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Abstract. We prove that there are infinitely many pairwise non-
commensurable hyperbolic n-manifolds that have the same ambient
group and trace ring, for any n ≥ 3. The manifolds can be chosen
compact, if n ≥ 4.
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Introduction

In the study of hyperbolic manifolds of dimension n ≥ 3, the nicest family is
(arguably) the family of arithmetic manifolds. At the core of their definition are
two objects of algebraic nature: a field K and an algebraic group G. In simple
terms, an arithmetic lattice is then essentially just G(OK), and an arithmetic
manifold the quotient of hyperbolic space by such a lattice.
In his 1971 article [13], Vinberg introduced similar objects for arbitrary Zariski-
dense subgroups (in particular, lattices) in semisimple Lie groups. He defined
the (adjoint) trace field (and ring) and the ambient group of such subgroups,
and proved that they are invariant under commensurability. These are the
main algebraic invariants used to study hyperbolic n-manifolds of arbitrary
dimension; for n ≥ 4 see for instance [4], and for n = 3 (and n = 2) essentially
equivalent invariants are thoroughly studied in [7]. It is also an important tool
when one is interested in proving nonarithmeticity and non-commensurability
(see [9, 10]).
In the arithmetic case, these invariants completely determine the commensura-
bility class [11, Prop. 2.5]. In fact, even more is true: if a manifold M1 has the
same ambient group and trace ring as an arithmetic manifold M2, then M1 is
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also arithmetic and commensurable with M2. It is hence tempting to hope that
it still holds in the general case, i.e., that the pair (ambient group, trace ring)
determines the commensurability class of an arbitrary hyperbolic manifold.
Alas, we prove that this does not hold in general: Theorems 2.1 and 3.1 below
establish the existence of infinitely many pairwise non-commensurable hyper-
bolic manifolds with the same ambient group and trace ring, in the non-compact
case for n ≥ 3 and in the compact case for n ≥ 4, respectively. Their proof is
based on the (now classical) construction of Agol-Belolipetsky-Thomson [1, 2]
of manifolds with short systole, and on the analysis of their trace ring carried
out by the author in [9]. Observe that the case n = 2 was already known (see
[7, Ex. 4.9.3]).
The article is structured as follows: in Section 1 we introduce the necessary
background, Section 2 is devoted to the non-compact case and Section 3 to the
compact case.
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1 Background

1.1

In this paper all manifolds are assumed to be hyperbolic, complete without
boundary and of finite volume. Equivalently, a manifold M is a quotient M =
Γ\H

n where H
n denotes hyperbolic n-space and Γ is a torsion-free lattice in the

Lie group G = Isom(Hn). We will use the so-called “f -hyperboloid” models for
hyperbolic space, defined as follows: For a real quadratic form f of signature
(n, 1), let

Hf = {x ∈ Rn+1 | f(x) = −1}/{±1},

with the Riemannian structure induced by setting TxHf = x⊥f , the
f -orthogonal complement of x. In this model, the isometry group Isom(Hf ) is
identified with POf (R), the real points of the algebraic group POf . Observe
that POf is defined over the subfield K ⊂ R whenever f is.

1.2

Following Vinberg [13], we define the (adjoint) trace field of a Zariski-dense
subgroup Γ ⊂ G as the field K = Q(tr Ad(γ) | γ ∈ Γ), where Ad denotes the
adjoint representation. If Γ is a lattice, K is a number field [14, Chap. 1, §6].
The (adjoint) trace ring of Γ is the ring A defined as the integral closure of
Z[tr Ad(γ) | γ ∈ Γ]. When K is a number field (in particular, when Γ is a
lattice), we simply have

A = OK [tr Ad(γ) | γ ∈ Γ],
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where OK denotes the ring of integers of K. Both the trace field and the
trace ring are invariant under commensurability [13, Th. 3] (recall that two
subgroups of a group are commensurable if they share a finite-index subgroup,
up to conjugation).
Finally the ambient group of Γ is any algebraic group G defined over K such
that G(R) ∼= G = Isom(Hn) and Γ ⊂ G(K) via this isomorphism. Such
a group always exists (take the Zariski-closure of the image of Γ under the
representation given by [13, Th. 1]). Furthermore, by Zariski-density of Γ it
is unique up to K-isomorphism, and up to commensurability we actually have
Γ ⊂ G(A).

1.3

With this machinery, it is easy to define arithmetic lattices. A lattice Γ ⊂ G =
Isom(Hn) is arithmetic if:

1. its trace field K is a totally real number field,

2. its trace ring is OK ,

3. its ambient group G is admissible, meaning that G(k ⊗QR) is isomorphic
(as a Lie group) to G × K with K compact.

Recall that here G(k ⊗QR) =
∏

σ
σ
G(R), where the product is over all embed-

dings σ : K →֒ R, and σ
G denotes the σ-conjugate group of G.

In this article, the only arithmetic lattices we will consider are those of the
simplest type, meaning that their ambient group G is isomorphic to POf for
some quadratic form f defined over the trace field K. For such a lattice Γ,
the arithmetic manifold M = Γ\Hf will be non-compact if and only if f is
isotropic (see [3, Th. 11.6]). For n ≥ 4 this forces that (and, for the simplest
type, is actually equivalent to) K = Q.

1.4

Let f be a signature (n, 1) quadratic form. A hyperplane of Hf is a codimension
one totally geodesic subspace. Equivalently, it is the image in Hf of the f -
orthogonal complement v⊥f of a vector v with f(v) > 0. Two hyperplanes

R1 = v
⊥f

1 and R2 = v
⊥f

2 are either incident if they meet in Hf , asymptotically
parallel if they meet at infinity, or ultraparallel otherwise. These correspond
to the cases when the square of the f -scalar product 〈v1, v2〉2

f is smaller than,
equal to, or greater than f(v1)f(v2) respectively, see [12, Th. 3.2.7]. In the
ultraparallel case, there is a unique shortest geodesic between R1 and R2 and
orthogonal to both. Its length is the (hyperbolic) distance d(R1, R2) between R1

and R2, and we have (see [12, Th. 3.2.8])

cosh d(R1, R2) =
|〈v1, v2〉f |

(f(v1)f(v2))1/2
.
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The image of a hyperplane R ⊂ Hf in a manifold M = Γ\Hf is a hypersurface
if the composite R →֒ Hf ։ Γ\Hf is a covering onto its image.

Finally, if M = Γ\Hf is a manifold, its systole is the length of the shortest
geodesic in M . It actually equals the minimal translation length of Γ, defined
as min{d(x, γx) | x ∈ Hf , γ ∈ Γ hyperbolic}. Note that if M is arithmetic of
trace field K, there is a constant ǫ depending only on K and the dimension n
such that the systole of M is at least ǫ (see Remark 5.7 and the remark after
Conjecture 10.4 in [5]).

1.5

The manifolds we will be interested in (we call them doubly-cut gluings) arise
from a specific gluing construction we now describe. They were introduced
by Belolipetsky and Thomson [2], generalizing ideas of Agol [1]. We merely
outline their construction here, and refer to [9] for a precise definition.

Let Γ ⊂ POf (OK) be an arithmetic lattice and let R1 = v
⊥f

1 and R2 = v
⊥f

2 be
hyperplanes that are not incident (in Hf). Assume that both vectors v1, v2 are
actually in Kn+1; we will say that R1 and R2 are rational or K-rational. Then
a doubly-cut gluing constructed from this data is a manifold obtained using the
following procedure:

1. Select a finite-index subgroup Γ1 ⊂ Γ such that the hyperplanes R1 and
R2 project down to disjoint hypersurfaces in M1 = Γ1\Hf .

2. Cut the manifold M1 open at the two hypersurfaces and form its com-
pletion M2; it is a manifold with boundary.

3. Form its double M3 by identifying the boundary components of two mir-
rored copies of M2.

The hyperplanes R1 and R2 are the cut hyperplanes. See [9, Sect. 1.2] for
a justification of the existence of the subgroup Γ1 as well as other technical
details.

If R1 and R2 are ultraparallel, the image in M3 of the geodesic segment orthog-
onal to R1 and R2, together with its “mirrored copy”, forms a closed geodesic
in M3 of length 2d(R1, R2). Thus with hyperplanes getting closer and closer
we get doubly-cut gluings with shorter and shorter systole.

2 The non-compact case

In this section we prove the following theorem.

Theorem 2.1. For every n ≥ 3, there exist infinitely many non-compact pair-
wise non-commensurable hyperbolic n-manifolds having the same ambient group
and trace ring.
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Proof. Fix n ≥ 3. The manifolds we will construct are doubly-cut gluings
with carefully chosen cut hyperplanes. Let f = −x2

0 + x2
1 + · · · + x2

n be the
standard signature (n, 1) quadratic form, and R0 ⊂ Hf the hyperplane defined
by R0 = v⊥f with v = (0, 1, 0, . . . , 0). For a rational hyperplane R = w⊥f ,
ultraparallel to R0, we let Mw denote a doubly cut gluing constructed using
the arithmetic manifold POf (Z) and the cut hyperplanes R0 and R.

The goal is to find a sequence (wk)k≥1 ⊂ Zn+1 such that the following holds:

1. The squared norm f(wk) = 〈wk, wk〉f is positive, the hyperplanes R0 and

Rk = w
⊥f

k are ultraparallel and

d(R0, Rk) −→ 0 as k → ∞.

2. The trace rings Ak of the manifolds Mwk
= Γwk

\Hf are all contained in
a finitely generated subring A of Q.

If we can find such a sequence, we can conclude using the following argument
due to Agol [1] and generalized by Belolipetsky and Thomson [2]. First, ob-
serve that as the distance between R0 and Rk tends to zero, the systole of the
manifolds Mwk

also tends to zero (see the explanations of the previous section),
and thus they are eventually all nonarithmetic.

Assume there are only finitely many commensurability classes among the Mwk
.

Up to passing to a subsequence, we can assume that all Mwk
are commensurable

and nonarithmetic. Hence the lattices Γwk
are all contained in the commensu-

rator Comm(Γw1
) of, say, Γw1

. Since Γw1
is nonarithmetic, its commensurator

is itself a lattice (see [8, Th. 1]), and thus has a positive minimal translation
length. This contradicts the fact that the minimal translation length of Γwk

tends to zero.
Now up to finding a subsequence, we can assume that the Mwk

are all pairwise
non-commensurable. Since there are only a finite number of subrings of A, we
can find a further subsequence such that all elements Mwk

have the same trace
ring, completing the proof.

We are left with finding such a sequence (wk)k≥1 ⊂ Zn+1. First recall that, as
explained above,

(cosh d(R0, Rk))
2

=
〈v, wk〉2

f

f(v)f(wk)
=

w2
k,1

f(wk)
.

Thus (a) is equivalent to

w2
k,1 > f(wk) > 0 and

w2
k,1

f(wk)
−→ 1. (1)

(The first two inequalities mean that the hyperplanes are ultraparallel and that

w
⊥f

k indeed defines a hyperplane.)
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Using Lemma 2.6 of [9], we get that the trace rings Ak of the Mwk
all satisfy:

Ak ⊂ Z

[

1

f(wk)

]

= Z

[

1

p1
, . . . ,

1

pr

]

,

where p1, . . . , pr are the prime factors of f(wk), and the equality follows from
elementary properties of subrings of Q. Hence (b) can be achieved by finding a
sequence wk such that all integers f(wk) are T -smooth for some fixed constant
T (an integer is T -smooth, or T -friable if all its prime factors are less than T ).
We are ready to construct our sequence (wk)k≥1. Let T > 1 be fixed and let
(rk)k≥1 be any infinite sequence of positive T -smooth integers. For each rk we
can find integers bk > 0 and 0 ≤ ck ≤ 2bk such that

rk = b2
k − 2ck − 1,

since all positive integers are contained in the union

⋃

b∈Z,b>0

{b2 − 2c − 1 | c ∈ Z, 0 ≤ c ≤ 2b}.

Defining
wk = (ck + 1 , bk , ck , 0, . . . , 0) ∈ Zn+1,

we see that

f(wk) = −(ck + 1)2 + b2
k + c2

k = b2
k − 2ck − 1 = rk

and hence all these square norms are T -smooth.
Moreover, it is obvious that for our choices of bk, ck, we have

b2
k > b2

k − 2ck − 1 > 0,

and since
b2

k

b2
k − 2ck − 1

=
b2

k

b2
k + o(b2

k)
−→ 1,

the proof is complete.

Remark 2.2. If we let rk = pk for some fixed prime p, we get that all our
manifolds have trace ring exactly Z[ 1

p ].

3 The compact case

This method can be adapted to work over number fields, thus producing com-
pact manifolds with same ambient group and trace rings:

Theorem 3.1. For every n ≥ 4, there exist infinitely many compact pairwise
non-commensurable hyperbolic n-manifolds having the same ambient group and
trace ring.
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Proof. Let K = Q(
√

5), and let f denote the following quadratic form in n+1 ≥
4 variables:

f = −
√

5 x2
0 + x2

1 + · · · + x2
n.

As in the proof of the previous theorem, we will construct a sequence of
doubly-cut gluings (Mwk

)k≥1, this time using the f -hyperboloid model Hf

for hyperbolic space. The cut hyperplanes for Mwk
will be R0 and Rk, where

R0 = {x1 = 0} = v⊥f ⊂ Hf , with v = (0, 1, 0, . . . , 0) and Rk = w
⊥f

k is to be
determined.
Let w = (α, β, γ1, γ2, γ3, 0, . . . , 0) ∈ On+1

K , where OK = Z

[

1+
√

5
2

]

is the ring

of integers of K. By Maass’ Theorem (see [6, Th. 14.3.2, p. 193]), any totally
positive element of OK can be realized as a sum of three squares in OK . Thus
for any totally positive ǫ ∈ OK , we can find values for γ1, γ2, γ3 such that

f(w) = −
√

5α2 + β2 + ǫ

We will take Rk = w⊥
k for some wk of the above form. As before, our goal is to

find wk such that the systole of Mwk
goes to zero while its trace ring remains

fixed.
Let ρ ∈ Z[

√
5] be such that σ(ρ)2 > ρ > σ(ρ) > 1, where σ is the non-

trivial automorphism of K. (For instance, one can take ρ = 6 +
√

5). Write
ρk = uk +

√
5 vk with uk, vk ∈ Z, and define

αk = ⌈x⌉ +
√

5 and βk =
⌊√

5y
⌋

+
√

5y where

x =

√

σ(ρk)√
5

, and y =

⌊
√

uk

10

⌋

.

A tedious but straightforward calculation shows that

−
√

5 α2
k + β2

k = ρk − ǫ

where ǫ ∈ Z[
√

5] is in O(βk) and totally positive for k large enough.
From the discussion above, it follows that there are γ1, γ2, γ3 ∈ OK such that
if wk = (αk, βk, γ1, γ2, γ3, 0, . . . , 0) we have

f(wk) = ρk − ǫ + ǫ = ρk.

We are ready to conclude the proof. As previously, the conditions that Rk is a
hyperplane not intersecting R0, and that the systole of Mwk

tends to zero can
be fulfilled by choosing wk satisfying equation (1) in the proof of Theorem 2.1.
We claim that this is the case for our wk, for k large enough.

To prove that
w2

k,1

f(wk) → 1, observe first that

√
5 vk

uk
=

ρk − σ(ρk)

ρk + σ(ρk)
=

1 − (σ(ρ)
ρ )k

1 + (σ(ρ)
ρ )k

−→ 1.
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From this we get that

f(wk)

w2
k,1

=
β2

k −
√

5 α2
k + O(βk)

β2
k

= 1 −
√

5 α2
k

β2
k

+ o(1) −→ 1,

since

α2
k

β2
k

=
1

2
√

5

uk −
√

5 vk + O(
√

uk)

uk + O(
√

uk)
=

1

2
√

5

(

1 −
√

5 vk

uk + o(uk)

)

−→ 0.

Thus
w2

k,1

f(wk) → 1.

It is clear that f(wk) = ρk > 0. To show that w2
k,1 > f(wk), observe first that

σ(ρ)2k

uk
≥ σ(ρ)2k

ρk
=

(

σ(ρ)2

ρ

)k

−→ ∞,

since σ(ρ)2 > ρ by hypothesis. It follows that

f(wk) − w2
k,1 = f(wk) − β2

k = −
√

5 α2
k + O(βk)

is negative for large enough k, since

α4
k

β2
k

=
1

10

σ(ρ2k) + O(u
3/2
k )

uk + O(u
1/2
k )

−→ +∞.

We have proven that equation (1) holds for wk, for k large enough. It now
follows from Lemma 1.1 in [9] that the trace ring Ak of Mk satisfies

Ak ⊂ OK

[

1

f(wk)

]

= OK

[

1

ρk

]

= OK

[

1

ρ

]

.

As there are only finitely many integrally closed subrings of OK [ 1
ρ ], we conclude

as in the proof of Theorem 2.1.

Remark 3.2. The same proof idea works over any quadratic number field.
However, there is no analogue of Maass’ Theorem here (in fact, Siegel showed
that Q and Q(

√
5) are the only totally real fields whose totally positive integers

are sums of squares of integers, see [6, Th. 14.3.3]).
To palliate this, one can consider instead quadratic forms of the shape

−
√

dx2
0 + x2

1 + (
⌈
√

d
⌉

−
√

d)(x2
2 + · · · + x2

5) + x2
6 + · · · + x2

n.

Here for n ≥ 9, the above error ǫ can be compensated by using the Four Squares
Theorem twice, once with variables x2, . . . , x5 and once with x6, . . . , x9. From
there, essentially the same method works to produce compact examples.
Also, it is to be noted that there is nothing special about the case n = 3 in
our context, and with more precise calculations one could probably include it
in the compact version.
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