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Abstract. For every adic space X we construct a site Xt, the
tame site of X . For a scheme X over a base scheme S we obtain
a tame site by associating with X/S an adic space Spa(X,S) and
considering the tame site Spa(X,S)t. We examine the connection of
the cohomology of the tame site with étale cohomology and compare
its fundamental group with the conventional tame fundamental group.
Finally, assuming resolution of singularities, for a regular scheme X
over a base scheme S of characteristic p > 0 we prove a cohomological
purity theorem for the constant sheaf Z/pZ on Spa(X,S)t. As a
corollary we obtain homotopy invariance for the tame cohomology
groups of Spa(X,S).
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1 Introduction

Étale cohomology of a scheme with torsion coefficients away from the residue
characteristics yields a well behaved cohomology theory. For instance, there
is a smooth base change theorem, a cohomological purity theorem, and the
cohomology groups are A1-homotopy invariant. This breaks down, however,
if we take the coefficients of the cohomology groups to be p-torsion, where p
is a residue characteristic of the scheme in question. The problem can be
seen already when looking at the cohomology group H1

ét
(A1
k,Z/pZ) for some

algebraically closed field k. If the characteristic of k is not p, this cohomology
group vanishes. But if the characteristic of k is p, H1

ét(A
1
k,Z/pZ) is infinite due

to wild ramification at infinity.
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874 K. Hübner

In order to address these problems we introduce a tame site of a scheme X
over some base scheme S which does not allow this wild ramification at the
boundary. The rough idea is to consider only étale morphisms Y → X which
are tamely ramified (in an appropriate sense) along the boundary X̄ − X of
a compactification X̄ of X over S. The concept of tameness is a valuation-
theoretic one. This makes it more natural to work in the language of adic
spaces rather than in the language of schemes. For an étale morphism of adic
spaces it is straightforward to define tameness: An étale morphism ϕ : Y →X

is tame at a point y ∈ Y with ϕ(y) = x if the valuation on k(y) corresponding
to y is tamely ramified in the finite separable field extension k(y)|k(x). Note
that these valuations neither need to be discrete nor of rank one. In this context
tameness of k(y)|k(x) is defined by requiring that the extension of the strict
henselizations k(y)sh|k(x)sh be of degree prime to the residue characteristic of
the corresponding valuation rings. Defining coverings to be the surjective tame
morphisms, we obtain the tame site Xt for every adic space X . In addition,
we define the strongly étale site Xsét by replacing “tame”with “unramified”.

This construction also provides a tame site for a scheme X over a base
scheme S by associating with X → S the adic space Spa(X,S) (see [Tem11])
and considering the tame site Spa(X,S)t. Note that Spa(X,S) is not an
analytic adic space: If X = SpecA and S = SpecR are affine, we have
Spa(X,S) = Spa(A,A+), where A+ is the integral closure of the image of R
in A and A is equipped with the discrete topology. The adic space Spa(X,S)
should not be thought of an analytification of X/S but rather as a means of
encoding the essential information on X → S in the language of adic spaces.
We call adic spaces which are locally of this type discretely ringed.

Of course, tameness is not a new concept in algebraic geometry. Several ap-
proaches have been made to define the notion of a tame covering space of a
scheme over a base scheme. These are summarized and compared in [KS10].
Having a notion of tameness for covering spaces we can define the correspond-
ing tame fundamental group. In Section 9 we show that the fundamental group
of the tame site coincides with the curve-tame fundamental group constructed
in [Wie08], see also [KS10].

Also in other respects the tame site behaves the way it should: For an étale
torsion sheaf with torsion away from the characteristic, the tame cohomology
groups coincide with the étale cohomology groups. IfX → S is proper, the tame
cohomology groups of Spa(X,S) coincide with the étale cohomology groups for
all étale sheaves (see Section 8).

Having established these rather straightforward comparison results, we move
on to prove our first big theorem concerning the tame site, namely absolute
cohomological purity for constant sheaves in characteristic p > 0 (see Corol-
lary 14.5): Let S be an excellent quasi-compact, quasi-separated scheme of
characteristic p > 0 and X a regular scheme which is separated and essentially
of finite type over S. Assume that resolution of singularities holds over S.
Under these assumptions X admits a regular compactification X̄ → S and we
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The Adic Tame Site 875

have
Hi(Spa(X,S)t,Z/pZ) ∼= Hi(X̄ét,Z/pZ).

As a by-product we obtain that Hi(X̄ét,Z/pZ) is independent of the choice
of compactification. Purity immediately implies that under the hypothesis of
resolution of singularities the tame cohomology groups Hi(Spa(X,S)t,Z/pZ)
are homotopy invariant for regular schemes X of finite type over S (see Corol-
lary 14.6).
In order to prove the purity theorem we examine the Artin-Schreier sequence

0→ Z/pZ −→ G
+
a −→ G

+
a → 0,

on Spa(X,S)t, where G+
a is the sheaf defined by G+

a (Z) = O
+
Z (Z). It reduces us

to the study of the cohomology of G+
a . The core of the argument is to establish

in the course of Sections 10 to 13 the following chain of isomorphisms

Hi(S,OS) ∼= Hi(Spa(X,S),G+
a ) (1)

∼= Hi(Spa(X,S)sét,G
+
a ) (2)

∼= Hi(Spa(X,S)t,G
+
a ). (3)

In Section 10 we prove isomorphism (1). This is where we use resolution of
singularities to construct a basis of the topology of Spa(X,S) consisting of
open subspaces of the form Spa(U, Y ), where Y is regular and U ⊆ Y an open
subscheme. Another important ingredient is the vanishing of the higher direct
images of the structure sheaf under a projective birational morphism of regular
schemes proved in [CR15].
In Section 12 we show isomorphism (2). In preparation to this we examine in
Section 11 Prüfer Huber pairs, i.e. Huber pairs (A,A+) such that A+ → A
is a Prüfer extension. Prüfer Huber pairs are important in the study of the
cohomology groups of G+

a because G+
a is acyclic on the adic spectra of Prüfer

Huber pairs.
The final step is the comparison of the strongly étale with the tame cohomology
of G

+
a , i.e., isomorphism (3). More precisely, we show in Section 13 that for

any noetherian, discretely ringed or analytic adic space X we have natural
isomorphisms

Hi(Xsét,G
+
a )

∼−→ Hi(Xt,G
+
a )

for all i ≥ 0.
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2 Background on adic spaces

To fix notation let us briefly recall from [Hub93b] and [Hub94] some notions
concerning adic spaces. A Huber ring (f -adic ring in Huber’s terminology) is
a topological ring A such that there exists an open subring A0 carrying the
I-adic topology for a finitely generated ideal I ⊆ A0. The ring A0 is called a
ring of definition of A and the ideal I an ideal of definition. An example of a
Huber ring is Qp with ring of definition Zp and ideal of definition pZp.
An element a of a Huber ring A is power-bounded if the set {an | n ∈ N} is
bounded, i.e. for any neighborhood U ⊂ A of 0 there is a neighborhood V of 0
such that

V · {an | n ∈ N} ⊆ U.
An element a of A is called topologically nilpotent if the sequence an converges
to 0. Every topologically nilpotent element is power-bounded. We denote the
set of power bounded elements of A by A◦ and the set of topologically nilpotent
elements by A◦◦.
A ring of integral elements of A is an open, integrally closed subring A+ of A
that is contained in A◦. The rings of integral elements are precisely the inte-
grally closed subrings A+ of A such that

A◦◦ ⊆ A+ ⊆ A◦.

A Huber pair (affinoid ring in Huber’s terminology) is a pair (A,A+) consisting
of a Huber ring A and a ring of integral elements A+ ⊆ A.
Given a Huber pair (A,A+) we define its adic spectrum

X = Spa(A,A+) = {cont. valuations v : A→ Γ ∪ {0} | v(a) ≤ 1 ∀ a ∈ A+}.

Notice that we write valuations multiplicatively. Furthermore, for an element
x ∈X we write f 7→ |f(x)| for the valuation corresponding to x.
For f1, . . . , fn, g ∈ A such that the ideal of A generated by f1, . . . , fn is open,
we define the rational subset R

(

f1,...,fn
g

)

of X by

R
(f1, . . . , fn

g

)

= {x ∈ X | |fi(x)| ≤ |g(x)| 6= 0 ∀ i = 1, . . . , n}.

It is the adic spectrum of the Huber pair

(A(
f1, . . . , fn

g
), A(

f1, . . . , fn
g

)+),

where A( f1,...,fng ) is the localization Ag of A endowed with the topology

defined by the ring of definition A0[
f1
g , . . . ,

fn
g ] and the ideal of definition
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IA0[
f1
g , . . . ,

fn
g ] and A( f1,...,fng )+ is the integral closure of A+[ f1g , . . . ,

fn
g ] in

A( f1,...,fng ). We endow X with the topology generated by the rational subsets
as above.
On the topological space X we can define a presheaf OX of complete topo-
logical rings (complete always comprises Hausdorff) such that for any rational
subset R

(

f1,...,fn
g

)

of X we have

OX (R
(f1, . . . , fn

g

)

) = A〈f1, . . . , fn
g

〉,

the latter ring being the completion of A( f1,...,fng ). In particular,

OX (X ) = Â.

Furthermore, there is a subpresheaf O
+
X

of OX with

O
+
X
(R

(f1, . . . , fn
g

)

) = A〈f1, . . . , fn
g

〉+.

We say that a Huber pair (A,A+) is sheafy if the corresponding presheaf OX

on X = Spa(A,A+) is a sheaf. In this case we speak of the structure sheaf OX .
If OX is a sheaf, O

+
X

is a sheaf, as well. The Huber pair (A,A+) is known to
be sheafy in the following cases:

1. Â has a noetherian ring of definition over which Â is finitely generated.

2. A is a strongly noetherian Tate ring.

3. The topology of A is discrete.

The main problem is caused by completion being not exact in general. In
cases (1) and (2) the sheaf property is a non-trivial result that has been shown in
[Hub94], Theorem 2.2. Case (1) relies on the observation that for a noetherian
adic ring A, every homomorphism of finite A-modules is strict and case (2)
reduces to Tate’s acyclicity theorem. In case (3), however, due to the topology
being discrete, there are no issues with completion. In fact, the structure
sheaf OX can be identified with the pullback of the structure sheaf OSpecA on
SpecA along the natural morphism

supp : Spa(A,A+) −→ SpecA

that maps a valuation to its support. This is a continuous morphism as the
preimage of a fundamental open D(g) = {p ∈ SpecA | g /∈ p} of SpecA is
the rational subset R

(

g
g

)

of Spa(A,A+). It is also open as it maps a rational

subset R
(

f1,...,fn
g

)

to SpecAg. Therefore, it is easy to compute the presheaf
pullback supp−1(OSpecA) and check that the sheaf condition is satisfied using
that OSpecA is a sheaf.
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Throughout this article we will only consider Huber pairs satisfying one of the
above conditions. Mostly we will be concerned with Huber pairs of type (3),
where we may assume the topology of A to be discrete.
An adic space is a triple (X ,OX , (vx)x∈X ), where

• X is a topological space,

• OX is a sheaf of complete topological rings whose stalks are local rings,

• for every x ∈X , vx is an isomorphism class of valuations on OX ,x whose
support is the maximal ideal of OX ,x,

which is locally isomorphic to Spa(A,A+) for a sheafy Huber pair (A,A+).
Unfortunately, closed subsets of adic spaces do not carry the structure of an
adic space in general. Therefore, following [Hub96], §1.10, we define prepseudo-
adic spaces to be pairs X = (X , |X |), where X is an adic space and |X | is
a subset of (the underlying topological space of) X . The subset |X | of X is
called convex if for any chain of specializations

x1  x2  x3

in X such that x1, x3 ∈ |X |, it follows that x2 ∈ |X |. Moreover, |X | is
pro-constructible if it is closed in the constructible topology of X and locally
pro-constructible if it is pro-constructible in an open subset of X . A prepseudo-
adic space X is called pseudo-adic space if |X | is convex and locally pro-
constructible. In particular, any closed subset Z of an adic space Y defines a
pseudo-adic space. If Y is an adic space and Z is a subset of Y , we often use
the same letter Z to denote the prepseudo-adic space (Y ,Z ).
For the present work it would not be essential to work with the more gen-
eral pseudo-adic spaces instead of just adic spaces. The only pseudo-adic
spaces appearing naturally in the proof of cohomological purity are of the form
(Spa(k, k+), {s}), where k is a field, k+ a valuation ring of k and s the closed
point of Spa(k, k+). We could deal with these objects without introducing the
notion of a pseudo-adic space. However, in subsequent work we plan to treat
constructible sheaves and base change theorems. We expect that even if we are
only interested in adic spaces in the end, we will have to deal with pseudo-adic
spaces. For this reason many results in the first half of the present article are
formulated for pseudo-adic spaces for future reference.
In this article we will be especially interested in adic spaces that are locally
of the form Spa(A,A+) where A carries the discrete topology. We call this
type discretely ringed adic spaces. An important construction that produces
discretely ringed adic spaces is described in [Tem11], § 3.1. Starting with a
morphism of schemes X → S, Temkin constructs an adic space Spa(X,S).
The points of Spa(X,S) are triples (x,R, φ), where x is a point of X , R is
a valuation ring of k(x) and φ : SpecR → S is a morphism compatible with
Spec k(x) → S. In case S is separated, φ is uniquely determined (if it exists)
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The Adic Tame Site 879

by (x,R). The topology of Spa(X,S) is generated by the subsets Spa(X ′, S′)
of Spa(X,S) coming from commutative diagrams

X ′ X

S′ S

with X ′ → X an open immersion and S′ → S separated and of finite type. This
construction is compatible with Huber’s definition of the adic spectrum given in
[Hub93b]: If X = SpecA and S = SpecA+ are affine and the homomorphism
A+ → A is injective with integrally closed image, Spa(X,S) coincides with
Huber’s Spa(A,A+) (where A is equipped with the discrete topology).
Pulling back the structure sheaf of X via the support morphism

supp : X := Spa(X,S)→ X, (x,R, φ) 7→ x

we obtain a sheaf of rings OX on X = Spa(X,S) making X a locally ringed
space with

OX ,(x,R,φ) = OX,x.

For each point z = (x,R, φ) denote by vz the equivalence class of valua-
tions on k(x) corresponding to R. We obtain a discretely ringed adic space
(X ,OX , (vz | z ∈X )). Checking functoriality yields:

Lemma 2.1. The above assignment defines a functor

Spa : {morphisms of schemes} −→ {discretely ringed adic spaces}
(X → S) 7→ (X = Spa(X,S),OX , (vz | z ∈ X )).

mapping morphisms of affine schemes to affinoid adic spaces.

Where no confusion can arise we write Spa(X,S) for the adic space

(X = Spa(X,S),OX , (vz | z ∈X )).

An important property is the following observation.

Lemma 2.2. Let X → S′ be a morphism of schemes and S′ → S a proper
morphism of schemes. Then

Spa(X,S′) ∼= Spa(X,S).

Proof. As S′ → S is of finite type and separated, the natural morphism
Spa(X,S′) → Spa(X,S) is an open immersion. In order to check surjectiv-
ity, take a point (x,R, φ) ∈ Spa(X,S). The morphism φ : SpecR → S lifts
(uniquely) to a morphism φ′ : SpecR → S′ by the valuative criterion for
properness. Hence, (x,R, φ′) is a preimage in Spa(X.S′) of (x,R, φ).
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We have two natural morphisms of locally ringed spaces attached to a morphism
of schemes π : X → S that will appear throughout the article. The first one is
the support morphism

supp : (X = Spa(X,S),OX )→ (X,OX)

whose underlying morphism of topological spaces is the one mentioned earlier,
that sends (x,R, φ) to x. On the level of structure sheaves it is tautological
because OX is the pullback of OX by definition. The second morphism is the
center morphism

(c, c+) : (X = Spa(X,S),O+
X
)→ (S,OS).

The morphism c sends (x,R, φ) to the image of the closed point of SpecR under
the map φ : SpecR → S. It is continuous as the preimage of an open subset
S′ ⊆ S is the open subset Spa(X ×S S′, S′) of Spa(X,S). In order to define
the corresponding homomorphism of sheaves c+ : OS → c∗O

+
X

, we first note
that c∗OX is naturally identified with π∗OX as OX = supp−1

OX . Hence, the
homomorphism OS → π∗OX induces a functorial homomorphism

OS → c∗OX .

Lemma 2.3. The homomorphism OS → c∗OX factors through c∗O+
X

.

Proof. It is equivalent to show that the adjoint homomorphism c−1OS → OX

factors through O
+
X

. It suffices to check this for affinoid opens Spa(A,A+)
of X and the presheaf pullback cpOS .
The sections cpOS(Spa(A,A+)) are given as the colimit of OS(S

′) over all
commutative diagrams

Spa(A,A+) S′

X = Spa(X,S) Sc

(4)

with S′ an open subscheme of S:

cpOS(Spa(A,A
+)) = colim

S′

OS(S
′).

The homomorphism cpOS(Spa(A,A
+)) → OX (Spa(A,A+)) is the colimit of

the homomorphisms

OS(S
′) OX (Spa(X ×S S′, S′)) OX (Spa(A,A+))

OX(X ×S S′) A.
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We want to show that OS(S
′)→ A factors through

A+ = {a ∈ A | |a(x)| ≤ 1 ∀x ∈ Spa(A,A+)}.

Let x ∈ Spa(A,A+). By the commutativity of diagram (4), the valuation of A
corresponding to x has center on S′, which is equivalent to saying that |b(x)| ≤ 1
for all b ∈ OS(S

′). This implies the claim.

The resulting map
OS → c∗O

+
X

is the homomorphism c+ we wanted to define. It will play a crucial role when
computing the cohomology of O

+
X

in Section 10. Moreover, it is handy for
explaining the connection of Spa(X,S) with compactifications of X over S.
For the rest of the section assume that π : X → S is a separated morphism
of qcqs schemes. Recall from [Tem11], § 2.1 that an X-modification of S is a
factorization

X
πi−→ Si

gi−→ S

of π : X → S into a schematically dominant morphism πi and a proper mor-
phism gi. If π is an open immersion with dense image, these are just the usual
modifications of S outside X . By Lemma 2.2 we can identify all the spaces
Spa(X,Si) with X := Spa(X,S). The X-modifications of S form a cofiltered
inverse system compatible with the center maps

(ci, c
+
i ) : (X ,O+

X
) −→ (Si,OSi

).

The limit of the (Si,OSi
) exists in the category of locally ringed spaces and is

called the relative Riemann-Zariski space X = RZX(S) of π : X → S with its
sheaf of regular functions OX (see [Tem11], Remark 2.1.1). In a similar manner
as for classical Riemann-Zariski spaces, the relative Riemann-Zariski space X

also has a valuation theoretic description. With the above definitions we can
phrase it in the following way. There exists an embedding RZX(S)→ Spa(X,S)
of locally ringed spaces such that the composition

(X = RZX(S),OX)→ (X = Spa(X,S),O+
X
)→ (X,OX)

is the identity (where the latter morphism is the limit of the center maps). The
image of the first morphism consists of all points (x,R, φ) that do not admit
a non-trivial horizontal specialization (i.e. a specialization that has the same
center in every Si). We call these points Riemann-Zariski points. The above
stated assertions are not at all trivial and in fact are the main results of [Tem11].
Morally one should think of RZX(S) as a deformation retract of Spa(X,S).
If π : X → S is of finite type, RZX(S) is the limit over all compactifications
of X over S. Having moreover an interpretation in terms of valuations, it seems
well suited for the definition of a tame site. The main reason why we chose to
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work with Spa(X,S) instead of RZX(S) (even though it has many more points)
is that Spa(X,S) has better functorial properties. For a commutative square

Y X

T S

of schemes, the definition of the associated morphism Spa(Y, T ) → Spa(X,S)
is very natural. However, it does not take Riemann-Zariski points to Riemann-
Zariski points, in general. In order to obtain a morphism RZY (T )→ RZX(S),
we have to consider the composition

RZY (T )→ Spa(Y, T )→ Spa(X,S)→ RZX(S),

which is quite a complicated construction.

3 The strongly étale and the tame site

Recall from [Hub96], Definition 1.6.5 i) that a morphism of adic spaces Y →X

is étale if it is locally of finite presentation and if, for any Huber ring (A,A+),
any ideal I of A with I2 = {0}, and any morphism Spa(A,A+) → X , the
mapping

HomX (Spa(A,A+),Y )→ HomX (Spa(A,A+)/I,Y )

is bijective. In order to obtain a ring theoretic description we make the following
definition.

Definition 3.1. A homomorphism of Huber pairs (A,A+)→ (B,B+) is étale
if it is algebraically of finite type and A → B is étale (in the classical ring
theoretic sense).

If the topology of A is discrete, this boils down to B/A being étale and B+

being the integral closure in B of a finite type A+-subalgebra of B. Locally, an
étale homomorphism of adic spaces is isomorphic to a morphism Spa(B,B+)→
Spa(A,A+), coming from an étale morphism (A,A+)→ (B,B+) of Huber pairs
(see [Hub96], Corollary 1.7.3 iii)).
We want to consider étale morphisms with an additional valuation theoretic
constraint on the residue field extensions. In order to define them, let us recall
a bit of ramification theory for extensions of valued fields. Remember that we
are dealing with general valuations, not just discrete valuations of rank one. We
consider a finite extension of valued fields L|K and fix an algebraic closure L̄
of L and a prolongation v̄ of the valuation of L to L̄. We can compute the
strict henselizations Lsh and Ksh with respect to v̄ as subfields of L̄.
The extension L|K is called unramified if Lsh = Ksh. It is tame if the degree
of Lsh|Ksh is prime to the residue characteristic. If L|K is not unramified,
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we say that it is ramified and if it is not tame, it is wild. These notions are
independent of the choice of L̄ and v̄.
Unramified extensions L|K of valued fields are closely related to étale ring ho-
momorphisms as the following lemma shows. Because we use it in the proof, we
want to remind the reader of the concept of Prüfer domains. They are integral
rings such that all of their localizations at some prime ideal are valuation rings.
For us the most crucial property of a Prüfer domain A is that any A-algebra B
that sits between A and its quotient field K, A ⊆ B ⊆ K, is an intersection of
localizations Ap at a prime ideal p of A. Moreover, if the overring is a valua-
tion ring, it coincides with the localization of A at a unique prime ideal p (see
[Gil92], Theorem 26.1).

Lemma 3.2. Let L|K be a finite extension of valued fields and denote their
valuation rings by L+ and K+, respectively. Then L|K is unramified if and
only if L+ is the localization of an étale K+-algebra.

Proof. If L+ is the localization of an étale K+-algebra, it is clear from the
definition that L|K is unramified. Suppose that L|K is unramified. Then
L+ ⊆ L+sh = K+sh. Since L|K is finite, there is an étale K+-subalgebra A of
L+ whose quotient field is L. It contains the integral closure of K+ in L, which
is a Prüfer domain. Hence, A is a Prüfer domain itself and L+ is a localization
of A (see [Gil92], Theorem 26.1).

In case L|K is Galois, the notions of unramified and tame extensions can also be
defined via the action of the Galois group GL|K . Recall that the decomposition
group of GL|K with respect to the valuation vL of L is defined as follows

DL|K = {g ∈ GL|K | vL ◦ g = vL}.

It can also be interpreted as the Galois group of the extension of the henseliza-
tions Lh|Kh. By the definition of the decomposition group, we obtain an
induced action of DL|K on the residue field κL of the valuation ring L+ cor-
responding to vL. Inside the decomposition group there is a normal subgroup,
the inertia group

IL|K = {g ∈ DL|K | gx = x ∀x ∈ κL}.

If the characteristic p of κL is positive, the inertia group has a unique p-Sylow
subgroup, the wild inertia group RL|K , also known as ramification group. By
[Ray70], Chapitre X, Théorème 1, L|K is unramified if and only if the inertia
group IL|K is trivial. It is tame if and only if the wild inertia group RL|K is
trivial (see [EP05] Theorem 5.3.3)

Definition 3.3. A morphism of prepseudo-adic spaces f : Y → X is called
strongly étale (resp. tame) at a point y ∈ |Y | if f is étale at y and the
extension on residue fields k(y)|k(f(y)) is tamely ramified with respect to the
valuation | · (y)|. The morphism f is called strongly étale (resp. tame) if f is
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so at every point of Y . A homomorphism of Huber pairs (A,A+) → (B,B+)
is strongly étale (resp. tame) if it is étale and Spa(B,B+) → Spa(A,A+) is
strongly étale (resp. tame).

Recall that an affinoid field is a Huber pair (k, k+) such that k is a field, k+

a valuation ring of k, and the topology of k is either discrete or induced by
the valuation corresponding to k+. If the topology of k is non-discrete, k+

has a prime ideal p of height one and the topology is also generated by the
valuation corresponding to k+p (see [Hub96], Definition 1.1.4). In particular, k
is a non-Archimedean field. Note that when we say that (k, k+) is complete,
we are referring to completeness with respect to the given topology of k. In
particular, every affinoid field with discrete topology is complete.

Lemma 3.4. Let (k, k+) be a complete affinoid field. An étale morphism
Spa(A,A+)→ Spa(k, k+) is strongly étale if and only if k+ → A+ is étale.

Proof. By [Hub96], Cor. 1.7.3 iii) the ring homomorphism k → A is étale
and A+ is the integral closure of an open subring A′ of A which is of finite type
over k+. (Note that since k is a field, every étale homomorphism k → B is
finite étale. Hence, B is automatically complete). Therefore, we may assume
that A is a field and k → A is a finite separable field extension.
Then A+ is a Prüfer domain in A. In this case the center map

c : Spa(A,A+)→ SpecA+

is an isomorphism. Indeed, an inverse is given by mapping p ∈ SpecA+ to
(η,A+

p , φ), where η is the unique point of SpecA and φ : SpecA+
p → SpecA+

is the localization morphism.
If k+ → A+ is étale, it follows from Lemma 3.2 that every localization of A+

at some prime is unramified over the corresponding localization of k+. Since c
is an isomorphism, this means that Spa(A,A+)→ Spa(k, k+) is strongly étale.
Now assume that Spa(A,A+)→ Spa(k, k+) is strongly étale. Let p be a prime
ideal of A+ (corresponding via c to the point of Spa(A,A+) given by the val-
uation ring A+

p ). By Lemma 3.2, there is an étale k+-algebra B (contained
in A) such that A+

p = Bp. Modifying B we may assume that A+ ⊆ B and
SpecB → SpecA+ is an open immersion. This shows that SpecA+ → Spec k
is étale at p.

Let X be a prepseudo-adic space. We define the following sites over X called
the strongly étale site Xsét and the tame site Xt:

• The underlying categories of Xsét and Xt are the categories of strongly
étale and tame morphisms f : Y →X , respectively.

• Coverings are families {fi : Yi → Y }i∈I of strongly étale, respectively
tame, morphisms such that

|Y | =
⋃

i∈I

fi(|Yi|).
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In order to show that this definition makes sense, we have to convince ourselves
that tameness and strong étaleness are stable under compositions and base
change. But this follows by combining the corresponding stability results of
étaleness ([Hub96], Proposition 1.6.7) and extensions of valued fields ([EP05],
§5). In addition, it follows from the same references that a morphism between
two objects of Xsét (resp. Xt) is automatically strongly étale (resp. tame).
For a morphism of schemes X → S the tame site of X → S is defined to be
the tame site of Spa(X,S). Let us explain in what sense this models étale
morphisms of schemes that are tamely ramified at the boundary. Assume for
simplicity that X → S is a morphism of finite type of noetherian schemes.
The tame site of Spa(X,S) is generated by objects of the form Spa(Y, T ) →
Spa(X,S) induced by commutative squares of schemes

Y X

T S,

f

g

where f is étale and g is of finite type such that for every y ∈ Y mapping
to x ∈ X and every valuation v of k(y) with center on T , the field extension
k(y)|k(x) is tamely ramified with respect to v. We may further assume that
Y → T is separated. Then there exists a compactification Ȳ of Y over T
(see [Con07]). By the valuative criterion for properness, the natural morphism
Spa(Y, Ȳ ) → Spa(Y, T ) is an isomorphism. We may therefore take Y → T to
be an open immersion. We can view T as a sort of partial compactification
of Y over S. The tameness condition heuristically says that f should be tamely
ramified at points of T . More precisely, tameness at a point t ∈ T is encoded in
the tameness of Spa(f, g) at all points (y,R, φ) of Spa(Y, T ) with c(y,R, φ) = t
(c is the center morphism from above).

4 Openness of the tame locus

Our aim is to show that the strongly étale and the tame locus of an étale mor-
phism of adic spaces is open. The argument is similar to the one for Riemann-
Zariski spaces given in [Tem17]. First we prove that strongly étale morphisms
are locally of a standardized form just as étale morphisms of schemes are locally
standard étale. The proof of this statement follows the arguments given in [SP,
Tag 00UE].
Before we start let us introduce some notation. For a ring A with a valua-
tion v we define the following valuation v1 on the polynomial ring A[T ]. For a
polynomial f(T ) = fnT

n + . . .+ f0 we set

v1(f(T )) = max
i=0,...,n

v(fi).

It is easy to check that v1 is indeed a valuation. The index 1 stands for radius 1.
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There is a more general construction for arbitrary radius but we do not need
it here.

Proposition 4.1. Let ϕ : Y → X be an étale morphism of schemes, y ∈ Y
and w a valuation of k(y). Set x = ϕ(y) and v = w|k(x). Suppose that w is
unramified in the finite separable field extension k(y)|k(x). Then there exists
an affine open neighborhood SpecA of x and f, g ∈ A[T ] with f = T n +
fn−1T

n−1 + . . .+ f0 monic and f ′ a unit in

B = (A[T ]/(f))g

such that SpecB is isomorphic over A to an open neighborhood of y and
v1(f(T )) ≤ 1 and w(g) = 1 (viewing g as an element of B and w as a val-
uation of B).

Proof. We may assume that X = SpecA and Y = SpecB are affine. Denote
by p ⊆ A and q ⊆ B the prime ideals corresponding to x and y.
There exists an étale ring homomorphism A0 → B0 with A0 of finite type
over Z and a ring homomorphism A0 → A such that B = A ⊗A0

B0. Denote
the image of y in SpecB0 by y0 and the restriction of w to k(y0) by w0. Then
it suffices to prove the lemma for SpecB0 → SpecA0 and (y0, w0) instead of ϕ
and (y, w). Hence, we may assume that A is noetherian.
By Zariski’s main theorem there is a finite ring homomorphism A → B′, an
A-algebra map β : B′ → B, and an element b′ ∈ B′ with β(b′) /∈ q such that
B′
b′ → Bβ(b′) is an isomorphism. Thus we may assume that A → B is finite

and étale at q.
By Lemma 3.2 the valuation ring Ow ⊆ k(y) associated with w is a local ring of
an étale Ov-algebra, where Ov ⊆ k(x) is the valuation ring associated with v.
Hence, there are polynomials f̄ , ḡ ∈ Ov[T ] with f̄ monic and

f̄ ′ ∈
(

Ov[T ]/(f̄)
)×

ḡ
(5)

such that Ow is isomorphic over Ov to a local ring of
(

Ov[T ]/(f̄)
)

ḡ
. Then

v1(f̄(T )) ≤ 1, v1(ḡ(T )) ≤ 1, w(ḡ) = 1, and the image β ∈ Ow of T generates
the field extension k(q)|k(p).
Write

B ⊗A k(p) =
n
∏

i=1

Bi (6)

with local, Artinian rings Bi such that q corresponds to the maximal ideal
of B1, i.e. B1 = Bq/pBq = k(q). Denote by q2, . . . , qn the prime ideals of B
corresponding to the maximal ideals of B2, . . . , Bn, respectively. Consider the
element

b̄ = (β, 0, . . . , 0) ∈
n
∏

i=1

Bi = B ⊗A k(p).
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There is λ ∈ A whose residue class λ̄ ∈ k(p) is non-zero such that λ̄b̄ lies in the
image of B. After replacing A by Aλ, we may assume that λ ∈ A×. We can
thus lift b̄ to an element b ∈ B.
Let I be the kernel of the A-algebra homomorphism A[T ]→ B mapping T to b.
Set B′ = A[T ]/I and denote by q′ the preimage of q in B′. Then in the same
way as in [SP, Tag 00UE] we obtain B′

q′
∼= Bq. Therefore, we may replace B

by B′ and henceforth assume that

B = A[T ]/I.

The image Ī of I in k(p)[T ] is a principal ideal generated by a monic polyno-
mial h̄. According to the decomposition (6) we obtain a decomposition of h̄
into monic irreducible factors:

h̄ = h̄1 · h̄e22 · . . . · h̄enn .

In particular, h̄1 = f̄ , which is a separable polynomial.
Possibly replacing A by Aλ for λ ∈ A as before we can lift h̄ to a monic
polynomial f ∈ I. Similarly, by (5), we can lift some power of ḡ ∈ k(p)[T ] to
a polynomial g ∈ A[T ] of the form g = a1f + a2f

′ for some a1, a2 ∈ A[T ]. We
obtain a surjection

ϕ : A[T ]/(f)→ B = A[T ]/I

mapping g to an element b of B\q with w(b) = 1.
Since A → B is étale at q, there is b′ ∈ B\q such that A → Bbb′ is étale. We
can find a′ ∈ A such that v(a′) = w(b′) as w|v is unramified. Upon replacing A
by Aa′ we may assume that a′ ∈ A×. Then w(bb′/a) = 1. Choose a preimage g′

under ϕ of bb′/a′. Then ϕ induces a surjection

ϕg′ : (A[T ]/(f))g′ −→ Bϕ(g′) = Bbb′/a′ ,

Since both rings are étale over A, ϕg′ is moreover étale, hence a localization.
Modifying g′ further in the same way as above we achieve that ϕg′ is an iso-
morphism.

Corollary 4.2. Let ϕ : Y → X be an étale morphism of adic spaces and
y ∈ Y a point where ϕ is strongly étale. Then there exist an affinoid open
neighborhood Spa(A,A+) of x := ϕ(y), an affinoid open neighborhood V of y,
and f, g ∈ A[T ] with f = T n + fn−1T

n−1 + . . .+ f0 monic and f ′ a unit in

B = (A[T ]/(f))g

such that |fi(x)| ≤ 1, |g(y)| = 1 and V is X -isomorphic to Spa(B,B+)
where B+ is the integral closure of an open subring of B which is algebraically
of finite type over A+.
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Proof. We may assume that X = Spa(R,R+) and Y = Spa(S, S+) are affi-
noid. By [Hub96], Corollary 1.7.3 iii) étale morphisms are locally of alge-
braically finite type. More precisely, for every étale morphism Z → Spa(R,R+)
of affinoid adic spaces there is an étale ring map R → C of finite type and a
ring of integral elements C+ ⊆ C which is the integral closure of a subring of C
of finite type over C+ such that Z ∼= Spa(S, S+) over (R,R+). Hence, we may
assume that (R,R+)→ (S, S+) is of algebraically finite type and R→ S is étale
(in the algebraic sense). Denote by x the image point of y in X . By Propo-
sition 4.1 there exist an affine open neighborhood SpecA of suppx ∈ SpecR
and f, g ∈ A[T ] with f = T n + fn−1T

n−1 + . . . f0 monic and f ′ a unit in

B = (A[T ]/(f))g

such that SpecB is isomorphic over A to an open neighborhood of supp y,
|fi(x)| ≤ 1 and |g(y)| = 1.
Set U = Spa(R,R+) ×SpecR SpecA. This is an open subspace of X =
Spa(R,R+). By construction of the fiber product (see [Hub94], Proposi-
tion 3.8), U is glued together from affinoid adic spaces of the form Spa(A,A+

i )
for i ∈ N and where A+

i is the integral closure in A of a finite type R+-
subalgebra of A. Choose i ∈ N such that x ∈ Spa(A,A+

i ) and set A+ := A+
i .

Similarly, we find an open affinoid neighborhood of y in V = Spa(A,A+)×SpecA

SpecB of the form Spa(B,B+) such that B+ is the integral closure in B of a
finite type A+-subalgebra of B. This finishes the proof.

Corollary 4.3. Let ϕ : Y → X be an étale morphism of adic spaces. The
subset of Y where ϕ is strongly étale is open.

Proof. Let y ∈ Y be a point where ϕ is strongly étale and set x = ϕ(y). By
Corollary 4.2 we may assume that X = Spa(A,A+) and Y = Spa(B,B+)
as in the statement of the corollary. Then ϕ is strongly étale at any point
y′ ∈ Y with |fi(ϕ(y′))| ≤ 1 and |g(y′)| = 1. Indeed, set x′ = ϕ(y′) and denote
by f̄ and ḡ the residue classes of f and g in k(x′)[T ]. We obtain an étale ring
extension k(x′)+ →

(

k(x′)+[T ]/(f̄)
)

ḡ
. Since |g(y′)| = 1, k(y′)+ is a localization

of
(

k(x′)+[T ]/(f̄)
)

ḡ
. The subset {y′ ∈ Y | |fi(y′)| ≤ 1 ∀i, |g(y′)| = 1} of Y is

open and thus we are done.

Corollary 4.4. Let ϕ : Y → X be an étale morphism of adic spaces. The
subset of Y where ϕ is tame, is open.

Proof. We may assume that X = Spa(A,A+) and Y = Spa(B,B+) are affi-
noid. Let y ∈ Y be a point where ϕ is tame and set x := ϕ(y). By a gen-
eralization of Abhyankar’s lemma (see [GR03], Corollary 6.2.14) the extension
of the strict henselizations k(y)sh|k(x)sh takes the following form. There are
non-zero elements ā1, . . . , ān ∈ k(x)sh and integers m1, . . . ,mn prime to the
residue characteristic of k(x)+ such that

k(y)sh = k(x)sh[ā
1/m1

1 , . . . , ā1/mn
n ].
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We can replace the āi’s by any other elements of k(x)sh as long as their valuation
stays the same. Therefore, we may assume that āi ∈ k(x). Let m be the least
common multiple of the mi’s. Then any lift to k(x)[µm, m

√
ā1, . . . , m

√
ān] of the

valuation corresponding to x is unramified in

k(x)[µm,
m
√
ā1, . . . ,

m
√
ān]⊗k(x) k(y)

∣

∣ k(x)[µm
m
√
ā1, . . . ,

m
√
ān].

We may choose the āi as images of some ai ∈ A. Replacing Spa(A,A+) by
a rational open neighborhood of x we may further assume that ai ∈ A× and
that m is invertible on SpecA+. The ring homomorphism

A→ A′ := A[T0, T1, . . . , Tn]
/

(Φm(T0), T
m
1 − a1, . . . , Tmn − an),

where Φm denotes the m-th cyclotomic polynomial, is finite étale. Set X ′ :=
Spa(A′, A′+) where A′+ is the integral closure of A+ in A′. Then X ′ →X is
tame. Moreover,

Y
′ := Y ×X X

′ →X
′

is strongly étale at any lift of x to X ′. Fix such a lift x′ ∈ X ′. We find
a point y′ ∈ Y ′ lying over x′ as well as y ([Hub96], Corollary 1.2.3 iii) d)).
Denote by ϕ′ the morphism Y

′ →X
′ and by ψ the morphism X

′ → X . By
Corollary 4.3 there is an open neighborhood V ′ ⊆ Y ′ of y′ such that V ′ → X ′

is strongly étale. Then V ′ → X is tame. Since étale morphisms are open
([Hub96], Proposition 1.7.8), the image V of V ′ in Y is an open neighborhood
of y and moreover, V →X is tame.

5 Limits of adic spaces

In [Hub96], § 2.4 Huber defines the notion of a projective limit of adic spaces:
Let A be the category of quasi-compact, quasi-separated pseudo-adic spaces
with adic morphisms. We consider a functor p from a cofiltered category I
to A and write Xi for p(i). Let c : I → A be the constant functor to some
object X of A and

ϕ : c→ p, i 7→ (ϕi : X →Xi)

a morphism of functors. We say that X is a projective limit of the Xi and
write

ϕ : X ∼ lim
i

Xi

if the following conditions are satisfied:

1. Denote by limi |Xi| the projective limit in the category of topological
spaces. Then the natural mapping

ψ : |X | → lim
i
|Xi|

induced by ϕ is a homeomorphism.
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2. For every x ∈ |X |, there is an affinoid open neighborhood U of x such
that the subring

⋃

(i,V )

im(ϕ∗
i
: OX i

(V )→ OX (U ))

of OX (U ) is dense where the union is over all pairs (i,V ) with i ∈ I
and V an open subset of X i with ϕ

i
(U ) ⊆ V .

In this situation we have the following proposition ([Hub96], Proposition 2.4.4):

Proposition 5.1. Let

ϕ̃ : X̃ét × I → (X̃i,ét)i∈I

be the morphism of topoi fibered over I which is induced by the ϕ̃i : X̃ét →
X̃i,ét. Assume that ϕ : X ∼ limi Xi. Then (X̃ét, ϕ̃) is a projective limit of the
fibered topos (X̃i,ét)i∈I .

In order to prove this proposition Huber proceeds as follows: For each i ∈ I de-
note by Xi,ét,f.p. the restricted étale site, i.e. the site consisting of those objects
in Xi,ét whose structure morphisms are quasi-compact and quasi-separated
([Hub96], (2.3.12)). The topos associated with the projective limit site X→ of
the fibered site (Xi,ét,f.p.)i∈I is isomorphic to the projective limit of the fibered
topos (X̃i,ét)i∈I . Moreover, X̃ét is isomorphic to the topos associated with the
site Xét,g which is defined as follows ([Hub96], Remark 2.3.4 ii)): The objects
are the étale morphisms to X and the morphisms Y → Z are the equiva-
lence classes of X -morphisms Y ′ → Z where Y ′ is an open subspace of Y

with |Y ′| = |Y | and two morphisms are equivalent if they coincide on an open
subspace V of Y with |V | = |Y |. There is a natural morphism of sites

λ : Xét,g →X→
for which Huber proves that the conditions in the following proposition
([Hub96], Corollary A.5) are satisfied:

Proposition 5.2. Let f : C → C′ be a morphism of sites. The induced
morphism of topoi f̃ : C̃ → C̃′ is an equivalence if f satisfies the following
conditions.

(a) In C′ there exist finite projective limits and f−1 commutes with these.

(b) Every X ∈ ob(C) has a covering (Xi → X)i∈I in C such that every Xi ∈
ob(C) lies in the image of the functor f−1.

(c) A family (Xi → X)i∈I of morphisms in C′ is a covering in C′ if (f−1(Xi)→
f−1(X))i∈I is a covering in C.
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(d) For every X ∈ ob(C), Y ∈ ob(C′) and (ϕ : X → f−1(Y )) ∈ mor(C), there
exist a covering (ψi : Xi → X) ofX in C, and, for every i ∈ I a Yi ∈ ob(C′),
a (τi : Yi → Y ) ∈ mor(C′) and a (ϕi : Xi → f−1(Yi)) ∈ mor(C) such that,
for every i ∈ I the diagram in C

Xi f−1(Yi)

X f−1(Y )

ϕi

ψi f−1(τi)

ϕ

commutes and ϕi : Xi → f−1(Yi) is an epimorphism and a covering of
f−1(Yi) in C.

We are now going to prove an analogue of Proposition 5.1 for the tame and the
strongly étale topos:

Proposition 5.3. In the situation of Proposition 5.1 the topos (X̃sét, ϕ̃) is a
projective limit of the fibered topos (X̃i,sét)i∈I and (X̃t, ϕ̃) is a projective limit
of the fibered topos (X̃i,t)i∈I .

Proof. We check that the strongly étale and tame analogues λsét and λt of λ
satisfy the conditions of Proposition 5.2:
(a) is true because Xsét and Xt have fiber products and a terminal object.
(b) Let Z → X be strongly étale. In particular, it is étale. In the proof of
Proposition 5.1 Huber constructs an open covering Z =

⋃

j∈J Zj such that Zj

is X -isomorphic to an open subspace of Yi ×Xi
X for some i ∈ I (depending

on j) and ψi : Yi → Xi in Xi,ét,f.p. with |Zj | = |Yi ×Xi
X |. We have to find

k → i in I such that

ψk : Yk := Yi ×Xi
Xk →Xk

is strongly étale. By Corollary 4.3 for every k → i the set of points in |Yk|
where ψk is not strongly étale is closed, hence compact in the constructible
topology (note that |Yk| is locally pro-constructible by the definition of a
pseudo-adic space and quasi-compact as |Xk| is quasi-compact and Yk →Xk is
qcqs). Therefore, its image Dk in |Xk| is compact in the constructible topology
of |Xk|. We write Dc

k for the set Dk equipped with the constructible topology.
For a : k → k′ denote by

ua : X k →X k′

the transition map and by
uk : X →X k

the natural projection. Then ua and uk are continuous for the constructible
topology by [Hub93b], Proposition 3.8 (iv). Since the property of being strongly
étale is stable under base change,

ua(Dk) ⊆ Dk′ .
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Furthermore, the assumption that Z →X is strongly étale implies that

lim
k→i

Dc
k =

⋂

k→i

u−1
k (Dc

k) = ∅.

Since the projective limit of nonempty compact spaces is nonempty, there is
k → i such that Dc

k = ∅. In other words Yk → Xk is strongly étale. The
proof for the tame topology is the same except for using Corollary 4.4 instead
of Corollary 4.3.
(c) is obvious by the corresponding statement for the étale site and the proof
for (d) is the same as for the étale site.

Corollary 5.4. In the situation of Proposition 5.1 assume that i0 ∈ I is a
final object. Let F0 be a sheaf of abelian groups on Xi0,sét. For i ∈ I denote
by Fi its pullback to Xi,sét and by F its pullback to Xsét. Then the natural
map

colim
i∈I

Hp(Xi,sét,Fi) −→ Hp(Xsét,F)

is an isomorphism for all p ≥ 0. Moreover, the analogous statement holds for
the tame site.

Corollary 5.5. Let S be an adic space and τ ∈ {ét, t, sét}. In the situation
of Proposition 5.1 assume that Xi are adic spaces over S with compatible
quasi-compact quasi-separated structure morphisms gi : Xi → S . We write
g : X → S for the resulting morphism. For every i ∈ I let Fi be an abelian
sheaf on (Xi)τ and for all α : i→ j let ϕα : α∗Fj → Fi be compatible transition
morphisms. Denote by F the sheaf colimI ϕ

∗
iFi. Then for all p ≥ 0

Rpg∗F ∼= colim
I

Rpgi,∗Fi.

6 Localizations

6.1 Local adic spaces

Definition 6.1.

A Huber pair (A,A+) is local if A and A+ are local, A+ is the preimage of a
valuation ring k+A of the residue field kA of A, and the maximal ideal m+ of A+

is open and bounded.

A homomorphism of local Huber pairs (A,A+) → (B,B+) is local if A → B
and A+ → B+ are local ring homomorphisms.

For a local Huber pair (A,A+) the maximal ideal mA of A is contained in A+

and is indeed a prime ideal of A+. Moreover, A+/mA is the valuation ring k+A
mentioned in the definition and A+

mA
= A.
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Remark 6.2. The concept of a local Huber pair is closely related to the theory
of I-valuative rings introduced in [FK18], Chapter 0, § 8.7. A ring B is I-
valuative for an ideal I ⊆ B if the I-adic topology on B can be defined by
a finitely generated ideal of definition and in addition every finitely generated
ideal containing a power of I is invertible. Without loss of generality one can
always replace I by a finitely generated ideal of definition. If B is local and
I-valuative for a finitely generated ideal I, this automatically implies that I is
principal.
Recall from [Hub96], Definition 1.1.4, that a valuation ring O with quotient
field K is microbial if it has a prime ideal of height 1. Equivalently, K equipped
with the valuation topology has a topologically nilpotent unit u. In this case O

is u-valuative. Let us say that a local Huber pair (A,A+) is microbial if the
valuation ring k+ = A+/mA is microbial.
For a microbial Huber pair (A,A+) and a ∈ A+ such that its residue class
in k is topologically nilpotent, the ring A+ is a-valuative. Conversely, suppose
that we start with an I-valuative local ring B with I finitely generated, hence
principal, I = (b). Then p =

⋂

n I
n is a prime ideal of B and (Bp, B) is a

microbial local Huber pair. These constructions are inverse to each other up
to replacing I by some other finitely generated ideal that defines the same
topology (compare [FK18], Chapter 0, Theorem 8.7.8).

Lemma 6.3. Let (A,A+) be a local Huber pair. For every ideal a of A+ we
either have a ⊆ mA or mA ⊆ a. In case mA ( a and a is finitely generated, it
is even principal.

Proof. Suppose a * mA. So there is a ∈ a with a /∈ mA. In particular, a is a
unit in A. Let m ∈ mA. Then m′ := a−1m ∈ mA as mA is an ideal in A. This
implies m = am′ ∈ a.
For the second assertion let x ∈ Spa(A,A+) be the point corresponding to the
valuation ring k+A of kA. From a finite set of generators of a pick one, let us
call it a, with maximal valuation |a(x)|. Since mA ( a, a is not contained in
mA, i.e., |a(x)| > 0 and a is a unit in A. For another element b of a, we have

|a−1b(x)| ≤ |a−1a(x)| = 1.

Hence, a′ := a−1b is an element of A+ and b = a′a ∈ aA+.

Lemma 6.4. For a local Huber pair (A,A+), A+ is a ring of definition.

Proof. Let A0 be a ring of definition and I ⊆ A0 an ideal of definition. Then
I ⊆ m+ as m+ is open. By the boundedness of m+ and as IA+ ⊆ m+, we can
find n ∈ N with (IA+)n ⊆ I. In total we have

(IA+)n ⊆ I ⊆ IA+,

i.e., the topology of A+ is IA+-adic.

Lemma 6.5. Let (A,A+) be a local Huber pair. Then also its completion
(Â, Â+) is local.
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Proof. Suppose first that the maximal ideal mA of A is not open. Let I ⊆ A+

be an ideal of definition (A+ is a ring of definition by Lemma 6.4). Then
Lemma 6.3 implies mA ( In for all n ∈ N. The completion of (A,A+) thus
factors through (kA, k

+
A), where the topology coincides with the valuation topol-

ogy. The completion of a valuation ring is again a valuation ring, whence the
assertion in this case.
If mA is open, I ⊆ mA. In this case A carries the IA-adic topology because
IA ⊆ mA ⊆ A+ and thus

(IA)2 ⊆ IA+ ⊆ IA.

The completion Â of A is again local and Â+ contains the maximal ideal mÂ
of Â since this is true at every finite level A+/(IA)n ⊆ A/IA. Moreover,

Â+/mÂ = A+/mA = k+A

is a valuation ring. Finally, mÂ is open and bounded by construction.

Lemma 6.6. Let (A,A+) be a local Huber pair and (A,A+) → (B,B+) étale
such that B = B+⊗A+ A. If Spa(B,B+)→ Spa(A,A+) is strongly étale, then
A+ → B+ is étale.

Proof. By assumption A → B is étale and by Lemma 3.4 also A+/m →
B+/mB+ is étale. In particular, both morphisms are flat and of finite pre-
sentation and thus [Tem11], Lemma 2.3.1 implies that A+ → B+ is flat and
of finite presentation (the flatness is a consequence of the flattening result by
Raynaud and Gruson [RG71], Theorem 5.2.2). Let us show that A+ → B+

is unramified, i.e. that Ω1
B+/A+ = 0. Since A+/m → B+/mB+ is unramified,

Ω1
B+/A+ ⊗A+ A+/m = 0. It remains to show that mΩ1

B+/A+ = 0. But the
isomorphism m ∼= m⊗A+ A induces an isomorphism

mΩ1
B+/A+

∼= m(ΩB+/A+ ⊗A+ A)

and Ω1
B+/A+ ⊗A+ A = 0 as A→ B is unramified.

Remark 6.7. In case (A,A+) is microbial, the assertion of Lemma 6.6 also
follows from [FK18], Chapter 0, Proposition 8.7.12.

Lemma 6.8. An adic space X is the spectrum of a local Huber pair if and only
if X has a unique closed point x and any other point specializes to x.

Proof. Suppose that every point of X specializes to x. Then every affinoid
open neighborhood of x must contain all points of X . Hence X = Spa(A,A+)
for some Huber pair (A,A+), which we can moreover assume to be complete.
Let m ⊆ A denote the support of x. Suppose there is a maximal ideal m′ ⊆ A
different from m. By [Hub94], Lemma 1.4 there is a point y ∈ Spa(A,A+)
whose support is m′. But y does not specialize to x, hence A is local with
maximal ideal m.
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Let a be an element of A which is not contained in A+. We want to show
that a is a unit in A and 1/a ∈ A+. Then we are done by [KZ96], Theorem 2.5.
Let A+

a denote the integral closure of A+[1/a] in Aa. Then

R(
1

a
) = Spa(Aa, A

+
a )

is a rational subset of X . Since a /∈ A+, there is y ∈ X with |a(y)| > 1.
But y specializes to x and thus |a(x)| > 1. This implies x ∈ Spa(Aa, A

+
a ), so

Spa(Aa, A
+
a ) = X . Moreover, a /∈ m = suppx, i.e., a ∈ A×. For any point

z ∈ X we have |(1/a)(z)| ≤ 1. But

A+ = {b ∈ A||b(z)| ≤ 1 ∀z ∈X },

whence 1/a ∈ A+.

In view of the lemma we say that a pseudo-adic space X is local if X is the
adic spectrum of a local Huber pair and the closed point of X is contained
in |X |.

6.2 Henselian adic spaces

Definition 6.9. A Huber pair (A,A+) is henselian if it is local and A+ is
henselian.

In this subsection, we collect some properties of henselian Huber pairs.

Proposition 6.10. A local Huber pair (A,A+) is henselian if and only if
both A and k+A = A+/mA are henselian.

Proof. Without loss of generality we may assume that the topology of A is
discrete. Suppose A+ is henselian. Being a quotient of A+, it is clear that
k+A is henselian. In order to show that A is henselian, consider an étale homo-
morphism ϕ : A → B together with a maximal ideal mB of B over mA with
trivial residue field extension. We need to show that ϕ has a section. Upon
localizing B we may assume that mB is the only prime ideal of B lying over mA.
Let B+ be the preimage of k+A under the projection

B → B/mB ∼= A/mA = kA.

Then (B,B+) is a Huber pair and the valuation ring k+A →֒ B/mB determines
a closed point y ∈ Spa(B,B+) lying over the closed point x of Spa(A,A+).
Consider the multiplicative subset S = A+ \mA of A+. Since (A,A+) is local,
we know that A = S−1A+ and from the definition of B+ we conclude that
B = S−1B+.
Let us show that B+ is a finitely generated A+-algebra. Let b1, . . . , bn be
generators of B as an A-algebra. Since B = S−1B+, we may choose the bi to be
contained in B+. We claim that B+ = A+[b1, . . . , bn]. Every element of B+ can
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be written as a sum of an element of A+ and an element of mB. But mB = mAB
as A → B is étale and mB is the only prime ideal over mA. Therefore, we are
reduced to showing that every element of the form mb with m ∈ mA and
b ∈ B is contained in A+[b1, . . . , bn]. By assumption b = P (b1, . . . , bn) for some
polynomial P ∈ A[T1, . . . , Tn]. Then mb = mP (b1, . . . , bn) and the coefficients
of mP are contained in mA ⊆ A+, which is what we needed.
Next we check that for every point y′ of Spa(B,B+), the characteristic subgroup
cΓx′ ⊆ Γx′ of the image point x′ ∈ Spa(A,A+) generates cΓy′ as a convex
subgroup of Γy′ . Let b ∈ B with |b(y′)| > 1. We write b = b+/s with b+ ∈ B+

and s ∈ S. Then

1 < |b(y′)| = |(1/s)(y′)| · |b+(y′)| ≤ |(1/s)(y′)| = |(1/s)(x′)| ∈ cΓx′ ,

which proves the claim.
Let us now show that Spa(B,B+)→ Spa(A,A+) is strongly étale. We already
know it is étale and by Corollary 4.3 it is enough to show it is strongly étale
at the closed points. Let y′ ∈ Spa(B,B+) be a closed point mapping to x′ ∈
Spa(A,A+). Then cΓy′ = Γy′ . By the last paragraph, cΓx′ = Γx′ , i.e., there are
no horizontal specializations. Since (A,A+) is local, this means that either x′ is
a trivial valuation or the support of x′ equals mA. In the first case the strongly
étale condition at y′ is automatically satisfied. In the second case it follows as
the residue field extension k(mB)|k(mA) is trivial.
We can thus apply Lemma 6.6 to conclude that ϕ+ : A+ → B+ is étale (note
that B = S−1B+ = B+ ⊗A+ A). Let m+

B be the kernel of the surjection

B+ → B+/mB ∼= k+A → A+/m+
A.

It is a maximal ideal of B+ lying over m+
A whose residue field extension is

trivial. Since A+ is henselian, ϕ+ has a section σ+ : B+ → A+. But then
σ = σ+ ⊗B+ B is a section to ϕ.
Now assume that A and k+A are henselian. Let ϕ+ : A+ → B+ be an étale
homomorphism together with a maximal ideal m+

B of B+ over m+
A with trivial

residue extension. The base change of ϕ+ to k+A has a section σk as k+A is
henselian. It maps the generic point of Spec k+A to some point x ∈ SpecB+

with trivial residue field extension. Let

ϕ : A→ B = B+ ⊗A+ A

be the base change of ϕ+. Then SpecB ⊆ SpecB+ and x ∈ SpecB corresponds
to a maximal ideal mB of B lying over mA with trivial residue extension.
Since A is henselian, ϕ admits a section σ : B → A such that σ−1(mA) =
mB. Let us check that σ maps B+ to A+. Consider the following cocartesian
diagram with surjective rows.

B B ⊗A+ kA+ = B/mAB B/mB ∼= kA

B+ B+ ⊗A+ kA+ = B+/mAB k+A .
σk
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We learn from this diagram that the kernel of the lower horizontal map is
mB ∩ B+. Moreover every element of B+ can be written in the form m + a+

with m ∈ mB and a+ ∈ A+. In particular, this shows σ(B+) ⊆ A+. The
resulting homomorphism σ+ : B+ → A+ is a section to ϕ+.

Remark 6.11. 1. The first half of the proof of Proposition 6.10 can be
simplified considerably by resorting to the results of Section 11.3. We
start with an étale homomorphism A → B and mB ∈ SpecB over mA
with trivial residue field extension. Defining B+ to be the integral closure
of A+ in B we obtain an étale morphism Spa(B,B+)→ Spa(A,A+) and
a point y ∈ Spa(B,B+) with support mB lying over the closed point x
of Spa(A,A+) with trivial residue field extension. By Corollary 4.3 and
Corollary 11.16, there is an affinoid open neighborhood Spa(C,C+) ⊆
Spa(B,B+) such that (A,A+)→ (C,C+) is Cartesian (i.e., C ∼= C+⊗A+

A) and strongly étale. Then we proceed as in the proof of the proposition
concluding that A+ → C+ is étale and constructing a section.

2. In case the valuation ring k+ = A+/mA has finite rank n, the results of
Proposition 6.10 can also be deduced from [FK18], Chapter 0, Proposi-
tion 8.7.13. Assume that A and k+ are henselian. For i = 0, . . . , n let pi
be the prime ideal of A+ which is the preimage of the prime ideal of k+ of
height i. We start by choosing an element a ∈ p1 that is not contained in
p0 = mA. Then A+ is a-valuative (see [FK18], Chapter 0, Theorem 8.7.8)
and Proposition 8.7.13 in loc. cit. implies that A+

p1
is henselian. If we al-

ready know that A+
pi−1

is henselian, we can deduce by the same argument
and using an element a ∈ pi \ pi−1 that A+

pi
is henselian. So by induction

we obtain that A+ is henselian. The converse direction is similar.

Lemma 6.12. Let A be a henselian local ring and A → B an integral ring
homomorphism of local rings. Then the maximal ideal mB of B is integral
over mA, i.e., for every element b ∈ mB, there is a monic polynomial P ∈ A[T ]
whose non-leading coefficients are in mA such that P (b) = 0.

Proof. Let b ∈ mB and

P (T ) = T n + an−1T
n−1 + . . .+ a0

a monic polynomial in A[T ] of minimal degree such that P (b) = 0. Assume
that one of the coefficients ai is not contained in mA and let j be minimal with
aj /∈ mA. Because P (b) = 0 and b ∈ mB, we have a0 ∈ mB ∩ A = mA, whence
j > 0. Over the residue field kA of A we thus obtain a decomposition of the
reduction of P into two coprime factors:

P̄ (T ) = T j(T n−j + ān−1T
n−j−1 + . . .+ āj).

By Hensel’s lemma, it lifts to a decomposition of P into monic polynomials:

P (T ) = P1(T )P2(T ).
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The constant term of P2 is congruent to aj modulo mA, hence a unit in A. Since
b ∈ mB, this implies that P2(b) is a unit in B. Combining this information with
P (b) = 0, we conclude that P1(b) = 0, in contradiction to the minimality of
the degree of P .

Lemma 6.13. Let R → S be a finite ring homomorphism and assume that
SpecR and SpecS are connected. Then R→ S factors as

R→ T → S

with Spec T connected, R→ T finite and faithfully flat, and T → S surjective.

Proof. Let s1, . . . , sn be generators of S as an R-algebra. For each i = 1, . . . , n
we choose a monic polynomial Pi ∈ R[X ] with image P̄i ∈ S[X ] such that
P̄i(si) = 0. Then we obtain a factorization

R→ T ′ := R[X1, . . . , Xn]/(P1(X1), . . . , Pn(Xn))→ S.

The left hand map is finite and flat and the right hand map is surjective.
Since SpecS is connected, the image of SpecS → Spec T ′ lies entirely in one
connected component X of SpecT ′.
Let us recall the scheme structure of the connected component X (compare
[Laz67], § 4). Let p be a prime ideal of T ′ such that the corresponding point
of SpecT ′ is contained in X . The set M of idempotents of T ′ that are not
contained in p is partially ordered by divisibility, e ≤ e′ if and only if e|e′.
Then

X = Spec

(

colim
e∈M

T ′
e

)

= Spec

(

colim
e∈M

T ′/(1− e)T ′

)

,

where we have used the canonical identification T ′
e = T ′/(1− e)T ′. On the one

hand we have T := colime∈M T ′
e =M−1T ′, so T ′ → T is a localization. On the

other hand colime∈M T ′/(1 − e)T ′ = T ′/I, where I is the ideal generated by
all idempotents 1 − e with e ∈ M . This shows that T ′ → T is surjective and
exhibits X as a closed subscheme of Spec T ′.
Let us now show that the factorization R→ T → S has the required properties.
Clearly, the ring homomorphism T → S is again surjective. Moreover, the
composition R → T ′ → T is finite and flat since, as we have noted above,
T ′ → T is a surjective localization. By the connectedness of SpecR, we
conclude that R→ T is even faithfully flat.

Lemma 6.14. Let (A,A+) be a henselian Huber pair and (A,A+)→ (B,B+) a
homomorphism with A→ B integral and SpecB connected. Then also (B,B+)
is henselian.

Proof. Since A is henselian, the same holds for B. In order to complete the
proof, it suffices to show that B+ is the preimage in B of a henselian valuation
ring of kB = B/mB. As mA ⊆ A+, Lemma 6.12 implies that mB ⊆ B+.
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First we want to show that k+B := B+/mB is integrally closed. Suppose b̄ ∈ kB
is a zero of a monic polynomial P̄ (T ) ∈ k+B [T ]. We can lift b̄ to b ∈ B and P̄
to a monic polynomial P ∈ B+[T ]. Then P (b) ∈ mB ⊆ B+, so b is a zero of
the monic polynomial P (T )−P (b) in B+[T ]. But B+ is integrally closed in B.
Therefore b ∈ B+ and b̄ ∈ k+B .
The integral closure O of the henselian valuation ring k+A = A+/mA in kB is
again a henselian valuation ring. By the last paragraph, it is contained in k+B .
Therefore, k+B is a localization of O. In particular, it is a henselian valuation
ring, as well (see [EP05], Corollary 4.1.4).

Remember that a homomorphism of Huber pairs (A,A+) → (B,B+) with
(A,A+) complete is finite if A → B is finite and A+ → B+ is integral. Then
automatically (B,B+) is complete as well and the above lemma implies that if
(A,A+) is henselian, then also (B,B+).

Proposition 6.15. For a local pseudo-adic space X the following are equiv-
alent:

(i) X is the spectrum of a complete, henselian Huber pair.

(ii) For every finite morphism Y →X with Y connected, Y is local.

Proof. The implication from (i) to (ii) directly follows from Lemma 6.14. As-
sume that (ii) holds and write X = Spa(A,A+) for a complete Huber pair
(A,A+). We have to show that A+ is henselian. Let A+ → B+ be a finite ring
homomorphism and assume that SpecB+ is connected. Lemma 6.13 gives us
a factorization

A+ → C+
0 → B+,

where SpecC+
0 is connected, A+ → C+

0 is finite and faithfully flat, and C+
0 →

B+ is surjective. If we manage to show that C+
0 is local, we know that B+ is

local, as well.
Set C = C+

0 ⊗A+ A. Being the base change of the injective homomorphism
A+ → A along the flat homomorphism A+ → C+

0 , C+
0 → C is injective.

Let C+ be the integral closure of C+
0 in C. Then (A,A+) → (C,C+) is a

finite homomorphism of complete Huber pairs and Spa(C,C+) is connected.
By hypothesis, (C,C+) is local.
Consider the homomorphism C+

0 → C+. It is integral and injective. Hence,
SpecC+ → SpecC+

0 is surjective. We further know that C+ is local. But then
also C+

0 has to be local because the preimage of every closed point of SpecC+
0

in SpecC+ is nonempty and consists of closed points of SpecC+.

In order to obtain a geometric description of henselian Huber pairs, we intro-
duce the Nisnevich site of a pseudo-adic space X . The underlying category is
the category of strongly étale morphisms Y →X . Coverings are strongly étale
coverings (Ui → U )i∈I such that for every u ∈ |U | there is i ∈ I and ui ∈ |Ui|
such that the residue field extension of k(ui)+|k(u)+ is trivial (k(ui)|k(u) does
not need to be trivial). We denote the Nisnevich site of X by XNis.
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Lemma 6.16. For a pseudo-adic space X , the following conditions are equi-
valent:

(i) There is an x ∈ |X | such that for every strongly étale morphism of
pseudo-adic spaces f : Y → X and every y ∈ |Y | with f(y) = x and
trivial residue field extension of k(y)+|k(x)+, there is an open neighbor-
hood U of y such that f induces an isomorphism U → X .

(ii) X is local and every Nisnevich covering of X splits.

(iii) X is the spectrum of a henselian Huber pair and |X | contains the closed
point of X .

Proof. If (i) is true, x is the unique closed point of X as otherwise we get a
contradiction by taking for f an open immersion which is not an isomorphism.
Hence, X is local by Lemma 6.8. Moreover, it is clear by condition (i) that
every covering of X splits. This shows that (i) implies (ii).
Assuming (ii), X = Spa(A,A+) for a local Huber pair (A,A+). By Lemma 6.5,
we may assume that (A,A+) is complete. Let us show that A+ is henselian.
Let A+ → B+ be étale such that SpecB+ is connected and contains a maximal
ideal m+

B mapping to m+
A ∈ SpecA+ with trivial residue field extension. Set

B = B+ ⊗A+ A. Then B+ is integrally closed in B as this property is stable
under smooth base change. Furthermore,

(A,A+)→ (B,B+)

is a strongly étale morphism of Huber pairs by Lemma 3.4. Since A+ → B+

is flat, there is a prime ideal m′
B of B+ specializing to m+

B and mapping to
mA ∈ SpecA+. By definition B = (A+ \mA)−1B+ and mB := (A+ \mA)−1m′

B

is an ideal of B. As mB ∩ A = mA and A→ B is étale, mB is a maximal ideal
of B. Choose a valuation of B with support mB and center m+

B. It is automat-
ically continuous by the characterization given in [Hub93b], Theorem 3.1. The
corresponding point y ∈ Spa(B,B+) maps to the closed point x of Spa(A,A+)
and the residue field extension k(y)+|k(x)+ coincides with the residue field
extension k(m+

B)|k(m+
A), i.e., it is trivial.

Let U ⊆ Spa(A,A+) be the complement of the closed point. Then

Spa(B,B+) ∐U → Spa(A,A+)

is a Nisnevich covering. By assumption it splits. The image of the splitting lies
in Spa(B,B+) as U does not contain the closed point of Spa(A,A+). Since we
assumed SpecB+ (and hence Spa(B,B+)) to be connected, (B,B+) = (A,A+).
In particular, B+ = A+, so A+ is henselian.
Assume that (iii) holds. We write X = Spa(A,A+) for a complete, henselian
Huber pair (A,A+) and denote the closed point of X by x. Let f : Y → X

be a strongly étale morphism and y ∈ |Y | with f(y) = x such that the residue
field extension of k(y)+|k(x)+ is trivial. Replacing Y by an open neighbor-
hood of y we may assume that Y is affinoid and connected. By [Hub96],
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Corollary 1.7.3 iii), there is a Huber pair (B,B+) of algebraically finite type
over (A,A+) such that A→ B is étale and Y ∼= Spa(B,B+). By Zariski’s main
theorem, there is a finite A-algebra C and an A-homomorphism C → B such
that SpecB → SpecC is an open immersion. Let C+ be the integral closure
of A+ in C. We obtain a diagram

Spa(B,B+) Spa(C,C+)

Spa(A,A+).

By Proposition 6.15, Spa(C,C+) is local with closed point z. Since
Spa(C,C+) → Spa(A,A+) is finite, z is the only point mapping to the closed
point x ∈ X . Therefore, y = z and (B,B+) = (C,C+).
Since Spa(B,B+)→ Spa(A,A+) is strongly étale, k+B = B+/mB is unramified
over k+A . By Lemma 3.4, k+B is thus étale over k+A . Moreover, the residue field
extension of k+B |k+A is trivial. But k+A is henselian, whence k+B = k+A . It follows
that kB = kA and since A is henselian and A → B is finite étale, we obtain
B = A. Finally B+ = A+ holds because B+ is the integral closure of A+

in B.

Definition 6.17. We call an adic space henselian if it satisfies the equivalent
conditions of Lemma 6.16. A Nisnevich point is a henselian pseudo-adic space ξ
such that ξ is the spectrum of an affinoid field and |ξ| = {s} where s is the
closed point of ξ.

6.3 Strongly and tamely henselian adic spaces

We now move on to the strongly étale and tame topologies.

Definition 6.18. Let (A,A+) be a Huber pair.

(i) (A,A+) is strongly henselian if it is local and A+ is strictly henselian.

(ii) (A,A+) is tamely henselian if it is strongly henselian and the value group
of the associated valuation v is a Z[ 1p ]-module, where p denotes the residue
characteristic of A+.

We have an analog of Lemma 6.16:

Lemma 6.19. For a pseudo-adic space X , the following conditions are equiv-
alent:

(i) There is x ∈ |X | such that for every strongly étale (tame) morphism of
pseudo-adic spaces f : Y → X and every y ∈ |Y | with f(y) = x there
is an open neighborhood U of y such that f induces an isomorphism
U →X .
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(ii) X is local and every strongly étale (tame) covering of X splits.

(iii) X is the spectrum of a strongly (tamely) henselian Huber pair and |X |
contains the closed point of X .

Proof. The implication from (i) to (ii) is proved in the same way as in
Lemma 6.16.
Assuming (ii), we can write X = Spa(A,A+) for a complete, henselian Huber
pair (A,A+) by Lemma 6.16. Let us show that A+ is strictly henselian. Let
A+ → B+ be finite étale and set B = B+⊗A+ A. Then B+ is integrally closed
in B as this property is stable under smooth base change. Furthermore,

ϕ : (A,A+)→ (B,B+)

is a finite strongly étale morphism of Huber pairs by Lemma 3.4. By assump-
tion, ϕ splits. This implies (iii) in the strongly étale case.
In the tame case it remains to show that the value group Γ of the valuation | · |
corresponding to the closed point of X is divisible by all integers prime to the
residue characteristic of A+. Take γ ∈ Γ and an integer m prime to the residue
characteristic of A+. We have to find γ′ ∈ Γ with mγ′ = γ. We may assume
that γ ≤ 1. Otherwise we replace γ by its inverse. Take a ∈ A with |a| = γ.
Then a ∈ A× ∩ A+. Set

B+ = A+[T ]/(Tm − a) and B = B+ ⊗A+ A = A[T ]/(Tm − a).

We obtain a finite tame homomorphism ϕ : (A,A+) → (B,B+). By assump-
tion, ϕ splits. Let σ : (B,B+) → (A,A+) be a splitting. Then σ(T ) is an
element of A with valuation equal to γ′.
In order to show that (iii) implies (i) assume that X equals the spectrum of a
strongly (tamely) henselian Huber pair (A,A+) and that the closed point x of
X is contained in |X |. Let f : Y →X be a strongly étale (tame) morphism
and y ∈ |Y | with f(y) = x. Replacing Y by an open neighborhood of y we
may assume that Y is affinoid and connected. By the same arguments as in
Lemma 6.16, we obtain that Y = Spa(B,B+) for (B,B+) finite over (A,A+).
In the strongly étale case, k+B = B+/mB is unramified over k+A . By Lemma 3.4,
k+B is thus étale over k+A . But k+A is strictly henselian, whence k+B = k+A . In the
tame case kB|kA is a tame extension of strictly henselian valued fields. Denote
by ΓA and ΓB the value groups of the valuations corresponding to k+A and k+B ,
respectively. By [GR03], Corollary 6.2.14, kB|kA is galois of degree prime to
the residue characteristic p of k+A and

ΓB/ΓA ∼= HomZ(Gal(kB |kA), µ(kA)).

But ΓA is divisible by every integer prime to p. Therefore, k+B = k+A also in
this case.
It follows that kB = kA and since A is henselian and A → B is finite étale,
we obtain B = A. Finally B+ = A+ holds because B+ is the integral closure
of A+ in B.
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Definition 6.20. A prepseudo-adic space X is called strongly (tamely) lo-
cal or strongly (tamely) henselian if X satisfies the equivalent conditions of
Lemma 6.19. A strongly étale (tame) point (in the category of prepseudo-adic
spaces) is a strongly (tamely) local pseudo-adic space ξ such that ξ is the
spectrum of an affinoid field and |ξ| = {s} where s is the closed point of ξ.

In [Hub96], Proposition 2.3.10 Huber proves the following:

Proposition 6.21. Let X be an adic space and x a point of X . Let K be the
henselization of k(x) with respect to the valuation ring k(x)+. Then the étale
topos (X , {x})∼ét of the pseudo-adic space (X , {x}) is naturally equivalent to
the étale topos (SpecK)∼ét.

Restricting to the Nisnevich, strongly étale, and tame site, respectively, we
obtain:

Corollary 6.22. In the situation of Proposition 6.21 let K+ be an extension
of k(x)+ to K. Let Knr and Kt be the maximal extensions of K where K+

is unramified and tamely ramified, respectively. Set Gnr = Gal(Knr|K) and
Gt = Gal(Kt|K). Then the strongly étale topos (X , {x})∼

sét
of (X , {x}) is

naturally equivalent to the topos (SpecK+)∼ét, which in turn is equivalent to
the topos of Gnr-sets, and the tame topos (X , {x})∼t is naturally equivalent
to the Gt-sets. The Nisnevich topos of (X , {x}) is trivial.

Corollary 6.23. For every strongly étale point S the global section functor

Γ(S ,−) : S̃sét → sets

is an equivalence of categories. Analogously for tame and Nisnevich points.

Definition 6.24. For a strongly étale point u : ξ → X of a prepseudo-adic
space X and a sheaf F on X̃ét we define the stalk of F at ξ:

Fξ := Γ(ξ, u∗F)

and for tame and Nisnevich points and sheaves accordingly.

For a strongly étale or tame point u : ξ →X of a prepseudo-adic space X we
consider the category Cξ of pairs (V , v) where V is an object of the strongly
étale or tame site, respectively, and v : ξ → V is a morphism over X . For
a Nisnevich point u : ξ → X the category Cξ consists of pairs (V , v) with
V → X strongly étale and v : ξ → V a morphism over X satisfying the
following condition: Let x ∈ X and y ∈ V be the respective images of ξ.
Then the residue field extension of k(y)+|k(x)+ is trivial. Similarly, for a point
ξ ∈ X , we define the category Cξ of open neighborhoods of ξ.
The same argument as for the étale site (see [Hub96], Lemma 2.5.4) shows:
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Lemma 6.25. In all cases the category Cξ is cofiltered. For every presheaf P
on X , XNis, Xsét or Xt, respectively, there is a functorial isomorphism

(aP)ξ ∼= colim
(V ,v)∈Cξ

P(V ),

where aP denotes the sheaf associated with P .

Over every point x ∈ |X | we can choose a geometric point

x̄ := (Spa(k̄(x), k̄(x)+), {s})

such that k̄(x) is a separable closure of k(x) (see [Hub96], (2.5.2)). Restricting
to the henselization, the maximal unramified, and the maximal tamely ramified
extension, respectively, yields a Nisnevich, a strongly étale, and a tame point

xNis = (Spa(kh(x), kh(x)
+), {sh}) xsét = (Spa(knr(x), knr(x)

+), {ssét}),
xt = (Spa(kt(x), kt(x)

+), {st}),

where knr(x) and kt(x) are the maximal unramified and maximal tamely ram-
ified subextensions of k̄(x)|k(x) and kh(x) is the henselization of k(x). From
Lemma 6.25 we conclude that there are enough points:

Corollary 6.26. The families of functors

(X̃Nis → sets,F 7→ FxNis
)x∈|X |, (X̃sét → sets ,F 7→ Fxsét

)x∈|X |

and (X̃t → sets ,F 7→ Fxt
)x∈|X |

are conservative.

Proof. Let F be a sheaf on Xsét and assume that Fxsét
= 0 for all x ∈ |X |.

Take a strongly étale morphism f : U → X and an element a ∈ F(U ). By
Lemma 6.25 we find for each u ∈ |U | a strongly étale neighborhood U (u)→X

of f(u)sét factoring through (U , u) such that a|U (u) = 0. The U (u) → U

comprise a covering of U , whence a = 0. For the other topologies the proof is
the same.

The last part of this section is dedicated to localizations of adic spaces in the
various topologies we are studying. The constructions and the proofs of the
resulting properties are analogous to the case of the strict localization treated
in [Hub96], § 2.5. We thus allow ourselves to omit the proofs.
Let ξ →X either be a set theoretic point, a Nisnevich point, a strongly étale,
or a tame point of X . In each of the four cases we consider the respective
category Cξ defined above and define the localization Xξ as follows. We set

OX ,ξ := colim
(V ,v)∈Cξ

OV (V ),

O
+
X ,ξ := colim

(V ,v)∈Cξ

O
+
V
(V ).
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and equip these rings with the following topology: Let (V , v) be an object
of Cξ with V affinoid. Choose an ideal of definition I of a ring of definition of
OV (V ) and take

{In · O+
X ,ξ | n ∈ N}

to be a fundamental system of neighborhoods of zero. As in [Hub96], (2.5.9)
this topology is independent of the choice of (V , v) and I and (OX ,ξ,O

+
X ,ξ) is

a sheafy Huber pair. Put

X ξ := Spa(OX ,ξ,O
+
X ,ξ)

and
|Xξ| :=

⋂

(V ,v)∈Cξ

ϕ−1
(V ,v)

(|V |),

where ϕ
(V ,v)

is the natural morphism X ξ → V . We obtain a local (respec-
tively henselian, respectively strongly henselian, respectively tamely henselian)
prepseudo-adic space

Xξ := (X ξ, |Xξ|).
We call Xξ the localization (respectively henselization, respectively strong
henselization, respectively tame henselization) of X at ξ. Let Dξ be the full
(cofinal) subcategory of Cξ consisting of those pairs (V , v) in Cξ with affi-
noid V and quasi-compact |V |. Then Xξ is a projective limit of the spaces V

for (V , v) ∈ Dξ in the sense of [Hub96], (2.4.2). In particular, the results of
Section 5 apply.
We want to give a more explicit, ring theoretic description of the localization
described above. Let (A,A+) be a Huber pair and I an ideal of definition of a
ring of definition of A. For a point x ∈ Spa(A,A+) we define the localization
(Ax, A

+
x ) by defining Ax to be the localization of A at the support of x and A+

x

to be the preimage in Ax of the valuation ring k(x)+ ⊆ k(x). We equip (Ax, A
+
x )

with the topology such that InA+
x for n ∈ N form a basis of neighborhoods of

zero. Then (Ax, A
+
x ) is a local Huber pair.

Given a Nisnevich point

ξ = (Spa(k, k+), {s})→X

with image x ∈ X , we define the henselization (Ahξ , A
h+
ξ ) at ξ: Let Ahx be the

henselization of Ax. Denoting the maximal ideals of Ax and Ahx by mx and mhx,
respectively, we have a natural isomorphism of residue fields

kAx
= Ax/mx ∼= Ahx/m

h
x = kAh

x
.

Via this identification, the valuation ring k+Ax
= A+

x /mx corresponds to a val-
uation ring k+

Ah
x

with quotient field kAh
x
. The morphism ξ → X induces a

morphism of Huber pairs

(kAh
x
, k+
Ah

x
)→ (k, k+).
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As k+ is henselian, we can consider the henselization of k+
Ah

x
as a subring k+

Ah
ξ

⊆
k+. By [Nag53], Theorem 8, k+

Ah
ξ

is again a valuation ring and we denote

its quotient field by kAh
ξ
. Then kAh

ξ
|kAh

x
is a separable extension and as Ahx

is henselian, there is a unique ind-étale, integral extension Ahx → Ahξ whose
residue field extension is kAh

ξ
|kAh

x
. Writing Ah+ξ for the preimage of k+

Ah
ξ

in Ahξ ,

we obtain the henselization (Ahξ , A
h+
ξ ) of (A,A+) at ξ (with topology defined

in the same way as for (Ax, A
+
x )).

Note that by construction, k+
Ah

ξ

and Ahξ are henselian. Therefore, Ah+ξ is

henselian by Proposition 6.10. Moreover, A+
x → Ah+ξ is ind-étale. We conclude

that Ah+ξ is the henselization of A+
x at its maximal ideal and Ahξ = Ah+ξ ⊗A+

x
Ax.

We could have taken this as a definition of the henselization of (A,A+). How-
ever, it would have been difficult to see directly that (Ahξ , A

h+
ξ ) is local without

resorting to the theory of Prüfer extensions that we only explain in Section 11.

Next, if ξ is even a strongly étale point, we can define the strong henselization
of (A,A+) at ξ. Let Ash+

ξ be the strict henselization of Ah+ξ and set

Ash
ξ = Ash+

ξ ⊗A+ A = Ash+
ξ ⊗Ah+

ξ
Ahξ .

Then Ahξ → Ash
ξ is an integral, ind-étale extension of local rings and Ash+

ξ

is integrally closed in Ash
ξ . Using Lemma 6.14, we conclude that (Ash

ξ , A
sh+
ξ )

is strongly henselian. Equipped with the topology defined by the ideal I as
before, (Ash

ξ , A
sh+
ξ ) is the strong henselization of (A,A+) at ξ.

Finally, assume that ξ is also a tame point. We define the tame henselization
of (A,A+) at ξ = (Spa(k, k+), {s}) as follows. Let ktξ be the maximal tamely
ramified subextension of k|kshξ and denote by kt+ξ the corresponding valuation
ring of ktξ. Let Ash

ξ → Atξ be the unique ind-étale extension with residue field
extension kshξ → ktξ. Denote by At+ξ the preimage of kt+ξ in Atξ. Then (Atξ, A

t+
ξ )

is the tame henselization of (A,A+) at ξ (with topology as before).

Proposition 6.27. Let X be a prepseudo-adic space, ξ →X a set theoretic
point (respectively Nisnevich, strongly étale, or tame point) of X with image
x ∈ |X |.

(i) Assume x is analytic. Consider the natural morphisms

p : Spa(k(x), k(x)+)→X , pNis : Spa(kh(x), kh(x)
+)→X ,

psét : Spa(knr(x), knr(x)
+)→X , pt : Spa(kt(x), kt(x)

+)→X .
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Then

Xξ
∼= (Spa(k(x), k(x)+), p−1(|X |)),

Xξ
∼= (Spa(kh(x), kh(x)

+), p−1
h (|X |)),

Xξ
∼= (Spa(knr(x), knr(x)

+), p−1
sét

(|X |)), or

Xξ
∼= (Spa(kt(x), kt(x)

+), p−1
t (|X |)),

according to whether ξ is a set theoretic, a Nisnevich, a strongly étale, or
a tame point of X .

(ii) Assume that x is non-analytic. Take an affinoid open neighborhood
U = Spa(A,A+) of x. Let (B,B+) be the localization (respectively
henselization, strong henselization, or tame henselization) of (A,A+) with
respect to ξ. Let p be the natural morphism Spa(B,B+)→X . Then

Xξ
∼= (Spa(B,B+), p−1(|X |)).

Proof. The argument is the same as in the proof of the corresponding statement
for the étale site ([Hub96], Proposition 2.5.13).

7 Topological invariance

Let τ ∈ {sét, t, ét} be one of the topologies. In this section we prove some
assertions concerning the topological invariance of the τ -cohomology. They are
in analogy with the respective results concerning the étale topology.

Proposition 7.1. Let X → Y be a morphism of adic spaces which induces
an isomorphism on the underlying reduced adic spaces. Then

U 7→ U ×Y X

defines an isomorphism of sites Xτ → Yτ . In particular, the topoi Sh(Xτ )
and Sh(Yτ ) are equivalent.

Proof. Without loss of generality we may assume that X and Y are affinoid.
Moreover, it suffices to prove that U 7→ U ×Y X defines an equivalence of
the subcategories of affinoid spaces in Xτ and Yτ , respectively. The general
statement follows by gluing. Write X = Spa(A,A+) and Y = Spa(B,B+).
By [Hub96], Corollary 1.7.3, the affinoid adic spaces that are étale over X

are precisely the open subspaces of adic spaces of the form Spa(R,R+) with R
étale over A and R+ the integral closure of A+ in R and analogously for Y .
By [EGA4.4], 18.1.2, the assignment S 7→ S ⊗B A defines an equivalence of
the categories of étale B-algebras and étale A-algebras. Moreover, for S étale
over B and S+ the integral closure of B+ in S, the categories of open subspaces
of Spa(S, S+) and Spa((S, S+)⊗(B,B+)(A,A

+)) are equivalent as the underlying
topological spaces of Spa(S, S+) and Spa((S, S+)⊗(B,B+)(A,A

+)) are naturally
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homeomorphic. We conclude that Xét and Yét are equivalent. In order to see
that this is also true for the tame and strongly étale sites it suffices to note that
the properties of being tame or strongly étale only depend on the underlying
reduced subspaces.

The following two results are analogs of the excision theorems in étale coho-
mology. They concern the τ -cohomology of an adic space with support on a
Zariski closed subspace. Cohomology groups with support are defined, more
generally, for a closed subspace Z of a pseudo-adic space X . Writing U for
the complement of Z , the cohomology groups with support Hi

Z
(Xτ ,F) of a

sheaf F on Xτ are the cohomology groups of the derived functor of

F 7→ ker(F(X )→ F(U )).

Lemma 7.2. Consider the following commutative diagram of adic spaces

Z ′
red

X ′

Zred X

∼ π

where Z ′ → X ′ and Z →X are closed immersions, π is a morphism in Xτ ,
and Z ′

red
→ Zred is an isomorphism. Then for any sheaf F on Xτ and any

i ≥ 0 we have
Hi

Z (Xτ ,F) ∼−→ Hi
Z ′(X ′

τ ,F|X ′).

Proof. The proof is the same as for the étale topology on schemes (see [Fu15],
Proposition 5.6.12).

Proposition 7.3. Let X be an adic space and x ∈ X a Zariski-closed point
(i.e., x = Spa(k(x), k(x)) and Spa(k(x), k(x)) → X is a closed immersion).
Then for any sheaf F on Xτ and any i ≥ 0 we have

Hi
x(Xτ ,F) = Hi

x((X
h
x )τ ,F),

where X h
x denotes the henselization of X at x.

Proof. As τ -cohomology commutes with limits by Corollary 5.4, we have

Hi
x((X

h
x )τ ,F) = colim

(Y ,y)→(X ,x)
Hi
y(Yτ ,F),

where the colimit runs over all pointed étale morphisms (Y , y)→ (X , x) such
that k(y) = k(x). We can as well restrict to pointed morphisms (Y , y) →
(X , x) in Xτ as every étale morphism (Y , y) → (X , x) as above is strongly
étale, hence tame, at y and the strongly étale locus is open (Corollary 4.3).
For a pointed morphism (Y , y)→ (X , x) in Xτ with k(y) = k(x) we know by
Lemma 7.2 that

Hi
y(Yτ ,F) = Hi

x(Xτ ,F).
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8 Comparison with étale cohomology

Lemma 8.1. Let (A,A+) be a henselian Huber pair. Denote by k the residue
field of A and by κ the residue field of A+. Choose a separable closure k̄ of k
and denote by v̄ the continuation of the valuation of k corresponding to the
closed point of Spa(A,A+). This defines a geometric point ξ → Spa(A,A+)
which we can also view as tame and strongly étale point. Write kt for the
maximal subextension of k̄|k where v̄ is tamely ramified. Then for any abelian
sheaf F on Spa(A,A+)ét and any i ≥ 0

Hi(Spa(A,A+)ét,F) = Hi(Gk,Fξ),

for any sheaf F on Spa(A,A+)sét and any i ≥ 0

Hi(Spa(A,A+)sét,F) = Hi(Gκ,Fξ),

and for any sheaf F on Spa(A,A+)t and any i ≥ 0

Hi(Spa(A,A+)t,F) = Hi(Gal(kt|k),Fξ).

Proof. This follows using the Hochschild-Serre spectral sequence for Gk, Gκ
(which can be identified with the Galois group of the maximal unramified
subextension of k̄|k) and Gal(kt|k), respectively.

For a prepseudo-adic space X we write char+(X ) for the set of characteristics
of the residue fields of O

+
X ,x for x ∈ |X |.

Proposition 8.2. Let X be a prepseudo-adic space and F a torsion sheaf on
Xét with torsion prime to char+(X ). Then the morphism of sites ϕ : Xét →Xt

induces isomorphisms

Hi(Xt, ϕ∗F) ∼−→ Hi(Xét,F)

for all i ≥ 0.

Proof. We have to show that for any tamely henselian (A,A+) and any torsion
sheaf G on (A,A+)ét with torsion prime to the residue characteristic p of A+,
the cohomology groups

Hi(Spa(A,A+)ét,G)

vanish for all i ≥ 1. By Lemma 8.1 these cohomology groups equal

Hi(Gk,Gξ),

where k and ξ are defined as in Lemma 8.1. But Gk is a pro-p-group (see
[EP05], Theorem 5.3.3) and Gξ is a torsion Gk-module with torsion prime to p.
Therefore, the above cohomology groups vanish.
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Lemma 8.3. Let X → S be a morphism of schemes and F a torsion sheaf
on Xét. Then the morphism of sites

ψ : Spa(X,S)ét → Xét

induces isomorphisms

Hi(Xét, ψ
∗F) ∼−→ Hi(Spa(X,S)ét,F).

for all i ≥ 0.

Proof. If X and S are affine, the result is a special case of [Hub96], Theo-
rem 3.3.3. Let us now assume that S is affine and X is arbitrary. By virtue of
the Leray spectral sequence associated with ψ, it suffices to show

ψ∗ψ
∗F ∼→ F and Riψ∗(ψ

∗F) = 0 for i > 0.

These assertions are local on X . Hence, we are reduced to the affine case.
The next step is to only require S to be separated. We choose an open cover-
ing U of S by affine schemes Si. It induces an open covering V of Spa(X,S) by
the open subspaces

Spa(X ×S Si, Si) ⊆ Spa(X,S).

We obtain a morphism of Čech-to-derived spectral sequences

Ȟi(U ,Hj(F)) Hi+j(X,F)

Ȟi(V ,Hj(ψ∗F)) Hi+j(Spa(X,S), ψ∗F).

The separatedness assumption assures finite intersections of the Si to be affine.
Therefore, we can use the previous case to conclude that all vertical morphisms
on the left are isomorphisms. Hence, the right vertical morphism is an isomor-
phism. The general case follows from the case where S is separated by the
same argument using a covering of S by separated open subschemes.

Combining Lemma 8.3 with Proposition 8.2 we obtain:

Corollary 8.4. Let X → S be a morphism of schemes and F a torsion
sheaf on Xét with torsion prime to the residue characteristics of S. Then the
morphisms of sites

Spa(X,S)t
ϕ←− Spa(X,S)ét

ψ−→ Xét

induce isomorphisms

Hi(Spa(X,S)t, ϕ∗ψ
∗F) ∼= Hi(Xét,F)

for all i ≥ 0.
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We prove the following comparison of tame and strongly étale cohomology.

Proposition 8.5. Let X be an adic space with char+(X ) = p > 0. Then for
any p-torsion sheaf F on Xt the natural morphism of sites

ϕ : Xt →Xsét

induces isomorphisms

Hi(Xsét, ϕ∗F) ∼−→ Hi(Xt,F)

for every integer i.

Proof. We have to show that the stalks of the higher direct images Riϕ∗F
vanish for i > 0. Let x̄ be a strongly étale point of X . The strong henselization
X sét
x̄ is of the form Spa(A,A+) with (A,A+) local and A+ strictly henselian.

For the stalk of Riϕ∗F at x̄ we get by Corollary 5.4 and Lemma 8.1

Riϕ∗Fx̄ = Hi(Spa(A,A+)t,F) = Hi(Gal(kt|k),Fx̄),

where kt|k is the maximal tamely ramified extension of the residue field of A
with respect to the valuation corresponding to x̄. But by assumption F is a
p-torsion sheaf and asA+ is strictly henselian, Gal(kt|k) has trivial p-Sylow sub-
groups. Therefore, the above cohomology group vanishes by [NSW08], Propo-
sition 1.6.2.

Proposition 8.5 tells us that for p-torsion sheaves tame and strongly étale coho-
mology coincide. Moreover, by Proposition 8.2, for torsion sheaves with torsion
invertible on X , tame cohomology coincides with étale cohomology. In that
sense the tame topology is a bridge between étale and strongly étale topology.

Lemma 8.6. Let X be a scheme and τ ∈ {t, sét, ét} one of the topologies. Then
the center map c : Spa(X,X) → X induces for every sheaf F on Spa(X,X)τ
isomorphisms

Hi(Xét, c∗F) ∼−→ Hi(Spa(X,X)τ ,F)
for all i ≥ 0.

Proof. It is easy to check that c induces a morphism of cites Spa(X,X)τ → Xét

by mapping an étale morphism Y → X to the strongly étale (and thus étale and
tame) morphism Spa(Y, Y ) → Spa(X,X). We need to check that the higher
direct images of F vanish. In order to do so we may assume that X is strictly
henselian. But then Spa(X,X) is strictly local (so in particular tamely and
strongly local) and thus its cohomology groups vanish in degree greater than
zero.

Combining Lemma 8.6 with Lemma 2.2 (Spa(X,X)
∼→ Spa(X,S) for X → S

proper) we obtain the following.
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Proposition 8.7. Let X → S be a proper morphism of schemes and let τ ∈
{t, sét, ét} be one of the topologies. Then the center map c : Spa(X,S) =
Spa(X,X)→ X induces for every sheaf F on Spa(X,S)τ isomorphisms

Hi(Xét, c∗F) ∼−→ Hi(Spa(X,S)τ ,F)

for all i ≥ 0.

9 Comparison with the tame fundamental group

Let X be a regular scheme of finite type over some base scheme S. Suppose
there is a regular compactification X̄ of X over S such that the complement
of X in X̄ is the support of a strict normal crossing divisor D. Then, following
[SGA1], Exp. VIII, § 2, we can study finite étale covers of X which are tamely
ramified along D. This results in the definition of the tame fundamental group
πt1(X/S, x̄) for some geometric point x̄ of X .
Under less favorable regularity assumptions, there are several approaches to
define the tame fundamental group. We only state the two of these which we
use in this section. Fix an integral, pure-dimensional, separated, and excellent
base scheme S. In [Wie08] Wiesend introduces the notion of curve-tameness.
It has been slightly extended by Kerz and Schmidt in [KS10] to the following
definition: A curve over S is a scheme of finite type C over S which is integral
and such that

dimS C := trdeg(k(C)|k(T )) + dimKrull T = 1,

where T denotes the closure of the image of C in S. Any curve C has a
canonical compactification C̄ over S which is regular at the points in C̄ − C.
Hence, we can define tameness over C as in [SGA1]: A finite étale cover C′ → C
by a connected, hence integral, curve C′ is tame at a point c ∈ C̄ − C if the
corresponding valuation of the function field of C is tamely ramified in the
extension of function fields k(C′)|k(C). For a general finite étale cover C′ → C
we require tameness for each connected component of C′. Given a scheme X of
finite type over S, a finite étale cover Y → X is curve-tame if the base-change
to any curve C → X is tamely ramified outside C ×X Y .
Let us recall next the notion of valuation-tameness considered in [KS10]. A
finite étale cover Y → X of connected, normal schemes of finite type over S is
valuation-tame if every valuation of the function field k(X) with center on S
is tamely ramified in the finite, separable field extension k(Y )|k(X).
This section is concerned with comparing the fundamental group of the tame
site with the curve-tame and the valuation tame fundamental group. In order
to do so we need to relate tame covers with torsors in the tame topos.

Lemma 9.1. Let π : Y → X be a surjective étale morphism of discretely
ringed adic spaces. Then π satisfies descent for finite morphisms.
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Proof. The same arguments as for schemes reduce us to the case where X =
Spa(A,A+) and Y = Spa(B,B+) are affinoid. Then SpecB → SpecA is
a surjective étale morphism of schemes. Moreover, finite morphisms to X

and Y correspond to finite A-algebras and B-algebras, respectively. Hence, we
can apply descent theory for schemes ([SGA1], Exp. VIII, Théorème 2.1) to
obtain the result.

Corollary 9.2. Let τ ∈ {ét, t, sét} be one of the topologies on a discretely
ringed adic space X . Let F be a torsor in Sh(Xτ ) for some finite group G.
Then F is represented by a finite Galois morphism Y →X in Xτ with Galois
group G.

Proof. Let X ′ → X be a covering of X such that F|X ′ is trivial, hence
represented by π′ :

∐

G X ′ → X ′. By Lemma 9.1 the morphism π′ descends
to a finite Galois morphism π : Y → X in Xτ representing F .

For a geometric point x̄ of a connected, locally noetherian adic space X we
want to define the fundamental group of the corresponding pointed site (Xτ , x̄)
(for τ ∈ {ét, t, sét}). To be more precise, we want a pro-finite group π1(Xτ , x̄)
that classifies finite torsors, i.e. for every finite group G the set of isomorphism
classes of G-torsors in Sh(Xτ ) should be given by

Hom(π1(Xτ , x̄), G).

In [AM69], §9 Artin and Mazur describe the construction of the fundamen-
tal pro-group of a locally connected site via the Verdier functor. By [AM69],
Corollary 10.7, it classifies all torsors (not just finite). Taking the pro-finite
completion we obtain a pro-finite group classifying finite torsors. In order
to apply these results in our situation, we need to check that Xτ is locally
connected. But this is true because the connected components of an affinoid
noetherian adic space X are in one-to-one correspondence with the idempo-
tents of the noetherian ring OX (X ). By descent (Corollary 9.2), the resulting
fundamental group π1(Xτ , x̄) not only classifies finite G-torsors in Sh(Xτ ) but
also finite Galois τ -covers.

Proposition 9.3. Let X → S be a morphism of connected, noetherian
schemes and x̄ a geometric point of X . We can view x̄ as a geometric point of
Spa(X,S) by taking the trivial valuation on the residue field of x̄. Then there
is a natural isomorphism

π1(Xét, x̄) ∼= π1(Spa(X,S)ét, x̄).

Proof. By what we have just discussed, the étale fundamental group of
Spa(X,S) classifies finite étale covers of Spa(X,S). Similarly, π1(Xét, x̄) clas-
sifies finite étale covers of X . Every finite étale cover Y → X induces a finite
étale cover Spa(Y, S) → Spa(X,S). For two finite étale covers Y → X and
Y ′ → X the natural homomorphism

HomX(Y, Y ′) −→ HomSpa(X,S)(Spa(Y, S), Spa(Y
′, S))
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is bijective, an inverse being given by assigning to a morphism Spa(Y, S) →
Spa(Y ′, S) the corresponding morphism of supports Y → Y ′. It remains to
show that every finite étale cover of Spa(X,S) comes from a finite étale cover
of X .
Let ϕ : Z → Spa(X,S) be a finite étale cover of adic spaces. We need to show
that it comes from a finite étale cover of X as above. Let Spa(B,B+) and
Spa(A,A+) be affinoid open subspaces of Z and Spa(X,S), respectively, such
that ϕ(Spa(B,B+)) ⊆ Spa(A,A+). By [Hub96], Corollary 1.7.3, we obtain a
factorization

Spa(B,B+) Spa(B,A+)

Spa(A,A+).

and A → B is étale. Since we are working with discretely ringed adic spaces,
this construction glues and we obtain a diagram

Z Spa(Y, S)

Spa(X,S)

ϕ

with Y → X étale and Z dense in Spa(Y, S).
By assumption there is an étale covering W → Spa(X,S) trivializing ϕ. With-
out loss of generality we may assume that W is a disjoint union of adic spaces
of the form Spa(Xi, Si). In particular,

∐

iXi → X is an étale covering of X .
Moreover,

Zi := Z ×Spa(X,S) Spa(Xi, Si) ∼= Spa(Xi, Si)⊗G

for some finite group G. Base changing the above diagram to Spa(Xi, Si) we
obtain

Spa(Xi, Si)⊗G Spa(Y ×X Xi, Si)

Spa(Xi, Si)

and Spa(Xi, Si)⊗G is open and dense in Spa(Y ×XXi, Si). But Spa(Xi, Si)⊗
G→ Spa(Xi, Si) satisfies the valuative criterion for properness and hence,

Spa(Xi, Si)⊗G = Spa(Xi ⊗G,Si) = Spa(Y ×X Xi, Si).

We conclude that Xi⊗G = Y ×X Xi. This shows that Y → X is a finite étale
cover such that Z = Spa(Y, S).
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Proposition 9.4. Let X be a connected, regular scheme of finite type
over S and x̄ a geometric point of X . Then the valuation-tame fundamen-
tal group πvt1 (X/S, x̄) is canonically isomorphic to the fundamental group
π1(Spa(X,S)t, x̄) of the tame site Spa(X,S)t.

Proof. By Proposition 9.3 we have to show that a finite étale cover Y → X
is valuation-tame over S if and only if Spa(Y, S) → Spa(X,S) is tame. If the
latter is true, it is clear that the former also holds. Suppose that Y → X is
valuation-tame and pick a point z = (x,R, φ) ∈ Spa(X,S). Since X is regular
at x, we find a discrete valuation v (not necessarily of rank one) supported on
the generic point η = Spec k(X) and a morphism ψ : SpecOv → X mapping
the closed point of SpecOv to x such that k(v) = k(x). (It can be obtained
by taking a a regular system of parameters a1, . . . , an of OX,x and composing
the valuations vi corresponding to the divisor V (a1, . . . , ai) of V (a1, . . . , ai−1).)
The concatenation of v with the valuation corresponding to R gives a valuation
ring R′ of k(X) and φ and ψ determine a morphism α : SpecR′ → S. By
assumption any point of Spa(Y, S) lying over (η,R′, α) is tame over Spa(X,S).
This implies that the same is true for any point lying over z.

Here is a stronger version but with some assumptions on resolutions of singu-
larities:

Proposition 9.5. Let S be an integral, excellent and pure-dimensional base
scheme andX a connected scheme of finite type over S with a geometric point x̄.
Assume that every finite separable extension of every residue field of X admits
a regular proper model. Then the curve-tame fundamental group πct1 (X/S, x̄)
is canonically isomorphic to π1(Spa(X,S)t, x̄).

Proof. By Proposition 9.3 we have to show that a finite étale cover Y → X
is curve-tame over S if and only if Spa(Y, S) → Spa(X,S) is tame. Suppose
Spa(Y, S)→ Spa(X,S) is tame and let C → X be a curve mapping to X with
compactification C̄. Without loss of generality we may assume that C → X is
a closed immersion. Let ηC be the generic point of C viewed as a point of X .
A point c ∈ C̄ − C corresponds to a valuation ring Oc ⊆ k(ηC) and comes
naturally with a morphism φc : SpecOc → S. This defines a point (ηC ,Oc, φc)
of Spa(X,S). By assumption all points of Spa(Y, S) lying over (ηC ,Oc, φc) are
tame over Spa(X,S). This translates to C ×X Y → C being tamely ramified
over c. We conclude that Y → X is curve-tame.
Suppose now that Y → X is curve-tame. Take a point (x,R, φ) ∈ Spa(X,S).
Let Z be the closed subset {x} of X with the reduced scheme structure. In
order to show that Spa(Y, S)→ Spa(X,S) is tame at (x,R, φ) we may replace
Y → X by its base change to Z. Note that Z ×X Y → Z is still curve-tame.
Hence, we may assume that X is integral with generic point x. Furthermore,
by the same argument, we may replace X by a nonempty open subscheme.
We may thus assume that X is regular. But now under our assumption on
resolution of singularities Y → X is curve tame if and only if it is valuation-
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tame (see [KS10], Theorem 4.4). In particular, every point of Spa(Y, S) lying
over (x,R, φ) is tame over Spa(X,S).

10 Coherent cohomology for discretely ringed adic spaces

All cohomology groups in this section are sheaf cohomology groups on the
underlying topological space of the scheme or adic space in question (not on
the tame or étale site etc.).
Let S be an excellent noetherian scheme. We say that resolution of singularities
holds over S if for any reduced scheme X of finite type over S there is a locally
projective birational morphism X ′ → X such that X ′ is regular and X ′ → X
is an isomorphism over the regular locus of X .
A morphism of schemes X → S is said to be a pro-open immersion if it is
a limit of open immersions with affine transition morphisms. In this case we
also say that X is pro-open in S. Examples are open subschemes of S and the
localization of S at some point s ∈ S. A scheme X is essentially of finite type
over S if there is a scheme T of finite type over S and a pro-open immersion
X → T over S. A compactification of a scheme X essentially of finite type
over S is a proper S-scheme T together with a pro-open immersion X → T
over S. By [Con07], if S is quasi-compact and quasi-separated and X → S is
separated and essentially of finite type, a compactification exists.
Let π : X → S be a morphism of schemes. In this section we compare the co-
homology of the sheaf O

+
X

on the discretely ringed adic space X = Spa(X,S)
with the cohomology of the structure sheaf OX̄ of a regular compactification X̄
of X over S (provided it exists). More precisely, we assume that π : X → S is
separated and essentially of finite type, X is regular, and resolution of singu-
larities holds over S. Then a regular compactification π̄ : X̄ → S of X over S
exists and Spa(X,S) = Spa(X, X̄). In Section 2 we defined the center map,
which is a morphism of ringed spaces

(c, c+) : (X = Spa(X,S),OX )→ (S,OS)

sending (x,R, φ) ∈ Spa(X,S) to the image of the closed point of SpecR un-
der φ. In this section we show under the assumption of resolution of singularities
that the center map induces an isomorphism

Rc∗O
+
X
−→ Rπ̄∗OX̄ .

In particular, this implies

Hi(X ,O+
X
) ∼= Hi(X̄,OX̄).

Since Spa(X,S) is naturally isomorphic to Spa(X, X̄) we may replace S by X̄
and work with a regular scheme S and a pro-open X ⊆ S. First, we want to
show that c+ : OS → c∗OX is an isomorphism.
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Lemma 10.1. Let X,Y ⊆ S be dense pro-opens in an integral normal scheme
such that X ⊆ Y . Set S = Spa(S, S). The restriction

ρ : O
+
S
(Spa(Y, S))→ O

+
S
(Spa(X,S))

is an isomorphism.

Proof. It suffices to prove the lemma for Y = S and S affine. If X = SpecA is
affine,

Spa(X,S) = Spa(A,A+),

whereA+ is the integral closure of the image of OS(S) in A. By our assumptions
on S and X , we obtain

A+ = OS(S)

and thus
Spa(S, S) = Spa(A+, A+).

The homomorphism ρ becomes the identity on A+.
In the general case cover X by affine open subschemes Xi. We obtain an
affinoid covering

∐

i

Spa(Xi, S)→ Spa(X,S)

and thus a diagram of exact sequences

0 O
+
S
(Spa(S, S))

∏

iO
+
S
(Spa(S, S))

∏

ij O
+
S
(Spa(S, S))

0 O
+
S
(Spa(X,S))

∏

iO
+
S
(Spa(Xi, S))

∏

ij O
+
S
(Spa(Xi ∩Xj , S)).

ρ ∼

Note that the assumptions of the lemma also hold for Xi or Xi ∩ Xj instead
of X . Since the middle arrow is injective, ρ is injective. Applying the same
reasoning to Spa(Xi ∩Xj , S) instead of Spa(X,S), we see that the right arrow
is injective. This implies that ρ is surjective.

Proposition 10.2. Let X be pro-open in an integral normal scheme S. With
the above notation the homomorphism

c+ : OS → c∗O
+
X

is an isomorphism.

Proof. We can check this on open affines of S, i.e. we may assume that S is
affine and have to show that

c+(S) : OS(S)→ O
+
X
(X )
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is an isomorphism. Denote by c′ : S = Spa(S, S) → S the center map. By
functoriality we obtain a commutative diagram

OS(S)

O
+
S
(S ) O

+
X
(X ).

(c′)+(S) c+(S)

ρ

Since ρ is an isomorphism by Lemma 10.1, it suffices to show that (c′)+(S) is
an isomorphism. But (c′)+(S) is just the identity on OS(S).

For the rest of this section we assume that S is regular and connected and
that X is dense pro-open in S. Denote by B the full subcategory of the cat-
egory of open subspaces of Spa(X,S) of the form Spa(Y, T ) coming from a
commutative diagram of regular schemes

Y X

T S,
(7)

such that Y → X is an open immersion, Y → T is a pro-open immersion, and
T → S is locally quasi-projective. Since X → S is a pro-open immersion as
well, T → S is birational.
Our assumption on resolution of singularities implies that the objects of B
form a basis of neighborhoods of the topological space Spa(X,S). Indeed, if
we start with an affinoid open Spa(A,A+), we can first choose a projective
compactification of SpecA over A+ and then resolve its singularities to obtain
a regular, locally projective compactification Z. Then

Spa(A,A+) = Spa(A,Z)

is an object of B. In particular, all affinoid open subspaces are contained in B.
By elimination of indeterminacies and resolution of singularities, we see that
every morphism in B comes from a diagram

Y ′ Y X

T ′ T S,

such that Y ′ → Y and Y → X are open immersions, Y → T and Y ′ → T ′ are
pro-open immersions, and T ′ → T and T → S are locally quasi-projective and
birational.

Lemma 10.3. The intersection of two objects in B is again an object of B.
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Proof. Suppose we are given two objects Spa(Y1, T1) and Spa(Y2, T2) in B. The
intersection of Spa(Y1, T1) with Spa(Y2, T2) is the same as the intersection of
Spa(Y1∩Y2, T1) with Spa(Y1,∩Y2, T2). Hence, we may assume that Y1 = Y2 =:
Y . Choose locally projective compactifications T̄i of Ti over S. By elimination
of indeterminacies and resolution of singularities, we find a locally projective
birational morphism T ′ → S from a regular scheme T ′ dominating T̄1 and T̄2
which is an isomorphism over Y . We denote the preimages of T1 and T2 in T ′

by T ′
1 and T ′

2. As T ′
i → Ti is proper, we have

Spa(Y, Ti) = Spa(Y, T ′
i ).

by Lemma 2.2. But then

Spa(Y, T1) ∩ Spa(Y, T2) = Spa(Y, T ′
1 ∩ T ′

2),

which is in B.

We equip B with the structure of a site by defining coverings in B to be surjec-
tive families.

Lemma 10.4. The topoi associated with B and Spa(X,S) are equivalent.

Proof. We have a natural morphism of sites ϕ : Spa(X,S)top → B, where
Spa(X,S)top denotes the site associated with the topological space Spa(X,S).
The pullback ϕ−1 is fully faithful and the topology on B is induced by the
topology of Spa(X,S). In order to show that the corresponding morphism of
topoi is an equivalence, it suffices to verify that the objects of B form a basis
of the topology of Spa(X,S) (see [SGA4], Exposé III, Théorème 4.1). This is
the case as we have seen above.

Before we prove the next proposition we want to explain what we mean by
a flasque sheaf. For a sheaf F on a site B the following are equivalent (see
[SGA4], Exposé V, Proposition 4.3):

(i) Hi(U,F) = 0 for all i > 0 and all U ∈ B,

(ii) Ȟi(U,F) = 0 for all i > 0 and all U ∈ B.

If F satisfies these equivalent conditions, it is called flasque.

Proposition 10.5. Let X be dense and pro-open in an excellent, regular,
connected scheme S and assume that resolution of singularities holds over S.
Then

Rc∗O
+
X
∼= OS ,

where
c : X = Spa(X,S)→ S

is the center map. In particular,

Hi(S,OS) ∼= Hi(X ,O+
X
)

for all i ≥ 0.
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Proof. By Proposition 10.2,
c∗O

+
X
∼= OS .

In order to prove that Rjc∗O+
X

= 0 for j ≥ 1, it is enough to show that

Hj(Spa(X ×S S′, S′),O+
X
)

vanishes for every open affine S′ ⊆ S. Since S′ and X ×S S′ satisfy the
assumptions of the proposition if S and X do, we are reduced to proving that

Hj(X ,O+
X
) = 0

in case S is affine.
Consider the site B defined before Lemma 10.4. By Lemma 10.4 we can com-
pute the cohomology group Hj(X ,O+

X
) in B. We claim that the restriction

of O
+
X

to B is flasque. Take an open covering

Spa(Y, T ) =
⋃

i∈I

Spa(Yi, Ti)

in B coming from commutative diagrams (7) as before and assume in addition
that I is finite and that all Ti are affine. Every covering of Spa(Y, T ) in B is
dominated by one of this type. We want to examine the Čech complex

0→ O
+
X

(

Spa(Y, T )
)

→
∏

i

O
+
X

(

Spa(Yi, Ti)
)

→
∏

ij

O
+
X

(

Spa(Yi, Ti) ∩ Spa(Yj , Tj)
)

→ . . . (8)

By Lemma 10.1 this complex does not change if we replace Y and Yi by
⋂

i∈I Yi.
We may thus assume that Y = Yi for all i ∈ I. By the same argument as before,
we may find a locally projective birational morphism π : T ′ → T with T ′

regular and open subschemes T ′
i of T ′ such that the morphisms T ′

i → T factor
through locally projective birational morphisms πi : T ′

i → Ti. Since the adic
spaces Spa(Y, T ′

i ) cover Spa(Y, T ′), it follows that the schemes T ′
i cover T ′. The

following diagram summarizes the situation:

Y

T ′
i Ti T

T ′,

πi

π

where the morphisms πi and π are locally projective birational and all schemes
in the diagram are regular.
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By Proposition 10.2, the above Čech complex (8) equals

0→ OT ′(T ′)→
∏

i

OT ′(T ′
i )→

∏

i,j

OT ′(T ′
i ∩ T ′

j)→ . . .

This is the Čech complex for the covering T ′ =
⋃

i T
′
i and the structure

sheaf OT ′ . By [CR15], Theorem 1.1, we know that for each i the higher direct
images Rjπi∗OT ′

i
vanish. Since Ti is affine, this implies

Hq(T ′
i ,OT ′) = 0 ∀i, ∀q ≥ 1.

Our Čech complex thus computes the cohomology groups Hq(T ′,OT ′). Ap-
plying [CR15], Theorem 1.1 to π : T ′ → T , we obtain that the corresponding
higher direct images are trivial. Together with the fact that T is affine, this
yields

Hq(T ′,OT ′) ∼= Hq(T,OT ) = 0, ∀q ≥ 1.

As a consequence the cohomology of the complex (8) is trivial. We conclude
that O

+
X

is flasque on B and thus

Hq(X ,O+
X
) = 0, ∀q ≥ 1.

The second assertion follows using the Leray spectral sequence

Hi(S,Rjc∗O
+
X
)⇒ Hi+j(X ,O+

X
).

Corollary 10.6. Let S be an excellent scheme and assume that resolution
of singularities holds over S. Let π : X → S be separated and essentially
of finite type and π̄ : X̄ → S a regular compactification of X over S. Set
X = Spa(X,S). Then there is a natural isomorphism

Rc∗O
+
X
→ Rπ̄∗OX̄ ,

where c : X → S denotes the center map. In particular,

Hi(X ,O+
X
) ∼= Hi(X̄,OX̄)

for all i ≥ 0.

Proof. Consider the commutative diagram

Spa(X, X̄) X̄

Spa(X,S) S.

cX̄

= π̄

c

We have an isomorphism in the derived category of S

(Rπ̄∗) ◦ (RcX̄∗)O
+
X
∼= Rc∗O

+
X
.
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By Proposition 10.5, RcX̄∗O
+
X
∼= OX̄ . This yields the first statement. The

second one follows by comparing the two Leray spectral sequences

Hi(S,Rj π̄∗OX̄) ⇒ Hi+j(X̄,OX̄),

Hi(S,Rjc∗O
+
X
)⇒ Hi+j(X ,O+

X
).

11 Prüfer Huber pairs

For an affinoid adic space X = Spa(A,A+) the cohomology of the structure
sheaf OX vanishes (see [Hub94], Theorem 2.2). For the sheaf O

+
X

, however,
we can not expect in general that Hi(X ,O+

X
) = 0. Of course, if (A,A+) is

local, the cohomology of O
+
X

vanishes. But the class of local adic spaces turns
out to be too small to compute cohomology groups as an étale covering of a
local adic space does not necessarily admit a refinement by local adic spaces.
In the following we investigate a broader class of Huber pairs containing the
local Huber pairs: the Prüfer Huber pairs.
For a subring A+ of a ring A and a prime ideal p+ of A+ we use the notation

Ap+ := (A+ \ p+)−1A

Definition 11.1. A Huber pair (A,A+) is said to be Prüfer if A+ ⊆ A is a
Prüfer extension, i.e. if (Am+ , A+

m+) is local for every maximal ideal m+ of A+.

Note that if (Am+ , A+
m+) is local, we a have a unique valuation of Am+ cor-

responding to the closed point of Spa(Am+ , A+
m+). Denote by v the valuation

of A obtained by composing with A → Am+ . Then v ∈ Spa(A,A+) and
(Am+ , A+

m+) = (Av, A
+
v ).

Examples of Prüfer Huber pairs are (Q,Z) and (C[T, T−1],C[T ]). More gener-
ally, if D+ is a Dedekind domain and D is a localization of D, then (D,D+) is
a Prüfer Huber pair. A less trivial example is given by taking A = Q[T ] and
A+ its subring

A+ = {P (T ) ∈ Q[T ] | P (0) ∈ Z}
= p−1(Z),

where p : Q[T ]→ Q is the projection to the residue field of (T ).

Remark 11.2. The definition of a Prüfer extension in [KZ96], § 5, differs from
the one given here. First of all, if the topology of A is non-discrete there
is the additional condition that m+

A be open and bounded. But apart from
this topological issue the two definitions coincide. Let us first explain their
notation and then show that the two definitions are equivalent in the case of
discrete topology. It follows that in the general case our Prüfer extensions are
mapped to their Prüfer extensions by the forgetful functor from the category
of topological rings to the category of rings.
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A valuation v of a ring A is called Manis if A→ Γv∪{0} is surjective. A Manis
pair in A is a pair (A+, p+) comprised of a subring A+ of A and a prime ideal
p+ ⊆ A+ such that there is a (unique) Manis valuation v of A such that

A+ = {a ∈ A | v(a) ≤ 1},
p+ = {a ∈ A | v(a) < 1}.

The pair (A+, p+) is called local if A+ is local with maximal ideal p+.
If (A,A+) is a local Huber pair, the corresponding valuation is clearly Manis,
so (A+,m+

A) is a local Manis pair. Conversely, suppose that (A+,m+) is a local
Manis pair in A associated with a Manis valuation v. By [KZ96], Proposi-
tion 2.2, Proposition 2.5, the pair (A, supp v) is also local, hence (A,A+) is a
local Huber pair.
For a subring A+ of A, a prime ideal p+ of A+ and an A+-submodule M of A
we define the saturation of M at p+:

M[p+] = {x ∈ A | ∃s ∈ A+ \ p+ with sx ∈M}.

According to the definition in [KZ96], § 5, A+ ⊆ A is a Prüfer extension if
(A+

[m+],m
+
[m+]) is a Manis pair in A for any maximal ideal m+ of A+. By

[KZ96], Proposition 2.10 this is equivalent to (Am+ ,m+
m+) being a Manis pair

in Am+ , which in turn is equivalent to (Am+ , A+
m+) being local as we have seen

above. Thus we recover our definition of Prüfer extensions.

Recall from [KZ96], § 3, that a ring homomorphism A+ → A is called weakly
surjective if for any prime ideal p+ of A+ with p+A 6= A the homomorphism
A+

p+ → Ap+ is surjective. Examples of weakly surjective ring homomorphisms
are surjective ring homomorphisms and localizations. By [KZ96], Theorem 5.2,
(1) ⇔ (2), a ring extension A+ → A is Prüfer if and only if A+ is weakly
surjective in any A-overring of A+.
It will turn out in Proposition 11.18 that if (A,A+) is a complete Prüfer Huber
pair and A is either a strongly noetherian Tate ring or noetherian with the
discrete topology, then the cohomology of O

+
X

vanishes on X = Spa(A,A+).

Lemma 11.3. Let (A,A+) be a Prüfer Huber pair. Then its completion (Â, Â+)
is Prüfer.

Proof. We factor (A,A+)→ (Â, Â+) as

(A,A+)→ (Ā, Ā+)→ (Â, Â+)

such that A→ Ā is surjective and Ā→ Â is injective. Then (Ā, Ā+) is Prüfer
by [Rho91], Proposition 3.1.1 (or [KZ96], Proposition 5.8) and (Â, Â+) is the
completion of (Ā, Ā+). We may therefore assume that the morphism ι : A→ Â
is injective.
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By [KZ96], Theorem 5.2, (1) ⇔ (2), a ring extension B →֒ R is Prüfer if and
only if every R-overring of B is integrally closed in R. We have mutually inverse
bijections

{open subrings of A} {open subrings of Â}.
B 7→B̂

C∩A 7→C

The subsequent lemma shows that this correspondence restricts to a bijection
of the open, integrally closed subrings of A with the open, integrally closed
subrings of Â. Since A+ is open and integrally closed in A, we obtain a bijection
of the integrally closed A-overrings of A+ with the integrally closed Â-overrings
of Â+. In particular, an Â-overring C of Â+ is integrally closed in Â if and
only if C ∩A is integrally closed in A. This finishes the proof as all A-overrings
of A+ are integrally closed in A by assumption.

Lemma 11.4. For any linearly topologized ring A with completion σ : A→ Â
the mutually inverse bijections

{open subrings of A} {open subrings of Â}.
B 7→B̂

σ−1(C) 7→C

establish a correspondence of the open, integrally closed subrings.

Proof. The argument is taken from the proof of Lemma 2.4.3 in [Hub93a]. The
only nontrivial assertion we have to check is that the completion B̂ of any open,
integrally closed subring B of A is integrally closed. Denote by C the integral
closure of B̂ in Â. This is an open subring of Â. Take an element c ∈ C. In
order to show that c ∈ B̂, it suffices to check that for any open neighborhood U
of c in C we have

U ∩ σ(B) 6= ∅.

Since σ(A) is dense in Â, we can find a ∈ A with σ(a) ∈ U . Being contained
in C the element σ(a) satisfies an integral equation

σ(a)n + b̂n−1σ(a)
n−1 + . . .+ b̂0 = 0

with b̂i ∈ B̂. As B̂ is open, we can approximate the b̂i by elements of the form
σ(bi) with bi ∈ B such that

σ(a)n + σ(bn−1)σ(a)
n−1 + . . . σ(b0) ∈ B̂.

Together with B = σ−1(B̂) this implies the existence of an element b ∈ B such
that

an + bn−1a
n−1 + . . .+ (b0 − b) = 0

We conclude that a ∈ B and thus σ(a) ∈ U ∩ σ(B).
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11.1 A flatness criterion

For this subsection we fix a local Huber pair (A,A+). We denote by m the
maximal ideal of A. It is contained in A+ and A+/m is a valuation ring. Hence,
every proper ideal of A is contained in A+. We write | · | for the valuation of A
corresponding to A+/m.
We want to investigate whether an A+-module M+ is flat if its base change
to A is flat. To this end we examine for an ideal a+ ⊆ A+ the vanishing of
TorA

+

1 (M+, A+/a+).

Lemma 11.5. Let a be a proper ideal of A. Let M+ be an A+-module such
that M :=M+ ⊗A+ A is a flat A-module. Then

TorA
+

1 (M+, A+/a) = 0.

Proof. Consider the commutative diagram

a⊗A+ M+ M+

a⊗AM M.

(9)

The lower horizontal map is injective as M is a flat A-module. As (A,A+)
is local, A+ → A is a localization (A = A+

mA
). Hence, it is flat and thus the

homomorphism
a⊗A+ A→ A

is injective. Its image is A · a = a. We obtain an isomorphism a ⊗A+ A → a

whose inverse ϕ is given by a 7→ a ⊗ 1. Tensoring ϕ with M+ yields the left
vertical map in diagram (9), which is thus an isomorphism. We conclude that
the upper horizontal map is injective. Hence,

TorA
+

1 (M+, A+/a) = ker(a ⊗A+ M+ →M+) = 0.

Lemma 11.6. Let a+ be an ideal of A+. Let M+ be an A+-module such that
M :=M+⊗A+ A is a flat A-module and M+/mM+ is torsion free over A+/m.
Then

TorA
+

1 (M+, A+/(mn + a+)) = 0.

for all n ≥ 1.

Proof. Consider the commutative diagram

mn ⊗A+ M+ mnM+

(mn + a+)⊗A+ M+ M+

(mn + a+)/mn ⊗A+ M+ M+/mnM+.

∼

(10)
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The upper horizontal map is an isomorphism by Lemma 11.5. This implies that
the upper left vertical map is injective. Let us show that the lower horizontal
map is injective. Since

(mn + a+)/mn ⊗A+ M+ → (mn + a+)/mn ⊗A+/mn M+/mnM+

is an isomorphism, this comes down to showing that M+/mnM+ is a flat
A+/mn-module. If n = 1, this is true as A+/m is a valuation ring and
M+/mM+ is torsion free, hence flat. The case n > 1 follows from the case
n = 1 by [SP, Tag 051C]. Note that the assumption

TorA
+

1 (M+, A+/m) = 0

in [SP, Tag 051C] is satisfied by Lemma 11.5. We conclude that the lower
horizontal map in diagram (10) is injective. A diagram chase now shows the
injectivity of the middle horizontal map, which concludes the proof.

The following lemma is a variant of the Artin-Rees lemma for local Huber pairs.

Lemma 11.7. Assume that A is noetherian. Let a be an ideal of A and N+ ⊆
M+ finite A+-modules. Set M :=M+⊗A+A and N := N+⊗A+A and assume
that M+ →M is injective. Then there is K ∈ N such that for all n > K

anM+ ∩N+ = an−K(aKM+ ∩N+) = anM ∩N = an−K(aKM ∩N).

Proof. As A+ → A is flat, the natural map N → M is injective and we view
N , M+ and N+ as submodules of M . For positive integers n > K consider
the diagram

an−K(aKM+ ∩N+) anM+ ∩N+

an−K(aKM ∩N) anM ∩N.

For K big enough the lower horizontal inclusion is the identity by the Artin-
Rees lemma. Moreover, since A+ → A is a localization and a is an ideal not
only of A+ but of A, the left vertical map is the identity. This implies that the
upper horizontal map and the right vertical map are the identity.

Proposition 11.8. Let (B,B+) be a Prüfer Huber pair such that B is noethe-
rian. Let M+ be a torsion free B+-module such that M := M+ ⊗B+ B is flat
over B. Then M+ is flat.

Proof. It suffices to show that M+
m+ is a flat B+

m+ -module for every maximal
ideal m+ of B+. By hypothesis, the pair (Bm+ , B+

m+) is a local Huber pair. In
particular, Bm+ = Bm for some prime ideal m of B. As the assumptions are
stable under localization, we may assume that (B,B+) is local right away.
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We observe thatM+/mM+ is torsion free overB+/m. Indeed, take b+ ∈ B+\m
and m+ ∈ M+ satisfying b+m+ ∈ m. As B is local with maximal ideal m, b+

is a unit in B. Since m is a B-module, we obtain

m+ = (b+)−1(b+m+) ∈ m.

Let b+ ⊆ B+ be a finitely generated ideal. We have to show that

b+ ⊗B+ M+ →M+

is injective. For n ≥ 1 consider the following diagram of short exact sequences:

0 b+ ∩mn b+ ⊕mn b+ +mn 0

0 B+ B+ ⊕B+ B+ 0.

Tensoring with M+ we obtain

(b+ ∩mn)⊗B+M+ b+⊗B+M+ ⊕mn⊗B+M+ (b++m)⊗B+M+ 0

0 M+ M+ ⊕M+ M+ 0.

Since mn ⊗B+ M+ → M+ and (b+ + mn) ⊗B+ M+ → M+ are injective by
Lemma 11.6, the snake lemma implies that

ker
(

(b+ ∩mn)⊗B+ M+ →M+
)

→ ker
(

b+ ⊗B+ M+ →M+
)

is surjective. We now apply Lemma 11.7 to the finite B+-modules b+ ⊆ B+.
Setting b = b+ ⊗B+ B there is N ∈ N such that for all n > N

mn ∩ b+ = mn−N (mN ∩ b+) = mn ∩ b = mn−N(mN ∩ b).

The ideal mn ∩ b+ of B+ is thus also an ideal of B and by Lemma 11.5 we
obtain

ker
(

(b+ ∩mn)⊗B+ M+ →M+
)

= 0,

which implies that
ker

(

b+ ⊗B+ M+ →M+
)

= 0.

Remark 11.9. 1. In case (A,A+) is microbial the results of Proposition 11.8
have been shown in [FK18], Chapter 0, Proposition 8.7.12.

2. The flatness criterion Proposition 11.8 in case M+ is a B+-algebra re-
sembles the one given in [Tem11], Lemma 2.3.1 (iii). However, in our
application M+ is not of finite type, in general. This impedes the appli-
cation of Raynaud-Gruson flattening ([RG71]) in contrast to the situation
in [Tem11].
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11.2 Cartesian coverings of Huber pairs

Definition 11.10. A homomorphism

(A,A+)→ (B,B+)

of Huber pairs is called Cartesian if the natural homomorphism

B+ ⊗A+ A→ B

is bijective. We say that an étale covering (Ui → Spa(A,A+))i∈I is Cartesian if
for every i ∈ I there is an étale Cartesian homomorphism (A,A+)→ (B,B+)
of Huber pairs such that Ui = Spa(B,B+).

It is straightforward to see that the composition of two Cartesian homomor-
phisms is again Cartesian.

Proposition 11.11. Let (A,A+) be a Prüfer Huber pair. Let (A,A+) →
(B,B+) be a Cartesian, strongly étale homomorphism. Then A+ → B+ is
étale.

Proof. Let m+ be a maximal ideal of A+. In order to show that A+ → B+

is étale at m+ we can base change to A+
m+ . As (A,A+) is Prüfer, there is a

unique point x ∈ X := Spa(A,A+) such that OX ,x = Am+ and O
+
X ,x = A+

m+ .
Therefore, base changing Y → X to Xx induces the base change of A+ → B+

to A+
m+. We may thus assume that (A,A+) is local such that m+ is the maximal

ideal of A+. The assertion then follows from Proposition 6.10.

Lemma 11.12. Let (A,A+) be a complete Prüfer Huber pair. Then, every
integral homomorphism (A,A+)→ (B,B+) is Cartesian and (B,B+) is Prüfer.

Proof. By definition A → B is integral and B+ is the integral closure of A+

in B. Hence, B is generated by B+ and the image of A ([KZ96], Theorem 5.9).
By [KZ96], Proposition 3.10, B+ → B and B+ → B+ ⊗A+ A are weakly
surjective. Moreover, both are injective (the injectivity of B+ → B+ ⊗A+ A
follows from the injectivity of B+ → B). Therefore, by [KZ96], Corollary 3.16
the surjective homomorphism B+ ⊗A+ A→ B is injective.

Lemma 11.13. Let (A,A+) be a Prüfer Huber pair with A noetherian and

(A,A+)→ (B,B+)

a Cartesian homomorphism such that SpecB is quasi-finite and essentially of
finite type over SpecA. Then (B,B+) is Prüfer, too.

Proof. By Zariski’s main theorem A→ B factors as A→ B0 → B with B0/A
finite and B/B0 a localization. Denote by B+

0 the integral closure of A+ in B0.
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Since B+ is integrally closed in B, we obtain a diagram

B B0 A

B+ B+
0 A+.

loc. ϕ
finite

ϕ+

int.

By Lemma 11.12 the Huber pair (B0, B
+
0 ) is Prüfer and A ⊗A+ B+

0 → B0 is
bijective. This implies that (B0, B

+
0 )→ (B,B+) is Cartesian.

If A is noetherian, so is B0. Hence, Proposition 11.8 implies that B+
0 → B+

is flat and thus weakly surjective by [KZ96], Proposition 4.5. The result now
follows from [KZ96], Theorem 5.10.

11.3 Laurent coverings and Zariski cohomology

Definition 11.14. Let (A,A+) be a Huber pair. A Laurent covering of
Spa(A,A+) is a covering by rational open subsets of the form

Spa(A,A+) =
⋃

αi∈{±1}

R(fα1

1 , . . . , fαn
n )

with f1, . . . , fn ∈ A.

Lemma 11.15. Let (A,A+) be a Huber pair such that A+ → A is weakly
surjective. Then for any f ∈ A the Laurent covering

R(
f

1
) ∪R( 1

f
) = Spa(A,A+)

is Cartesian.
Denote by A+[ 1f ] the subring of Af generated by the image of A+ and 1/f . If in
addition (A,A+) is Prüfer and A is noetherian, A+[f ] and A+[ 1f ] are integrally
closed in A and Af , respectively, i.e. (A,A+[f ]) and (Af , A

+[ 1f ]) are Huber
pairs and

R(
f

1
) = Spa(A,A+[f ]), R(

1

f
) = Spa(Af , A

+[
1

f
]).

Proof. We only treat R( 1f ). The examination of R( f1 ) is similar (and even
easier). We have

R(
1

f
) = Spa(Af , A

+
f ),

where A+
f denotes the integral closure of A+[ 1f ] in Af . In order to show that

R( 1f )→ Spa(A,A+) is Cartesian we need to check that the natural homomor-
phism

ϕ : A⊗A+ A+
f → Af
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is an isomorphism. The surjectivity of ϕ is obvious. Consider the diagram

Af

A+
f ⊗A+ A A

A+
f A+.

ϕ

β
α′ α

As α is weakly surjective, so are α′ and β (see [KZ96], Proposition 3.10).
Moreover, α′ is injective because β is injective. We conclude by [KZ96], Corol-
lary 3.16 that ϕ is injective.
Assume now that (A,A+) is Prüfer and A is noetherian. As the image of A+

in Af is Prüfer in the image of A in Af by [KZ96], Proposition 5.7, we may
replace A+ and A by their images in Af and assume henceforth that A→ Af
is injective. The same argument as above shows that

A⊗A+ A+[
1

f
] ∼= Af .

By Proposition 11.8, A+ → A+[ 1f ] is flat. Moreover, A+ → A→ Af is weakly
surjective. Hence, A+ → A+[ 1f ] is weakly surjective by [KZ96], Proposition 4.5.
Since Af is generated by A and A+[ 1f ], [KZ96], Theorem 5.10 implies that
A+[ 1f ] is Prüfer in Af . In particular, A+[ 1f ] is integrally closed in Af .

Corollary 11.16. Let (A,A+) be a Prüfer Huber pair. Then every closed
point of Spa(A,A+) has a basis of Cartesian affinoid neighborhoods.

Proof. Let us first convince ourselves that it suffices to show that every covering
of X = Spa(A,A+) has a Cartesian refinement. Assume the latter is the case.
Let x ∈ X be a closed point and U ⊆X an open neighborhood of x. Then

X = U ∪ (X \ {x})

is a covering of X . By assumption, it has a refinement by a Cartesian covering
(Vi ⊆X )i∈I . So there is i ∈ I such that x ∈ Vi ⊆ U .
By [Hub94], Lemma 2.6, every open covering of X := Spa(A,A+) is dominated
by a rational covering, i.e., a covering of the form

X = Spa(A,A+) =

m
⋃

j=1

R
(g1, . . . , gm

gj

)

with g1, . . . , gm ∈ A such that g1A + . . .+ gmA = A. Arguing as in [BGR84],
§ 8.2.2 we obtain the following two assertions.
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(i) Let (Ui ⊆X )i∈I be a rational covering. Then there is a Laurent covering
(Vj → X )j∈J such that for every j ∈ J the covering (Ui ∩ Vj → Vj)i∈I
is a rational covering generated by units in OX (Vj).

(ii) Every Cartesian covering of X that is generated by units has a refinement
which is a Laurent covering.

In total we get that every covering of X has a refinement of the form

(Uij ⊆ Ui ⊆X )(i,j)∈I×J

such that (Ui ⊆ X )i∈I is a Laurent covering and for each i ∈ I also (Uij ⊆
Ui)j∈J is a Laurent covering. In particular, for every (i, j) ∈ I×J the inclusions
Ui ⊆ X and Uij ⊆ Ui are Cartesian by Lemma 11.15. Hence, Uij ⊆ X is
Cartesian and thus the covering (Uij ⊆X )(i,j) is Cartesian.

Lemma 11.17. Let (A,A+) be a complete Prüfer Huber pair. Assume that
either A is a strongly noetherian Tate ring or the topology of A is discrete
and A is noetherian. Let U be a Laurent covering of X = Spa(A,A+). Then
the Čech cohomology groups

Ȟi(U,O+
X
)

vanish for i ≥ 1.

Proof. Using [BGR84], 8.1.4 Corollary 4 and induction, this comes down to
showing that

0→ A+ → O
+
X
(R(

f

1
))⊕ O

+
X
(R(

1

f
))

α→ O
+
X
(R(

f

1
,
1

f
))→ 0

is exact for every f ∈ A. We know already that O
+
X

is a sheaf. Hence, we are
left with showing the surjectivity of α. By Lemma 11.15 we have

R(
f

1
) = Spa(A,A+[f ]), R(

1

f
) = Spa(Af , A

+[
1

f
]),

R(
f

1
,
1

f
) = Spa(Af , A

+[f,
1

f
]).

In case the topology of A is discrete, the surjectivity of α is now obvious. In
case A is a strongly noetherian Tate algebra we use the following identifications
(see II.1 in the proof of Theorem 2.5 in [Hub94]):

A〈f
1
〉 = A〈X〉/(f −X), A〈 1

f
〉 = A〈Y 〉/(1− fY ),

A〈f
1
,
1

f
〉 = A〈X,X−1〉/(f −X).

Then O
+
X
(R( f1 )) is the closure of A+[f ] in A〈X〉/(f −X), i.e. equal to

{
∑

i

biX
i ∈ A〈X〉 | bi ∈ A+}/(f −X).
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Similarly

O
+
X
(R(

1

f
)) = {

∑

i

biY
i ∈ A〈Y 〉 | bi ∈ A+}/(1− fY )

O
+
X
(R(

f

1
,
1

f
)) = {

∑

i

biX
i ∈ A〈X,X−1〉 | bi ∈ A+}/(f −X).

Now also in this case the surjectivity of α can be checked explicitly.

Proposition 11.18. Let (A,A+) be a complete Prüfer Huber pair. Assume
that either A is a strongly noetherian Tate ring or the topology of A is discrete
and A is noetherian. Then, setting X = Spa(A,A+),

Hi(X ,O+
X
) = 0.

for all i > 0.

Proof. It suffices to prove that for any affinoid open covering of an affi-
noid open subspace of X , the Čech cohomology of O

+
X

is trivial. As in
[BGR84], Chapter 8.2, Proposition 5, we further restrict to Laurent coverings
of open affinoid subspaces of X . But all Laurent coverings are O

+
X

-acyclic by
Lemma 11.17.

12 Strongly étale cohomology

If X is an analytic adic space, the additive group Ga is a sheaf for the étale
site of X by [Hub96], (2.2.5). In case X is a discretely ringed adic space this
follows from the corresponding statement for schemes. In particular, in both
cases, Ga is a sheaf for the strongly étale and the tame site. Then, also the
subpresheaf G+

a of Ga defined by

(Y →X ) 7→ O
+
Y
(Y )

is a sheaf.
In the following we say that an adic space X is locally noetherian if it is locally
of the form Spa(A,A+) such that the completion of A is noetherian. We say
that X is noetherian if in addition X is quasi-compact.

Lemma 12.1. Let
ϕ : X → Spa(A,A+)

be an étale covering of the complete, noetherian, Prüfer affinoid adic space
Spa(A,A+). Then there is a morphism

ψ : Y →X ,

which is a finite coproduct of open immersions such that ϕ ◦ ψ is an (affinoid)
Cartesian étale covering.
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Proof. We may assume that X = Spa(B,B+) for an étale homomorphism
(A,A+) → (B,B+). Using Zariski’s main theorem and [Hub96], Corol-
lary 1.7.3 ii), we factor ϕ as

Spa(B,B+)
ι−→ Spa(C,C+)

π−→ Spa(A,A+)

with an open immersion ι and a finite morphism π. Lemma 11.12 implies that π
is Cartesian and (C,C+) is Prüfer. Now it suffices to show that every closed
point x of Spa(C,C+) lying in the image of ι has an open affinoid neighborhood
Spa(C,C+) coming from a Cartesian homomorphism (A,A+)→ (C,C+). This
follows from Corollary 11.16.

Corollary 12.2. Every tame covering and every strongly étale covering of a
noetherian Prüfer affinoid adic space Spa(A,A+) has a Cartesian refinement.

Proposition 12.3. Let (A,A+) be a Prüfer Huber pair such that A is noethe-
rian and equipped with the discrete topology. Then for all i > 0,

Hi(Spa(A,A+)sét,G
+
a ) = 0.

Proof. Let B be the category of Cartesian strongly étale morphisms of affinoid
adic spaces

Spa(B,B+)→ Spa(A,A+).

It has fiber products and becomes a site by defining coverings of Spa(B,B+)
to be the Cartesian strongly étale coverings of Spa(B,B+). By Corollary 12.2
we can compute the cohomology groups Hq(Spa(A,A+)sét,G

+
a ) in B.

We show that G
+
a is flasque on B. In order to do so we prove that for every

covering
Spa(C,C+)→ Spa(B,B+)

in B the associated Čech complex for the sheaf G+
a is exact. The fact that

Spa(C,C+)→ Spa(B,B+) is Cartesian implies that the diagram

C ⊗B . . .⊗B C B

C+ ⊗B+ . . .⊗B+ C+ B+

is Cartesian. Since SpecC+ → SpecB+ is an étale covering by Proposi-
tion 11.11, so is SpecC+ ⊗B+ . . . ⊗B+ C+ → SpecB+. In particular, it is
flat and thus the left vertical arrow is injective. Moreover, taking integral clo-
sures commutes with étale base change. Therefore, C+ ⊗B+ . . . ⊗B+ C+ is
integrally closed in C ⊗B . . . ⊗B C. By construction of the fiber product for
adic spaces, this is equivalent to saying that

Spa(C,C+)×Spa(B,B+) . . .×Spa(B,B+) Spa(C,C
+)

= Spa(C ⊗B . . .⊗B C,C+ ⊗B+ . . .⊗B+ C+).
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The Čech complex for G+
a thus equals the Amitsur complex

0→ B+ → C+ → C+ ⊗B+ C+ → C+ ⊗B+ C+ ⊗B+ C+ → . . .

This complex is exact as B+ → C+ is faithfully flat. Hence, G+
a is flasque on B.

In particular,
Hi(Spa(A,A+)sét,G

+
a ) = 0.

Proposition 12.4. Let (A,A+) be a complete Prüfer Huber pair such that A
is a non-Archimedean field. Then

Hi(Spa(A,A+)sét,G
+
a ) = 0.

for all i ≥ 1.

Proof. Set X = Spa(A,A+). Note first that (A,A◦) (where A◦ denotes the
power bounded elements) is henselian by Hensel’s lemma for non-Archimedean
fields and that Spa(A,A◦) consists of a single point. Consider an étale mor-
phism Y → X with Y affinoid. The base change of Y to Spa(A,A◦) is a
disjoint union of affinoid adic spaces of the form (B,B◦) such that B is a finite
separable extension of A. Since the set of generalizations of an analytic point of
an adic space is totally ordered by specialization, every connected component
of Y is of the form (B,B+) with B as above. In particular, B is a complete,
non-Archimedean field. Furthermore, B+ is a B-overring of the integral closure
of A+ in B, hence Prüfer.
Let B be the full subcategory of Xsét whose objects are the strongly étale
morphisms Y →X such that Y is affinoid. We can compute the cohomology
of X in B. We show that G+

a is flasque on B.
Let Y → X be in B and Z → Y a covering of Y . We may assume that Y

is the adic spectrum of a complete Prüfer Huber pair (B,B+) such that B is a
non-Archimedean field. Then Z = Spa(C,C+) with C finite étale over B and
C+ flat over B+ (as any torsion free module over a Prüfer domain is flat). Since
(B,B+) → (C,C+) is strongly étale, B+ → C+ is even étale by Lemma 3.4.
Consider the diagram

0 B+ C+ C+ ⊗B+ C+ C+ ⊗B+ C+ ⊗B+ C+ . . .

0 B C C ⊗B C C ⊗B C ⊗B C . . .

of exact Amitsur complexes. As integral closure commutes with étale base
change, C+ ⊗B+ . . .⊗B+ C+ is integrally closed in C ⊗B . . .⊗B C. Moreover,
being a finite B-module, C ⊗B . . .⊗B C is complete and C+ ⊗B+ . . .⊗B+ C+

is an open subring. Therefore,

G
+
a (Z ×Y . . .×Y Z ) = C+ ⊗B+ . . .⊗B+ C+

and the upper row of the above diagram is the Čech complex of G
+
a associated

with the covering Z → Y .
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Corollary 12.5. Let Z be a locally noetherian adic space. Assume that Z

is either discretely ringed or analytic. The canonical homomorphism

Hi(Z ,G+
a )

∼−→ Hi(Zsét,G
+
a )

is an isomorphism for all i ≥ 0.

Proof. Consider the Leray spectral sequence associated with the morphism of
sites

ϕ : Zsét → Z

We have to show that
Rqϕ∗G

+
a = 0.

Put differently, for every local Huber pair (A,A+) such that either A is discrete
and noetherian or a non-Archimedean field we have to show that

Hq(Spa(A,A+)sét,G
+
a ) = 0.

But every local Huber pair is Prüfer and thus the result follows from Proposi-
tion 12.3 and Proposition 12.4.

13 Tame cohomology

In this section we compute the tame cohomology of G+
a . The main problem

we face is that for a Cartesian tame morphism Spa(B,B+)→ Spa(A,A+) the
image of B+ ⊗A+ B+ in B ⊗A B is not necessarily integrally closed. But it
turns out that the tameness condition makes the integral closure tractable.

13.1 Computation of integral closures

We fix a local, Cartesian, tame homomorphism (A,A+)→ (B,B+) of strongly
henselian, local, complete, Huber pairs. Assume moreover that A is noetherian.
Since A and B are henselian, the extension B/A is finite étale. Let | · | be the
valuation of B corresponding to the closed point of Spa(B,B+). We denote
by ΓB the value group of | · | and by ΓA the value group of the restriction of | · |
to A. As A+ and B+ are strictly henselian and (A,A+) → (B,B+) is a tame
morphism of complete, local Huber pairs, we can choose a presentation

B = A[T1, . . . , Tr]/(T
m1

1 − α1, . . . , T
mr
r − αr)

with αi ∈ A× and mi > 1 prime to the residue characteristic of A+. It induces
an isomorphism

Z/m1Z× . . .Z/mrZ→ ΓB/ΓA, (i1, . . . , ir) 7→ |T i11 · . . . · T irr |.

For γ ∈ ΓB/ΓA we set
eγ = T i11 · . . . · T irr
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with 0 ≤ ik ≤ mk − 1 and |T i1 · . . . · T ir | ≡ γ mod ΓA. We denote the Galois
group of B/A by G.
We write Bn for the n-fold tensor product of B over A:

Bn = B ⊗A . . .⊗A B.

Then {eγ1 ⊗ . . . ⊗ eγn}γ1,...,γn∈ΓB/ΓA
is a basis of Bn over A. As (A,A+) →

(B,B+) is Cartesian and B+ is flat over A+ by Proposition 11.8, the natural
homomorphism B+⊗A+ . . .⊗A+B+ → Bn is injective. We view B+⊗A+ . . .⊗A+

B+ as a subring of Bn and denote its integral closure by B+
n . Then (Bn, B

+
n )

is complete and Spa(Bn, B
+
n ) is the n-fold fiber product of Spa(B,B+) over

Spa(A,A+). This subsection is concerned with describing B+
n more explicitly.

Proposition 13.1. For an element b =
∑

γ1,...,γn
aγ1,...,γneγ1 ⊗ . . .⊗ eγn of Bn

and δ ∈ ΓB the following are equivalent:

(i) |b(x)| ≤ δ for all x ∈ Spa(Bn, B
+
n ).

(ii) |aγ1,...,γn | ≤ δ|eγ1 · . . . · eγn |−1 for all γ1, . . . , γn ∈ ΓB/ΓA.

Proof. For an (n − 1)-tuple σ = (σ1, . . . , σn−1) of elements of G we define a
homomorphism mσ : Bn → B by setting

mσ(b1 ⊗ . . .⊗ bn) = σ1b1 · . . . · σn−1bn−1 · bn.

Consider the isomorphism

ϕ : Bn −→
∏

σ∈Gn−1

B

b 7→ (mσ(b))σ .

Via ϕ the elements of Spa(Bn, B+
n ) correspond to the valuations of

∏

σ∈Gn−1 B
of the form

|(bσ)σ|′ = |bσ0(y)|
for fixed σ0 and a valuation y ∈ Spa(B,B+). As Spa(B,B+) is local with
closed point corresponding to | · |, it suffices to test condition (i) for valuations
as above with | · (y)| = | · |. For an element of Bn of the form b1 ⊗ . . .⊗ bn and
any σ ∈ Gn−1 we have

|mσ(b1 ⊗ . . .⊗ bn)| = |b1| · . . . · |bn|

because B is henselian. Together with the triangle inequality this proves
that (ii) implies (i).
Set

C = A[T1, . . . , Tr−1]/(T
m1

1 − α1, . . . , T
mr−1

r−1 − αr−1).

This is an intermediate extension of B/A and B = C[Tr]/(T
mr
r − αr). By

flatness we can view Cn = C⊗A . . .⊗AC as a subalgebra of Bn. Denote by ΓC
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the value group of the restriction of | · | to C. Then eγ for γ ∈ ΓC/ΓA ⊂ ΓB/ΓA
form a basis of Cn/A. Moreover,

{T i1r ⊗ . . .⊗ T inr | 0 ≤ i1, . . . , in ≤ m− 1}

constitutes a basis of Bn over Cn. Taking all combinations of products

eγ · (T i1r ⊗ . . .⊗ T inr )

with ij ∈ {0, . . . ,mr − 1} and γ ∈ ΓC/ΓA yields the basis {eγ}γ∈ΓB/ΓA
. Fix a

primitive mr-th root of unity ζ ∈ A+ and denote by σ the element of G which
maps Tr to ζTr and leaves C invariant. Every element ofG can be written in the
form τσj for 0 ≤ j ≤ mr − 1 and τ ∈ G with τζ = ζ. For an (n− 1)-tuple σ =

(τ1σ
j1 , . . . , τn−1σ

jn−1) in Gn−1 and an element b =
∑mr−1

i1,...,in=0 ai1,...,inT
i1
r ⊗

. . .⊗ T inr of Bn we have

mσ(b) =

mr−1
∑

i1,...,in=0

mτ (ai1,...,in)ζ
i1j1+...in−1jn−1T i1+...+inr .

As |Tr|k for k = 0, . . . ,mr − 1 represent the mr distinct elements of ΓB/ΓC ,
we obtain that |mσ(b)| equals

max
0≤k≤mr−1

∣

∣

∑

i1+...+in
≡k mod mr

mτ (ai1,...,inα
(i1+...+in−k)/mr
r )ζi1j1+...+in−1jn−1

∣

∣ · |Tr|k.

Suppose |b(x)| ≤ δ for all x ∈ Spa(Bn, B
+
n ). Then in particular,

|mσ(b)| ≤ δ

for all σ ∈ Gn−1. By the above this is equivalent to

|
∑

i1+...+in≡k mod mr

mτ (ai1,...,inα
(i1+...+in−k)/mr
r )ζi1j1+...+in−1jn−1 | ≤ δ|Tr|−k

(11)
for all σ and all k = 0, . . . ,mr − 1. The following Lemma 13.2 shows that the
matrix

(

ζi1j1+...+in−1jn−1

)

is invertible in A+ (note that A+ is a Z[1/mr, ζ]-
module). Therefore, inequality (11) holds for all j1, . . . , jn−1 = 0, . . . ,mr− 1 if
and only if

|mτ (ai1,...,inα
(i1+...+in−k)/mr
r )| ≤ δ|Tr|−k

for all i1, . . . , in−1 = 0, . . . ,mr − 1. The result now follows by induction on r.

Lemma 13.2. Let m and n be positive integers and ζ a primitive m-th root of
unity. Over the ring R = Z[1/m, ζ] we consider the mn−1 ×mn−1-matrix Vn
whose rows are indexed by the (n−1)-tuples (i1, . . . , in−1) ∈ {0, . . . ,m−1}n−1

and whose columns by (j1, . . . , jn−1) ∈ {0, . . . ,m− 1}n−1 (both provided with
the lexicographical ordering) and whose entry at (i1, . . . , in−1, j1, . . . , jn−1) is
ζi1j1+...+in−1jn−1 . Then Vn is invertible.
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Proof. Let M be a free R-module with basis e0, . . . , em−1 and consider the
R-linear map V sending ei to

∑m−1
j=0 ζijej . Its transformation matrix is the

Vandermonde matrix














1 1 1 . . . 1
1 ζ ζ2 . . . ζm−1

1 ζ2 ζ4 . . . ζ2(m−1)

...
...

...
. . .

...
1 ζm−1 ζ2(m−1) . . . ζ(m−1)2















,

whose determinant is
∏

0≤i<j≤m−1

(ζj − ζi).

Since (ζj − ζi) divides m, it is a unit in R. Hence, V is invertible. Moreover,
Vn is the matrix of

V ⊗(n−1) :M⊗(n−1) →M⊗(n−1).

It is thus invertible as well.

Corollary 13.3. The integral closure B+
n of B+⊗A+ . . .⊗A+ B+ in Bn is the

subring generated by

{b1 ⊗ . . .⊗ bn ∈ Bn |
n
∏

i=1

|bi| ≤ 1}.

An element
∑

γ1,...,γn
aγ1,...,γneγ1⊗ . . .⊗eγn is integral over B+⊗A+ . . .⊗A+B+

if and only if
|aγ1,...,γn | ≤ |eγ1 · . . . · eγn |−1

for all γ1, . . . , γn ∈ ΓB/ΓA.

Proof. By [Hub93b], Lemma 3.3, an element b of Bn is contained in B+
n if

and only if |b(x)| ≤ 1 for all x ∈ Spa(Bn, B
+
n ). The result thus follows by

Proposition 13.1 with δ = 1.

Since B is faithfully flat over A and B+ is faithfully flat over A+ by Proposi-
tion 11.8, we obtain a diagram of exact Amitsur complexes

0 A+ B+ B+ ⊗A+ B+ B+ ⊗A+ B+ ⊗A+ B+ . . .

0 A B B ⊗A B B ⊗A B ⊗A B . . .
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As the image of an integral element is integral, the diagram factors as

0 A+ B+ B+ ⊗A+ B+ B+ ⊗A+ B+ ⊗A+ B+ . . .

0 A+ B+ (B ⊗A B)+ (B ⊗A B ⊗A B)+ . . .

0 A B B ⊗A B B ⊗A B ⊗A B . . .

Proposition 13.4. Let (A,A+) → (B,B+) be a local, Cartesian, tame ho-
momorphism of strongly henselian, local, complete, Huber pairs. Assume
moreover that A is noetherian. Denote by (B ⊗A B)+ the integral closure
of (B+⊗A+ B+) in (B⊗AB) and similarly for (B⊗AB⊗AB)+ etc. Then the
complex

0 A+ B+ (B ⊗A B)+ (B ⊗A B ⊗A B)+ . . .

is exact.

Proof. Consider the section s of the inclusion A →֒ B sending an element
∑

γ aγeγ of B to the coefficient a1 of e1 = 1. Mapping b1 ⊗ . . .⊗ bn to s(b1) ·
. . . · s(bn), s induces a morphism Φ of complexes

0 A B B ⊗A B B ⊗A B ⊗A B . . .

0 A A A A . . .id 0 id 0

It is well known that Φ is a homotopy equivalence whose inverse is the natural
inclusion I of the lower complex in the upper one. Namely, Φ◦ I = id and I ◦Φ
is homotopic to the identity by the homotopy given by

Di : Bn −→ Bn
(b1 ⊗ . . .⊗ bn) 7→ s(b1)⊗ . . .⊗ s(bi−1)⊗ bi ⊗ . . .⊗ bn.

In order to show that the complex in the statement of the proposition is exact,
it suffices to show that Φ restricts to homomorphisms B+

n → A+ and Di to a
homomorphism B+

n → B+
n .

Writing Di in terms of the basis {eγ}γ we obtain:

Di(
∑

γ1,...,γn

aγ1,...,γneγ1⊗. . .⊗eγn) =
∑

γi,...,γn

a1,...,1,γi,...γn1⊗. . .⊗1⊗eγi⊗. . .⊗eγn .

Therefore, Corollary 13.3 assures that Di maps B+
n to B+

n . The argument for Φ
is the same.
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13.2 Computation of tame cohomology

Proposition 13.5. Let (A,A+) be a strongly henselian Huber pair where A
is either a strongly noetherian Tate ring or noetherian and discrete. Then

Hi(Spa(A,A+)t,G
+
a ) = 0

for all i ≥ 1.

Proof. Let B be the category of Cartesian tame morphisms of affinoid adic
spaces

Spa(B,B+)→ Spa(A,A+).

It has fiber products and becomes a site by defining coverings of Spa(B,B+)
to be the Cartesian tame coverings of Spa(B,B+). By Corollary 12.2 we can
compute the cohomology groups Hq(Spa(A,A+)t,G

+
a ) in B.

We show that G+
a is flasque on B. Let

Spa(C,C+)→ Spa(B,B+)

be a covering in B. We need to show that the Čech complex for G
+
a associated

with this covering is exact. Using the notation of Section 13.1 we have

Spa(C,C+)×Spa(B,B+) . . .×Spa(B,B+) Spa(C,C
+) = Spa(Cn, C

+
n ).

Note that since B is henselian, Cn is finite over B, hence complete. Therefore,

G
+
a (Spa(Cn, C

+
n )) = C+

n

and the Čech complex for the covering Spa(C,C+)→ Spa(B,B+) equals

0→ B+ → C+ → C+
2 → C+

3 → . . .

This complex is exact by Proposition 13.4.

Corollary 13.6. Let X be a locally noetherian adic space. Assume that X

is either discretely ringed or analytic. The canonical homomorphism

Hi(Xsét,G
+
a )→ Hi(Xt,G

+
a )

is an isomorphism for all i ≥ 0.

Proof. Consider the Leray spectral sequence associated with the morphism of
sites

ϕ : Xt →Xsét.

We have to show that
Rqϕ∗G

+
a = 0.

Put differently, for every strongly henselian Huber pair (A,A+) where A is
either a strongly noetherian Tate ring or noetherian and discrete we have to
show that

Hq(Spa(A,A+)t,G
+
a ) = 0.

This is true by Proposition 13.5.
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Combining Corollary 12.5, Corollary 13.6 and Proposition 10.5 we obtain:

Theorem 13.7. Let X be pro-open in a regular scheme S over k such that X
is dense in S. Assume that resolution of singularities holds over k. There is a
natural isomorphism

Hi(S,OS) ∼= Hi(Spa(X,S)t,G
+
a )

for all i ≥ 0.

14 The Artin-Schreier sequence

Let X be an adic space with char(X ) = {p}. There is an Artin-Schreier
sequence

0→ Z/pZ −→ G
+
a
F−1−→ G

+
a → 0

on Xt and on Xsét, where F − 1 is the homomorphism x 7→ xp − x. We can
check exactness on stalks. Let (A,A+) be strongly henselian. Then

F − 1 : A+ → A+

is surjective as A+ is strictly henselian.

Proposition 14.1. Let (A,A+) be a complete Prüfer Huber pair such that A
is of characteristic p > 0 and is either noetherian with the discrete topology or
a strongly noetherian Tate ring. If Spa(A,A+) is connected,

Hi(Spa(A,A+)t,Z/pZ) ∼= Hi(Spa(A,A+)sét,Z/pZ)

∼=











Z/pZ i = 0,

A+/(F − 1)A+ i = 1,

0 i ≥ 2.

Proof. This follows from Proposition 12.3, Proposition 12.4 and Corollary 13.6
via the Artin-Schreier sequence.

Corollary 14.2. Let X be a locally noetherian adic space with char(X ) =
{p} which is either analytic or discretely ringed. Then the Leray spectral
sequence associated with Xt →Xsét induces isomorphisms

Hi(Xt,Z/pZ) ∼= Hi(Xsét,Z/pZ)

for all i ≥ 0.

Proposition 14.3. Let S be an affine, regular, and integral scheme of char-
acteristic p > 0 and X dense and pro-open in S. Assume that resolution of
singularities holds over S. Then we have

Hi(Spa(X,S)t,Z/pZ) ∼= Hi(Spa(X,S)sét,Z/pZ)

∼=











Z/pZ i = 0,

OS(S)/(F − 1)OS(S) i = 1,

0 i ≥ 2.
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Proof. This follows from Theorem 13.7 via the Artin-Schreier sequence.

Corollary 14.4. Let S be a regular integral scheme of characteristic p > 0
and X dense and pro-open in S. Assume that resolution of singularities holds
over S. The Leray spectral sequences associated with the morphisms of sites
Spa(X,S)t → Spa(X,S)sét and Spa(X,S)sét → Sét induce natural isomor-
phisms

Hi(Sét,Z/pZ) ∼= Hi(Spa(X,S)sét,Z/pZ) ∼= Hi(Spa(X,S)t,Z/pZ)

for all i ≥ 0.

Proof. It suffices to show that

Hi(Spa(X,S)t,Z/pZ) = Hi(Spa(X,S)sét,Z/pZ) = 0

for i > 0 in case S is strictly henselian. This follows directly from the descrip-
tion given in Proposition 14.3.

Corollary 14.5 (Purity). Let S be a noetherian scheme of characteristic
p > 0 and X a regular scheme which is separated and essentially of finite type
over S. Assume that resolution of singularities holds over S and let X̄ be a
regular compactification of X over S. Then

Hi(Spa(X,S)t,Z/pZ) ∼= Hi(X̄ét,Z/pZ).

In particular, for any pro-open dense subscheme U ⊆ X we have

Hi(Spa(U, S)t,Z/pZ) ∼= Hi(Spa(X,S)t,Z/pZ).

Proof. This follows by applying Corollary 14.4 to X → X̄.

Note that the above theorem implies in particular that Hi(X̄ét,Z/pZ) is inde-
pendent of a choice of compactification.

Corollary 14.6 (Homotopy invariance). Let S be a noetherian scheme of
characteristic p > 0 and X a regular scheme which is essentially of finite type
over S. Assume that resolution of singularities holds over S. Then

Hi(Spa(X,S)t,Z/pZ) ∼= Hi(Spa(A1
X , S)t,Z/pZ).

Proof. Let X̄ → S be a regular compactification of X . Then P1
X̄

is a regular
compactification of A1

X . By Corollary 14.5, we have natural isomorphisms

Hi(Spa(X,S)t,Z/pZ) ∼= Hi(X̄ét,Z/pZ),

Hi(Spa(A1
X , S)t,Z/pZ)

∼= Hi(P1
X̄,ét,Z/pZ).

It remains to show that the two étale cohomology groups on the right are
isomorphic. We consider the projection π : P1

X̄
→ X̄ and the associated higher
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direct images Rjπ∗Z/pZ. For j = 0 we directly see π∗Z/pZ = Z/pZ. Assume
now j > 0. By proper base change, the stalk at a geometric point x̄ → X̄ is
isomorphic to

Hj(P1
k(x̄),ét,Z/pZ) = 0.

We conclude that Rπ∗Z/pZ ∼= Z/pZ and hence

Hi(P1
X̄,ét,Z/pZ)

∼= Hi(X̄ét,Z/pZ).
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