straightforward.

3 From homotopy modules to Milnor-Witt cycle modules

In the remaining of the paper, we use the cohomology theory to study the theory
of Milnor-Witt cycle modules because our axioms feel more "cohomological".
Since we work over a perfect base field, we could have decided to use Borel-
Moore homology instead.

3.1 Recollection on Milnor-Witt cycle modules

We denote by Fk the category whose objects are the couple (E,VE) where E
is a (finitely generated) field over k and VE ∈ V(E) is a virtual vector space
(of finite dimension over F ). A morphism (E,VE) → (F,VF ) is the data of a
morphism E → F of fields over k and an isomorphism VE⊗EF ≃ VF of virtual
F -vector spaces.
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A morphism (E,VE) → (F,VF ) in Fk is said to be finite (resp. separable) if
the field extension F/E is finite (resp. separable).
We recall the definition of the notion of Milnor-Witt cycle modules. For sim-
plicity, we start with the notion of Milnor-Witt cycle premodules :

Definition 3.1.1. (see [Fel20a, Definition 3.1]) A Milnor-Witt cycle premodule
M (also written: MW-cycle premodule) is a functor from Fk to the category
Ab of abelian groups with the following data D1,. . . , D4 and the following rules
R1a,. . . , R4a.

D1 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk. The functor M gives a
morphism ϕ∗ :M(E,VE) →M(F,VF ).

D2 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk where the morphism
E → F is finite. There is a morphism ϕ∗ : M(F,ΩF/k +VF ) →
M(E,ΩE/k +VE).

D3 Let (E,VE) and (E,WE) be two objects of Fk. For any element x of
KMW (E,WE), there is a morphism

γx :M(E,VE) →M(E,WE + VE)

so that the functor M(E,−) : V(E) → Ab is a left module over the lax
monoidal functor KMW (E,−) : V(E) → Ab (see [Yet03, Definition 39]).

D4 Let E be a field over k, let v be a valuation on E and let V be a virtual
projective Ov-module of finite type. Denote by VE = V ⊗Ov E and
Vκ(v) = V ⊗Ov κ(v). There is a morphism

∂v :M(E,VE) →M(κ(v),−Nv + Vκ(v)).

R1a Let ϕ and ψ be two composable morphisms in Fk. One has

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

R1b Let ϕ and ψ be two composable finite morphisms in Fk. One has

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

R1c Consider ϕ : (E,VE) → (F,VF ) and ψ : (E,VE) → (L,VL) with ϕ finite
and ψ separable. Let R be the ring F ⊗E L. For each p ∈ SpecR,
let ϕp : (L,VL) → (R/p,VR/p) and ψp : (F,VF ) → (R/p,VR/p) be the
morphisms induced by ϕ and ψ. One has

ψ∗ ◦ ϕ∗ =
∑

p∈SpecR

(ϕp)
∗ ◦ (ψp)∗.
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R2 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk, let x be in KMW (E,WE)
and y be in KMW (F,ΩF/k +W ′

F ) where (E,WE) and (F,W ′
F ) are two

objects of Fk.

R2a We have ϕ∗ ◦ γx = γϕ∗(x) ◦ ϕ∗.

R2b Suppose ϕ finite. We have ϕ∗ ◦ γϕ∗(x) = γx ◦ ϕ∗.

R2c Suppose ϕ finite. We have ϕ∗ ◦ γy ◦ ϕ∗ = γϕ∗(y).

R3a Let E → F be a field extension and w be a valuation on F which restricts
to a non trivial valuation v on E with ramification e. Let V be a virtual
Ov-module so that we have a morphism ϕ : (E,VE) → (F,VF ) which
induces a morphism ϕ : (κ(v),−Nv + Vκ(v)) → (κ(w),−Nw + Vκ(w)). We
have

∂w ◦ ϕ∗ = γeε ◦ ϕ∗ ◦ ∂v.

R3b Let E → F be a finite extension of fields over k, let v be a valua-
tion on E and let V be a Ov-module. For each extension w of v, we
denote by ϕw : (κ(v),Vκ(v)) → (κ(w),Vκ(w)) the morphism induced by
ϕ : (E,VE) → (F,VF ). We have

∂v ◦ ϕ
∗ =

∑
w(ϕw)

∗ ◦ ∂w.

R3c Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk and let w be a valuation
on F which restricts to the trivial valuation on E. Then

∂w ◦ ϕ∗ = 0.

R3d Let ϕ and w be as in R3c, and let ϕ : (E,VE) → (κ(w),Vκ(w)) be the
induced morphism. For any uniformizer π of v, we have

∂w ◦ γ[−π] ◦ ϕ∗ = ϕ∗.

R3e Let E be a field over k, v be a valuation on E and u be a unit of v. Then

∂v ◦ γ[u] = γε[u] ◦ ∂v and
∂v ◦ γη = γη ◦ ∂v.

R4a Let (E,VE) ∈ Fk and let Θ be an endomorphism of (E,VE) (that is, an
automorphism of VE). Denote by ∆ the canonical map3 from the group
of automorphisms of VE to the group K

MW(E, 0). Then

Θ∗ = γ∆(Θ) :M(E,VE) →M(E,VE).
3See [Fel20a, Remark 3.17] for more details.
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3.1.2. Fix M a Milnor-Witt cycle premodule. First, for x a point of X , denote
by

M(x,VX) =M(κ(x),Ωκ(x)/k +Vx).

If X is normal, then for any x ∈ X(1) the local ring of X at x is a valuation ring
so that D4 gives us a map ∂x : M(ξ,VX) → M(x,VX) where ξ is the generic
point of X .
If X is any scheme, let x, y be any points in X . We define a map

∂xy :M(x,VX) →M(y,VX)

as follows. Let Z = {x}. If y 6∈ Z, then put ∂xy = 0. If y ∈ Z, let Z̃ → Z be
the normalization and put

∂xy =
∑

z|y

coresκ(z)/κ(y) ◦ ∂z

with z running through the finitely many points of Z̃ lying over y.

Definition 3.1.3. (see [Fel20a, Definition 4.2])
A Milnor-Witt cycle module M over k is a Milnor-Witt cycle premodule M
which satisfies the following conditions (FD) and (C).

(FD) Finite support of divisors. Let X be a normal scheme, VX be a
virtual vector bundle over X and ρ be an element of M(ξX ,VX). Then
∂x(ρ) = 0 for all but finitely many x ∈ X(1).

(C) Closedness. Let X be integral and local of dimension 2 and VX be a
virtual bundle over X . Then

0 =
∑

x∈X(1)

∂xx0
◦ ∂ξx :M(ξX ,VX) →M(x0,VX)

where ξ is the generic point and x0 the closed point of X .

3.1.4. Of course (C) makes sense only under presence of (FD) which guarantees
finiteness in the sum. More generally, note that if (FD) holds, then for any
scheme X , any virtual bundle VX over X , any x ∈ X and any ρ ∈ M(x,VX)
one has ∂xy (ρ) = 0 for all but finitely many y ∈ X .

Example 3.1.5. The main example of Milnor-Witt cycle module is given by
Milnor-Witt K-theory KMW (see [Fel20a, Theorem 3.20]).

Now, fix M a Milnor-Witt cycle module. Since M satisfies axioms (FD)
(finite support of divisors) and (C) (closedness), we can define a complex
(Cp(X,M,VX), dp)p∈Z for any scheme X and virtual bundle VX over X where

Cp(X,M,VX) =
⊕

x∈X(p)
M(κ(x),Ωκ(x)/k + Vx)
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and where the differential dp = (∂xy )(x,y)∈X(p)×X(p−1)
is defined as in 3.1.2 (see

also [Fel20a, Section 4]).

Definition 3.1.6. The complex (Cp(X,M,VX), d)p≥0 is called the Milnor-Witt
complex of cycles on X with coefficients in M and we denote by Ap(X,M,VX)
the associated homology groups (called Chow-Witt groups with coefficients
in M).

3.1.7. We can define five basic maps on the complex level (see [Fel20a, Sec-
tion 4]) as follows:

Pushforward Let f : X → Y be a k-morphism of schemes, let VY be a
virtual bundle over the scheme Y . The data D2 induces a map

f∗ : Cp(X,M,VX) → Cp(Y,M,VY ).

Pullback Let g : X → Y be an essentially smooth morphism of schemes. Let
VY a virtual bundle over Y . Suppose X connected (if X is not connected,
take the sum over each connected component) and denote by s the relative
dimension of g. The data D1 induces a map

g∗ : Cp(Y,M,VY ) → Cp+s(X,M,−LX/Y + VX).

Multiplication with units Let X be a scheme of finite type over k with a
virtual bundle VX . Let a1, . . . , an be global units in O∗

X . The data D3
induces a map

[a1, . . . , an] : Cp(X,M,VX) → Cp(X,M, 〈n〉+ VX).

Multiplication with η LetX be a scheme of finite type over k with a virtual
bundle VX . The Hopf map η and the data D3 induces a map

η : Cp(X,M,VX) → Cp(X,M,−A1
X + VX).

Boundary map Let X be a scheme of finite type over k with a virtual bundle
VX , let i : Z → X be a closed immersion and let j : U = X \ Z → X be
the inclusion of the open complement. The data D4 induces (as in 3.1.2)
a map

∂ = ∂UZ : Cp(U,M,VU ) → Cp−1(Z,M,VZ).

These maps satisfy the usual compatibility properties (see [Fel20a, Section 5]).
In particular, they induce maps f∗, g

∗, [u],η, ∂UZ on the homology groups
A∗(X,M, ∗).

We end this subsection with a lemma illustrating the importance of the rule
R4a. This will be useful in Section 4.
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Lemma 3.1.8. Let M be a Milnor-Witt cycle module over k. For any field E/k
and any virtual vector bundle VE over E, we have a canonical isomorphism

M(E,VE) ≃M(E, 〈n〉)⊗Z[E×] Z[det(VE)
×]

where n is the rank of VE.

Proof. Any element u ∈ det(VE)
× defines an isomorphism

Θu :M(E,VE) ≃M(E, 〈n〉)⊗Z[E×] Z[det(VE)
×]

in a obvious way thanks to D1. One can check that this map does not depend
on the choice of u according to rule R4a.

Note that this lemma is true for Milnor-Witt K-theory KMW by definition.

3.2 Cycle premodule structure

Let E ∈ SH(S) be a motivic ring spectrum. For any field E and any virtual
vector space VE of rank r over E, we put

Ê(E,VE) = E−r(X,VX) = HomSH(X)(1X ,EX ⊗ ThX(VX)[−r]),

whereX = SpecE (recall Definition 2.1.1). We prove that this defines a functor
Ê : Fk → Ab which is a Milnor-Witt cycle module. Indeed we have the following
data:

D1 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk. The cohomol-
ogy theory E

∗(−, ∗) being contravariant (see 2.3.3), we obtain a map
ϕ∗ : Ê(E,VE) → Ê(F,VF ).

D2 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk where the morphism
E → F is finite. The (twisted) covariance described in 2.3.4 leads to a
morphism ϕ∗ : Ê(F,ΩF/k +VF ) → Ê(E,ΩE/k +VE).

D3 Let (E,VE) and (E,WE) be two objects of Fk. For any element x of
KMW (E,WE), there is a morphism

γx : Ê(E,VE) → Ê(E,WE + VE)

given by composition on the left by x (as in 2.3.5) since we can identify
KMW (E,WE) with 1̂(E,WE) (see Example 2.3.2). We can check that
the functor Ê(E,−) : V(E) → Ab is then a left module over the lax
monoidal functor KMW (E,−) : V(E) → Ab (see [Yet03] Definition 39).

D4 Let E be a field over k, let v be a valuation on E and let V be a virtual
projective Ov-module of finite type. As before, denote by VE = V ⊗Ov E
and Vκ(v) = V ⊗Ov κ(v). There is a morphism

∂v : Ê(E,VE) → Ê(κ(v),−Nv + Vκ(v))
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given by the long exact sequence 2.3.6 where the closed immersion is

Spec κ(v) �
�

// SpecOv .

It is clear that the data D1 and D2 are functorial so that the two following
rules hold:

R1a Let ϕ and ψ be two composable morphisms in Fk. One has

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

R1b Let ϕ and ψ be two composable finite morphisms in Fk. One has

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

The base change theorem 2.3.9 leads to the following rule R1c:

R1c Consider ϕ : (E,VE) → (F,VF ) and ψ : (E,VE) → (L,VL) with ϕ finite
and ψ separable. Let R be the ring F ⊗E L. For each p ∈ SpecR,
let ϕp : (L,VL) → (R/p,VR/p) and ψp : (F,VF ) → (R/p,VR/p) be the
morphisms induced by ϕ and ψ. One has

ψ∗ ◦ ϕ∗ =
∑

p∈SpecR

(ϕp)
∗ ◦ (ψp)∗.

The general formalism of Fulton-McPherson gives the usual projection formulas
(see also [Dé18, 1.2.8]):

R2 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk, let x be in KMW (E,WE)
and y be in KMW (F,ΩF/k +W ′

F ) where (E,WE) and (F,W ′
F ) are two

objects of Fk.

R2a We have ϕ∗ ◦ γx = γϕ∗(x) ◦ ϕ∗.

R2b Suppose ϕ finite. We have ϕ∗ ◦ γϕ∗(x) = γx ◦ ϕ∗.

R2c Suppose ϕ finite. We have ϕ∗ ◦ γy ◦ ϕ∗ = γϕ∗(y).

We now prove the remaining rules.

R3a Let E → F be a field extension and w be a valuation on F which restricts
to a non trivial valuation v on E with ramification index e. Let V be a
virtual Ov-module so that we have a morphism ϕ : (E,VE) → (F,VF )
which induces a morphism

ϕ : (κ(v),−Nv + Vκ(v)) → (κ(w),−Nw + Vκ(w)).
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We have

∂w ◦ ϕ∗ = γeε ◦ ϕ∗ ◦ ∂v.

Proof. Consider the commutative diagram

Ov
//

��

Ow

��

��

κ(v) //

22

κ(v)⊗Ov Ow = Ow/m
e
w

((◗
◗◗◗

◗◗
◗◗◗

◗◗◗
◗◗

κ(w).

which yields a topologically cartesian square

T �
� k //

q

��

∆

Y

p

��

Z
� �

i
// X

where k and i are regular closed immersions of codimension 1 and T =
Specκ(w). Keeping the notations used in 2.2.1, the map ν(e) induces a mor-
phism of Thom spaces

Th(NTY ) → Th(q∗NZX)

which corresponds to the map taking a choice of parameter t to its e-th power
te, which then corresponds to the quadratic form eε =

∑e
i=1〈−1〉i−1 under the

isomorphisms

[Th(NTY ),Th(q∗NZX)] ≃ [1κ(w),Th(q
∗NZX −NTY )] ≃ GW(κ(w))

(see also [KW20, Lemma 5], [AFH20, Proposition 2.1.9] or [Caz08] for more
details). We conclude thanks to Theorem 2.2.2.

R3b Let ϕ : E → F be a finite morphism of fields, let v be a valuation over
E and let V be a virtual vector bundle over Ov. For each extension w of
v, we denote by ϕw : κ(v) → κ(w) the map induced by ϕ. We have

∂v ◦ ϕ∗ =
∑

w ϕ
∗
w ◦ ∂w.

Proof. There exists a semilocal ring A over Ov such that the set of maximal
ideals consists of the ideals mw where w is an extension of v.
Denote by T = ⊕w|v Spec κ(w), Y = SpecA, Z = Specκ(v) and X = SpecOv

so that we have the following commutative diagram formed by two cartesian
squares:
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T
� � k //

g

��

Y

f

��

Y − T? _
k′

oo

h

��

Z � �

i
// X X − Z? _

i′
oo

where k, i are the canonical closed immersions with complementary open im-
mersions k′, i′ respectively and where f, g, h are the canonical maps.
According to Proposition 2.3.7, this leads to the following commutative dia-
gram:

Er
T (Y,VT )

k∗

��

g∗
// Er

Z(X,VZ)

i∗

��

E
r(Y,VY )

k′

��

f∗
// E

r(X,VX)

i′

��

Er(Y − T,VY−T )

∂

��

h∗ //

(∗)

Er(X − Z,VX−Z)

∂

��

E
r+1
T (Y,VT )

g∗
// E

r+1
Z (X,VZ)

where r is the rank of VX . The rule R3b follows from the commutativity of the
square (∗).

R3c Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk and let w a valuation on
F which restricts to the trivial valuation on E. Then

∂w ◦ ϕ∗ = 0.

Proof. Consider the closed inclusion i : Z → X and its open complementary
map j : U → X where X = SpecOv, Z = Specκ(w) and U = SpecF .
According to the long exact sequence 2.3.6, the composite

Er(X,VX)
j∗

// Er(U,VU )
∂Z,X

// E
r+1
Z (X,VZ)

is zero. The result follows from the fact that the map SpecE → SpecF factors
through j since w restricts to the trivial valuation on E.

R3d Let ϕ and w be as in R3c, and let ϕ : (E,VE) → (κ(w),Vκ(w)) be the
induced morphism. For any prime π of v, we have

∂w ◦ γ[−π] ◦ ϕ∗ = ϕ∗.

Proof. Denote by Z = Specκ(w), U = SpecF , X = SpecOw and Y = SpecE
and consider the induced maps as defined in the following commutative dia-
gram:
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Z � � i //

f̄   
❅❅

❅❅
❅❅

❅ X

f̃

��

U? _
j

oo

f
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

Y.

We want to prove that the following diagram is commutative:

E−r(Y,VY )

f̄

��

f∗

// E−r−1(U,VU )

γ[−π]

��

E−r(Z,VZ) E−r(U,A1
U + VU )

∂
oo

where we use the isomorphism NZX ≃ A1
Z defined by the choice of prime π.

We can split this diagram into the following one:

E−r(Y,VY )

f̃∗

tt✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

h∗

��

f∗

**❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱

E−r(X,VX)

i∗

��

q∗
//

(1)

E−r(DZX −NZX,V∗)

(2)γ[−π]

��

d∗

// E−r(U,VU )

γ[−π]

��

E
−r−1(DZX −NZX,A

1
U + V∗)

(3)

d∗

//

∂

��

E
−r−1(U,A1

U + VU )

∂

��

E−r(Z,VZ) E−r(NZX,V∗)
≃

p∗

oo

p∗

≃ // E−r(Z,VZ)

where the morphisms d : U → (DZX−NZX), q : DZX−NZX ≃ Gm×X → X
and p : NZX → Z are the canonical maps used in the deformation to the nor-
mal cone.
We can check that the square (1), (2) and (3) are commutative (same proof as
[Dé08, Proposition 2.6.5]), hence the whole diagram is commutative by functo-
riality of the pullback maps.

R3e Let E be a field over k, v be a valuation on E and u be a unit of v. Then

∂v ◦ γ[u] = γε[u] ◦ ∂v and
∂v ◦ γη = γη ◦ ∂v.

Proof. This follows from Proposition 2.3.8 since εη = η (where ε = −〈−1〉).

R4a Let (E,VE) ∈ Fk and let Θ be an automorphism of V . Denote by ∆
the canonical map from the group of automorphism of VE to the group
K

MW(E, 0). Then
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Θ∗ = γ∆(Θ) : Ê(E,VE) → Ê(E,VE).

Proof. One reduce to the case where E = 1. In this case, Ê is (isomorphic to)
the Milnor-Witt K-theory KMW (see Example 2.3.2), hence the result.

We have proved that Ê is a Milnor-Witt cycle premodule. In the following
subsection, we prove that it satisfies axioms (FD) and (C).

3.3 Cycle module structure

Put S = Spec(k). Let f : X → S be a scheme and VX be a virtual vector
bundle over X . Let ES ∈ SH(S) be a motivic spectrum. Recall that we denote
by EX the spectrum f∗(ES). The purpose of this subsection is to prove that the
Milnor-Witt cycle premodule Ê is in fact a cycle module. Roughly speaking,
this means that the graded group C∗(X, Ê, ∗) forms a complex.
Consider a flag Z = (Zp)p∈Z over X , that is a sequence a closed subschemes
of X such that

∅ ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zn ⊂ X

where dimZp ≤ p.
For an integer p ∈ Z, put Up = X − Zp and Tp = Zp − Zp−1. Consider the
canonical maps jp : Up ⊂ Up−1 and ip : Tp ⊂ Up−1.
For p, q ∈ Z, denote by

D1,Z
p,q = Eq−p−1(Up,VUp) = [1Up ,EUp ⊗ ThUp(VUp)[q − p− 1]]Up

and

E1,Z
p,q = E

q−p
Tp

(Up,VTp).

According to 2.3.6, we have a long exact sequence

. . . // D1,Z
p−1,q+1

j∗p
// D1,Z

p,q

∂p
// E1,Z

p,q

ip,∗
// D1,Z

p−1,q
// . . .

so that (D1,Z
p,q , E

1,Z
p,q )p,q∈Z is an exact couple. By the general theory (see [McC01],

Chapter 3), this defines a spectral sequence. In particular, we have canonical
differential maps d which are well-defined and satisfying d ◦ d = 0. Moreover,
we can prove that this spectral sequence converges to Ep+q(X,VX) (because
the E1

p,q-term is bounded) but we do not need this fact.
For p, q ∈ Z, denote by

D1,X
p,q = colimZ∈Flag(X)op D

1,Z
p,q ,

E1,X
p,q = colimZ∈Flag(X)op E

1,Z
p,q

where the colimit is taken over the flags Z of X . Since the colimit is filtered,
we get an exact couple and a spectral sequence.
We need to compute this spectral sequence. This is done in the following.
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Theorem 3.3.1. Assume X is a smooth scheme. For p, q ∈ Z, we have a
canonical isomorphism

E1,X
p,q ≃

⊕

x∈X(p)

[1κ(x),Eκ(x) ⊗ Thκ(x)(Lx + Vκ(x))[q − p]]κ(x).

In particular, if r is the rank of VX , then

E1,X
p,−r ≃ Cp(X, Ê,VX).

Proof. The proof is the same as [Fel20a, Theorem 8.2].

Theorem 3.3.2. Assume X is a smooth scheme. Keeping the previous nota-
tions, the following diagram is commutative:

E1,X
p,q

dp,q
//

��

E1,X
p−1,q

��

Eq−p(Spec(κ(y),Ly + Vy)
∂x
y

// Eq−p+1(Specκ(x),Lx + Vx)

where dp,q is the differential canonically associated to the spectral sequence and
where the vertical maps are the canonical projections associated to isomorphism
of Theorem 3.3.1.

Proof. (see also [Dé12, Proposition 1.15])
By definition, dp,q is the colimit of arrows

Eq−p(Z − Y, ∗)
ip∗

// Eq−p(X − Y, ∗)
∂p−1

// Eq−p+1(Y −W, ∗)

where W ⊂ Y ⊂ Z are large enough closed subschemes with dimX(Z) = p,
dimX(Y ) = p− 1 and dimX(W ) ≤ p− 2. In the following, we consider W,Y, Z
as above. For simplification, we replace X by X −W so that we can remove
any subset of X if its dimension is ≤ p− 2.
Enlarging Y , we may assume that Y contains Zsing the singular locus of Z.
Since the singular locus of Y has dimension strictly lesser than p− 1, we may
assume that Y is smooth. In short, we study the composite:

E
q−p(Z − Y, ∗)

iY ∗ // E
q−p(X − Y, ∗)

∂p
// E

q−p+1(Y, ∗)

where iY : Z − Y → X − Y is the restriction of the canonical closed immersion
Z → X .
We denote by Yy (resp. Zx) the irreducible component of Y (resp. Z) con-
taining y (resp. x). We may decompose Y as Y = Yy ⊔ Y ′

y with Y ′
y = Y \ Yy

since Y is smooth. Denote by Ŷx = Y ×Z Zx so that Zx − Ŷx is a connected
component of the (smooth) scheme Z − Y . Denote by ix : Zx − Ŷx → X − Y
the canonical inclusion. According to Proposition 2.3.10, we get the following
commutative diagram
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Eq−p(Z − Y, ∗)

iY ∗

��

// // Eq−p(Zx − Yx, ∗)

ix∗

��

∂Z,x
Y,y

tt

Eq−p(X − Y, ∗)

∂X,Y

��

Eq−p(X − Y, ∗)

∂X−Y ′
y,Yy

��

Eq−p+1(Y, ∗) // // Eq−p+1(Yy , ∗)

where the vertical maps are the canonical projections. The theorem is equiv-
alent to proving that the differential ∂xy defined in 3.1.2 is the colimit of the

maps ∂Z,x
Y,y defined in the above diagram.

Assume that y is not a specialization of x, that is y 6∈ {x}. Then dimX(Yx ∩
Zx) ≤ p−2 hence (reducing X to X−(Yx∩Zx)) we may assume that Yx∩Zx =
∅. Thus Yx∩ (Zx− Ŷx) = ∅ and we get the following cartesian square of closed
immersions

∅ //

��

Yy

��

Zx − Ŷx // X − Y ′
y

which yields the equality ∂X−Y ′
y ,Yy ◦ ix∗ by naturality of the residue maps (see

Proposition 2.3.7). This proves the proposition in this case.
Assume that y is a specialization of x so that Yy ⊂ Zx and Yy ⊂ Ŷx. For
simplification, we assume that Z = Zx, that is Z is irreducible with generic
point x. Consider the normalization f : Z̃ → Z of Z. The singular locus Z̃sing

is of codimension greater than 1 in Z̃ hence f(Z̃sing) is of dimension strictly
lesser than p− 1 in X and (reducing X) we may assume that Z̃ is smooth.
Denote by Ỹ (resp. Ỹy, Ỹ ′

y) the reduced inverse image of Y (resp. Yy, Y ′
y)

along f . Reducing X again, we may assume that Ỹy is smooth and Ỹy ∩ Ỹ ′
y =

∅. We can also assume that every connected component of Ỹy dominates Yy
(by reducing X , we can remove the non-dominant connected components).
From this, we see that the map gy : Ỹy → Yy induced by f is finite and
equidimensional. Consider the following topologically cartesian square:

Ỹy
σ̃ //

gy

��

Z̃ − Ỹ ′
y

��

Yy
σ // X − Y ′

y

where σ and σ̃ are the canonical closed immersions and the right vertical map
is induced by the composite
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Z̃
f

// Z
i // X.

By taking complements of σ̃ and σ, it induces the map

Z̃ − Ỹ
h // Z − Y

i // X − Y.

By naturality of residues with respect to Gysin morphisms and by functoriality
of the Gysin morphisms, we get the commutative diagram

E
q−p(Z − Y, ∗)

ix∗

��

∂Z,x
Y,y

**

E
q−p(Z̃ − Ỹ , ∗)

h∗

oo

∂Z̃−Ỹ ′
y,Ỹy

��

Eq−p(X − Z, ∗)

∂X−Y ′
y,Yy

��

Eq−p(Ỹy, ∗)

gy∗

��

Eq−p+1(Yy, ∗) // Eq−p+1(Yy , ∗).

For any t ∈ f−1(y), there exists a unique connected component Ỹt in the
(smooth) scheme Ỹy so that Ỹy = ⊔t∈f−1(y)Ỹt. Note that Ỹt is also a connected
component of Ỹ . Denote by Z̃t = Z̃ − (Ỹ − Ỹt) ; this is an open subscheme
of Z̃ containing Ỹt and Z̃t − Ỹt = Z̃ − Ỹ . According the Proposition 2.3.10, we
have the following commutative diagram

Eq−p(Z̃ − Ỹ , ∗)

∂Z̃−Ỹ ′
y,Ỹy

��

Eq−p(Z̃ − Ỹ , ∗)

∑
t ∂Z̃t,Ỹt

��

∂Z,x
Y,y

tt

Eq−p+1(Ỹy, ∗)

gy∗

��

≃//
⊕

t∈f−1(y) E
q−p+1(Ỹt, ∗)

∑
t gt∗

��

Eq−p+1(Yy, ∗) Eq−p+1(Yy, ∗)

where the middle vertical map is the canonical isomorphism.
We can now identify ∂xy with the formal colimit of ∂̃Z,x

Y,y for Y,W . In view
of 3.1.2, this is justified because:

• h is birational and Z̃ − Ỹ is smooth with function field κ(x).

• The closed pair (Z̃t, Ỹt) is smooth of codimension 1 and the local ring of
OZ̃t,Ỹt

is isomorphic (through h) to the valuation ring Ovt corresponding
to the valuation vt on κ(x) considered in 3.1.2.

From Theorem 3.3.1 and Theorem 3.3.2, we deduce that the differentials coin-
cide so that C∗(X, Ê,VX) is a complex when the scheme X is smooth. We use
this to prove that the premodule Ê is a Milnor-Witt cycle module:
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(FD) Finite support of divisors. Let X be a normal scheme, VX be a
virtual vector bundle over X and ρ be an element of M(ξX ,VX). Then
∂x(ρ) = 0 for all but finitely many x ∈ X(1).

Proof. We can assume without loss of generality that X is affine of finite type.
Then there exist a virtual vector bundle VAr

k
over Ar

k and a closed immersion
i : X → Ar

k for some r ≥ 0 which induces an inclusion

C∗(X, Ê,VX) ⊂ C∗(Ar
k, Ê,VAr

k
)

compatible with the differentials thanks to the previous theorem. We then
apply Theorem 3.3.2 to the smooth scheme Ar

k in order to see that the dif-
ferentials of C∗(Ar

k, Ê,VAr
k
) can be identified with the differentials defined by

the niveau spectral sequence. In particular, C∗(Ar
k, Ê,VAr

k
) is a well-defined

complex. Thus (FD) holds for Ar
k and X .

(C) Closedness. Let X be integral and local of dimension 2 and VX be a
virtual bundle over X . Then

0 =
∑

x∈X(1)

∂xx0
◦ ∂ξx :M(ξX ,VX) →M(x0,VX)

where ξ is the generic point and x0 the closed point of X .

Proof. According to (FD), the differentials d of C∗(X, Ê,VX) are well-defined.
We want to prove that d ◦ d = 0. Again, we can assume X to be affine of finite
type over k. Then there exist a virtual vector bundle VAr

k
over Ar

k and a closed
immersion i : X → Ar

k for some r ≥ 0 which induces an inclusion

C∗(X, Ê,VX) ⊂ C∗(Ar
k, Ê,VAr

k
)

compatible with the differentials. Hence (C) holds for Ar
k (and X) according

to Theorem 3.3.2.

Since our constructions are natural in the motivic spectrum E, we can conclude:

Theorem 3.3.3. Consider S = Spec k the spectrum of a perfect field. The map
E 7→ Ê defines a functor from the category SH(S) of motivic spectrum to the
category MMW

k of Milnor-Witt cycle modules over k.

4 An equivalence of categories

The purpose of this section is to prove the following theorem.

Theorem 4.0.1. Let k be a perfect field. The functor of Theorem 3.3.3 induces
an equivalence between the category of Milnor-Witt cycle modules and the heart
of Morel-Voevodsky stable homotopy category (equipped with the homotopy t-
structure):

MMW
k ≃ SH(k)

♥
.
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4.1 Associated homotopy module

We recall some facts about the heart of the stable homotopy category (see
[Mor03, §5.2] or [Dé11, §1]).

Definition 4.1.1. Let M be an abelian Nisnevich sheaf on Smk. We denote
by M−1(X) the kernel of the morphism M(X × Gm) → M(X) induced by
the unit section of Gm. We say that M is strictly homotopy invariant if the
Nisnevich cohomology sheaf H∗

Nis(−,M) is homotopy invariant.

Definition 4.1.2. A homotopy module is a pair (M∗, ω∗) where M∗ is a Z-
graded abelian Nisnevich sheaf on Smk which is strictly homotopy invariant
and ωn : Mn−1 → (Mn)−1 is an isomorphism (called desuspension map). A
morphism of homotopy modules is a homogeneous natural transformation of Z-
graded sheaves compatible with the given isomorphisms. We denote by HM(k)
the category of homotopy modules over k.

4.1.3. For any spectrum E, the spectrum π0(E) has a canonical structure of a
homotopy module. Moreover, the functor π0 : E 7→ π0(E) induces an equiv-
alence of categories between the heart of SH(k) for the homotopy t-structure
and the category HM(k) (see [Mor03]). We denote its inverse by

H : HM(k) → SH(k)♥.

We continue with two lemmas of independent interest.

Lemma 4.1.4. Let g : Y → X be a smooth morphism of schemes of finite
type over k of constant fiber dimension 1, let σ be a section of g, let VX be a
virtual vector bundle over X and let t ∈ OY be a global parameter defining the
subscheme σ(X).
Then σ∗ : C∗(X,M,VX) → C∗(Y,M,VY ) is zero on homology.

Proof. Consider the open subscheme j : U = Y \ σ(X) → Y and let g̃ = g ◦ j
the restriction of g. Let ∂ be the boundary map associated to σ. According to
[Fel20a, Lemma 5.5], we have σ∗ = σ∗ ◦ ∂ ◦ [t] ◦ g̃∗ = d ◦ j∗ ◦ [t] ◦ g̃∗.

With the same proof, we have a slightly more general result:

Lemma 4.1.5. Let g : Y → X, σ : X → Y and VX as previously. Let i : Z → X
be a closed immersion and consider Z̄ = g−1(Z) the pullback along g. The
induced map σ̄ : Z → Z̄ is such that the pushforward σ̄∗ : C∗(Z,M,VZ) →
C∗(Z̄,M,VZ̄) is zero on homology.

Remark 4.1.6. This result may be compared to [FS08, Corollary 3.5].

Fix M a Milnor-Witt cycle module over k. We associate to M a homotopy
module FM , that is a homotopy invariant Nisnevich sheaf of Z-graded abelian
groups equipped with desuspension isomorphisms. Indeed, let X be a smooth
scheme over S. For any integer n, we put
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FM
n (X) = A0(X,M,−ΩX/k +〈n〉).

This defines a presheaf FM = (FM
n )n∈Z of graded abelian groups satisfying the

homotopy invariance property (see [Fel20a, Theorem 8.3]).
Denote by s1 : X = {1} × X → GmX the induced closed immersion. We
have (FM

n )−1(X) = ker s∗1. By homotopy invariance, we have also FM
n (A1

X) ≃
FM
n (X) hence (FM

n )−1(X) = coker j∗ where j is the open immersion GmX →
A1

X .
As usual, we get the following long exact sequence:

0 // FM
n (X)

j∗
// FM

n (GmX)
∂ // FM

n−1(X)
i∗ // A1(A1

X ,M,−ΩA1
X/k +〈n〉).

Thus we see that ∂ induces a map (FM
n )−1(X) → FM

n−1(X) which is an isomor-
phism because i∗ is zero (according to Lemma 4.1.5).
We prove that FM is a Nisnevich sheaf. We start with the complex C∗(−,M, ∗)
and consider a Nisnevich square

UV
j

//

��

V

p

��

U
i // X

where i is open and p étale. Denote by Z = (X − U)red so that we have the
decomposition

C∗(X,M, ∗) = C∗(U,M, ∗)⊕ C∗(Z,M, ∗)

and

C∗(V,M, ∗) = C∗(UV ,M, ∗)⊕ C∗(ZV ,M, ∗).

By assumption the induced map p : ZV → Z is an isomorphism, hence the
canonical map p∗ : C∗(ZV ,M, ∗) → C∗(Z,M, ∗) is an isomorphism. Hence we
can see that the image of the Nisnevich square by C∗(−,M, ∗) is cocartesian.
This proves that C∗(−,M, ∗) is a Nisnevich sheaf and so is FM

∗ .
We have proved the following theorem.

Theorem 4.1.7. Let M be a Milnor-Witt cycle module over k. The graded
presheaf FM of abelian groups, defined by

FM
n (X) = A0(X,M,−ΩX/k +〈n〉)

for any smooth scheme X/S and any integer n, is a homotopy module.
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4.2 First isomorphism

In order to prove Theorem 4.0.1, we construct two natural transformations and
prove that they are isomorphisms. We start with the first isomorphism:
LetM be a Milnor-Witt cycle module. Since the category of homotopy modules
is equivalent to the heart of the stable homotopy category SH(S) (see 4.1.3),
Theorem 4.1.7 implies that there is an object M of SH(S)♥ equipped with
isomorphisms

αX : M−n(X, 〈n〉) → FM
n (X)

for any irreducible smooth scheme X of dimension d and any integer n (we
recall that FM

n (X) = A0(X,M,−ΩX/k +〈n〉)). The maps α are compatible
with the right-way maps (contravariance) and the desuspension functor (−)−1

in the sense that the following diagrams commute

M−n(X, 〈n〉)
f∗

//

αX

��

M−n(Y, 〈n〉)

αY

��

A0(X,M,−ΩX/k +〈n〉)
f∗

// A0(Y,M,−ΩY/k +〈n〉)

for any morphism f : Y → X of smooth schemes and

M−n(X, 〈n− 1〉)
ωn

//

αX

��

(M−n(X, 〈n〉))−1

(αY )−1

��

A0(X,M,−ΩX/k +〈n− 1〉)
ω′

n // (A0(X,M,−ΩX/k +〈n〉))−1

where ωn and ω′
n are the structural desuspension maps associated the two

homotopy modules for any integer n.
Fix E/k a field and n an integer. Using the previous isomorphism αX with
X = SpecA a smooth model of E and taking the limit over all such X , we
obtain an isomorphism of abelian groups

αE : M̂(E, 〈n〉) →M(E, 〈n〉).

According to 3.1.8, this also defines in a canonical way an isomorphism

αE : M̂(E,VE) →M(E,VE)

for any virtual vector bundles VE over E.
We want to prove that this defines a morphism of Milnor-Witt cycle modules.
It suffices to prove that αE is natural in the data D1, D2, D3 and D4 (see
[Fel20a, Definition 3.5]).
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(D1) For any morphism f : Y → X of smooth schemes, the maps α are
compatible with right-way (pullbacks) morphisms thus the following diagram
is commutative

M̂(E,VE)
resF/E

//

αE

��

M̂(F,VF )

αF

��

M(E,VE)
resF/E

// M(F,VF )

where F/E is a field extension and VE is a virtual vector bundle over E.

(D4) Let Z be a smooth scheme over S. Since the maps α commute with
the functor (−)−1, we have the following commutative diagram (see [Fel20a,
Proposition 3.9])

M−n(A1
Z , 〈n〉)

j∗
//

α

��

M−n(GmZ, 〈n〉)

α

��

∂ // M−n(Z, 〈n〉)

α

��

A0(A1
Z ,−ΩA1

Z/S +〈n〉)
j∗
// A0(GmZ,−ΩGmZ/S +〈n〉)

∂ // A0(Z,−ΩZ/S +〈n〉)

where j : GmZ → A1
Z is the open immersion complementary to the zero section

i : Z → A1
Z .

By deformation to the normal cone, we have the same commutative diagram
when j : GmZ → A

1
Z is replaced by an open immersion j : X − Z → X

associated with a regular immersion i : Z → X of codimension 1. In particular,
when X = SpecOv is the spectrum of a valuation ring and Z = Specκ(v), we
find that the maps α are compatible with the residue maps:

M(E,VE)
∂v

//

αE

��

M(κ(v),−Nv + Vκ(v))

ακ(v)

��

M̂(E,VE)
∂v

// M̂(κ(v),−Nv + Vκ(v))

is a commutative square.

(D2) Let E be a field. The homotopy invariance property (H) states that the
following sequence is split exact:

(H) 0 // M̂(E,A1
E +ΩE/k +VE)

resE(t)/E
// M̂(E(t),ΩE(u)/k +VE(u))

d //
⊕

x∈(A1
E)(1) M̂(κ(x),Ωκ(x)/k +Vκ(x)) // 0
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where d =
∑

x∈(A1
E)(1) ∂x and where VE is a virtual vector bundle over E (this

is true for any Milnor-Witt cycle module hence in particular for M̂).
We can use this property (H) and the data D1 to characterize the data D2. In-
deed, let F/E be a finite field extension. Assume F/E is monogenous, thus F =

E(x) where x corresponds to a point in (A1
F )

(1)
. For any β ∈M(F,ΩF/k +VF )

there exists γ ∈M(E(t),ΩE(t)/k + VE(t)) with the property that d(γ) = β.
Now the valuation at ∞ yields a morphism

∂∞ :M(E(t),ΩE(t)/k + VE(t)) →M(E,ΩE/k + VE)

which vanishes on the image of resE(t)/E . The element −∂(γ) does not depend
on the choice of γ and is in fact equal to coresF/E(β). Using this characteriza-
tion, we see that D2 commutes with the maps α since they commute with D4.

(D3) In order to prove that the maps α commute with the KMW -action on
the left, it suffices to do it for any generator [u] (where u is a unit) and the
Hopf map η.
Let E be a field over k and u be a unit of E. Denote by X the essentially
smooth scheme SpecE. The unit defines a map u : X → GmX which induces
a map

u∗ : M−n(GmX, 〈n〉) → M−n(X, 〈n〉)

for any integer n. Moreover, we consider the canonical maps

ωn : M−(n−1)(X, 〈−1 + n〉) → (M−n(X, 〈n〉))−1

and

νn : (M−n(X, 〈n〉))−1 ⊂ M
−n(GmX, 〈n〉).

Now consider the canonical morphism

η
∗ : M−n(X, 〈n〉) → M−n(GmX, 〈n〉)

induced by the Hopf map and the canonical projection

πn : M−n(GmX, 〈n〉) → (M−n(X, 〈n〉))−1.

One can check that the data D3 satisfies

γ[u] = u∗νnωn : M−(n−1)(X, 〈−1 + n〉) → Mn(X, 〈n〉).

and

γη = ωnπnη
∗ : Mn(X, 〈n〉) → M−(n−1)(X, 〈−1 + n〉)

We have the same description for the Milnor-Witt cycle module M . Since the
maps α commute with pullbacks and transition maps ωn, we see that they also
commute with the KMW -action.
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4.3 Second isomorphism

Let M ∈ SH(k)♥. Let X be a smooth scheme over k and let x be a generic
point of X . For any integer n, we have a canonical map M−n(X, 〈n〉) →

M−n(κ(x), 〈n〉) = M̂(κ(x), 〈n〉). Thus we have a map βX : M−n(X, 〈n〉) →

C0(X, M̂,−ΩX/k +〈n〉) which factors through A0(X, M̂,−ΩX/k +〈n〉). We
want to prove that the arrow

β : M → A0(−, M̂, ∗)

is an isomorphism of homotopy modules.
We prove that βX are natural in X (with respect to Gysin morphisms). If
p : Y → X is a smooth map of smooth schemes, it is clear by the definition
of pullbacks for Chow-Witt groups with coefficients in M (see [Fel20a, §4.5])
that p∗ commutes with b.
Now consider a regular closed immersion i : Z → X of smooth schemes. Recall
that (by [Fel20a, Definition 9.1]) the Gysin morphism i∗ (for Chow-Witt groups
with coefficients in M) makes the following diagram commutative

A0(X,M, 〈n〉)
q∗

// A0(GmX,M,−Lq + 〈n〉)
[t]

// A0(GmX,M, 〈n〉)

∂

��

A0(X,M, 〈n〉)
i∗ // A0(Z,M,−Li + 〈n〉)

π∗

≃
// A0(NZX,M, 〈n〉)

where q : GmX → X is the canonical projection and t is a parameter such that
A1

k = Spec k[t] and where Li = −NZX .
Similarly, the Gysin morphism i∗ (for the cohomology theory M) makes the
following diagram commutative

M−n(X, 〈n〉)
q∗

// M−n(GmX, 〈n〉)
[t]

// M−n−1(GmX, 〈n+ 1〉)

∂

��

M−n(X, 〈n〉)
i∗ // M−n(Z, 〈n〉)

π∗

≃
// M−n(NZX, 〈n〉)

where q, π and t are defined as previously (the proof is the same as [Dé08,
Proposition 2.6.5]). Putting things together, we see that the maps β commute
with i∗ hence with any pullbacks (of lci morphisms).
Moreover, we prove that β is compatible with the desuspension maps ωn :
Mn−1 ≃ (Mn)−1 defining the homotopy modules M and A0(−, M̂, ∗). Let X
be an irreducible smooth scheme, we have the following diagram:

0 // M−n(A1
X , 〈n〉)

j∗
//

β

��

(1)

M−n(GmX, 〈n〉)
∂M //

β

��

(2)

M−n+1(X, 〈n− 1〉) //

β

��

. . .

0 // A0(A1
X , M̂, ∗)

j∗
// A0(GmX, M̂, ∗)

∂ // A0(X, M̂, ∗ − 1) // . . . .
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We have already seen that the square (1) commutes. The map ∂ is defined in
3.1.7 using the data D4 of the cycle module M̂ which corresponds to the map
∂M. Hence the square (2) commutes. According to Definition 4.1.1, the desus-
pension map ωn : Mn−1 ≃ (Mn)−1 is induced by ∂M. Thus β is a morphism of
homotopy modules.
Finally, when X is the spectrum of a field, the map βX is an isomorphism and
so β is an isomorphism of homotopy modules.
Putting the second isomorphism β with the first isomorphism α of Subsec-
tion 4.2, we have proved Theorem 4.0.1.

5 Applications

5.1 Hermitian K-theory and Witt groups

We assume that the characteristic of k is different from 2.
In [Ati66], Atiyah studied the topological K-theory of Z/2-bundles on spaces
with involution, expanding what we knew about real topological K-theory.
The algebraic analogue is called Hermitian K-theory and was first introduced
by Karoubi (see e.g. [Kar80b, Kar80a]). A natural question was to translate
this notion into the work of Morel and Voevodsky.
In [Hor05], Hornbostel proved that hermitian K-theory is representable in the
stable homotopy category of Morel and Voevodsky. Precisely, there is a motivic
(8, 4)-periodic spectrum representing hermitian K-theory over the field k.
Moreover, the theory of quadratic forms was studied by Balmer. In particular,
he introduced a graded 4-periodic generalization W ∗

B of Witt groups (with the
classical Witt groups standing in degree 0, see [Bal00, Bal01] for more details).
Similarly, Hornbostel proved that there is a spectrum whose homotopy groups
coincide with the groups W ∗

B.
Thus, according to Theorem 4.0.1, we have the following theorem.

Theorem 5.1.1. There exist Milnor-Witt cycle modules KO and KW respec-
tively associated to Hermitian K-theory and Balmer Witt groups in a canonical
way.

5.2 Monoidal structure, adjunction and equivalences of cate-
gories

Recall that a Grothendieck category is an abelian category C with (infinite)
coproducts (hence, all colimits) such that filtered colimits of exact sequences
are exact and admitting a generator, that is, an object G ∈ C such that the
functor HomC(G,−) is faithful.
Thanks to Theorem 4.0.1, we can transpose known properties from the category
of homotopy modules to the category of Milnor-Witt cycle modules:

Theorem 5.2.1. The category MMW
k of Milnor-Witt cycle modules is a

Grothendieck category with products. Moreover, there is a canonical symmet-
ric closed monoidal structure on MMW

k such that the unit element is the cycle
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module KMW . In addition, the monoidal tensor product commutes with the
shifting functor defined in [Fel20a, Example 4.7].

Using the theory of framed correspondences, Ananyevskiy and Neshitov con-
structed Milnor-Witt transfers on homotopy modules, proving this way that
the hearts of the homotopy t-structures on the stable A1-derived category and
the category of Milnor-Witt motives are equivalent [AN19]. Assuming k to be
an infinite perfect field of characteristic not two, their proof relies on the work
of Garkusha and Panin [GP21, GP20]. Similarly, one could give another proof
of this fact:

Theorem 5.2.2. The category of Milnor-Witt cycle modules is equivalent to the
heart of the category of MW-motives (equipped with the homotopy t-structure):

MMW
k ≃ D̃M(k)♥.

In particular, the heart of Morel-Voevodsky stable homotopy category is equiv-
alent to the heart of the category of MW-motives [DF17] (both equipped with
their respective homotopy t-structures):

SH(k)♥ ≃ D̃M(k)♥.

Proof. Let M be a Milnor-Witt cycle module. It corresponds to a homotopy
module FM according to the previous section. Since we have an action of the
Milnor-Witt K-theory on FM , we can prove (as in [Fel20b, §3.2]) that FM has
in fact MW-transfers (see [Fel20b, §6.1] for the definition of homotopy modules
with MW-transfers). We can then proceed as in the proof of Theorem 4.0.1 to
prove the first equivalence of categories. The second equivalence follows from
Theorem 4.0.1.

In his thesis [Dé03], Déglise studied the category of homotopy modules with
transfers which is known to be equivalent to the heart of the category of Voevod-
sky’s motives DM(k,Z) (with respect to the homotopy t-structure). Déglise’s
main theorem was that this category can be described with Rost’s theory of
cycle modules. This fact could be rediscovered thanks to our previous results:

Theorem 5.2.3 (Déglise). Let k be a perfect field. The category of Rost cycle
modules over k is equivalent to the heart of the category of Voevodsky’s motives
DM(k,Z) with respect to the homotopy t-structure:

MM
k ≃ DM(k,Z)♥.

Proof. One can see that the category of Rost cycle modules is equivalent to
the full subcategory of MMW

k of Milnor-Witt cycle modules with trivial action
of the generator η. Thanks to Theorem 5.2.2, this subcategory is equivalent
to the full subcategory of D̃M(k)♥ of homotopy modules with transfers and
with trivial action of the Hopf map η. This last category is equivalent to
DM(k,Z)♥.
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Adjunction between MW-cycle modules and Rost cycle modules
Consider M a classical cycle module (à la Rost, see [Ros96, §1]). Recall that
we may define a Milnor-Witt cycle module Γ∗(M) as follows. Let (E,VE) be
in Fk and put

Γ∗(M)(E,VE) =M(E, rkVE).

We can check that this defines a fully faithful exact functor

Γ∗ : MM
k → MMW

k .

where MM
k (resp. MMW

k ) is the category of Rost cycle modules (resp. Milnor-
Witt cycle modules). This definition leads to the following theorem:

Theorem 5.2.4 (Adjunction Theorem). There is an adjunction between the
category of Milnor-Witt cycle modules and the category of classical cycle mod-
ules:

MMW
k ⇄ MM

k .

Proof. We gave an elementary proof of this result in [Fel20a, Section 12] with
an explicit description of the adjoint functors. For a second proof, combine
Theorem 4.0.1 and Theorem 5.2.3.

5.3 Birational invariance

Studying unramified cohomology groups with Z/2-coefficients, one can see that
an elliptic curve is not birational to the projective line. More generally, étale
cohomology and K-theory are a source of such birational invariants (see [Col92]
for more details).
Rost proved in [Ros96, Corollary 12.10] that, if X is a proper smooth variety
over k and M a cycle module, then the group A0(X,M) is a birational invariant
of X . A natural question is to extend this for Milnor-Witt modules, hoping
that the quadratic nature of our theory will lead to more refined (birational)
invariants and thus sharper theorems. Rost’s proof heavily depends on the
existence of pullback maps for flat morphisms. Unfortunately, such pullback
maps remain to be constructed in our setting. Nevertheless, a different method
yields the expected result:

Theorem 5.3.1. Let X be a proper smooth integral scheme over k, let Vk a
virtual vector bundle over k and let M be a Milnor-Witt cycle module. Then
the group A0(X,M,−ΩX/k +VX) is a birational invariant of X in the sense
that, if X 99K Y is a birational map, then there is an isomorphism of abelian
groups

A0(Y,M,−ΩY/k +VY ) → A0(X,M,−ΩX/k +VX).

In particular for M = KMW , we obtain the fact that the Milnor-Witt K-theory
groups K

MW
n are birational invariants.
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Proof. (see also [Voi19, Lemma 1.3]). Denote by FM (X) =
A0(X,M,−ΩX/k +VX). This defines a contravariant functor that satisfies:

1. If U ⊂ X is a Zariski open set, then the map FM (X) → FM (U) is
injective,

2. If U ⊂ X is a Zariski open set such that codimX(X \ U) ≥ 2, then the
map FM (X) → FM (U) is an isomorphism.

Indeed, these properties follow from the localization long exact sequence
[Fel20a, §6.4].
Now let Φ : X 99K Y be a birational map between smooth and proper integral
schemes over k. Then there is an open set U ⊂ X such that codimX(X \U) ≥ 2
and ΦU is an morphism. Then we have FM (X) ≃ FM (U) and, by functoriality,
a morphism Φ∗

U : FM (Y ) → FM (U), hence a morphism Φ∗ : FM (Y ) →
FM (X). Replacing Φ by Φ−1, we get Φ−1

V : FM (X) → FM (V ) for some Zariski
open set V of Y such that FM (Y ) ≃ FM (V ). Let U ′ ⊂ U be defined as Φ−1

V (V ).
Then Φ−1 ◦ Φ is the identity on U ′, hence (Φ−1)∗ ◦ Φ∗ : FM (X) → FM (X) is
the identity. Since FM (X) → FM (U ′) is injective, we can conclude that Φ∗ is
an isomorphism.

Recall that, by definition, a homotopy sheaf is a strictly A1-invariant Nisnevich
sheaf of abelian groups over the category of smooth k-schemes; we denote by
HI(k) the category of such sheaves. There is a canonical functor

σ∞ : HI(k) → MMW
k

thanks to Theorem 4.0.1. The previous theorem can be generalized as follows:

Theorem 5.3.2. Let X be a proper smooth integral scheme over k. Let F ∈
HI(k) be a homotopy sheaf, then F (X) is a birational invariant of X.

Proof. According to [Mor05, Cor. 6.4.6], we can prove that any homotopy sheaf
F satisfies:

1. If U ⊂ X is a Zariski open set, then the map F (X) → F (U) is injective,

2. If U ⊂ X is a Zariski open set such that codimX(X \ U) ≥ 2, then the
map F (X) → F (U) is an isomorphism.

Then we can conclude as in the proof of Theorem 5.3.1.

Remark 5.3.3. More generally, Colliot-Thélène proved that unramified
presheaves are birational invariants (see [Col92, Prop. 2.1.8(e)]).
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