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Abstract. We prove an analogue for p-adic coefficients of the
Deligne–Laumon theorem on local acyclicity for curves. That is, for
an overconvergentF -isocrystalE on a relative curve f : U → S admit-
ting a good compactification, we show that the cohomology sheaves
of Rf!E are overconvergent isocrystals if and only if E has constant
Swan conductor at infinity.
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1 Introduction

Given a morphism f : X → S of algebraic varieties over a field k, it is natural
to ask when the higher direct images Rif!E of some smooth coefficient object
(such as a vector bundle with integrable connection, a lisse ℓ-adic sheaf, or an
overconvergent F -isocrystal) are smooth coefficient objects on S. Of course,
this will always happen ‘generically’, i.e. on a dense open subset of S, but one
may hope to be able to say something about when this happens on the whole
of S.
For example, the smooth and proper base change theorem in étale cohomology
says that whenever f is smooth and proper, and E is a lisse ℓ-adic sheaf (with
ℓ 6= char(k)), then the relative cohomology sheaves R

if!E = R
if∗E are also

lisse. Similarly, Berthelot’s conjecture (versions of which have been proved by
Shiho [Shi07] and Caro [Car15]) states that when k is perfect of characteristic
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p > 0, and E is an overconvergent F -isocrystal on X , then each R
if∗E is an

overconvergent F -isocrystal on S.

In characteristic 0, with ℓ-adic étale coefficients, these smoothness results often
persist for families of open varieties, provided that the morphism f : X → S
admits a ‘good’ compactification, that is a compactification X smooth over S,
such that the complementX\X is a relative normal crossings divisor. However,
the same is not true with ‘deRham’ style coefficients in characteristic 0, nor
with ℓ-adic coefficients in positive characteristic. For example, one can use
Artin–Schreier extensions to produce examples lisse Fℓ-sheaves E on A2

k (with
ℓ 6= p) such that the rank of the cohomology groups jumps in fibres of the
projection A2

k → A1
k.

This is explained by the fact that the Swan conductor of E at infinity, which
is a numerical measure of the wild ramification of E, itself jumps along these
fibres. It turns out, however, that for curves at least, the Swan conductor
exactly controls the failure of the higher direct images to be lisse. Indeed, the
main result of [Lau81] shows that for a relative smooth curve f : U → S, and
a lisse Fℓ-sheaf E on U , “if the wild ramification of E at infinity is locally
constant, then the higher direct images Rif!E are lisse”. Concretely, the wild
ramification of E being (locally) constant means that the Swan conductor of E
at infinity is (locally) constant. One can use this to deduce a similar result
with Zℓ or Qℓ coefficients.

The purpose of this article is to prove an analogue of this result for p-adic
coefficients, that is for overconvergent F -isocrystals; in this case the correct
analogue of the Swan conductor is the irregularity of a p-adic differential equa-
tion studied in [CM00]. We have two main results in this direction. The first of
these, Theorem 4.7 is phrased in the language of relative Monsky–Washnitzer
cohomology (in the spirit of [Ked06a]), it assumes that the base variety S is
smooth, affine and connected, and also imposes relatively strong conditions on
the curve f : U → S (see Setup 4.3). The second, Theorem 10.2, is phrased us-
ing the theory of arithmetic D†-modules, as developed by Berthelot and Caro,
and while it allows more general bases S, as well as for any relative curve ad-
mitting a good compactification, it assumes that k is perfect. In both cases,
the result says that if E is an overconvergent F -isocrystal on a suitable relative
smooth curve f : U → S, and E has constant irregularity at infinity, then ap-
propriately defined higher direct images are overconvergent F -isocrystals. (In
fact, we work everywhere with ‘F -able isocrystals’, that is extensions of sub-
quotients of objects admitting some Fn-structure.) Results along these lines
were previously obtained by Kedlaya [Ked06b, Proposition 3.4.3], the the proof
of which provided part of the inspiration for the methods used in §8.
The majority of this article is concerned with the Monsky–Washnitzer case,
that is Theorem 4.7; it is not too difficult to then use the general D†-module
machinery (nicely summarised in [AC18b, §1]) to deduce Theorem 10.2 when k
is perfect. The basic idea of the proof is rather simple, and the bulk of the
work consists of facing down the technical difficulties involved in actually get-
ting this idea to work. To explain the approach, suppose that we have some
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relative curve f : U → S over a smooth, affine, base, and an overconvergent
F -isocrystal E on U . We know by results of Kedlaya (see Theorem 4.5 be-
low) that for some open subset V ⊂ S the higher direct images R

if∗(E|UV )
are overconvergent F -isocrystals on U , and by Noetherian induction we can
assume that the complement Z ⊂ S is also smooth over k, and that the higher
direct images Rif∗(E|UZ ) are themselves overconvergent F -isocrystals on Z of
the same rank. The key Lemma 8.6 then tells us that we can use the overcon-
vergence of these objects to ‘glue’ them together along a suitable punctured
tube of Z inside some formal lift of S, to get an overconvergent F -isocrystal
on the whole of S.

Interestingly enough, the deduction of the result for arithmetic D†-modules
only uses the fact that the higher direct images are convergent F -isocrystals
on S. However, the above strategy would not work if we tried to work every-
where in the convergent category, since we would not be able to ‘glue’ along
the stratification V →֒ S ←֓ Z. Thus it is important to be working with
overconvergent objects from the beginning.

Theorem 10.2 is weaker than the Deligne–Laumon theorem in one crucial as-
pect. Namely, the curve f : U → S is assumed to have a good compactification,
i.e. a smooth compactification f̄ : C → S such that the complement C \ U
is étale over S; in [Lau81] it is only assumed to be finite and flat. Our proof
is completely different to that given in [Lau81], which uses the formalism of
nearby and vanishing cycles in étale cohomology. While this article was being
written, an analogue of the nearby and vanishing cycles formalism for p-adic
coefficients appeared in [Abe19], which in fact was what allowed us to extend
our main results to singular bases (at least when k is perfect). It would be in-
teresting to see whether or not Abe’s theory can be used to give another proof
of local acyclicity, more similar in spirit to the ℓ-adic case, and that would be
able to handle the more general case where the divisor at infinity is only finite
flat over the base.

Let us now give a summary of the various parts of the article. In §2 we intro-
duce some basic notations and definitions concerning rigid cohomology and the
theory of arithmetic D†-modules, in particular the approach to the 6 operations
formalism taken in [AC18b]. In §3 we recall the definition of the irregularity of
a p-adic differential equation, as well as some results of Kedlaya and Kedlaya–
Xiao concerning extending break decompositions in families. In §4 we introduce
the basic geometric setup that we will work with. We recall results of Kedlaya
on generic higher direct images and state our first main result on the relative
Monsky–Washnitzer cohomology of curves. In §5 we investigate the cohomol-
ogy of ∇-modules over relative Robba rings, and prove a base change result
under the assumption of constant irregularity, which in §6 is used to prove
Theorem 4.7 for the ‘lower’ direct image R0f∗. Section 7 is devoted to a rather
grisly study of relative cohomology on tubes and punctured tubes, which forms
the key input for the proof in §8 of finiteness and base change for R1f∗ via the
gluing argument outlined above. In §9 we then use this, together with a little
functional analysis, to deduce finiteness and base change for certain partially
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overconvergent cohomology groups, which in §10 then allows us to obtain our
second main result, Theorem 10.2, by reduction to the smooth and affine case.
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2 Background on rigid cohomology and arithmetic D†-modules

Throughout this article, we will denote by K (the ground field) a complete,
normed field of characteristic 0, by V its ring of integers and by k (the residue
field) its residue field, which will be assumed to be of characteristic p > 0.
From §4 onwards we will assume that K is discretely valued, and denote by ̟
a uniformiser for V . To begin with, however, we will need to make certain
constructions more generally, in which case ̟ will be a non-zero element of the
maximal ideal m of V (a pseudo-uniformiser). In §10 we will want to assume
that k is perfect, however, for the most part we will allow arbitrary k. We will
assume that K admits a lifting σ of the absolute q = pa-power Frobenius on k,
and fix such a σ.
In this first section we will recall some definitions and constructions in rigid
cohomology and the theory of arithmetic D†-modules, and review the 6 op-
ertaions formalism for varieties and couples introduced in [AC18b]. We will
generally assume the reader has some basic familiarity with the theory of rigid
cohomology, as developed in [Ber96a, LS07], and will mostly use this section
for fixing definitions and notations.

Definition 2.1. 1. A variety over k is a separated and finite type k-scheme.

2. A formal scheme over V is a ̟-adic formal V-scheme which is separated
and topologically of finite type.

3. A rigid variety over K is a rigid analytic space in the sense of Tate, which
in addition is separated over Sp(K).

4. A couple (X,Y ) over k is an open immersion j : X →֒ Y of k-varieties.

5. A frame over V is a triple (X,Y,P) consisting of a couple (X,Y ) and a
closed immersion Y →֒ P of formal V-schemes.

6. An l.p. frame over V is a quadruple (X,Y,P,Q) such that (X,Y,P) is a
frame, and P →֒ Q is an open immersion of formal schemes, such that Q
is proper over V .
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A morphism of couples
(X ′, Y ′)→ (X,Y )

is said to be flat (resp. smooth, étale) if X ′ → X is, and proper (resp. finite)
if Y ′ → Y is. It is said to be Cartesian if the diagram

X ′ //

��

Y ′

��

X // Y

is Cartesian. A couple (X,Y ) is said to be smooth or proper if the natural
morphism

(X,Y )→ (Spec (k) , Spec (k))

is. Similarly, a morphism of frames

(X ′, Y ′,P′)→ (X,Y,P)

is said to be flat (resp. smooth, étale) if P′ → P is flat (resp. smooth, étale)
in a neighbourhood of X ′, and proper (resp. finite) if Y ′ → Y is. It is said to
be Cartesian if both squares in the diagram

X ′ //

��

Y ′

��

// P′

��

X // Y // P

are Cartesian. A frame (X,Y,P) is flat (resp. smooth, étale, proper, finite) if
the natural morphism

(X,Y,P)→ (Spec (k) , Spec (k) , Spf (V))

is. We will not need to define particular properties of morphisms of l.p. frames.
If (X,Y ) is a pair, we will denote by Isoc((X,Y )/K) the category of isocrystals
on X , overconvergent along Y . A Frobenius structure on an isocrystal E is an
isomorphism

ϕ : Fn∗E
∼
→ E

for some n ≥ 1, and we will denote by

IsocF ((X,Y )/K) ⊂ Isoc((X,Y )/K)

the full subcategory consisting of iterated extensions of subquotients of objects
admitting Frobenius structures.

Lemma 2.2. A partially overconvergent isocrystal E ∈ Isoc((X,Y )/K) lies in
E ∈ IsocF ((X,Y )/K) if and only if the irreducible constituents of E admit
Frobenius structures.
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Proof. One direction is clear, so suppose that E ∈ IsocF ((X,Y )/K); we must
show that its irreducible constituents admit Frobenius structures. We are free
to replace E by any subquotient, in particular we may therefore assume that
E itself is a subquotient of some E′ admitting a Frobenius structure.
Choose n such that Fn∗E′ ∼= E′, thus Fn∗ permutes the (finite) set I of
isomorphism classes of irreducible constituents of E′. By possibly increasing
n, then, we can assume that in fact Fn∗ acts trivially on I. In particular, if
E0 ⊂ E ⊂ E′ is irreducible, then Fn∗E0

∼= E0 and we are done.

Thus IsocF ((X,Y )/K) is the thick abelian subcategory of Isoc((X,Y )/K) gen-
erated by objects admitting Frobenius structures. When X = Y we will write
IsocF (X/K) and Isoc(X/K) respectively. When Y is proper over k these do

not depend on Y and we will write Isoc†F (X/K) and Isoc†(X/K) instead. We
will refer to objects in IsocF ((X,Y )/K) as ‘F -able isocrystals’.

2.1 Monsky–Washnitzer cohomology

For most of this article, we will use the Monsky–Washnitzer approach to rigid
cohomology, the basics of which we very briefly review here. For the reader
wishing for more details, a better introduction is given in [Ked06a, §§2-3].

Definition 2.3 ([GK00]). A K-dagger algebra is a K-algebra isomorphic to a
quotient K〈x1, . . . , xn〉

†/I of an overconvergent power series algebra over K.

We denote by ‖·‖sup the supremum seminorm on a K-dagger algebra, if A is
reduced then this is a norm [GK00, Theorem 1.7]. For any real number λ > 1,
we consider the subalgebra

K〈λ−1x1, . . . , λ
−1xn〉 :=

{∑
ai1,...,inx

i1
1 . . . xin

n

∣∣∣ |ai1,...,in |λi1+...+in → 0
}

⊂ K〈x1, . . . , xn〉
†

of series converging for |xi| ≤ λ; the image of any such subalgebra under any
surjection K〈x1, . . . , xn〉† ։ A will be called a fringe algebra of A. This admits
a norm ‖ · ‖λ coming from the λ-Gauss norm on K〈λ−1x1, . . . , λ

−1xn〉. We will
let ⊗† denote the weakly completed tensor product of K-dagger algebras.
For A reduced, we denote by Aint ⊂ A the subring of integral elements, con-
sisting of those elements of supremum norm ≤ 1, and by A the reduction of
A, that is the quotient of Aint by the ideal of topologically nilpotent elements.
We let Â denote the completion of A with respect to this ideal.

Definition 2.4 (Definition 3.2.1, [Ked06a]). A K-dagger algebra A is said to
be of MW-type if it is integral, and its reduction A is smooth over k.

If A is a K-dagger algebra, we will let Ω1
A/K denote the module of p-adically

continuous differentials, a ∇-module over A is then by definition a finitely
generated A-module M together with an integrable connection

∇ : M →M ⊗A Ω1
A/K .
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If A is of MW-type then the A-module underlyingM is automatically projective
[Ked06b, Lemma 3.3.4]. If A is a MW-type dagger algebra, with reduction A,
then there is a fully faithful functor

Isoc†(Spec
(
A
)
/K)→ Mod∇A

from overconvergent isocrystals on A to ∇-modules on A, which we call ‘reali-
sation on A’ [LS07, Proposition 8.1.13]. A ∇-module is called overconvergent
if it is in the essential image of this functor. This construction is compatible
with pullback, and hence whenever we fix a lift σ of Frobenius on A, we obtain
a functor

F -Isoc†(Spec
(
A
)
/K)→ Mod

(ϕ,∇)
A

from overconvergent isocrystals on Spec
(
A
)
to (ϕ,∇)-modules over A, that

is ∇-modules equipped with a horizontal isomorphism ϕ : σ∗M
∼
→ M . This

functor is an equivalence of categories [LS07, Theorem 8.3.10]. We will say that
M ∈ Mod∇

A admits a Frobenius structure if there exists an isomorphism ϕ :
σn∗M

∼
→M for some n ≥ 1, any such M is automatically overconvergent. We

say that M is F -able if its irreducible constituents admit Frobenius structures,
this is equivalent to being in the essential image of

Isoc†F (Spec
(
A
)
/K)→ Mod∇

A .

If ḡ ∈ A and g ∈ Aint ⊂ A is a lift of ḡ, then we may form the MW-type dagger
algebra

A〈g−1〉† :=
A〈x〉†

(gx− 1)

whose reduction can be identified with the localisation A[ḡ−1]. We call any
such A〈g−1〉† a ‘dagger localisation’ of A, and we can use the specialisation
map

sp : maxSpec(A)→ Spec
(
A
)

to see that (as an A-algebra) this only depends on ḡ up to canonical isomor-
phism. A collection of dagger localisations {A→ Ai}i∈I will be called a dagger
open cover if maxSpec(A) =

⋃
i∈I maxSpec(Ai). Again using the specialisation

map we see that this will happen if and only if the reductions Spec
(
Ai

)
form

a Zariski open cover of Spec
(
A
)
.

Definition 2.5 (Definition 2.5.3, [Ked06a]). Let u be a variable. The Robba
ring Ru

A over A consists of those series

∑

i∈Z

aiu
i ∈ AJu, u−1K

satisfying the following convergence condition:
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(⋆) there exists η < 1 such that for all η < ρ < 1 there there exists some
fringe algebra Aλ ⊂ A such that ai ∈ Aλ for all i and

‖ai‖λ ρ
i → 0 as i→ ±∞.

The plus part Ru+
A of the Robba ring over A consists of those series for which

ai = 0 for all i < 0.

The relative Robba ring Ru
A over a dagger algebra can be expressed as a colimit

of a limit of a colimit of Banach K-algebras, it therefore comes equipped with
a natural locally convex topology simply by taking these (co)limits in the cat-
egory of locally convex topological vector spaces over K. With this topology,
the module of continuous (K-linear) derivations of Ru

A is isomorphic to

Ω1
A/K ⊗A R

u
A ⊕R

u
A · du.

A ∇-module over Ru
A is defined to be a finitely presented module together with

an integrable connection relative to K. The notion of a ∇-module over Ru+
A is

defined similarly.

Remark 2.6. For any of the rings A,Ru
A, R

u+
A (and some others that we will

introduce later) a ∇-module will always (unless explicitly stated otherwise)
mean a ∇-module relative to K, whose underlying module is finitely presented.
Extra adjectives, such as projective, stably free, free &c. are understood to
apply to the underling module.

Definition 2.7. A frame (X,X,X) is called a Monsky–Washnitzer frame (or
an MW frame for short) if:

1. X is smooth, affine and connected;

2. X →֒ X has dense image;

3. X is projective over V (and in particular algebraisable);

4. the map X → Xk is an isomorphism.

If (X,X,X) is a MW frame, and X = Spec
(
A
)
, then A = Γ(XK , j†XOXK ) is a

K-dagger algebra of MW-type, whose reduction is exactly A. We will call such
an A an MW lift of A. We will need the following useful result about lifting
étale morphisms from characteristic p to characteristic 0.

Lemma 2.8. Assume that K is discretely valued, let A,B be dagger algebras
of MW-type, and ᾱ : A→ B a finite étale morphism between their reductions.
Then there exists a finite étale morphism α : A→ B lifting ᾱ.

Proof. Note that by [vdP86, Theorem 2.4.4] any two MW lifts of either A
or B are isomorphic as K-dagger algebras, so in fact it suffices to construct
some MW lifts A′ and B′ of A and B respectively, together with a finite étale
morphism α′ : A′ → B′ lifting ᾱ. That this is possible follows from [Éte02,
Théorème 3].
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While it will be important for us to only consider MW lifts arising from MW
frames (in order to make certain ‘geometric’ constructions in §7), we will need
to know that we can change the frame with impunity.

Lemma 2.9. Let A,A′ be MW lifts of a smooth k-algebra A, and B,B′ MW lifts
of a smooth k-algebra B. Suppose we are given a smooth morphism A → B
together with lifts A → B and A′ → B′. Then there exists a commutative
diagram

B
∼=

// B′

A

OO

∼=
// A′

OO

of K-algebras, with both horizontal arrows isomorphisms and inducing the iden-
tity on A and B respectively.

Proof. Fixing an isomorphism A → A′ inducing the identity on A, and base
changing B along this morphism we can assume that A = A′. Since the mor-
phism A → B is smooth, we can certainly find an isomorphism B̂ → B̂′ of
affinoid completions, fixing the affinoid completion Â and inducing the identity
on B. Hence we may apply [vdP86, Corollaey 2.4.3] to produce a morphism
B → B′ of A-algebras inducing the identity on B, which has to be an isomor-
phism by [MW68, Theorem 3.2].

2.2 Arithmetic D†-modules on varieties and couples

The purpose of this section is to recall how the 6 operations formalism works
for arithmetic D†-modules on k-varieties and couples, as described in [AC18b].
We will assume that the ground field K is discretely valued, and that residue
field k is perfect (these assumptions will be dropped again at the beginning of
§3).

Definition 2.10. 1. A variety X/k is realisable if there exists a frame
(X,Y,P) such that P is smooth and proper over V .

2. A couple (X,Y )/k is realisable if there exists an l.p. frame (X,Y,P,Q)
such that Q is smooth over V .

Note that both these conditions are marginally stronger than might be expected
from the definition of rigid cohomology. If P is a smooth formal V-scheme, we
let

Hol(D†
P,Q) and Db

hol(D
†
P,Q)

denote the categories of overholonomic (complexes of) D†
P,Q-modules respec-

tively, in the sense of [Car09]. We denote by

HolF (D
†
P,Q) ⊂ Hol(D†

P,Q)
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the thick abelian subcategory generated by objects which admit an Fn-
Frobenius structure for some n ≥ 1, and

Db
hol,F (D

†
P,Q) ⊂ Db

hol(D
†
P,Q)

the full subcategory of objects whose cohomology sheaves lie in HolF (D
†
P,Q).

If X = (X,Y ) is a realisable couple, and (X,Y,P,Q) is an l.p. frame with Q
smooth over V , then Abe and Caro define the category

Db
hol,F (X/K) ⊂ Db

hol,F (D
†
P,Q)

of overholonomic complexes of D†-modules on X to be the full subcategory of
overholonomic complexes of D†

P,Q-modulesM which satisfy

M
∼
→ RΓ†

YM and M
∼
→ (†Y \X)M.

Here RΓ†
Y and (†Y \X) are the functors of support and overconvergent sections

defined in [Car04, §2.2]. This does not depend on the choice of l.p. frame
(X,Y,P,Q) extending X [AC18b, §1.1, Definition on p. 885]. There is a dual
functor

DX : Db
hol,F (X/K)op → Db

hol,F (X/K)

and a tensor product functor

−⊗̃X− : Db
hol,F (X/K)×Db

hol,F (X/K)→ Db
hol,F (X/K)

which are defined as follows. Let (X,Y,P,Q) be an l.p. frame extending X

with Q smooth over V . Then

DX := RΓ†
Y ◦ (

†Y \X) ◦DP.

where DP is the dual functor as defined in [Ber02, §4]. Similarly,

M⊗̃XN :=M⊗L,†
OP,Q

N [− dimP],

where ⊗L,†
OP,Q

is the tensor product defined in [Ber02].1 The resulting functors

only depend on X up to canonical isomorphism [AC18b, §1.1.6]. If u : X′ → X

is a morphism of couples then there are functors

u!, u+ : Db
hol,F (X/K)→ Db

hol,F (X
′/K),

and if u is proper there are functors

u!, u+ : Db
hol,F (X

′/K)→ Db
hol,F (X/K).

1The reason for using the notation ⊗̃ is that the tensor product defined here is strictly
speaking analogous to the ‘twisted’ tensor product (F ,G) 7→ D(D(F) ⊗L

Qℓ
D(G)) for con-

structible Qℓ sheaves, where D is the Verdier dual functor.
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These are defined as follows: choose a morphism

ũ : (X ′, Y ′,P′,Q′)→ (X,Y,P,Q)

of l.p. frames extending u, and set

u! := RΓ†
Y ′ ◦ (†Y ′ \X ′) ◦ ũ!, u+ = DX′ ◦ u! ◦DX

u+ = ũ+ u! = DX ◦ u+ ◦DX′ ,

where ū+ and ū! are the pushforward and pullback functors defined in [Ber02,
§4]. All these functors commute with Frobenius pullback [Ber02, §4]. Both
(u+, u+) and (u!, u

!) are adjoint pairs [AC18b, Lemma 1.1.10], and if

Y′ a′
//

u′

��

X′

u

��

Y
a

// X

is a Cartesian morphism of couples, with u proper, then by [AC18b, Lemma
1.3.10] there is a natural isomorphism

a!u+
∼= u′

+a
′!

of functors

Db
hol,F (Y

′/K)→ Db
hol,F (Y/K).

The triangulated category Db
hol,F (X/K) admits a ‘holonomic’ t-structure

[AC18b, §1.2], whose heart we will denote by HolF (X/K). The duality functor
DX is exact with respect to this t-structure [AC18b, Proposition 1.3.1], and
hence induces an anti-equivalence

DX : HolF (X/K)op
∼
→ HolF (X/K).

When X is smooth, there exists a fully faithful functor

sp+ : IsocF (X/K)→ HolF (X/K)

constructed in [Car12] which is compatible with duality in the sense that there
are isomorphisms

sp+E
∨ ∼= DXsp+E,

natural in E.
If X = (X,X) is a couple proper over k, then Db

hol,F (X/K) and HolF (X/K)
only depend on X up to canonical equivalence [AC18b, §1.3.14]. In this case

we write Db,†
hol,F (X/K) and Hol†F (X/K) respectively. For X = (X,X) then we

write Db
hol,F (X/K) = Db

hol,F (X/K) and HolF (X/K) = HolF (X/K). These
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categories correspond to overconvergent and convergent holonomic modules on
X/K respectively, and there are obvious forgetful functors

Db,†
hol,F (X/K)→ Db

hol,F (X/K) and Hol†F (X/K)→ HolF (X/K)

M 7→ M̂.

The above defined duality and tensor product functors induce functors DX

and ⊗̃X on Db
hol,F (X/K) and Db,†

hol,F (X/K), such that DX is exact for the
holonomic t-structures. If u : X ′ → X is a morphism of varieties, we therefore
have functors

u!, u+ : D
b,(†)
hol,F (X/K)→ D

b,(†)
hol,F (X

′/K)

and
u!, u+ : Db,†

hol,F (X
′/K)→ Db,†

hol,F (X/K),

as well as
u!, u+ : Db

hol,F (X
′/K)→ Db

hol,F (X/K)

whenever u is proper. These have exactly the same properties as in the case of
couples, and there is an analogous base change result. If X is smooth, then we
have full subcategories

D
b,(†)
isoc,F (X/K) ⊂ D

b,(†)
hol,F (X/K)

consisting of objects whose cohomology sheaves are in the essential image of

sp+ : Isoc
(†)
F (X/K)→ Hol

(†)
F (X/K).

At least in the overconvergent case, it is explained how to extend all these
definitions to the not-necessarily-realisable case in [Abe18]. That is, Abe shows

that the category Hol†F (X/K) is of a Zariski-local nature for realisable varieties,

and thus for a general variety we may define Hol†F (X/K) by taking an open
affine cover and gluing (affine varieties being realisable). We can then define

Db,†
hol,F (X/K) := Db(Hol†F (X/K)),

which is justified by the main result of [AC18a], showing that this recovers the
previous definition in the realisable case. Abe explains in [Abe18, §2.3] how
to define the 6 functors u+, u+, u

!, u!, ⊗̃ and D in the non-realisable case, and
shows that all the same properties hold. Again, if X is smooth then we have
the fully faithful functor

sp+ : Isoc†F (X/K)→ Hol†F (X/K)

and the corresponding full subcategory Db,†
isoc,F (X/K) ⊂ Db,†

hol,F (X/K).
If X is not assumed to be smooth, then we can still consider overconvergent
isocrystals as holonomic complexes onX using the approach of [Abe19]. Indeed,
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in [Abe18, §1.3] Abe defines another t-structure on Db,†
hol,F (X/K), called the

constructible t-structure. The heart of this t-structure is denoted Cons(X/K),
and the corresponding cohomology objects by cHi. The pullback functor u+ is
t-exact for the constructible t-structure [Abe18, Lemma 1.3.4]. Abe constructs
in [Abe19, §3] a fully faithful functor

ρ : Isoc†F (X/K)→ Cons(X/K)

such that:

• u+ρ(E) ∼= ρ(u∗E) for any morphism u : X ′ → X ;

• ρ(E) ∼= sp+E[− dimX ] whenever X is smooth.

We can therefore define

Db,†
isoc,F (X/K) ⊂ Db,†

hol,F (X/K)

to be the full subcategory whose constructible cohomology objects are in the
essential image of ρ. This coincides with the previous definition when X is
smooth, in which case

Db,†
isoc,F (X/K) ⊂ Db,†

hol,F (X/K)

is stable under DX , however, this stability does not hold in general. It will be
helpful to isolate the following result, which is simply a restatement of various
results of Caro and Caro–Tsuzuki.

Lemma 2.11. Let X/k be a smooth, realisable variety, andM ∈ Db,†
hol,F (X/K).

Then M∈ Db,†
isoc,F (X/K) if and only if M̂ ∈ Db

isoc,F (X/K).

Proof. The question is local on X , which we may assume to be affine. By
further localising if necessary, we may assume that there exists an immersion
X →֒ P, with P smooth and proper over V , such that there exists a divisor T
of P := Pk with X is closed in P \T . Let U ⊂ P be an open formal subscheme
such that X is closed inside U. In this case, the holonomic t-structure on

Db,†
isoc,F (X/K) ⊂ Db

coh(D
†
P,Q)

is the restriction of the obvious t-structure on Db
coh(D

†
P,Q) by [AC18b, Propo-

sition 1.3.13]. In particular, the D
†
P,Q-module Hi(M) is overholonomic for all

i; we may therefore replaceM by Hi(M), and thus assume thatM is an over-

holonomic D†
P,Q-module. By [Car15, Lemme 1.2.13], M arises by restriction

of scalars from a D†
P,Q(

†T )-module, which we will denote by the same letter

M . Let DP,T denote the dual functor for D†
P,Q(

†T )-modules in the sense of
[Vir00].
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By [Car11, Théorème 6.1.11]M is in the essential image of sp+ if and only if it
is an ‘overcoherent isocrystal’ in the sense of [Car06, Définition 6.2.1], that is, if

bothM and DP,T (M) ∼= (T †)DP(M) are overcoherent as D†
P,Q(

†T )-modules,
and if the restriction ofM to U is in the essential image of sp+. To prove the
lemma, then, we need to explain why the first two conditions are automatically
satisfied.
In other words, we want to show that if M is a coherent D†

P,Q(
†T )-module,

overholonomic as a D†
P,Q-module, then both M and (T †)DP(M) are overco-

herent as D†
P,Q(

†T )-modules. However, these are both overholonomic as D†
P,Q-

modules, and since we are dealing with objects admitting Frobenius structures
(or rather, the thick abelian subcategory generated by objects admitting a
Frobenius structure), we may therefore appeal to [CT12, Theorem 2.3.17] to
conclude.

In the definition of the functor

u+ : Db
hol,F (X

′/K)→ Db
hol,F (X/K)

coming from a morphism of pairs u : X′ → X, we had to choose a morphism
of l.p. frames (X ′, Y ′,P′,Q′) → (X,Y,P,Q) extending u. Note that neither
the formal schemes Q and Q′, nor the morphism between them, play any role
in the definition of either the categories or the functors involved, however, one
still needs to know that they exist. It will be important for us to shows that in
certain situations we can completely ignore this technicality, and work simply
with immersions of couples into smooth formal V-schemes.

Our setup will be the following. We will take a base couple S = (S, S), with S
smooth and affine, and admitting a smooth, affine lift S to a formal scheme
over V . We assume that we are given a smooth and projective morphism
ũ : X→ S, and an open immersion

U →֒ X := Xk

of k-varieties. We let U = (U,X), and we assume that both U and S are
realisable as couples. The proper morphism ũ induces a functor

ũ+ : Db
hol(D

†
X,Q)→ Db

hol(D
†
S,Q)

between the categories of complexes of overholonomic D†-modules on X and S
respectively, as in [Car09]. We define

Db
isoc(D

†
S,Q) ⊂ Db

hol(D
†
S,Q)

to be the subcategory whose cohomology sheaves are coherent as OS,Q-
modules. Again, the following lemma is just a rephrasing of various results
of Caro.
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Lemma 2.12. There are fully faithful embeddings

Db
hol,F (U/K) →֒ Db

hol(D
†
X,Q) and Db

hol,F (S/K) →֒ Db
hol(D

†
S,Q)

such that the diagram

Db
hol,F (U/K) //

u+

��

Db
hol(D

†
X,Q)

ũ+

��

Db
hol,F (S/K) // Db

hol(D
†
S,Q)

is 2-commutative. Moreover, the square

Db
isoc,F (S/K) //

��

Db
isoc(D

†
S,Q)

��

Db
hol,F (S/K) // Db

hol(D
†
S,Q)

is 2-Cartesian.

Proof. Since S is affine, there exists an immersion

S
i
→֒ ÂN

V →֒ P̂N
V

for some N . Similarly, since X → S is projective, we can extend this to a
commutative diagram

X
� � //

ũ

��

P̂N
V ×V P̂M

V

v

��

S
� � // P̂N

V

where v is the first projection. Then (S, S, ÂN
V , P̂N

V ) is an l.p. frame, and

setting Y := v−1(ÂN
V ) gives a closed immersion i′ : X →֒ Y, an l.p. frame

(U,X,Y, P̂N
V ×V P̂M

V ), and a morphism of l.p. frames

v : (U,X,Y, P̂N
V ×V P̂M

V )→ (S, S, ÂN
V , P̂N

V )

extending U → S. By definition, Db
hol,F (S/K) is a full subcategory of

Db
hol(D

†

ÂN
V ,Q

), consisting of objects supported on S. Hence by [Car09, Théorème

2.11] it is contained in the essential image of the fully faithful functor

i+ : Db
hol(D

†
S,Q)→ Db

hol(D
†

ÂN
V ,Q

),
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in other words we can view it as a full subcategory of Db
hol(D

†
S,Q). An en-

tirely similar argument applies for Db
hol,F (U/K). For the claim concerning the

pushforward functor, it suffices to verify that the diagram

Db
hol(D

†
X,Q)

ũ+

��

i′+
// Db

hol(D
†
Y,Q)

RΓ†
S◦v+

��

Db
hol(D

†
S,Q)

i+
// Db

hol(D
†

ÂN
V ,Q

)

commutes up to natural isomorphism, which follows for example from [Car09,
Théorème 3.8]. The final claim simply follows from the construction of

sp+ : Isoc(S/K)→ Db
coh(D

†

ÂN
V ,Q

)

as the composite

Isoc(S/K)
sp∗−→ Db

coh(D
†
S,Q)

i+
−→ Db

coh(D
†

ÂN
V ,Q

),

where the first functor is Berthelot’s equivalence [Ber96b, Proposition 4.1.4]

between convergent isocrysals on S/K and OS,Q-coherent D
†
S,Q-modules.

3 Irregularity of p-adic differential equations

The p-adic analogue of the Swan conductor is the irregularity of a p-adic differ-
ential equation, as defined by Christol and Mebkhout. In this section we will
recall the definition and basic properties of this irregularity. We will continue
to allow K to be any complete, normed field of mixed characteristic (0, p), un-
less specifically stated otherwise. Let Ru

K denote the Robba ring over K, with
co-ordinate u, say, and let M be a projective ∇-module over Ru

K . Then for all
ρ < 1 sufficiently close to 1, we can base change M to obtain a (necessarily
free) ∇-module Mρ over the completion K(u)ρ of K(u) for the ρ-Gauss norm.
Define the radius of convergence

R(Mρ) := min
{
ρ, lim infk→∞ |Gk|

−1/k
ρ

}
,

where Gk is the matrix of the operator 1
k!

dk

duk acting on Mρ.

Definition 3.1. We say that M is overconvergent if limρ→1 R(Mρ) = 1.

Remark 3.2. The more standard terminology for such a ∇-module is ‘solvable’,
however, we will also want to work with ∇-modules over relative Robba rings
Ru

A arising from overconvergent isocrystals. Thus we have chosen to use a more
uniform terminology.
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The ∇-module M is said to have uniform break b if for all ρ sufficiently closed
to 1, and all sub-quotients N of Mρ, R(N) = ρb+1.

Theorem 3.3. [CM01, Corollaire 2.4-1] For any projective, overconvergent
∇-module over Ru

K , there exists a unique decomposition

M =
⊕

b≥0

Mb

of ∇-modules, called the break decomposition, such that each Mb has uniform
break b.

Remark 3.4. In [CM01] the ground field K is assumed to be spherically com-
plete, in which case M is free. It is explained how to extend this to the general
case in [Ked07b, Lemma 2.7.3].

Definition 3.5. [CM00, Définition 8.3-8] The irregularity of M is defined to
be Irr(M) :=

∑
b b · rankRu

K
Mb.

Remark 3.6. 1. We will often want to consider cases when K itself is
equipped with a natural derivation ∂t, for example when K is the com-
pletion of a rational function field K0(t) for the Gauss norm induced by
a norm on K0. In this case Kedlaya [Ked07b] has developed a more re-
fined notion of irregularity, that takes this horizontal derivation ∂t into
account. We will only consider the ‘näıve’ irregularity coming from the
vertical derivation ∂u.

2. If K → K ′ is an isometric extension of complete fields, then a projective
∇-module M over Ru

K is overconvergent if and only if M ⊗ Ru
K′ is, in

which case they have the same irregularity [Meb02, Proposition 1.2-4].

Lemma 3.7. Let L/K be a finite extension, and M an overconvergent ∇-module
over Ru

L. Let ResLKM denote M considered as an overconvergent ∇-module
over Ru

K via the map Ru
K →R

u
L. Then

Irr(ResL/KM) = [L : K]Irr(M).

Proof. First assume that L/K is Galois. In this case, we have

(
ResLKM

)
⊗K L ∼=

⊕

σ∈Gal(L/K)

M

as ∇-modules over Ru
L, and so we can apply [Meb02, Proposition 1.2-4]. In the

general case we take a Galois closure F/L/K and deduce that

Irr(ResLKResFL(M ⊗L F )) = Irr(ResFK(M ⊗L F )) = [F : K]Irr(M)

again using [Meb02, Proposition 1.2-4]. Finally, we use the fact that
ResFL(M ⊗L F ) ∼= M [F :L] to conclude.
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3.1 Irregularity in families

We will be interested in studying how the irregularity varies in families, and
so we will want to replace the field K in the above discussion by a K-dagger
algebra A of MW-type. (It seems entirely likely that the results here will extend
to more general K-dagger algebras, but we will only need this restricted case.)
For such a K-dagger algebra A, suppose that we have a projective ∇-module
M over the relative Robba ring Ru

A. Let L be the completion of the fraction
field of A for the supremum norm.

Definition 3.8. We say that M is overconvergent if the generic fibre ML :=
M ⊗Ru

L of M is overconvergent.

The generic fibre ML therefore admits a break decomposition

ML =
⊕

b≥0

ML,b

by Theorem 3.3.

Theorem 3.9 ([Ked11], Theorem 1.3.2). There exists a dagger localisation
A → B and a unique decomposition of MB := M ⊗ Ru

B which restricts to the
break decomposition over Ru

L.

Proof. The proof of [Ked11, Theorem 1.3.2] assumes that the derivation ∂u
is ‘eventually dominant’ relative to the derivations of L/K which also act on
M ⊗RL. However, this assumption is only used to interpret the break decom-
position obtained as a genuine break decomposition for the full collection of
derivations, and is not used in showing that such a decomposition exists.

It will be important to have conditions for extending this break decomposition
over the whole of A. LetM(A) denote the Berkovich spectrum of A (consisting
of p-adically bounded multiplicative semi-norms on A); for any v ∈ M(A) we
let H (v) denote the completed residue field at v. Thus base changing M
via Ru

A → R
u
H (v) we obtain a projective ∇-module Mv over Ru

H (v). Since

the reduction A of A is smooth and integral over k, it follows from [Ber90,

Proposition 2.4.4] that the Berkovich spaceM(A) ∼=M(Â) has a unique point
ξ in its Shilov boundary. In this case, the completed residue field H (ξ) is equal
to the completed fraction field L of A.

Proposition 3.10. For any point v ∈ M(A) the ∇-module Mv is overconver-
gent, and we have Irr(Mv) ≤ Irr(ML).

Before we can give the proof of this proposition, we need to introduce an-
other function governing the variation of the irregularity along a 2-dimensional
Berkovich space. Let M be a ∇-module over the ring

K〈τu−1, ρ−1u, x〉
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of functions converging for ρ ≤ |u| ≤ τ and |x| ≤ 1. Then for any
(− logα,− log β) ∈ [− log τ,− log ρ] × [0,∞] we obtain by base change a ∇-
module Mα,β over the field K(u, x)α,β obtained by completing K(u, x) with
respect to the norm for which |u| = α and |x| = β. (When β = 0 this should
be interpreted as K(u)α.) For every irreducible constituent N of Mα,β we
can therefore consider the radius of convergence R(N) with respect to the u-
derivation exactly as before, that is

R(N) := min
{
ρ, lim infk→∞ |Gk|

−1/k
ρ

}
,

where Gk is the matrix of the operator 1
k!

∂k

∂uk acting on N . We then define

FM (− logα,− logβ) = −
∑

N

dimKα,β
N · logR(N),

the sum being over all such irreducible constituents N . This gives a function

FM (−,−) : [− log τ,− log ρ]× [0,∞]→ R≥0.

Proof of Proposition 3.10. It is harmless to replace A by completion Â, so we
may instead prove the corresponding claim for a smooth affinoid K-algebra A
with good reduction. We let AH (v) denote the base change of A to H (v) and
consider the Cartesian diagram

M(AH (v)) //

��

M(A)

��

M(H (v)) //M(K).

By construction, there exists a rigid point ofM(AH (v)) lying above v ∈M(A),
and the unique point in the Shilov boundary of M(AH (v)) lies above ξ. By
invariance under isometric extensions, we may replace K by H (v) and thus
assume that v is a rigid point ofM(A). Taking a completed localisation of A
around v, applying [Ked05, Theorem 1] and lifting, we can assume we have a
finite étale map K〈x〉 → A, for x = (x1, . . . , xd). By Lemma 3.7 it suffices
to prove the claim for the pushforward of M along K〈x〉 → A, hence we may
assume that A = K〈x〉. By translating, and possibly increasing K, we may
assume that v = 0.

We let vi denote the image in M(K〈x〉) of the unique point in the Shilov
boundary of

M(K〈x1, . . . , xd〉/(x1, . . . , xi))

under the canonical closed immersion. Thus v0 = ξ and vd = v, and it therefore
suffices to show that Mvi overconvergent ⇒ Mvi+1

overconvergent, and that
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Irr(Mvi) ≥ Irr(Mvi+1
). But now looking at the commutative (although not in

general Cartesian) diagram

M(Kvi〈xi〉) //

��

M(K〈x〉)

��

M(Kvi) //M(K)

we can see that the zero point ofM(Kvi〈xi〉) lies above vi+1, and the unique
point in the Shilov boundary ofM(Kvi〈xi〉) lies above vi. Again by invariance
under isometric extensions we can therefore reduce to the case d = 1, i.e.
A = K〈x〉.
Now let ρ be close enough to 1 such that M comes from a ∇-module defined
over the ring

∩ρ≤τ<1K〈ρu
−1, τ−1u, x〉

of functions converging for ρ ≤ |u| < 1 and |x| ≤ 1, and let

FM (−,−) : (0,− log ρ]× [0,∞]→ R

be the function defined above. After possibly increasing ρ, we may assume by
Theorem 3.3 quoted above that the function FM (r, 0) is given by

FM (r, 0) = (rankRu
L
ML + Irr(ML))r,

where ML is the base change to Ru
L. Now fix some r0 ∈ (0,− log ρ] and consider

the ∇-module M ⊗K(u)e−r0 〈x〉. The field K(u)e−r0 is of rational type in the
sense of [KX10, Definition 1.4.1], hence we may apply [KX10, Theorem 2.2.6]
to deduce that the function

FM (r0,−) : [0,∞]→ R≥0

is decreasing and continuous. Thus we find that

lim
r→0

FM (r,∞) ≤ lim
r→0

FM (r, 0) = 0

from which we deduce that the base change M0 of M to Ru
K via x 7→ 0 is

also overconvergent. Thus after possibly increasing ρ we may assume again by
Theorem 3.3 that FM (r,∞) is given by

FM (r,∞) = (rankRu
K
M0 + Irr(M0))r.

Now again using the fact that FM (r0,−) is a decreasing function we can deduce
that Irr(M0) ≤ Irr(ML) as required.

We therefore obtain a function

IrrM :M(A)→ Z≥0

bounded above by Irr(ML).

Documenta Mathematica 26 (2021) 981–1044



Local Acyclicity 1001

Proposition 3.11. Assume that K is discretely valued. Let M be an over-
convergent, projective ∇-module over Ru

A, and assume that the function IrrM
is constant. Then the break decomposition extends uniquely across A, that is,
there exists a unique decomposition

M =
⊕

b

Mb

of ∇-modules over Ru
A which restricts to the break decomposition of M ⊗ARu

L.
Moreover, for any closed point s : A→ K ′ the induced decomposition

Ms =
⊕

b

(Mb)s

of Ms := M ⊗s Ru
K′ coincides with the break decomposition of Ms.

We start with a simple special case.

Lemma 3.12. Let M be an overconvergent, projective ∇-module over Ru
K〈x〉†.

Assume that the break decomposition extends uniquely across K〈x, x−1〉† and
that the function IrrM is constant onM(K〈x〉†). Then the break decomposition
extends uniquely across K〈x〉†.

Proof. Via the bijection between decompositions of a module and representa-
tions of the identity map as a sum of orthogonal idempotents, uniqueness of
any extension of the break decomposition follows from injectivity of the map

EndRu

K〈x〉†
(M)→ EndRu

K〈x,x−1〉†
(M ⊗Ru

K〈x,x−1〉†);

existence boils down to whether or not the given orthogonal idempotents in
EndRu

K〈x,x〉†
(M ⊗Ru

K〈x,x−1〉†) actually lie in EndRu

K〈x〉†
(M).

To see that they do, take ρ < 1 close enough to 1 such that M comes from a
∇-module over

∩ρ≤τ<1 ∪λ>1 K〈τu
−1, ρ−1u, λ−1x〉.

By the proof of [Ked11, Lemma 1.3.4] it suffices to show that for any such ρ
the induced decomposition of M ⊗K(u)ρ〈x, x−1〉† extends to a decomposition
of M ⊗K(u)ρ〈x〉†.
Having fixed ρ, we may, for any 0 ≤ η ≤ 1, consider the ∇u-module Mρ,η

over K(u, x)ρ,η as before, and its n = rank(M) (extrinsic) radii of convergence
r1(η) ≥ . . . ≥ rn(η) (for the u-derivation). We may therefore define functions

Fi : [0,∞]→ R

Fi(− log η) =
∑

j≤i

− log rj(η),

in particular we find Fn(r) = FM (− log ρ, r) where FM is the function we
defined previously. The functions Fi are decreasing by [KX10, Theorem 2.2.6],
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and by the constancy of the irregularity of M we know that Fn(0) = Fn(∞).
This implies that in fact all of the Fi are constant on [0,∞], which by [KX10,
Theorem 2.3.10] implies that there exists a unique decomposition of M over
K(u)ρJxK0, the ring of convergent series on |x| < 1 which are bounded as
|x| → 1, which restricts to the break decomposition on M ⊗ K(u, x)ρ,η for
each η ∈ (0, 1). Since we have a break decomposition over K(u)ρ〈x, x−1〉†

and over K(u)ρJxK0, we therefore have one over K(u)ρ〈x〉† = K(u)ρ〈x, x−1〉†∩
K(u)ρJxK0.

We can then reduce the general case to this as follows.

Proof of Proposition 3.11. Once we know that the break decomposition ex-
tends across A, the final claim that it induces the break decomposition at
every closed point follows from Proposition 3.10 above. Also, the uniqueness
claim follows exactly as in the proof of Lemma 3.12 above.
To see that the break decomposition does indeed extend across A, we begin
by showing that if {A→ Ai}i∈I is a finite dagger open cover of A, and we set

Aij = Ai ⊗
†
A Aj , then, for any finite projective Ru

A-module N , the sequence

0→ N →
∏

i

N ⊗Ru
A
Ru

Ai
→
∏

i,j

N ⊗Ru
A
Ru

Aij

is exact. Indeed, since N is a direct summand of a finite free Ru
A-module, we

reduce to the case where N is finite free, and thus to the case N = Ru
A. If

we let A〈ρu−1, η−1u〉† denote the ring of overconvergent series on the relative
annulus over A of radius [ρ, η], then we can give an alternative description of
Ru

A as colimη<1limρ<1A〈ρu−1, η−1u〉†. Thus using the dagger form of Tate’s
acyclicity theorem [GK00, Proposition 2.6] we can see that the sequence

0→ A〈ρu−1, η−1u〉† →
∏

i

Ai〈ρu
−1, η−1u〉† →

∏

ij

Aij〈ρu
−1, η−1u〉†

is exact for all ρ, η. Since colim is exact and lim is left exact, the claim follows.
Applying this to N = EndRu

A
(M) we can see that if the break decomposition

extends across all Ai, then it extends across A. Thus the question is ‘dagger
local’ on A.
Now let C = {Ai}i∈I denote the collection of all possible dagger localisations
of A such that the break decomposition extends across Ai, we wish to show
that A ∈ C. Suppose, then, for contraction, that A 6∈ C. Then after pass-
ing to the reductions modulo the maximal ideal of V the open immersion⋃

i∈I Spec
(
Ai

)
( Spec

(
A
)
is strict. Thus after possibly making a finite ex-

tension of K (which is harmless) we may assume that there exists a smooth
k-rational point z on the reduced complement

(
Spec

(
A
)
\
⋃

i∈I Spec
(
Ai

))
red

.
To contradict the maximality of C, then, it suffices to produce a dagger locali-

sation A→ A′ such that z ∈ Spec
(
A

′
)
and such that the break decomposition

extends across A′.
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As we have already seen, the question is dagger local on A, hence we may
localise around z, and use [Ked05, Theorem 1] together with Lemma 2.8 to
obtain a finite étale map K〈x1, . . . , xd〉† → A such that the induced map
Spec

(
A
)
→ Ad

k on reductions sends z to the origin, and the break decom-

position extends across A〈x−1
d 〉

†. Restricting along this finite étale map we
may assume that A = K〈x1, . . . , xd〉† and that the break decomposition ex-
tends across K〈x1, . . . , xd, x

−1
d 〉

†. Now let F be the completed fraction field of
K〈x1, . . . , xd−1〉†, so we have

Ru
K〈x1,...,xd〉†

= Ru
K〈x1,...,xd,x

−1

d 〉†
∩Ru

F 〈xd〉†
⊂ Ru

L.

Hence applying [Ked11, Lemma 1.2.7] to EndRu

K〈x1,...,xd〉†
(M) we can see that it

suffices to prove that the break decomposition extends across Ru
F 〈xd〉†

. Finally

replacing K by F we can appeal to Lemma 3.12 above to conclude.

4 Relative curves and generic pushforwards

We shall assume for the rest of the article that the ground field K is discretely
valued. The residue field k will continue (for now) to be arbitrary of charac-
teristic p.

4.1 The basic geometric setup

Here we will describe the basic geometric setup for our first p-adic acyclicity
theorems.

Definition 4.1. 1. An affine curve is a smooth, affine morphism f : U → S
of k-varieties, of relative dimension 1.

2. A smooth compactification f̄ : C → S of an affine curve f : U → S is
called good if the complement C \ U is étale over S.

Remark 4.2. It might be more usual to require our curves to have geometrically
connected fibres. However, it will be important for us not to assume this.

Our most general acyclicity result, Theorem 10.2 below, will apply to affine
curves admitting good compactifications (at least when k is perfect). Our first
goal, however, will be to prove a similar result in a much more restrictive
setting.

Setup 4.3. We consider an affine curve f : U → S over a smooth, affine base,
which admits a good compactification f̄ : C → S, and a lift

f : (C,C,C)→ (S, S,S)

of f̄ to a smooth, proper, Cartesian morphism of frames, such that:

• both (S, S,S) and (U,C,C) are of MW-type;
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• the complement C \U is a disjoint union of sections σj of f̄ , and there ex-
ists an open neighbourhood of each on which it is defined by the vanishing
of a single function uj ∈ OC .

That proving cohomological results in this more restrictive situation will suffice
follows from the next proposition.

Proposition 4.4. Let f : U → S be an affine curve over a smooth base S,
admitting a good compactification f̄ : C → S. Then, after possibly passing to
an étale cover of S, there exists a morphism of frames

f̄ : (C,C,C)→ (S, S,S)

enclosing f̄ , such that the conditions of Setup 4.3 apply.

Proof. First of all, we may assume that S is affine and connected. Let S′ be
a common Galois closure of all the connected components of C \ U , which
by assumption are finite étale over S. Then after base changing to S′ the
complement C \ U is a disjoint union of sections, which by smoothness of
C → S must all be regular closed immersions. Hence after passing to a Zariski
cover of S′ they are each defined in some neighbourhood by the vanishing of a
single function on C.
Next, we let g denote the genus of the family f̄ : C → S, and S → Mg the
corresponding morphism to the moduli stack of curves. SinceMg is a smooth
Artin stack (for any g), we can find a smooth surjective morphism M →Mg

from a smooth affine scheme (over Z). After passing to an étale cover over S,
then, we can lift the given map S →Mg to a map S →M .
Now, by [Elk73, Théorème 6] we can choose a smooth affine scheme S over V
with special fibre S. Let Sh denote the Henselisation of S along V (̟), this
is therefore a ̟-adically Henselian affine scheme, whose reduction mod ̟ is
again S. Hence by [Ray72, Théorème 2] the map S → M lifts to a map
Sh → M , so composing with M →Mg and pulling back the universal family
we obtain a lift Ch → Sh of C → S to a smooth and proper curve over Sh.
Hence there exists an étale morphism S ′ → S of affine V-schemes, inducing
an isomorphism on special fibres, and a smooth and proper curve C′ → S ′

lifting C → S. Finally, we choose a compactification S
′
of S ′ over V , and a

compactification C
′
→ S

′
of C′ → S ′, and set S = Ŝ

′
and C = Ĉ

′
.

4.2 Generic pushforwards à la Kedlaya

Having set things up relatively geometrically, we will for a while revert to a
more algebraic viewpoint on relative rigid cohomology, at least until §7. In the
situation of Setup 4.3, we set

A := Γ(SK , j†SOSK )

B := Γ(CK , j†UOCK ).
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These are therefore MW-type K-dagger algebras, pullback induces a homo-
morphism A→ B, and the module of continuous differentials Ω1

B/A is a finite
projective B-module of rank 1.
Ordinary higher direct images will be defined in terms of the morphism of
K-dagger algebras A → B: for any overconvergent isocrystal E on U/K, we
can realise E on the frame (U,C,C) and take global sections to obtain an
overconvergent ∇-module M over B, and thus define the cohomology groups

R
0f∗M := ker

(
M

∇
→M ⊗B Ω1

B/A

)

R
1f∗M := coker

(
M

∇
→M ⊗B Ω1

B/A

)
.

We will also need to make use of other higher direct images defined using
relative Robba rings, as in [Ked06a]. In the situation of Setup 4.3, let σ̄j

denote the closure of the image of σj inside C, and set

R+
A,σj

= Γ(]σ̄j [CK , j†σj
OCK )

RA,σj = colimV Γ(]σ̄j [CK∩V, j
†
σj
OCK ),

the colimit in the second definition being over strict neighbourhoods V of ]C \
σj [C inside CK . Since each σj has a neighbourhood on which it is locally cut
out by a single function uj ∈ OC , by lifting these uj to some dagger localisation
of B and using the strong fibration theorem, we can identify

R+
A,σj

∼= R
uj+
A

RA,σj
∼= R

uj

A

with copies of the relative Robba ring over A. For all j there is a natural
embedding

B →RA,σj

of A-algebras, and we define Q
{σj}
A to be the quotient

0→ B →
⊕

j

RA,σj → Q
{σj}
A → 0.

We can therefore define further higher direct images

R
0
locf∗M :=

⊕

j

ker
(
M ⊗B RA,σj

∇
→M ⊗B RA,σj ⊗B Ω1

B/A

)

R
1f!M := ker

(
M ⊗B Q

{σj}
A

∇
→M ⊗B Q

{σj}
A ⊗B Ω1

B/A

)

R
1
locf∗M :=

⊕

j

coker
(
M ⊗B RA,σj

∇
→M ⊗B RA,σj ⊗B Ω1

B/A

)

R
2f!M := coker

(
M ⊗B Q

{σj}
A

∇
→M ⊗B Q

{σj}
A ⊗B Ω1

B/A

)
,
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these sit in an exact sequence

0→ R
0f∗M → R

0
locf∗M → R

1f!M → R
1f∗M → R

1
locf∗M → R

2f!M → 0.

When A = K (or a finite extension thereof) we will usually write

H0(M), H0
loc(M), H1

c (M), H1(M), H1
loc(M), H2

c (M)

instead. When A→ A′ is a morphism of MW-type K-dagger algebras, we will
write either BA′ or simply B′ for B ⊗†

A A′ and either MA′ or simply M ′ for
M ⊗B B′, thus M ′ is an overconvergent ∇-module over B′.

Theorem 4.5. [Ked06a, Theorem 7.3.3, Remark 7.2.2, Proposition 8.6.1] As-
sume Setup 4.3, and let M be an F -able ∇-module on B.

1. There exists a dagger localisation A → A′ such that the higher direct
images R

if∗M
′, R

i
locf∗M

′, R
if!M

′ are finitely generated over A′, for-
mation of which commutes with flat base change A′ → A′′ of MW -type
dagger algebras.

2. For any A′ such that the conclusions of (1) hold for M ′ and M ′∨, there
are canonical perfect pairings

R
if∗M

′ ⊗A′ R
2−if!M

′∨ → A′(−1)

R
i
locf∗M

′ ⊗A′ R
1−i
loc f∗M

′∨ → A′(−1)

of ∇-modules over A′.

Remark 4.6. 1. The base change claim in the theorem implies that any
Frobenius structure on M induces one on all of the higher direct im-
agesRif∗M

′, Ri
locf∗M

′, Rif!M
′, in a way compatible with the Poincaré

pairings in (2).

2. It was also shown in [Ked06a] that formation of these higher direct images
commutes with base change to the completed fraction field L of A′.

Proof. In [Ked06a] the case when U = A1
S , B = A〈x〉† and M admits a Frobe-

nius structure was treated, we will explain here how to reduce to this case. First
of all, passing to the irreducible constituents of M we may assume that M it-
self admits a Frobenius structure. Applying [Ked05, Theorem 1] at the generic
point of S and spreading out we can find an open immersion S′ → S and a
finite étale map US′ → A1

S′ of S′-schemes. After possibly further localising and
lifting to characteristic 0 via Lemma 2.8 we can therefore find a dagger localisa-
tion A→ A′ such that there exists a finite étale morphism A′〈x〉† → B⊗†

AA′ of
A′-algebras. Taking the pushforward along this finite étale map doesn’t change
any of the higher direct images, so we can replace A by A′ and B ⊗†

A A′ by
A′〈x〉†, and thus reduce to considering the case where B = A〈x〉†.
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Roughly speaking, our goal will be to use the irregularity of a ∇-module to
give conditions under which we can take A = A′ in the above theorem. For
each σj we have the base change of M along

B →Rσj
∼= R

uj

A ,

this is an overconvergent ∇-module Mloc,j over R
uj

A , with an associated irreg-
ularity function

IrrMloc,j
:M(A)→ Z≥0.

We define the total irregularity of M to be the function

IrrtotM :=
∑

j

IrrMlocj
:M(A)→ Z≥0.

We can now state our first partial p-adic analogue of [Lau81, Corollaire 2.1.2]
as follows.

Theorem 4.7. Assume Setup 4.3, and let M be an F -able ∇-module on B.
Then the following are equivalent:

1. the total irregularity IrrtotM :M(A)→ Z≥0 is constant;

2. the higher direct images R
0f∗M and R

1f∗M are finitely generated over
A, and their formation commutes with arbitrary base change A → A′ of
MW-type K-dagger algebras.

Remark 4.8. As in Remark 4.6, it follows from the base change claim that any
Frobenius structure on M induces one on R

if∗M . Formation of Rif∗M also
commutes with base change to the completed fraction field L of A.

Note that the implication (2)⇒(1) follows from the Grothendieck–Ogg–
Shafarevich formula [CM01, Corollaire 5.0-12], the proof that (1)⇒(2) will
occupy us until the end of §8. To start with, we will record a consequence of
Theorem 4.5 that is not explicitly spelled out in [Ked06a], but can nonetheless
be easily deduced from results there.

Lemma 4.9. In the situation of Theorem 4.5, assume that the conclusions of
the theorem hold for M and M∨ without further localisation of A, and that
R

0f∗M = R
0f∗M

∨ = 0. Then the formation of the cohomology groups
R

if∗M, R
i
locf∗M R

if!M commutes with arbitrary base change A → A′ of
MW-type dagger algebras.

Proof. By choosing a set of topological generators for A′ over A we can treat
separately the cases when A→ A′ is surjective and when A′ = A〈x1, . . . , xn〉†.
The latter case is covered by Theorem 4.5, we will therefore consider the for-
mer. By Poincaré duality we know that R

2f!M = (R0f!M
∨)∨ = 0, and that

R
2f!M

∨ = (R0f!M)∨ = 0. Since the base change map

(R1
locf∗M)⊗A A′ → R

1
locf∗M

′
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is trivially surjective, we deduce that the latter is finitely generated over A′,
which is enough to show that the conclusions of Theorem 4.5 hold for M ′

without further localisation (see for example the proof of [Ked06a, Theorem
7.3.3]). By arguing similarly for M ′∨, we deduce that Poincaré duality also
holds for M ′. The map

(R2f!M)⊗A A′ → R
2f!M

′

is also trivially surjective, thus we deduce that R
2f!M

′ = 0; replacing M by
M∨ and applying Poincaré duality we can also see that R

0f∗M
′ = 0. Hence

base change holds for R0f∗M and R
2f!M . We now consider the diagram

0 // (R0
locf∗M)⊗A′ //

� _

��

(R1f!M)⊗A′ //
� _

��

(R1f∗M)⊗A′ //

����

(R1
locf∗M)⊗A′

����

// 0

0 // R
0
locf∗M

′ // R
1f!M

′ // R
1f∗M

′ // R
1
locf∗M

′ // 0

where the rows are the canonical exact sequences, and the vertical arrows come
from base change. Immediately from the definitions we find that the right two
vertical arrows are surjective; by replacingM byM∨ and using Poincaré duality
we can see that the left hand vertical arrows are injective. Moreover, we know
from [Meb02, Corollaire 1.3-2] and base change to the completed fraction field
of A that

rankAR
0
locf∗M = rankAR

1
locf∗M

rankA′R
0
locf∗M

′ = rankA′R
1
locf∗M

′,

and hence base change has to hold for Ri
locf∗M . Since

rankAR
1f!M ≤ rankA′R

1f!M
′

rankAR
1f∗M ≥ rankA′R

1f∗M
′

rankAR
1f!M − rankAR

1f∗M = rankA′R
1f!M

′ − rankA′R
1f∗M

′

we can also deduce that rankAR
1f!M = rankA′R

1f!M
′ and rankAR

1f∗M =
rankA′R

1f∗M
′. This gives base change for R1f∗M and R

1f!M , and completes
the proof.

We can use this to give the following minor strengthening of Theorem 4.5.

Corollary 4.10. In the situation of Theorem 4.5 there exists a dagger locali-
sation A→ A′ such that the higher direct images R

if∗M
′, Ri

locf∗M
′, Rif!M

′

are finitely generated over A′, whose formation commutes with arbitrary base
change A′ → A′′ of MW -type dagger algebras.

Proof. As explained above, we can reduce to the case where B = A〈x〉†, and
R

if∗M, R
i
locf∗M, R

if!M are finitely generated over A with formation com-
muting with flat base change, as well as to the completed fraction field L of A.
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In particular, we can verify that the natural map

R
0f∗M ⊗A A〈x〉† →M

is injective, since it is so over L. After replacing A by a further localisation, we
can also assume that the conclusions of Theorem 4.5 hold for the quotient N of
M by R

0f∗M ⊗AA〈x〉†. The base change claim holds for R0f∗M ⊗AA〈x〉† by
using the projection formula, hence by the five lemma it suffices to prove it for
N . But again by comparing with the situation over L we can see that R0f∗N =
0; in other words we may assume that R0f∗M = 0. We now consider the dual
M∨: after possibly further localising A we can assume that the conclusions of
Theorem 4.5 also hold for M∨, and so we obtain an exact sequence

0→ N →M →
(
R

0f∗M
∨
)∨
⊗A A〈x〉† → 0

of F -able ∇-modules. Again, possibly localising A, and using the five lemma
to replace M by N , we can assume that R

0f∗M = R
0f∗M

∨ = 0. Thus we
may apply Lemma 4.9.

5 Unipotence and base change for ∇-modules over relative

Robba rings

We will begin the proof of Theorem 4.7 with a study of the behaviour of
R

0
locf∗M in the case when the generic fibre of M has unipotent monodromy

around all missing points. In this section we will not need the geometric setup
of §4.1, and will instead simply work with dagger algebras and ∇-modules.
Since we are only interested in R

0
locf∗, we will let A be a K-dagger algebra of

MW-type, L its completed fraction field, and M an overconvergent ∇-module
over Ru

A.
As part of the proof of [Ked06a, Theorem 7.3.3] Kedlaya shows that if M is
free, and the generic fibre M ⊗Ru

L is unipotent (as a ∇-module relative to L),
then there exists a dagger localisation A → A′ such that M ⊗ Ru

A′ admits a
strongly unipotent basis relative to A′. That is, it admits a basis {ei} such
that

u∇u(ei) ∈ (Ae1 + . . .+Aei−1)⊗ du,

where ∇u is the ‘u-component’ of the connection on M . It will be important
for us to work with ∇-modules that are not known a priori to be free, and
to still have a version of this result. Luckily, we will only need it in the case
where A = K〈x〉† = K〈x1, . . . , xd〉† is a free K-dagger algebra. We will keep
the assumption that K is discretely valued.

Theorem 5.1. Let M be a projective ∇-module over Ru
K〈x〉† , whose generic

fibre M ⊗Ru
L is unipotent relative to L. Then M is free, and admits a strongly

unipotent basis relative to K〈x〉†.

The proof of this result will occupy the rest of §5. As in [Ked06a, §5], we will
find it easier to introduce an auxiliary ring in place of Ru

K〈x〉† .
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Definition 5.2. Fix some η ∈
√
|K∗| and define Ru

L,η to be the ring of series∑
i aiu

i with ai ∈ L, such that there exist η− < η < η+ such that

‖ai‖ η
i
± → 0

as i→ ±∞. Similarly, define Ru
K〈x〉†,η to be the ring of series

∑
i aiu

i with ai ∈

K〈x〉† such that there exist η− < η < η+ and λ > 1 such that ai ∈ K〈λ−1x〉
for all i and

‖ai‖λ η
i
± → 0

as i→ ±∞.

As usual, a ∇-module over Ru
K〈x〉†,η will mean a ∇-module relative to K, whose

underlying Ru
K〈x〉†,η-module is finitely presented. Any extra adjectives such as

projective, stably free, free, &c. are understood to apply to the underlying
Ru

K〈x〉†,η-module.

Lemma 5.3. 1. The map K〈x〉† → L is flat.

2. The natural map Ru
K〈x〉†,η ⊗K〈x〉† L→ Ru

L,η is injective.

Proof. The first claim is clear, since K〈x〉† → L is a monomorphism into a
field. For the second, we choose a bijection Z→ N and consider Ru

K〈x〉†,η and

Ru
L,η as subspaces of the infinite products

∏
N K〈x〉† and

∏
N L respectively; it

suffices to show that the natural map
(
∏

N

K〈x〉†

)
⊗K〈x〉† L→

∏

N

L

is injective. If we let we let L0 denote the (uncompleted) fraction field ofK〈x〉†,
and factor K〈x〉† → L through L0, then it suffices to show the following:

1. if R is an integral domain, with fraction field F , then the natural map
(
∏

N R)⊗R F →
∏

N F is injective;

2. if F → F ′ is an arbitrary (non-zero) morphism of fields, then the natural
map (

∏
N F )⊗F F ′ →

∏
N F

′ is injective.

For the first, let us take some element
∑n

i=1(λij)
∞
j=1 ⊗ fi in the kernel of

(
∏

N R) ⊗R F →
∏

N F , with λij ∈ R and fi ∈ F . Expressing all the fi as
fractions with a single common denominator, we may assume that fi =

1
f for

some f ∈ R \ {0}, and all i. Hence we can in fact write our element simply as

(λ′
j)

∞
j=1⊗

1
f for suitable λ′

j . Thus we have
λ′
j

f = 0 in F for all j, whence λ′
j = 0

in R for all j.
For the second, again suppose that we have an element

n∑

i=1

(λij)
∞
j=1 ⊗ fi ∈

(
∏

N

F

)
⊗F F ′
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which maps to zero in
∏

N F ′, i.e. such that
∑

i λijfi = 0 for all j.
Let V = Fn be the standard n-dimensional vector space equipped with the
standard bilinear form. Let λj = (λ1j , . . . , λnj) ∈ V and f = (f1, . . . , fn) ∈
V ⊗F F ′. Let

Wj =

j⋂

j′=1

{v ∈ V |λj′ · v = 0}

be the intersection of the annihilators of all the λj′ for 1 ≤ j′ ≤ j. Thus Wj

is a descending sequence of subspaces of V , which must therefore eventually
stabilise. Hence we have

(∩jWj)⊗F F ′ =
⋂

j

(Wj ⊗F F ′) .

Pick a basis e1, . . . , ek for ∩jWj , and write these as el = (el1, . . . , eln) with
elm ∈ F . The fact that el ∈ ∩jWj means that

∑

i

λijeli = 0

for all j, l. Since f ∈
⋂

j (Wj ⊗F F ′) we must be able to write f =
∑n

l=1 αlel
for some αl ∈ F ′. Putting this all together with have

n∑

i=1

(λij)
∞
j=1 ⊗ fi =

n∑

i,l=1

(λij)
∞
j=1 ⊗ αleli =

n∑

l=1

(
n∑

i=1

(λijeli)
∞
j=1

)
⊗ αl = 0

and the proof is complete.

We can now extend some of the results in [Ked06a, §5] from free to stably free
∇-modules over Ru

K〈x〉†,r. For any ∇-module over any of the rings Ru
K〈x〉†,r,

Ru
L,r, R

u
K〈x〉† or Ru

L we will write H0
∇u

for the kernel of the derivation ∂
∂u . For

M a ∇-module over Ru
K〈x〉†,η, we will write ML for M ⊗Ru

L,η

Lemma 5.4. Let M be a stably free ∇-module over Ru
K〈x〉†,η, such that ML is

unipotent relative to L. Then H0
∇u

(M) is a finite free ∇-module over K〈x〉†.

Proof. All finitely generated ∇-modules over K〈x〉† are projective, and there-
fore free, via the analogue of the Quillen–Suslin theorem for K〈x〉† [Ked04,
Theorem 6.7]. Thus H0

∇u
(M) will be free as soon as it is finitely generated. To

see that it is finitely generated we may choose some n such that

M ′ = M ⊕Ru,⊕n
K〈x〉†,η

is a free ∇-module over Ru
K〈x〉†,η. The claim for M can therefore be deduced

from the claim for M ′, we may therefore assume that M is in fact free. In this
case, [Ked06a, Proposition 5.2.6] shows that H0

∇u
(ML) is finite dimensional

over L, and it follows from [Ked06a, Lemma 7.3.4] that H0
∇u

(M) is finitely

generated over K〈x〉†.
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In fact, the restriction to stably free modules is unnecessary.

Lemma 5.5. Any finitely presented ∇-module over Ru
K〈x〉†,η is projective, and

becomes stably free after making a finite base extension K → K ′.

Proof. Choose η− < η < η+ and λ > 1 such that the module M under consid-
eration arises via base change from a ∇-module over K〈λ−1x, η−u

−1, η−1
+ u〉.

Since the completed local ring of any smooth affinoid K-algebra at any max-
imal ideal is a power series ring, it follows in the usual way that M must be
projective.
To see the claim on stable freeness, note that after replacing K by a finite
extension (and possibly shrinking the interval [η−, η+] if necessary) we can
assume that λ, η−, η+ ∈ |K∗|, and that η−/η+ = |̟|. In this case, by choosing
α, β± ∈ K with |α| = λ and |β±| = η±, we can construct an isomorphism

K〈λ−1x, η−u
−1, η−1

+ u〉 ∼=
K〈x, u, v〉

(uv −̟)

x 7→ αx, u 7→ β+u, u−1 7→ β−v.

Since M is projective, it suffices to show that any projective K〈x, u, v〉/(uv −
̟)-module is stably free, or equivalently thatK0(〈x, u, v〉/(uv−̟)) = Z, where
K0(R) denotes the Grothendieck group of the category of finite projective R-
modules (see [Wei13, Chapter II, Lemma 2.1]). We consider the diagram

K0

(
K〈x, u, v〉

(uv −̟)

)
← K0

(
OK〈x, u, v〉

(uv −̟)

)
→ K0

(
k[x, u, v]

(uv)

)
.

Since OK〈x, u, v〉/(uv − ̟) is ̟-adically complete, it follows from [Wei13,
Chapter II, Lemma 2.2] that the right hand map is an isomorphism. We can cal-
culate K0(k[x, u, v]/(uv)) using the Mayer-Vietoris exact sequence from [Mil71,
p.28]. Namely, the diagram of rings

k[x, u, v]/(uv) //

��

k[x, u]

��

k[x, v] // k[x]

is Cartesian, and all maps are surjective, so we have an exact sequence

K1(k[x, u])⊕K1(k[x, v])→K1(k[x])→ K0(k[x, u, v]/(uv))

→K0(k[x, u])⊕K0(k[x, v])→ K0(k[x])

where K1 here refers to the Whitehead group as defined in [Mil71, §3]. Since
the map k[x, u] → k[x] admits a section, the first map in this sequence is
surjective. Since K0 of any polynomial ring over a field is Z, the sequence

0→ K0(k[x, u, v]/(uv))→ Z⊕ Z
sum
−→ Z

Documenta Mathematica 26 (2021) 981–1044



Local Acyclicity 1013

is exact and we deduce that K0(OK〈x, u, v〉/(uv−̟) ∼= K0(k[x, u, v]/(uv)) ∼=
Z. If we now let G0(R) denote the Grothendieck group of the category of finitely
generated R-modules (over a Noetherian ring R), then since OK〈x, u, v〉/(uv−
̟) and K〈x, u, v〉/(uv − ̟) are regular it follows from [Wei13, Chapter II,
Theorem 7.8] that

K0

(
OK〈x, u, v〉

(uv −̟)

)
∼= G0

(
OK〈x, u, v〉

(uv −̟)

)

K0

(
K〈x, u, v〉

(uv −̟)

)
∼= G0

(
K〈x, u, v〉

(uv −̟)

)
.

Since

G0

(
OK〈x, u, v〉

(uv −̟)

)
։ G0

(
K〈x, u, v〉

(uv −̟)

)

(see [Wei13, Chapter II, Application 6.4.1]) we deduce that

K0

(
OK〈x, u, v〉

(uv −̟)

)
։ K0

(
K〈x, u, v〉

(uv −̟)

)
,

hence K0(K〈x, uv〉/(uv −̟)) = Z as required.

We can now prove an analogue of Theorem 5.1 with Ru
K〈x〉†,η in place ofRu

K〈x〉† .

Proposition 5.6. Suppose that M is a finitely presented ∇-module over
Ru

K〈x〉†,η, such that ML is unipotent relative to L. Then M is free, and admits

a strongly unipotent basis relative to K〈x〉†.

Proof. As observed above, M is projective; we will induct on the rank of M .
If the rank is zero then there is nothing to prove. If the rank is > 0, we claim
that the base change map

H0
∇u

(M)⊗K〈x〉† R
u
K〈x〉†,η →M

is injective, and H0
∇u

(M) is non-zero. Both these claims may be verified after
making a finite base extension K → K ′, we may therefore assume by Lemma
5.5 that M is stably free.
To see that H0

∇u
(M) is non-zero, choose n such that

N := M ⊕Ru,⊕n
K〈x〉†,η

is free. Choose a strongly unipotent basis for ML, and extend this to a basis for
NL using the canonical basis of Ru,⊕n

L,η . Let D be the nilpotent matrix over L
giving the action of the connection on this strongly unipotent basis, and e its
nilpotency index. In [Ked06a, §5.3] Kedlaya defines an L-linear function

f : NL → NL
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which satisfies f(N) ⊂ N and f(N ⊗K〈x〉† L) = im(De−1). In fact, it follow
from the definition of f (and our particular choice of strongly unipotent basis)
that we also have f(ML) ⊂ML, from which we deduce that f(M) ⊂ML∩N =
M . If we let V denote the L-span of our original strongly unipotent basis for
ML, we therefore find that f(M ⊗K〈x〉† L) = im(D|e−1

V ). In particular we must
have 0 6= f(M) ⊂ H0

∇u
(M).

The injectivity claim is a rather convoluted diagram chase. To begin, we
observe that projectivity of M over Ru

K〈x〉†,η together with injectivity of

Ru
K〈x〉†,η ⊗K〈x〉† L →֒ Ru

L,η implies injectivity of

M ⊗K〈x〉† L→ML.

Next, flatness of K〈x〉† → L implies injecitvity of H0
∇u

(M) ⊗K〈x〉† L →
M ⊗K〈x〉† L and hence of

H0
∇u

(M)⊗K〈x〉† L→ H0
∇u

(ML).

Tensoring with Ru
L,η gives injectivity of

H0
∇u

(M)⊗K〈x〉† R
u
L,η → H0

∇u
(ML)⊗L Ru

L,η,

and since H0
∇u

(M) is projective over K〈x〉† we get injectivity of

H0
∇u

(M)⊗K〈x〉† R
u
K〈x〉†,η → H0

∇u
(M)⊗K〈x〉† R

u
L,η;

putting these two together gives injectivity of

H0
∇u

(M)⊗K〈x〉† R
u
K〈x〉†,η → H0

∇u
(ML)⊗L Ru

L,η.

Now, we already know that H0
∇u

(ML)⊗LR
u
L,η →ML has to be injective (since

L is a complete, discretely valued field), and hence we deduce that the map
H0

∇u
(M) ⊗K〈x〉† Ru

K〈x〉†,η → ML is injective, and therefore (finally!) obtain

injectivity of
H0

∇u
(M)⊗K〈x〉† R

u
K〈x〉†,η →M.

Now, we have already seen in Lemma 5.4 that H0
∇u

(M) is free over K〈x〉†, and
the quotient Q of M by H0

∇u
(M) ⊗ Ru

K〈x〉†,η is a finitely presented ∇-module

over Ru
K〈x〉†,η, thus again projective of strictly smaller rank. We may therefore

apply the induction hypothesis to see that Q admits a strongly unipotent basis
relative to K〈x〉†. This implies that M is free and unipotent relative to K〈x〉†,
hence we may argue as in [Ked06a, Proposition 5.2.6] to show that it has a
strongly unipotent basis relative to K〈x〉†.

Proof of Theorem 5.1. This is identical to the proof of [Ked06a, Proposition
5.4.1]. Let M be an projective ∇-module over Ru

K〈x〉† with unipotent generic

fibre. Then for η close enough to 1, M comes from a projective ∇-module
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Mη over Ru
K〈x〉† ∩ Ru

K〈x〉†,η such that Mη ⊗ (Ru
L ∩ Ru

L,η) admits a strongly

unipotent basis {ei} relative to L. Hence Mη ⊗ Ru
K〈x〉†,η admits a strongly

unipotent basis {f i} relative to K〈x〉† by Proposition 5.6. Moreover, these
two bases must have the same L-span inside M ⊗ Ru

L. Hence {f i} forms a
basis of Mη ∩ (M ⊗Ru

L) = M .

For us, the most important consequence of this result is the following.

Corollary 5.7. Let M be a projective, F -able ∇-module over Ru
K〈x〉† with

constant irregularity. Then H0
∇u

(M) is finitely generated over K〈x〉†, and for

any closed point s : K〈x〉† → K ′ the base change map

H0
∇u

(M)⊗K〈x〉† K
′ → H0

∇u
(M ⊗Ru

K〈x〉†
Ru

K′)

is an isomorphism.

Proof. After possibly enlarging K and translating we may assume that s = 0.
If K contains all nth roots of unity, and n is coprime to p, then we have an
identification

H0
∇u

(M) = H0
∇

u1/n

(
M ⊗Ru

K〈x〉†
Ru1/n

K〈x〉†

)Z/nZ

and similarly after base change via s. We are therefore free to make such a
tamely ramified base change at any point we wish.
Write ML = M ⊗Ru

K〈x〉†
Ru

L, and let Ms = M ⊗Ru

K〈x〉†
RK be the fibre over s.

Let M0 denote the break 0 part of M provided by Proposition 3.11, thus the
fibre M0,s over s is the break 0 part of Ms. Since M is F -able, it follows
that M0,L has rational exponents, whose denominators are necessarily coprime
to p. We may therefore by [Meb02, Théorème 1.3-1] take a tamely ramified

base change Ru
L → Ru1/n

L such that M0,L ⊗Ru
L
Ru1/n

L is unipotent relative

to L as a ∇-module over Ru1/n

L . Since such a base extension preserves the
break 0 part we may therefore assume that M0,L is unipotent. But now since

M∇u=0 = M∇u=0
0 and M∇u=0

s = M∇u=0
0,s we may moreover replace M by M0

and therefore assume that ML itself is unipotent relative to L.
Hence by Theorem 5.1 above, M is in fact unipotent relative to K〈x〉†, that is
it is an iterated extension of ∇-modules pulled back from K〈x〉†. For any such
pullback module, the base change claim is easily deduced using the projection
formula, and the relatively unipotent case then follows by induction on the
rank and the five lemma.

6 Base change for R
0f∗

We can now use the results of the previous section to prove the R
0f∗M case

of Theorem 4.7. We will therefore consider Setup 4.3, and use notations as in
§4.1. Thus (in particular) we have a morphism of MW-type frames

(U,C,C)→ (S, S,S)
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enclosing an affine curve f : U → S, with induced morphism A → B of K-
dagger algebras as in §4.2. We let M be a ∇-module on B obtained as the
realisation of an overconvergent isocrystal E on U/K. The main result of this
section is the following.

Theorem 6.1. Assume that M is F -able and has constant total irregularity
IrrtotM . Then R

0f∗M is finitely generated over A, and for any closed point
s : A→ K ′ the base change map

R
0f∗M ⊗A K ′ → H0(Ms)

is an isomorphism.

Remark 6.2. It follows from the theorem that in fact formation of R
0f∗M

commutes with arbitrary base change A→ A′ of MW-type K-dagger algebras.
As in Remark 4.6, it then follows that any Frobenius structure on M induces
one on R

0f∗M .

In fact, showing that R0f∗M is finitely generated is relatively straightforward,
and does not depends on M having constant irregularity. The base change
claim is much harder, and is false without at least some extra assumption.2

Our first reduction in the proof of Theorem 6.1 is to show that the claim is
local on A.

Lemma 6.3. Hypothesis as in Theorem 6.1. Let {A → Ai}i∈I be a finite

dagger open cover of A, and set Aij = Ai ⊗
†
A Aj. Write MAi = M ⊗A Ai and

MAij = M ⊗A Aij . If the conclusions of Theorem 6.1 hold for each MAi and
each MAij , then they hold for M .

Proof. By assumption, formation of R0f∗MAi and R
0f∗MAij commute with

base change to closed points of Ai and Aij respectively. It follows that for-
mation of R0f∗MAi commutes with base change along Ai → Aij . The dagger
version of Tate’s acyclicity theorem [GK00, Proposition 2.6] now gives the ex-
istence of a unique finite projective A-module N whose base change to each Ai

is exactly R
0f∗MAi , and the fact that

R
0f∗M =

⋂

i

R
0f∗MAi

(intersection inside R0f∗ML) implies that R0f∗M is canonically isomorphic to
N . Hence formation of R0f∗M commutes with each base change A→ Ai, and
therefore to all closed points of A.

Next, by localising on S, we may assume that S admits a finite étale map to Ad
k.

Using Lemma 2.8, we may therefore assume that there exists a finite étale map

2For a counter-example, let f : A2

k
→ A1

k
be the projection, and take an Artin–Schreier

cover X → A2

k
whose fibre over the generic point of A1

k
is connected, and whose fibre over 0

is disconnected. Then the pushforward of the constant isocrystal on X will not satisfy base
change to closed points for R0f∗.
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K〈x〉† → A. Corresponding to this we have a finite étale map R
uj

K〈x〉†
→ R

uj

A

for each j.

Lemma 6.4. If IrrtotM is constant, then each M⊗BR
uj

A has constant irregularity.

Proof. If M ⊗B R
uj

A does not have constant irregularity, then by Proposition
3.10 there exists a point of M(A) at which the irregularity of M ⊗B R

uj

A is
strictly smaller than the irregularity at the maximal point. Since all the other
irregularities cannot increase under such a specialisation, it follows that IrrtotM

cannot be constant.

Consider M ⊗B R
uj

A , as a ∇-module over R
uj

K〈x〉†
via restriction of scalars.

By Lemma 3.7 this has constant irregularity, and we can apply Corollary 5.7
to deduce that R

0
locf∗M is finitely generated over K〈x〉†, and its formation

commutes with base change to closed points of K〈x〉†. Hence R
0
locf∗M is

finitely generated over A, and for every closed point s : A → K ′, the base
change map

R
0
locf∗M ⊗A K ′ → H0

loc(Ms)

is an isomorphism. The fact that R0f∗M is finitely generated (and thus pro-
jective) over A now follows from the injection

R
0f∗M →֒ R

0
locf∗M.

(There is in fact an easier way of seeing this, using [Ked06a, Lemma 7.3.4] but
we will still need the full force of Corollary 5.7 anyway). It remains to show
the base change claim, and the key remaining input is the following.

Lemma 6.5. The direct image with compact support R1f!M is finitely generated
projective over A, and for all closed points s : A→ K ′ the base change map

(R1f!M)⊗A K ′ → H1
c (Ms)

is injective.

Proof. To see that R
1f!M is finitely generated, we use projectivity of M to

embed M ⊗Q{σj} inside a number of copies of Q{σj}, and then apply [Ked06a,
Lemma 7.3.4]. Since it has a natural ∇-module structure it is thus projective.
For the base change claim, we may assume that K = K ′. By translating we
may assume that s maps to the origin under the given finite étale morphism
K〈x〉† → A. For 1 ≤ i ≤ d let Ai = A/(x1, . . . , xi); since Ad is an étale
K-algebra, it in fact suffices to show that the base change map

(R1f!MA)⊗A Ad → R
1f!MAd

is injective. As we have already shown that each R
1f!MAi is finite projective

(and hence flat), it suffices to show that for all i the base change map

(R1f!MAi)⊗Ai Ai+1 → R
1f!MAi+1
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is injective. By induction on d, then, what we must show is that

(R1f!M)⊗A A1 → R
1f!MA1

is injective. One easily checks that the sequence

0→ x1Q
{σj}
A → Q

{σj}
A → Q

{σj}
A1
→ 0

is exact, for example, by using the corresponding fact for eachR
uj

A and applying
the nine lemma. Since M is finite projective and ker∇ is left exact, we deduce
that

0→ x1R
1f!M → R

1f!M → R
1f!MA1

is exact. This finishes the proof.

We can now complete the proof of Theorem 6.1. Consider the diagram

0 // (R0f∗M)⊗K〈x〉† K
′ //

��

(R0
locf∗M)⊗K〈x〉† K

′

��

// (R1f!M)⊗K〈x〉† K
′

��

0 // H0(Ms) // H0
loc(Ms) // H1

c (Ms)

which has exact rows, the top row being exact because R
0f∗M , R0

locf∗M and
R

1f!M are all finite projective over A. We already observed (using 5.7) that
the middle vertical map is an isomorphism, and the right hand vertical arrow is
injective by Lemma 6.5. The left hand vertical map is therefore an isomorphism
by the five lemma.

7 The strong fibration theorem and the cohomology of punc-

tured tubes

To prove Theorem 4.7 for R0f∗M we worked ‘algebraically’, that is, within the
language of dagger algebras. In order to deal with the R

1f∗M case we will
need to do a little more geometry, and work in the language of frames. Again,
we suppose that we are in Setup 4.3, thus (in particular) we have a morphism
of MW-type frames

f : (U,C,C)→ (S, S,S)

enclosing an affine curve f : U → S. We shall only consider the case when the
base frame

(S, S,S) = (Ad
k,P

d
k, P̂

d
V)

is the natural MW frame enclosing affine space over k. Again, let A→ B be the
induced morphism of dagger algebras as in §4.2 (thus A = K〈x1, . . . , xd〉†), and
M a ∇-module over B arising from an overconvergent isocrystal E on U/K.
We will assume that M is F -able. Let

S0 = P̂d−1
V ⊂ P̂d

V
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be the hyperplane given in affine co-ordinates by xd = 0, and denote fibre
product with S0 over S by (−)0. Thus we have varieties S0, S0, U0, C0, C0 and
a formal scheme C0. Set

R+
(S0,S) = Γ(]S0[S, j†S0

O]S0[S
),

we thus have an identification

R+
(S0,S) = R

xd+
K〈x1,...,xd−1〉†

.

We can also define

R(S0,S) := colimV Γ(V ∩]S0[S, j†S0
O]S0[S

)

where the colimit is over all strict neighbourhoods V of ]S \ S0[S inside SK .
Again, we have an identification

R(S0,S) = R
xd

K〈x1,...,xd−1〉†
.

We similarly define

R+
(U0,C)

= Γ(]C0[C, j
†
U0
O]C0[C

)

and

R(U0,C) = colimV Γ(V ∩]C0[C, j
†
U0
O]C0[C

),

the colimit this time being over all strict neighbourhoods V of ]C\C0[C inside C.
Since the closed immersion U0 → U may no longer admit a smooth retraction
(even locally on U0), we cannot necessarily identify these rings with ordinary
relative Robba rings. We can, however, compare them cohomologically with
ordinary relative Robba rings.
Choose an increasing sequence ηn → 1, and let Vn ⊂]S0[S denote the open
subspace defined by |xd| ≤ ηn. Set

R
[0,ηn]
(S0,S) := Γ(Vn, j

†
S0
O]S0[S

)

R
[0,ηn]
(U0,C)

:= Γ(f−1
K (Vn), j

†
U0
O]C0[C

),

again we can interpret the former as a suitable ‘relative Tate algebra’ of radius
ηn over K〈x1, . . . , xd−1〉

† (we don’t make this precise). Similarly, we let V m
n ⊂

]S0[S denote the subspace defined by ηm ≤ |xd| ≤ ηn, and set

R
[ηm,ηn]
(S0,S) := Γ(V m

n , j†S0
O]S0[S

)

R
[ηm,ηn]
(U0,C)

:= Γ(f−1
K (V m

n ), j†U0
O]C0[C

).
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FromM , we obtain via base change∇-modulesM⊗BR
+
(U0,C)

andM⊗BR(U0,C),

with cohomology groups

R
if∗(M ⊗B R

#
(U0,C)

) := Hi
(
M ⊗B R

#
(U0,C)

→M ⊗B R
#
(U0,C)

⊗B Ω1
B/A

)

over R#
(S0,S), for i = 0, 1 and # ∈ {+, ∅}. Similarly, we have cohomology

groups

R
if∗(M ⊗B R

[0,ηn]
(U0,C)

) := Hi
(
M ⊗B R

[0,ηn]
(U0,C)

→M ⊗B R
[0,ηn]
(U0,C)

⊗B Ω1
B/A

)

over R
[0,ηn]
(S0,S) and

R
if∗(M ⊗B R

[ηm,ηn]
(U0,C)

) := Hi
(
M ⊗B R

[ηm,ηn]
(U0,C)

→M ⊗B R
[ηm,ηn]
(U0,C)

⊗B Ω1
B/A

)

over R
[ηm,ηn]
(S0,S) . On the other hand, if we set A0 = A/(xd) = K〈x1, . . . , xd−1〉†

and B0 = B/(xd), then base changing along B → B0 gives an overconvergent
∇-module M0 over B0.

Theorem 7.1. In the above situation, assume that IrrtotM is constant, that
R

0f∗M = 0, and that R1f0∗M0 is finitely generated over A0. Then:

1. the natural maps

R
1f∗(M ⊗B R

+
(U0,C)

)→ lim
n

R
1f∗(M ⊗B R

[0,ηn]
(U0,C)

)

R
1f∗(M ⊗B R(U0,C))→ colim

m
lim
n

R
1f∗(M ⊗B R

[ηm,ηn]
(U0,C)

)

are injective, and

R
0f∗(M ⊗B R

+
(U0,C)

) = 0 = R
0f∗(M ⊗B R(U0,C)).

2. for each n ≥ m ≥ 1,

R
0f∗(M ⊗B R

[0,ηn]
(U0,C)

) = 0 = R
0f∗(M ⊗B R

[ηm,ηn]
(U0,C)

)

and there are isomorphisms

R
1f∗(M ⊗B R

[0,ηn]
(U0,C)

) ∼= R
1f0∗M0 ⊗A0

R
[0,ηn]
(S0,S)

R
1f∗(M ⊗B R

[ηm,ηn]
(U0,C)

) ∼= R
1f0∗M0 ⊗A0

R
[ηm,ηn]
(S0,S) .

First let us show that the second claim implies the first.

Proof that Theorem 7.1 (2) ⇒ Theorem 7.1 (1). We first consider the groups
R

if∗(M ⊗B R
+
(U0,C)

), which by definition are the kernel and cokernel of the
connection

∇ : M ⊗B R
+
(U0,C)

→M ⊗B R
+
(U0,C)

⊗B Ω1
B/A.
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By assumption, for all n ≥ 1 the sequence

0→M ⊗B R
[0,ηn]
(U0,C)

∇
−→M ⊗B R

[0,ηn]
(U0,C)

⊗B Ω1
B/A → R

1f∗(M ⊗B R
[0,ηn]
(U0,C)

)→ 0

is exact. Hence applying limn gives an exact sequence

0→M ⊗B R
+
(U0,C)

∇
−→M ⊗B R

+
(U0,C)

⊗B Ω1
B/A → lim

n

(
R

1f∗(M ⊗B R
[0,ηn]
(U0,C)

)

and proves the required vanishing of R0f∗ and injectivity claim for R1f∗. For
R

if∗(M ⊗BR(U0,C)) we fix m and apply the same argument, before taking the
colimit in m and using the fact that filtered colimits are exact.

The proof of the second part of Theorem 7.1 will be via another base change
argument, using the strong fibration theorem. The idea will be to replace the
frame (U0, C0,C) by another frame in which we can do cohomological calcula-
tions more easily. So let D = C0 ×V P1

V . Then there exists a modification of
frames (see Definition 2.7)

(U0, C
′

0,D
′)→ (U0, C0,D)

and a smooth proper morphism of frames

(U0, C
′

0,D
′)→ (S0, S0,S).

extending the obvious rational map D 99K S. We consider the fibre product
diagram of frames

(U0, C
′′

0 ,C×S D′)

f′

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

g′

vv♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

(U0, C0,C)

f
((P

PP
PP

PP
PP

PP
P

(U0, C
′

0,D
′) //

g
vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

(U0, C0,D)

(S0, S0,S).

where C
′′

0 is the closure of U0 inside the special fibre of C×S D′. If we denote
by E0 the restriction of E to U0, then E0 has a realisations E0,C on ]C0[C, E0,D

on ]C0[D, E0,D′ on ]C
′

0[D′ and E0,C×SD′ on ]C
′′

0 [C×SD′ . Thus we have

Rxd+
B0

∼= Γ(]C
′

0[, j
†
U0
O]C

′
0[D′

)

as well as a similar interpretation for Rxd

B0
. Define

R
[0,ηn],xd

B0
:= Γ(g−1

K (Vn), j
†
U0
O]C

′
0[D′

)

R
[ηm,ηn],xd

B0
:= Γ(g−1

K (V m
n ), j†U0

O]C
′
0[D′

)
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so we have cohomology groups

R
ig∗(M0 ⊗B0

R
[0,ηn],xd

B0
)

:= Hi
(
M0 ⊗B0

R
[0,ηn],xd

B0
→M0 ⊗B0

R
[0,ηn],xd

B0
⊗B0

Ω1
B0/A0

)

over R
[0,ηn]
(S0,S) and

R
ig∗(M0 ⊗B0

R
[ηm,ηn],xd

B0
)

:= Hi
(
M0 ⊗B0

R
[ηm,ηn],xd

B0
→M0 ⊗B0

R
[ηm,ηn],xd

B0
⊗B0

Ω1
B0/A0

)

over R
[ηm,ηn]
(S0,S) .

Lemma 7.2. For each n ≥ m ≥ 1, and i = 0, 1, there are isomorphisms

R
ig∗(M0 ⊗B0

R
[0,ηn],xd

B0
) ∼= R

if∗(M ⊗B R
[ηm,ηn]
(U0,C)

)

R
ig∗(M0 ⊗B0

R
[ηm,ηn],xd

B0
) ∼= R

if∗(M ⊗B R
[ηm,ηn]
(U0,C)

)

Proof. Since coherent j†U0
O]C0[C

-modules are acylclic on both f−1
K (Vn) and

f−1
K (V m

n ), and similarly coherent j†U0
O]C

′
0[D

-modules are acylclic on both

g−1
K (Vn) and g−1

K (V m
n ), this follows from the strong fibration theorem.

Hence Theorem 7.1 follows from Theorem 7.3 below.

Theorem 7.3. Suppose that M0 is an F -able ∇-module over B0, satisfying
the conditions of Theorem 4.7 (i.e. finiteness and base change for relative
cohomology). Then the base change maps

R
if0∗M0 ⊗A0

R
[0,ηn]
(S0,S) → R

ig∗(M0 ⊗B0
R

[0,ηn],xd

B0
)

R
if0∗M0 ⊗A0

R
[ηm,ηn]
(S0,S) → R

ig∗(M0 ⊗B0
R

[ηm,ηn],xd

B0
)

are isomorphisms for i = 0, 1.

7.1 Proof of Theorem 7.3

In order to prove Theorem 7.3, we will first need to do a little bit of functional
analysis. For the basic terminology of non-archimedean functional analysis, in
particular the notions of locally convex vector spaces, Banach spaces, compact
linear maps, and so on, we refer the reader to [Sch02]. Recall that by now we
are assuming K to be discretely valued, in particular it is spherically complete.

Definition 7.4. We call a locally convex K-vector space V an LS-space if it
is isomorphic to a countable colimit

V ∼= colimi≥1Vi

of Banach spaces such that the transition maps Vi → Vi+1 are injective, and
compact in the sense of [Sch02, §16].
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Note that any LS space is separated by [Sch02, Lemma 16.9], and that any
separated quotient of an LS space is also an LS space. The basic example of
an LS space that we have in mind is a K-dagger algebra.

Lemma 7.5. Any K-dagger algebra A is a LS space.

Proof. First let us consider the case A = K〈x1, . . . , xd〉† = K〈x〉† =
colimλ>1K〈λ−1x〉. What we need to show is that if λ > λ′ > 1 then the
map

K〈λ−1x〉 → K〈λ′−1x〉

is compact. To do so, we take the unit ball B1 ⊂ K〈λ−1x〉, i.e. the set of
elements of λ-norm at most 1. The closure of B1 inside K〈λ′−1x〉 is then
complete, since K〈λ′−1x〉 itself is. If we take ǫ > 0 and let B′

ǫ denote the ball
of radius ǫ in K〈λ′−1x〉, then for any element α ∈ K of norm ≥ λ−1 the finite
set

S =
{
ai1+...+idxi1

1 . . . xid
d ∈ K[x1, . . . , xd]

∣∣ (λ′λ−1)i1+...id > ǫ
}

of elements of K〈λ′−1x〉 satisfies

B1 ⊂ V · S +B′
ǫ.

Thus the closure of B1 in K〈λ′−1x〉 is compactoid and complete, thus bounded
and c-compact by [Sch02, Proposition 12.7]. The map

K〈λ−1x〉 → K〈λ′−1x〉

is therefore compact as claimed.
In general, we note that the LS topology on K〈x〉† is finer than the affinoid
topology induced by the inclusion K〈x〉† →֒ K〈x〉. Since any ideal of K〈x〉† is
closed for the affinoid topology by [GK00, §1.4], it is therefore closed for the LS
topology. Thus any K-dagger algebra is a separated quotient of an LS space,
and hence an LS space.

Similarly, any finitely generated module M over a K-dagger algebra has a
‘canonical’ LS topology, with the property that any A-linear map from M into
a topological A-module is continuous.

Proposition 7.6. Let V = colimi≥1Vi be an LS space. Then for any bounded
subset B ⊂ V there exists some i such that B is a bounded subset of Vi.

Proof. This is [Sch02, Lemma 16.9].

Corollary 7.7. Let V = colimi≥1Vi be an LS space, and W a Banach space.
Then any continuous linear map W → V factors through some Vi.

Proof. For any choice of norm ‖ · ‖ on W , the unit ball {w ∈W | ‖w‖ ≤ 1}
in W is bounded and generates W as a K-vector space.
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Corollary 7.8. Let V = colimi≥1Vi and W = colimi≥1Wi be two LS spaces.
Then any continuous linear map V →W is induced by a unique map

{Vi}i≥1 → {Wi}i≥1

in the category of ind-Banach spaces over K.

We can now finally deduce the result we will need to prove Theorem 7.3.

Corollary 7.9. Let A be a K-dagger algebra, and

0→M → N → P → 0

a short exact sequence of topological A-modules3, such that all three are LS
spaces over K, and P is finite free as an A-module. Then the LS topology on
P is the canonical one, and N ∼= M ⊕ P in the category of ind-Banach spaces
over K.

Remark 7.10. By Corollary 7.8 the claim is independent of the presentation of
M,N or P as colimits of Banach spaces with compact transition maps.

Proof. First of all, choose finitely many elements n1, . . . , nr ∈ N inducing a
basis of P as an A-module. Then the map

A⊕r → N

(a1, . . . , ar) 7→
r∑

i=1

aini

is continuous for the canonical LS topology on A⊕r, and induces a continuous
bijection A⊕r → P . This continuous bijection is a topological isomorphism
by [Bou81, II.36, Prop 10], thus the topology on P is the canonical one, the
surjection N → P is strict, and the map N → P admits a continuous section
P → N . Since the image of M →֒ N therefore has a topological complement,
we deduce from [Cre98, Proposition 3.5] that M → N is strict, and hence
the splitting P → N induces an isomorphism N ∼= M ⊕ P of locally convex
K-vector spaces. Finally, we apply Corollary 7.8 to conclude.

We can now give the proof of Theorem 7.3.

Proof of Theorem 7.3. We will give the proof for R[ηm,ηn], the proof for R[0,ηn]

being essentially the same. First of all, as usual, since the claim is straightfor-
ward for modules of the form N ⊗A0

B0, we can successively replace M0 by the
cokernel of

R
0f0∗M0 ⊗A0

B0 →֒M0,

and reduce to consider the case when R
0f0∗M0 = 0.

3that is, the maps are continuous, but are not a priori assumed to be strict
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As a projective B0-module, M0 is canonically an LS space (as it is a direct
summand of a free B0-module), this structure being induced by a family of
partially defined norms ‖ · ‖λ on M0, coming from affinoid norms on fringe
algebras of B0 arising from a fixed presentation K〈x1, . . . , xn〉† → B0. We can

then concretely describe M0 ⊗B0
R

[ηm,ηn],xd

B0
as the set of formal series

∑

i

mix
i
d

with mi ∈ M0, such that there exists some λ such that ‖mi‖λ exists for all i
and

‖mi‖λ η
i
m → 0 as i→ −∞

‖mi‖λ η
i
n → 0 as i→ +∞.

We equip the set of such series with the obvious R
[ηm,ηn],xd

B0
-module structure,

there is of course an entirely similar description of M0 ⊗B0
R

[ηn,ηm],xd

B0
⊗B0

Ω1
B0/A0

. Let

∇ : M0 →M0 ⊗B0
Ω1

B0/A0

be the A0-linear connection on M0. Then the quotient topology on R
1f∗M0 is

separated - this can be seen, for example, by comparing with the p-adic topology
over the completed fraction field L0 ofA0 and using [Ked06a, Proposition 8.4.5].
Hence the exact sequence

0→M0
∇
→M0 ⊗B0

Ω1
B0/A0

→ R
1f0∗M0 → 0

of topological A0-modules satisfies the hypotheses of Corollary 7.10, and is
therefore split in the category of ind-Banach spaces over K.

This implies that if
∑

i mix
i
d is a series in M0⊗B0

R
[ηm,ηn],xd

B0
, then

∑
i∇(mi)x

i
d

also satisfies the convergence condition defining M0 ⊗B0
R

[ηm,ηn],xd

B0
inside

MJxd, x
−1
d K, and the map

∇ : M0 ⊗B0
R

[ηm,ηn],xd

B0
→M0 ⊗B0

R
[ηm,ηn],xd

B0
⊗B0

Ω1
B0/A0

is given by
∑

imix
i
d 7→

∑
i∇(mi)x

i
d. It is then clear that the kernel of ∇ on

M0 ⊗B0
R

[ηm,ηn],xd

B0
is zero, which proves the base change claim for R0f0∗M0.

To deal with the R
1f0∗M0 case, choose elements e1, . . . , en in M0 ⊗B0

Ω1
B0/A0

lifting a basis of R1f0∗M0. Since R
0f∗M0 = 0, every m ∈M0 ⊗B0

Ω1
B0/A0

can
be written uniquely as

m = ∇(n) +
∑

j

αjej

for elements n ∈ M0 and αj ∈ A0. Thus given any
∑

imix
i
d ∈ M0 ⊗B0

R
[ηm,ηn],xd

B0
⊗B0

Ω1
B0/A0

we can write each mi = ∇(ni) +
∑

j αijej , and again
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by split exactness of the sequence

0→M0
∇
→M0 ⊗B0

Ω1
B0/A0

→ R
1f0∗M0 → 0

of ind-Banach spaces, it follows that the sums
∑

i

nix
i
d, and

∑

i

αijx
i
d, 1 ≤ j ≤ n

satisfy the convergence conditions required to define elements of inside M0⊗B0

R
[ηm,ηn],xd

B0
and R

[ηm,ηn]
(S0,S) respectively. Therefore we can write

∑

i

mix
i
d = ∇

(
∑

i

nix
i
d

)
+
∑

j

(
∑

i

αijx
i
d

)
ej ,

for unique elements
∑

i αijx
i
d ∈ R

[ηm,ηn]
(S0,S) and

∑
i nix

i
d ∈ M0 ⊗B0

R
[ηm,ηn],xd

B0
,

and this implies that the ei also form a basis for R
1g∗

(
M0 ⊗B0

R
[ηm,ηn],xd

B0

)

as an R
[ηm,ηn]
(S0,S) -module.

8 Base change for R
1f∗

We now have the necessary tools to prove the R
1f∗M case of Theorem 4.7.

Again, we consider Setup 4.3, thus (in particular) we have a morphism of MW-
type frames

(U,C,C)→ (S, S,S)

enclosing an affine curve f : U → S, with induced morphism A → B of K-
dagger algebras as in §4.2. We let M be a ∇-module on B obtained as the
realisation of an overconvergent isocrystal E on U/K.

Theorem 8.1. Assume that M is F -able, and has constant total irregularity
IrrtotM . Then R

1f∗M is finitely generated over A, and for any closed point
s : A→ K ′ the base change map

R
1f∗M ⊗A K ′ → H1(Ms)

is an isomorphism.

Remark 8.2. As in Remark 6.2, it follows that formation of R1f∗M commutes
with arbitrary base change A → A′ of MW-type K-dagger algebras, and any
Frobenius structure on M induces one on R

1f∗M .

The key case to consider will be when we have R
0f∗M = 0.

Theorem 8.3. Assume that M is F -able. Suppose that for all closed points
s : A→ K ′ we have

H0(Ms) = 0, dimK′ H1(Ms) = m
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for some non-negative integer m, independent of s. Then R
1f∗M is locally free

of rank m, and for any closed point s : A→ K ′ the base change map

R
1f∗M ⊗A K ′ → H1(Ms)

is an isomorphism.

Theorem 8.3 ⇒ Theorem 8.1. Given a general M as in Theorem 8.1 we have
by Theorem 6.1 an injection

R
0f∗M ⊗A B →M

of F -able ∇-modules. Since relatively constant ∇-modules have zero irregular-
ity, we deduce that the hypotheses of Theorem 8.1 remain true for the cokernel
of this injection. Moreover, it follows easily from the projection formula that
the conclusions of Theorem 8.1 hold for the ∇-module R

0f∗M ⊗A B. Appeal-
ing to the five lemma and iterating, we may therefore reduce to considering
the case when R

0f∗M = 0. Theorem 6.1 then implies that H0(Ms) = 0 for
all such s, and hence [CM01, Corollaire 5.0-12] implies that dimK′ H1(Ms) is
constant. Thus we may apply Theorem 8.3.

The situation here is the opposite to the one we had in §6 - the hard part is
showing finiteness of R1f∗M , the base change claim will then follow relatively
easily. To prove Theorem 8.3 we will proceed by induction on the dimension
d = dimA, the case d = 0 amounting to finiteness of rigid cohomology with
coefficients for smooth curves [Ked06a, §6]. The main structure of the proof
will be essentially geometric, working on the ‘weak formal scheme’ Spf(Aint).
Theorem 4.5 tells us that R

1f∗M becomes coherent on some open subspace
W ⊂ Spf(Aint), and we will use constancy of dimK′ H1 together with the
induction hypothesis to successively enlarge the open set W . A basic outline
of the argument we will use can be found in the proof of the following lemma,
and was already used in the proof of Proposition 3.11.

Lemma 8.4. Assumptions as in Theorem 8.3. For any dagger localisation A→
A′ the map

R
1f∗M → R

1f∗MA′

is injective.

Proof. Write ∇ for the A-linear connection on M , and for any dagger localisa-
tion A→ A′′, write BA′′ = B⊗†

AA′′. We need to show that if m ∈MA′ is such
that ∇(m) ∈ M ⊗B Ω1

B/A, then in fact m ∈ M . By the dagger analogue of
Tate’s acyclicity theorem, the question is local on A in the sense that it suffices
to produce a dagger open cover {A→ Ai} such that m ∈MAi for all i.
Suppose therefore that we have some collection of dagger localisations C =
{A → Ai} (not necessarily covering A) such that m ∈ MAi for all i. A non-
empty such C exists by hypothesis. Let UC denote the union of the images of
the induced open immersions Ui → S on the reductions. We shall show that
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if UC 6= S, then we can find another dagger localisation A → A′′ such that
m ∈ MA′′ , and adding A′′ to C enlarges UC . The result will then follow by
Noetherian induction.
Now, if UC 6= S, then after possibly enlarging K, which is harmless, we may
choose a smooth k-rational point z on the (reduced) complement of UC in S.
Localising around z we may by [Ked05, Theorem 1] pick a finite étale map
(x1, . . . , xd) : S → Ad

k such that S \ UC maps into the hyperplane {xd = 0}.

It suffices to produce some A′′ as above such that Spec
(
A

′′
)
⊂ S contains z.

After applying Lemma 2.9 we may assume that our étale morphism S → Ad
k

extends to a proper, étale, Cartesian morphism of frames

(S, S,S)→ (Ad
k,P

d
k, P̂

d
V),

in particular it lifts to a finite étale map K〈x1, . . . , xd〉† → A. Pushing forward
along this morphism we may therefore assume that

(S, S,S) = (Ad
k,P

d
k, P̂

d
V)

and that UC ⊃ {xd 6= 0} as open subschemes of Ad
k. Thus we have A′ =

K〈x1, . . . , xd, x
−1
d 〉

†, and we are now in a position to apply the results of §7
above; we will freely use the notations introduced there. We have a Cartesian
diagram of rings

B //

��

R+
(U0,C)

��

B〈x−1
d 〉

† // R(U0,C)

and an F -able ∇-module M over B, with constant total irregularity. We need
to show that the induced map

R
1f∗M → R

1f∗ (MA′)

is injective. It therefore suffices to show that

∇ :
MA′

M
→

MA′

M

and since the above square is Cartesian (and M is projective), that

∇ : M ⊗B

R(U0,C)

R+
(U0,C)

→M ⊗B

R(U0,C)

R+
(U0,C)

is injective. By the induction hypothesis we know that M0 satisfies both con-
ditions of Theorem 4.7. Thus we may apply Theorem 7.1 to deduce that

R
0f∗
(
M ⊗B R(U0,C)

)
= 0,
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and
R

1f∗

(
M ⊗B R

+
(U0,C)

)
→֒ R

1f∗
(
M ⊗B R(U0,C)

)
.

We can now use the long exact sequence associated to

0→M ⊗B R
+
(U0,C)

→M ⊗B R(U0,C) →M ⊗B

R(U0,C)

R+
(U0,C)

→ 0

to conclude.

Lemma 8.5. Hypotheses as in Theorem 8.3. If there exists an open cover
{A → Ai} such that the conclusions of Theorem 8.3 hold for each MAi , then
they hold for M .

Proof. Choose a dagger localisation A→ A′ such that the conclusions of The-
orem 4.5 hold for MA′ . By shrinking A′ we may assume that Ai → A′ for all
i, and hence that Aij := Ai ⊗

†
A Aj →֒ A′ for all i, j. By comparing with closed

points of A′, we therefore have base change isomorphisms

R
1f∗MAi ⊗Ai A

′ ∼
→ R

1f∗MA′

which we can use to embed R
1f∗MAi and R

1f∗MAi ⊗Ai Aij inside R
1f∗MA′ .

Let Nij denote the sum of R1f∗MAi ⊗Ai Aij and R
1f∗MAj ⊗Aj Aij inside

R
1f∗MA′ , this is therefore an overconvergent ∇-module over Aij . Since

Nij →֒ R
1f∗MA′

we can deduce by applying [Ked07a, Proposition 5.3.1] to the kernel of

Nij ⊗Aij A
′ → R

1f∗MA′

that in fact the map Nij ⊗Aij A
′ → R

1f∗MA′ remains injective. We thus find
that

(
R

1f∗MAi ⊗Ai Aij +R
1f∗MAj ⊗Aj Aij

)
⊗Aij A

′ ∼
→ R

1f∗MA′ ,

and in particular, the cokernel of the natural map

R
1f∗MAi ⊗Ai Aij → R

1f∗MAi ⊗Ai Aij +R
1f∗MAj ⊗Aj Aij

has to vanish after applying −⊗Aij A
′. Since this cokernel is an overconvergent

∇-module, it must already be zero over Aij , and thus we deduce that

R
1f∗MAi ⊗Ai Aij = R

1f∗MAj ⊗Aj Aij

inside R
1f∗MA′ . Hence by descent for coherent sheaves on dagger spaces, the

intersection N =
⋂

iR
1f∗MAi of all the R

1f∗MAi inside R
1f∗MA′ is a locally

free A-module of rank m whose base change to Ai is exactly R
1f∗MAi . By
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Lemma 8.4 above, R1f∗M naturally embeds into N : it is thus finite, and hence
a ∇-module, locally free of rank r ≤ m. However, since the base change map

R
1f∗MA ⊗A K ′ → H1(Ms)

associated to any closed point s is surjective (which is immediate from the
definitions), we deduce that in fact r = m, R1f∗M = N , and the base change
map along closed points A→ K ′, as well as to each Ai, is an isomorphism.

We need one more lemma before we can prove Theorem 8.3, which in a way is
the key result making the whole approach work.

Lemma 8.6. Let N1, N2 be finite projective modules of rank m over the rings
K〈x1, . . . , xd, x

−1
d 〉

† and Rxd+
K〈x1,...,xd−1〉†

respectively, and let

α : N1 ⊗K〈x1,...,xd,x
−1

d 〉† R
xd

K〈x1,...,xd−1〉†
∼
→ N2 ⊗R

xd+

K〈x1,...,xd−1〉†

Rxd

K〈x1,...,xd−1〉†

be an Rxd

K〈x1,...,xd−1〉†
-linear isomorphism. Then the intersection of N1 and

α−1(N2), inside the base change N1 ⊗K〈x1,...,xd,x
−1

d 〉† R
xd

K〈x1,...,xd−1〉†
is a finite

projective K〈x1, . . . , xd〉†-module of rank m.

Remark 8.7. It is in order to be able to apply this key lemma that makes it vital
to work with overconvergent, rather than just convergent, relative cohomology
groups.

Proof. First choose λ > 1 close enough to 1 that there exists a locally free sheaf
Eλ on the rigid analytic space

Uλ :=
{
|xi| ≤ λ, |xd| ≥ λ−1

}

whose module of global sections tensored with K〈x1, . . . , xd, x
−1
d 〉

† is precisely
N1. Next choose λ−1 < ρ < 1 and 1 < ηρ < λ close enough to 1 such that
there exists a locally free sheaf Eρ on

Uρ := {|xi| ≤ ηρ, |xd| ≤ ρ}

whose module of global sections, tensored with

∪η>1K〈η
−1x1, . . . , η

−1xd−1, ρ
−1xd〉,

coincides with

N2 ⊗ ∪η>1K〈η
−1x1, . . . , η

−1xd−1, ρ
−1xd〉.

After possibly increasing λ, the isomorphism α is defined over

∩λ−1≤ρ′<1 ∪η>1 K〈η
−1x1, . . . , η

−1xd−1, λx
−1
d , ρ′−1xd〉
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and hence (after possibly decreasing ηρ) induces an isomorphism

Eλ|Uλ∩Uρ

∼
→ Eρ|Uλ∩Uρ

of locally free sheaves on

Uλ ∩ Uρ =
{
|xi| ≤ ηρ, λ−1 ≤ |xd| ≤ ρ

}
.

Thus Eλ and Eρ glue to give a locally free sheaf E on

Uλ ∪ Uρ = {|xi| ≤ λ} .

Set N = Γ(Uλ ∪ Uρ, E) ⊗ K〈x1, . . . , xd〉
†. This is a then a finite projec-

tive (and therefore free) module over K〈x1, . . . , xd〉† such that N1 = N ⊗
K〈x1, . . . , xd, x

−1
d 〉

† and N2 = N ⊗ Rxd+
K〈x1,...,xd−1〉†

. The result then follows

from the fact that the digram

K〈x1, . . . , xd〉
† //

��

Rxd+
K〈x1,...,xd−1〉†

��

K〈x1, . . . , xd, x1

d〉
† // Rxd

K〈x1,...,xd−1〉†

of rings is Cartesian.

Proof of Theorem 8.3. The claim we are trying to prove, i.e. finite generation
of R1f∗M and commutation with base change to closed points, is local on A
by Lemma 8.5, and we can now argue entirely similarly to the proof of Lemma
8.4 above.
In other words, we know by Theorem 4.5 and Lemma 4.9 that after making
a localisation A → A′ the higher direct image R

1f∗M becomes locally free
and commutes with base change to closed points. By extending K and using
Noetherian induction, it suffices to show that the same also holds over some
dagger localisation of A containing the residue disc of a given smooth rational

point of the complement S \ Spec
(
A

′
)
.

Localising around this point, applying [Ked05, Theorem 1] and lifting, and
using Lemma 8.5 above, we can reduce to the case when A = K〈x1, . . . , xd〉

†

and A′ = K〈x1, . . . , xd, x
−1
d 〉

†. Again, we are now in a position to apply the
results from §7 above, and we will freely use the notation introduced there.
Consider the commutative diagram

R
1f∗M //

��

R
1f∗

(
M ⊗B R

+
(U0,C)

)

��

R
1f∗MA′ // R

1f∗
(
M ⊗B R(U0,C)

)
.
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Applying Theorem 7.1 produces (injective) maps

R
1f∗

(
M ⊗B R

+
(U0,C)

)
→ R

1f0∗M0 ⊗K〈x1,...,xd−1〉† R
xd+
K〈x1,...,xd−1〉†

R
1f∗
(
M ⊗B R(U0,C)

)
→ R

1f0∗M0 ⊗K〈x1,...,xd−1〉† R
xd

K〈x1,...,xd−1〉†

and hence a commutative diagram as follows:

R
1f∗M //

��

R
1f0∗M0 ⊗K〈x1,...,xd−1〉† R

xd+
K〈x1,...,xd−1〉†

��

R
1f∗MA′ // R

1f0∗M0 ⊗K〈x1,...,xd−1〉† R
xd

K〈x1,...,xd−1〉†
.

We claim that the base change map

R
1f∗MA′ ⊗A′ Rxd

K〈x1,...,xd−1〉†
→ R

1f0∗M0 ⊗K〈x1,...,xd−1〉† R
xd

K〈x1,...,xd−1〉†

is an isomorphism. Indeed, since both sides are projective of the same rank,
it suffices to prove that it is surjective. To see this surjectivity, first note that
since the map

R
1f∗M → R

1f0∗M0

is surjective, the image of

R
1f∗M ⊗A R

xd+
K〈x1,...,xd−1〉†

→ R
1f0∗M0 ⊗K〈x1,...,xd−1〉† R

xd+
K〈x1,...,xd−1〉†

surjects onto R
1f0∗M0 via the natural quotient map xd 7→ 0. Since ∇-modules

are rigid, it follows that in fact

R
1f∗M ⊗A R

xd+
K〈x1,...,xd−1〉†

→ R
1f0∗M0 ⊗K〈x1,...,xd−1〉† R

xd+
K〈x1,...,xd−1〉†

is surjective, hence so is

R
1f∗MA′ ⊗A′ Rxd

K〈x1,...,xd−1〉†
→ R

1f0∗M0 ⊗K〈x1,...,xd−1〉† R
xd

K〈x1,...,xd−1〉†

simply by some diagram chasing. Finally, by Lemmas 8.4 and 8.6 we can deduce
that R1f∗M is contained in finite projective module of rank m, it is therefore
finite over K〈x1, . . . , xd〉†, and, since it admits an integrable connection, pro-
jective of rank ≤ m. Since the base change map

R
1f∗M ⊗A K ′ → H1(Ms)

to each closed point of A is surjective, we can conclude in fact R
1f∗M is in

fact of rank = m and that every such base change map is an isomorphism.

Applying Remarks 6.2 and 8.2, this completes the proof of Theorem 4.7.
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9 Partially overconvergent cohomology

Theorem 4.7 is a statement concerning relative Monsky–Washnitzer cohomol-
ogy, and as such only applies when the base variety S is smooth and affine.
In order to be able to deduce a statement for any base S which is separated
and of finite type over k (and indeed, for more general curves than allowed
by Setup 4.3), we will need to ‘complete along the base’ A and prove a simi-
lar result for partially (vertically) overconvergent cohomology. We will again
consider Setup 4.3, thus (in particular) we have a morphism of MW-type frames

f : (U,C,C)→ (S, S,S)

enclosing an affine curve f : U → S, with induced morphism A → B of K-
dagger algebras as in §4.2. We let M be a ∇-module on B obtained as the
realisation of an overconvergent isocrystal E on U/K. Write

A = colimλAλ and B = colimλBλ

as colimits of smooth affinoid algebras over K, such that Aλ → Bλ for all λ.
Let Â denote the affinoid completion of A, and set

BÂ := colimλÂ⊗̂Aλ
Bλ,

this is ‘relative dagger algebra’ over Â. SetMÂ = M⊗BBÂ and defineRif∗MÂ
to be the cohomology groups of the complex

MÂ

∇
→MÂ ⊗B Ω1

B/A.

Our base change result is then the following.

Theorem 9.1. Assume that M is F -able, and the equivalent conditions of
Theorem 4.7 hold for M . Then the base change map

R
if∗M ⊗A Â→ R

if∗MÂ

is an isomorphism for i = 0, 1.

We will need some preliminaries on topological modules over the Banach ring Â.
This ring is a Tate ring in the sense of Huber [Hub96, §1.1] that is also sepa-

rated, complete, reduced, and admits a Noetherian ring of definition Âint ⊂ Â,
consisting of elements of supremum norm ≤ 1.

Definition 9.2. A topological Â-module N is said to be locally convex if there
exists a neighbourhood base of 0 consisting of Âint-lattices in N .

For clarity, we will sometimes refer to a topology being locally convex rel. Â.
As with the case of vector spaces over a non-archimedean field, a locally convex
topology on an Â-module N is determined by its collection of open Âint-lattices.
Locally convex topologies are exactly those which can be defined using a col-
lection of norms on N , all of which are compatible with the supremum norm
on Â.

Documenta Mathematica 26 (2021) 981–1044



1034 C. Lazda

Example 9.3. 1. Any Â-module N admits a finest locally convex topology,
for which all Âint-lattices are open. We will call this the strong topology
on N . If N is finitely generated, then this is the quotient topology arising
from any surjection Â⊕n → N , and N is separated and complete with
respect to this topology (since Â is an affinoid algebra overK, this follows
from [Ber90, Proposition 2.1.9]).

2. Be warned that even finitely generated Â-modules may admit distinct
locally convex topologies. For example, there is a locally convex topology
on K〈x〉 (as a free module over itself) for which a basis of open lattices
is given by Λn,m = pnV〈x〉 + xmK〈x〉, for n,m ∈ Z≥0. This is strictly
weaker than the strong topology, and K〈x〉 is not complete with respect
to this topology. Its completion is KJxK, endowed with the direct product
topology via KJxK ∼=

∏∞
i=1 K. In particular a separated, locally convex

Â-module may contain a dense, finitely generated, proper submodule.

We can avoid the somewhat pathological behaviour of the second example by
comparing with the situation over the completed fraction field L of Â, over
which any finitely generated module has a unique separated, locally convex
topology.

Lemma 9.4. Let N be a finite projective Â-module, and L the completed fraction
field of Â. Then the strong topology on N is the subspace topology coming from
the inclusion

N →֒ N ⊗Â L.

Proof. Choose an isomorphism N ⊕ P ∼= Â⊕n, thus both maps N →֒ Â⊕n and
N⊗ÂL →֒ L⊕n are strict for the strong topologies. We can therefore reduce to

the case N = Â⊕n. In this case, both topologies are induced by the canonical
norm

‖(a1, . . . , an)‖ := max
1≤i≤n

‖ai‖sup

on Â⊕n coming from the supremum norm on Â.

Proof of Theorem 9.1. First note that the equivalent conditions of Theorem 4.7
are preserved under passing from M to either the submodule R

0f∗M ⊗A B or
the quotient of M by this submodule. Thus using induction and the five lemma
it suffices to consider the two cases when R

0f∗M = 0 and when M = N ⊗A B
for some (ϕ,∇)-module N over A. The case when M = N ⊗A B is easily
handled by the projection formula, we will concentrate on the latter.

Let L denote the completed fraction field of A. By Remark 4.8 we know that
R

0f∗M = 0 ⇒ R
0f∗ML = 0 and hence R

0f∗MÂ →֒ R
0f∗ML = 0, this gives

the base change claim for R0f∗M . To prove the base change claim for R1f∗M ,
we give BÂ the (locally convex rel. Â) inductive limit topology coming from the

affinoid topology on each Â⊗Aλ
Bλ. This then induces a locally convex (rel. Â)
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topology on any finitely generated BÂ-module, such as MÂ or MÂ ⊗B Ω1
B/A.

We equip R
1f∗MÂ with the quotient topology via

MÂ →MÂ ⊗B Ω1
B/A,

which makes it a (potentially non-separated) locally convex Â-module. We can
play the same game with ML, to obtain a locally convex topology on the finite
dimensional L-vector space R

1f∗ML, which in fact is separated by [Ked06a,
Proposition 8.4.4]. The natural map

R
1f∗MÂ → R

1f∗ML

is then continuous. Since the map

R
1f∗M ⊗A L→ R

1f∗ML

is an isomorphism (by Remark 4.8), it follows that both maps

R
1f∗M ⊗A Â→ R

1f∗MÂ and R
1f∗M ⊗A Â→ R

1f∗ML

are injective, and since M ⊗A Â→MÂ has dense image, so does

R
1f∗M ⊗A Â→ R

1f∗MÂ.

Let Q be the maximal separated quotient of R1f∗MÂ, i.e. the quotient by the
closure of {0}. Then we have a factorisation

R
1f∗M ⊗A Â // R

1f∗MÂ
//

��

R
1f∗ML

Q.

99rrrrrrrrrrrr

SinceR1f∗ML is separated, it follows that Q →֒ R
1f∗ML, and sinceR1f∗M⊗A

Â →֒ R
1f∗ML is injective, so is R

1f∗M ⊗A Â → Q. Since R
1f∗M ⊗A Â →

R
1f∗MÂ has dense image, so does R

1f∗M ⊗A Â → Q. Now using Lemma
9.4 together with continuity of the map Q → R

1f∗ML, we can see that the
topology on R

1f∗M ⊗A Â induced by the inclusion

R
1f∗M ⊗A Â →֒ Q

has to be finer than the strong topology, it is therefore equal to the strong
topology. Hence R

1f∗M ⊗A Â is complete with respect to this topology, and
thus has closed image in Q; therefore R

1f∗M ⊗A Â
∼
→ Q.

One more application of Lemma 9.4 tells us that the topology on Q must also
be the strong topology (since it maps continuously into R

1f∗ML), and hence
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the map R
1f∗M ⊗A Â→ Q is in fact a homeomorphism. In other words, the

exact sequence
0→ {0} → R

1f∗MÂ → Q→ 0

admits a topological splitting, which implies that in fact {0} = {0} and

R
1f∗M ⊗A Â

∼
→ R

1f∗MÂ.

We will use the above theorem in a slightly different, and more geometric, form.
Let S◦ denote the open formal subscheme of S whose underlying topological
space is S, and let C◦ be the inverse image of S◦ under f : C→ S. Let

sp : C◦
K → C◦

be the specialisation map, and

OC◦,Q(
†C \ U) = sp∗j

†
UOC◦

K

the sheaf of functions on C◦ with overconvergent singularities along C \ U . If
we realise E on C◦

K and pushforward along the specialisation map we obtain a
coherent OC◦,Q(

†C \U)-module sp∗EC◦ together with an integrable connection,
whose module of global sections is precisely MÂ.

Corollary 9.5. With assumptions as in Theorem 9.1, the relative de Rham
cohomology sheaves

R
if∗

(
sp∗EC◦ ⊗OC◦ Ω∗

C◦/S◦

)

are coherent OS◦,Q-modules.

10 Local acyclicity via arithmetic D†-modules

We are now ready to prove our second local acyclicity result for smooth relative
curves. This will be valid over not necessarily smooth bases S, but will involve
the additional assumption that the resiude field k is perfect; we will assume
this from now on. Fix an arbitrary k-variety S, let f : U → S be a good
curve, and E ∈ Isoc†F (U/K). Then for any geometric point s̄→ S over a point
s ∈ S we can pullback E to get an overconvergent isocrystal Es̄ on Us̄ over
K(s̄) := K ⊗W (k) W (k(s̄)). If we let Cs̄ denote the smooth compactification of
Us̄, then for every point x ∈ Cs̄ \ Us̄ we can apply the construction of [Cre98,
§7] to pullback Es̄ to a punctured formal neighbourhood of x in Cs̄ to obtain
an overconvergent ∇-module Mx over a copy of the Robba ring RK(s̄),x at x.

Definition 10.1. We define the Swan conductor of Es̄ at x to be the irregu-
larity of the overconvergent ∇-module Mx,

Swx(Es̄) := Irr(Mx).

We define
ϕE(s̄) :=

∑

x∈Cs̄\Us̄

Swx(Es̄).
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The positive integer ϕE(s̄) only depends on the point s ∈ S lying under s̄, we
thus obtain a function

ϕE : S → Z≥0.

Note that this is not a direct analogue of the function ϕ considered in [Lau81],
which also includes a contribution from the rank of E. This minor differ-
ence notwithstanding, we have the following partial p-adic analogue of [Lau81,
Corollary 2.1.2].

Theorem 10.2. Let f : U → S be a relative smooth affine curve over a k-
variety S, and E ∈ Isoc†F (U/K). Suppose that f admits a smooth compactifi-
cation f̄ : C → S such that the complementary divisor C \ U is étale over S.

1. The function ϕE : S → Z≥0 is constructible and lower semi-continuous.

2. f!ρ(E) ∈ Db,†
isoc,F (S/K) if and only if ϕE is locally constant on S.

Remark 10.3. 1. This result is weaker than [Lau81, Corollary 2.1.2] in that
we assume the complement C \U is finite étale over S, whereas in [Lau81]
it is only required to be finite flat. A formalism of vanishing and nearby
cycles in p-adic cohomology is developed in [Abe19], it would be interest-
ing to see whether Abe’s machinery can be used to prove a p-adic version
of the more general result.

2. If the equivalent conditions of Theorem 10.2(2) are satisfied, then the
constructible cohomology sheaves

R
if!E := cHi(f!ρ(E)) ∈ Isoc†F (S/K)

are of formation commuting with arbitrary base change S′ → S. If in
addition S is smooth over k, then the constructible cohomology sheaves

R
if∗E := cHi(f+ρ(E)) ∈ Isoc†F (S/K)

are also overconvergent isocrystals, and of formation commuting with
base change S′ → S of smooth varieties. Moreover, in this case we have
perfect pairings

R
if∗E ⊗R

2−if!E → O
†
S/K(−1)

of overconvergent isocrystals, which are compatible with any given Frobe-
nius structure on E. Thus even in the smooth case, Theorem 10.2 gives
us slightly more than Theorem 4.7.

Let us first consider Theorem 10.2(1), which boils down to two claims:

1. there exists an open subset U ⊂ S such that ϕE is constant on U (we
apply this successively to the complement of U in S and so forth);

2. if η, s ∈ S and s ∈ {η} then ϕE(s) ≤ ϕE(η).
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Note that if a : S′ → S is any morphism, and s′ ∈ S′, then ϕa∗E(s
′) =

ϕE(a(s
′)). Hence to prove the first of these we may replace S by any variety

a : S′ → S flat over S, and for the second we may replace S by an alteration
followed by the inclusion of an open affine containing s (and hence η). In
either case, we can assume that S is smooth and affine. Working one connected
component at a time, we may assume S connected.
Now applying Lemma 4.4 we may assume that we are in the situation of
Setup 4.3. The first claim then follows from Corollary 4.10 together with the
Grothendieck–Ogg–Shafarevich formula

χ(Us̄, Es̄) = χ(Us̄) · rankEs̄ −
∑

x∈Cs̄\Us̄

Swx(Es̄),

see for example [CM01, Corollaire 5.0-12]. For the second, we may replace S
by a suitable alteration of {η}, and thus assume that η is the generic point
of S. The claim then follows from Proposition 3.10.
To prove Theorem 10.2(2) we first suppose that f!ρ(E) ∈ Db,†

isoc,F (S/K); we
must show that ϕE is locally constant. We may clearly assume that S is
connected, and since we already know that ϕE is constructible, it suffices to
show that it is constant on the set |S| of closed point of S. If is : s→ S is the
inclusion of a closed point, inducing a Cartesian diagram

Xs

i′s
//

fs

��

X

f

��

s
is

// S,

then we have that

i+s f!ρ(E) ∼= fs!i
′+
s ρ(E) ∼= fs!ρ(i

∗
sE).

Since f!ρ(E) ∈ Db,†
isoc,F (S/K) and i+s is exact for the constructible t-structure,

we deduce the existence of objects

R
if!E := cHi(f!ρ(E)) ∈ Isoc†F (S/K)

such that i∗sR
if!E ∼= Hi

c,rig(Us/K(s), Es) for all s. In particular, we can see
that the compactly supported Euler characteristic

s 7→ χc(Us, Es) = χc(Us̄, Es̄)

is constant on |S|. Since Swx(E
∨
s̄ ) = Swx(Es̄), applying Poincaré duality and

the p-adic Grothendieck–Ogg–Shafarevich formula tells us that

χc(Us̄, Es̄) = χ(Us̄, E
∨
s̄ ) = χ(Us̄) · rankE

∨
s̄ −

∑

x∈Cs̄\Us̄

Swx(E
∨
s̄ )

= χ(Us̄) · rankEs̄ −
∑

x∈Cs̄\Us̄

Swx(Es̄).
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Thus constancy of χc(Us, Es) implies that of ϕE(s), and we are done.
To prove the converse implication, then, let us assume that ϕE is constant,
and take an alteration a : S′ → S with S′ smooth. Then we have a Cartesian
diagram

X ′ a′
//

f ′

��

X

f

��

S′ a
// S

and isomorphisms

a+f!ρ(E) ∼= f ′
! a

′+ρ(E) ∼= f ′
! ρ(a

′∗E).

By [Abe19, Lemma 3.3], together with t-exactness of a+, it therefore suffices

to show that f ′
! ρ(a

′∗E) ∈ Db,†
isoc,F (S

′/K), and thus replacing S by S′ we may
assume that S is smooth. Since the question is local on S, we may also assume
that it is affine and connected. Again applying [Abe19, Lemma 3.3] and using
the fact that smoothness of a given constructible module (in the sense of [Abe19,
Definition 3.2]) is clearly Zariski local, we may invoke the results of [Voe96, §3]
on the h-topology (specifically, the fact that the topology generated by Zariski
covers and proper surjective maps is finer than the étale topology) to show that
smoothness of a given constructible module is in fact étale local. Hence after
taking a suitable étale cover of S as in 4.4, we may assume that we are in the
situation of Setiup 4.3.
Now by Poincaré duality

f!ρ(E) ∼= DSf+ρ(E
∨)[−2 dimS],

it therefore suffices to show that f+ρ(E
∨) ∈ Db,†

isoc,F (S/K). Since ϕE = ϕE∨ we
may replace E by E∨, and since S is smooth we have ρ(E) ∼= sp+E[− dimS];

we must therefore show that ϕE constant⇒ f+sp+E ∈ Db,†
isoc,F (S/K). Now let

f : (C,C,C)→ (S, S,S)

be a morphism of frames extending a good compactification of f as in Setup 4.3.
Let S◦ ⊂ S denote the open formal subscheme with underlying topological
space S and let C◦ denote the fibre product of S◦ with C over S. Let Ê denote
the image of E inside the category IsocF ((U,C)/K) of isocrystals on U over-
convergent along C (which are extensions of isocrystals admitting Frobenius
structures). Since the diagram

Isoc†F (U/K)
sp+

//

��

Db,†
hol,F (U/K)

f+
//

��

Db,†
hol,F (S/K)

��

IsocF ((U,C)/K)
sp+

// Db
hol,F ((U,C)/K)

f+
// Db

hol,F (S/K)
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commutes up to natural isomorphism, it suffices by Lemma 2.11 to show that

f+sp+Ê ∈ Db
isoc,F (S/K).

By Lemma 2.12 the functor f+ on the category of ‘convergent’ holonomic mod-
ules can be computed in terms of the realisation C◦ → S◦ via

f+ : Db
coh(D

†
C◦,Q)→ Db

coh(D
†
S◦,Q),

and moreover it suffices to show that the OS◦,Q-modules underlying cohomol-

ogy sheaves of f+sp+Ê are coherent. In this case the construction of the functor
sp+E is very simple. Explicitly, we realise E on C◦

K , and pushforward the re-
sulting module with integrable connection EC◦ via the specialisation map

sp : C◦
K → C◦.

This results in a coherent OC◦,Q(
†C \ U)-module with integrable connection,

which by [CT12, Theorem 2.3.15] extends to the structure of an overholonomic

(and in particular, coherent) D†
C◦,Q-module (remember that E is F -able). This

D†
C◦,Q-module is nothing other than sp+Ê. Finally using [Ber02, (4.3.6.3)] we

can identify

f+sp+Ê[−1] ∼= Rf∗

(
sp∗EC◦ ⊗OC◦ Ω∗

C◦/S◦

)

and therefore apply Corollary 9.5 to conclude.
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mathematics].

[Car04] D. Caro, D-modules arithmétiques surcohérents. Applications aux
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