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Abstract. Let N ⊂ M be a submanifold embedding of spin man-
ifolds of some codimension k ≥ 1. A classical result of Gromov and
Lawson, refined by Hanke, Pape and Schick, states that M does not
admit a metric of positive scalar curvature if k = 2 and the Dirac oper-
ator of N has non-trivial index, provided that suitable geometric con-
ditions on N ⊂ M are satisfied. In the cases k = 1 and k = 2, Zeidler
and Kubota, respectively, established more systematic results: There
exists a transfer KO∗(C∗π1M) → KO∗−k(C∗π1N) which maps the in-
dex class of M to the index class of N . The main goal of this article is
to construct analogous transfer maps E∗(Bπ1M) → E∗−k(Bπ1N) for
different generalized homology theories E and suitable submanifold
embeddings. The design criterion is that it is compatible with the
transfer E∗(M) → E∗−k(N) induced by the inclusion N ⊂ M for a
chosen orientation on the normal bundle. Under varying restrictions
on homotopy groups and the normal bundle, we construct transfers
in the following cases in particular: In ordinary homology, it works
for all codimensions. This slightly generalizes a result of Engel and
simplifies his proof. In complex K-homology, we achieve it for k ≤ 3.
For k ≤ 2, we have a transfer on the equivariant KO-homology of the
classifying space for proper actions.
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1 Introduction

Our starting point is the following result of Gromov and Lawson [8] and Hanke,
Pape, and Schick [9]. All manifolds we consider are smooth.

Theorem 1.1. Let M be a closed m-dimensional spin manifold and N ⊂ M a
compact submanifold without boundary of codimension two with trivial normal
bundle. Assume that the inclusion N →֒ M induces an injection π1(N) →
π1(M) and a surjection π2(N) → π2(M).

If the Rosenberg index α(N) ∈ KOm−2(C∗π1(N)) is non-zero, then M does not
admit a Riemannian metric of positive scalar curvature.

The “standard” obstruction to the existence of a metric with positive scalar
curvature on M is the Rosenberg index α(M) ∈ KOm(C∗π1(M)) of M . The
surprise is that, here, we can use α(N) as a “ submanifold obstruction”. How-
ever, the Rosenberg index of M is conjectured to be the “universal” index
obstruction to positive scalar curvature on M , see [20, Conjecture 1.5]. Thus
in the situation of Theorem 1.1, one expects the non-vanishing of α(N) to
imply the non-vanishing of α(M). This was recently proved by Kubota for
the Rosenberg index in the maximal group C∗-algebra [11, Section 3.3]. A
somewhat simpler proof of this theorem is given in [12], where it is restated as
[12, Theorem 1.2].

Moreover, Zeidler [25, Theorem 1.7] showed the analog assertion for submani-
folds of codimension one, for the reduced C∗-algebra and without a condition
on π2. Engel [6] and Zeidler [25] also prove variants of this for other codimen-
sions under strong additional hypotheses.

It is our goal to conceptually illuminate the submanifold obstruction results
à la Theorem 1.1 by constructing transfer maps: We think of the Rosenberg
index of a spin manifold M as the image of the spin bordism fundamental class
under the sequence of transformations

Ωspin
n (M)

TABS−−−→ KOn(M)
cΓ∗−−→ KOn(BΓ)

ι∗−→ KOΓ
n(EΓ)

µ
−→ KOn(C∗Γ), (1.2)

where Γ = π1(M), cΓ is classifying the principal Γ-bundle M̃ → M , TABS is
the Atiyah–Bott–Shapiro orientation, ι is the classifying map for proper actions
and µ is the Baum–Connes assembly map. On purpose, we leave it open which
C∗-completion C∗Γ of RΓ we use: if we use C∗

maxΓ we get a priori a stronger
invariant, if we use C∗

redΓ the Baum–Connes conjecture predicts that µ is an
isomorphism.

When N ⊂ M is a codimension k submanifold (satisfying certain conditions)
and qπ : π1(N) → π := iN∗(π1(N)) < π1(M) is the induced epimorphism on
the fundamental group, we —ideally— want to construct transfer maps fitting
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into a commutative diagram

Ωspin
∗ (M) Ωspin

∗ (BΓ) KO∗(BΓ) KOΓ
∗ (EΓ) KO∗(C∗Γ)

Ωspin
∗−k(N) Ωspin

∗−k(Bπ) KO∗−k(Bπ) KOπ
∗−k(Eπ) KO∗−k(C∗π),

cΓ∗

τM,N

TABS

τΓ,π τΓ,π

ι∗ µ

τ
Γ,π σΓ,π

qπ ∗
◦cπ∗ TABS ι∗ µ

(1.3)
such that τM,N maps the fundamental class of M to that of N . The usual
choice for τM,N is the classical transfer map coming from the Pontryagin–Thom
collapse of the normal bundle of N (see (1.5) below). The existence of the
complete diagram would make it most transparent how α(N) is an obstruction
to positive scalar curvature on M . But already part of the diagram would
suffice to show this under some additional assumptions:

When we use C∗Γ = C∗
redΓ and Γ satisfies the Baum–Connes Conjecture, i.e.

when µ is an isomorphism, the rightmost extension can be abstractly defined
as µ ◦ τΓ,π ◦ µ−1 provided τΓ,π exists. When µ is at least injective, existence
of τΓ,π is still enough to conclude that α(N) 6= 0 implies α(M) 6= 0. Similarly,
the existence of τΓ,π suffices for the same conclusion when Γ satisfies the Strong
Novikov Conjecture, i.e. when µ ◦ ι∗ is injective. Note that the Baum–Connes
Conjecture for real K-Theory is equivalent to the one for complex K-Theory,
and after inverting 2 this is also true for injectivity of µ [19]. The map ι∗ is
always rationally injective and an isomorphism if Γ is torsion-free.

Our first and most complete result deals with codimension one. Zeidler already
proved that if k = 1 and the map π1(N) → π1(M) is injective, then a suitable
transformation on the level of the group C∗-algebras exists [25, Remark 1.8].
In Section 3, we reprove this in a way which obtains the complete picture
as in Diagram 1.3. However, we do not prove that our new approach agrees
with Zeidler’s original construction even though we strongly expect that to be
the case. We also generalize the result slightly by dropping the π1-injectivity
requirement and instead work with the image of the induced map π1(N) →
π1(M).

Theorem 1.4 (see Theorem 3.1). Let M be a closed connected manifold and
N ⊂ M a closed connected submanifold of codimension one with trivial normal
bundle. Let Γ := π1(M), and let π ≤ Γ be the image of the homomorphism
π1(N) → π1(M) = Γ which is induced by the inclusion N →֒ M . Then the
classical transfer map τM,N can be extended as in Diagram 1.3. This holds for
C∗ either C∗

red or C∗
max.

In particular, if M is spin and α(N) 6= 0 ∈ KOm−k(C∗π), then α(M) 6= 0 ∈
KOm(C∗Γ) and M does not admit a metric of positive scalar curvature.

The ultimate goal would be to obtain Diagram 1.3 also for submanifolds of
higher codimension (and suitable assumptions on the homotopy type). Unfor-
tunately, in complete generality we do not achieve this. However, we obtain
various partial results for different generalized homology theories.

The obvious choice for τM,N is the classical transfer map, which can be defined
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for generalized homology theories: Let E be some multiplicative cohomology
theory and suppose that both M and N admit an E-orientation. Then these
orientations induce a Thom class θ ∈ Ek(Dν, Sν), where Dν and Sν denote the
disk- and sphere bundle of the normal bundle for N ⊂ M . Let

τM,N = τθ : E∗(M) −→ E∗(M,M \ Dν) ∼= E∗(Dν, Sν)
∩θ
−−→ E∗−k(N). (1.5)

In Section 4, which is partly based on the first-named author’s PhD thesis [16],
we introduce for an equivariant generalized cohomology theory E the notion of
an lf-restriction operation, and we show that singular homology, K-theory and
the bordism theories all allow such an operation. Building on this, we construct
transfer maps in the equivariant setting,

E∗(BΓ) ∼= EΓ
∗ (EΓ) → Eπ∗−k(EΓ) ∼= E∗−k(Bπ)

and EΓ
∗ (EΓ) → Eπ∗−k(EΓ) ∼= Eπ∗−k(Eπ),

between the classifying spaces for free and for proper actions. Here, the iso-
morphisms on the right-hand side come from the fact that EΓ and EΓ, with
the restricted action, are models for Eπ, respectively Eπ. We obtain a general
(but technical) criterion for when this construction can be used to extend the
classical transfer map:

E∗(M) E∗(BΓ) EΓ
∗ (EΓ)

E∗−k(N) E∗−k(Bπ) Eπ∗−k(Eπ)

τM,N (1.6)

Our construction is inspired by the ideas of Engel [6], who constructed an ex-
tension of the classical transfer map for singular homology in the framework of
uniformly finite homology. It can be seen as a generalization and simplification
of Engel’s arguments. Specializing in suitable situations to spin bordism and
real K-homology, the method gives rise to Diagram 1.3 except for the transfer
on the level of C∗-algebras, which so far has not been constructed in the general
setting.

In Section 5 we apply the general transfer construction to different generalized
cohomology theories, always with the goal to obtain information about positive
scalar curvature on M .
Our only result which yields the desired transformation in all codimensions is
for ordinary homology. It slightly generalizes the result of Engel [6].

Theorem 1.7 (see Theorem 5.1). Let M be a closed connected manifold and
N ⊂ M a closed connected submanifold of codimension k with A-oriented
normal bundle for some commutative ring A. Let Γ := π1(M), and π =
iN ∗(π1(N)) < π1(M). Let E∗ = H∗(−;A) be singular homology with coeffi-
cients in A. Assume that

(1) if k > 1, then πk(N) → πk(M) is surjective;
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(2) if k > 2, then πj(M) = 0 for j = 2, . . . , k − 1;

(3) there exists a subset S ⊆ πk(N) which generates πk(M) such that the
composition of the Hurewicz homomorphism πk(N) → Hk(N ;Z) with the
evaluation on the Euler class of ν vanishes on S. In particular, this is
satisfied if the normal bundle is trivial or πk(M) = 0 or dimN < dimM

2 .

Then the classical transfer map can be extended to H∗(BΓ;A) → H∗−k(Bπ;A).

For the π1-injective case this result appeared in the article of Engel [6, Main
Theorem] but without the condition (3). However, the counterexample de-
scribed in Example 5.5 below shows that this condition is indeed necessary

—even in the π1-injective case. Engel informed us that his proof nonetheless
works under the additional assumption that πk(M) is zero or that the normal
bundle is trivial, see the correction [7]. These hypotheses are both covered by
our condition (3).
Theorem 1.7 already has interesting consequences for the positive scalar cur-
vature problem provided that the rational analytic Novikov conjecture holds
for Γ. The following applications were also observed by Engel [6, p. 425].

Corollary 1.8 (see Corollary 5.6). Assume that we are in the situation of
Theorem 1.7 (with A = Z), that the assembly map µ ⊗ Q : KO∗(BΓ) ⊗ Q →
KO∗(C∗Γ) ⊗ Q is injective, and that M is spin. Moreover, assume that either

(1) the push forward of the homological fundamental class of N does not
vanish in H∗(Bπ;Q), or

(2) the normal bundle of N ⊂ M is trivial and the push forward of the KO-
fundamental class of N (with the induced spin structure) in KO∗(Bπ)⊗Q

does not vanish. 1

Then α(M) 6= 0 and hence M does not admit a metric of positive scalar curva-
ture.

For codimension two or three, we also have results for certain generalized coho-
mology theories. The crucial observation which makes the next theorem work
is that an orientation on a two-dimensional real vector bundle defines a com-
plex structure on it. This, in turn, induces an orientation in every complex
oriented cohomology theory such as spinc bordism and complex K-theory (and
up to inverting 2, also spin bordism and real K-theory).

Theorem 1.9 (see Theorems 5.11 and 5.12). Let M be a closed connected
manifold and N ⊂ M a closed connected submanifold of codimension k ∈ {2, 3}
with oriented normal bundle ν. Let Γ := π1(M), and π := iN∗(π1(N)) <
π1(M). Moreover, assume the following.

• For k = 2: The induced map π2(N) → π2(M) is surjective. Also, there
exists a subset S ⊆ π2(N) which generates π2(M) such that the compo-
sition of the Hurewicz homomorphism π2(N) → H2(N ;Z) with the first

1This can be rephrased as the condition that there exists a non-vanishing higher Â-genus

of N which —via the map π1N ։ π— comes from a cohomology class of π.
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Chern class of ν vanishes on S, where we use the orientation to view ν
as a complex line bundle.

• For k = 3: The induced map π1(N) → π is an isomorphism, π2(N) =
0 = π2(M) and π3(N) → π3(M) is surjective. Also, ν is trivial and the
Thom class coincides with the pullback of the three times suspended unit
x ∈ E3(D3, S2) under the trivialization map.

Then we have a commutative diagram

Ωspinc

∗ (M) Ωspinc

∗ (BΓ) K∗(BΓ)

Ωspinc

∗−k (N) Ωspinc

∗−k (Bπ) K∗−k(Bπ).

τM,N τΓ,π τΓ,π

Moreover, we obtain the analogous diagram for spin-bordism and KO-theory up
to inverting 2.

In Section 5.3, which is again based on [16], we consider once more the most
general case of a generalized cohomology theory. We give a sufficient condition
for extending the transfer map to the classifying space for proper actions in
terms of group cohomology. Except for very low codimension, however, the
condition depends on the group π1(M). The best result that we get independent
of π1(M) is in codimension 2 when the normal bundle of N ⊂ M is trivial.
Specialized to spin bordism and real K-Theory, Theorem 5.15 gives:

Theorem 1.10. Let M be a closed connected spin manifold and N ⊂ M a
closed connected submanifold of codimension k = 2 with trivial normal bundle.
Let Γ := π1(M) and π := π1(N). Moreover, assume that π1(N) → π1(M) is
injective and that π2(N) → π2(M) is surjective.
Then we have the following commutative diagram:

Ωspin
∗ (M) Ωspin

∗ (BΓ) KO∗(BΓ) KOΓ
∗ (EΓ) KO∗(C∗Γ)

Ωspin
∗−k(N) Ωspin

∗−k(Bπ) KO∗−k(Bπ) KOπ
∗−k(Eπ) KO∗−k(C∗π).

τM,N τΓ,π τΓ,π τΓ,π

Note that the assumptions in the preceding theorem precisely match those of
Theorem 1.1. It seems very likely that the resulting transfer maps are compat-
ible with Kubota’s map on the K-Theory of the maximal group C∗-algebras
KO∗(C∗

maxΓ) → KO∗−2(C∗
maxπ) [11, proof of Theorem 3.7], since both Kub-

ota’s and our maps arise from a quite “natural” construction. The problem
with comparing these maps is that our general transfer construction is defined
in a very geometric way, and in a setting that is much more general than K-
theory. Kubota’s construction, on the other hand, relies on tools involving
operator algebras such as K-theory with coefficients in the Calkin algebra.
Another obvious line of inquiry would be to further relax the conditions under
which the transfer map can be extended in various generalized cohomology
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theories. We note, however, that some assumptions on the homotopy type of M
and N and on the generalized cohomology theory will always be necessary.
One cannot expect, for example, that the mere existence of a submanifold in-
clusion was enough to obtain the transfer on group homology. This is only
conceivable if the manifolds resemble to a suitable degree the classifying spaces
of the groups. Furthermore, we do not expect a version of Theorem 5.1 for arbi-
trary cohomology theories and arbitrary prescribed orientations on the normal
bundle. A —perhaps artificial— counterexample in KO-theory is an embed-
ding S1 ⊂ Sk+1, where we endow the normal bundle with the KO-orientation
which induces the “antiperiodic” spin structure on S1. However, it is not clear
where the precise frontier lies, and hence it would be of interest to find more
(counter-)examples.
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2 Geometric setup

In this short section, we describe the general geometric setup that will be used
in the technical sections of this article.

Setup 2.1. Fix a codimension k ∈ N. Let M and N be finite CW-complexes
and let ν be a real vector bundle of fiber dimension k over N , and let there
be an embedding t : ν →֒ M of the total space of ν as an open subset of M .
Usually, we will use the map t implicitly and consider ν as a subset of M .
Let Sν ⊂ Dν ⊂ ν ⊂ M be the unit sphere and disk bundles associated to ν,
respectively. Fix a base-point x0 ∈ N ⊂ ν ⊂ M . Let Γ := π1(M,x0) and
let π ≤ Γ be the image of the map π1(N, x0) → π1(M,x0) induced by the
restriction of the embedding ν →֒ M to the zero section. Let p̃ : M̃ → M
denote the universal covering of M . Let M̄ = π\M̃ , and p : M̃ → M̄ and

p : M̄ → M be the corresponding covering maps. Fix a base-point x̃0 ∈ p̃−1(x0)
and let x̄0 = p(x̃0) ∈ M̄ . Then the embedding t : ν →֒ M uniquely lifts to an

embedding t̄ : ν →֒ M̄ taking x0 to x̄0. Then we let D̃ν → Dν be the restriction
of the covering M̃ → M̄ via t̄ : Dν →֒ M̄ . We obtain an embedding t̃ : D̃ν →֒ M̃
as a π-compact subset. Similarly, define S̃ν and Ñ to be the restrictions to Sν
and N , respectively.

Remark 2.2. The covering Ñ → N is the connected normal covering of N with
π1Ñ = ker(π1N ։ π). In particular, if the map π1N → π is an isomorphism,
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then Ñ is the universal covering of N .

Remark 2.3. The typical situation we consider is that N ⊂ M is a submanifold
embedding of codimension k with normal bundle ν which is embedded into M
as a tubular neighborhood of N .

3 Codimension one transfer via KK-theory

In this section, we state and prove the precise version of Theorem 1.4.

Theorem 3.1. Let M be a closed spin manifold and N ⊂ M a submani-
fold of codimension 1 with trivial normal bundle, both connected. Set π :=
im(π1(N) → π1(M) = Γ). Then the dashed homomorphisms in the following
diagram exist and make it commutative.

Ωspin
∗ (M) Ωspin

∗ (BΓ) KO∗(BΓ) KOΓ
∗ (EΓ) KO∗(C∗Γ)

Ωspin
∗−1(N) Ωspin

∗−1(Bπ) KO∗−1(Bπ) KOπ
∗−1(Eπ) KO∗−1(C∗π).

c∗

τM,N

α

τΓ,π τΓ,π

t µΓ

τΓ,π σΓ,τ

c̄∗ α t µπ

(3.2)

The remaining arrows are defined as follows. The map τM,N on the left-hand
side is induced by the Pontryagin–Thom collapse M → ΣN (via the trivial nor-
mal bundle). We use the map c : M → BΓ inducing the identity on fundamental
groups, and c̄ : N → Bπ the composition of N → Bπ1(N) which is the iden-
tity on the fundamental group and Bπ1(N) → Bπ induced by π1(N) ։ π. The
map α is the Atiyah orientation from spin bordism to real K-homology. Further-
more, t is the composition of the transfer isomorphism KO∗(BΓ) → KOΓ

∗ (EΓ)
with the map induced by the unique homotopy class of Γ-equivariant maps
EΓ → EΓ (using that EΓ is a universal space for proper Γ-actions). Finally,
µΓ and µπ are the Baum–Connes assembly maps corresponding to Γ and π,
respectively.

Our definitions of the maps τΓ,π and σΓ,π are based on a direct construction
of a suitable boundary class in equivariant KK-theory similar to the work of
Oyono–Oyono [17] on groups acting on trees. This is not surprising because
the situation of Theorem 3.1 implies that Γ is an amalgamated product or
an HNN-extension [24, Corollaries 1 and 2]. The previous construction of
Zeidler [25, Remark 1.8] on the level of the group C∗-algebra is based on a
different method: it uses coarse index theory and the partitioned manifold
index theorem. We do not prove that these two approaches yield the same
map but nevertheless strongly expect that to be the case.
To prove the theorem, we consider a slightly more abstract setup based on
Setup 2.1.

Setup 3.3. Suppose that we are in the situation of Setup 2.1 with k = 1 and
where ν is the trivial line bundle. In this section, we will keep the embedding
t : N × R →֒ M explicit in our notation. Hence the chosen base-point x0 ∈
M is of the form x0 = t(y0, 0) for some y0 ∈ N . Since π1(M̄, x̄0) = π =
t∗(π1(N×{0}, y0)), codimension one and a Mayer–Vietoris argument imply that
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M̄ \ t̄(N × {0}) consists of two connected components. We denote the closures
of these components by M̄±, where the sign in the notation is determined by
the requirement t̄(N × {±1}) ⊆ M̄±.

We assume Setup 3.3 in the following. Fix an odd function χ0 : R → [−1, 1]
with χ0(±t) = ±1 for t > 1. Then we define a function χ : M̄ → [−1, 1] by

χ(x̄) =

{
χ0(t) x̄ = t̄(y, t) ∈ t̄(N × [−1, 1]),

±1 x̄ ∈ M± \ t̄(N × [−1, 1]).
. (3.4)

Let χ̃ : M̃ → [−1, 1] denote the pullback of χ to M̃ .

Lemma 3.5. Let K ⊆ M̃ be a compact subset. Then there are only finitely
many different cosets γπ ∈ Γ/π such that

sup
x̃1,x̃2∈K

∣∣χ̃(γ−1x̃1) − χ̃(γ−1x̃2)
∣∣ 6= 0.

Proof. Since M̃ is a path-connected CW complex, every compact subset is
contained in a path-connected compact subset. Hence we may assume without
loss of generality that K is path-connected. By construction, the set t̃(Ñ ×
[−1, 1]) is π-compact. Thus, since the action of Γ on M̃ is proper, there are
only finitely many γπ ∈ Γ/π such that γ−1K ∩ t̃(Ñ × [−1, 1]) is non-empty.
The set M̃ \ t̃(Ñ × [−1, 1]) consists of two connected components on each of
which the function χ̃ is constant. Using that K is connected, we conclude that
for all but finitely many cosets γπ ∈ Γ/π, the set γ−1K is contained in one of
the components. Hence the function χ̃ is constant on γ−1K for all but finitely
γπ ∈ Γ/π. This proves the lemma.

In the following, we work with equivariant KK-theory for Real C∗-algebras.
We use the following picture of KKOΓ

−1(A,B) for separable Real Γ-C∗-algebras
A and B (compare [3, 20.2 and 17.5.2]): elements are represented by triples
(E, φ, T ), where E is a countably generated Real Hilbert B-module with an
action of Γ, φ is an equivariant representation of A on E by adjointable oper-
ators, T is a self-adjoint operator on E such that [φ(a), T ], φ(a)(T 2 − 1) and
φ(a)(g · F − F ) are compact operators (in the Hilbert B-module sense) for all
a ∈ A and g ∈ Γ.

The collapse induces a map ∂π
M̃

: KOlf,π
∗ (M̃)

t
!

−→ KOlf,π
∗ (Ñ × (−1, 1)) ∼=

KOπ
∗−1(Ñ ), where t

! is induced from the inclusion C0(Ñ × (−1, 1)) →֒ C0(M̃)
coming from the embedding t : N×R →֒ M . The map ∂π

M̃
is given by Kasparov

product with an element in KKOπ
−1(C0(Ñ),C0(M̃)), which we will also denote

by ∂π
M̃

and which can be explicitly described as follows: Let T0 := 1
Ñ

⊗ χ0.

This represents a π-equivariant self-adjoint multiplier of C0(Ñ × (−1, 1)) with
f ⊗ 1 (T 2

0 − 1) ∈ C0(Ñ × (−1, 1)) for all f ∈ C0(Ñ). Thus T0 represents a
class ∂π

Ñ×(−1,1)
∈ KKOπ

−1(C0(Ñ),C0(Ñ × (−1, 1))). Then the desired class is

∂π
M̃

= t̃!∂
π

Ñ×(−1,1)
.
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Remark 3.6. We have the commutative diagram

KO∗(M) KOΓ
∗ (M̃)

KOlf,π
∗ (M̃)

KOlf
∗ (N × (−1, 1)) KOlf,π

∗ (Ñ × (−1, 1))

KO∗−1(N) KOπ
∗−1(Ñ),

∼=

t
!

τM,N

rΓ
π

t̃
!

∂π

M̃

∼=

∼=∂N×(−1,1)
∂π

Ñ×(−1,1)
∼=

∼=

where rΓ
π is the forgetful map restricting equivariance to π and ∂N×(−1,1) is

defined similarly as ∂π
Ñ×(−1,1)

. The vertical composition on the left-hand side is

by definition the map τM,N which is induced by the Pontryagin–Thom collapse.

Next we discuss induction (compare [10, §5]). Let A be a π-C∗-algebra. Then
the induced Γ-C∗-algebra IndΓ

π A consists of all those functions f ∈ Cb(Γ, A)
such that f(γh) = h−1f(γ) for all γ ∈ Γ, h ∈ π and the function Γ/π → R,
γπ 7→ ‖f(γ)‖ vanishes at infinity. For two π-C∗-algebras there is Kasparov’s
induction homomorphisms

iΓπ : KKOπ(A,B) → KKOΓ(IndΓ
π A, IndΓ

π B).

Note that if A = C0(Z) for some proper locally compact π-space Z, then
IndΓ

π A = C0(Γ×πZ). If Z is a π-invariant subspace of a proper locally compact
Γ-space W , then there is a proper Γ-equivariant map Γ×π Z → W which takes
[γ, z] to γ · z ∈ W . Composing this map with induction yields a map

IndΓ
π : KKOπ(C0(Z), B)

iΓ
π−→ KKOΓ(C0(Γ ×π Z), IndΓ

π B)

→ KKOΓ(C0(W ), IndΓ
π B). (3.7)

If EΓ is a universal space for proper Γ-actions, then it is also a universal space
for proper π-actions if endowed with the restricted action. Moreover, every
π-invariant π-compact subset Z ⊆ EΓ is contained in a Γ-invariant Γ-compact
subset W ⊆ EΓ. Thus passing to the colimit over all such subsets Z ⊆ EΓ
yields the induction map

IndΓ
π : KOπ

∗ (EΓ;B) → KOΓ
∗ (EΓ; IndΓ

π B). (3.8)

Theorem 3.9 ([5, 17]). The induction map (3.8) is an isomorphism.

Proof. For complex K-homology, this result is due to Oyono–Oyono [17]. See
also Chabert–Echterhoff [5] for a generalization to the case of locally compact
groups. The real case can be obtained from the complex case via the technique
of [19].
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After this interlude on induction we return to our setup:

Definition 3.10. Assume Setup 3.3. We let ∂Γ/π ∈ KKOΓ
−1(R,C0(Γ/π)) be

the class defined as follows. Let i : Γ/π →֒ M̄ , i(γπ) := p(γ−1x̃0) ∈ M̄ =

π\M̃ . Set χΓ/π : Γ/π → [−1, 1], χΓ/π(z) = χ(i(z)), where χ is defined in
(3.4). Then χΓ/π is a self-adjoint multiplier of C0(Γ/π) which satisfies χ2

Γ/π =

1 modulo C0(Γ/π). Furthermore, χΓ/π is Γ-invariant modulo C0(Γ/π): For
each fixed g ∈ Γ, Lemma 3.5 with K := {x̃0, g · x̃0} implies that the function
z 7→ χΓ/π(z) − χΓ/π(g−1 · z) has finite support. Thus χΓ/π represents a class

∂Γ/π ∈ KKOΓ
−1(R,C0(Γ/π)).

If W is a proper Γ-space, then we in fact have a Γ-equivariant homeomorphism

Γ/π ×W ∼= Γ ×π W, (γπ, x) 7→ [γ, γ−1x].

In particular, in Setup 3.3, there is a canonical isomorphism of Γ-C∗-algebras

IndΓ
π(C0(M̃)) = C0(Γ ×π M̃) ∼= C0(Γ/π × M̃) = C0(Γ/π) ⊗ C0(M̃). (3.11)

Proposition 3.12. Assume Setup 3.3. Let ∂Γ/π ∈ KKOΓ
−1(R,C0(Γ/π)) be as

in Definition 3.10. Then

IndΓ
π(∂π

M̃
) = ∂Γ/π ⊗R 1

C0(M̃)
∈ KKOΓ

−1(C0(M̃),C0(Γ/π) ⊗ C0(M̃)).

This identity implicitly uses the canonical isomorphism (3.11) applied to the
right-hand side argument of KKO as well as the map C0(M̃) → IndΓ

π(C0(Ñ))
used in (3.7) on the left-hand side.

Proof. Recall that ∂π
M̃

is represented by the operator T0 := 1
Ñ

⊗χ0 acting as a

multiplier of C0(Ñ × (−1, 1)). Then IndΓ
π ∂

π

M̃
∈ KKOΓ

−1(C0(M̃), IndΓ
π C0(M̃))

is represented by the triple

Ξ := (C0(Γ ×π Ñ × (−1, 1)), φ, 1
Γ×πÑ

⊗ χ0),

where we view C0(Γ ×π Ñ × (−1, 1)) as a Hilbert C0(Γ ×π M̃)-module via the
inclusion Γ×πt! : C0(Γ×πÑ×(−1, 1)) →֒ C0(Γ×πM̃) and φ is the multiplication
representation given as the composition

φ : C0(M̃) → C0(Γ ×π Ñ) → Cb(Γ ×π Ñ × (−1, 1)),

where the first map is induced by Γ ×π Ñ → M̃ , (γ, y) 7→ γ · t(ỹ, 0).
We first observe that we may change the representation φ by a straightforward
homotopy to

φ′ : C0(M̃)
ψ
−→ Cb(Γ ×π M̃)

(Γ×πt)∗⊗1
−−−−−−−→ Cb(Γ ×π Ñ × (−1, 1)),

where the first map is induced by Γ ×π M̃ → M̃ , (γ, x) 7→ γ ·x. Then the triple

Ξ′ := (C0(Γ ×π Ñ × (−1, 1)), φ′, 1
Γ×πÑ

⊗ χ0),
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represents the same class as Ξ. Next the triple Ξ′ may be extended to

Ξ′′ := (C0(Γ ×π M̃), ψ, 1Γ ⊗ χ̃),

where (1Γ ⊗ χ̃)(γ, x) = χ̃(x). This still represents the same KK-class because χ̃
agrees with 1 ⊗ χ0 on Ñ × (−1, 1) and is invertible outside. Finally, applying
the homeomorphism Γ ×π M̃ ∼= Γ/π × M̃ , we see that Ξ′′ is isomorphic to

Ξ′′′ := (C0(Γ/π) ⊗ C0(M̃), 1 ⊗ µ, ω),

where ω : Γ/π× M̃ → [−1, 1], ω(γπ, x) = χ̃(γ−1x) and µ is simply the multipli-
cation representation of C0(M̃) on itself. To be more precise, the isomorphism
between Ξ′′ and Ξ′′′ is an isomorphism of Kasparov modules over the isomor-
phism of Γ-C∗-algebras (3.11) in the right-hand side argument.
The element ∂Γ/π ⊗R 1

C0(M̃)
is represented by the triple

Υ := (C0(Γ/π) ⊗ C0(M̃), 1 ⊗ µ, χΓ/π ⊗ 1).

We claim that Ξ′′′ and Υ represent the same KK-class. Indeed, for each com-
pactly supported element f ∈ C0(M̃), Lemma 3.5 implies that

(γπ, x) 7→ f(x)(χ̃(γ−1x̃0) − χ̃(γ−1x))

is compactly supported on Γ/π×M̃ . Thus 1⊗µ(f)(1⊗χΓ/π−ω) ∈ C0(Γ/π)⊗

C0(M̃) for each f ∈ C0(M̃). This proves the claim and hence finishes the proof
of the proposition.

Lemma 3.13. Let π ≤ Γ be a subgroup of a discrete group Γ. Let ξ ∈
KKOΓ

−k(R,C0(Γ/π)). Then we have a commutative diagram,

KOΓ
∗ (EΓ) KO∗(C∗Γ)

KOΓ
∗−k(EΓ,C0(Γ/π)) KO∗−k(C0(Γ/π) ⋊ Γ)

KOπ
∗−k(EΓ) KO∗−k(C∗π)

µΓ

ξ jΓ(ξ)

µΓ
C0(Γ/π)

µπ

IndΓ
π

∼=

,

where jΓ(ξ) ∈ KKO−k(C∗Γ,C0(Γ/π)⋊Γ) is the descent homomorphism applied
to ξ. This holds for either reduced group C∗-algebras and crossed products as
well as for maximal ones.

Proof. The fact that the bottom square in the diagram exists and commutes
is a standard fact on the induction isomorphism, see for instance [5, Proposi-
tion 2.3].
To see that the top square commutes, recall the definition of the Baum–Connes
assembly map: Let X ⊆ EΓ be a Γ-compact subset and x ∈ KKOΓ

∗ (C0(X),R).
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Then jΓ(x) ∈ KKO∗(C0(X)⋊Γ,C∗Γ) and µΓ(x) = [pX,Γ]⊗C0(X)⋊ΓjΓ(x), where
[pX,Γ] ∈ KKO(R,C0(X)⋊Γ) is the K-theory class determined by a cutoff func-
tion for (X,Γ). Similarly, µΓ

C0(Γ/π)(x⊗R ξ) = [pX,Γ]⊗C0(X)⋊Γ jΓ(x⊗R ξ). More-
over, since Kasparov’s descent homomorphism is compatible with the composi-
tion product (see [10, §6, Theorem 1]), we have jΓ(x⊗R ξ) = jΓ(x) ⊗C∗Γ jΓ(ξ).
Thus

µΓ
C0(Γ/π)(x⊗R ξ) = [pX,Γ] ⊗C0(X)⋊Γ jΓ(x⊗R ξ)

= [pX,Γ] ⊗C0(X)⋊Γ jΓ(x) ⊗C∗Γ jΓ(ξ)

= µΓ(x) ⊗C∗Γ jΓ(ξ).

Lemma 3.14. Let ∂Γ/π be as in Proposition 3.12. Then the following diagram
commutes:

KO∗(M) KOΓ
∗ (M̃) KKOΓ

∗ (C0(M̃),R) KOΓ
∗ (EΓ)

KOlf,π
∗ (M̃) KKOΓ

∗−1(C0(M̃),C0(Γ/π)) KOΓ
∗−1(EΓ; C0(Γ/π))

KO∗−1(N) KOπ
∗−1(Ñ) KKOπ

∗−1(C0(Ñ),R) KOπ
∗−1(EΓ).

∼=

τM,N

rΓ
π

−⊗R∂Γ/π −⊗R∂Γ/π

∂π

M̃

⊛

∼=

IndΓ
π IndΓ

π

Proof. The rectangle on the left-hand side was already discussed in Remark 3.6.
The commutativity of the squares on the right-hand side is due to naturality
of the Kasparov product and the induction map. It remains to show that the
rectangle ⊛ commutes. Indeed, let ξ ∈ KKOΓ

∗ (C0(M̃),R). Then by [10, §5,
Theorem 1] and Proposition 3.12, we obtain

IndΓ
π

(
∂π
M̃

⊗
C0(M̃)

rΓ
π(ξ)

)
= IndΓ

π(∂π
M̃

) ⊗
IndΓ

π(C0(M̃))
iΓπrΓ

π(ξ)

=
(
∂Γ/π ⊗R 1

C0(M̃)

)
⊗

C0(Γ/π)⊗C0(M̃)

(
1C0(Γ/π) ⊗R ξ

)

= ∂Γ/π ⊗R ξ = ξ ⊗R ∂Γ/π.

We have again implicitly used the isomorphism (3.11).

Theorem 3.15. Suppose Setup 3.3. Then we have a commutative diagram:

KO∗(M) KOΓ
∗ (EΓ) KO∗(C∗Γ)

KO∗−1(N) KOπ
∗−1(Eπ) KO∗−1(C∗π).

This holds for the reduced as well as maximal group C∗-algebras. Moreover, this
diagram is natural in the data of Setup 3.3 for fixed subgroup inclusions π ≤ Γ.
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Proof. The left square follows from Lemma 3.14 and the fact that the induc-
tion map IndΓ

π : KOπ
∗ (EΓ) → KOΓ

∗ (EΓ,C0(Γ/π)) is an isomorphism (see Theo-
rem 3.9). The right square follows from Lemma 3.13.
Next we explain naturality. Let π ≤ Γ be fixed and let t : N × R →֒ M
and t

′ : N ′ × R →֒ M ′ both as in Setup 3.3. Suppose that there are
continuous maps fM : M → M ′ and fN : N → N ′ such that fM ◦ t =
t
′ ◦(fN × id) and fM induces the identity on π1. Then fM and fN in-

duce equivariant maps f
M̃

and f
Ñ

between the corresponding covering spaces
and hence equivariant ∗-homomorphisms between the associated function al-
gebras. By abuse of notation, we also denote the resulting KK-elements by

f
M̃

∈ KKOπ
0 (C0(M̃

′
),C0(M̃)) and f

Ñ
∈ KKOπ

0 (C0(Ñ
′
),C0(Ñ)). The fact

that the Mayer–Vietoris boundary classes are natural can then be expressed
as:

f
Ñ

⊗
C0(Ñ)

∂π
M̃

= ∂π
M̃

′ ⊗
C0(M̃

′

)
f
M̃
. (3.16)

By construction, the functions χ̃ : M̃ → R and χ̃′ : M̃
′
→ R satisfy χ̃′ ◦ f

M̃
= χ̃.

This shows that the element ∂Γ/π from Definition 3.10 is in fact the same for

M̃ and M̃
′
. This together with (3.16) implies that the commutative diagram

is natural in this situation.

Remark 3.17. With little extra work, the naturality assertion of Theorem 3.15
extends to the case where the groups change. We leave the details to the reader.

Proof of Theorem 3.1. We first observe that the pair (M,N) precisely fits into
Setup 3.3. Thus Theorem 3.15 already yields the resulting diagram except
for the two transformations in the middle which involve the spin bordism and
KO-homology of BΓ. To construct these, we will see that Bπ and BΓ can be
constructed in such a way that Bπ is a subspace of BΓ and Setup 3.3 becomes
applicable. This uses the special structure of Γ in this codimension 1 situation.
We have two cases:
The first case is that N separates M into two connected components. That
is, M = M+ ∪N M−, with codimension 0 submanifolds M+,M−, both with
boundary N . Set

Γ+ := im(π1(M+) → π1(M)) ⊂ Γ; Γ− := im(π1(M−) → π1(M)) ⊂ Γ.

By the van Kampen theorem we then have an amalgamated free product Γ =
Γ+ ∗π Γ−.
The second case is that N is non-separating. Then let W be the manifold
with boundary obtained by cutting M open along N . W has two boundary
pieces N+, N− both identified with N , and we have M = W/ ∼, where ∼
is the equivalence relation identifying N+ with N−. Let H := im(π1(W ) →
π1(M)) ⊂ Γ be the image under the collapse map, where we place the basepoint
in N+. The inclusion N = N+ →֒ W then induces an inclusion π →֒ H
(injective because π ⊂ Γ). Let γ : [0, 1] → W be any path from the basepoint
in N+ to the corresponding point in N−; conjugation with it allows to define
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a second embedding (as γ−1πγ ⊂ Γ) induced by the inclusion N = N− ⊂ W .
The van Kampen theorem now implies that we get Γ as an HNN extension
Γ = H∗π=γ−1πγ , see e.g. [21, Proposition 1.2].
Then one can construct a model of BΓ out of Bπ and BΓ+, BΓ− and BH . In
the separating case, we have

BΓ = BΓ+ ∪Bπ×{−1} Bπ × [−1, 1] ∪Bπ×{1} BΓ−,

where we construct BΓ−,BΓ− such that they contain copies of Bπ which in-
duce the inclusion maps on fundamental groups. More specifically, one can
construct the classifying spaces in question as CW-complexes starting with M :
first attach cells to N to construct Bπ. Taking the product with [−1, 1] and
glueing it into M along a trivialization of a tubular neighborhood of N in M
produces M ∪N×[−1,1] Bπ× [−1, 1]. Now, attach further cells to M+ ∪N×{1} Bπ
to obtain BΓ+ and to M−∪N×{−1}, to obtain BΓ−. Here, for convenience we
slightly change notation and write M = M+ ∪ N × [−1, 1] ∪ M−, glued along
the two boundary components of N × [−1, 1].
The construction in the second case, where N is not separating, is precisely the
same. We then use the fact that the classifying space of an HNN-extension
H∗π=γ−1πγ can be obtained from a classifying space of H by glueing in
Bπ × [−1, 1], attaching the two ends according to the two inclusions of π
and γ−1πγ into H ; and this can be modelled exactly as before, starting with
N × [−1, 1] ⊂ M .
In either case, we obtain a diagram of embeddings

N × [−1, 1] Bπ × [−1, 1]

M BΓ.

By definition, the collapse map M → ΣN maps every point inside N × (−1, 1)
of N to the corresponding point in N × (−1, 1) ⊂ ΣN , and every point outside
this tubular neighborhood to the (collapsed) base point in ΣN . By applying
the same construction to Bπ × (−1, 1) ⊂ BΓ we get a map BΓ → ΣBπ and a
commutative diagram

M BΓ

ΣN ΣBπ.

From this we obtain the commutative diagram

Ωspin
∗ (M) Ωspin

∗ (BΓ) KO∗(BΓ)

Ωspin
∗−1(N) Ωspin

∗−1(Bπ) KO∗−1(Bπ),

c∗

τM,N τΓ,π τΓ,π

c̄∗

(3.18)
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which consists precisely of the first three columns in (3.2).
Finally, if the space BΓ constructed above is compact (that is, we only had
to add finitely many cells), then we are in Setup 3.3. The diagram (3.2) is
completed by combining (3.18) with the diagram from Theorem 3.15 (for M =
BΓ and N = Bπ).
In the general case, where BΓ is non-compact, KO∗(BΓ) is identified with the
colimit of KO∗(X), where X runs over compact subsets of BΓ. Then the colimit
can be restricted to the directed set of those compact subsets X such that
X ∩ (Bπ × [−1, 1]) = Y × [−1, 1] for some compact Y ⊆ Bπ. Since Γ = π1(M)
is finitely presented and π = im(π1(N) → π1(M)) is finitely generated, we can
arrange it so that we can further restrict the colimit to those pairs (X,Y ) with
π1(X) = Γ and π1(Y ) ։ π. Then we may apply Theorem 3.15 to each of
these pairs (X,Y ) and the naturality statement of Theorem 3.15 implies that
this passes to the colimit and fits together with (3.18), thereby completing
(3.2).

4 General transfer construction

In this section, we describe a general transfer construction which is used in the
proof of the remaining results. Suppose that we are in the situation of Setup 2.1
for some codimension k. Let E be a multiplicative equivariant generalized
homology theory (see, e.g., [14]). Assume that ν is E-oriented and let θ ∈
Ek(Dν, Sν) be the corresponding Thom class. Then the classical transfer map
(see [18, Chapter V.2]) is given by

τθ : E∗(M) −→ E∗(M,M \ Dν◦) ∼= E∗(Dν, Sν)
∩θ
−−→ E∗−k(N).

If M and N are E-oriented manifolds, then —fixing orientations on M and N—
we obtain an orientation on the normal bundle such that the corresponding
transfer sends the fundamental class of M to the fundamental class of N .
It is our goal to find conditions under which τθ can be extended to the classifying
spaces for free actions, or even the classifying spaces for proper actions, such
that the following diagram commutes, where the horizontal arrows are induced
by classifying maps:

E∗(M) E∗(BΓ) EΓ
∗ (EΓ)

E∗−k(N) E∗−k(Bπ) Eπ∗−k(Eπ).

τθ

To do so we will work in the equivariant setting. Conceptually, our method
uses “locally finite equivariant generalized homology theories”. But there does
not seem to be an established set of axioms for this concept, and it would
take us to far to introduce one. Instead, we give an ad-hoc definition for an
“lf-restriction” operation (the “lf” stands for locally finite).
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Definition 4.1. Let Γ be a countable discrete group, let π be a subgroup, and
let Y be a proper Γ-CW-complex. A π-invariant subspace K ⊂ Y is called
Γ-locally π-precompact if for every Γ-cell X ⊂ Y the intersection K ∩ X is
contained in only finitely many of the π-cells that together form X .

Definition 4.2. A generalized equivariant homology theory E has lf-
restrictions if for every inclusion of groups π < Γ, for every proper Γ-
CW-complex Y and for every Γ-locally π-precompact subspace K ⊂ Y such
that (Y, Y \K) is a pair of π-CW-complexes, there is a homomorphism

rK : EΓ
∗ (Y ) → Eπ∗ (Y, Y \K).

These maps must be natural with respect to cellular equivariant maps of CW-
pairs, and they must be compatible with the induction isomorphisms in the
following sense: Suppose that Γ acts freely on Y , that K is a π-subcomplex
of Y , and that Γ\Γ · K = π\K. The latter condition means γ · K ∩ K 6= ∅ is
possible only for γ ∈ π ⊂ Γ. Then the following diagram makes sense

EΓ
∗ (Y ) Eπ∗ (Y, Y \K) Eπ∗ (K,K ∩ (Y \K))

E∗(Γ\Y ) E∗(Γ\Y, (Γ\Y ) \ (Γ\Γ ·K)) E∗(π\K,π\(K ∩ (Y \K)))

rK

∼=ind

∼=
exc

∼=ind

∼=
exc

where ind denotes induction maps, exc denotes excision, and the bottom left
map is inclusion induced. We require that the diagram commutes.

Notation 4.3. In Setup 2.1 we assume that Dν, M \ Dν◦ and Sν are subcom-
plexes of M , and that the Γ-CW-structure on M̃ is the one lifted from M .

We will show in Section 4.1 that real K-homology, the most relevant example
for E∗, has lf-restrictions.
Assume now that E∗ is a generalized equivariant multiplicative homology the-
ory with lf-restrictions, π < Γ and Y is a proper Γ-space. Given an element
θ ∈ Ekπ(Y, Y \ K), with K Γ-locally π-precompact, we define the equivariant
transfer map

τeq
θ,K : EΓ

∗ (Y ) → Eπ∗−k(Y ), y 7→ rK(y) ∩ θ.

Because both the cap product and the lf-restriction are natural with respect to
maps of pairs (Y, Y \K), the same is true for τeq

θ,K . In particular, if i : Y \K ′ →
Y \ K is the inclusion of the complement of a larger Γ-locally π-precompact
subspace K ′, then τeq

i∗(θ),K′ = τeq
θ,K . Thus, an element θ ∈ colimK E

∗
π(Y, Y \K)

defines a map τeq
θ , where the colimit runs over all π-subcomplexes Y \K with

Γ-locally π-precompact complement.
If f : X → Y is a Γ-equivariant cellular map between proper Γ-CW-complexes,
then for any Γ-locally π-precompact subset K ⊂ Y one can form the subcom-
plex L ⊂ X consisting of all cells whose image under f does not intersect K.
It follows directly from Definition 4.1 that X \ L is Γ-locally π-precompact.
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This means that the elements in colimK E
∗
π(Y, Y \ K) can be pulled back to

X via f . Furthermore, the pullback only depends on the homotopy class of f .
Indeed, if H : X × [0, 1] → Y is a homotopy from f to f ′, we can restrict our-
selves to the smaller subcomplex LH ⊂ X of all cells whose image under f
does not intersect K during the whole homotopy. Then X \LH is still Γ-locally
π-precompact.

We now establish a general-purpose result that will allow us to extend the
classical transfer map in many cases.

Theorem 4.4. Assume Setup 2.1. Let θ ∈ Ek(Dν, Sν) ∼= Ekπ(D̃ν, S̃ν) ∼=
Ekπ(M̃, M̃ \ D̃ν

◦
) and let τθ : E∗(M) → E∗−k(N) be the associated classical

transfer map. Consider the following conditions:

(1) There exist Γ-locally π-precompact subspaces K ⊃ D̃ν and KE ⊂ EΓ such
that the classifying map M̃ → EΓ is a map of π-CW-pairs (M̃, M̃ \K) →
(EΓ,EΓ \ KE), and such that the restriction i∗

D̃ν,K
(θ) ∈ Ekπ(M̃, M̃ \ K)

can be lifted to θE ∈ Ekπ(EΓ,EΓ \KE).

(2) There exist Γ-locally π-precompact subspaces KE ⊂ K ′
E ⊂ EΓ and KE ⊂

EΓ such that the classifying map EΓ → EΓ is a map of π-CW-pairs
(EΓ,EΓ\K ′

E) → (EΓ,EΓ\KE), and such that the restriction i∗KE,K′

E
(θE) ∈

EkΓ(EΓ,EΓ \K ′
E) can be lifted to θE ∈ Ekπ(EΓ,EΓ \KE).

If condition (1) is satisfied, τθ can be extended to E∗(BΓ) → E∗−k(Bπ). If, in
addition, condition (2) is satisfied, τθ can be extended further to EΓ

∗ (EΓ) →
Eπ∗−k(Eπ).

Proof. Consider first the following diagram where θ′ and θ′′ are the images of θ
under the isomorphisms Ek(Dν, Sν) ∼= Ekπ(D̃ν, S̃ν) ∼= Ekπ(M̃, M̃ \ D̃ν

◦
):

E∗(M)

E∗(M,M \ Dν◦)

E∗(Dν, Sν) E∗−k(Dν)

Eπ∗ (D̃ν, S̃ν) Eπ∗−k(D̃ν)

Eπ∗ (M̃, M̃ \ D̃ν
◦
) Eπ∗−k(M̃)

EΓ
∗ (M̃)

τθ

ind−1

∼=exc

∼=ind−1

∩θ

∼=ind−1

∩θ′

i∗exc ∼=

∩θ′′

rDν

τeq

θ′′
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The left part of the diagram commutes by the compatibility of lf-restrictions
with induction (setting K = D̃ν

◦
). The top and bottom triangles commute by

the definition of τθ and τeq
θ′′ , respectively. The top square commutes because

the cap product is compatible with induction, the bottom square commutes
because the cap product is natural.

Consider next the following two diagrams:

E∗(M) E∗−k(N) E∗(M) E∗−k(N)

EΓ
∗ (M̃) Eπ∗−k(M̃) EΓ

∗ (M̃) Eπ∗−k(M̃)

EΓ
∗ (EΓ) Eπ∗−k(EΓ) EΓ

∗ (EΓ) Eπ∗−k(EΓ)

E∗(BΓ) E∗−k(Bπ) EΓ
∗ (EΓ) Eπ∗−k(Eπ).

τθ

ind−1 i∗◦ind−1

τθ

ind−1 i∗◦ind−1

τeq

θ′′
τeq

θ′′

∼=ind−1

τeq
θE

ind−1∼=

τeq
θE

τeq
θE

In both diagrams the top square is given by the outer arrows of the previous
diagram. Hence, it commutes. The middle squares in both diagrams, as well
as the bottom square in the second diagram, commute by naturality of the
equivariant transfer map. The dashed morphism in the left diagram is defined
to make the bottom square commutative.

We note that EΓ and EΓ with the group action restricted to π are models for
Eπ and Eπ, respectively, and the composition along the left and right columns
in both diagrams are classifying maps. Hence the claims follow.

Remark 4.5. Under certain conditions there is another canonical way to extend
τθ to E∗(BΓ) → E∗−k(Bπ): Assume that we have models Bπ ⊂ BΓ such that a
neighborhood of Bπ is homeomorphic to a k-disk bundle DνB. Then any Thom
class θB ∈ Ek(DνB, SνB) gives rise to a transfer map τθB

: E∗(BΓ) → E∗−k(Bπ).
Assume further that the classifying map M → BΓ restricts to a bundle map
Dν → DνB and sends M \ Dν◦ into BΓ \ DνB

◦, and that the Thom class θ is
the pullback of θB under the classifying map. Then τθB

extends τθ. This is
precisely how the maps in (3.18) are obtained in the proof of Theorem 3.1.

The extension τθB
coincides with the one obtained from Theorem 4.4, with

θE the image of θB under the isomorphisms Ek(DνB, SνB) ∼= Ekπ(D̃νB, S̃νB) ∼=
Ekπ(B̃Γ, B̃Γ\D̃νB

◦
). Indeed, the first diagram of the preceding proof, applied to

the pair DνB ⊂ BΓ, shows that ind−1◦τeq
θE

◦ind = i∗◦τθB
, where i : DνB → π\EΓ

is a homotopy equivalence.

In codimension ≥ 2 it is generally not clear when the above conditions can be
satisfied. This is discussed in [16, 5.3.9–11] for codimension 2.

Remark 4.6. If we assume that the lf-restrictions are transitive with respect to
inclusions of subgroups π′ < π < Γ, the equivariant transfer map will also be
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transitive in the sense that τeq
θ′ ◦ τeq

θ = τeq
θ′∪θ. We will not make use of this in

the following.

4.1 Homology theories with lf-restrictions

The first equivariant homology theory for which we construct lf-restrictions is
Bredon homology (see [15]). However, we only deal with the case of a constant
coefficient module M with the trivial group action. In this case HΓ

∗ (X) =
HΓ

∗ (X ;M) is canonically isomorphic to the ordinary homology of the quotient,
H∗(Γ\X ;M).

Lemma 4.7. Bredon homology with constant coefficients and trivial group action
on the coefficients has lf-restrictions.

Proof. Let π,Γ, Y,K be as in Definition 4.2. An element x ∈ HΓ
∗ (Y ) can be

represented by a cycle
∑
i λic

Γ
i , where the λi lie in the coefficient module, cΓ

i are
Γ-cells of Y and the sum is finite. We denote by Cπi the formal sum of π-cells
of Y that have non-empty intersection with cΓ

i ∩K. This sum is finite becauseK
is Γ-locally π-precompact. Let now rK(x) = [

∑
i λiC

π
i ] ∈ Hπ

∗ (Y, Y \ K). One
can easily check that the map rK , thus defined, satisfies the conditions of
Definition 4.2.

To show that real K-homology has lf-restrictions we use its geometric descrip-
tion. For a detailed definition and a proof of equivalence to the analytic de-
scription see Baum–Higson–Schick, [2] (They consider the complex case, but
the real case is analogous, see their Remark 4.1).

Definition 4.8. Let (X,A) be a pair of topological spaces and Γ y (X,A)
a proper action of a discrete group. Elements of KOΓ

n(X,A) are represented
by quadruples (M, s,E, f), where M is a Γ-compact, proper Γ-manifold of
dimension n mod 8, s is a Γ-spin-structure on M , E → M a real Γ-vector
bundle and f : M → X a continuous Γ-equivariant map such that f(∂M) ⊂ A.
The equivalence relation is generated by:

(1) direct sum of vector bundles equals disjoint union,

(2) equivariant bordism,

(3) equivariant vector bundle modification.

Lemma 4.9. Real K-homology has lf-restrictions.

Proof. Let π,Γ, Y,K be as in Definition 4.2 and let [M, s,E, f ] ∈ KOΓ
∗ (Y ).

To define the lf-restriction map we have to find any π-invariant π-compact sub-
manifold with boundary M ′ ⊂ M of codimension 0, such that f(M \ M ′) ⊂
Y \ K. The restricted K-homology cycle (M ′, s|M ′ , E|M ′ , fM ′) with an action
of only π then represents an element in KOπ

∗ (Y, Y \ K) that does not depend
on the concrete choice of M ′. The construction is compatible with taking dis-
joint unions, with vector bundle addition and with vector bundle modification.
Because the method given below to find M ′ can also be applied to bordisms,
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the construction is compatible with the bordism relation and therefore defines
a group homomorphism from KOΓ

∗ (Y ) to KOπ
∗ (Y, Y \K).

To construct the submanifold M ′ ⊂ M , we first check that L := f−1(K)
is π-compact. Indeed, if F ⊂ M is the closure of a Γ-fundamental domain,
then F is compact. Hence, γ · F ∩ f−1(K) 6= ∅ only for finitely many cosets
γ ∈ ΓF ⊂ Γ/π, and it follows that f−1(K) ⊂

⋃
γ∈ΓF

γ · F is π-precompact.
We choose a Γ-invariant Riemannian metric on M and consider the function
d : M → R that assigns to m ∈ M the distance from m to L. This function is
π-equivariant. The induced function d : π\M → R is the distance function (in
the metric induced from M) to the compact set π\L. Hence d is proper.
Next, we need a π-invariant smooth approximation of d. Because the action
Γ y M is proper, every point m ∈ M has a Γ-invariant neighborhood of
the form

⊔
[γ]∈Γ/Γm

Wm,[γ], where Γm is the stabilizer of m. Because M is
Γ-compact, it is covered by a finite set of such neighborhoods. Because all
stabilizer groups are finite, one can construct a Γ-invariant smooth partition
of unity subordinate to the covering. Using the partition of unity we can
now smoothen d separately on each neighborhood. This works by choosing a
smoothing on one Wm,γ for each coset γ ∈ π\Γ/Γm, averaging these over the
action of πm and extending them π-equivariantly to the whole Γ-neighborhood.
Finally, pick any regular value r > 0 of d such that f(d−1([r,∞))) ⊂ Y \ K.
The preimage M ′ = d−1((−∞, r]) ⊂ M is a π-invariant submanifold with
boundary. Because d is still a proper function after smooth approximation, M ′

is π-compact.
The lf-restriction map, thus constructed, is clearly natural with respect to maps
of CW-pairs. To see that it is compatible with induction, assume now that Γ
acts freely on Y and that K is a subcomplex with Γ\Γ · K = π\K, as in
Definition 4.2. We can construct a π-invariant neighborhood U ⊃ K such that
Γ\Γ · U = π\U and such that there is a π-equivariant deformation retraction
Ht from U to K. Then M \f−1(U) has a positive distance to L, and so we may
arrange that f(M ′) ⊂ U . The image ind◦exc◦rK([M, s,E, f ]) is represented by
the quotient of (M ′, s|M ′ , E|M ′ , H1 ◦ fM ′) by π. But the same representative
can be obtained by first taking the quotient by Γ, then cutting Γ\M off to
Γ\Γ · M ′ = π\M ′ and applying the deformation retraction induced by Ht on
the quotient. Therefore, one sees on the level of cycles that the diagram of
Definition 4.2 is commutative.

Remark 4.10. The above proof works, word-for-word, also for complex K-
homology, and if one simply forgets the vector bundle, it also works for all
bordism theories. Therefore, these generalized homology theories all have lf-
restrictions.

5 Applying the general transfer construction

We apply Theorem 4.4 to specific scenarios where we put certain restrictions
on the homology theory E, on the codimension of the subspace N ⊂ M or on
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the normal bundle of N .
In each case we will describe the cohomology class θ in terms of a pullback of
a fixed cohomology class x ∈ E∗(K(Z, n)) along some classifying map. The
extensions of θ are then obtained as the pullback of x under extensions of the
classifying map. This approach has the additional benefit that it is natural
with respect to transformations of homology theories.

5.1 Transfer in singular homology

The following is a restatement of Theorem 1.7.

Theorem 5.1. Suppose that we are in Setup 2.1 with N ⊂ M an embedding of
codimension k with normal bundle ν. Let E∗ = H∗(−;A) be singular homology
with coefficients in a commutative ring A and let ν be oriented with Thom class
θ ∈ Hk(Dν, Sν;A).
In addition, we assume that

(1) if k > 1, then πk(N) → πk(M) is surjective;

(2) if k > 2, then πj(M) = 0 for j = 2, . . . , k − 1;

(3) there exists a subset S ⊆ πk(N) which generates πk(M) such that the
composition of the Hurewicz homomorphism πk(N) → Hk(N ;Z) with the
Euler class of ν vanishes on S. In particular, this is satisfied if the normal
bundle is trivial or πk(M) = 0 or dimN < dimM

2 .

Then the classical transfer map can be extended to the classifying space for free
actions.

Proof. We have to extend θ from Hk
π(D̃ν, S̃ν) to Hk

π(EΓ,EΓ \ K) for a suit-
able Γ-locally π-precompact subspace K ⊆ EΓ. Then the result follows from
Theorem 4.4.
We start with K = D̃ν and build EΓ out of M̃ by inductively attaching free
Γ-cells of dimension > k. Each new Γ-cell decomposes into π-cells. Because K
is Γ-locally π-precompact and the attaching maps are Γ-equivariant, all but
finitely many of the π-cells do not attach to K. The interior of the other π-
cells has to be added to K, but since these are only finitely many, K stays
Γ-locally π-precompact.
To complete the inductive step, θ has to be extended to the added cells. If the
new π-cells have dimension > k+ 1, this extension is possible because singular
homology satisfies the dimension axiom. In dimension k + 1 we may assume
that the attaching map represents an element of S ⊂ πk(N). The extension is
then possible by the condition on the Euler class.

Remark 5.2. For singular homology our extension of the transfer map coincides
with the map constructed by Engel in the setting of rough homology in [6]:
Without recapitulating all the definitions, we note that, conceptually, Engel’s
map is given by cap product with a certain cohomology class that arises from
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the Thom class (see [6, Proof of Theorem 2.16]), and the same is true for our
construction.
To verify that the two maps are the same one has to retrace the proof of
[6, Theorem 3.10]. Without loss of generality, Eπ1(M) is also used as a model
for Eπ1(N), and Bπ1(M) containsM as a subcomplex. To evaluate Engel’s map
on a homology class x ∈ H∗(Bπ1(M)) we first represent x by a cycle, such that
the vertices of all singular simplices map to a fixed base point in M . Because M
is highly connected, we can further assume that the q-faces of every simplex
are mapped to M . Now we trace through all the isomorphisms involved in
Engel’s construction. Whenever π1(M) is embedded into Eπ1(M) as the orbit
of a point, we let this point be a fixed lift of the base point. Whenever the
simplicial operator ∆ of [6, Proof of Proposition 2.8] is applied to the vertex
set x of a singular simplex, we may assume that ∆(x) is the original simplex. In
the end, the image of x agrees with the image under our own extended transfer
map.

Although the hypotheses of Theorem 1.7 appear elaborate, the following exam-
ples demonstrate why they are necessary.

Example 5.3. Let N be an oriented aspherical manifold and k > 1. Then the
codimension k submanifold inclusion N ∼= N × ∗ ⊂ N × Sk =: M with π =
π1N = π1M = Γ satisfies all conditions of Theorem 1.7 except (1). However,
the desired commutative diagram cannot exist because the fundamental class
of N does not vanish in the homology of Bπ = N but the fundamental class of
N × Sk does vanish in H∗(Bπ).

Example 5.4. To see why (2) is necessary, consider the standard embedding
N := S2 = CP1 ⊂ CP3 =: M . Then N has codimension four in M , π1N =
π1M = 1 and the normal bundle is orientable because CP1 and CP3 are. Since
π4(CP3) = 0, condition (1) is satisfied. So is (3) due to H4(CP1) = 0. However,
(2) fails because π2(CP3) ∼= Z 6= 0. Since CP2 and CP1 have intersection
number 1 in CP3 and H4(CP3) is generated by CP2, in degree 4 the transfer map

of the inclusion CP1 ⊂ CP3 yields an isomorphism H4(CP3)
∼=
−→ H0(CP1) ∼=

H0(∗) ∼= Z. But H4 of the trivial group is zero. Hence the diagram

H4(CP3) H4(∗) = 0

H0(CP1) H0(∗) ∼= Z

∼=

∼=

cannot be completed with a dashed arrow to make it commutative.

A priori, a plausible alternative to condition (2) might be to require that
the induced maps πj(N) → πj(M) are surjective (or isomorphisms) for
j = 2, . . . , k − 1. For instance, this is suggested by the case of fiber bundles
over aspherical manifolds which have been studied in [25, Theorem 1.5]. But
Example 5.4 would satisfy such a hypothesis and hence this is not appropriate
for our purposes.
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Example 5.5. A variation of Example 5.4 shows that condition (3) cannot be
dropped either. Indeed, consider the standard embedding N := S2 = CP1 ⊂
CP2 =: M . Then N has codimension two in M , π1N = π1M = 1 and the
Hurewicz theorem implies that the inclusion N →֒ M induces an isomorphism
on π2 because it does so on H2. Now this example satisfies all hypotheses of
Theorem 1.7 except (3). Since CP1 has self-intersection number 1 in CP2 and
H2(CP2) is generated by CP1, in degree 2 the transfer map of the inclusion

CP1 ⊂ CP2 yields again an isomorphism H2(CP2)
∼=
−→ H0(CP1) ∼= H0(∗) ∼= Z.

Since H2(∗) = 0, this again obstructs the existence of the desired commutative
diagram.

Corollary 5.6. Assume that we are in the situation of Theorem 5.1 (with
A = Z), that the assembly map µ ⊗ Q : KO∗(BΓ) ⊗ Q → KO∗(C∗Γ) ⊗ Q is
injective, and that M is spin. Moreover, assume that either

(1) the push forward of the homological fundamental class of N does not
vanish in H∗(Bπ;Q), or

(2) the normal bundle of N ⊂ M is trivial and the push forward of the KO-
fundamental class of N (with the induced spin structure) in KO∗(Bπ)⊗Q

does not vanish.

Then α(M) 6= 0 and hence M does not admit a metric of positive scalar curva-
ture.

Proof. On complex K-homology the Chern character is a transformation

ch: Kn(X) →
⊕

l∈Z

Hn+2l(X ;Q)

which becomes an isomorphism after taking the tensor product with Q. Pre-
composing the Chern character with the complexification transformation on
real K-homology yields the Pontryagin character

ph: KOn(X) →
⊕

l∈Z

Hn+4l(X ;Q)

which again becomes an isomorphism after taking the tensor product with Q.

The composition Ωspin
n (X) → KOn(X)

ph
−→

⊕
l∈Z

Hn+4l(X ;Q) agrees in de-
gree n with the composition Ωspin

n (X) → ΩSO
n (X) → Hn(X ;Z) → Hn(X ;Q)

which assigns to an oriented manifold its homological fundamental class. How-
ever, in general they are not equal because the former contains information de-
termined by the Â-class of the tangent bundle in the lower degree summands.
Similarly, if N ⊂ M is a codimension k submanifold embedding with KO-
oriented normal bundle, then the diagram

KOn(M)
⊕

l∈Z
Hn+4l(M ;Q)

KOn−k(N)
⊕

l∈Z
Hn−k+4l(N ;Q)

ph

τM,N τM,N

ph

(5.7)
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does not commute in general because of the Chern character defect. But if M
is spin, then the classes τM,N ph([M ]KO) and ph τM,N ([M ]KO) agree in the top
degree because they are both equal to the homological fundamental class of N .
This observation together with Theorem 5.1 proves (1).
Finally, in the special case of a trivial normal bundle, the diagram (5.7) com-
mutes. Together with the fact that the Pontryagin character is a rational
isomorphism and Theorem 5.1, this proves (2).

5.2 Transfer in a complex oriented homology theory

In this section, we apply our construction in codimension two and three to
complex oriented cohomology theories. A classic textbook treatment of this
concept is [1, Part II]. Alternatively, see for instance [13, Lectures 4–6].

Definition 5.8. Let E be a generalized multiplicative cohomology theory. A
complex orientation for E is a class x ∈ E2(CP∞, pt) which restricts to the
twice-suspended unit in E2(CP1, pt) = E2(S2, pt). E is called complex ori-
entable if such an element exists.

Remark 5.9 ([1, Part II, Lemma 4.6], [13, Lecture 6, Theorem 8]). Complex bor-
dism is the universal example of a complex oriented cohomology theory. Indeed,
complex orientations on a multiplicative cohomology theory E are in bijec-
tion with multiplicative transformations of cohomology theories f : MU → E.
There is a universal complex orientation xMU ∈ MU2(CP∞, pt) such that this
bijection is implemented by taking f to f(xMU).

Example 5.10. The transformations MU → MSpinc → MSO show that
the spinc- and oriented bordism theories are complex oriented. The
Atiyah–Bott–Shapiro orientation MSpinc → K makes complex K-theory com-
plex oriented.
On the other hand, spin-bordism and real K-theory are both not complex ori-
ented. But they become complex oriented after inverting 2. For spin bordism,
this is the case because the map MSpin → MSO is an equivalence after in-
verting 2 and MSO is complex oriented. Then it also follows for KO via the
Atiyah–Bott–Shapiro orientation MSpin → KO.

An ordinary orientation on a two-dimensional vector bundle ν over N deter-
mines a complex structure on the bundle. Consequently, there is a homotopy
class of classifying maps f : (Dν, Sν) → (Dγ, Sγ) ≃ (CP∞, S∞), where γ is
the universal complex line bundle over CP∞. Using that S∞ is contractible,
we can identify f with a map f : (Dν, Sν) → (CP∞, pt). The condition that
x ∈ E2(CP∞, pt) is a complex orientation implies that f∗(x) ∈ E2(Dν, Sν)
is a Thom class. Because CP∞ = K(Z, 2), the homotopy class [f ] corre-
sponds to an element in H2(Dν, Sν). This is the Thom class in ordinary
cohomology for the given choice of ordinary orientation. The restriction
H2(Dν, Sν) → H2(Dν) → H2(N) maps [f ] to the (ordinary) Chern class of ν.

Theorem 5.11. Let E be a multiplicative equivariant homology theory furnished
with a complex orientation x ∈ E2(CP∞, pt) and lf-restrictions.
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Suppose that we are in Setup 2.1 with N ⊂ M an embedding of codimension
k = 2. Let the normal bundle ν be oriented with ordinary Thom class [f ] ∈
H2(Dν, Sν), viewed as a homotopy class of maps f : (Dν, Sν) → (CP∞, pt).
Define the corresponding E-Thom class by θ := f∗(x) ∈ E2(Dν, Sν).
Assume that the induced map π2(N) → π2(M) is surjective and that there exists
a subset S ⊆ π2(N) which generates π2(M) such that the composition of the
Hurewicz homomorphism with the Chern class of ν vanishes on S.
Then the classical transfer map in E-homology defined by θ can be extended
to the classifying space for free actions. The extension is natural with respect
to transformations of homology theories (that preserve all relevant structure,
including the complex orientation).

Proof. The same proof as for Theorem 5.1 with k = 2 shows that we can extend
[f ] ∈ H2(Dν, Sν) ∼= H2

π(M̃, M̃ \D̃ν) to [fE] ∈ H2
π(EΓ,EΓ\K) for some Γ-locally

π-precompact subspace K ⊂ EΓ. Then we view [fE] as a homotopy class of π-
invariant maps of pairs fE : (EΓ,EΓ\K) → (CP∞, pt), and we set θE = fE

∗(x).
This is the extension of θ required to apply Theorem 4.4.

Under more restrictive hypotheses, we also obtain a codimension three transfer
for complex orientable cohomology theories.

Theorem 5.12. Let E be a complex orientable multiplicative equivariant ho-
mology theory with lf-restrictions.
Suppose that we are in Setup 2.1 with N ⊂ M an embedding of codimension
k = 3. Let the normal bundle ν be trivialized. Using the chosen trivialization,
let θ ∈ E3(Dν, Sν) ∼= E3(N × D3, N × S2) be the pullback of the three times
suspended unit in E3(D3, S2).
Assume that the induced map π1(N) → π1(M) is injective, π2(N) = 0,
π2(M) = 0, and that the induced map π3(N) → π3(M) is surjective.
Then the classical transfer map in E-homology defined by θ can be extended
to the classifying space for free actions. The extension is natural with respect
to transformations of homology theories (that preserve all relevant structure,
including the complex orientation).

Proof. Let f : Sν → CP∞ the map obtained as the composition of the projec-
tion Sν → S2 defined by the trivialization and the inclusion S2 = CP1 ⊂ CP∞.
Since E is complex oriented, the twice suspended unit in E2(S2) is the re-
striction of a class x ∈ E2(CP∞). This implies that θ = δf∗(x), where
δ : E2(Sν) → E3(Dν, Sν) is the coboundary map associated to the pair (Dν, Sν).
Now consider the lifted embedding Dν ⊂ M̄ = π\M̃ . From the long exact
sequence of homotopy groups and our assumptions on π1, π2 and π3 it follows
that πi(M̄,Dν) = 0 for i ≤ 3. The relative Hurewicz Theorem then implies
that Hi(M̄,Dν) = 0 for i ≤ 3. Applying the universal coefficient theorem and
excision yields Hi(M̄ \Dν◦, Sν) ∼= Hi(M̄,Dν) = 0 for i ≤ 3. From the long exact
sequence of cohomology it follows that the inclusion Sν ⊂ M̄ \ Dν◦ induces an

isomorphism H2(M̄ \ Dν◦)
∼=
−→ H2(Sν). This proves that f : Sν → CP∞ can be
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extended to a map fM̄ : M̄ \Dν◦ → CP∞. Lifting this to M̃ yields a π-invariant

map f
M̃

: M̃ \ D̃ν
◦

→ CP∞ which represents a class [f
M̃

] ∈ H2
π(M̃ \ D̃ν

◦
).

Next, we build EΓ by attaching free Γ-cells of dimension ≥ 4 to M̃ . During
this process, we also build a suitable Γ-locally π-precompact subset K ⊆ EΓ
and extend [f

M̃
] ∈ H2

π(M̃ \ D̃ν
◦
) to [fE] ∈ H2

π(EΓ \ K). This works exactly
as in Theorem 5.1 —note that there is no obstruction to extending a degree 2
cohomology class along the added cells because they have dimension at least 4.
Finally, we apply Theorem 4.4, where the required extension of θ is given
by θE := δf∗

E(x) ∈ E3
π(EΓ,EΓ \ K) using δ : E2

π(EΓ \ K) → E3
π(EΓ,EΓ \ K)

associated to the pair (EΓ,EΓ \K).

5.3 Extending the equivariant transfer map to EΓ

Finally, we study the question when the equivariant transfer map can be further
extended to the classifying space for proper actions. In all previous applications
we have reduced the construction of the transfer map to the task of extending
a class in ordinary cohomology. Now we want to extend this class to EΓ. As
usual, this is done by a spectral sequence argument. But we have to be careful
with the choice of our models for the classifying spaces.

By the discussion preceding Theorem 4.4 the equivariant transfer map does not
rely on a particular choice of model for EΓ or EΓ. For EΓ we take Milnor’s
infinite join construction (i.e. the “fat model”) with the usual Γ-CW-structure,
where n-simplices correspond to n+1-tuples in Γ. For EΓ we take the “geomet-
ric model”, whose n-simplices correspond to finite subsets of Γ of cardinality
n + 1 (see Mislin’s appendix to [23]). After passing to the barycentric sub-
division this becomes a Γ-CW-complex. The canonical map q : EΓ → EΓ is
obtained by extending the obvious map on the 0-skeleton affinely to all higher
cells. Crucially, it is proper when restricted to the skeleta EΓ(k).

Lemma 5.13. Let EΓ and EΓ be represented by the models above, let EΓ \ KE

be a subcomplex with Γ-locally π-precompact complement, and let n ∈ N.
Then there exists a π-subcomplex L ⊂ EΓ with Γ-locally π-precompact comple-
ment, such that q−1(L) ⊂ EΓ is a π-subcomplex with Γ-locally π-precompact
complement, and such that the restriction maps

Hn
π((EΓ \KE) ∪ q−1(L);Z) −−→ Hn

π(EΓ \KE;Z),

Hn+1
π (EΓ, (EΓ \KE) ∪ q−1(L);Z) −−→ Hn+1

π (EΓ,EΓ \KE;Z)

are surjective.

Proof. First, we enlarge EΓ \ KE to a bigger subcomplex EΓ \ K ′
E such that

every π-cell of dimension > n+ 1 whose boundary completely lies in EΓ \ K ′
E

does itself belong to EΓ \K ′
E. We do this by induction over the skeleta of EΓ,

in each step adding all necessary π-cells to EΓ \ K ′
E. If a cohomology class

in Hn
π(EΓ,EΓ \ KE;Z) or Hn+1

π (EΓ \KE;Z) is given, it can, in each induction
step, be simultaneously extended to all added π-cells. In fact, the extension is
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unique in each step, and by the lim1-short exact sequence and the Mittag-Leffler
condition it is also unique in the limit.
Let now L = EΓ \KE be the π-subcomplex of EΓ consisting of all those π-cells
whose preimage under q does not intersect K ′

E. We claim that the complement
KE is Γ-locally π-precompact. Indeed, let a non-equivariant cell of EΓ be given
and let S ⊂ Γ be the subset to which the cell belongs under the barycentric
subdivision. The cell can only intersect KE if there is some tuple in S such that
the corresponding non-equivariant cell in EΓ intersectsK ′

E. By the construction
of K ′

E this can only happen if there is a tuple in S of length ≤ n+ 1 such that
the corresponding cell intersects K ′

E. But there are only finitely many such
tuples, and for each cell corresponding to one of them there are only finitely
many π-cells in its Γ-orbit that intersect K ′

E. Hence, only finitely many π-cells
in the Γ-orbit of the original cell intersect KE.
Finally, q−1(L) is a π-subcomplex of EΓ. Its complement, being the preimage
of a Γ-locally π-precompact set, is Γ-locally π-precompact. The restriction
maps are surjective because (EΓ \ KE) ∪ q−1(L) ⊂ EΓ \ K ′

E, and we have
already seen that cohomology classes can be extended to Hn

π(EΓ \ K ′
E;Z) and

Hn+1
π (EΓ,EΓ \K ′

E;Z).

Lemma 5.14. Let EΓ and EΓ be represented by the models above. Let A ⊂
X ⊂ EΓ be any π-invariant subcomplexes (possibly X = EΓ or A = ∅), let
X = q−1(X) and A = q−1(A). Assume that n ≥ 1 and Hk(BG;Z) = 0 for all
finite subgroups G < π and all 0 < k < n.
Then there is a short exact sequence

0 Hn
π(X,A;Z) Hn

π(X,A;Z) Z 0,
q∗

where Z is the group of sections from π\X into a certain sheaf A, all of whose
germs are given by Hn(BG;Z) for some finite subgroup G < π.

Proof. Because the action of π on the coefficient module Z is trivial, H∗
π(X,A;Z)

and H∗
π(X,A;Z) are isomorphic to H∗(π\X,π\A;Z) and H∗(π\X,π\A;Z), re-

spectively. Let prπE : EΓ → π\EΓ and prπE : EΓ → π\EΓ denote the quotient
maps. We apply the Leray spectral sequence for sheaf cohomology to the in-
duced map on the quotient q : (π\X,π\A) → (π\X,π\A).
Using the terminology of Bredon [4] we let the “families of supports” Ψ and Φ
be the families of closed sets on π\X and π\X, respectively (in [16] compact
subsets were used erroneously).
By [4, Definition IV.6.1] there is a spectral sequence of sheaf cohomology groups

Ep,r2 = Hp
Φ(π\X; Ar) ⇒ Hp+r

Φ(Ψ)(π\X,π\A;Z),

where Ar = Hr
Ψ(q, q|(π\A);Z)) is the Leray sheaf, obtained from the presheaf

that assigns to each open set U ⊂ X the abelian group

Hr
Ψ∩q−1(U)(q

−1(U), q−1(U) ∩ (π\A);Z).
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All families of supports occurring in the above sheaf cohomology groups are sim-
ply the families of closed sets on the respective spaces. Because CW-complexes
are paracompact, these families are paracompactifying in the sense of [4, Theo-
rem I.6.1], and it follows by [4, Theorem III.1.1] that Hp+r

Φ(Ψ)(π\X,π\A;Z) and

Hr
Ψ∩q−1(U)

(q−1(U), q−1(U) ∩ (π\A);Z) coincide with the usual singular coho-

mology groups.
We claim that the set of germs of Ar at a point prπE(y) ∈ π\X is zero if

prπE(y) ∈ π\A, and otherwise given by Hr(Bπy ;Z), the group cohomology of

the stabilizer of y in π. To prove the claim we first find a neighborhood prπE(y) ∈

U ⊂ π\X such that (prπE)−1(U) =
⊔
g∈π/πy

Vg. This is possible because π acts

properly on X. Unless prπE(y) ∈ π\A, we also assume U ∩ π\A = ∅. Next,

we construct, via cellular induction, a neighborhood basis {V ′
i }i∈N of y such

that each V ′
i completely lies in (prπE)−1(U) and is star-shaped around y. Then

{U ′
i} = {prπE(V ′

i )} is a neighborhood basis of prπE(y). It suffices to show that

q−1(y) and all q−1(V ′
i ) are (non-equivariantly) contractible because from this it

follows that all the preimages q−1(prπE(V ′
i )) = πy\q−1(V ′

i ) are models for Bπy

and that lim
−→

Hr(q−1(U ′
i);Z) = Hr(q−1(prπE(y));Z) = Hr(Bπy ;Z).

To construct the contracting homotopies, recall that the points in the infinite
join model EΓ can be written in coordinate form x = (tjγj)N with tj ∈ [0, 1],
γj ∈ Γ,

∑
tj = 1 and tj = 0 for all but finitely many entries. The image q(x) is

obtained by adding together those coefficients tj that precede the same group
elements and forgetting the ordering of the group elements.
The first step is to apply the homotopy described in [22, 14.4.4], from the iden-
tity map on EΓ to the map that sends (t1γ1, t2γ2, . . . ) to (t1γ1, 0, t2γ2, 0, . . . ).
The reverse of this homotopy is obtained by stacking together an infinite num-
ber of homotopies of the form

(t1γ1, . . . , tjγj , ttj+1γj+1, (1 − t)tj+1γj+1, ttj+2γj+2, (1 − t)tj+2γj+2, . . . ).

The homotopy preserves the fibers of q. The second step is to choose any
preimage of y under q of the form (0, t′1γ

′
1, 0, t

′
2γ

′
2, 0, . . . ) and to apply the

homotopy ((1 − t)t1γ1, tt
′
1γ

′
1, (1 − t)t2γ2, tt

′
2γ

′
2, . . . ). Because V ′

i is star-shaped,
this homotopy is well-defined on q−1(V ′

i ). This finishes the proof of the claim.
Now, by assumption, Hk(Bπy;Z) = 0 for 0 < k < n. Hence, there are only
two non-vanishing entries on the n-th diagonal of the E∞ page of the spectral
sequence, and the extension problem becomes

0 En,0∞ Hn(π\X,π\A;Z) E0,n
∞ 0.

The group En,0∞ = En,02 is equal to Hn
Φ(π\X; A0), where the sheaf A0 is zero

over π\A and the trivial Z-sheaf everywhere else. By [4, Proposition II.12.3],
and again [4, Theorem III.1.1], it follows that En,0∞ = Hn(π\X,π\A;Z). The
group E0,n

∞ = E0,n
2 is, by definition, the group of global sections from π\X

into the sheaf An that is zero over π\A and has germs Aprπ
E

(y) = Hn(Bπy;Z)

elsewhere.
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The first homomorphisms in the short exact sequence is the induced map q∗,
the second one is pointwise induced by the restriction to the respective fiber
(see [4, IV.6.3 and Exercise 5]).

In principle, we can try to use the preceding two lemmas in order to extend the
equivariant transfer map for all the application scenarios considered previously.
Unfortunately, the conditions on Γ occurring in Lemma 5.14 are very restrictive.
In the special case of a codimension 2 submanifold with trivial normal bundle
we obtain the following.

Theorem 5.15. Let E be a multiplicative equivariant homology theory with
lf-restrictions. Suppose that we are in Setup 2.1, with N ⊂ M an embedding of
codimension k = 2.
In addition, assume that the induced map π1(N) → π1(M) is injective and
π2(N) → π2(M) surjective, and that the normal bundle of N is trivialized by
a map (Dν, Sν) → (D2, S1). Let θ ∈ E2(Dν, Sν) be the pullback of the twice
suspended unit in E2(D2, S1) under the trivialization.
Then the transfer map τθ can be extended to the classifying space for free actions
and further to the classifying space for proper actions. The extensions are
natural with respect to transformations of homology theories (that preserve all
structure).

Proof. The twice suspended unit in E2(D2, S1) is the coboundary of the once
suspended unit x ∈ E1(S1). Hence, θ = δ ◦ f∗(x), where f : Sν → S1 is the
restriction of the trivialization map. The homotopy class of f defines an element
in H1(Sν;Z) ∼= H1

π(S̃ν). As in the proof of Theorem 5.12, we can extend [f ]

to [f
M̃

] ∈ H1
π(M̃ \ D̃ν

◦
) and to [fE] ∈ H1

π(EΓ \ KE), where KE is Γ-locally
π-precompact.
Now we switch to the infinite join model for EΓ and invoke Lemma 5.13 to
replace [fE] with (iq−1(L))

∗[f ′
E] ∈ H1

π(q−1(L);Z). Note that by naturality of
the equivariant transfer map, the generalized cohomology classes δ ◦ fE

∗(x),
δ ◦ (f ′

E)∗(x) and δ ◦ ((iq−1(L))
∗f ′

E)∗(x) all give rise to the same transfer map.
Now, the conditions of Lemma 5.14 are satisfied for X = L, A = ∅ and n = 1.
Because H1(BG;Z) = 0 for all finite groups G, it follows that the induced
map q∗ : H1

π(L;Z) → H1
π(q−1(L);Z) is an isomorphism. Hence, we can extend

(iq−1(L))
∗[f ′

E] to [fE] ∈ H1
π(L;Z).

Finally, the extensions of the transfer map are obtained by applying Theo-
rem 4.4, where the extensions of θ are given by δ ◦ fE

∗(x) and δ ◦ fE
∗(x).

Theorem 5.15 applies to all the generalized homology theories for which we
have shown in Section 4.1 that lf-restrictions exist: ordinary homology, real
and complex K-homology, and the cobordism theories. As discussed in the
introduction, the most interesting application is the case where E = KO is real
K-homology, where our extension provides some context for Theorem 1.1. We
expect that the extension is compatible with the transfer map constructed by
Kubota [11] on the K-theory of the maximal group C∗-algebras, but we do not
know whether this is true.
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