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1 Introduction

Two common techniques to study the category of modules over a ring and its
derived counterpart are: decompose into simpler parts and replace by suitably
equivalent category. Concerning the former, the notion of a torsion pair is cen-
tral. Modelled on the concept of torsion for abelian groups, these are pairs
of subcategories that generate, by extensions, the whole category, while simul-
taneously being orthogonal under the Hom-pairing ([15]). This idea extends
beyond abelian categories to triangulated categories, giving rise in particular
to the important concepts of t-structures and recollements ([7]). Torsion pairs
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are closely linked to categorical localisations, another useful tool in representa-
tion theory. Concerning categorical equivalences, we have at our disposal the
theory of Morita, studying equivalences of module categories, and its derived
version, studying triangle equivalences between derived categories of modules
([40]). In recent years, derived Morita theory has been extended to include
equivalences between derived categories of Grothendieck categories ([39],[46]).
These include not only categories of modules over a ring but also, for example,
categories of quasi-coherent sheaves over a scheme.
In this paper we look at Grothendieck categories naturally occurring in the de-
rived category of a commutative noetherian ring as hearts of t-structures. We
approach the problem of classifying their localising subcategories (or, equiv-
alently, hereditary torsion classes) and the problem of determining whether
they are derived equivalent to the module category. In the noncommutative
setting, these questions are, in general, quite difficult even in the case of a
finite-dimensional algebra. In fact, a complete classification of localising sub-
categories is not even available for the module category of the Kronecker algebra
([27]). Understandably, the same classification problem in the derived category
is even more cumbersome. With regards to derived equivalences, there is often
a triangle functor linking the bounded derived category of a given heart and
that of the ring, and there are criteria to check whether such a functor is an
equivalence (see [7, 12]). In general, however, they are not easy to apply.
A remarkable feature of the representation theory of a commutative noetherian
ring R is that much of the structure of the module category or of its derived
counterpart is controlled by the Zariski spectrum of the ring. In fact, some of
the problems mentioned in the above paragraphs have been elegantly solved
in the module category and in the derived category. On one hand, Gabriel
classified localising subcategories of Mod(R) in terms of specialisation-closed
subsets of the spectrum, and Neeman classified localising subcategories of D(R)
in terms of arbitrary subsets of Spec(R). Even compactly generated t-structures
are completely classified in such derived categories ([1]). On the other hand, it
is well-known that if two commutative noetherian rings are derived equivalent,
then they are isomorphic (see, for example, [36, Proposition 5.3] for a stronger
statement). Our aim in this paper is to show that the prime spectrum also
controls localising subcategories of Grothendieck hearts in the derived category
of R and, moreover, that these hearts are often derived equivalent to Mod(R).
In fact, we prove the following.

Theorem. Let R be a commutative noetherian ring and let T be a nondegener-
ate compactly generated t-structure of D(R), with heart HT. Then the following
hold:

(1) (Proposition 4.1 and Theorem 4.5(1.a)) The hereditary torsion classes of
HT are completely determined by their support in Spec(R). If T is inter-
mediate (Definition 2.11), every specialisation-closed subset of Spec(R)
is the support of a hereditary torsion class in HT.

(2) If T is intermediate and restricts to Db(mod(R)), then
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(a) (Theorem 6.16) T induces a derived equivalence between HT and
Mod(R);

(b) (Theorem 4.5 and Corollary 6.18) There is a bijection between hered-
itary torsion pairs of finite type and specialisation-closed subsets of
Spec(R).

In particular, the above two assertions hold for the HRS-tilt of the stan-
dard t-structure at a hereditary torsion pair in Mod(R).

For some hearts, we are able to give a complete description of the supports
on hereditary torsion pairs (see Subsection 4.2). While the results obtained
about torsion pairs rely on the well-developed theory of support, the results
on derived equivalences instead rely on the study of HRS-tilts. Happel, Reiten
and Smalø developed in [19] a way to create a new t-structure from an old
one, provided we are given a torsion pair in the old heart. The properties
of this new t-structure depend on the properties of the given torsion pair, and
therefore one may say that studying HRS-tilts often can be reduced to studying
the associated torsion pairs. However, HRS-tilts turn out to be an elementary
operation that, when iterated, allows us obtain a large class of t-structures (see,
for example, [16, 32]). Moreover, HRS-tilts turn out to play an important role
in understanding Bridgeland’s stability condition manifold (see, for example,
[10], [11] and [38]). In [12], necessary and sufficient conditions for an HRS-tilt
to induce a derived equivalence were studied, and we review this theorem in
Section 5. We use this to prove the following result, that becomes a fundamental
tool in our application to commutative rings in the theorem above.

Theorem (Theorems 5.6 and 5.10 and Corollary 5.11). Let G be a Grothendieck
abelian category with generator G, and let t = (T,F) be a hereditary torsion
pair in G with torsion radical t : G → T. Then t induces an equivalence of
bounded derived categories if and only if G/trG/t(G)(G) lies in T. Moreover,
if G = Mod(R), then t induces an equivalence of bounded derived categories if
and only if R/Ann(Rt(R)) lies in T. As a consequence, if R is commutative
and noetherian, then every hereditary torsion pair induces a (bounded) derived
equivalence.

The results concerning derived equivalences between Grothendieck hearts and
Mod(R), for R commutative noetherian, have implications on the level of silting
theory. Namely, it allows us to show that any bounded cosilting complex in
D(R) whose associated t-structure restricts to Db(mod(R)) must in fact be
a cotilting complex (Corollary 6.17). In particular, every two-term cosilting
complex is, in this setting, necessarily cotilting (Corollary 5.12). These results
may easily lead to the expectation that every bounded cosilting is cotilting.
This is, however, not true, as shown in Example 6.19.

Structure of the paper. In Section 2 we recall some definitions and known
results about torsion pairs and t-structures. In Section 3 we turn to the def-
inition of support over a commutative noetherian ring and we collect some of
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the known classification results for various types of subcategories of Mod(R)
and D(R). In Section 4 we prove that hereditary torsion pairs in the heart of
a nondegenerate compactly generated t-structure of D(R) are determined by
their supports (Proposition 4.1). We investigate the sets arising as support
of hereditary torsion classes in such hearts. In Subsection 4.2 we are able to
describe these subsets of Spec(R) for some specific hearts. In Section 5 we
temporarily leave the commutative noetherian setting to address the question
of when a hereditary torsion pair in a Grothendieck category G gives rise to
a derived equivalent category via HRS-tilting. We then specialise the results
to module categories. In Section 6 we return to the commutative noetherian
case. We observe that the intermediate compactly generated t-structures of
D(R) can be obtained from the standard one via a finite chain of HRS-tilting
operations (Proposition 6.10), with respect to hereditary torsion pairs of finite
type at each step. Combining the results of Sections 4 and 5 we show that
if the intermediate compactly generated t-structure at the end of the chain
is restrictable, then across each HRS-tilting step of the chain there is a de-
rived equivalence (Theorem 6.16). This provides a class of t-structures in D(R)
whose heart is derived equivalent to Mod(R). In particular, we conclude that a
bounded cosilting objects whose associated t-structure is restrictable must be
cotilting (Corollary 6.17).

Notation and conventions. All subcategories considered in this paper are
strict and full. Given a class S of objects of a category X, we denote by Gen(S)
(respectively, Cogen(S)) the subcategory of X formed by the epimorphic images
of existing coproducts (respectively, subobjects of existing products) of objects
in S. If X is preadditive (e.g. abelian or triangulated) we write

S⊥ := {Z ∈ X : HomX(S,Z) = 0 ∀S ∈ S}
⊥S := {Z ∈ X : HomX(Z, S) = 0 ∀S ∈ S}

If X is abelian and I ⊆ N0 is a set of naturals, we write

S⊥I := {Z ∈ X : ExtkX(S,Z) = 0, ∀k ∈ I, ∀S ∈ S}.

If X is a triangulated category and J ⊆ Z, we write

S⊥J := {Z ∈ X : HomX(S,Z[k]) = 0 ∀k ∈ J, S ∈ S}
⊥JS := {Z ∈ X : HomX(Z, S[k]) = 0 ∀k ∈ J, S ∈ S}.

Often we replace the subsets I and J above by expressions of the form > 0,
≥ 0, ≤ 0, < 0, or simply a list of integers, with the obvious meaning. If X

is abelian (or triangulated) and Y and Z are subcategories of X, we denote by
Y∗Z the subcategory of X formed by the objects X for which there are Y in Y,
Z in Z and a short exact sequence (respectively, a triangle)

0 −→ Y −→ X −→ Z −→ 0
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(respectively, Y −→ X −→ Z −→ X [1]).

If R is a ring, all modules considered are right modules. The category of
R-modules is denoted by Mod(R), and its subcategory of finitely presented
modules by mod(R). We denote by D(R) the unbounded derived category of
Mod(R) and by D+(R) (respectively, Db(R)) the bounded below (respectively,
bounded) counterpart. The bounded derived category of finitely presented R-
modules is denoted by Db(mod(R)).

2 Preliminaries: torsion pairs and t-structures

Most statements in this section about abelian or triangulated categories hold
under more general assumptions than those presented. For simplicity, we re-
strict ourselves to the settings of Grothendieck abelian categories and derived
categories of module categories. The generality under which each result holds
can be extracted by the references provided. An abelian category G is said to
be Grothendieck if it admits arbitrary (set-indexed) coproducts, direct limits
are exact in G, and G has a generator. In a triangulated category with ar-
bitrary (set-indexed) coproducts, an object X in D is said to be compact if
HomD(X,−) commutes with coproducts, and D is said to be compactly gener-
ated if the subcategory of compact objects, denoted by Dc, is skeletally small
and (Dc)⊥ = 0. For a ring R, D(R) is compactly generated and D(R)c is the
subcategory of bounded complexes of finitely generated projective R-modules.

2.1 Torsion pairs

Torsion pairs are useful (orthogonal) decompositions of abelian categories.

Definition 2.1. A pair (T,F) of subcategories of an abelian category A is said
to be a torsion pair if

1. HomA(T, F ) = 0 for any T in T and any F in F.

2. A = T ∗ F.

If t := (T,F) is a torsion pair in A, T is called its torsion class and F its tor-
sionfree class. The pair t is said to be hereditary if T is closed under subobjects,
and cohereditary if F is closed under quotient objects. A subcategory V of A
is called a torsion torsionfree class (TTF class, for short) if there are torsion
pairs (U,V) and (V,W) in A, i.e. if V is both a torsion class and a torsionfree
class in A.

A subcategory X of a Grothendieck category A is a torsion class if and only
if it is closed under coproducts, quotient objects and extensions, and it is
a torsionfree class if and only if it is closed under products, subobjects and
extensions ([15]). Since the coproduct of a family of objects in A is a subobject
of the product of that same family, X is a TTF class if and only if it is a
cohereditary torsionfree class.
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Example 2.2. Given a Grothendieck abelian category G and a set of objects X
of G, it follows from the description above of torsion and torsionfree classes
that the pairs (TX,X

⊥) and (⊥X,FX) are torsion pairs. The first is said to be
generated by X while the second is said to be cogenerated by X.

Since a torsion class is closed under coproducts and quotients, it is always
closed for direct limits; this in general is not the case for torsionfree classes.

Definition 2.3. A torsion pair in a Grothendieck abelian category is said to
be of finite type if its torsionfree class is closed under direct limits.

An object X in a cocomplete abelian category A is said to be finitely pre-
sented if HomA(X,−) commutes with direct limits. The subcategory of finitely
presented objects of A will be denoted by fp(A). Recall from [14] that a
Grothendieck category G is locally finitely presented provided that the sub-
category fp(G) is skeletally small and every object of G can be expressed as the
direct limit of a system of finitely presented objects. Moreover, G is locally co-
herent if it is locally finitely presented and the subcategory fp(G) is an abelian
subcategory. For any ring R, Mod(R) is always locally finitely presented; the
ring is said to be coherent precisely when Mod(R) is locally coherent. In par-
ticular, the category of modules over a noetherian ring is locally coherent (in
the example of the noetherian ring, fp(Mod(R)) = mod(R) is the category of
finitely generated modules).

Definition 2.4. If G is locally coherent, a torsion pair t = (T,F) in G is said
to be restrictable if t∩ fp(G) := (T ∩ fp(G),F ∩ fp(G)) is a torsion pair in fp(G).

The following well-known result relates restrictable torsion pairs to those of
finite type.

Lemma 2.5. Let G be a locally coherent Grothendieck category, and t = (T,F)
a torsion pair in G.

1. If t is generated by a set of finitely presented objects S ⊆ fp(G), then t is
of finite type.

2. [24, Lemma 2.3] If t is a hereditary torsion pair of finite type, then T =
lim
−→

(T ∩ fp(G)).

3. [14, Lemma 4.4] If t is restrictable, then it is of finite type if and only if

t = lim
−→

(t ∩ fp(G)) := (lim
−→

(T ∩ fp(G)), lim
−→

(F ∩ fp(G))).

Proof. We comment on statement (3). If F = lim
−→

(F ∩ fp(G)), t is clearly of
finite type. For the converse, by [14, §4.4], since t ∩ fp(G) is a torsion pair in
fp(G), then lim

−→
(t ∩ fp(G)) is a torsion pair in G. Now, if t is of finite type, we

have both lim
−→

(T∩ fp(G)) ⊆ T and lim
−→

(F∩ fp(G)) ⊆ F; for the converse inclusion,
it suffices to consider the torsion decomposition sequences of objects of T and F

with respect to lim
−→

(t ∩ fp(G)).
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Remark 2.6. We will prove in Lemma 3.11 the converse of item (1) when G

is the heart of a compactly generated t-structure in the derived category of a
commutative noetherian ring.

Remark 2.7. For a right noetherian ring R, item (1) of Lemma 2.5 guarantees
that every hereditary torsion pair is of finite type. Indeed, recall that over any
ring a module is the sum of its finitely generated submodules: hence a heredi-
tary torsion pair is generated by the class of finitely generated torsion modules.
If R is right noetherian, these are automatically also finitely presented. Note,
furthermore, that any torsion pair over a right noetherian ring is restrictable.

The following lemma, which will be useful later on, states that a torsionfree
class in a Grothendieck category admits a generator, in the sense below.

Lemma 2.8. Let G be a Grothendieck category with generator G, and let t =
(T,F) be a torsion pair in G with torsion radical t : G → T. Then every object
in F is a quotient of a coproduct of copies of G/t(G), i.e. F ⊆ Gen(G/t(G)).

Proof. Let X be an object of F and let f : G(I) → X be an epimorphism. Since
both T and F are closed under coproducts, it is easy to see that t(G(I)) ≃ t(G)(I)

and that G(I)/t(G(I)) ≃ (G/t(G))(I). Hence, since HomG(t(G
(I)), X) = 0, the

morphism f factors through an epimorphism f : (G/t(G))(I) −→ X .

2.2 t-structures

The role of t-structures in triangulated categories, as first defined in [7], is
analogous to that of torsion pairs in abelian categories. Recall that, as set up
in the Introduction, given subcategories U and V in a triangulated category T,
U ∗ V stands for the subcategory given by extensions of U by V.

Definition 2.9. A pair of subcategories T := (U,V) in a triangulated category
D is a t-structure if

1. HomD(U,V) = 0;

2. U[1] ⊆ U;

3. U ∗ V = D.

In that case, we call U the aisle, V the coaisle and HT = V[1]∩U the heart of T.
The t-structure T is said to be nondegenerate if ∩n∈ZU[n] = 0 = ∩n∈ZV[n] and
bounded if ∪n∈ZU[n] = D = ∪n∈ZV[n].

It is well-known from [7] that the heart of a t-structure T in D is an abelian
category and that there is an associated cohomological functor H0

T
: D → HT

which restricts to the identity functor in HT.

Example 2.10. For a ring R, let H0 : D(R) −→ Mod(R) denote the standard
cohomology functor of the derived category of R. This functor arises from
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a t-structure, also called standard. This is the pair D = (D≤0,D≥1) where
each of the subcategories of D(R) in the pair are made of the complexes whose
non-zero cohomologies are concentrated in the degrees indicated in superscript.
Note that shifts of t-structures are also t-structures; we write D≤k = D≤0[−k]
and D≥k = D≥1[1 − k] for shifts of the standard aisle and coaisle. Note that
the standard t-structure in D(R) is nondegenerate but not bounded, while its
restriction to the subcategory of bounded complexes Db(R) is both nondegen-
erate and bounded.

In the derived category of a ring R we may consider a useful notion of directed
homotopy colimit : this is the derived functor of the direct limit functor. Since
direct limits are exact in any Grothendieck category (and, hence, in Mod(R)),
the directed homotopy colimit of a directed system of complexes of R-modules
is the object of D(R) obtained by applying the direct limit functor of Mod(R)
componentwise. We now recall some properties of t-structures.

Definition 2.11. For a ring R, a t-structure T = (U,V) in D(R) is said to be

• intermediate if there are integers a < b such that D≤a ⊆ U ⊆ D≤b;

• smashing if V is closed under coproducts;

• homotopically smashing if V is closed under directed homotopy colimits;

• compactly generated if there is a set of compact objects S in U such that
V = S⊥.

• cosilting if T = (⊥≤0C,⊥>0C) for some object C of D(R) (then called a
cosilting object);

• cotilting if it is cosilting and CI lies in ⊥ 6=0C for all sets I (in this case C
is said to be cotilting).

If R is coherent, we say that T is restrictable if the pair (U ∩Db(mod(R)),V ∩
Db(mod(R))) is a t-structure of the triangulated subcategory Db(mod(R)) of
D(R).

Compactly generated triangulated categories D are often studied through the
help of the category of additive functors (Dc)op → Mod(Z). This category,
usually denoted by Mod(Dc), is a locally coherent Grothendieck category and
the functor y sending an objectX of D to the functor yX := HomD(−, X)|Dc is
a cohomological functor. Properties of the Grothendieck category Mod(Dc) are
reflected on properties of D via y, and this allows us to distinguish objects of D
by the way they relate to the subcategory of compact objects (see [8] and [25]
for more details). An important class of objects of D is given by those X whose
corresponding functor yX is injective in the category Mod(Dc) – these objects
are called pure-injective. It turns out that, in many contexts, cosilting (and
cotilting) objects are automatically pure-injective (see [5, 45] and [30]). It is
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not known whether every cosilting object in a compactly generated triangulated
category is necessarily pure-injective.
The following theorems relate properties of the t-structures with properties of
their hearts. The first one is a particular case of [28, Theorem 4.6], adding to
a sequence of previous results in [3] and [43].

Theorem 2.12. The following are equivalent for a nondegenerate t-structure T

of D(R), for a ring R.

1. T is homotopically smashing;

2. T is smashing and its heart is a Grothendieck category;

3. T is cosilting, for a pure-injective cosilting object.

Moreover, a compactly generated t-structure has the above properties.

For intermediate t-structures with the properties of the theorem above, the
question of whether or not they are restrictable boils down to a property of the
heart, as follows.

Theorem 2.13. [31] Let R be a noetherian ring and let T be an intermediate
smashing t-structure in D(R) with a Grothendieck heart HT. Then T is re-
strictable if and only if HT is locally coherent and fp(HT) = HT ∩Db(mod(R)).

We conclude this subsection by recalling an important and much studied source
of t-structures, which will be central to our paper.

Theorem 2.14 ([19]). Let D be a triangulated category and T a t-structure in
D, with heart HT. Given a torsion pair t = (T,F) in HT, there is a t-structure

Tt := (T≤0
t
,T≥1

t
) in D defined as follows:

T
≤0
t

= {X ∈ D : H0
T(X) ∈ T, H0

T(X [k]) = 0, ∀k > 0}

T
≥1
t

= {X ∈ D : H0
T
(X) ∈ F, H0

T
(X [k]) = 0, ∀k < 0}.

This t-structure is called the HRS-tilt of T with respect to t. Its heart is

Ht := {X ∈ D : H0
T
(X [−1]) ∈ F, H0

T
(X) ∈ T, H0

T
(X [k]) = 0 ∀k 6= −1, 0}.

The pair (F[1],T) is a torsion pair in Ht.

Remark 2.15. In the theorem above, if Ht is a Grothendieck category and T

is a hereditary torsion class in HT, it can moreover be shown that T is in fact
a TTF class in Ht. Since Ht is Grothendieck and T is a torsionfree class, T
is closed under coproducts and it only remains to see that it is closed under
quotients. If X ∈ T and f : X → Z is an epimorphism in Ht, H−1

T
(Z) lies in

F (because Z lies Ht) and, simultaneously, H−1
T

(Z) is a subobject (in HT) of
Ker(f), which is an object of T. Thus, we have H−1

T
(Z) = 0 and Z lies in T.
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There are many results in the literature linking the properties of a torsion pair t
and those of the HRS-tilt and its associated heart. We recall the following.

Theorem 2.16. Let R be a ring and let T be a nondegenerate t-structure in
D(R) satisfying the equivalent conditions (1–3) of Theorem 2.12. Suppose that
t = (T,F) is a torsion pair in the heart HT of T, and let Tt be the associated
HRS-tilt, with heart Ht. Then:

1. [43, Proposition 6.1] Tt satisfies the equivalent conditions of Theo-
rem 2.12 if and only if t is of finite type in HT.

2. [43, Proposition 6.4] If Tt is compactly generated, then t is generated by
a set of finitely presented objects in HT.

3. If R is noetherian and T is intermediate and restrictable, then the follow-
ing are equivalent:

(a) t is of finite type and it is restrictable;

(b) Tt is restrictable and Ht is Grothendieck;

(c) Ht is a locally coherent Grothendieck category with fp(Ht) = Ht ∩
Db(mod(R))

Proof. We comment on item (3). This is a small generalisation of [41, Theo-
rem 5.2]. The arguments comparing between the restrictability of t and the
restrictability of T follow analogously to those in the proof of [41, Proposition
5.1]. The equivalence with item (c) follows from Theorem 2.13.

2.3 Derived equivalences

It is quite natural to ask whether the derived category of a heart H in a
triangulated category D is (triangle) equivalent to D. This issue was first
addressed in [7], where a functor between the bounded derived category of H
and D was built (provided that D is nice enough — which D(R) certainly is,
for any ring R). A similar construction for the unbounded derived category
is the subject of [46]; the second statement of the following theorem has been
translated from the language of derivators, and specialised to our setting.

Theorem 2.17. Let R be a ring and T an intermediate t-structure in D(R)
with heart HT.

1. [7, §3.1] The inclusion HT →֒ Db(R) extends to a triangle functor
realb

T
: Db(HT)→ Db(R), called a bounded realisation functor. This func-

tor induces isomorphisms

HomHT
(X,Y ) ≃ HomD(R)(X,Y ) and Ext1HT

(X,Y ) ≃ HomD(R)(X,Y [1])

for all X,Y of HT. Moreover, realb
T

is an equivalence if and only if for
every n > 1 we also have

ExtnHT
(X,Y ) ≃ HomD(R)(X,Y [n]).
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2. [46, Theorem B] If T is smashing and HT is Grothendieck (in other words,
if T is a cosilting t-structure), then the inclusion HT →֒ D(R) extends to a
triangle functor realT : D(HT)→ D(R), called an (unbounded) realisation
functor, which restricts to a bounded realisation functor realbT : D

b(HT)→
Db(R). Moreover, if realbT is a triangle equivalence, then so is realT.

Proof. In addition to the references provided, we would like to point out that
[46, Theorem B] applies to our context precisely because the fact that the
t-structure is intermediate guarantees that products in the heart have finite
homological dimension (see [46, Lemma 7.6]). Finally we comment on the fact
that a bounded equivalence induces an unbounded equivalence in the setting
described above. Indeed, by [39, Corollary 5.2], an intermediate cosilting t-
structure inducing a bounded derived equivalence is cotilting. The result then
follows by [46, Theorem 7.9].

Definition 2.18. We say that an intermediate t-structure T in D(R) with
heart HT induces a (bounded) derived equivalence if realT (respectively, realb

T
)

is an equivalence. In that case we say that HT and Mod(R) are (bounded)
derived equivalent.

3 Preliminaries: commutative noetherian rings

In this section, R denotes a commutative noetherian ring. The set of prime
ideals of R, partially ordered by inclusion, will be denoted by Spec(R). For an
ideal I ≤ R, we write

∨(I) := {p ∈ Spec(R) : I ⊆ p} and ∧(I) := {p ∈ Spec(R) : p ⊆ I}

The set Spec(R) has a natural topology, whose closed subsets are the ∨(I)
for all ideals I ≤ R. This is called the Zariski topology on Spec(R). This
topological space turns out to encode significant information concerning the
representation theory of R.

Definition 3.1. A subset P of Spec(R) is said to be specialisation-closed if for
any p in P we have that ∨(p) is contained in P. Dually, the subset P is called
generalisation-closed if for any p in P we have that ∧(p) is contained in P.

Note that the complement of a specialisation-closed subset is generalisation-
closed and vice-versa. We will denote the complement of a subset P ⊆ Spec(R)
by Pc. From their definition, specialisation-closed subsets are (possibly in-
finite) unions of Zariski-closed subsets, and thus, generalisation-closed sub-
sets are (possibly infinite) intersections of Zariski-open subsets. For a family
P ⊆ SpecR, its specialisation closure is the smallest specialisation-closed set
containing P, namely ∨(P) :=

⋃

p∈P
∨(p).
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3.1 Supports

Given a prime ideal p of R, let Rp denote the localisation of R at the comple-
ment of p and k(p) = Rp/pRp the residue field of R at p. Consider the two left
derived functors

−p := −⊗R Rp : D(R) −→ D(R) and −⊗Lk(p) : D(R) −→ D(R),

Since Rp is a flat R-module, for a complex X , Xp := X ⊗R Rp is the com-
ponentwise localisation of X as an object of D(R). In particular, we have
Hi(Xp) ≃ Hi(X)p for all i in Z.

Definition 3.2. Let R be a commutative noetherian ring. Given a complex
X in D(R), we define the following subsets of Spec(R):

• supp(X) := {p ∈ Spec(R) : X ⊗L

R k(p) 6= 0}, the (small) support of X ;

• Supp(X) := {p ∈ Spec(R) : Xp 6= 0}, the big support of X .

The (big) support of a subcategory X of D(R) is the union of the (big) supports
of the objects in X. Since localisation at p commutes with standard cohomology,
as noticed above, Supp(X) = Supp(

∐

Hi(X)). This set is therefore also called
the homological support of X .

Recall that there is a bijection between Spec(R) and the set of isoclasses of
indecomposable injective R-modules (Matlis’ Theorem). This assignment is
given by sending a prime ideal p to the injective envelope of R/p — which we
denote by E(R/p). Moreover, since R is noetherian, every injective R-module is
a coproduct of copies of such indecomposable injectives. The following lemma
gathers some well-known statements about support that we will use later.

Lemma 3.3. Let p be a prime ideal of a commutative noetherian ring R.

1. (a) supp(k(p)) = {p} = supp(E(R/p));

(b) supp(R/p) = ∨(p);

(c) supp(Rp) = ∧(p);

2. For any X in D(R), Supp(X) is specialisation closed;

3. [17, pag. 158] For any X in D(R), supp(X) ⊆ Supp(X);

4. [17, Proposition 2.8/Remark 2.9][13, Proposition 2.1/Remark 2.2] For
any bounded below X in D+(R), supp(X) coincides with the set of prime
ideals p for which the module E(R/p) is a summand of a module appearing
in the minimal K-injective resolution of X;

5. For any bounded below X in D+(R), we have ∨(supp(X)) = Supp(X).
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Proof. We prove items (2) and (5) for the sake of completeness (see [6,
Lemma 2.2] for the analogous statements for modules). For (2), note that the
claim follows from [6, Lemma 2.1], taking into account that the big support of
a complex coincides with the union of the big supports of its cohomologies.
For (5), notice that by (2) and (3) we already have that∨(supp(X)) ⊆ Supp(X).
For the converse inclusion, let X → E(X) denote a minimal K-injective resolu-
tion of X in D(R) and let q be a prime ideal of R. Then q is not in ∨(suppX)
if and only if q is not in ∨(p) for any p in supp(X), i.e. if and only if, by [6,
Lemma 2.2], q is not in ∨(p) = Supp(E(R/p)) for any p in supp(X). Hence,
by item (4), if q does not lie in ∨(suppX) then E(X)q = 0 (or, equivalently,
Xq = 0) in D(R).

For a subset P ⊆ Spec(R), we write supp−1(P) (respectively, Supp−1(P)) for
the subcategory of D(R) whose objects have small (respectively, big) support
contained in P. By item (3) above, Supp−1(P) is contained in supp−1(P).
If P is specialisation-closed, then item (5) of the lemma above guarantees that
a bounded below complex belongs to supp−1(P) if and only if it belongs to
Supp−1(P), i.e.

P = ∨(P) =⇒ supp−1(P) ∩ D+(R) = Supp−1(P) ∩ D+(R) (3.1)

3.2 Localising subcategories

Hereditary torsion classes of Mod(R) are also called localising subcategories.
There is a well-known bijection (holding, in fact, for any ring) between local-
ising subcategories of Mod(R) and Giraud subcategories of Mod(R), i.e. sub-
categories whose inclusion functor admits an exact left adjoint ([44]). This
bijection associates a localising subcategory T of Mod(R) to the Giraud sub-
category T⊥0,1 , whose objects (we recall) are those R-modules X such that for
any T in T

HomR(T,X) = 0 = Ext1R(T,X).

Localising subcategories of Mod(R) are completely characterised by their sup-
port as follows.

Theorem 3.4. Let R be a commutative noetherian ring. Then the following
statements hold.

1. [18] The assignment of support yields a bijection between localising sub-
categories of Mod(R) and specialisation-closed subsets of Spec(R).

2. For a localising subcategory T of Mod(R) we have

(a) a prime p lies in supp(T) if and only if k(p) lies in T;

(b) for any p in Spec(R), then k(p) lies in either T or in T⊥0,1 ;

(c) T⊥ = {M ∈ Mod(R) : Ass(M) ∩ supp(T) = ∅}

= Cogen(supp−1(supp(T)c) ∩Mod(R)).
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3. [2, Lemma 4.2] A torsion pair in Mod(R) is hereditary if and only if it
is of finite type.

Proof. These are well-known statements; we comment on those for which we
could not find a direct reference, for sake of readability. The assertion (2.a)
follows from (1) and Lemma 3.3. For (2.b), one needs to check that if p does
not lie in supp(T), then HomR(T, k(p)) = Ext1R(T, k(p)) = 0 for all T in T.
By Lemma 3.3, every injective module in the minimal injective resolution of
k(p) is a coproduct of copies of E(R/p). The statement now follows from the
fact that T has only maps to injective modules of the form E(R/q), with q in
supp(T). Finally, (2.c) follows from the fact that, since T is localising, T⊥ is
closed under injective envelopes and, thus, the torsion pair is cogenerated by
a set of injectives. Clearly, these are the ones not supported in supp(T), as
wanted.

In the derived category, we can also parametrise certain subcategories in terms
of their supports.

Definition 3.5. Let D be a triangulated category admitting arbitrary (set-
indexed) coproducts. A subcategory L of D is said to be localising if L is a
triangulated subcategory closed under coproducts. A localising subcategory L

is furthermore said to be smashing if L⊥ is closed under coproducts.

Theorem 3.6. [33] Let R be a commutative noetherian ring. Then, the fol-
lowing statements hold.

1. The assignment of support yields a bijection between localising subcate-
gories of D(R) and the power set of Spec(R). Moreover, this bijection
restricts to a bijection between smashing subcategories of D(R) and the
set of specialisation-closed subsets of Spec(R).

2. For a localising subcategory L of D(R) we have that:

(a) a prime p lies in supp(L) if and only if k(p) lies in L;

(b) for any p in Spec(R), then k(p) lies either in L or in L⊥;

(c) L is the smallest localising subcategory containing

{k(p) : p ∈ supp(L)};

(d) (L,L⊥) is a t-structure.

Notice the parallel, albeit with some subtle differences, between the abelian and
the derived classification results. The following result summarises the relation
between the two theorems above.

Proposition 3.7. Let R be a commutative noetherian ring, V a specialisation-
closed subset of Spec(R) and L = supp−1(V ) the associated smashing subcate-
gory of D(R). Then the localising subcategory T of Mod(R) associated to V is
L ∩Mod(R) and, moreover, T⊥≥0 = L⊥ ∩Mod(R).
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Remark 3.8. Note that for a hereditary torsion class in Mod(R), it can be
shown that T⊥≥0 = T⊥0,1 if and only if T is a perfect torsion class, i.e. if and
only if the associated Gabriel topology is perfect. In §4.2 we will prove this
fact and make use of it to obtain a complete classification of hereditary torsion
pairs in the HRS-tilt of Mod(R) with respect to a perfect torsion pair.

3.3 t-structures

There is a wealth of knowledge about some classes of t-structures in the derived
category of a commutative noetherian ring. Once again subsets of the spectrum
play a crucial role in the characterisation of (compactly generated) t-structures.

Definition 3.9. Let R be a commutative noetherian ring. A function ϕ from Z

to the power set of Spec(R) is said to be an sp-filtration of Spec(R) if ϕ is a
decreasing function between posets (i.e. if for all integers n, ϕ(n) ⊇ ϕ(n+ 1))
and ϕ(n) is specialisation-closed, for all n.

The following theorem concerns the classification and properties of compactly
generated t-structures over commutative noetherian rings.

Theorem 3.10. [1, Theorem 4.10] [22, Theorem 1.1] Let R be a commutative
noetherian ring. The following are equivalent for a nondegenerate t-structure
T = (U,V) in D(R).

1. T is compactly generated;

2. T is smashing with Grothendieck heart (and the equivalent conditions of
Theorem 2.12);

3. There is an sp-filtration of Spec(R) for which

U = {X ∈ D(R) : Supp(H0(X [n])) ⊆ ϕ(n), ∀n ∈ Z}

V = {X ∈ D(R) : RΓϕ(n)(X) ∈ D≥n+1, ∀n ∈ Z},

where ΓV denotes the (left exact) torsion radical of the hereditary torsion
pair (Supp−1(V ),FV ) of Mod(R), for a specialisation-closed set V (see
Theorem 3.4(1)).

It is easy to see that a t-structure as in the theorem above is nondegenerate
if and only if the associated sp-filtration ϕ satisfies ∪n∈Zϕ(n) = Spec(R) and
∩n∈Zϕ(n) = ∅. Moreover, such a t-structure is intermediate if and only if there
are integers a < b such that ϕ(a) = Spec(R) and ϕ(b) = ∅. In this case ϕ will
therefore be called intermediate.
Combining the results above, we observe the following useful statement.

Corollary 3.11. Let R be a commutative notherian ring, and HT be the heart
of a nondegenerate compactly generated t-structure T in D(R). Then, a torsion
pair t = (T,F) in HT is of finite type if and only if it is generated by a set of
finitely presented objects of HT.
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Proof. By Lemma 2.5(1), we only need to prove one implication. If t is of finite
type in HT, Theorem 2.16(1) shows that the HRS-tilt of T with respect to t is
a smashing t-structure with a Grothendieck heart and, thus, by Theorem 3.10
it is compactly generated. The result then follows from 2.16(2).

Remark 3.12. Note that in the above corollary, HT is not necessarily locally
coherent — although, as shown in [42], it is locally finitely presented.

4 Hereditary torsion pairs in Grothendieck hearts

In this section we discuss hereditary torsion pairs in a given Grothendieck heart
in the derived category of a commutative noetherian ring. Throughout, once
again R will denote a commutative noetherian ring.

4.1 A characterisation by support

We begin by showing that hereditary torsion classes in the heart of a smashing
nondegenerate t-structure of D(R) are completely determined by their support
in Spec(R).

Proposition 4.1. Let R be a commutative noetherian ring and let T = (U,V)
be a nondegenerate t-structure in D(R) with heart HT and cohomological functor
H0

T
: D(R)→ HT. If t = (T,F) is a hereditary torsion pair in HT, then:

1. for each p in Spec(R), there is an integer np for which k(p)[np] lies in
HT;

2. supp(HT) = Spec(R);

3. if T is, in addition, smashing, then

(a) Lt := {X ∈ D(R) : H0
T
(X [i]) ∈ T for every i ∈ Z} is a localising

subcategory of D(R);

(b) supp(Lt) = supp(T) = {p ∈ Spec(R) : k(p)[np] ∈ T}

(c) Lt is the smallest localising subcategory containing T;

(d) L⊥
t
∩HT ⊆ T⊥0,1 ;

(e) for each p in Spec(R), k(p)[np] lies in T or k(p)[np] lies in the Giraud
subcategory T⊥0,1 ;

(f) supp−1(supp(T)) ∩ HT = T, i.e. T is completely determined by its
support.

Proof. (1) It is shown in [22, Lemma 2.7] that the following two subsets form
a partition of Z:

A(p) := {a ∈ Z : k(p) ∈ U[a]} and B(p) := {b ∈ Z : k(p) ∈ V[b]}.
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Since T is nondegenerate, this is a nontrivial partition. Moreover, since U

(respectively, V) is closed under positive (respectively, negative) shifts, if m ≤
n ∈ A(p) then m ∈ A(p) (respectively, if m ≥ n ∈ B(p) then m ∈ B(p)).
Hence, A(p) has a maximum, say α, and B(p) has a minimum, say β. Since
these sets form a partition of Z, we conclude that β = α + 1 and, thus, k(p)
lies in U[α] ∩ V[α + 1] = HT[α]. In other words, we have that k(p)[−α] lies in
HT, so it suffices to take np = −α.
(2) Since supp(k(p)[n]) = {p} for any integer n, it follows from (1) that
supp(HT) = Spec(R).
(3.a) Since T is closed under subobjects, extensions and quotient objects, it
is easy to see that Lt is a triangulated subcategory. Furthermore, since T is
smashing, H0

T
commutes with coproducts and, thus, the fact that T is closed

under coproducts allows us to conclude that Lt is a localising subcategory.
(3.b) Let us denote by P the subset of Spec(R) consisting of the prime ideals p
for which k(p)[np] lies in T. We prove our statement by showing that

supp(Lt) ⊆ P ⊆ supp(T) ⊆ supp(Lt).

Let p be a prime ideal of R. If p lies in supp(Lt) then k(p) lies in Lt (see
Theorem 3.6) and, thus, k(p)[np] lies in T, i.e. p lies in P. If p lies in P, since
supp(k(p)[np]) = {p}, then p lies in supp(T). Finally, if p lies in supp(T), since
T is contained in Lt, it follows that p lies in supp(Lt).
(3.c) Since T is contained in Lt, the smallest localising subcategory containing T

must be contained in Lt. Conversely, if L is an arbitrary localising subcategory
containing T, then supp(L) must contain supp(T) = supp(Lt) and, thus, L must
contain Lt.
(3.d) Given X in L⊥

t
∩ HT and T in T (and, thus, in Lt), we have that

HomD(R)(T,X) = 0 and Ext1HT
(T,X) ≃ HomD(R)(T [−1], X) = 0 since T [−1]

lies also in Lt. Thus, X lies in T⊥0,1 .
(3.e) Let p be an arbitrary prime ideal of R and consider the object k(p)[np] of
HT. By Theorem 3.6, this object either lies in Lt ∩HT = T or in L⊥

t
∩HT ⊆

T⊥0,1 .
(3.f) From (3.c) and Theorem 3.6, it follows that that supp−1(supp(T))) = Lt.
By definition of Lt, we have Lt ∩HT = T, thus proving our claim.

Note that, in particular, it follows that the hereditary torsion classes of the
heart of a nondegenerate smashing t-structure form a set. Item (3.f) of the
previous proposition motivates the following definition.

Definition 4.2. Let R be a commutative noetherian ring and T a nondegener-
ate smashing t-structure in D(R), with heart HT. A set U ⊆ Spec(R) is called a
HT-support if it is the support of a hereditary torsion class in HT. This torsion
class will then be supp−1(U) ∩HT.

As a side corollary of the proposition above, we deduce a relation between the
support of a complex and that of its cohomologies with respect to a smashing
t-structure.
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Corollary 4.3. Let R be a commutative noetherian ring, and let T be a
nondegenerate smashing t-structure in D(R), with heart HT and cohomology
functor H0

T
. Let U ⊆ Spec(R) be a HT-support: then, for every object X of

D(R), we have

supp(X) ⊆ U if and only if supp(H0
T
(X [n])) ⊆ U ∀n ∈ Z

Proof. This is direct consequence of items (3.a) and (3.b) of Theorem 4.1.

Remark 4.4. Note that this corollary recovers and extends the known relation
(see [6, Corollary 5.3])

∨(supp(X)) = ∨(supp(
⊕

n∈Z
H0(X [n])))

by taking T = D the standard t-structure, and using that both sides of the
equation are Mod(R)-supports (i.e. specialisation-closed subsets).

The following theorem provides some examples of HT-supports, for some par-
ticular kinds of hearts.

Theorem 4.5. Let R be a commutative noetherian ring and let T = (U,V) be
an intermediate compactly generated t-structure in D(R) with heart HT. The
following statements hold.

1. If V is specialisation closed, then

(a) TV := supp−1(V ) ∩HT is a hereditary torsion class in HT;

(b) if, additionally, T induces a derived equivalence, then tV = (TV ,T
⊥
V )

is a torsion pair of finite type and T⊥
V = Cogen(supp−1(V c) ∩HT).

2. If T is restrictable, then for any hereditary torsion pair of finite type
t = (T,F) in HT we have that supp(T) is specialisation closed.

Proof. (1.a) We first show that TV := supp−1(V ) ∩HT is a hereditary torsion
class in HT, whenever V is a specialisation closed subset of Spec(R). First
note that, since T is intermediate, HT is contained in Db(R), and since V
is specialisation closed, it follows from Lemma 3.3 that supp−1(V ) ∩ HT =
Supp−1(V )∩HT. Since T is compactly generated, it is homotopically smashing
and, thus, both U and V are closed under directed homotopy colimits. From
[22, Lemma 2.11] it follows that both U and V are closed under −⊗R Rp and,
therefore, −⊗RRp is exact in HT, for any p in Spec(R). This shows that given
a short exact sequence in HT of the form

0 X Y Z 0

we have that Y ⊗R Rp = 0 if and only if X ⊗R Rp = 0 = Z ⊗R Rp. In
other words, we have that Supp(Y ) = Supp(X) ∪ Supp(Z) and, thus Supp(Y )
is contained in V if and only if both Supp(X) and Supp(Z) are contained in V .
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This shows that TV is closed under extensions, subobjects and quotient objects.
Since it is also clearly closed under coproducts, TV is a hereditary torsion class.
(1.b) Suppose now that T induces a derived equivalence. In this case we know
that there is an isomorphism ExtkHT

(X,Y ) ≃ HomD(R)(X,Y [k]) for any X
and Y in HT and k ≥ 0. In particular, for a subcategory S of HT, there is no
ambiguity when calculating the orthogonal S⊥J : this Ext-orthogonal subcate-
gory in HT coincides with the intersection with HT of the orthogonal computed
in D(R).
We first show that T

⊥≥0

V = supp−1(V c) ∩HT. It follows from [33] that LV :=
supp−1(V ) is a smashing subcategory of D(R) and, thus, BV := L⊥

V is also local-
ising with supp(BV ) = V c. Since, from Proposition 4.1, LV is the smallest lo-
calising subcategory containing TV and since T induces a derived equivalence, it
follows that BV ∩HT = T

⊥≥0

V . Finally, note that since TV is hereditary, we have
that (TV ,T⊥

V ) = (⊥EV ,Cogen(EV )) for an injective object EV in H, and EV lies
in T⊥≥0 . It then follows that T⊥

V = Cogen(BV ∩HT) = Cogen(supp−1(V c)∩HT).
We now show that this torsion pair t = (TV ,T

⊥
V ) is of finite type. Recall

that since LV is smashing, it is well-known (see [25, Theorem 4.2] and [29,
Proposition 6.3]) that BV is a definable subcategory and, thus, closed under
directed homotopy colimits [28, Theorem 3.11]. By [43, Corollary 5.8], since T

is homotopically smashing, every direct limit in HT is a directed homotopy
colimit in D(R). Hence, BV ∩HT = T⊥≥0 is closed under direct limits in HT.
Since direct limits are exact in HT and T⊥

V = Cogen(T⊥≥0 ∩HT), we get that
T⊥
V is closed under direct limits.

(2) By Theorem 2.13, since T is restrictable, HT is locally coherent and
fp(HT) = HT ∩D

b(mod(R)). Since t is a hereditary torsion pair of finite type,
it follows from Lemma 2.5(2) that T = lim

−→
(T ∩ fp(HT)). Let L be the smallest

localising subcategory of D(R) containing T∩fp(HT). Clearly, L is contained in
the smallest localising subcategory containing T, which we denote by Lt. Since
L is the aisle of a t-structure (namely (L,L⊥)), L is closed under directed homo-
topy colimits. As above, since T is homotopically smashing, directed limits in
HT are directed homotopy colimits in D(R) and, thus, T is contained in L, show-
ing that L = Lt. Therefore, we have that supp(T) = supp(Lt) = supp(L). Now,
by assumption, the t-structure (L,L⊥) is generated by all shifts of T ∩ fp(HT)
which, by assumption is made of complexes in Db(mod(R)). Now by [1, The-
orem 3.10] this means that L is compactly generated and, therefore, smash-
ing. This shows, by Theorem 3.6, that supp(T) = supp(L) is specialisation
closed.

Notice that the theorem above provides an immediate generalisation of Theo-
rem 3.4, which we will further simplify in Corollary 6.18.

Corollary 4.6. Let R be a commutative noetherian ring and let T be a re-
strictable and intermediate compactly generated t-structure in D(R) such that
T induces a derived equivalence. Then there is a bijection between hereditary
torsion pairs of finite type in HT and specialisation closed subsets of Spec(R).
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In fact, we can be more precise about the support of a hereditary torsion pair
of finite type for nondegenerate compactly generated t-structures.

Proposition 4.7. Let R be a commutative noetherian ring and let T = (U,V)
be a nondegenerate compactly generated t-structure in D(R) with heart HT and
associated sp-filtration ϕ.

1. For each p in Spec(R), let ϕmax(p) denote the largest integer n for which
p belongs to ϕ(n). Then we have np = −ϕmax(p) and, in particular, if p
is contained in a prime q, then np ≥ nq.

2. If t = (T,F) is a hereditary torsion pair of finite type in HT, then there
is an sp-filtration ψ such that ϕ(j + 1) ⊆ ψ(j) ⊆ ϕ(j) for all j in Z and

supp(T) =
⋃

j∈Z

[ψ(j) \ ϕ(j + 1)] .

Proof. (1) Given the cohomological description of U (see Theorem 3.10), we
know that the stalk complex k(p)[−ϕmax(p)] lies in U but k(p)[−(ϕmax(p)+1)]
does not. By [22, Lemma 2.7], this means that k(p)[−ϕmax(p) − 1] lies in V

and, therefore, k(p)[−ϕmax(p)] lies in V[1] ∩ U = HT, as wanted. Since an
sp-filtration is a decreasing sequence of specialisation-closed subsets, we have
that if p is contained in a prime q, then ϕmax(p) ≤ ϕmax(q) and, thus, np ≥ nq.
(2) Let t = (T,F) be a hereditary torsion pair of finite type in HT. The t-
structure obtained by HRS-tilting T with respect to t is compactly generated,
since t is of finite type (see Theorems 2.16 and 3.10). Thus, it is determined
by an sp-filtration ψ satisfying ϕ(j + 1) ⊆ ψ(j) ⊆ ϕ(j). Let Uψ be the aisle
of the t-structure associated to ψ. Clearly, we have that T = Uψ ∩ HT. We
need to check which shifted residue fields belong to T (following Proposition
4.1(3.b)). For any p in Spec(R), by (1) k(p)[−j] lies in HT if and only if p lies
in ϕ(j)\ϕ(j+1). Now, k(p)[−j] lies in T if and only if k(p)[−j] lies in HT∩Uψ ,
i.e. p lies in ψ(j) \ ϕ(j + 1). Thus supp(T) coincides with the union of all such
sets ψ(j) \ ϕ(j + 1).

4.2 A complete classification of hereditary torsion pairs in a spe-

cial case

The previous section shows that when trying to classify the hereditary torsion
pairs in the heart HT of a nondegenerate compactly generated t-structure, one
may equivalently describe the corresponding HT-supports. For example, by
Theorem 4.5 we know that specialisation-closed sets are often HT-supports.
While the problem of classifying all HT-supports remains, in general, open, we
are able to provide a complete classification for some hearts. These occur as
HRS-tilts of Mod(R) at a perfect torsion pair.
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Remark 4.8. Notice that the HRS-tilt of Mod(R) at a hereditary torsion
pair, corresponding to a specialisation-closed subset V ⊆ Spec(R), is al-
ways compactly generated. Indeed, its aisle corresponds to the sp-filtration
· · · = Spec(R) ⊇ V ⊇ ∅ = · · · , with V in degree 0.

Definition 4.9. A hereditary torsion pair t = (T,F) in a module category is
said to be perfect if the associated Giraud subcategory T⊥0,1 admits a right
adjoint to the inclusion functor.

Note that, by definition, the inclusion functor of a Giraud subcategory ad-
mits a left adjoint. Therefore, the adjective perfect applied to a hereditary
torsion pair guarantees that the associated Giraud subcategory is, in fact, a
(extension-closed) bireflective subcategory of Mod(R). We learned the follow-
ing useful property of perfect torsion pairs from a private communication with
Lidia Angeleri Hügel and Ryo Takahashi. We include a proof for sake of com-
pletion.

Lemma 4.10. Let R be a ring and let t = (T,F) be a perfect torsion pair in
Mod(R). Then T⊥0,1 = T⊥≥0 .

Proof. Since t is hereditary, F = T⊥ is closed under injective envelopes, so
T⊥0,1 is as well. Recall that a Giraud subcategory of Mod(R) is always an
abelian subcategory ([44, Proposition 1.3]). Since t is perfect, the inclusion
functor T⊥0,1 →֒ Mod(R) has a right adjoint: therefore, cokernels taken in
T⊥0,1 coincide with those in Mod(R). This shows that T⊥0,1 is closed under
cokernels in Mod(R). It follows that T⊥0,1 is closed under cosygyzies, and one
concludes by dimension shifting.

The following lemma gives examples of hearts H with H-supports that are not
specialisation-closed.

Lemma 4.11. Let R be a ring and let t = (T,F) be a perfect torsion pair in
Mod(R). Denote the corresponding Giraud subcategory by C := T⊥0,1 . Let Ht

be the heart of the HRS-tilt at t. The following statements hold:

1. There is a TTF triple (F[1],T,C[1]) in Ht;

2. C[1] itself is a hereditary torsion class in Ht;

3. If R is commutative noetherian, then supp(C[1]) = V c. Hence, V c is a
(generalisation-closed) Ht-support.

Proof. (1) The fact that T is TTF class in Ht follows from Remark 2.15.
We only need to verify that the corresponding torsionfree class in Ht, de-
noted by F′, coincides with C[1]. Since HomHt

(T,C[1]) = HomD(R)(T,C[1]) ≃

Ext1R(T,C) = 0, for all T in T and C in C, we have C[1] ⊆ F′. For the converse,
let X be an object in F′, and consider the triangle

FX [1] X TX FX [2]w
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which corresponds to the short exact sequence in Ht given by the torsion pair
(F[1],T). Since F′ is closed under subobjects in Ht, for every T in T we have
0 = HomHt

(T, FX [1]) = HomD(R)(T, FX [1]) ≃ Ext1R(T, FX). This shows that
in fact FX lies in C. Since the torsion pair t is perfect, C = T⊥≥0 and, therefore,
0 = Ext2R(TX , FX) ≃ HomD(R)(TX , FX [2]). Since w lies in the latter Hom-space,
we conclude that w = 0 and that the triangle above splits; hence TX = 0 and
X = FX [1] lies in C[1].
(2) Since C[1] is a torsionfree class in Ht, it suffices to show that C[1] is closed
under cokernels of monomorphisms in Ht. Consider then C and C′ in C and a
triangle

C[1] −→ C′[1] −→ X −→ C[2]

with X in Ht. Applying the functor HomD(R)(T,−) for every T in T, since
HomD(R)(T,C

′[1]) ≃ Ext1R(T,C
′) = 0 and HomD(R)(T,C[2]) ≃ Ext2R(T,C) = 0

(given that t is a perfect torsion pair), we have that HomD(R)(T,X) = 0. This
shows that X indeed lies in F′ = C[1].
(3) If R is commutative noetherian, since supp(C[1]) = supp(C), it suffices to
observe that supp(C) = V c (because E(R/p) lies in C for all p not in V ). The
last assertion then follows from part (2).

In fact, using this generalisation-closed Ht-support one can construct many
more which are not specialisation-closed. Recall that torsion pairs can be or-
dered by inclusion of torsion classes. Under this partial order, they form a
lattice, where the meet is given by intersecting torsion classes and the join is
given by intersecting torsionfree classes. The following lemma recalls that this
structure restricts to hereditary torsion classes, and shows that it translates
well via the assignment of support.

Lemma 4.12. Let R be a commutative noetherian ring and let H be the heart
of a nondegenerate compactly generated t-structure in D(R). Let t1 = (T1,F1),
t2 = (T2,F2) be hereditary torsion pairs in H with supp(T1) = V1, supp(T2) =
V2. Then:

1. t3 := t1 ∧ t2 := (T3 := T1 ∩ T2,F3) is a hereditary torsion pair in H with
supp(T3) = V1 ∩ V2;

2. t4 := t1 ∨ t2 := (T4,F4 := F1 ∩F2) is a hereditary torsion pair in H with
supp(T4) = V1 ∪ V2.

In particular, intersections and unions of H-supports are again H-supports.

Proof. (1) If T1,T2 are closed under subobjects, then clearly T3 is as well, so
t3 is hereditary. The claim on the support follows from the second equality of
item (3.b) of Proposition 4.1.
(2) Recall that H is a Grothendieck category. Since both F1 and F2 are closed
under injective envelopes, then so is F4: thus, t4 is hereditary. Now using items
(3.b) and (3.e) of Proposition 4.1 one proves the claim about support.
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We are now able to classify supports in the heart Ht of an HRS-tilt at a perfect
torsion pair.

Proposition 4.13. Let R be a commutative noetherian ring, t = (T,F) a
perfect torsion pair in Mod(R) with supp(T) = V , and Ht the associated heart
by HRS-tilt. Then the Ht-supports are all the sets of the form (W ∩V )∪ (W ′∩
V c), for W,W ′ ⊆ Spec(R) specialisation closed.

Proof. We have already noted that Ht is the heart of an intermediate compactly
generated t-structure, so it follows from Theorem 4.5(1.a) that specialisation-
closed subsets are Ht-supports. Since both V and V c are Ht-supports (see
Lemma 4.11), it follows from Lemma 4.12 that the subsets presented in the
statement are indeed Ht-supports. To prove the converse, let U be a Ht-
support and let t′ = (T′,F′) be the hereditary torsion pair in Ht with
supp(T′) = U . We first show that

1. If U ⊆ V , then U is specialisation-closed;

2. If U ⊆ V c, then U = ∨(U) ∩ V c.

(1) If U ⊆ V , then we have that T′ ⊆ T ⊆ Mod(R). We show that T′ is a
hereditary torsion class in Mod(R) as well, and so U is specialisation-closed.
Clearly T′ is closed under extensions and coproducts in D(R), and thus it is so
in Mod(R) as well. Let now

(∗) : 0 X Y Z 0

be a short exact sequence in Mod(R), with Y in T′ ⊆ T. Since T is a hereditary
torsion class in Mod(R), both X and Z belong to T ⊆ Ht, so that (∗) is a short
exact sequence in Ht as well. Now since T′ is a hereditary torsion class in Ht

we conclude that X and Z belong to T′, as wanted.
(2) The non-trivial inclusion is U ⊇ ∨(U) ∩ V c. Let C denote the Giraud
subcategory associated to t, i.e. C = T⊥0,1 . Given p in U ⊆ V c and q in V c

such that p ⊆ q, we will show that q lies in U as well. Translating this in
terms of objects of Ht, consider the stalk complexes E(R/p)[1] and E(R/q)[1]
in C[1] ⊆ Ht. By assumption we have E(R/p)[1] lies in T′, and we want to
prove that E(R/q)[1] lies in T′ as well. Denote by (∗∗) the torsion sequence of
E(R/q)[1] with respect to t′. Since, by Lemma 4.11, C[1] is a hereditary torsion
class in Ht, we deduce that (∗∗) has all its terms in C[1]. Therefore, applying
a shift to it, we obtain the exact sequence of modules (in solid arrows) with T
in T′[−1] and F in F′[−1].

(∗∗)[−1] : 0 T E(R/q) F 0

E(T )
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In Mod(R), consider then the injective envelope E(T ) of T : by injectivity,
we get the two dotted vertical arrows in the diagram above. Moreover, since
the morphism T → E(T ) is left minimal, we conclude that E(T ) is a direct
summand of the indecomposable module E(R/q). Now, we use our hypothesis
that p ⊆ q to notice that there is a nonzero morphism E(R/p)[1]→ E(R/q)[1].
Since the source of this morphism is in T′, the target cannot be in F′, and
therefore T 6= 0. Then, we must have an isomorphism 0 6= E(T ) ≃ E(R/q),
which means that

{q} = supp(E(R/q)) = supp(E(T )) ⊆ supp(T ) = supp(T [1]) ⊆ U.

Returning to the general case of an arbitrary Ht-support U , note that by
Lemma 4.12 and Lemma 4.11, both U ∩ V and U ∩ V c are Ht-supports. Set
W := U ∩ V and W ′ := ∨(U ∩ V c): the first is specialisation-closed by item
(1) above, while the second is specialisation-closed by definition. Now by item
(2) above it follows that U = (U ∩ V ) ∪ (U ∩ V c) = (W ∩ V ) ∪ (W ′ ∩ V c).

Remark 4.14. Item (3) of Theorem 3.4 states that in Mod(R) hereditary tor-
sion pairs coincide with those of finite type. We will see in the next section (see
Corollary 5.10) that the hearts Ht considered in this subsection are all derived
equivalent to Mod(R). Then by Corollary 4.6 (since every torsion pair t in
Mod(R) is restrictable and, thus, so is the t-structure Tt, by Theorem 2.16),
we conclude that in Ht hereditary torsion pairs of finite type correspond bijec-
tively to specialisation closed subsets of Spec(R). Proposition 4.13 then shows
that if t is perfect then, in general, not every hereditary torsion pair is of finite
type (since not all Ht-supports are specialisation-closed).

We conclude this subsection with an illustrating example.

Example 4.15. Let R be a commutative noetherian ring of Krull dimension 1.
In this case, every hereditary torsion pair is perfect (see [26, Corollary 4.3] and
[4, Corollary 4.10]). Let V denote the set of maximal ideals ofR. It is, of course,
a specialisation-closed subset of Spec(R); denote by t = (T,F) the associated
hereditary torsion pair in Mod(R). Let Ht := F[1]∗T be the heart of the HRS-
tilt of the standard t-structure with respect to t. Following Proposition 4.13,
the Ht-supports are the sets of primes of the form (W ∩ V ) ∪ (W ′ ∩ V c), for
specialisation-closed subsets W and W ′ of Spec(R). However, it is quite easy to
see that, since R has Krull dimension 1, any subset of Spec(R) is of this form.
Interestingly, this means that in this case hereditary torsion pairs in Ht are
in bijection with localising subcategories of D(R) (not only the smashing ones,
as it happens with hereditary torsion pairs in Mod(R)). Concretely, following
items (3.a) and (3.b) of Theorem 4.1, the bijection is

{hereditary torsion pairs in Ht}
1:1
←→ {localising subcategories of D(R)}

(T,F) 7−→ {X ∈ D(R) : H0
t
(X [i]) ∈ T ∀i ∈ Z}

Ht ∩ L ←− [ L
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where H0
t
: D(R)→ Ht is the cohomology functor. In particular, all localising

subcategories of D(R) admit a cohomological description with respect to Ht.
We will later prove that Ht is derived equivalent to Mod(R) (as a consequence
of Corollary 5.11). This means that we get different insights on the triangulated
structure of this derived category, depending on the abelian category that we
start with.

5 Torsion pairs inducing derived equivalences

For this section we leave the commutative noetherian setting to explore the fol-
lowing general notion for an abelian category A that admits a derived category
D(A).

Definition 5.1. We say that a torsion pair t = (T,F) in A induces a (bounded)
derived equivalence if the associated HRS-tilt in D(A) induces a (bounded)
derived equivalence (as in Definition 2.18).

In order to understand when a torsion pair induces (bounded) derived equiva-
lence, we will make use of a criterion by [12] (see §5.2). Before doing that, we
will recall some homological tools.

5.1 Zero Yoneda extensions

Fix two objects X and Y in an abelian category A. Recall that the elements of
the Yoneda group ExtnA(X,Y ) (i.e. Yoneda n-extensions) are exact sequences
of the form

ε : 0→ Y → Z1 → · · · → Zn → X → 0,

which we call n-sequences, up to the equivalence relation generated by pairs of
exact sequences (ε, ε′) such that there is a morphism

ε : 0 Y Z1 · · · Zn X 0

ε′ : 0 Y Z ′
1 · · · Z ′

n X 0

making the diagram commute. This is called a morphism of n-sequences. In
other words, two n-sequences are equivalent if and only if there exists a zigzag
of morphisms of n-sequences linking them. In particular, if n = 1, two 1-
sequences are equivalent if and only if they are isomorphic. For n > 1, on the
other hand, n-sequences are clearly in bijection with complexes

Z := 0→ Z1 → · · · → Zn → 0

with Zn in degree zero and which have H−n+1(Z) = Y , H0(Z) = X , and
are acyclic in all other degrees. It is then easy to observe that a morphism
of n-sequences translates to a quasi-isomorphism of the associated complexes,
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and viceversa. Since isomorphisms in the derived category D(A) are zigzags of
quasi-isomorphisms of complexes, it follows that two n-sequences are equivalent
(and therefore, they represent the same Yoneda n-extension) if and only if the
associated complexes are isomorphic in D(A).

Lemma 5.2. Let X and Y be objects of an abelian category A. Let n > 1 and
consider an exact sequence

ε : 0→ Y → Z1 → Z2 → · · · → Zn → X → 0.

Let Z be the associated complex as above. Then ε represents the zero element
in ExtnA(X,Y ) if and only if the truncation triangle in D(A)

τ≤−1Z −→ Z −→ τ≥0Z −→ (τ≤−1Z)[1]

where τ≤−1 and τ≥0 are the truncation functors for the standard t-structure in
D(A), is a split triangle.

Proof. The zero element of ExtnA(X,Y ) is the equivalence class of the n-
sequence

0 −→ Y
1Y−→ Y −→ 0 −→ · · · −→ 0 −→ X

1X−→ X −→ 0

and its associated complex is, clearly, the direct sum X ⊕ Y [n − 1]. By the
considerations above, ε represents the zero Yoneda n-extension if and only if
the associated complex Z is isomorphic to X ⊕ Y [n − 1]. This occurs if and
only if, for any degree −n+ 1 ≤ i < 0, the truncation triangle

τ≤iZ Z τ≥i+1Z (τ≤iZ)[1]

Y [n− 1] X Y [n]

≃ ≃

w

≃

splits or, equivalently, if and only if w vanishes. As a confirmation, note that
w is the morphism corresponding to the equivalence class of ε under the iso-
morphism ExtnA(X,Y ) ≃ HomD(A)(X,Y [n]).

5.2 CHZ-sequences

We recall the main result of [12], using the point of view expressed above.

Proposition 5.3 ([12, Theorem A]). Let A be an abelian category admitting a
derived category D(A), and let t = (T,F) be a torsion pair in A. The following
are equivalent:

1. t induces a bounded derived equivalence;
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2. Every object M of A admits an exact sequence of the form

εM : 0→ F 0
M → F 1

M →M → T 0
M → T 1

M → 0,

with T 0
M , T

1
M in T and F 0

M , F
1
M in F, which represents the zero element

of Ext3A(T
1
M , F

0
M );

3. For every object M of A, there is a complex ZM := F 1
M →M → T 0

M with
T 0
M ∈ T in degree zero and F 1

M ∈ F, such that the truncation triangle

∆M : τ≤−1ZM −→ ZM −→ τ≥0ZM −→ (τ≤−1ZM )[1]

splits, i.e. that ZM ≃ τ≤−1ZM ⊕ τ≥0ZM .

Sequences as in (2) and complexes as in (3) will be called CHZ-sequences and
CHZ-complexes.

Proof. The proof that (1) is equivalent to (2) is essentially the cited result of
[12]. The proof that (2) and (3) are equivalent is an immediate consequence of
Lemma 5.2 and of the fact that F is closed under subobjects and T is closed
under quotient objects.

Note that, in some cases, we can avoid checking the vanishing of the Yoneda
class of a candidate CHZ-sequence. For example, if the abelian category A has
global dimension less or equal than two, the Yoneda bifunctor Ext3A(−,−) is
identically zero, and thus the Yoneda-vanishing condition is automatic. Similar
phenomena happen for certain torsion pairs. For example, a complete analysis
for cohereditary torsion pairs in Grothendieck categories can be deduced from
[12, Corollary 4.1]. We will later focus on the class of hereditary torsion pairs.
Firstly, however, let us observe that the criterion given by the proposition above
can be simplified for Grothendieck abelian categories.

Proposition 5.4. Let G be a Grothendieck abelian category with a generator
G and let t = (T,F) be a torsion pair in G. Then t induces a bounded derived
equivalence if and only if there is an exact sequence

0 F 0
G F 1

G G T 0
G T 1

G 0a b c d

with T 0
G, T

1
G in T and F 0

G, F
1
G in F, which represents the zero element of

Ext3R(T
1
G, F

0
G).

Proof. As in Proposition 5.3, we translate the existence of such a sequence to
the existence of a complex

ZG := F 1
G G T 0

G
b c

with T 0
G in degree zero for which the truncation triangle (∆G) splits. First

observe that since coproducts of split triangles are again split and since both T
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and F are closed under coproducts, the existence of a CHZ-complex is also
guaranteed for any coproduct M = G(I), for any set I. In order to show that
such complexes exist for any M in the category G, we may, therefore, suppose,
without loss of generality, that M is a quotient of G itself (otherwise, we could
replace G by G(I) for a suitable set I).
Let then f : G→M be an epimorphism. Denote by f : Coker(b)→ Coker(fb)
the epimorphism induced by f . We define the following complex concentrated
in degrees −2,−1 and 0,

ZM := F 1
G M T 0

G/K
fb c

where K = Ker(f) and c is the composition of the projection M → Coker(fb)
and the inclusion of Coker(fb) = Coker(b)/K into T 0

G/K. Note that, by con-
struction, Ker(c) = Im(fb) and, thus, we have H−1(ZM ) = 0. Moreover, note
that Ker(fb) is a subobject of F 1

G and that

Coker(c) = (T 0
G/K)/(Coker(b)/K) ≃ T 0

G/Coker(b) ≃ T
1
G. (∗)

This shows that H−2(ZM ) is torsionfree and H0(ZM ) is torsion. Finally, con-
sider the map of complexes

ZG : F 1
G G T 0

G

ZM : F 1
G M T 0

G/K

ϕ

b c

f π

fb c

where π is the canonical projection. If we now consider the truncation triangles
of ZG and ZM , as in Proposition 5.3, we get a morphism of triangles in D(G)
as follows:

F 0
G[2] ZG T 1

G F 0
G[3]

Ker(fb)[2] ZM T 1
G Ker(fb)[3]

τ≤−2ϕ=H−2(ϕ)[2]

a d

ϕ τ≥−1ϕ=H0(ϕ)

a d

Finally, since d is a split epimorphism and H0(ϕ) is an isomorphism (as seen
in (∗)), we conclude that also d is a split epimorphism, finishing our proof.

5.3 Hereditary torsion pairs inducing bounded derived equiva-

lences

We now focus on hereditary torsion pairs. The following lemma provides a
simplification of the criterion given in Proposition 5.3 for such torsion pairs.
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Lemma 5.5. Let t = (T,F) be a hereditary torsion pair in an abelian category
A. If t is hereditary, then a CHZ-sequence for an object M of A exists if and
only if there exists a sequence of the form

FM −→M −→ TM −→ 0,

with TM in T and FM in F. Such sequences will be called short CHZ-sequences.

Proof. If t is hereditary, any CHZ-sequence

0 −→ F 0
M −→ F 1

M −→M
b
−→ T 0

M −→ T 1
M −→ 0,

with T 0
M , T

1
M in T and F 0

M , F
1
M in F, gives rise to a short CHZ-sequence

F 1
M −→M −→ Im(b) −→ 0,

where Im(b) ≤ T 0
M lies in T because T is closed under subobjects. Conversely,

since F is closed under subobjects, a short CHZ-sequence can be completed
with a torsion-free kernel on the left. Note that the class of the obtained
exact sequence as a 3-extension is zero because such a sequence is naturally a
2-extension; therefore, it is a CHZ-sequence.

Given two objects X and M in a Grothendieck abelian category G, define the
trace of M in X to be

trM (X) :=
∑

f∈HomA(M,X)

Im(f).

Notice that the trace ofM inX is the biggest subobject ofX which is generated
by M , in the sense that it is a quotient of a coproduct of copies of M .

Theorem 5.6. Let G be a Grothendieck abelian category with generator G, and
let t = (T,F) be a hereditary torsion pair in G with torsion radical t : G → T.
Then t induces a bounded derived equivalence if and only if G/trG/t(G)(G) lies
in T.

Proof. If G/trG/t(G)(G) lies in T, let I = HomG(G/t(G), G) and
f : (G/t(G))(I) → G be the canonical morphism, whose image is precisely
trG/t(G)(G). Then the sequence

(G/t(G))(I) G G/ trG/t(G)(G) 0
f

is a short CHZ-sequence for G and, thus, by Lemma 5.5 and Lemma 5.4, we
have that t induces a bounded derived equivalence. Conversely, if t induces
a bounded derived equivalence, then again by Lemma 5.4 and Lemma 5.5 we
have that there is an exact sequence of the form

FG G TG 0h
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with FG in F and TG in T. Now, since by Lemma 2.8 we know that FG is a
quotient of a coproduct of copies of G/t(G), it follows that Im(h) is contained
in trG/t(G)(G). Thus, G/trG/t(G)(G) is a quotient of TG and therefore it lies in
T, as wanted.

Corollary 5.7. Let G be a Grothendieck category and t1 := (T1,F1), t2 :=
(T2,F2) be hereditary torsion pairs in G inducing bounded derived equivalence.
Then their meet induces a bounded derived equivalence.

Proof. Let t3 := (T3 := T1 ∩ T2,F3) be the meet of t1 and t2. It is again
hereditary, so we can apply Theorem 5.6. Let G be a generator of G, and ti(G)
the torsion part of G with respect to ti, for i = 1, 2, 3.
Since t3(G) lies in T3 ⊆ T1, it is a subobject of t1(G), so that G/t3(G) ։

G/t1(G). It follows that trG/t1(G)(G) →֒ trG/t3(G)(G), and G/ trG/t1(G)(G) ։
G/ trG/t3(G)(G). Now the source of this epimorphism is in T1, so the target is as
well; a similar argument for t2(G) and t3(G) shows then that G/ trG/t3(G)(G)
belongs to T1 ∩ T2 = T3.

Let us now restrict our setting to the Grothendieck abelian category Mod(R)
of right R-modules over a ring R. Recall that given a right R-module M , its
(right) annihilator is the ideal of R

Ann(MR) := {r ∈ R :Mr = 0}.

Similarly, we define the annihilator of a left module RM . Notice, however, that
the annihilator of a module, be it right or left, is always a two-sided ideal.

Proposition 5.8. Let R be a ring and t = (T,F) a torsion pair in Mod(R).
Let Kt be the two-sided ideal obtained as the intersection of all the annihilators
of modules in F. The following statements hold:

1. R/Kt lies in F;

2. F is a subcategory of Mod(R/Kt), where Mod(R/Kt) is identified with
the subcategory of R-modules annihilated by Kt;

3. t(R) coincides with Kt.

Proof. (1) For every element r in R \ Kt, there is an object Fr in F and an
element fr in Fr such that frr 6= 0. Consider the torsionfree module F :=
∏

r∈R\K Fr, and the morphism R → F defined by 1 7→ (fr)r. Its kernel
is clearly Kt, so it induces an embedding (of right R-modules) R/Kt →֒ F .
Hence R/Kt lies in F.
(2) The claim follows from the fact that Kt annihilates every module in F by
definition.
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(3) Consider the diagram:

0 t(R) R R/t(R) 0

0 Kt R R/Kt 0

p1

c

p2

d

Since R/t(R) lies in F, which is contained in Mod(R/Kt) by (2), the map p1
factors through R/Kt, yielding the dotted epimorphism d. On the other hand,
R/Kt is torsionfree (by (1)), and so the map p2 factors through R/t(R), giving
the dotted epimorphism c. Finally it is an easy verification that c and d are
inverse to each other, showing that indeed Kt = t(R) as ideals of R.

Remark 5.9. Combining items (2) and (3) of the previous proposition one
recovers Lemma 2.8.

We can finally apply Theorem 5.6 to the case of a module category.

Theorem 5.10. Let R be a ring and let t = (T,F) be a hereditary torsion
pair in Mod(R). Then t induces a bounded derived equivalence if and only if
R/Ann(Rt(R)) lies in T. This holds in particular whenever Rt(R) is finitely
generated (as a left R-module) and Ann(Rt(R)) = Ann(t(R)R).

Proof. The first assertion follows immediately from Theorem 5.6 once we ob-
serve that trR/t(R)(R) = Ann(Rt(R)). Indeed, by definition an element r
of R lies in trR/t(R)(R) if and only if it lies in the image of a morphism
f : R/t(R) → R: and this happens if and only if rt(R) = 0, i.e. if r lies in
Ann(Rt(R)).
For the second statement, let x1, ..., xn be elements in R such that Rt(R) =
∑n

k=1 Rxk, and consider the morphism of right R-modules α : R → t(R)⊕n

defined by 1 7→ (x1, . . . , xn). Then its kernel is Ann(t(R)R). Indeed, if r is in
Ann(t(R)R) then xkr = 0 for all 1 ≤ k ≤ n, and so α(r) = (x1r, . . . , xnr) = 0.
Conversely, if r ∈ kerα, then xkr = 0 for all 1 ≤ k ≤ n. Now every x in t(R)
can be written as

∑n
k=1 rkxk, so xr =

∑n
k=1(rkxk)r = 0. By our hypothesis,

then, we also have kerα = Ann(Rt(R)). Therefore, α induces a monomorphism
of right R-modules

R/Ann(Rt(R)) = R/Ann(t(R)R) →֒ t(R)⊕n.

Since the latter is a torsion module and t is hereditary, we conclude that
R/Ann(Rt(R)) is torsion.

Corollary 5.11. Let R be a noetherian ring and suppose it is either commu-
tative or semiprime. Then every hereditary torsion pair induces an unbounded
derived equivalence.
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Proof. The fact that a hereditary torsion pair t of Mod(R) induces bounded
derived equivalence follows immediately from Theorem 5.10; indeed, for com-
mutative or semiprime rings, left and right annihilators of ideals coincide and,
furthermore, since R is left noetherian, Rt(R) is finitely generated.
Now, the t-structure obtained by HRS-tilting Mod(R) at t is smashing with
Grothendieck heart by Remark 2.7 and item (1) of Theorem 2.16; therefore
by applying item (2) of Proposition 2.17 we get that t induces an unbounded
derived equivalence.

The corollary above has a direct implication in silting theory for commutative
noetherian rings.

Corollary 5.12. Every two-term cosilting complex over a commutative
noetherian ring is cotilting.

Proof. If R is a commutative noetherian ring, then the HRS-tilting t-structure
at any hereditary torsion pair in Mod(R) is a cosilting t-structure associated
with a two-term cosilting complex ([2, Corollary 4.1, Lemma 4.2]). Since, by
Corollary 5.11, this t-structure induces a derived equivalence, the two-term
cosilting complex must be cotilting ([39, Corollary 5.2]).

6 t-structures inducing derived equivalences for commutative

noetherian rings

We turn now our attention back to compactly generated t-structures in the
derived category of a commutative noetherian ring R. In particular, we aim
to find sufficient conditions for a given intermediate compactly generated t-
structure to induce a derived equivalence.

Remark 6.1. Recall that by Theorem 2.12, intermediate compactly gener-
ated t-structures in D(R) satisfy the hypotheses of item (2) of Proposition
2.17. Therefore, their heart is derived equivalent to Mod(R) if and only if it
is bounded derived equivalent. This includes the case of the HRS-tilt of an
intermediate compactly generated t-structure at a torsion pair of finite type
(see item (1) of Theorem 2.16 and Theorem 3.10). In the following we will use
this fact without an explicit mention.

6.1 Sufficient conditions for derived equivalence

Let R be a commutative noetherian ring, and consider a hereditary torsion pair
t in Mod(R). If Tt denotes the t-structure obtained by HRS-tilting Mod(R) at
t, with heart Ht, we know that:

• Tt is an intermediate compactly generated t-structure (Remark 4.8);

• Ht is a locally coherent Grothendieck category (Theorem 2.16, Remark
2.7 and item (3) of Theorem 3.4);
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• Ht is derived equivalent to Mod(R) (Corollary 5.11).

This subsection takles the question of whether we can proceed with a chain
of HRS-tilts at suitable torsion pairs, so that all the obtained t-structures will
retain these properties. For this purpose, we need to first extend the scope
of Theorem 5.6 in order to apply it not only to HRS-tilts of the heart of the
standard t-structure but also to hearts of t-structures inducing derived equiv-
alences.

Lemma 6.2. Let R be a ring and A the heart of an intermediate t-structure T =
(U,V) in D(R) such that T induces a derived equivalence. Given a torsion pair t
in A, let S be the t-structure in D(A) produced by HRS-tilting the standard
t-structure in D(A) with respect to t, and let Tt be the t-structure in D(R)
obtained by HRS-tilting the t-structure T in D(R). Then S induces a derived
equivalence if and only if so does Tt.

Proof. Let ρ1 : Db(A) −→ Db(R) be a realisation functor for the t-structure T

(which is assumed to be a triangle equivalence). It can easily be checked, using
elementary properties of realisation functors, that the t-structure S∩Db(A) in
Db(A) is sent, via the equivalence ρ1, to the t-structure Tt ∩ Db(R) in Db(R).
In particular, ρ1 induces an equivalence between HS and At, the heart of Tt in
D(R).
Suppose now that S induces a derived equivalence, i.e. the realisation functor
ρ2 : D

b(HS) −→ Db(A) is a triangle equivalence. Hence, it follows that for X
and Y in At, with X ≃ ρ1X

′ and Y = ρ1Y
′ for X ′ and Y ′ in HS, we have

ExtnAt
(X,Y ) ≃ ExtnHS

(X ′, Y ′) and, since ρ2 is a derived equivalence, the latter
is isomorphic to HomDb(A)(X

′, Y ′[n]). Hence, we have

ExtnAt
(X,Y ) ≃ HomDb(A)(X

′, Y ′[n])

≃ HomDb(A)(ρ1X
′, ρ1Y

′[n]) ≃ HomDb(R)(X,Y [n]),

proving that Tt induces a derived equivalence. The converse implication is
completely analogous.

As a consequence of the lemma above, we can use the criteria in Proposition 5.3
and, consequently, in Theorem 5.6 to test whether HRS-tilts of hearts of t-
structures that induce derived equivalences still induce derived equivalences.

Theorem 6.3. Let T = (U,V) be an intermediate compactly generated t-
structure in D(R) with heart HT, and suppose that T induces a derived equiv-
alence. Let t = (TV ,FV ) be the hereditary torsion pair of finite type in HT

associated to a specialisation closed subset V , and let t : HT → T denote the
corresponding torsion radical. If there is a set of generators {Gλ : λ ∈ Λ} of
HT such that Gλ/t(Gλ) is finitely presented, then the HRS-tilted t-structure
associated to t induces a derived equivalence.

Proof. We use an adaptation of Theorem 5.6 (see also Lemma 6.2). In fact,
we will check that for each λ in Λ, the quotient Gλ/trGλ/t(Gλ)(Gλ) is torsion;

Documenta Mathematica 26 (2021) 829–871



862 S. Pavon, J. Vitória

this provides us with a sequence such as in Proposition 5.4 by considering the
coproduct over the set Λ of the resulting sequences. This will show that, indeed,
the HRS-tilted t-structure associated to t induces a derived equivalence (see
Remark 6.1).
First observe that since V is specialisation closed and HT is contained in
Db(R) (T is intermediate), we have from Equation (3.1) that supp−1(V ) ∩
HT = Supp−1(V ) ∩ HT and, therefore, all we want to show is that
Gλ/trGλ/t(Gλ)(Gλ)⊗R Rp = 0 for all primes p that do not lie in V . Let then p

be a prime not in V . Since Rp is flat, we can write it as a direct limit of free
R-modules, i.e. Rp = lim

−→j∈J
R(nj). Since directed homotopy colimits in D(R)

are computed as componentwise direct limits, one sees that

Gλ ⊗Rp = Gλ ⊗ lim−→J
R(nj) = HocolimJ G

(nj)
λ

(see the proof of [21, Lemma 4.1] for the details). Now, by [43, Corollary 5.8],
this directed homotopy colimit of objects of HT is a direct limit in HT. We can
therefore use the hypothesis that Gλ/t(Gλ) is finitely presented in HT to write

HomD(R)(Gλ/t(Gλ), Gλ)⊗R Rp ≃ lim
−→J

HomD(R)(Gλ/t(Gλ), Gλ)
(nj)

≃ HomD(R)(Gλ/t(Gλ), Gλ ⊗R Rp).

Since D(Rp) is a bireflective subcategory of D(R) with reflection functor −⊗R
Rp, it follows that

HomD(R)(Gλ/t(Gλ), Gλ)⊗R Rp ≃ HomD(R)(Gλ/t(Gλ)⊗R Rp, Gλ ⊗R Rp).

Now, observe that since p does not lie in V and since TV is supported in V ,
we have t(Gλ) ⊗R Rp = 0. Since − ⊗R Rp is an exact functor in HT, it then
follows that Gλ ⊗R Rp ≃ Gλ/t(Gλ) ⊗R Rp. Therefore, the isomorphism of
Hom-spaces in the last equation above allows us to conclude that there is a
morphism f : Gλ/t(Gλ) → Gλ such that f ⊗R Rp is an isomorphism. Since
trGλ/t(Gλ)(Gλ) ⊗R Rp contains Im(f)⊗R Rp, we have that trGλ/t(Gλ)(Gλ) ⊗R
Rp = Gλ⊗RRp. We thus conclude that, indeed, Gλ/ trGλ/t(Gλ)(Gλ)⊗RRp = 0,
as wanted.

Corollary 6.4. Let T = (U,V) be an intermediate compactly generated t-
structure in D(R) with a locally coherent heart HT, and suppose that T induces
a derived equivalence. Let t = (TV ,FV ) be the hereditary torsion pair of finite
type in HT associated to a specialisation-closed V and suppose that (TV ,FV ) is
restrictable. Then the HRS-tilted t-structure associated to t induces a derived
equivalence.

Proof. Under the assumption that t is restrictable, for any set {Gλ : λ ∈ Λ} of
finitely presented generators of HT, Gλ/t(Gλ) will also be finitely presented.
Hence, the result follows from Theorem 6.3.
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Remark 6.5. Since we know that for a commutative noetherian ring R, ev-
ery hereditary torsion pair in Mod(R) is restrictable, note that Corollary 5.11
follows immediately from the corollary above.

Remark 6.6. If T is as in Corollary 6.4, t is any torsion pair in HT and
we happen to know that Ht is locally coherent, then the torsion pair t is
restrictable if and only if there is a set {Gλ : λ ∈ Λ} of finitely presented
generators of HT such that Gλ/t(Gλ) is finitely presented (see [37, Remark
6.3(3)]). Therefore, knowing this information about Ht, the hypothesis of
Corollary 6.4 is minimal to apply Theorem 6.3.

6.2 Intermediate compactly generated t-structures via iterated

HRS-tilts

In this subsection, we show that any intermediate compactly generated t-
structure of D(R) is obtained from the standard t-structure by a sequence
of HRS-tilts at hereditary torsion pairs of finite type. The following proposi-
tion gives us some TTF classes in hearts of compactly generated t-structure
(compare with Remark 2.15).

Proposition 6.7. Let ϕ be an intermediate sp-filtration, with ϕ(0) 6= ϕ(1) = ∅,
and denote by Hϕ the heart of the associated compactly generated t-structure
Tϕ = (Uϕ,Vϕ). Then T0 := Hϕ∩Mod(R) is a TTF class in Hϕ. In particular,
we have that T0 = supp−1(ϕ(0)) ∩Hϕ = Supp−1(ϕ(0)) ∩Hϕ.

Proof. First note that

Hϕ ∩ D≥0 (1)
= T0

(2)
= Uϕ ∩Mod(R)

(3)
= Supp−1(ϕ(0)) ∩Mod(R).

Indeed, equality (1) follows from Hϕ ⊆ Uϕ ⊆ D≤0, (2) follows from Mod(R) ⊆
D≥0 ⊆ Vϕ[1], and (3) follows by definition of Uϕ. In particular, (3) shows that
supp(T0) = Supp(T0) = ϕ(0) by Theorem 3.4.
We now show that (Hϕ ∩ D≤−1,T0) = (Hϕ ∩ D≤−1,Hϕ ∩ D≥0) is a torsion
pair in Hϕ. First, HomHϕ

(Hϕ ∩ D≤−1,T0) = 0 is clear. Now, let X be an
object of Hϕ and consider the truncation triangle with respect to the standard
t-structure

τ≤−1X −→ X −→ H0(X) −→ (τ≤−1X)[1].

By definition of Uϕ, it is closed under standard truncations, so all the vertices
belong to Uϕ. Moreover, it is also clear that H0(X) lies in D≥0 ⊆ Vϕ[1], and
therefore H0(X) lies in Hϕ. Lastly, since Vϕ[1] is closed under taking co-cones,
also τ≤−1X belongs to Vϕ[1], and hence τ≤−1X lies also in Hϕ. The triangle
above is then a short exact sequence in Hϕ and it is the torsion decomposition
of X with respect to the torsion pair (Hϕ ∩D≤−1,T0).
It remains to show that T0 is also a torsion class in Hϕ or, equivalently, that
T0 is closed under quotients in Hϕ. Consider a short exact sequence in Hϕ

0 −→ X −→ Y −→ Z −→ 0
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where Y lies in T0. Since T0 is a torsionfree class in Hϕ, it follows that X is also
in T0. Since supp(Z) ⊆ supp(X [1]) ∪ supp(Y ), it follows that supp(Z) ⊆ ϕ(0).
It remains to show that Z lies in Mod(R). Applying the standard cohomology
functor to the triangle induced by the short exact sequence above, we observe
that, since T0 is a hereditary torsion class in Mod(R), H−1(Z) lies in T0 ⊆ Hϕ.
Moreover, the above paragraph has also shown that τ≤−1Z ≃ H−1(Z)[1] lies
in Hϕ. But this means that H−1(Z) = 0 and Z must then lie in T0.
Finally, the last statement follows from the fact that ϕ(0) is specialisation
closed, Hϕ is contained in Db(R) and hereditary torsion classes in Hϕ are
determined by their support (see Proposition 4.1).

Lemma 6.8. Let ϕ and ψ be intermediate sp-filtrations such that ϕ(1) = ψ(1) =
∅ and such that ψ(i) = ϕ(i+ 1) for every i < 0. Then the compactly generated
t-structure Tψ associated to ψ is obtained by HRS-tilting Tϕ = (Uϕ,Vϕ) (with
heart Hϕ) with respect to a hereditary torsion pair of finite type whose torsion
class is Supp−1(ψ(0)) ∩Hϕ.

Proof. Let Ti denote the hereditary torsion class in Mod(R) supported on ϕ(i),
for any integer i. Since ψ(0) ⊆ ψ(−1) = ϕ(0), we have that T′ := Hϕ ∩
Supp−1(ψ(0)) ⊆ Hϕ ∩ Supp−1(ϕ(0)) = T0, the last equality following from
Proposition 6.7. We know from Theorem 4.5 that T′ is a hereditary torsion
class in Hϕ. If we tilt Hϕ with respect to T′ we obtain a t-structure having
aisle

U := Uϕ[1] ∗ T
′.

Now, since we have that Uϕ[1] ⊆ D≤−1 and that T′ ⊆ T0 ⊆ D≥0, this aisle
U consists of the objects X such that the standard truncation τ≤−1X lies in
Uϕ[1] and the standard truncation τ≥0X lies in T′, i.e.

U = {X ∈ D(R) : Supp(HiX) ⊆ ϕ(i+ 1) = ψ(i), ∀i < 0, Supp(H0X) ⊆ ψ(0)}

In other words, we have that U is the aisle of the t-structure determined by ψ.
Moreover, since this is also a compactly generated t-structure, it follows that
the hereditary torsion pair we have tilted at is of finite type (see item (1) of
Theorem 2.16).

Notation 6.9. Note that in the above lemma, the sp-filtration ϕ can be re-
covered from ψ. We will denote this operation on sp-filtrations by writing
ϕ = ψ〈1〉. In the notation of [1, §5.3], we have that ψ〈1〉 is a shift of ψ′,
i.e. ψ〈1〉(i) = ψ′(i − 1). Moreover, starting with an sp-filtration ψ such that
ψ(1) = ∅, we will denote the iterations of this process by ψ〈n〉, for n ≥ 1:

ψ〈n〉(i) =

{

∅ if i > 0

ψ(i− n) if i ≤ 0.

Proposition 6.10. Let ϕ be an intermediate sp-filtration such that ϕ(1) = ∅.
Then the compactly generated t-structure Tϕ associated to ϕ can be built from
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the standard t-structure by an iteration of HRS-tilts at hereditary torsion pairs
of finite type having specialisation-closed support.

Proof. Since ϕ is intermediate, we have Spec(R) = ϕ(−n) ) ϕ(−n+1) for some
n ≥ 0. The statement then follows by induction on n, using Lemma 6.8.

6.3 Restrictable t-structures and derived equivalences

We now turn to restrictable, intermediate and compactly generated t-
structures, with the aim of establishing that they induce derived equivalences.
We begin by reviewing what is known about how to characterise the sp-
filtrations associated to the restrictable compactly generated t-structures (see
[1]). The following condition turns out to play a significant role in that char-
acterisation for some commutative rings.

Definition 6.11. An sp-filtration ϕ is said to satisfy the weak Cousin condition
if whenever p and q are prime ideals such that p ( q and p is maximal under
q (i.e. there is no prime ideal t such that p ( t ( q), then we have

∀j ∈ Z, q ∈ ϕ(j)⇒ p ∈ ϕ(j − 1)

Theorem 6.12. [1, Theorem 3.10 and 6.9, Corollary 4.5][41, Theorem 6.3] Let
R be a commutative noetherian ring, B the set of t-structures in Db(mod(R))
and T the set of compactly generated t-structures in D(R). There is an as-
signment Θ: B −→ T , sending a t-structure B := (X,Y) in Db(mod(R)) to the
t-structure generated by X, namely Θ(B) := (⊥(X⊥),X⊥). Moreover, for every
B in B, we have

1. Θ(B) ∩Db(mod(R)) = B (and, in particular, Θ is injective);

2. The sp-filtration associated to Θ(B) satisfies the weak Cousin condition;

3. The heart of Θ(B) is locally coherent and its subcategory of finitely pre-
sented objects coincides with the heart of B.

The image of Θ is, then, the set of restrictable compactly generated t-structures.
Moreover, if R admits a dualising complex, then the t-structures in the image
of Θ are those whose associated sp-filtrations satisfy the weak Cousin condition.

Definition 6.13. Let R be a commutative noetherian ring. We say that an
sp-filtration ϕ in Spec(R) is restrictable if the associated compactly generated
t-structure is restrictable (in other words, the associated t-structure is in the
image of the assignment Θ).

Note that it follows easily from the definition that if ϕ is an sp-filtration with
ϕ(1) = ∅ satisfying the weak Cousin condition, then ϕ〈n〉 also satisfies the weak
Cousin condition, for every n ≥ 1. In fact, the following related statement
holds.
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Proposition 6.14. [1, Lemma 5.7] If an intermediate sp-filtration ϕ is re-
strictable, then ϕ〈n〉 is also (intermediate and) restrictable, for any n ≥ 1.

Corollary 6.15. Let ϕ be an intermediate sp-filtration with ϕ(1) = ∅. If ϕ is
restrictable, then the torsion pairs involved in the HRS-tilts of Proposition 6.10
are restrictable.

Proof. By Proposition 6.10, we know that Tϕ is obtained from the standard
t-structure by iterated HRS-tilts at hereditary torsion pairs of finite type. More-
over, by Proposition 6.14, each of the t-structures involved in this process is
restrictable and, in particular, their hearts are locally coherent with finitely pre-
sented objects given by the intersection with Db(mod(R)), by Theorem 6.12.
Finally, Theorem 2.16 completes the argument.

Theorem 6.16. Let R be a commutative noetherian ring and let T be an inter-
mediate restrictable compactly generated t-structure in D(R). Then T induces
a derived equivalence.

Proof. Up to shifting T, we may assume that the associated sp-filtration ϕ
has ϕ(1) = ∅. Proposition 6.10 then shows that T can be obtained from the
standard t-structure via an iterated HRS-tilting process involving hereditary
torsion pairs of finite type. Moreover, Corollary 6.15 shows that these torsion
pairs are restrictable. Applying Corollary 6.4 to these tilts, we obtain a chain
of triangle equivalences linking D(HT) and D(R), as wanted.

Corollary 6.17. Let R be a commutative noetherian ring. Every bounded
cosilting object of D(R) whose t-structure is restrictable is cotilting.

Proof. It follows from [30, Proposition 3.10] that every bounded cosilting object
is pure-injective. The associated t-structure is then compactly generated by [22,
Corollary 2.14]. Since the complex is bounded, the associated t-structure is an
intermediate t-structure. The result then follows from Theorem 6.16 and from
the fact that a cosilting t-structure induces a derived equivalence if and only if
it is cotilting ([39, Corollary 5.2]).

Taking Theorem 6.16 into account, the assumption that T induces a derived
equivalence in Corollary 4.6 is redundant, therefore leading to the following
simplification.

Corollary 6.18. Let R be a commutative noetherian ring and T an interme-
diate restrictable compactly generated t-structure in D(R) with heart HT. Then
there is a bijection between hereditary torsion pairs of finite type in HT and
specialisation-closed subsets of Spec(R).

At this point, one might speculate whether every intermediate compactly gen-
erated t-structure leads to a derived equivalence. We instead show an ex-
ample of such a t-structure that does not induce a derived equivalence. In
other words, this provides (implicitly) an example of a bounded (3-term) pure-
injective cosilting complex which is not cotilting over a commutative noetherian
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ring. Note that by Corollary 5.12 such an example cannot be found among 2-
term cosilting complexes.

Example 6.19. Recall the situation considered in Example 4.15 and assume,
furthermore, that R is connected, i.e. that it has no non-trivial idempotent ele-
ments. With the same notation, Ht is the heart of the t-structure corresponding
to the sp-filtration SpecR ⊇ V ⊇ ∅. By Lemma 4.11 we know that the set V
also corresponds to a hereditary torsion pair (of finite type, by Theorem 4.5)
in Ht, namely s = (T,C[1]), where C is the Giraud subcategory associated to
T in Mod(R). Consider the heart Hs of the HRS-tilt of the t-structure with
heart Ht with respect to s. The corresponding t-structure, by Lemma 6.8 is
associated to the intermediate sp-filtration Spec(R) ⊇ V ⊇ V ⊇ ∅. Notice
that this filtration does not satisfy the weak Cousin condition and, hence, this
t-structure is not restrictable.
By construction, we have Hs = C[2] ∗ T. Notice that since t is perfect, for all
objects T in T and C in C we have HomD(R)(T,C[3]) ≃ Ext3R(T,C) = 0 and
hence all triangles

C[2] −→ X −→ T −→ C[3]

split. In other words, the torsion pair (C[2],T) in Hs is a split torsion pair.
Moreover, the same argument shows that HomD(R)(T,C[2]) ≃ Ext2R(T,C) = 0
and, thus, we have that in fact also (T,C[2]) is a torsion pair in Hs. In other
words, C[2] and T are abelian subcategories of Hs and Hs ≃ C[2]× T.
Now, since R is connected, it follows that D(R) is an indecomposable triangu-
lated category, i.e. it is not the product of two triangulated subcategories (see
[9, Example 3.2]). However, it is clear that D(Hs) is not indecomposable, as
it is equivalent to the product D(C[2]) × D(T). As a consequence, Hs cannot
be derived equivalent to Mod(R). Note that, in particular, this provides an
example of a cosilting (3-term) object of D(R) which is not cotilting.

We conclude the paper exploring some consequences for the hearts of t-
structures of Db(mod(R)).

Proposition 6.20. Let R be a commutative noetherian ring, and B a bounded
t-structure of Db(mod(R)), with heart B. Then B is the category of finitely
presented objects of a locally coherent Grothendieck category which is derived
equivalent to Mod(R). Moreover, Serre subcategories of B are in bijection with
specialisation-closed subsets of Spec(R).

Proof. Consider the compactly generated t-structure Θ(B). It is intermediate
because so is B, and it is restrictable by construction. Hence, its heart HT is
derived equivalent to Mod(R), by Theorem 6.16. Now, by Theorem 2.13, HT is
a locally coherent Grothendieck category with fp(HT) = HT∩Db(mod(R)) = B.
Finally, since Serre subcategories of B are in bijection with hereditary torsion
pairs of HT (see [21, 24]), and therefore with specialisation closed subsets of
Spec(R) by Corollary 6.18.
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